|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """ |
|
@INPROCEEDINGS{8629181, |
|
author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu}, |
|
booktitle={2018 International Conference on Asian Language Processing (IALP)}, |
|
title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis}, |
|
year={2018}, |
|
volume={}, |
|
number={}, |
|
pages={62-67}, |
|
doi={10.1109/IALP.2018.8629181 |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "casa" |
|
|
|
_DESCRIPTION = """ |
|
CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018). |
|
The dataset covers six aspects of car quality. |
|
We define the task to be a multi-label classification task, |
|
where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IndoNLP/indonlu" |
|
|
|
_LICENSE = "CC-BY-SA 4.0" |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv", |
|
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv", |
|
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CASA(datasets.GeneratorBasedBuilder): |
|
"""CASA is an aspect based sentiment analysis dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="casa_source", |
|
version=SOURCE_VERSION, |
|
description="CASA source schema", |
|
schema="source", |
|
subset_id="casa", |
|
), |
|
SEACrowdConfig( |
|
name="casa_seacrowd_text_multi", |
|
version=SEACROWD_VERSION, |
|
description="CASA Nusantara schema", |
|
schema="seacrowd_text_multi", |
|
subset_id="casa", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "casa_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("int64"), |
|
"sentence": datasets.Value("string"), |
|
"fuel": datasets.Value("string"), |
|
"machine": datasets.Value("string"), |
|
"others": datasets.Value("string"), |
|
"part": datasets.Value("string"), |
|
"price": datasets.Value("string"), |
|
"service": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features(["positive", "neutral", "negative"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"])) |
|
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"])) |
|
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"])) |
|
|
|
data_dir = { |
|
"train": train_csv_path, |
|
"validation": validation_csv_path, |
|
"test": test_csv_path, |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_csv(filepath, sep=",", header="infer").reset_index() |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service} |
|
yield row.index, entry |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
for row in df.itertuples(): |
|
entry = { |
|
"id": str(row.index), |
|
"text": row.sentence, |
|
"labels": [label for label in row[3:]], |
|
} |
|
yield row.index, entry |
|
|