Datasets:
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
- zh
tags:
- audio-visual
- omnimodality
- multi-modality
- benchmark
pretty_name: 'XModBench '
size_categories:
- 10K<n<100K
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
Key Features
- π― Multi-Modal Evaluation: Comprehensive testing across text, vision, and audio modalities
- π§© 5 Task Dimensions: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks
- π 13 SOTA Models Evaluated: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more
- π Consistency Analysis: Measures performance stability across different modal configurations
- π₯ Human Performance Baseline: Establishes human-level benchmarks for comparison
π Quick Start
Installation
# Clone the repository
git clone https://github.com/XingruiWang/XModBench.git
cd XModBench
# Install dependencies
pip install -r requirements.txt
π Dataset Structure
Download and Setup
After cloning from HuggingFace, you'll need to extract the data:
# Download the dataset from HuggingFace
git clone https://huggingface.co/datasets/RyanWW/XModBench
cd XModBench
# Extract the Data.zip file
unzip Data.zip
# Now you have the following structure:
Directory Structure
XModBench/
βββ Data/ # Unzipped from Data.zip
β βββ landscape_audiobench/ # Nature sound scenes
β βββ emotions/ # Emotion classification data
β βββ solos_processed/ # Musical instrument solos
β βββ gtzan-dataset-music-genre-classification/ # Music genre data
β βββ singers_data_processed/ # Singer identification
β βββ temporal_audiobench/ # Temporal reasoning tasks
β βββ urbansas_samples_videos_filtered/ # Urban 3D movements
β βββ STARSS23_processed_augmented/ # Spatial audio panorama
β βββ vggss_audio_bench/ # Fine-grained audio-visual
β βββ URMP_processed/ # Musical instrument arrangements
β βββ ExtremCountAV/ # Counting tasks
β βββ posters/ # Movie posters
β βββ trailer_clips/ # Movie trailers
β
βββ tasks/ # Task configurations (ready to use)
βββ 01_perception/ # Perception tasks
β βββ finegrained/ # Fine-grained recognition
β βββ natures/ # Nature scenes
β βββ instruments/ # Musical instruments
β βββ instruments_comp/ # Instrument compositions
β βββ general_activities/ # General activities
βββ 02_spatial/ # Spatial reasoning tasks
β βββ 3D_movements/ # 3D movement tracking
β βββ panaroma/ # Panoramic spatial audio
β βββ arrangements/ # Spatial arrangements
βββ 03_speech/ # Speech and language tasks
β βββ recognition/ # Speech recognition
β βββ translation/ # Translation
βββ 04_temporal/ # Temporal reasoning tasks
β βββ count/ # Temporal counting
β βββ order/ # Temporal ordering
β βββ calculation/ # Temporal calculations
βββ 05_Exteral/ # Additional classification tasks
βββ emotion_classification/ # Emotion recognition
βββ music_genre_classification/ # Music genre
βββ singer_identification/ # Singer identification
βββ movie_matching/ # Movie matching
Note: All file paths in the task JSON files use relative paths (./benchmark/Data/...), so ensure your working directory is set correctly when running evaluations.
Basic Usage
#!/bin/bash
#SBATCH --job-name=VLM_eval
#SBATCH --output=log/job_%j.out
#SBATCH --error=log/job_%j.log
#SBATCH --ntasks-per-node=1
#SBATCH --gpus-per-node=4
echo "Running on host: $(hostname)"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
module load conda
# conda activate vlm
conda activate omni
export audioBench='/home/xwang378/scratch/2025/AudioBench'
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_vision \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_audio \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_text \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_text \
# --sample 1000
# Qwen2.5-Omni
# python $audioBench/scripts/run.py \
# --model qwen2.5_omni \
# --task_name perception/vggss_audio_text \
# --sample 1000
python $audioBench/scripts/run.py \
--model qwen2.5_omni \
--task_name perception/vggss_vision_text \
--sample 1000
π Benchmark Results
Overall Performance Comparison
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average |
|---|---|---|---|---|---|---|
| Gemini 2.5 Pro | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% |
| Human Performance | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% |
Key Findings
1οΈβ£ Task Competence Gaps
- Strong Performance: Perception and linguistic tasks (~75% for best models)
- Weak Performance: Spatial (50.1%) and temporal reasoning (60.8%)
- Performance Drop: 15-25 points decrease in spatial/temporal vs. perception tasks
2οΈβ£ Modality Disparity
- Audio vs. Text: 20-49 point performance drop
- Audio vs. Vision: 33-point average gap
- Vision vs. Text: ~15-point disparity
- Consistency: Best models show 10-12 point standard deviation
3οΈβ£ Directional Imbalance
- VisionβText: 9-17 point gaps between directions
- AudioβText: 6-8 point asymmetries
- Root Cause: Training data imbalance favoring image-to-text over inverse directions
π Citation
If you use XModBench in your research, please cite our paper:
@article{wang2024xmodbench,
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models},
author={Wang, Xingrui, etc.},
journal={arXiv preprint arXiv:2510.15148},
year={2024}
}
π License
This project is licensed under the MIT License - see the LICENSE file for details.
π Acknowledgments
We thank all contributors and the research community for their valuable feedback and suggestions.
π§ Contact
- Project Lead: Xingrui Wang
- Email: [xwang378@jh.edu]
- Website: https://xingruiwang.github.io/projects/XModBench/
π Links
Todo
- Release Huggingface data
- Release data processing code
- Release data evaluation code
Note: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our releases page.