|  | from pathlib import Path | 
					
						
						|  | from typing import Dict, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | from seacrowd.utils import schemas | 
					
						
						|  | from seacrowd.utils.configs import SEACrowdConfig | 
					
						
						|  | from seacrowd.utils.constants import Tasks | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """ | 
					
						
						|  | @INPROCEEDINGS{8629181, | 
					
						
						|  | author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu}, | 
					
						
						|  | booktitle={2018 International Conference on Asian Language Processing (IALP)}, | 
					
						
						|  | title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis}, | 
					
						
						|  | year={2018}, | 
					
						
						|  | volume={}, | 
					
						
						|  | number={}, | 
					
						
						|  | pages={62-67}, | 
					
						
						|  | doi={10.1109/IALP.2018.8629181 | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _LANGUAGES = ["ind"] | 
					
						
						|  | _LOCAL = False | 
					
						
						|  |  | 
					
						
						|  | _DATASETNAME = "casa" | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """ | 
					
						
						|  | CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018). | 
					
						
						|  | The dataset covers six aspects of car quality. | 
					
						
						|  | We define the task to be a multi-label classification task, | 
					
						
						|  | where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://github.com/IndoNLP/indonlu" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "CC-BY-SA 4.0" | 
					
						
						|  |  | 
					
						
						|  | _URLS = { | 
					
						
						|  | "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv", | 
					
						
						|  | "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv", | 
					
						
						|  | "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | _SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] | 
					
						
						|  |  | 
					
						
						|  | _SOURCE_VERSION = "1.0.0" | 
					
						
						|  |  | 
					
						
						|  | _SEACROWD_VERSION = "2024.06.20" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CASA(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """CASA is an aspect based sentiment analysis dataset""" | 
					
						
						|  |  | 
					
						
						|  | SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | 
					
						
						|  | SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | SEACrowdConfig( | 
					
						
						|  | name="casa_source", | 
					
						
						|  | version=SOURCE_VERSION, | 
					
						
						|  | description="CASA source schema", | 
					
						
						|  | schema="source", | 
					
						
						|  | subset_id="casa", | 
					
						
						|  | ), | 
					
						
						|  | SEACrowdConfig( | 
					
						
						|  | name="casa_seacrowd_text_multi", | 
					
						
						|  | version=SEACROWD_VERSION, | 
					
						
						|  | description="CASA Nusantara schema", | 
					
						
						|  | schema="seacrowd_text_multi", | 
					
						
						|  | subset_id="casa", | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "casa_source" | 
					
						
						|  |  | 
					
						
						|  | def _info(self) -> datasets.DatasetInfo: | 
					
						
						|  | if self.config.schema == "source": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "index": datasets.Value("int64"), | 
					
						
						|  | "sentence": datasets.Value("string"), | 
					
						
						|  | "fuel": datasets.Value("string"), | 
					
						
						|  | "machine": datasets.Value("string"), | 
					
						
						|  | "others": datasets.Value("string"), | 
					
						
						|  | "part": datasets.Value("string"), | 
					
						
						|  | "price": datasets.Value("string"), | 
					
						
						|  | "service": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif self.config.schema == "seacrowd_text_multi": | 
					
						
						|  | features = schemas.text_multi_features(["positive", "neutral", "negative"]) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | 
					
						
						|  | train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"])) | 
					
						
						|  | validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"])) | 
					
						
						|  | test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"])) | 
					
						
						|  |  | 
					
						
						|  | data_dir = { | 
					
						
						|  | "train": train_csv_path, | 
					
						
						|  | "validation": validation_csv_path, | 
					
						
						|  | "test": test_csv_path, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_dir["train"], | 
					
						
						|  | "split": "train", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_dir["test"], | 
					
						
						|  | "split": "test", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_dir["validation"], | 
					
						
						|  | "split": "dev", | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | 
					
						
						|  | """Yields examples as (key, example) tuples.""" | 
					
						
						|  | df = pd.read_csv(filepath, sep=",", header="infer").reset_index() | 
					
						
						|  | if self.config.schema == "source": | 
					
						
						|  | for row in df.itertuples(): | 
					
						
						|  | entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service} | 
					
						
						|  | yield row.index, entry | 
					
						
						|  |  | 
					
						
						|  | elif self.config.schema == "seacrowd_text_multi": | 
					
						
						|  | for row in df.itertuples(): | 
					
						
						|  | entry = { | 
					
						
						|  | "id": str(row.index), | 
					
						
						|  | "text": row.sentence, | 
					
						
						|  | "labels": [label for label in row[3:]], | 
					
						
						|  | } | 
					
						
						|  | yield row.index, entry | 
					
						
						|  |  |