metadata
language:
- ko
dataset_info:
features:
- name: index
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: category
dtype: string
- name: image
dtype: image
splits:
- name: test
num_bytes: 9699756
num_examples: 240
download_size: 3342516
dataset_size: 9699756
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
NCSOFT/K-DTCBench 를 쓰기 좋게 바꾸어놓았습니다.
아래 코드를 이용하였습니다.
from datasets import load_dataset, Dataset
from huggingface_hub import login; login(token="YOUR TOKEN")
dataset = load_dataset("NCSOFT/K-DTCBench")
def transform_format(example):
formatted_question = f"{example['question']}\nOptions: A: {example['choice_a']}, B: {example['choice_b']}, C: {example['choice_c']}, D: {example['choice_d']}\n주어진 선택지 중 해당 옵션의 문자로 직접 답하세요."
return {
"question": formatted_question,
"answer": example['answer'],
"image": example['image'],
"index": example['index'],
"category": example['category'],
}
new_test_dataset = dataset['test'].map(transform_format, remove_columns=[
'choice_a', 'choice_b', 'choice_c', 'choice_d'
])
new_dataset = {}
new_dataset['test'] = new_test_dataset
from datasets import DatasetDict
new_dataset_dict = DatasetDict(new_dataset)
new_dataset_dict.push_to_hub('Ryoo72/K-DTCBench', private=False, max_shard_size="500MB")