casa / casa.py
holylovenia's picture
Upload casa.py with huggingface_hub
5b42e20
raw
history blame
5.65 kB
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """
@INPROCEEDINGS{8629181,
author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu},
booktitle={2018 International Conference on Asian Language Processing (IALP)},
title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis},
year={2018},
volume={},
number={},
pages={62-67},
doi={10.1109/IALP.2018.8629181
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "casa"
_DESCRIPTION = """
CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018).
The dataset covers six aspects of car quality.
We define the task to be a multi-label classification task,
where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral.
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
_LICENSE = "CC-BY-SA 4.0"
_URLS = {
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv",
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv",
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv",
}
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class CASA(datasets.GeneratorBasedBuilder):
"""CASA is an aspect based sentiment analysis dataset"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="casa_source",
version=SOURCE_VERSION,
description="CASA source schema",
schema="source",
subset_id="casa",
),
NusantaraConfig(
name="casa_nusantara_text_multi",
version=NUSANTARA_VERSION,
description="CASA Nusantara schema",
schema="nusantara_text_multi",
subset_id="casa",
),
]
DEFAULT_CONFIG_NAME = "casa_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("int64"),
"sentence": datasets.Value("string"),
"fuel": datasets.Value("string"),
"machine": datasets.Value("string"),
"others": datasets.Value("string"),
"part": datasets.Value("string"),
"price": datasets.Value("string"),
"service": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_text_multi":
features = schemas.text_multi_features(["positive", "neutral", "negative"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"]))
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"]))
data_dir = {
"train": train_csv_path,
"validation": validation_csv_path,
"test": test_csv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["validation"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
if self.config.schema == "source":
for row in df.itertuples():
entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service}
yield row.index, entry
elif self.config.schema == "nusantara_text_multi":
for row in df.itertuples():
entry = {
"id": str(row.index),
"text": row.sentence,
"labels": [label for label in row[3:]],
}
yield row.index, entry