|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{SURINTA2015405, |
|
title = "Recognition of handwritten characters using local gradient feature descriptors", |
|
journal = "Engineering Applications of Artificial Intelligence", |
|
volume = "45", |
|
number = "Supplement C", |
|
pages = "405 - 414", |
|
year = "2015", |
|
issn = "0952-1976", |
|
doi = "https://doi.org/10.1016/j.engappai.2015.07.017", |
|
url = "http://www.sciencedirect.com/science/article/pii/S0952197615001724", |
|
author = "Olarik Surinta and Mahir F. Karaaba and Lambert R.B. Schomaker and Marco A. Wiering", |
|
keywords = "Handwritten character recognition, Feature extraction, Local gradient feature descriptor, |
|
Support vector machine, k-nearest neighbors" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "alice_thi" |
|
|
|
_DESCRIPTION = """\ |
|
ALICE-THI is a Thai handwritten script dataset that contains 24045 character |
|
images, which is split into Thai handwritten character dataset (THI-C68) for |
|
14490 images and Thai handwritten digit dataset (THI-D10) for 9555 images. The |
|
data was collected from 150 native writers aged from 20 to 23 years old. The |
|
participants were allowed to write only the isolated Thai script on the form and |
|
at least 100 samples per character. The character images obtained from this |
|
dataset generally have no background noise. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.ai.rug.nl/~mrolarik/ALICE-THI/" |
|
|
|
_LANGUAGES = ["tha"] |
|
_SUBSETS = { |
|
"THI-D10": { |
|
"data_dir": "Thai_digit_sqr", |
|
"label_dict": { |
|
0: "0", |
|
1: "1", |
|
2: "2", |
|
3: "3", |
|
4: "4", |
|
5: "5", |
|
6: "6", |
|
7: "7", |
|
8: "8", |
|
9: "9", |
|
}, |
|
}, |
|
"THI-C68": { |
|
"data_dir": "Thai_char_sqr", |
|
"label_dict": { |
|
0: "ko kai", |
|
1: "kho khai", |
|
2: "kho khuat", |
|
3: "kho khwai", |
|
4: "kho khon", |
|
5: "kho rakhang", |
|
6: "ngo ngu", |
|
7: "cho chan", |
|
8: "cho ching", |
|
9: "cho chang", |
|
10: "so so", |
|
11: "cho choe", |
|
12: "yo ying", |
|
13: "do chada", |
|
14: "to patak", |
|
15: "tho than", |
|
16: "tho nangmontho", |
|
17: "tho phuthao", |
|
18: "no nen", |
|
19: "do dek", |
|
20: "to tao", |
|
21: "tho thung", |
|
22: "tho thahan", |
|
23: "tho thong", |
|
24: "no nu", |
|
25: "bo baimai", |
|
26: "po pla", |
|
27: "pho phung", |
|
28: "fo fa", |
|
29: "pho phan", |
|
30: "fo fan", |
|
31: "pho samphao", |
|
32: "mo ma", |
|
33: "yo yak", |
|
34: "ro rua", |
|
35: "ru", |
|
36: "lo ling", |
|
37: "lu", |
|
38: "wo waen", |
|
39: "so rusi", |
|
40: "so sala", |
|
41: "so sua", |
|
42: "ho hip", |
|
43: "lo chula", |
|
44: "o ang", |
|
45: "ho nokhuk", |
|
46: "paiyannoi", |
|
47: "sara a", |
|
48: "mai han", |
|
49: "sara aa", |
|
50: "sara i", |
|
51: "sara ii", |
|
52: "sara ue", |
|
53: "sara uee", |
|
54: "sara u", |
|
55: "sara uu", |
|
56: "sara e", |
|
57: "sara o", |
|
58: "sara ai maimuan", |
|
59: "sara ai maimalai", |
|
60: "maiyamok", |
|
61: "maitaikhu", |
|
62: "mai ek", |
|
63: "mai tho", |
|
64: "mai tri", |
|
65: "mai chattawa", |
|
66: "thanthakhat", |
|
67: "nikhahit", |
|
}, |
|
}, |
|
} |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://www.ai.rug.nl/~mrolarik/ALICE-THI/ALICE-THI-Dataset.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class AliceTHIDataset(datasets.GeneratorBasedBuilder): |
|
"""Thai handwritten script dataset for character and digit recognition.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in list(_SUBSETS.keys()): |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=subset, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_THI-C68_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
label_names = [val for _, val in sorted(_SUBSETS[self.config.subset_id]["label_dict"].items())] |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.ClassLabel(names=label_names), |
|
"text": datasets.Value("string"), |
|
"image_path": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = schemas.image_text_features(label_names=label_names) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_name = "ALICE-THI Dataset" |
|
data_path = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])) |
|
data_path = Path(dl_manager.extract(data_path / data_name / f"{data_name}.tar.gz")) |
|
data_path = data_path / _SUBSETS[self.config.subset_id]["data_dir"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_path": data_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_path: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
for subfolder in data_path.iterdir(): |
|
if subfolder.is_dir(): |
|
|
|
|
|
if self.config.schema == "source": |
|
_get_label = True |
|
for image_file in subfolder.glob("*.png"): |
|
if _get_label: |
|
label = int(image_file.name.split("-")[0].lower()) |
|
_get_label = False |
|
|
|
yield image_file.stem, { |
|
"label": label, |
|
"text": _SUBSETS[self.config.subset_id]["label_dict"][label], |
|
"image_path": str(image_file), |
|
} |
|
|
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
image_files = list(subfolder.glob("*.png")) |
|
label = int(image_files[0].name.split("-")[0].lower()) |
|
|
|
yield subfolder.name, { |
|
"id": subfolder.name, |
|
"image_paths": [str(file) for file in image_files], |
|
"texts": _SUBSETS[self.config.subset_id]["label_dict"][label], |
|
"metadata": { |
|
"context": "", |
|
"labels": [label] * len(image_files), |
|
}, |
|
} |
|
|