Datasets:

ArXiv:
License:
holylovenia commited on
Commit
c3e9d45
1 Parent(s): 4d9ec89

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -13,8 +13,8 @@ tags:
13
  - image-captioning
14
  ---
15
 
16
- CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
17
- originally in English, to the other 34 languages using Google's machine translation API.
18
 
19
 
20
  This is a local dataset. You have to obtain this dataset separately from [{homepage}]({homepage}) to use this dataloader.
@@ -26,25 +26,25 @@ fil, ind, tha, vie
26
  ## Supported Tasks
27
 
28
  Image Captioning
29
-
30
  ## Dataset Usage
31
  ### Using `datasets` library
32
  ```
33
- from datasets import load_dataset
34
- dset = datasets.load_dataset("SEACrowd/cc3m_35l", trust_remote_code=True)
35
  ```
36
  ### Using `seacrowd` library
37
  ```import seacrowd as sc
38
  # Load the dataset using the default config
39
- dset = sc.load_dataset("cc3m_35l", schema="seacrowd")
40
  # Check all available subsets (config names) of the dataset
41
- print(sc.available_config_names("cc3m_35l"))
42
  # Load the dataset using a specific config
43
- dset = sc.load_dataset_by_config_name(config_name="<config_name>")
44
  ```
45
-
46
- More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
47
-
48
 
49
  ## Dataset Homepage
50
 
 
13
  - image-captioning
14
  ---
15
 
16
+ CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018),
17
+ originally in English, to the other 34 languages using Google's machine translation API.
18
 
19
 
20
  This is a local dataset. You have to obtain this dataset separately from [{homepage}]({homepage}) to use this dataloader.
 
26
  ## Supported Tasks
27
 
28
  Image Captioning
29
+
30
  ## Dataset Usage
31
  ### Using `datasets` library
32
  ```
33
+ from datasets import load_dataset
34
+ dset = datasets.load_dataset("SEACrowd/cc3m_35l", trust_remote_code=True)
35
  ```
36
  ### Using `seacrowd` library
37
  ```import seacrowd as sc
38
  # Load the dataset using the default config
39
+ dset = sc.load_dataset("cc3m_35l", schema="seacrowd")
40
  # Check all available subsets (config names) of the dataset
41
+ print(sc.available_config_names("cc3m_35l"))
42
  # Load the dataset using a specific config
43
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
44
  ```
45
+
46
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
47
+
48
 
49
  ## Dataset Homepage
50