url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
list
state
string
locked
bool
assignee
dict
assignees
list
milestone
dict
comments
list
created_at
timestamp[ns, tz=UTC]
updated_at
timestamp[ns, tz=UTC]
closed_at
timestamp[ns, tz=UTC]
author_association
string
type
float64
active_lock_reason
float64
sub_issues_summary
dict
body
string
closed_by
dict
reactions
dict
timeline_url
string
performed_via_github_app
float64
state_reason
string
draft
float64
pull_request
dict
https://api.github.com/repos/huggingface/datasets/issues/5458
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5458/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5458/comments
https://api.github.com/repos/huggingface/datasets/issues/5458/events
https://github.com/huggingface/datasets/issues/5458
1,555,054,737
I_kwDODunzps5csECR
5,458
slice split while streaming
{ "avatar_url": "https://avatars.githubusercontent.com/u/122370631?v=4", "events_url": "https://api.github.com/users/SvenDS9/events{/privacy}", "followers_url": "https://api.github.com/users/SvenDS9/followers", "following_url": "https://api.github.com/users/SvenDS9/following{/other_user}", "gists_url": "https://api.github.com/users/SvenDS9/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SvenDS9", "id": 122370631, "login": "SvenDS9", "node_id": "U_kgDOB0s6Rw", "organizations_url": "https://api.github.com/users/SvenDS9/orgs", "received_events_url": "https://api.github.com/users/SvenDS9/received_events", "repos_url": "https://api.github.com/users/SvenDS9/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SvenDS9/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SvenDS9/subscriptions", "type": "User", "url": "https://api.github.com/users/SvenDS9", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! Yes, that's correct. When `streaming` is `True`, only split names can be specified as `split`, and for slicing, you have to use `.skip`/`.take` instead.\r\n\r\nE.g. \r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train[:3]\")`\r\n\r\nrewritten with `.skip`/`.take`:\r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train\").take(3)`\r\n\r\n\r\n", "Thank you for your quick response!" ]
2023-01-24T14:08:17Z
2023-01-24T15:11:47Z
2023-01-24T15:11:47Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When using the `load_dataset` function with streaming set to True, slicing splits is apparently not supported. Did I miss this in the documentation? ### Steps to reproduce the bug `load_dataset("lhoestq/demo1",revision=None, streaming=True, split="train[:3]")` causes ValueError: Bad split: train[:3]. Available splits: ['train', 'test'] in builder.py, line 1213, in as_streaming_dataset ### Expected behavior The first 3 entries of the dataset as a stream ### Environment info - `datasets` version: 2.8.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.10.9 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/122370631?v=4", "events_url": "https://api.github.com/users/SvenDS9/events{/privacy}", "followers_url": "https://api.github.com/users/SvenDS9/followers", "following_url": "https://api.github.com/users/SvenDS9/following{/other_user}", "gists_url": "https://api.github.com/users/SvenDS9/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SvenDS9", "id": 122370631, "login": "SvenDS9", "node_id": "U_kgDOB0s6Rw", "organizations_url": "https://api.github.com/users/SvenDS9/orgs", "received_events_url": "https://api.github.com/users/SvenDS9/received_events", "repos_url": "https://api.github.com/users/SvenDS9/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SvenDS9/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SvenDS9/subscriptions", "type": "User", "url": "https://api.github.com/users/SvenDS9", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5458/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5458/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7381/comments
https://api.github.com/repos/huggingface/datasets/issues/7381/events
https://github.com/huggingface/datasets/issues/7381
2,815,649,092
I_kwDODunzps6n02VE
7,381
Iterating over values of a column in the IterableDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I'd be in favor of that ! I saw many people implementing their own iterables that wrap a dataset just to iterate on a single column, that would make things more practical.\n\nKinda related: https://github.com/huggingface/datasets/issues/5847", "(For anyone's information, I'm going on vacation for the next 3 weeks, so the work is postponed. If anyone can implement this feature within the next 4 weeks, go ahead :) )\n\nUPD from 04/06/25:\nI'm planning to start work on the feature in early May." ]
2025-01-28T13:17:36Z
2025-04-06T12:28:16Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request I would like to be able to iterate (and re-iterate if needed) over a column of an `IterableDataset` instance. The following example shows the supposed API: ``` def gen(): yield {"text": "Good", "label": 0} yield {"text": "Bad", "label": 1} ds = IterableDataset.from_generator(gen) texts = ds["text"] for v in texts: print(v) # Prints "Good" and "Bad" for v in texts: print(v) # Prints "Good" and "Bad" again ``` ### Motivation In the real world problems, huge NNs like Transformer are not always the best option, so there is a need to conduct experiments with different methods. While 🤗Datasets is perfectly adapted to 🤗Transformers, it may be inconvenient when being used with other libraries. The ability to retrieve a particular column is the case (e.g., gensim's FastText [requires](https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText.train) only lists of strings, not dictionaries). While there are ways to achieve the desired functionality, they are not good ([forum](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649)). It would be great if there was a built-in solution. ### Your contribution Theoretically, I can submit a PR, but I have very little knowledge of the internal structure of 🤗Datasets, so some help may be needed. Moreover, I can only work on weekends, since I have a full-time job. However, the feature does not seem to be popular, so there is no need to implement it as fast as possible.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7381/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7381/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4774
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4774/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4774/comments
https://api.github.com/repos/huggingface/datasets/issues/4774/events
https://github.com/huggingface/datasets/issues/4774
1,323,375,844
I_kwDODunzps5O4Rzk
4,774
Training hangs at the end of epoch, with set_transform/with_transform+multiple workers
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[]
2022-07-31T06:32:28Z
2022-07-31T06:36:43Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug I use load_dataset() (I tried with [wiki](https://huggingface.co/datasets/wikipedia) and my own json data) and use set_transform/with_transform for preprocessing. But it hangs at the end of the 1st epoch if dataloader_num_workers>=1. No problem with single worker. ## Steps to reproduce the bug ```python train_dataset = datasets.load_dataset("wikipedia", "20220301.en", split='train', cache_dir=model_args.cache_dir, streaming=False) train_dataset.set_transform(psg_parse_fn) train_dataloader = DataLoader( train_dataset, batch_size=args.train_batch_size, sampler=DistributedSampler(train_dataset), collate_fn=data_collator, drop_last=args.dataloader_drop_last, num_workers=args.dataloader_num_workers, ) ``` ## Expected results ## Actual results It simply hangs. The ending step is num_example/batch_size (one epoch). ## Environment info - `datasets` version: 2.4.1.dev0 - Platform: Linux-5.4.170+-x86_64-with-glibc2.17 - Python version: 3.8.12 - PyArrow version: 8.0.0 - Pandas version: 1.4.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4774/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4774/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7035
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7035/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7035/comments
https://api.github.com/repos/huggingface/datasets/issues/7035/events
https://github.com/huggingface/datasets/issues/7035
2,400,021,225
I_kwDODunzps6PDWrp
7,035
Docs are not generated when a parameter defaults to a NamedSplit value
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d4c5f9", "default": false, "description": "Maintenance tasks", "id": 4296013012, "name": "maintenance", "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-07-10T07:51:24Z
2024-07-26T07:51:53Z
2024-07-26T07:51:53Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
While generating the docs, we get an error when some parameter defaults to a `NamedSplit` value, like: ```python def call_function(split=Split.TRAIN): ... ``` The error is: ValueError: Equality not supported between split train and <class 'inspect._empty'> See: https://github.com/huggingface/datasets/actions/runs/9869660902/job/27254359863?pr=7015 ``` Building the MDX files: 97%|█████████▋| 58/60 [00:00<00:00, 91.94it/s] Traceback (most recent call last): File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 197, in build_mdx_files content, new_anchors, source_files, errors = resolve_autodoc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 123, in resolve_autodoc doc = autodoc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 499, in autodoc method_doc, check = document_object( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 395, in document_object signature = format_signature(obj) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 126, in format_signature if param.default != inspect._empty: File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/datasets/splits.py", line 136, in __ne__ return not self.__eq__(other) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/datasets/splits.py", line 379, in __eq__ raise ValueError(f"Equality not supported between split {self} and {other}") ValueError: Equality not supported between split train and <class 'inspect._empty'> The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/runner/work/datasets/datasets/.venv/bin/doc-builder", line 8, in <module> sys.exit(main()) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/commands/doc_builder_cli.py", line 47, in main args.func(args) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/commands/build.py", line 102, in build_command build_doc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 367, in build_doc anchors_mapping, source_files_mapping = build_mdx_files( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 230, in build_mdx_files raise type(e)(f"There was an error when converting {file} to the MDX format.\n" + e.args[0]) from e ValueError: There was an error when converting ../datasets/docs/source/package_reference/main_classes.mdx to the MDX format. Equality not supported between split train and <class 'inspect._empty'> ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7035/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7035/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4553
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4553/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4553/comments
https://api.github.com/repos/huggingface/datasets/issues/4553/events
https://github.com/huggingface/datasets/pull/4553
1,282,779,560
PR_kwDODunzps46Q1q7
4,553
Stop dropping columns in to_tf_dataset() before we load batches
{ "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rocketknight1", "id": 12866554, "login": "Rocketknight1", "node_id": "MDQ6VXNlcjEyODY2NTU0", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "type": "User", "url": "https://api.github.com/users/Rocketknight1", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "@lhoestq Rebasing fixed the test failures, so this should be ready to review now! There's still a failure on Win but it seems unrelated.", "Gentle ping @lhoestq ! This is a simple fix (dropping columns after loading a batch from the dataset rather than with `.remove_columns()` to make sure we don't break transforms), and tests are green so we're ready for review!", "@lhoestq Test is in!" ]
2022-06-23T18:21:05Z
2022-07-04T19:00:13Z
2022-07-04T18:49:01Z
MEMBER
null
null
null
`to_tf_dataset()` dropped unnecessary columns before loading batches from the dataset, but this is causing problems when using a transform, because the dropped columns might be needed to compute the transform. Since there's no real way to check which columns the transform might need, we skip dropping columns and instead drop keys from the batch after we load it. cc @amyeroberts and https://github.com/huggingface/notebooks/pull/202
{ "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rocketknight1", "id": 12866554, "login": "Rocketknight1", "node_id": "MDQ6VXNlcjEyODY2NTU0", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "type": "User", "url": "https://api.github.com/users/Rocketknight1", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4553/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4553/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4553.diff", "html_url": "https://github.com/huggingface/datasets/pull/4553", "merged_at": "2022-07-04T18:49:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/4553.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4553" }
https://api.github.com/repos/huggingface/datasets/issues/5848
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5848/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5848/comments
https://api.github.com/repos/huggingface/datasets/issues/5848/events
https://github.com/huggingface/datasets/pull/5848
1,707,506,734
PR_kwDODunzps5QYa1B
5,848
Add `accelerate` as metric's test dependency to fix CI error
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007565 / 0.011353 (-0.003788) | 0.005361 / 0.011008 (-0.005647) | 0.098963 / 0.038508 (0.060455) | 0.034271 / 0.023109 (0.011162) | 0.323421 / 0.275898 (0.047523) | 0.348495 / 0.323480 (0.025015) | 0.006244 / 0.007986 (-0.001741) | 0.004215 / 0.004328 (-0.000113) | 0.073614 / 0.004250 (0.069364) | 0.049334 / 0.037052 (0.012282) | 0.315277 / 0.258489 (0.056788) | 0.354325 / 0.293841 (0.060484) | 0.035001 / 0.128546 (-0.093545) | 0.012149 / 0.075646 (-0.063497) | 0.335614 / 0.419271 (-0.083657) | 0.050532 / 0.043533 (0.006999) | 0.308500 / 0.255139 (0.053361) | 0.324620 / 0.283200 (0.041421) | 0.110241 / 0.141683 (-0.031442) | 1.443923 / 1.452155 (-0.008232) | 1.559289 / 1.492716 (0.066573) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207629 / 0.018006 (0.189622) | 0.433251 / 0.000490 (0.432762) | 0.003021 / 0.000200 (0.002821) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028312 / 0.037411 (-0.009100) | 0.111829 / 0.014526 (0.097303) | 0.127099 / 0.176557 (-0.049458) | 0.184702 / 0.737135 (-0.552433) | 0.125062 / 0.296338 (-0.171277) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399451 / 0.215209 (0.184242) | 3.966528 / 2.077655 (1.888874) | 1.826004 / 1.504120 (0.321884) | 1.669547 / 1.541195 (0.128353) | 1.751584 / 1.468490 (0.283094) | 0.688308 / 4.584777 (-3.896469) | 3.813275 / 3.745712 (0.067562) | 3.181554 / 5.269862 (-2.088307) | 1.750566 / 4.565676 (-2.815111) | 0.085038 / 0.424275 (-0.339237) | 0.011992 / 0.007607 (0.004385) | 0.502374 / 0.226044 (0.276330) | 4.970614 / 2.268929 (2.701686) | 2.309617 / 55.444624 (-53.135007) | 2.012427 / 6.876477 (-4.864050) | 2.156348 / 2.142072 (0.014276) | 0.834415 / 4.805227 (-3.970812) | 0.167912 / 6.500664 (-6.332752) | 0.065711 / 0.075469 (-0.009758) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223132 / 1.841788 (-0.618656) | 15.126753 / 8.074308 (7.052445) | 14.829184 / 10.191392 (4.637792) | 0.142582 / 0.680424 (-0.537842) | 0.017483 / 0.534201 (-0.516718) | 0.429768 / 0.579283 (-0.149516) | 0.422745 / 0.434364 (-0.011619) | 0.508813 / 0.540337 (-0.031525) | 0.618716 / 1.386936 (-0.768220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007749 / 0.011353 (-0.003604) | 0.005433 / 0.011008 (-0.005576) | 0.076223 / 0.038508 (0.037715) | 0.036334 / 0.023109 (0.013225) | 0.375339 / 0.275898 (0.099441) | 0.413674 / 0.323480 (0.090194) | 0.006207 / 0.007986 (-0.001778) | 0.004085 / 0.004328 (-0.000244) | 0.076154 / 0.004250 (0.071904) | 0.050324 / 0.037052 (0.013271) | 0.382919 / 0.258489 (0.124429) | 0.442508 / 0.293841 (0.148667) | 0.035951 / 0.128546 (-0.092595) | 0.012067 / 0.075646 (-0.063580) | 0.087649 / 0.419271 (-0.331623) | 0.048786 / 0.043533 (0.005253) | 0.373541 / 0.255139 (0.118402) | 0.400437 / 0.283200 (0.117237) | 0.102622 / 0.141683 (-0.039061) | 1.472443 / 1.452155 (0.020288) | 1.580178 / 1.492716 (0.087462) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222105 / 0.018006 (0.204098) | 0.445465 / 0.000490 (0.444975) | 0.003671 / 0.000200 (0.003471) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030808 / 0.037411 (-0.006603) | 0.116687 / 0.014526 (0.102161) | 0.124972 / 0.176557 (-0.051584) | 0.175621 / 0.737135 (-0.561514) | 0.129029 / 0.296338 (-0.167310) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434627 / 0.215209 (0.219418) | 4.330268 / 2.077655 (2.252613) | 2.140266 / 1.504120 (0.636146) | 1.960705 / 1.541195 (0.419510) | 2.035949 / 1.468490 (0.567459) | 0.696830 / 4.584777 (-3.887947) | 3.790468 / 3.745712 (0.044756) | 3.194112 / 5.269862 (-2.075750) | 1.577728 / 4.565676 (-2.987948) | 0.085445 / 0.424275 (-0.338830) | 0.012207 / 0.007607 (0.004600) | 0.555199 / 0.226044 (0.329154) | 5.551539 / 2.268929 (3.282610) | 2.630917 / 55.444624 (-52.813707) | 2.383362 / 6.876477 (-4.493114) | 2.476301 / 2.142072 (0.334229) | 0.845773 / 4.805227 (-3.959455) | 0.169229 / 6.500664 (-6.331435) | 0.066064 / 0.075469 (-0.009405) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277543 / 1.841788 (-0.564245) | 15.775637 / 8.074308 (7.701329) | 13.528588 / 10.191392 (3.337196) | 0.167428 / 0.680424 (-0.512996) | 0.017581 / 0.534201 (-0.516620) | 0.454472 / 0.579283 (-0.124811) | 0.427987 / 0.434364 (-0.006377) | 0.551512 / 0.540337 (0.011175) | 0.650811 / 1.386936 (-0.736125) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#96a6f5f526cc90330df597ae0097274742d5b84f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009800 / 0.011353 (-0.001552) | 0.006443 / 0.011008 (-0.004565) | 0.144137 / 0.038508 (0.105629) | 0.037493 / 0.023109 (0.014383) | 0.482306 / 0.275898 (0.206408) | 0.467625 / 0.323480 (0.144145) | 0.006812 / 0.007986 (-0.001174) | 0.004810 / 0.004328 (0.000481) | 0.109047 / 0.004250 (0.104796) | 0.047169 / 0.037052 (0.010116) | 0.451253 / 0.258489 (0.192764) | 0.511339 / 0.293841 (0.217498) | 0.055583 / 0.128546 (-0.072963) | 0.021810 / 0.075646 (-0.053836) | 0.426522 / 0.419271 (0.007250) | 0.070282 / 0.043533 (0.026749) | 0.469631 / 0.255139 (0.214492) | 0.484951 / 0.283200 (0.201751) | 0.117370 / 0.141683 (-0.024313) | 1.809917 / 1.452155 (0.357763) | 1.882659 / 1.492716 (0.389943) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223843 / 0.018006 (0.205837) | 0.549216 / 0.000490 (0.548726) | 0.007120 / 0.000200 (0.006920) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033057 / 0.037411 (-0.004354) | 0.128242 / 0.014526 (0.113716) | 0.140906 / 0.176557 (-0.035650) | 0.213122 / 0.737135 (-0.524013) | 0.148115 / 0.296338 (-0.148224) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.638712 / 0.215209 (0.423503) | 6.383684 / 2.077655 (4.306029) | 2.477020 / 1.504120 (0.972900) | 2.129190 / 1.541195 (0.587996) | 2.230503 / 1.468490 (0.762013) | 1.367167 / 4.584777 (-3.217610) | 5.570586 / 3.745712 (1.824873) | 5.462857 / 5.269862 (0.192996) | 2.990604 / 4.565676 (-1.575073) | 0.146543 / 0.424275 (-0.277732) | 0.016060 / 0.007607 (0.008453) | 0.812691 / 0.226044 (0.586646) | 7.928041 / 2.268929 (5.659112) | 3.329494 / 55.444624 (-52.115130) | 2.523452 / 6.876477 (-4.353025) | 2.672374 / 2.142072 (0.530302) | 1.598554 / 4.805227 (-3.206673) | 0.284727 / 6.500664 (-6.215937) | 0.080359 / 0.075469 (0.004889) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.501112 / 1.841788 (-0.340675) | 17.553644 / 8.074308 (9.479335) | 22.704062 / 10.191392 (12.512670) | 0.225575 / 0.680424 (-0.454849) | 0.026531 / 0.534201 (-0.507670) | 0.520129 / 0.579283 (-0.059154) | 0.626220 / 0.434364 (0.191856) | 0.631740 / 0.540337 (0.091403) | 0.750611 / 1.386936 (-0.636325) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009866 / 0.011353 (-0.001487) | 0.005733 / 0.011008 (-0.005275) | 0.111529 / 0.038508 (0.073021) | 0.042001 / 0.023109 (0.018891) | 0.458578 / 0.275898 (0.182680) | 0.507796 / 0.323480 (0.184316) | 0.006547 / 0.007986 (-0.001438) | 0.005611 / 0.004328 (0.001282) | 0.115321 / 0.004250 (0.111070) | 0.048741 / 0.037052 (0.011689) | 0.447611 / 0.258489 (0.189122) | 0.531830 / 0.293841 (0.237989) | 0.052176 / 0.128546 (-0.076370) | 0.022431 / 0.075646 (-0.053216) | 0.120709 / 0.419271 (-0.298562) | 0.067301 / 0.043533 (0.023769) | 0.460577 / 0.255139 (0.205438) | 0.497805 / 0.283200 (0.214605) | 0.121830 / 0.141683 (-0.019853) | 1.876436 / 1.452155 (0.424281) | 1.983491 / 1.492716 (0.490775) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230982 / 0.018006 (0.212976) | 0.540643 / 0.000490 (0.540153) | 0.004646 / 0.000200 (0.004446) | 0.000131 / 0.000054 (0.000077) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034230 / 0.037411 (-0.003181) | 0.136454 / 0.014526 (0.121928) | 0.143370 / 0.176557 (-0.033187) | 0.206752 / 0.737135 (-0.530384) | 0.148722 / 0.296338 (-0.147617) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.704667 / 0.215209 (0.489458) | 7.112079 / 2.077655 (5.034424) | 3.083916 / 1.504120 (1.579797) | 2.606388 / 1.541195 (1.065193) | 2.738505 / 1.468490 (1.270015) | 1.314897 / 4.584777 (-3.269880) | 5.764442 / 3.745712 (2.018729) | 3.491890 / 5.269862 (-1.777972) | 2.299983 / 4.565676 (-2.265693) | 0.169655 / 0.424275 (-0.254620) | 0.015251 / 0.007607 (0.007643) | 0.977230 / 0.226044 (0.751186) | 9.697773 / 2.268929 (7.428844) | 3.826928 / 55.444624 (-51.617697) | 3.108238 / 6.876477 (-3.768239) | 3.103242 / 2.142072 (0.961169) | 1.586645 / 4.805227 (-3.218582) | 0.287181 / 6.500664 (-6.213483) | 0.107332 / 0.075469 (0.031863) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.712710 / 1.841788 (-0.129077) | 19.169403 / 8.074308 (11.095095) | 21.777301 / 10.191392 (11.585909) | 0.216918 / 0.680424 (-0.463506) | 0.026551 / 0.534201 (-0.507650) | 0.570383 / 0.579283 (-0.008900) | 0.643885 / 0.434364 (0.209521) | 0.673906 / 0.540337 (0.133568) | 0.824573 / 1.386936 (-0.562363) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4ead18b6921c9576a3078d2fb685c38f1e1a4b8a \"CML watermark\")\n" ]
2023-05-12T12:01:01Z
2023-05-12T13:48:47Z
2023-05-12T13:39:06Z
COLLABORATOR
null
null
null
The `frugalscore` metric uses Transformers' Trainer, which requires `accelerate` (as of recently). Fixes the following [CI error](https://github.com/huggingface/datasets/actions/runs/4950900048/jobs/8855148703?pr=5845).
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5848/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5848/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5848.diff", "html_url": "https://github.com/huggingface/datasets/pull/5848", "merged_at": "2023-05-12T13:39:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/5848.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5848" }
https://api.github.com/repos/huggingface/datasets/issues/4813
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4813/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4813/comments
https://api.github.com/repos/huggingface/datasets/issues/4813/events
https://github.com/huggingface/datasets/pull/4813
1,333,287,756
PR_kwDODunzps48446r
4,813
Fix loading example in opus dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-09T13:47:38Z
2022-08-09T17:52:15Z
2022-08-09T17:38:18Z
MEMBER
null
null
null
This PR: - fixes the examples to load the datasets, with the corrected dataset name, in their dataset cards for: - opus_dgt - opus_paracrawl - opus_wikipedia - fixes their dataset cards with the missing required information: title, data instances/fields/splits - enumerates the supported languages - adds a missing citation reference for opus_wikipedia Related to: - #4806
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4813/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4813/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4813.diff", "html_url": "https://github.com/huggingface/datasets/pull/4813", "merged_at": "2022-08-09T17:38:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/4813.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4813" }
https://api.github.com/repos/huggingface/datasets/issues/7278
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7278/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7278/comments
https://api.github.com/repos/huggingface/datasets/issues/7278/events
https://github.com/huggingface/datasets/pull/7278
2,633,436,151
PR_kwDODunzps6A1ORG
7,278
Let soundfile directly read local audio files
{ "avatar_url": "https://avatars.githubusercontent.com/u/20347013?v=4", "events_url": "https://api.github.com/users/fawazahmed0/events{/privacy}", "followers_url": "https://api.github.com/users/fawazahmed0/followers", "following_url": "https://api.github.com/users/fawazahmed0/following{/other_user}", "gists_url": "https://api.github.com/users/fawazahmed0/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fawazahmed0", "id": 20347013, "login": "fawazahmed0", "node_id": "MDQ6VXNlcjIwMzQ3MDEz", "organizations_url": "https://api.github.com/users/fawazahmed0/orgs", "received_events_url": "https://api.github.com/users/fawazahmed0/received_events", "repos_url": "https://api.github.com/users/fawazahmed0/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fawazahmed0/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fawazahmed0/subscriptions", "type": "User", "url": "https://api.github.com/users/fawazahmed0", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-04T17:41:13Z
2024-11-18T14:01:25Z
null
NONE
null
null
null
- [x] Fixes #7276
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7278/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7278/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7278.diff", "html_url": "https://github.com/huggingface/datasets/pull/7278", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7278.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7278" }
https://api.github.com/repos/huggingface/datasets/issues/7001
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7001/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7001/comments
https://api.github.com/repos/huggingface/datasets/issues/7001/events
https://github.com/huggingface/datasets/issues/7001
2,372,930,879
I_kwDODunzps6NcA0_
7,001
Datasetbuilder Local Download FileNotFoundError
{ "avatar_url": "https://avatars.githubusercontent.com/u/12601271?v=4", "events_url": "https://api.github.com/users/purefall/events{/privacy}", "followers_url": "https://api.github.com/users/purefall/followers", "following_url": "https://api.github.com/users/purefall/following{/other_user}", "gists_url": "https://api.github.com/users/purefall/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/purefall", "id": 12601271, "login": "purefall", "node_id": "MDQ6VXNlcjEyNjAxMjcx", "organizations_url": "https://api.github.com/users/purefall/orgs", "received_events_url": "https://api.github.com/users/purefall/received_events", "repos_url": "https://api.github.com/users/purefall/repos", "site_admin": false, "starred_url": "https://api.github.com/users/purefall/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/purefall/subscriptions", "type": "User", "url": "https://api.github.com/users/purefall", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Ok it seems the solution is to use the directory string without the trailing \"/\" which in my case as: \r\n\r\n`parquet_dir = \"~/data/Parquet\" `\r\n\r\nStill i think this is a weird behavior... " ]
2024-06-25T15:02:34Z
2024-06-25T15:21:19Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug So I was trying to download a dataset and save it as parquet and I follow the [tutorial](https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage) of Huggingface. However, during the excution I face a FileNotFoundError. I debug the code and it seems there is a bug there: So first it creates a .incomplete folder and before moving its contents the following code deletes the directory [Code](https://github.com/huggingface/datasets/blob/98fdc9e78e6d057ca66e58a37f49d6618aab8130/src/datasets/builder.py#L984) hence as a result I face with: ``` FileNotFoundError: [Errno 2] No such file or directory: '~/data/Parquet/.incomplete '``` ### Steps to reproduce the bug ``` from datasets import load_dataset_builder from pathlib import Path parquet_dir = "~/data/Parquet/" Path(parquet_dir).mkdir(parents=True, exist_ok=True) builder = load_dataset_builder( "rotten_tomatoes", ) builder.download_and_prepare(parquet_dir, file_format="parquet") ``` ### Expected behavior Downloads the files and saves as parquet ### Environment info Ubuntu, Python 3.10 ``` datasets 2.19.1 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7001/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7001/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7416
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7416/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7416/comments
https://api.github.com/repos/huggingface/datasets/issues/7416/events
https://github.com/huggingface/datasets/pull/7416
2,866,862,143
PR_kwDODunzps6L77G2
7,416
Release: 3.3.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7416). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-02-20T17:42:11Z
2025-02-20T17:44:35Z
2025-02-20T17:43:28Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7416/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7416/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7416.diff", "html_url": "https://github.com/huggingface/datasets/pull/7416", "merged_at": "2025-02-20T17:43:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/7416.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7416" }
https://api.github.com/repos/huggingface/datasets/issues/6258
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6258/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6258/comments
https://api.github.com/repos/huggingface/datasets/issues/6258/events
https://github.com/huggingface/datasets/pull/6258
1,911,445,373
PR_kwDODunzps5bHxHl
6,258
[DOCS] Fix typo: Elasticsearch
{ "avatar_url": "https://avatars.githubusercontent.com/u/32779855?v=4", "events_url": "https://api.github.com/users/leemthompo/events{/privacy}", "followers_url": "https://api.github.com/users/leemthompo/followers", "following_url": "https://api.github.com/users/leemthompo/following{/other_user}", "gists_url": "https://api.github.com/users/leemthompo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/leemthompo", "id": 32779855, "login": "leemthompo", "node_id": "MDQ6VXNlcjMyNzc5ODU1", "organizations_url": "https://api.github.com/users/leemthompo/orgs", "received_events_url": "https://api.github.com/users/leemthompo/received_events", "repos_url": "https://api.github.com/users/leemthompo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/leemthompo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leemthompo/subscriptions", "type": "User", "url": "https://api.github.com/users/leemthompo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006131 / 0.011353 (-0.005222) | 0.003682 / 0.011008 (-0.007327) | 0.081108 / 0.038508 (0.042600) | 0.061580 / 0.023109 (0.038471) | 0.395880 / 0.275898 (0.119982) | 0.427429 / 0.323480 (0.103949) | 0.003570 / 0.007986 (-0.004416) | 0.003874 / 0.004328 (-0.000455) | 0.063322 / 0.004250 (0.059072) | 0.049742 / 0.037052 (0.012690) | 0.396547 / 0.258489 (0.138058) | 0.434759 / 0.293841 (0.140918) | 0.028137 / 0.128546 (-0.100409) | 0.008103 / 0.075646 (-0.067544) | 0.262504 / 0.419271 (-0.156767) | 0.045944 / 0.043533 (0.002411) | 0.397659 / 0.255139 (0.142520) | 0.416479 / 0.283200 (0.133280) | 0.022870 / 0.141683 (-0.118813) | 1.478280 / 1.452155 (0.026126) | 1.543748 / 1.492716 (0.051031) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228851 / 0.018006 (0.210845) | 0.432845 / 0.000490 (0.432355) | 0.005922 / 0.000200 (0.005722) | 0.000227 / 0.000054 (0.000172) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025545 / 0.037411 (-0.011867) | 0.073506 / 0.014526 (0.058980) | 0.087622 / 0.176557 (-0.088935) | 0.145455 / 0.737135 (-0.591680) | 0.085236 / 0.296338 (-0.211102) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433083 / 0.215209 (0.217874) | 4.323121 / 2.077655 (2.245466) | 2.297947 / 1.504120 (0.793827) | 2.126405 / 1.541195 (0.585211) | 2.201635 / 1.468490 (0.733145) | 0.509902 / 4.584777 (-4.074875) | 3.116877 / 3.745712 (-0.628835) | 2.892949 / 5.269862 (-2.376912) | 1.866833 / 4.565676 (-2.698844) | 0.058087 / 0.424275 (-0.366189) | 0.006464 / 0.007607 (-0.001143) | 0.503594 / 0.226044 (0.277550) | 5.027634 / 2.268929 (2.758705) | 2.718030 / 55.444624 (-52.726595) | 2.373876 / 6.876477 (-4.502600) | 2.515496 / 2.142072 (0.373423) | 0.602648 / 4.805227 (-4.202579) | 0.126119 / 6.500664 (-6.374545) | 0.060623 / 0.075469 (-0.014846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236429 / 1.841788 (-0.605359) | 17.760532 / 8.074308 (9.686224) | 13.970093 / 10.191392 (3.778701) | 0.145455 / 0.680424 (-0.534969) | 0.017110 / 0.534201 (-0.517091) | 0.329649 / 0.579283 (-0.249634) | 0.366942 / 0.434364 (-0.067421) | 0.384418 / 0.540337 (-0.155920) | 0.552330 / 1.386936 (-0.834606) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006302 / 0.011353 (-0.005051) | 0.003677 / 0.011008 (-0.007331) | 0.062836 / 0.038508 (0.024328) | 0.063317 / 0.023109 (0.040207) | 0.449970 / 0.275898 (0.174072) | 0.480903 / 0.323480 (0.157423) | 0.005013 / 0.007986 (-0.002972) | 0.002934 / 0.004328 (-0.001394) | 0.062975 / 0.004250 (0.058724) | 0.051285 / 0.037052 (0.014233) | 0.448417 / 0.258489 (0.189928) | 0.486022 / 0.293841 (0.192181) | 0.029215 / 0.128546 (-0.099332) | 0.008189 / 0.075646 (-0.067457) | 0.068203 / 0.419271 (-0.351068) | 0.041942 / 0.043533 (-0.001591) | 0.445749 / 0.255139 (0.190610) | 0.465442 / 0.283200 (0.182243) | 0.020681 / 0.141683 (-0.121002) | 1.500704 / 1.452155 (0.048549) | 1.550511 / 1.492716 (0.057795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224922 / 0.018006 (0.206915) | 0.419714 / 0.000490 (0.419224) | 0.003804 / 0.000200 (0.003604) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026924 / 0.037411 (-0.010487) | 0.082400 / 0.014526 (0.067874) | 0.092193 / 0.176557 (-0.084363) | 0.147045 / 0.737135 (-0.590090) | 0.093173 / 0.296338 (-0.203166) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462510 / 0.215209 (0.247300) | 4.635249 / 2.077655 (2.557594) | 2.627127 / 1.504120 (1.123007) | 2.442879 / 1.541195 (0.901684) | 2.502456 / 1.468490 (1.033966) | 0.506607 / 4.584777 (-4.078170) | 3.127348 / 3.745712 (-0.618364) | 2.901818 / 5.269862 (-2.368044) | 1.906876 / 4.565676 (-2.658801) | 0.058025 / 0.424275 (-0.366250) | 0.006442 / 0.007607 (-0.001165) | 0.534438 / 0.226044 (0.308394) | 5.352481 / 2.268929 (3.083553) | 3.058068 / 55.444624 (-52.386556) | 2.697310 / 6.876477 (-4.179167) | 2.873141 / 2.142072 (0.731069) | 0.594517 / 4.805227 (-4.210710) | 0.125369 / 6.500664 (-6.375295) | 0.061411 / 0.075469 (-0.014058) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369549 / 1.841788 (-0.472238) | 17.933507 / 8.074308 (9.859199) | 14.890107 / 10.191392 (4.698715) | 0.154398 / 0.680424 (-0.526026) | 0.018021 / 0.534201 (-0.516180) | 0.335163 / 0.579283 (-0.244120) | 0.350396 / 0.434364 (-0.083968) | 0.397694 / 0.540337 (-0.142643) | 0.554853 / 1.386936 (-0.832083) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f56fd9d6c877ffa6fb44fb832c13b61227c9cc5b \"CML watermark\")\n" ]
2023-09-25T12:50:59Z
2023-09-26T14:55:35Z
2023-09-26T13:36:40Z
CONTRIBUTOR
null
null
null
Not ElasticSearch :)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6258/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6258/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6258.diff", "html_url": "https://github.com/huggingface/datasets/pull/6258", "merged_at": "2023-09-26T13:36:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/6258.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6258" }
https://api.github.com/repos/huggingface/datasets/issues/5170
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5170/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5170/comments
https://api.github.com/repos/huggingface/datasets/issues/5170/events
https://github.com/huggingface/datasets/issues/5170
1,425,301,835
I_kwDODunzps5U9GFL
5,170
[Caching] Deterministic hashing of torch tensors
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[]
2022-10-27T09:15:15Z
2022-11-02T17:18:43Z
2022-11-02T17:18:43Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Currently this fails ```python import torch from datasets.fingerprint import Hasher t = torch.tensor([1.]) def func(x): return t + x hash1 = Hasher.hash(func) t = torch.tensor([1.]) hash2 = Hasher.hash(func) assert hash1 == hash2 ``` Also as noticed in https://discuss.huggingface.co/t/dataset-cant-cache-models-outputs/24945, using a model in a `map` function doesn't work well with caching. Indeed the `bert-base-uncased` model has a different hash every time you reload it. Supporting torch tensors may also help in this case. This can be fixed by registering a custom pickling functions for torch tensors - as we did for other objects such as CodeType, FunctionType and Regex in `py_utils.py`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5170/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5170/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4729
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4729/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4729/comments
https://api.github.com/repos/huggingface/datasets/issues/4729/events
https://github.com/huggingface/datasets/pull/4729
1,313,374,015
PR_kwDODunzps473GmR
4,729
Refactor Hub tests
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-07-21T14:43:13Z
2022-07-22T15:09:49Z
2022-07-22T14:56:29Z
MEMBER
null
null
null
This PR refactors `test_upstream_hub` by removing unittests and using the following pytest Hub fixtures: - `ci_hub_config` - `set_ci_hub_access_token`: to replace setUp/tearDown - `temporary_repo` context manager: to replace `try... finally` - `cleanup_repo`: to delete repo accidentally created if one of the tests fails This is a preliminary work done to manage unit/integration tests separately.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4729/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4729/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4729.diff", "html_url": "https://github.com/huggingface/datasets/pull/4729", "merged_at": "2022-07-22T14:56:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/4729.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4729" }
https://api.github.com/repos/huggingface/datasets/issues/7229
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7229/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7229/comments
https://api.github.com/repos/huggingface/datasets/issues/7229/events
https://github.com/huggingface/datasets/pull/7229
2,588,847,398
PR_kwDODunzps5-rgrx
7,229
handle config_name=None in push_to_hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "not sure it's a good idea, we always need a config name so better have the correct default and not support None (which could lead to think it doesn't have a config name, while it does)" ]
2024-10-15T13:48:57Z
2024-10-24T17:51:52Z
2024-10-24T17:51:52Z
CONTRIBUTOR
null
null
null
This caught me out - thought it might be better to explicitly handle None?
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7229/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7229/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7229.diff", "html_url": "https://github.com/huggingface/datasets/pull/7229", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7229.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7229" }
https://api.github.com/repos/huggingface/datasets/issues/6145
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6145/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6145/comments
https://api.github.com/repos/huggingface/datasets/issues/6145/events
https://github.com/huggingface/datasets/pull/6145
1,847,811,310
PR_kwDODunzps5Xx5If
6,145
Export to_iterable_dataset to document
{ "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/npuichigo", "id": 11533479, "login": "npuichigo", "node_id": "MDQ6VXNlcjExNTMzNDc5", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "repos_url": "https://api.github.com/users/npuichigo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "type": "User", "url": "https://api.github.com/users/npuichigo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006076 / 0.011353 (-0.005277) | 0.003730 / 0.011008 (-0.007279) | 0.080778 / 0.038508 (0.042270) | 0.062970 / 0.023109 (0.039860) | 0.395864 / 0.275898 (0.119966) | 0.430024 / 0.323480 (0.106544) | 0.004823 / 0.007986 (-0.003162) | 0.002949 / 0.004328 (-0.001379) | 0.062423 / 0.004250 (0.058172) | 0.047343 / 0.037052 (0.010291) | 0.403153 / 0.258489 (0.144664) | 0.443666 / 0.293841 (0.149825) | 0.027798 / 0.128546 (-0.100748) | 0.008056 / 0.075646 (-0.067590) | 0.262260 / 0.419271 (-0.157011) | 0.045958 / 0.043533 (0.002425) | 0.391349 / 0.255139 (0.136210) | 0.421831 / 0.283200 (0.138632) | 0.021837 / 0.141683 (-0.119846) | 1.485509 / 1.452155 (0.033355) | 1.542940 / 1.492716 (0.050224) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196831 / 0.018006 (0.178825) | 0.435774 / 0.000490 (0.435285) | 0.003647 / 0.000200 (0.003447) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023756 / 0.037411 (-0.013655) | 0.075737 / 0.014526 (0.061211) | 0.303703 / 0.176557 (0.127146) | 0.164862 / 0.737135 (-0.572273) | 0.198483 / 0.296338 (-0.097855) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405220 / 0.215209 (0.190011) | 4.065983 / 2.077655 (1.988328) | 2.043001 / 1.504120 (0.538881) | 1.853318 / 1.541195 (0.312123) | 1.977452 / 1.468490 (0.508962) | 0.500897 / 4.584777 (-4.083880) | 3.065756 / 3.745712 (-0.679956) | 2.924096 / 5.269862 (-2.345765) | 1.876194 / 4.565676 (-2.689482) | 0.057774 / 0.424275 (-0.366501) | 0.006809 / 0.007607 (-0.000798) | 0.470979 / 0.226044 (0.244934) | 4.719546 / 2.268929 (2.450618) | 2.449651 / 55.444624 (-52.994973) | 2.211817 / 6.876477 (-4.664660) | 2.398760 / 2.142072 (0.256687) | 0.590608 / 4.805227 (-4.214619) | 0.125836 / 6.500664 (-6.374829) | 0.060759 / 0.075469 (-0.014710) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243609 / 1.841788 (-0.598179) | 18.836193 / 8.074308 (10.761885) | 13.835053 / 10.191392 (3.643661) | 0.129708 / 0.680424 (-0.550716) | 0.016708 / 0.534201 (-0.517493) | 0.337219 / 0.579283 (-0.242065) | 0.359045 / 0.434364 (-0.075319) | 0.383329 / 0.540337 (-0.157009) | 0.539629 / 1.386936 (-0.847307) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006073 / 0.011353 (-0.005280) | 0.003713 / 0.011008 (-0.007295) | 0.062642 / 0.038508 (0.024134) | 0.062618 / 0.023109 (0.039508) | 0.362029 / 0.275898 (0.086130) | 0.401924 / 0.323480 (0.078445) | 0.004689 / 0.007986 (-0.003297) | 0.002945 / 0.004328 (-0.001384) | 0.062720 / 0.004250 (0.058470) | 0.048901 / 0.037052 (0.011848) | 0.363780 / 0.258489 (0.105291) | 0.405111 / 0.293841 (0.111270) | 0.027738 / 0.128546 (-0.100808) | 0.008046 / 0.075646 (-0.067600) | 0.067752 / 0.419271 (-0.351519) | 0.041955 / 0.043533 (-0.001577) | 0.361615 / 0.255139 (0.106476) | 0.388762 / 0.283200 (0.105562) | 0.021302 / 0.141683 (-0.120380) | 1.473527 / 1.452155 (0.021372) | 1.529753 / 1.492716 (0.037037) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300446 / 0.018006 (0.282440) | 0.425844 / 0.000490 (0.425354) | 0.054507 / 0.000200 (0.054307) | 0.000282 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025478 / 0.037411 (-0.011933) | 0.078298 / 0.014526 (0.063772) | 0.087647 / 0.176557 (-0.088909) | 0.138978 / 0.737135 (-0.598157) | 0.088396 / 0.296338 (-0.207942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421345 / 0.215209 (0.206136) | 4.209188 / 2.077655 (2.131533) | 2.260731 / 1.504120 (0.756611) | 2.072329 / 1.541195 (0.531134) | 2.086778 / 1.468490 (0.618288) | 0.495425 / 4.584777 (-4.089352) | 2.987519 / 3.745712 (-0.758194) | 2.895106 / 5.269862 (-2.374756) | 1.874637 / 4.565676 (-2.691039) | 0.057080 / 0.424275 (-0.367195) | 0.006402 / 0.007607 (-0.001205) | 0.498233 / 0.226044 (0.272188) | 4.974385 / 2.268929 (2.705457) | 2.671755 / 55.444624 (-52.772870) | 2.356120 / 6.876477 (-4.520357) | 2.531374 / 2.142072 (0.389301) | 0.581955 / 4.805227 (-4.223272) | 0.125491 / 6.500664 (-6.375173) | 0.062267 / 0.075469 (-0.013202) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307233 / 1.841788 (-0.534555) | 18.929740 / 8.074308 (10.855431) | 14.029693 / 10.191392 (3.838301) | 0.161992 / 0.680424 (-0.518431) | 0.017127 / 0.534201 (-0.517074) | 0.336644 / 0.579283 (-0.242639) | 0.336550 / 0.434364 (-0.097814) | 0.400554 / 0.540337 (-0.139783) | 0.560725 / 1.386936 (-0.826211) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cb8c5de5145c7e7eee65391cb7f4d92f0d565d62 \"CML watermark\")\n" ]
2023-08-12T07:00:14Z
2023-08-15T17:04:01Z
2023-08-15T16:55:24Z
CONTRIBUTOR
null
null
null
Fix the export of a missing method of `Dataset`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6145/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6145/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6145.diff", "html_url": "https://github.com/huggingface/datasets/pull/6145", "merged_at": "2023-08-15T16:55:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6145.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6145" }
https://api.github.com/repos/huggingface/datasets/issues/5909
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5909/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5909/comments
https://api.github.com/repos/huggingface/datasets/issues/5909/events
https://github.com/huggingface/datasets/pull/5909
1,728,900,068
PR_kwDODunzps5Rgga6
5,909
Use more efficient and idiomatic way to construct list.
{ "avatar_url": "https://avatars.githubusercontent.com/u/172294?v=4", "events_url": "https://api.github.com/users/ttsugriy/events{/privacy}", "followers_url": "https://api.github.com/users/ttsugriy/followers", "following_url": "https://api.github.com/users/ttsugriy/following{/other_user}", "gists_url": "https://api.github.com/users/ttsugriy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ttsugriy", "id": 172294, "login": "ttsugriy", "node_id": "MDQ6VXNlcjE3MjI5NA==", "organizations_url": "https://api.github.com/users/ttsugriy/orgs", "received_events_url": "https://api.github.com/users/ttsugriy/received_events", "repos_url": "https://api.github.com/users/ttsugriy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ttsugriy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ttsugriy/subscriptions", "type": "User", "url": "https://api.github.com/users/ttsugriy", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008156 / 0.011353 (-0.003197) | 0.005563 / 0.011008 (-0.005445) | 0.118319 / 0.038508 (0.079810) | 0.044305 / 0.023109 (0.021195) | 0.366221 / 0.275898 (0.090323) | 0.407585 / 0.323480 (0.084105) | 0.006961 / 0.007986 (-0.001024) | 0.004841 / 0.004328 (0.000513) | 0.089949 / 0.004250 (0.085698) | 0.062197 / 0.037052 (0.025144) | 0.360721 / 0.258489 (0.102232) | 0.415332 / 0.293841 (0.121491) | 0.035709 / 0.128546 (-0.092837) | 0.010617 / 0.075646 (-0.065030) | 0.397454 / 0.419271 (-0.021817) | 0.063490 / 0.043533 (0.019958) | 0.374289 / 0.255139 (0.119150) | 0.382827 / 0.283200 (0.099628) | 0.121014 / 0.141683 (-0.020669) | 1.729933 / 1.452155 (0.277779) | 1.896222 / 1.492716 (0.403506) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254030 / 0.018006 (0.236023) | 0.491225 / 0.000490 (0.490736) | 0.018933 / 0.000200 (0.018734) | 0.000413 / 0.000054 (0.000358) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033085 / 0.037411 (-0.004327) | 0.132837 / 0.014526 (0.118311) | 0.143275 / 0.176557 (-0.033282) | 0.215800 / 0.737135 (-0.521335) | 0.149802 / 0.296338 (-0.146536) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474688 / 0.215209 (0.259479) | 4.743223 / 2.077655 (2.665569) | 2.163107 / 1.504120 (0.658988) | 1.946396 / 1.541195 (0.405201) | 2.057538 / 1.468490 (0.589047) | 0.618836 / 4.584777 (-3.965941) | 4.605934 / 3.745712 (0.860222) | 2.201537 / 5.269862 (-3.068324) | 1.275758 / 4.565676 (-3.289919) | 0.077782 / 0.424275 (-0.346493) | 0.014830 / 0.007607 (0.007223) | 0.593372 / 0.226044 (0.367328) | 5.927000 / 2.268929 (3.658072) | 2.687293 / 55.444624 (-52.757331) | 2.301797 / 6.876477 (-4.574679) | 2.489928 / 2.142072 (0.347856) | 0.756779 / 4.805227 (-4.048449) | 0.168065 / 6.500664 (-6.332600) | 0.077276 / 0.075469 (0.001807) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608169 / 1.841788 (-0.233619) | 19.048790 / 8.074308 (10.974482) | 16.100228 / 10.191392 (5.908836) | 0.215346 / 0.680424 (-0.465077) | 0.022293 / 0.534201 (-0.511907) | 0.535899 / 0.579283 (-0.043384) | 0.533729 / 0.434364 (0.099365) | 0.562697 / 0.540337 (0.022360) | 0.764082 / 1.386936 (-0.622854) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010087 / 0.011353 (-0.001266) | 0.005357 / 0.011008 (-0.005651) | 0.092678 / 0.038508 (0.054170) | 0.041207 / 0.023109 (0.018098) | 0.437464 / 0.275898 (0.161566) | 0.527867 / 0.323480 (0.204387) | 0.006861 / 0.007986 (-0.001125) | 0.006131 / 0.004328 (0.001802) | 0.093741 / 0.004250 (0.089490) | 0.064142 / 0.037052 (0.027090) | 0.433577 / 0.258489 (0.175088) | 0.537148 / 0.293841 (0.243307) | 0.035339 / 0.128546 (-0.093207) | 0.010432 / 0.075646 (-0.065214) | 0.102838 / 0.419271 (-0.316434) | 0.057905 / 0.043533 (0.014372) | 0.437956 / 0.255139 (0.182817) | 0.509562 / 0.283200 (0.226362) | 0.120620 / 0.141683 (-0.021063) | 1.798686 / 1.452155 (0.346531) | 2.013290 / 1.492716 (0.520574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249067 / 0.018006 (0.231061) | 0.462219 / 0.000490 (0.461729) | 0.000476 / 0.000200 (0.000276) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033988 / 0.037411 (-0.003424) | 0.135863 / 0.014526 (0.121337) | 0.144082 / 0.176557 (-0.032474) | 0.201715 / 0.737135 (-0.535421) | 0.152079 / 0.296338 (-0.144259) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522820 / 0.215209 (0.307611) | 5.216723 / 2.077655 (3.139068) | 2.582355 / 1.504120 (1.078235) | 2.352799 / 1.541195 (0.811604) | 2.451943 / 1.468490 (0.983453) | 0.620381 / 4.584777 (-3.964396) | 4.537841 / 3.745712 (0.792129) | 2.206431 / 5.269862 (-3.063431) | 1.269865 / 4.565676 (-3.295811) | 0.078744 / 0.424275 (-0.345531) | 0.014375 / 0.007607 (0.006768) | 0.648215 / 0.226044 (0.422171) | 6.482809 / 2.268929 (4.213881) | 3.210670 / 55.444624 (-52.233954) | 2.847485 / 6.876477 (-4.028992) | 2.820946 / 2.142072 (0.678873) | 0.762711 / 4.805227 (-4.042516) | 0.171235 / 6.500664 (-6.329429) | 0.080230 / 0.075469 (0.004761) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.646840 / 1.841788 (-0.194948) | 19.400451 / 8.074308 (11.326142) | 16.758845 / 10.191392 (6.567453) | 0.171377 / 0.680424 (-0.509046) | 0.020400 / 0.534201 (-0.513801) | 0.467675 / 0.579283 (-0.111608) | 0.529745 / 0.434364 (0.095381) | 0.605989 / 0.540337 (0.065652) | 0.694659 / 1.386936 (-0.692277) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#006bf33ac5c308f9c70f4df4868abd539eb6c366 \"CML watermark\")\n", "It's faster because all the items are the same object, but this also means modifying one of them will alter each unless these items are immutable, and they are in this case (tuples). So we should be careful when using this idiom." ]
2023-05-27T18:54:47Z
2023-05-31T15:37:11Z
2023-05-31T13:28:29Z
CONTRIBUTOR
null
null
null
Using `*` is ~2X faster according to [benchmark](https://colab.research.google.com/gist/ttsugriy/c964a2604edf70c41911b10335729b6a/for-vs-mult.ipynb) with just 4 patterns. This doesn't matter much since this tiny difference is not going to be noticeable, but why not?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5909/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5909/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5909.diff", "html_url": "https://github.com/huggingface/datasets/pull/5909", "merged_at": "2023-05-31T13:28:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/5909.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5909" }
https://api.github.com/repos/huggingface/datasets/issues/4741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4741/comments
https://api.github.com/repos/huggingface/datasets/issues/4741/events
https://github.com/huggingface/datasets/pull/4741
1,316,621,272
PR_kwDODunzps48B2fl
4,741
Fix to dict conversion of `DatasetInfo`/`Features`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-07-25T10:41:27Z
2022-07-25T12:50:36Z
2022-07-25T12:37:53Z
COLLABORATOR
null
null
null
Fix #4681
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4741/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4741/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4741.diff", "html_url": "https://github.com/huggingface/datasets/pull/4741", "merged_at": "2022-07-25T12:37:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/4741.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4741" }
https://api.github.com/repos/huggingface/datasets/issues/5875
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5875/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5875/comments
https://api.github.com/repos/huggingface/datasets/issues/5875/events
https://github.com/huggingface/datasets/issues/5875
1,716,770,394
I_kwDODunzps5mU9Za
5,875
Why split slicing doesn't behave like list slicing ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/43774355?v=4", "events_url": "https://api.github.com/users/astariul/events{/privacy}", "followers_url": "https://api.github.com/users/astariul/followers", "following_url": "https://api.github.com/users/astariul/following{/other_user}", "gists_url": "https://api.github.com/users/astariul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/astariul", "id": 43774355, "login": "astariul", "node_id": "MDQ6VXNlcjQzNzc0MzU1", "organizations_url": "https://api.github.com/users/astariul/orgs", "received_events_url": "https://api.github.com/users/astariul/received_events", "repos_url": "https://api.github.com/users/astariul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/astariul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/astariul/subscriptions", "type": "User", "url": "https://api.github.com/users/astariul", "user_view_type": "public" }
[ { "color": "cfd3d7", "default": true, "description": "This issue or pull request already exists", "id": 1935892865, "name": "duplicate", "node_id": "MDU6TGFiZWwxOTM1ODkyODY1", "url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate" } ]
closed
false
null
[]
null
[ "A duplicate of https://github.com/huggingface/datasets/issues/1774" ]
2023-05-19T07:21:10Z
2024-01-31T15:54:18Z
2024-01-31T15:54:18Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug If I want to get the first 10 samples of my dataset, I can do : ``` ds = datasets.load_dataset('mnist', split='train[:10]') ``` But if I exceed the number of samples in the dataset, an exception is raised : ``` ds = datasets.load_dataset('mnist', split='train[:999999999]') ``` > ValueError: Requested slice [:999999999] incompatible with 60000 examples. ### Steps to reproduce the bug ``` ds = datasets.load_dataset('mnist', split='train[:999999999]') ``` ### Expected behavior I would expect it to behave like python lists (no exception raised, the whole list is kept) : ``` d = list(range(1000))[:999999] print(len(d)) # > 1000 ``` ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-12.6-arm64-arm-64bit - Python version: 3.9.12 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5875/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5875/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4585
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4585/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4585/comments
https://api.github.com/repos/huggingface/datasets/issues/4585/events
https://github.com/huggingface/datasets/pull/4585
1,287,064,929
PR_kwDODunzps46e1Ne
4,585
Host multi_news data on the Hub instead of Google Drive
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-06-28T09:32:06Z
2022-06-28T14:19:35Z
2022-06-28T14:08:48Z
MEMBER
null
null
null
Host data files of multi_news dataset on the Hub. They were on Google Drive. Fix #4580.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4585/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4585/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4585.diff", "html_url": "https://github.com/huggingface/datasets/pull/4585", "merged_at": "2022-06-28T14:08:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/4585.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4585" }
https://api.github.com/repos/huggingface/datasets/issues/5664
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5664/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5664/comments
https://api.github.com/repos/huggingface/datasets/issues/5664/events
https://github.com/huggingface/datasets/pull/5664
1,637,192,684
PR_kwDODunzps5Mt6vp
5,664
Fix CI by temporarily pinning tensorflow < 2.12.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.005279 / 0.011008 (-0.005729) | 0.098848 / 0.038508 (0.060340) | 0.035290 / 0.023109 (0.012181) | 0.342676 / 0.275898 (0.066778) | 0.375310 / 0.323480 (0.051830) | 0.006037 / 0.007986 (-0.001948) | 0.004143 / 0.004328 (-0.000185) | 0.075757 / 0.004250 (0.071506) | 0.049436 / 0.037052 (0.012383) | 0.344734 / 0.258489 (0.086245) | 0.388111 / 0.293841 (0.094270) | 0.037079 / 0.128546 (-0.091467) | 0.011986 / 0.075646 (-0.063660) | 0.333911 / 0.419271 (-0.085361) | 0.050415 / 0.043533 (0.006882) | 0.341723 / 0.255139 (0.086584) | 0.364136 / 0.283200 (0.080936) | 0.099371 / 0.141683 (-0.042312) | 1.467030 / 1.452155 (0.014876) | 1.565472 / 1.492716 (0.072755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212534 / 0.018006 (0.194528) | 0.435854 / 0.000490 (0.435364) | 0.000419 / 0.000200 (0.000219) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027957 / 0.037411 (-0.009454) | 0.106835 / 0.014526 (0.092309) | 0.115733 / 0.176557 (-0.060824) | 0.172374 / 0.737135 (-0.564761) | 0.121907 / 0.296338 (-0.174431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413195 / 0.215209 (0.197986) | 4.144775 / 2.077655 (2.067120) | 1.885647 / 1.504120 (0.381527) | 1.645525 / 1.541195 (0.104331) | 1.690117 / 1.468490 (0.221627) | 0.705787 / 4.584777 (-3.878989) | 3.763338 / 3.745712 (0.017626) | 2.163044 / 5.269862 (-3.106818) | 1.478619 / 4.565676 (-3.087057) | 0.086458 / 0.424275 (-0.337817) | 0.012711 / 0.007607 (0.005103) | 0.503592 / 0.226044 (0.277547) | 5.031176 / 2.268929 (2.762248) | 2.345348 / 55.444624 (-53.099276) | 2.064573 / 6.876477 (-4.811903) | 2.203937 / 2.142072 (0.061865) | 0.838761 / 4.805227 (-3.966466) | 0.170116 / 6.500664 (-6.330548) | 0.064012 / 0.075469 (-0.011457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190887 / 1.841788 (-0.650901) | 15.091466 / 8.074308 (7.017158) | 14.549112 / 10.191392 (4.357720) | 0.180603 / 0.680424 (-0.499820) | 0.017387 / 0.534201 (-0.516814) | 0.421372 / 0.579283 (-0.157911) | 0.434644 / 0.434364 (0.000281) | 0.496958 / 0.540337 (-0.043380) | 0.593995 / 1.386936 (-0.792941) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007790 / 0.011353 (-0.003563) | 0.005307 / 0.011008 (-0.005701) | 0.074779 / 0.038508 (0.036271) | 0.034442 / 0.023109 (0.011332) | 0.337973 / 0.275898 (0.062075) | 0.371944 / 0.323480 (0.048464) | 0.006088 / 0.007986 (-0.001897) | 0.005619 / 0.004328 (0.001291) | 0.073757 / 0.004250 (0.069507) | 0.049385 / 0.037052 (0.012333) | 0.338326 / 0.258489 (0.079837) | 0.387916 / 0.293841 (0.094075) | 0.037197 / 0.128546 (-0.091350) | 0.012371 / 0.075646 (-0.063275) | 0.086938 / 0.419271 (-0.332334) | 0.051379 / 0.043533 (0.007846) | 0.331580 / 0.255139 (0.076441) | 0.355765 / 0.283200 (0.072565) | 0.103368 / 0.141683 (-0.038315) | 1.475963 / 1.452155 (0.023808) | 1.530579 / 1.492716 (0.037863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223037 / 0.018006 (0.205031) | 0.441795 / 0.000490 (0.441305) | 0.003937 / 0.000200 (0.003737) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030081 / 0.037411 (-0.007330) | 0.110366 / 0.014526 (0.095841) | 0.124097 / 0.176557 (-0.052459) | 0.176237 / 0.737135 (-0.560898) | 0.127045 / 0.296338 (-0.169293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420191 / 0.215209 (0.204982) | 4.186721 / 2.077655 (2.109066) | 1.992336 / 1.504120 (0.488216) | 1.800567 / 1.541195 (0.259373) | 1.917982 / 1.468490 (0.449491) | 0.700932 / 4.584777 (-3.883845) | 3.888631 / 3.745712 (0.142918) | 2.138168 / 5.269862 (-3.131693) | 1.364636 / 4.565676 (-3.201041) | 0.085404 / 0.424275 (-0.338871) | 0.012550 / 0.007607 (0.004943) | 0.526110 / 0.226044 (0.300066) | 5.258717 / 2.268929 (2.989789) | 2.454287 / 55.444624 (-52.990338) | 2.130539 / 6.876477 (-4.745937) | 2.207982 / 2.142072 (0.065909) | 0.839242 / 4.805227 (-3.965985) | 0.167611 / 6.500664 (-6.333053) | 0.065706 / 0.075469 (-0.009763) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266125 / 1.841788 (-0.575662) | 15.480513 / 8.074308 (7.406205) | 14.959376 / 10.191392 (4.767983) | 0.149195 / 0.680424 (-0.531229) | 0.017881 / 0.534201 (-0.516320) | 0.430863 / 0.579283 (-0.148420) | 0.432878 / 0.434364 (-0.001485) | 0.499605 / 0.540337 (-0.040733) | 0.605592 / 1.386936 (-0.781344) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c20230f8d8762fb67523677093e95e773ce88786 \"CML watermark\")\n" ]
2023-03-23T09:52:26Z
2023-03-23T10:17:11Z
2023-03-23T10:09:54Z
MEMBER
null
null
null
As a hotfix for our CI, temporarily pin `tensorflow` upper version: - In Python 3.10, tensorflow-2.12.0 also installs `jax` Fix #5663 Until root cause is fixed.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5664/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5664/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5664.diff", "html_url": "https://github.com/huggingface/datasets/pull/5664", "merged_at": "2023-03-23T10:09:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/5664.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5664" }
https://api.github.com/repos/huggingface/datasets/issues/5227
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5227/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5227/comments
https://api.github.com/repos/huggingface/datasets/issues/5227/events
https://github.com/huggingface/datasets/issues/5227
1,444,620,094
I_kwDODunzps5WGyc-
5,227
datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files
{ "avatar_url": "https://avatars.githubusercontent.com/u/102275116?v=4", "events_url": "https://api.github.com/users/ScottM-wizard/events{/privacy}", "followers_url": "https://api.github.com/users/ScottM-wizard/followers", "following_url": "https://api.github.com/users/ScottM-wizard/following{/other_user}", "gists_url": "https://api.github.com/users/ScottM-wizard/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ScottM-wizard", "id": 102275116, "login": "ScottM-wizard", "node_id": "U_kgDOBhiYLA", "organizations_url": "https://api.github.com/users/ScottM-wizard/orgs", "received_events_url": "https://api.github.com/users/ScottM-wizard/received_events", "repos_url": "https://api.github.com/users/ScottM-wizard/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ScottM-wizard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ScottM-wizard/subscriptions", "type": "User", "url": "https://api.github.com/users/ScottM-wizard", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Fixed. Please close.", "how to fix?i need your help" ]
2022-11-10T21:57:06Z
2023-10-07T05:04:41Z
2022-11-10T22:05:43Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug From these lines: from datasets import list_datasets, load_dataset dataset = load_dataset("wikisql","binary") I get error message: datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files And yet the 'wikisql' is reported to exist via the list_datasets(). Any help appreciated. ### Steps to reproduce the bug From these lines: from datasets import list_datasets, load_dataset dataset = load_dataset("wikisql","binary") I get error message: datasets.data_files.EmptyDatasetError: The directory at wikisql doesn't contain any data files And yet the 'wikisql' is reported to exist via the list_datasets(). Any help appreciated. ### Expected behavior Dataset should load. This same code used to work. ### Environment info Mac OS
{ "avatar_url": "https://avatars.githubusercontent.com/u/102275116?v=4", "events_url": "https://api.github.com/users/ScottM-wizard/events{/privacy}", "followers_url": "https://api.github.com/users/ScottM-wizard/followers", "following_url": "https://api.github.com/users/ScottM-wizard/following{/other_user}", "gists_url": "https://api.github.com/users/ScottM-wizard/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ScottM-wizard", "id": 102275116, "login": "ScottM-wizard", "node_id": "U_kgDOBhiYLA", "organizations_url": "https://api.github.com/users/ScottM-wizard/orgs", "received_events_url": "https://api.github.com/users/ScottM-wizard/received_events", "repos_url": "https://api.github.com/users/ScottM-wizard/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ScottM-wizard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ScottM-wizard/subscriptions", "type": "User", "url": "https://api.github.com/users/ScottM-wizard", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5227/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5227/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4930
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4930/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4930/comments
https://api.github.com/repos/huggingface/datasets/issues/4930/events
https://github.com/huggingface/datasets/pull/4930
1,362,193,587
PR_kwDODunzps4-Yflc
4,930
Add cc-by-nc-2.0 to list of licenses
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "this list needs to be kept in sync with the ones in moon-landing and hub-docs :)", "@julien-c don't you think it might be better to a have a single file (source of truth) in one of the repos and then use it in every other repo, instead of having 3 copies of the same file that must be kept in sync?\r\n\r\nAlso note that the licenses we are adding were all already present in our previous `licenses.json` file: are we regenerating it, step by step? Why don't we use a file with ALL the licenses we previously had in the list?\r\n\r\nLicenses added:\r\n- #4887\r\n- #4930 \r\n\r\nPrevious `licenses.json` file:\r\n- https://github.com/huggingface/datasets/blob/b7612754928e0fd43b9e3c3becb906ec280ff5d4/src/datasets/utils/resources/licenses.json\r\n- removed in this commit: https://github.com/huggingface/datasets/pull/4613/commits/9f7725412dac1089b3e057f9e3fcf39cc222bc26\r\n\r\nLet me know what you think and I can take care of this.", "> Let me know what you think and I can take care of this.\r\n\r\nWhat I think is that we shouldn't add licenses that are just used in a couple of datasets, and just use `license_details` for this.\r\n\r\n> don't you think it might be better to a have a single file (source of truth) in one of the repos and then use it in every other repo, instead of having 3 copies of the same file that must be kept in sync?\r\n\r\nYes, in my opinion we can just delete this file from `datasets`, the validation is happening hub-side anyways now? \r\n", "Feel free to delete the license list in `datasets` @albertvillanova ;)\r\n\r\nAlso FYI in #4926 I also removed all the validation steps anyway (language, license, types etc.)" ]
2022-09-05T15:37:32Z
2022-09-06T16:43:32Z
2022-09-05T17:01:04Z
MEMBER
null
null
null
This PR adds the `cc-by-nc-2.0` to the list of licenses because it is required by `scifact` dataset: https://github.com/allenai/scifact/blob/master/LICENSE.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4930/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4930/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4930.diff", "html_url": "https://github.com/huggingface/datasets/pull/4930", "merged_at": "2022-09-05T17:01:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/4930.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4930" }
https://api.github.com/repos/huggingface/datasets/issues/7099
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7099/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7099/comments
https://api.github.com/repos/huggingface/datasets/issues/7099/events
https://github.com/huggingface/datasets/pull/7099
2,465,221,827
PR_kwDODunzps54U7s4
7,099
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7099). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005649 / 0.011353 (-0.005704) | 0.003918 / 0.011008 (-0.007091) | 0.064333 / 0.038508 (0.025825) | 0.031909 / 0.023109 (0.008800) | 0.249020 / 0.275898 (-0.026878) | 0.273563 / 0.323480 (-0.049917) | 0.004184 / 0.007986 (-0.003802) | 0.002809 / 0.004328 (-0.001519) | 0.049066 / 0.004250 (0.044816) | 0.043324 / 0.037052 (0.006272) | 0.257889 / 0.258489 (-0.000600) | 0.285410 / 0.293841 (-0.008431) | 0.030681 / 0.128546 (-0.097865) | 0.012389 / 0.075646 (-0.063258) | 0.206172 / 0.419271 (-0.213100) | 0.036500 / 0.043533 (-0.007032) | 0.253674 / 0.255139 (-0.001465) | 0.272086 / 0.283200 (-0.011114) | 0.019558 / 0.141683 (-0.122125) | 1.149501 / 1.452155 (-0.302653) | 1.198036 / 1.492716 (-0.294680) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.139977 / 0.018006 (0.121971) | 0.301149 / 0.000490 (0.300659) | 0.000253 / 0.000200 (0.000053) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019137 / 0.037411 (-0.018274) | 0.062616 / 0.014526 (0.048090) | 0.075965 / 0.176557 (-0.100591) | 0.120976 / 0.737135 (-0.616159) | 0.076384 / 0.296338 (-0.219954) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283801 / 0.215209 (0.068592) | 2.794074 / 2.077655 (0.716419) | 1.475633 / 1.504120 (-0.028487) | 1.336270 / 1.541195 (-0.204925) | 1.376159 / 1.468490 (-0.092331) | 0.718768 / 4.584777 (-3.866009) | 2.375970 / 3.745712 (-1.369742) | 2.969121 / 5.269862 (-2.300741) | 1.900236 / 4.565676 (-2.665440) | 0.082463 / 0.424275 (-0.341812) | 0.005159 / 0.007607 (-0.002448) | 0.329057 / 0.226044 (0.103012) | 3.250535 / 2.268929 (0.981607) | 1.846415 / 55.444624 (-53.598210) | 1.496622 / 6.876477 (-5.379855) | 1.538125 / 2.142072 (-0.603947) | 0.806127 / 4.805227 (-3.999101) | 0.135272 / 6.500664 (-6.365392) | 0.042668 / 0.075469 (-0.032801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983035 / 1.841788 (-0.858753) | 11.725835 / 8.074308 (3.651527) | 9.962818 / 10.191392 (-0.228574) | 0.131928 / 0.680424 (-0.548496) | 0.015784 / 0.534201 (-0.518417) | 0.301640 / 0.579283 (-0.277643) | 0.266251 / 0.434364 (-0.168113) | 0.339723 / 0.540337 (-0.200614) | 0.443384 / 1.386936 (-0.943552) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006301 / 0.011353 (-0.005052) | 0.004346 / 0.011008 (-0.006662) | 0.051406 / 0.038508 (0.012898) | 0.032263 / 0.023109 (0.009154) | 0.273715 / 0.275898 (-0.002183) | 0.300982 / 0.323480 (-0.022498) | 0.004533 / 0.007986 (-0.003452) | 0.002911 / 0.004328 (-0.001418) | 0.050464 / 0.004250 (0.046214) | 0.041131 / 0.037052 (0.004078) | 0.289958 / 0.258489 (0.031469) | 0.328632 / 0.293841 (0.034791) | 0.033545 / 0.128546 (-0.095001) | 0.013145 / 0.075646 (-0.062501) | 0.062241 / 0.419271 (-0.357031) | 0.035095 / 0.043533 (-0.008438) | 0.273303 / 0.255139 (0.018164) | 0.293652 / 0.283200 (0.010452) | 0.019980 / 0.141683 (-0.121703) | 1.155432 / 1.452155 (-0.296722) | 1.211409 / 1.492716 (-0.281307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094885 / 0.018006 (0.076879) | 0.307423 / 0.000490 (0.306933) | 0.000254 / 0.000200 (0.000054) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023462 / 0.037411 (-0.013949) | 0.081980 / 0.014526 (0.067454) | 0.089890 / 0.176557 (-0.086666) | 0.131058 / 0.737135 (-0.606078) | 0.091873 / 0.296338 (-0.204465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298522 / 0.215209 (0.083313) | 2.981771 / 2.077655 (0.904116) | 1.632515 / 1.504120 (0.128395) | 1.502885 / 1.541195 (-0.038310) | 1.496868 / 1.468490 (0.028377) | 0.750145 / 4.584777 (-3.834632) | 0.988853 / 3.745712 (-2.756859) | 3.029162 / 5.269862 (-2.240700) | 1.952304 / 4.565676 (-2.613373) | 0.082418 / 0.424275 (-0.341857) | 0.005724 / 0.007607 (-0.001883) | 0.356914 / 0.226044 (0.130870) | 3.523804 / 2.268929 (1.254875) | 1.983254 / 55.444624 (-53.461370) | 1.673135 / 6.876477 (-5.203342) | 1.716639 / 2.142072 (-0.425433) | 0.821568 / 4.805227 (-3.983659) | 0.136113 / 6.500664 (-6.364551) | 0.041593 / 0.075469 (-0.033876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.044670 / 1.841788 (-0.797118) | 12.739375 / 8.074308 (4.665066) | 10.263619 / 10.191392 (0.072227) | 0.132811 / 0.680424 (-0.547613) | 0.015491 / 0.534201 (-0.518710) | 0.305545 / 0.579283 (-0.273738) | 0.129226 / 0.434364 (-0.305138) | 0.345532 / 0.540337 (-0.194805) | 0.460406 / 1.386936 (-0.926530) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ebec2691fb1e40145429f63375cef3f46d3011ab \"CML watermark\")\n" ]
2024-08-14T08:31:17Z
2024-08-14T08:45:17Z
2024-08-14T08:39:25Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7099/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7099/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7099.diff", "html_url": "https://github.com/huggingface/datasets/pull/7099", "merged_at": "2024-08-14T08:39:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/7099.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7099" }
https://api.github.com/repos/huggingface/datasets/issues/5259
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5259/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5259/comments
https://api.github.com/repos/huggingface/datasets/issues/5259/events
https://github.com/huggingface/datasets/issues/5259
1,453,555,923
I_kwDODunzps5Wo4DT
5,259
datasets 2.7 introduces sharding error
{ "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DCNemesis", "id": 3616964, "login": "DCNemesis", "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "repos_url": "https://api.github.com/users/DCNemesis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "type": "User", "url": "https://api.github.com/users/DCNemesis", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I notice a comment in the code says:\r\n`Having lists of different sizes makes sharding ambigious, raise an error in this case until we decide how to define sharding without ambiguity for users` \r\n \r\n ... which suggests this update was pushed knowing that it might break some things. But, it didn't seem to have a useful error message of an argument that could be passed to avoid the error.", "Sorry for the inconvenience, I opened a PR in your repo to fix this: https://huggingface.co/datasets/sil-ai/bloom-speech/discussions/2\r\n\r\nBasically we've always considered lists in `gen_kwargs` to be a shard list that we can split and pass into different workers to generate the dataset (e.g. if you pass `num_proc=` in `load_dataset()` to generate the dataset in parallel), but it was documented only recently", "@lhoestq Thanks for the help. It looks like that took care of it." ]
2022-11-17T15:36:52Z
2022-12-24T01:44:02Z
2022-11-18T12:52:05Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug dataset fails to load with runtime error `RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.` ### Steps to reproduce the bug With datasets[audio] 2.7 loaded, and logged into hugging face, `data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True)` creates the error. Full stack trace: ```--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [<ipython-input-7-8cb9ca0f79f0>](https://localhost:8080/#) in <module> ----> 1 data = datasets.load_dataset('sil-ai/bloom-speech', 'bis', use_auth_token=True) 5 frames [/usr/local/lib/python3.7/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) 1745 try_from_hf_gcs=try_from_hf_gcs, 1746 use_auth_token=use_auth_token, -> 1747 num_proc=num_proc, 1748 ) 1749 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 824 verify_infos=verify_infos, 825 **prepare_split_kwargs, --> 826 **download_and_prepare_kwargs, 827 ) 828 # Sync info [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) 1554 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): 1555 super()._download_and_prepare( -> 1556 dl_manager, verify_infos, check_duplicate_keys=verify_infos, **prepare_splits_kwargs 1557 ) 1558 [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 911 try: 912 # Prepare split will record examples associated to the split --> 913 self._prepare_split(split_generator, **prepare_split_kwargs) 914 except OSError as e: 915 raise OSError( [/usr/local/lib/python3.7/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1362 fpath = path_join(self._output_dir, fname) 1363 -> 1364 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) 1365 if num_input_shards <= 1 and num_proc is not None: 1366 logger.warning( [/usr/local/lib/python3.7/dist-packages/datasets/utils/sharding.py](https://localhost:8080/#) in _number_of_shards_in_gen_kwargs(gen_kwargs) 16 + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) 17 + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " ---> 18 + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." 19 ) 20 ) RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_files has length 46 - key data has length 0 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.``` ### Expected behavior the dataset loads in datasets version 2.6.1 and should load with datasets 2.7 ### Environment info - `datasets` version: 2.7.0 - Platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.15 - PyArrow version: 6.0.1 - Pandas version: 1.3.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DCNemesis", "id": 3616964, "login": "DCNemesis", "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "repos_url": "https://api.github.com/users/DCNemesis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "type": "User", "url": "https://api.github.com/users/DCNemesis", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5259/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5259/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5109
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5109/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5109/comments
https://api.github.com/repos/huggingface/datasets/issues/5109/events
https://github.com/huggingface/datasets/issues/5109
1,407,434,706
I_kwDODunzps5T47_S
5,109
Map caching not working for some class methods
{ "avatar_url": "https://avatars.githubusercontent.com/u/23029765?v=4", "events_url": "https://api.github.com/users/Mouhanedg56/events{/privacy}", "followers_url": "https://api.github.com/users/Mouhanedg56/followers", "following_url": "https://api.github.com/users/Mouhanedg56/following{/other_user}", "gists_url": "https://api.github.com/users/Mouhanedg56/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mouhanedg56", "id": 23029765, "login": "Mouhanedg56", "node_id": "MDQ6VXNlcjIzMDI5NzY1", "organizations_url": "https://api.github.com/users/Mouhanedg56/orgs", "received_events_url": "https://api.github.com/users/Mouhanedg56/received_events", "repos_url": "https://api.github.com/users/Mouhanedg56/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mouhanedg56/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mouhanedg56/subscriptions", "type": "User", "url": "https://api.github.com/users/Mouhanedg56", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "The hash used for caching is computed by pickling recursively the function passed to `map`. Maybe some objects don't have the same hash across sessions. In particular you can check the hash of your model using\r\n```python\r\nfrom datasets.fingerprint import Hasher\r\nobj = AutoModel.from_config(config=config, add_pooling_layer=False)\r\nprint(Hasher.hash(obj))\r\n```\r\n\r\nYou can find mode info here: https://huggingface.co/docs/datasets/about_cache\r\n\r\nYou can also provide your own unique hash in `map` if you want, with the `new_fingerprint` argument", "Indeed, the hash is changing. The `dumps` function serialize the model object in different ways because the model object is not deterministic\r\n```python\r\nfrom datasets.utils.py_utils import dumps\r\nobj1 = AutoModel.from_config(config=config, add_pooling_layer=False)\r\nobj2 = AutoModel.from_config(config=config, add_pooling_layer=False)\r\n\r\ndumps(bert) == dumps(bert2). # False\r\n```\r\n\r\n> You can find mode info here: https://huggingface.co/docs/datasets/about_cache\r\n> \r\n> You can also provide your own unique hash in map if you want, with the new_fingerprint argument\r\n\r\n\r\nThanks, the doc is so helpful. Indeed, we can fix the hash and get cache hit using `new_fingerprint`. Closing the issue." ]
2022-10-13T09:12:58Z
2022-10-17T10:38:45Z
2022-10-17T10:38:45Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug The cache loading is not working as expected for some class methods with a model stored in an attribute. The new fingerprint for `_map_single` is not the same at each run. The hasher generate a different hash for the class method. This comes from `dumps` function in `datasets.utils.py_utils` which generates a different dump at each run. ## Steps to reproduce the bug ```python from datasets import load_dataset from transformers import AutoConfig, AutoModel, AutoTokenizer dataset = load_dataset("ethos", "binary") BASE_MODELNAME = "sentence-transformers/all-MiniLM-L6-v2" class Object: def __init__(self): config = AutoConfig.from_pretrained(BASE_MODELNAME) self.bert = AutoModel.from_config(config=config, add_pooling_layer=False) self.tok = AutoTokenizer.from_pretrained(BASE_MODELNAME) def tokenize(self, examples): tokenized_texts = self.tok( examples["text"], padding="max_length", truncation=True, max_length=256, ) return tokenized_texts instance = Object() result = dict() for phase in ["train"]: result[phase] = dataset[phase].map(instance.tokenize, batched=True, load_from_cache_file=True, num_proc=2) ``` ## Expected results Load cache instead of recompute result. ## Actual results Result recomputed from scratch at each run. The cache works fine when deleting `bert` attribute. ## Environment info - `datasets` version: 2.5.3.dev0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.9.13 - PyArrow version: 7.0.0 - Pandas version: 1.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/23029765?v=4", "events_url": "https://api.github.com/users/Mouhanedg56/events{/privacy}", "followers_url": "https://api.github.com/users/Mouhanedg56/followers", "following_url": "https://api.github.com/users/Mouhanedg56/following{/other_user}", "gists_url": "https://api.github.com/users/Mouhanedg56/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mouhanedg56", "id": 23029765, "login": "Mouhanedg56", "node_id": "MDQ6VXNlcjIzMDI5NzY1", "organizations_url": "https://api.github.com/users/Mouhanedg56/orgs", "received_events_url": "https://api.github.com/users/Mouhanedg56/received_events", "repos_url": "https://api.github.com/users/Mouhanedg56/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mouhanedg56/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mouhanedg56/subscriptions", "type": "User", "url": "https://api.github.com/users/Mouhanedg56", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5109/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5109/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7206
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7206/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7206/comments
https://api.github.com/repos/huggingface/datasets/issues/7206/events
https://github.com/huggingface/datasets/issues/7206
2,573,567,467
I_kwDODunzps6ZZYXr
7,206
Slow iteration for iterable dataset with numpy formatting for array data
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The below easily eats up 32G of RAM. Leaving it for a while bricked the laptop with 16GB.\r\n\r\n```\r\ndataset = load_dataset(\"Voxel51/OxfordFlowers102\", data_dir=\"data\").with_format(\"numpy\")\r\nprocessed_dataset = dataset.map(lambda x: x)\r\n```\r\n\r\n![image](https://github.com/user-attachments/assets/c1863a69-b18f-4014-89dc-98994336df96)\r\n\r\nSimilar problems occur if using a real transform function in `.map()`." ]
2024-10-08T15:38:11Z
2024-10-17T17:14:52Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When working with large arrays, setting with_format to e.g. numpy then applying map causes a significant slowdown for iterable datasets. ### Steps to reproduce the bug ```python import numpy as np import time from datasets import Dataset, Features, Array3D features=Features(**{"array0": Array3D((None, 10, 10), dtype="float32"), "array1": Array3D((None,10,10), dtype="float32")}) dataset = Dataset.from_dict({f"array{i}": [np.zeros((x,10,10), dtype=np.float32) for x in [2000,1000]*25] for i in range(2)}, features=features) ``` Then ```python ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy").map(lambda x: x) t0 = time.time() for ex in ds: pass t1 = time.time() print(t1-t0) ``` takes 27 s, whereas ```python ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy") ds = dataset.to_iterable_dataset() t0 = time.time() for ex in ds: pass t1 = time.time() print(t1 - t0) ``` takes ~1s ### Expected behavior Map should not introduce a slowdown when formatting is enabled. ### Environment info 3.0.2
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7206/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7206/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7188
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7188/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7188/comments
https://api.github.com/repos/huggingface/datasets/issues/7188/events
https://github.com/huggingface/datasets/pull/7188
2,560,712,689
PR_kwDODunzps59VSrf
7,188
Pin multiprocess<0.70.1 to align with dill<0.3.9
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7188). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-10-02T05:40:18Z
2024-10-02T06:08:25Z
2024-10-02T06:08:23Z
MEMBER
null
null
null
Pin multiprocess<0.70.1 to align with dill<0.3.9. Note that multiprocess-0.70.1 requires dill-0.3.9: https://github.com/uqfoundation/multiprocess/releases/tag/0.70.17 Fix #7186.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7188/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7188/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7188.diff", "html_url": "https://github.com/huggingface/datasets/pull/7188", "merged_at": "2024-10-02T06:08:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/7188.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7188" }
https://api.github.com/repos/huggingface/datasets/issues/4873
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4873/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4873/comments
https://api.github.com/repos/huggingface/datasets/issues/4873/events
https://github.com/huggingface/datasets/issues/4873
1,347,592,022
I_kwDODunzps5QUp9W
4,873
Multiple dataloader memory error
{ "avatar_url": "https://avatars.githubusercontent.com/u/13767887?v=4", "events_url": "https://api.github.com/users/cyk1337/events{/privacy}", "followers_url": "https://api.github.com/users/cyk1337/followers", "following_url": "https://api.github.com/users/cyk1337/following{/other_user}", "gists_url": "https://api.github.com/users/cyk1337/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cyk1337", "id": 13767887, "login": "cyk1337", "node_id": "MDQ6VXNlcjEzNzY3ODg3", "organizations_url": "https://api.github.com/users/cyk1337/orgs", "received_events_url": "https://api.github.com/users/cyk1337/received_events", "repos_url": "https://api.github.com/users/cyk1337/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cyk1337/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyk1337/subscriptions", "type": "User", "url": "https://api.github.com/users/cyk1337", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi!\r\n\r\n200+ data loaders is a lot. Have you tried to reduce the number of datasets by concatenating/interleaving the ones with the same structure/task (the API is `{concatenate_datasets/interleave_datasets}([dset1, ..., dset_N])`)?", "Hi @mariosasko, thank you for your reply. I tried pre-concatenating different datasets into one, but one key need is to keep each batch the same data type. Considering that the concatenate-then-segment operation for prefetched samples may span across different data types after concatenating/interleaving (cuz different data sources are mixed), any solution to remain the same data source for each batch?", "@cyk1337 have you found any solutions to it?\r\n@mariosasko I tried with interleave_datasets to sample batches from two large datasets (wikipedia alike) and it results in out-of-memory error during data loading (16gpus, >1TB physical memory). Do you have any idea about it?" ]
2022-08-23T08:59:50Z
2023-01-26T02:01:11Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
For the use of multiple datasets and tasks, we use around more than 200+ dataloaders, then pass it into `dataloader1, dataloader2, ..., dataloader200=accelerate.prepare(dataloader1, dataloader2, ..., dataloader200)` It causes the memory error when generating batches. Any solutions to it? ```bash File "/home/xxx/my_code/src/utils/data_utils.py", line 54, in generate_batch x = next(iterator) File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/accelerate/data_loader.py", line 301, in __iter__ for batch in super().__iter__(): File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 435, in __next__ data = self._next_data() File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 475, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 28, in fetch data.append(next(self.dataset_iter)) File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/accelerate/data_loader.py", line 249, in __iter__ for element in self.dataset: File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/datasets/iterable_dataset.py", line 503, in __iter__ for key, example in self._iter(): File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/datasets/iterable_dataset.py", line 500, in _iter yield from ex_iterable File "/home/xxx/anaconda3/envs/pt1.7/lib/python3.7/site-packages/datasets/iterable_dataset.py", line 231, in __iter__ new_key = "_".join(str(key) for key in keys) MemoryError ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4873/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4873/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4742
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4742/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4742/comments
https://api.github.com/repos/huggingface/datasets/issues/4742/events
https://github.com/huggingface/datasets/issues/4742
1,317,260,663
I_kwDODunzps5Og813
4,742
Dummy data nowhere to be found
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi @BramVanroy, thanks for reporting.\r\n\r\nFirst of all, please note that you do not need the dummy data: this was the case when we were adding datasets to the `datasets` library (on this GitHub repo), so that we could test the correct loading of all datasets with our CI. However, this is no longer the case for datasets on the Hub.\r\n- We should definitely update our docs.\r\n\r\nSecond, the dummy data is generated locally:\r\n- in your case, the dummy data will be generated inside the directory: `./datasets/hebban-reviews/dummy`\r\n- please note the preceding `./datasets` directory: the reason for this is that the command to generate the dummy data was specifically created for our `datasets` library, and therefore assumes our directory structure: commands are run from the root directory of our GitHub repo, and datasets scripts are under `./datasets` \r\n\r\n\r\n ", "I have opened an Issue to update the instructions on dummy data generation:\r\n- #4744", "Dummy data generation is deprecated now, so I think we can close this issue." ]
2022-07-25T19:18:42Z
2022-11-04T14:04:24Z
2022-11-04T14:04:10Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug To finalize my dataset, I wanted to create dummy data as per the guide and I ran ```shell datasets-cli dummy_data datasets/hebban-reviews --auto_generate ``` where hebban-reviews is [this repo](https://huggingface.co/datasets/BramVanroy/hebban-reviews). And even though the scripts runs and shows a message at the end that it succeeded, I cannot find the dummy data anywhere. Where is it? ## Expected results To see the dummy data in the datasets' folder or in the folder where I ran the command. ## Actual results I see the following message but I cannot find the dummy data anywhere. ``` Dummy data generation done and dummy data test succeeded for config 'filtered''. Automatic dummy data generation succeeded for all configs of '.\datasets\hebban-reviews\' ``` ## Environment info - `datasets` version: 2.4.1.dev0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.8.8 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4742/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4742/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7031
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7031/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7031/comments
https://api.github.com/repos/huggingface/datasets/issues/7031/events
https://github.com/huggingface/datasets/issues/7031
2,395,401,692
I_kwDODunzps6Oxu3c
7,031
CI quality is broken: use ruff check instead
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-07-08T11:42:24Z
2024-07-08T11:47:29Z
2024-07-08T11:47:29Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
CI quality is broken: https://github.com/huggingface/datasets/actions/runs/9838873879/job/27159697027 ``` error: `ruff <path>` has been removed. Use `ruff check <path>` instead. ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7031/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7031/timeline
null
not_planned
null
null
https://api.github.com/repos/huggingface/datasets/issues/4575
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4575/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4575/comments
https://api.github.com/repos/huggingface/datasets/issues/4575/events
https://github.com/huggingface/datasets/issues/4575
1,285,446,700
I_kwDODunzps5Mnlws
4,575
Problem about wmt17 zh-en dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/85819194?v=4", "events_url": "https://api.github.com/users/winterfell2021/events{/privacy}", "followers_url": "https://api.github.com/users/winterfell2021/followers", "following_url": "https://api.github.com/users/winterfell2021/following{/other_user}", "gists_url": "https://api.github.com/users/winterfell2021/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/winterfell2021", "id": 85819194, "login": "winterfell2021", "node_id": "MDQ6VXNlcjg1ODE5MTk0", "organizations_url": "https://api.github.com/users/winterfell2021/orgs", "received_events_url": "https://api.github.com/users/winterfell2021/received_events", "repos_url": "https://api.github.com/users/winterfell2021/repos", "site_admin": false, "starred_url": "https://api.github.com/users/winterfell2021/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/winterfell2021/subscriptions", "type": "User", "url": "https://api.github.com/users/winterfell2021", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Running into the same error with `wmt17/zh-en`, `wmt18/zh-en` and `wmt19/zh-en`.", "@albertvillanova @lhoestq Could you take a look at this issue?", "@winterfell2021 Hi, I wonder where the code you provided should be added. I tried to add them in the `datasets/table.py` in `array_cast` function, however, the 'zh' item is none.", "I found some 'zh' item is none while 'c[hn]' is not.\r\nSo the code may change to:\r\n```python\r\nif 'c[hn]' in str(array.type):\r\n py_array = array.to_pylist()\r\n data_list = []\r\n for vo in py_array:\r\n tmp = {\r\n 'en': vo['en'],\r\n }\r\n if vo.get('zh'):\r\n tmp['zh'] = vo['zh']\r\n else:\r\n tmp['zh'] = vo['c[hn]']\r\n data_list.append(tmp)\r\n array = pa.array(data_list, type=pa.struct([\r\n pa.field('en', pa.string()),\r\n pa.field('zh', pa.string()),\r\n ]))\r\n```", "I just pushed a fix, we'll do a new release of `datasets` soon to include this fix. In the meantime you can use the fixed dataset by passing `revision=\"main\"` to `load_dataset`" ]
2022-06-27T08:35:42Z
2022-08-23T10:01:02Z
2022-08-23T10:00:21Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
It seems that in subset casia2015, some samples are like `{'c[hn]':'xxx', 'en': 'aa'}`. So when using `data = load_dataset('wmt17', "zh-en")` to load the wmt17 zh-en dataset, which will raise the exception: ``` Traceback (most recent call last): File "train.py", line 78, in <module> data = load_dataset(args.dataset, "zh-en") File "/usr/local/lib/python3.7/dist-packages/datasets/load.py", line 1684, in load_dataset use_auth_token=use_auth_token, File "/usr/local/lib/python3.7/dist-packages/datasets/builder.py", line 705, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/usr/local/lib/python3.7/dist-packages/datasets/builder.py", line 1221, in _download_and_prepare super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) File "/usr/local/lib/python3.7/dist-packages/datasets/builder.py", line 793, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.7/dist-packages/datasets/builder.py", line 1215, in _prepare_split num_examples, num_bytes = writer.finalize() File "/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py", line 533, in finalize self.write_examples_on_file() File "/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py", line 410, in write_examples_on_file self.write_batch(batch_examples=batch_examples) File "/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py", line 503, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 230, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/usr/local/lib/python3.7/dist-packages/datasets/arrow_writer.py", line 198, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/usr/local/lib/python3.7/dist-packages/datasets/table.py", line 1675, in wrapper return func(array, *args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/datasets/table.py", line 1846, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/usr/local/lib/python3.7/dist-packages/datasets/table.py", line 1675, in wrapper return func(array, *args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/datasets/table.py", line 1756, in array_cast raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}") TypeError: Couldn't cast array of type struct<c[hn]: string, en: string, zh: string> to struct<en: string, zh: string> ``` So the solution of this problem is to change the original array manually: ``` if 'c[hn]' in str(array.type): py_array = array.to_pylist() data_list = [] for vo in py_array: tmp = { 'en': vo['en'], } if 'zh' not in vo: tmp['zh'] = vo['c[hn]'] else: tmp['zh'] = vo['zh'] data_list.append(tmp) array = pa.array(data_list, type=pa.struct([ pa.field('en', pa.string()), pa.field('zh', pa.string()), ])) ``` Therefore, maybe a correct version of original casia2015 file need to be updated
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4575/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4575/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7195
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7195/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7195/comments
https://api.github.com/repos/huggingface/datasets/issues/7195/events
https://github.com/huggingface/datasets/issues/7195
2,564,070,809
I_kwDODunzps6Y1J2Z
7,195
Add support for 3D datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" } ]
null
[ "maybe related: https://github.com/huggingface/datasets/issues/6388", "Also look at https://github.com/huggingface/dataset-viewer/blob/f5fd117ceded990a7766e705bba1203fa907d6ad/services/worker/src/worker/job_runners/dataset/modalities.py#L241 which lists the 3D file formats that will assign the 3D modality to a dataset.", "~~we can brainstorm about the UX maybe (i don't expect we should load all models on the page at once – IMO there should be a manual action from user to load + maybe load first couple of row by default) cc @gary149 @cfahlgren1~~\r\n\r\nit's more for the viewer issue (https://github.com/huggingface/dataset-viewer/issues/1003)" ]
2024-10-03T13:27:44Z
2024-10-04T09:23:36Z
null
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
See https://huggingface.co/datasets/allenai/objaverse for example
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7195/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7195/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5396/comments
https://api.github.com/repos/huggingface/datasets/issues/5396/events
https://github.com/huggingface/datasets/pull/5396
1,514,002,934
PR_kwDODunzps5GXMhp
5,396
Fix checksum verification
{ "avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4", "events_url": "https://api.github.com/users/daskol/events{/privacy}", "followers_url": "https://api.github.com/users/daskol/followers", "following_url": "https://api.github.com/users/daskol/following{/other_user}", "gists_url": "https://api.github.com/users/daskol/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/daskol", "id": 9336514, "login": "daskol", "node_id": "MDQ6VXNlcjkzMzY1MTQ=", "organizations_url": "https://api.github.com/users/daskol/orgs", "received_events_url": "https://api.github.com/users/daskol/received_events", "repos_url": "https://api.github.com/users/daskol/repos", "site_admin": false, "starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daskol/subscriptions", "type": "User", "url": "https://api.github.com/users/daskol", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! If I'm not mistaken both `expected_checksums[url]` and `recorded_checksums[url]` are dictionaries with keys \"checksum\" and \"num_bytes\". So we need to check whether `expected_checksums[url] != recorded_checksums[url]` (or simply `expected_checksums[url][\"checksum\"] != recorded_checksums[url][\"checksum\"]`)\r\n\r\nBut in your fix you're checking `expected_checksums[url] != recorded_checksums[url]['checksum']`.\r\n\r\nSo I think it's fine to keep this as is", "No, the issue is that there is comparison of sclar value and dictionary.", "Acording to [`DatasetInfo`][1], we need specify a dictionary which maps a URL to a checksum as follows.\r\n\r\n```python\r\nCHECKSUMS = {\r\n URL: 'a5dc6bf63ea088ade6e98594bfa386f45211c38b2a3db3dd11b33bd530f3c481',\r\n}\r\n\r\nclass FancyDataset:\r\n def _info(self):\r\n return DatasetInfo(..., download_checksums=CHECKSUMS)\r\n```\r\n\r\nHowever, `load_dataset` fails with this checksum definition.\r\n\r\n[1]: https://github.com/huggingface/datasets/blob/main/src/datasets/info.py#L124-L125", "I think it has to be formatted like this right now. Maybe the DatasetInfo doc is unclear and we can improve it\r\n```python\r\nCHECKSUMS = {\r\n URL: {\"checksum\": checksum, \"num_bytes\": num_bytes},\r\n}\r\n```", "Right. I am not sure that this is a correct way to do it. People usually calculate sha256, md5, or whatever else but not size in bytes. Also, people use only some of checksum algorithms. This means that comparing dictionaries in `verify_checksums` is too strict (requires equality of all items) and raises compatibility issues in the future. Another issue is that a comparison of dictionaries assumes type constraints which imply type equality. \r\n\r\nSince almost noone uses checksums as far as I known, my PR suggests a minimal change to mitigate these issues except support of a specific checksum algorithm which is a separated feature and should be contributed in a separate PRs from my perspective.", "Applying this change will break the verification code, since the `expected_checksums` is a dict with those two keys.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5396). All of your documentation changes will be reflected on that endpoint." ]
2022-12-29T19:45:17Z
2023-02-13T11:11:22Z
2023-02-13T11:11:22Z
CONTRIBUTOR
null
null
null
Expected checksum was verified against checksum dict (not checksum).
{ "avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4", "events_url": "https://api.github.com/users/daskol/events{/privacy}", "followers_url": "https://api.github.com/users/daskol/followers", "following_url": "https://api.github.com/users/daskol/following{/other_user}", "gists_url": "https://api.github.com/users/daskol/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/daskol", "id": 9336514, "login": "daskol", "node_id": "MDQ6VXNlcjkzMzY1MTQ=", "organizations_url": "https://api.github.com/users/daskol/orgs", "received_events_url": "https://api.github.com/users/daskol/received_events", "repos_url": "https://api.github.com/users/daskol/repos", "site_admin": false, "starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daskol/subscriptions", "type": "User", "url": "https://api.github.com/users/daskol", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5396/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5396/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5396.diff", "html_url": "https://github.com/huggingface/datasets/pull/5396", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5396.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5396" }
https://api.github.com/repos/huggingface/datasets/issues/5538
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5538/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5538/comments
https://api.github.com/repos/huggingface/datasets/issues/5538/events
https://github.com/huggingface/datasets/issues/5538
1,587,732,596
I_kwDODunzps5eouB0
5,538
load_dataset in seaborn is not working for me. getting this error.
{ "avatar_url": "https://avatars.githubusercontent.com/u/125575109?v=4", "events_url": "https://api.github.com/users/reemaranibarik/events{/privacy}", "followers_url": "https://api.github.com/users/reemaranibarik/followers", "following_url": "https://api.github.com/users/reemaranibarik/following{/other_user}", "gists_url": "https://api.github.com/users/reemaranibarik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/reemaranibarik", "id": 125575109, "login": "reemaranibarik", "node_id": "U_kgDOB3wfxQ", "organizations_url": "https://api.github.com/users/reemaranibarik/orgs", "received_events_url": "https://api.github.com/users/reemaranibarik/received_events", "repos_url": "https://api.github.com/users/reemaranibarik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/reemaranibarik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/reemaranibarik/subscriptions", "type": "User", "url": "https://api.github.com/users/reemaranibarik", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! `seaborn`'s `load_dataset` pulls datasets from [here](https://github.com/mwaskom/seaborn-data) and not from our Hub, so this issue is not related to our library in any way and should be reported in their repo instead." ]
2023-02-16T14:01:58Z
2023-02-16T14:44:36Z
2023-02-16T14:44:36Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
TimeoutError Traceback (most recent call last) ~\anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args) 1345 try: -> 1346 h.request(req.get_method(), req.selector, req.data, headers, 1347 encode_chunked=req.has_header('Transfer-encoding')) ~\anaconda3\lib\http\client.py in request(self, method, url, body, headers, encode_chunked) 1278 """Send a complete request to the server.""" -> 1279 self._send_request(method, url, body, headers, encode_chunked) 1280 ~\anaconda3\lib\http\client.py in _send_request(self, method, url, body, headers, encode_chunked) 1324 body = _encode(body, 'body') -> 1325 self.endheaders(body, encode_chunked=encode_chunked) 1326 ~\anaconda3\lib\http\client.py in endheaders(self, message_body, encode_chunked) 1273 raise CannotSendHeader() -> 1274 self._send_output(message_body, encode_chunked=encode_chunked) 1275 ~\anaconda3\lib\http\client.py in _send_output(self, message_body, encode_chunked) 1033 del self._buffer[:] -> 1034 self.send(msg) 1035 ~\anaconda3\lib\http\client.py in send(self, data) 973 if self.auto_open: --> 974 self.connect() 975 else: ~\anaconda3\lib\http\client.py in connect(self) 1440 -> 1441 super().connect() 1442 ~\anaconda3\lib\http\client.py in connect(self) 944 """Connect to the host and port specified in __init__.""" --> 945 self.sock = self._create_connection( 946 (self.host,self.port), self.timeout, self.source_address) ~\anaconda3\lib\socket.py in create_connection(address, timeout, source_address) 843 try: --> 844 raise err 845 finally: ~\anaconda3\lib\socket.py in create_connection(address, timeout, source_address) 831 sock.bind(source_address) --> 832 sock.connect(sa) 833 # Break explicitly a reference cycle TimeoutError: [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond During handling of the above exception, another exception occurred: URLError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_12220/2927704185.py in <module> 1 import seaborn as sn ----> 2 iris = sn.load_dataset('iris') ~\anaconda3\lib\site-packages\seaborn\utils.py in load_dataset(name, cache, data_home, **kws) 594 if name not in get_dataset_names(): 595 raise ValueError(f"'{name}' is not one of the example datasets.") --> 596 urlretrieve(url, cache_path) 597 full_path = cache_path 598 else: ~\anaconda3\lib\urllib\request.py in urlretrieve(url, filename, reporthook, data) 237 url_type, path = _splittype(url) 238 --> 239 with contextlib.closing(urlopen(url, data)) as fp: 240 headers = fp.info() 241 ~\anaconda3\lib\urllib\request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context) 212 else: 213 opener = _opener --> 214 return opener.open(url, data, timeout) 215 216 def install_opener(opener): ~\anaconda3\lib\urllib\request.py in open(self, fullurl, data, timeout) 515 516 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method()) --> 517 response = self._open(req, data) 518 519 # post-process response ~\anaconda3\lib\urllib\request.py in _open(self, req, data) 532 533 protocol = req.type --> 534 result = self._call_chain(self.handle_open, protocol, protocol + 535 '_open', req) 536 if result: ~\anaconda3\lib\urllib\request.py in _call_chain(self, chain, kind, meth_name, *args) 492 for handler in handlers: 493 func = getattr(handler, meth_name) --> 494 result = func(*args) 495 if result is not None: 496 return result ~\anaconda3\lib\urllib\request.py in https_open(self, req) 1387 1388 def https_open(self, req): -> 1389 return self.do_open(http.client.HTTPSConnection, req, 1390 context=self._context, check_hostname=self._check_hostname) 1391 ~\anaconda3\lib\urllib\request.py in do_open(self, http_class, req, **http_conn_args) 1347 encode_chunked=req.has_header('Transfer-encoding')) 1348 except OSError as err: # timeout error -> 1349 raise URLError(err) 1350 r = h.getresponse() 1351 except: URLError: <urlopen error [WinError 10060] A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond>
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5538/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5538/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4819
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4819/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4819/comments
https://api.github.com/repos/huggingface/datasets/issues/4819/events
https://github.com/huggingface/datasets/pull/4819
1,335,064,449
PR_kwDODunzps48-xc6
4,819
Add missing language tags to resources
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-10T19:06:42Z
2022-08-10T19:45:49Z
2022-08-10T19:32:15Z
MEMBER
null
null
null
Add missing language tags to resources, required by existing datasets on GitHub.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4819/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4819/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4819.diff", "html_url": "https://github.com/huggingface/datasets/pull/4819", "merged_at": "2022-08-10T19:32:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/4819.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4819" }
https://api.github.com/repos/huggingface/datasets/issues/6384
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6384/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6384/comments
https://api.github.com/repos/huggingface/datasets/issues/6384/events
https://github.com/huggingface/datasets/issues/6384
1,979,117,069
I_kwDODunzps519u4N
6,384
Load the local dataset folder from other place
{ "avatar_url": "https://avatars.githubusercontent.com/u/54439582?v=4", "events_url": "https://api.github.com/users/OrangeSodahub/events{/privacy}", "followers_url": "https://api.github.com/users/OrangeSodahub/followers", "following_url": "https://api.github.com/users/OrangeSodahub/following{/other_user}", "gists_url": "https://api.github.com/users/OrangeSodahub/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/OrangeSodahub", "id": 54439582, "login": "OrangeSodahub", "node_id": "MDQ6VXNlcjU0NDM5NTgy", "organizations_url": "https://api.github.com/users/OrangeSodahub/orgs", "received_events_url": "https://api.github.com/users/OrangeSodahub/received_events", "repos_url": "https://api.github.com/users/OrangeSodahub/repos", "site_admin": false, "starred_url": "https://api.github.com/users/OrangeSodahub/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/OrangeSodahub/subscriptions", "type": "User", "url": "https://api.github.com/users/OrangeSodahub", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Solved" ]
2023-11-06T13:07:04Z
2023-11-19T05:42:06Z
2023-11-19T05:42:05Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
This is from https://github.com/huggingface/diffusers/issues/5573
{ "avatar_url": "https://avatars.githubusercontent.com/u/54439582?v=4", "events_url": "https://api.github.com/users/OrangeSodahub/events{/privacy}", "followers_url": "https://api.github.com/users/OrangeSodahub/followers", "following_url": "https://api.github.com/users/OrangeSodahub/following{/other_user}", "gists_url": "https://api.github.com/users/OrangeSodahub/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/OrangeSodahub", "id": 54439582, "login": "OrangeSodahub", "node_id": "MDQ6VXNlcjU0NDM5NTgy", "organizations_url": "https://api.github.com/users/OrangeSodahub/orgs", "received_events_url": "https://api.github.com/users/OrangeSodahub/received_events", "repos_url": "https://api.github.com/users/OrangeSodahub/repos", "site_admin": false, "starred_url": "https://api.github.com/users/OrangeSodahub/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/OrangeSodahub/subscriptions", "type": "User", "url": "https://api.github.com/users/OrangeSodahub", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6384/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6384/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6210
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6210/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6210/comments
https://api.github.com/repos/huggingface/datasets/issues/6210/events
https://github.com/huggingface/datasets/pull/6210
1,879,649,731
PR_kwDODunzps5Zc4JF
6,210
Temporarily pin fsspec < 2023.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006494 / 0.011353 (-0.004859) | 0.003896 / 0.011008 (-0.007112) | 0.083940 / 0.038508 (0.045432) | 0.068335 / 0.023109 (0.045225) | 0.365770 / 0.275898 (0.089872) | 0.403702 / 0.323480 (0.080222) | 0.004005 / 0.007986 (-0.003981) | 0.003276 / 0.004328 (-0.001052) | 0.064877 / 0.004250 (0.060626) | 0.053524 / 0.037052 (0.016472) | 0.372951 / 0.258489 (0.114462) | 0.420935 / 0.293841 (0.127094) | 0.030656 / 0.128546 (-0.097890) | 0.009048 / 0.075646 (-0.066599) | 0.287607 / 0.419271 (-0.131665) | 0.052042 / 0.043533 (0.008509) | 0.371446 / 0.255139 (0.116307) | 0.408781 / 0.283200 (0.125581) | 0.024228 / 0.141683 (-0.117455) | 1.483325 / 1.452155 (0.031170) | 1.544321 / 1.492716 (0.051605) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212355 / 0.018006 (0.194349) | 0.463298 / 0.000490 (0.462808) | 0.005170 / 0.000200 (0.004970) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027824 / 0.037411 (-0.009587) | 0.081880 / 0.014526 (0.067354) | 0.094886 / 0.176557 (-0.081670) | 0.150024 / 0.737135 (-0.587111) | 0.096643 / 0.296338 (-0.199696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388521 / 0.215209 (0.173312) | 3.877251 / 2.077655 (1.799596) | 1.931085 / 1.504120 (0.426965) | 1.766525 / 1.541195 (0.225330) | 1.814802 / 1.468490 (0.346312) | 0.489478 / 4.584777 (-4.095299) | 3.570973 / 3.745712 (-0.174739) | 3.190211 / 5.269862 (-2.079651) | 2.015670 / 4.565676 (-2.550006) | 0.057773 / 0.424275 (-0.366503) | 0.007611 / 0.007607 (0.000004) | 0.462162 / 0.226044 (0.236117) | 4.616173 / 2.268929 (2.347244) | 2.360531 / 55.444624 (-53.084094) | 2.053680 / 6.876477 (-4.822797) | 2.228057 / 2.142072 (0.085985) | 0.584921 / 4.805227 (-4.220306) | 0.132470 / 6.500664 (-6.368194) | 0.060482 / 0.075469 (-0.014987) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263393 / 1.841788 (-0.578394) | 19.416841 / 8.074308 (11.342532) | 14.049032 / 10.191392 (3.857640) | 0.162822 / 0.680424 (-0.517602) | 0.018189 / 0.534201 (-0.516012) | 0.391142 / 0.579283 (-0.188141) | 0.409367 / 0.434364 (-0.024997) | 0.454589 / 0.540337 (-0.085748) | 0.632946 / 1.386936 (-0.753990) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006568 / 0.011353 (-0.004785) | 0.004026 / 0.011008 (-0.006982) | 0.064522 / 0.038508 (0.026014) | 0.071738 / 0.023109 (0.048629) | 0.395771 / 0.275898 (0.119873) | 0.421553 / 0.323480 (0.098073) | 0.005291 / 0.007986 (-0.002694) | 0.003266 / 0.004328 (-0.001063) | 0.064464 / 0.004250 (0.060214) | 0.054622 / 0.037052 (0.017569) | 0.395010 / 0.258489 (0.136521) | 0.433895 / 0.293841 (0.140054) | 0.031670 / 0.128546 (-0.096876) | 0.008536 / 0.075646 (-0.067111) | 0.071059 / 0.419271 (-0.348212) | 0.047117 / 0.043533 (0.003584) | 0.391210 / 0.255139 (0.136071) | 0.411685 / 0.283200 (0.128486) | 0.022779 / 0.141683 (-0.118904) | 1.479900 / 1.452155 (0.027746) | 1.551853 / 1.492716 (0.059137) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.332814 / 0.018006 (0.314807) | 0.460654 / 0.000490 (0.460164) | 0.062257 / 0.000200 (0.062057) | 0.000374 / 0.000054 (0.000319) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031801 / 0.037411 (-0.005610) | 0.090730 / 0.014526 (0.076204) | 0.102955 / 0.176557 (-0.073602) | 0.155928 / 0.737135 (-0.581207) | 0.103028 / 0.296338 (-0.193310) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434460 / 0.215209 (0.219251) | 4.331550 / 2.077655 (2.253895) | 2.335990 / 1.504120 (0.831870) | 2.183985 / 1.541195 (0.642790) | 2.233086 / 1.468490 (0.764595) | 0.488484 / 4.584777 (-4.096293) | 3.603856 / 3.745712 (-0.141856) | 3.229833 / 5.269862 (-2.040029) | 2.007366 / 4.565676 (-2.558311) | 0.057658 / 0.424275 (-0.366617) | 0.007339 / 0.007607 (-0.000268) | 0.512812 / 0.226044 (0.286768) | 5.141497 / 2.268929 (2.872569) | 2.847383 / 55.444624 (-52.597241) | 2.467010 / 6.876477 (-4.409467) | 2.644995 / 2.142072 (0.502923) | 0.581385 / 4.805227 (-4.223842) | 0.130755 / 6.500664 (-6.369909) | 0.058834 / 0.075469 (-0.016635) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350162 / 1.841788 (-0.491626) | 19.768412 / 8.074308 (11.694104) | 15.079196 / 10.191392 (4.887804) | 0.167083 / 0.680424 (-0.513341) | 0.020372 / 0.534201 (-0.513829) | 0.402685 / 0.579283 (-0.176598) | 0.408338 / 0.434364 (-0.026026) | 0.476788 / 0.540337 (-0.063550) | 0.654765 / 1.386936 (-0.732171) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ff803c7e9f256c5a137c25c090e18d844f9fc6e4 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008047 / 0.011353 (-0.003305) | 0.004662 / 0.011008 (-0.006346) | 0.102487 / 0.038508 (0.063978) | 0.096832 / 0.023109 (0.073723) | 0.375298 / 0.275898 (0.099400) | 0.420604 / 0.323480 (0.097124) | 0.004655 / 0.007986 (-0.003330) | 0.005699 / 0.004328 (0.001370) | 0.077681 / 0.004250 (0.073430) | 0.065987 / 0.037052 (0.028935) | 0.393146 / 0.258489 (0.134657) | 0.436324 / 0.293841 (0.142483) | 0.036168 / 0.128546 (-0.092378) | 0.010398 / 0.075646 (-0.065248) | 0.347579 / 0.419271 (-0.071693) | 0.061723 / 0.043533 (0.018190) | 0.377439 / 0.255139 (0.122300) | 0.416666 / 0.283200 (0.133467) | 0.031874 / 0.141683 (-0.109809) | 1.818885 / 1.452155 (0.366730) | 1.904749 / 1.492716 (0.412032) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240497 / 0.018006 (0.222491) | 0.507907 / 0.000490 (0.507417) | 0.004574 / 0.000200 (0.004374) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033504 / 0.037411 (-0.003907) | 0.102919 / 0.014526 (0.088393) | 0.113014 / 0.176557 (-0.063543) | 0.181111 / 0.737135 (-0.556024) | 0.115047 / 0.296338 (-0.181291) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453640 / 0.215209 (0.238431) | 4.514604 / 2.077655 (2.436949) | 2.219758 / 1.504120 (0.715638) | 2.004735 / 1.541195 (0.463541) | 2.112817 / 1.468490 (0.644327) | 0.579534 / 4.584777 (-4.005243) | 4.095994 / 3.745712 (0.350282) | 3.887204 / 5.269862 (-1.382658) | 2.461755 / 4.565676 (-2.103921) | 0.068930 / 0.424275 (-0.355345) | 0.009102 / 0.007607 (0.001495) | 0.540031 / 0.226044 (0.313987) | 5.394324 / 2.268929 (3.125396) | 2.738906 / 55.444624 (-52.705719) | 2.332041 / 6.876477 (-4.544436) | 2.600764 / 2.142072 (0.458692) | 0.697859 / 4.805227 (-4.107368) | 0.159247 / 6.500664 (-6.341417) | 0.073339 / 0.075469 (-0.002130) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561082 / 1.841788 (-0.280706) | 23.581031 / 8.074308 (15.506723) | 17.011085 / 10.191392 (6.819693) | 0.196115 / 0.680424 (-0.484308) | 0.022050 / 0.534201 (-0.512151) | 0.470865 / 0.579283 (-0.108418) | 0.480539 / 0.434364 (0.046175) | 0.546458 / 0.540337 (0.006120) | 0.744353 / 1.386936 (-0.642583) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007884 / 0.011353 (-0.003468) | 0.004723 / 0.011008 (-0.006286) | 0.076431 / 0.038508 (0.037923) | 0.087016 / 0.023109 (0.063907) | 0.501880 / 0.275898 (0.225982) | 0.546286 / 0.323480 (0.222806) | 0.006224 / 0.007986 (-0.001762) | 0.003858 / 0.004328 (-0.000471) | 0.076485 / 0.004250 (0.072234) | 0.066758 / 0.037052 (0.029706) | 0.510090 / 0.258489 (0.251601) | 0.553935 / 0.293841 (0.260094) | 0.037785 / 0.128546 (-0.090761) | 0.009946 / 0.075646 (-0.065700) | 0.084001 / 0.419271 (-0.335270) | 0.056732 / 0.043533 (0.013199) | 0.490724 / 0.255139 (0.235585) | 0.528367 / 0.283200 (0.245168) | 0.026082 / 0.141683 (-0.115601) | 1.769200 / 1.452155 (0.317045) | 1.847559 / 1.492716 (0.354843) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306752 / 0.018006 (0.288745) | 0.481215 / 0.000490 (0.480725) | 0.048231 / 0.000200 (0.048031) | 0.000249 / 0.000054 (0.000194) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039517 / 0.037411 (0.002106) | 0.112884 / 0.014526 (0.098359) | 0.123858 / 0.176557 (-0.052698) | 0.188260 / 0.737135 (-0.548875) | 0.125819 / 0.296338 (-0.170520) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515260 / 0.215209 (0.300051) | 5.125038 / 2.077655 (3.047383) | 2.785122 / 1.504120 (1.281003) | 2.590753 / 1.541195 (1.049558) | 2.682084 / 1.468490 (1.213594) | 0.581162 / 4.584777 (-4.003615) | 4.241776 / 3.745712 (0.496063) | 3.860979 / 5.269862 (-1.408883) | 2.434203 / 4.565676 (-2.131473) | 0.068580 / 0.424275 (-0.355695) | 0.008700 / 0.007607 (0.001093) | 0.604712 / 0.226044 (0.378667) | 6.044240 / 2.268929 (3.775311) | 3.379734 / 55.444624 (-52.064890) | 2.968906 / 6.876477 (-3.907571) | 3.195775 / 2.142072 (1.053703) | 0.702431 / 4.805227 (-4.102796) | 0.158752 / 6.500664 (-6.341912) | 0.072795 / 0.075469 (-0.002674) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.616354 / 1.841788 (-0.225434) | 24.258731 / 8.074308 (16.184423) | 17.505483 / 10.191392 (7.314091) | 0.173445 / 0.680424 (-0.506979) | 0.023215 / 0.534201 (-0.510986) | 0.472975 / 0.579283 (-0.106308) | 0.478425 / 0.434364 (0.044061) | 0.566950 / 0.540337 (0.026612) | 0.767648 / 1.386936 (-0.619288) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a1d520a5226268f2c6f0303de3e8bfd72198b082 \"CML watermark\")\n" ]
2023-09-04T07:07:07Z
2023-09-04T07:40:23Z
2023-09-04T07:30:00Z
MEMBER
null
null
null
Temporarily pin fsspec < 2023.9.0 until permanent solution is found. Hot fix #6209.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6210/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6210/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6210.diff", "html_url": "https://github.com/huggingface/datasets/pull/6210", "merged_at": "2023-09-04T07:30:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/6210.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6210" }
https://api.github.com/repos/huggingface/datasets/issues/7471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7471/comments
https://api.github.com/repos/huggingface/datasets/issues/7471/events
https://github.com/huggingface/datasets/issues/7471
2,937,530,069
I_kwDODunzps6vFybV
7,471
Adding argument to `_get_data_files_patterns`
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi ! The pattern can be specified in advance in YAML in the README.md of the dataset :)\n\nFor example\n\n```\n---\nconfigs:\n- config_name: default\n data_files:\n - split: train\n path: \"train/*\"\n - split: test\n path: \"test/*\"\n---\n```\n\nSee the docs at https://huggingface.co/docs/hub/en/datasets-manual-configuration", "@lhoestq How can we choose in this case ? https://huggingface.co/datasets/datasets-examples/doc-image-5\n", "choose what ? sorry I didn't get it ^^'" ]
2025-03-21T07:17:53Z
2025-03-27T12:30:52Z
2025-03-26T07:26:27Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request How about adding if the user already know about the pattern? https://github.com/huggingface/datasets/blob/a256b85cbc67aa3f0e75d32d6586afc507cf535b/src/datasets/data_files.py#L252 ### Motivation While using this load_dataset people might use 10M of images for the local files. However, due to searching all the appropriate file pattern in fsspec, purely searching this pattern takes more than 10 hours (real use-case). ### Your contribution Yeah I can make this happen if this seems valid. @lhoestq WDYT? such like ``` def _get_data_files_patterns(pattern_resolver: Callable[[str], list[str]], patterns: PATTERNS) -> dict[str, list[str]]: ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7471/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4853
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4853/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4853/comments
https://api.github.com/repos/huggingface/datasets/issues/4853/events
https://github.com/huggingface/datasets/pull/4853
1,339,456,490
PR_kwDODunzps49NFNL
4,853
Fix bug and checksums in exams dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-15T20:17:57Z
2022-08-16T06:43:57Z
2022-08-16T06:29:06Z
MEMBER
null
null
null
Fix #4852.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4853/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4853/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4853.diff", "html_url": "https://github.com/huggingface/datasets/pull/4853", "merged_at": "2022-08-16T06:29:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/4853.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4853" }
https://api.github.com/repos/huggingface/datasets/issues/5361
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5361/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5361/comments
https://api.github.com/repos/huggingface/datasets/issues/5361/events
https://github.com/huggingface/datasets/issues/5361
1,497,153,889
I_kwDODunzps5ZPMFh
5,361
How concatenate `Audio` elements using batch mapping
{ "avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4", "events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}", "followers_url": "https://api.github.com/users/bayartsogt-ya/followers", "following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}", "gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bayartsogt-ya", "id": 43239645, "login": "bayartsogt-ya", "node_id": "MDQ6VXNlcjQzMjM5NjQ1", "organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs", "received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events", "repos_url": "https://api.github.com/users/bayartsogt-ya/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions", "type": "User", "url": "https://api.github.com/users/bayartsogt-ya", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can try something like this ?\r\n```python\r\ndef mapper_function(batch):\r\n return {\"concatenated_audio\": [np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]])]}\r\n\r\ndataset = dataset.map(\r\n mapper_function,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n```", "Thanks for the snippet!\r\n\r\nOne more question. I wonder why those two mappers are working so different that one taking 4 sec while other taking over 1 min :\r\n\r\n```python\r\n%%time\r\ndef mapper_function1(batch):\r\n # list_audio\r\n return {\r\n \"audio\": [\r\n {\r\n \"array\": np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]]),\r\n \"sampling_rate\": 16_000,\r\n }\r\n ]\r\n }\r\n\r\ndataset.map(\r\n mapper_function1,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n\r\n# 100%\r\n# 135/135 [01:13<00:00, 1.93ba/s]\r\n# CPU times: user 1min 10s, sys: 3.21 s, total: 1min 13s\r\n# Wall time: 1min 13s\r\n# Dataset({\r\n# features: ['audio'],\r\n# num_rows: 135\r\n# })\r\n\r\n# --------------------------------\r\n%%time\r\ndef mapper_function2(batch):\r\n # list_audio\r\n return {\"audio\": [np.concatenate([audio[\"array\"] for audio in batch[\"audio\"]])]}\r\n\r\ndataset.map(\r\n mapper_function2,\r\n batched=True,\r\n batch_size=3,\r\n remove_columns=list(dataset.features),\r\n)\r\n\r\n# 100%\r\n# 135/135 [00:03<00:00, 40.69ba/s]\r\n# CPU times: user 1.88 s, sys: 1.48 s, total: 3.36 s\r\n# Wall time: 4.8 s\r\n# Dataset({\r\n# features: ['audio'],\r\n# num_rows: 135\r\n# })\r\n```\r\n", "In the first one you get a dataset with an Audio type, and in the second one you get a dataset with a sequence of floats type.\r\n\r\nThe Audio type encodes the data as WAV to save disk space, so it takes more time to create.\r\nThe Audio type is automatically inferred because you modify the column \"audio\" which was already an Audio type. If you name it to something else, type inference will use a type struct with array and sampling rate fields." ]
2022-12-14T18:13:55Z
2023-07-21T14:30:51Z
2023-07-21T14:30:51Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am trying to do concatenate audios in a dataset e.g. `google/fleurs`. ```python print(dataset) # Dataset({ # features: ['path', 'audio'], # num_rows: 24 # }) def mapper_function(batch): # to merge every 3 audio # np.concatnate(audios[i: i+3]) for i in range(i, len(batch), 3) dataset = dataset.map(mapper_function, batch=True, batch_size=24) print(dataset) # Expected output: # Dataset({ # features: ['path', 'audio'], # num_rows: 8 # }) ``` I tried to construct `result={}` dictionary inside the mapper function, I just found it will not work because it needs `byte` also needed :(( I'd appreciate if your share any use cases similar to my problem or any solutions really. Thanks! cc: @lhoestq ### Steps to reproduce the bug 1. load audio dataset 2. try to merge every k audios and return as one ### Expected behavior Merged dataset with a fewer rows. If we merge every 3 rows, then `n // 3` number of examples. ### Environment info - `datasets` version: 2.1.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5361/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5361/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5953
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5953/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5953/comments
https://api.github.com/repos/huggingface/datasets/issues/5953/events
https://github.com/huggingface/datasets/issues/5953
1,756,520,523
I_kwDODunzps5osmBL
5,953
Bad error message when trying to download gated dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "cc @sanchit-gandhi @Vaibhavs10 @lhoestq - this is mainly for demos that use Common Voice datasets as done here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms#-transformers\r\n", "Hi ! the error for me is\r\n\r\n```\r\nFileNotFoundError: Couldn't find a dataset script at /content/mozilla-foundation/common_voice_13_0/common_voice_13_0.py or any data file in the same directory. Couldn't find 'mozilla-foundation/common_voice_13_0' on the Hugging Face Hub either: FileNotFoundError: Dataset 'mozilla-foundation/common_voice_13_0' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```\r\n\r\nAnd tbh idk how you managed to get your error. \"n_shards.json\" is not even a thing in `datasets`", "Okay, I am able to reproduce @patrickvonplaten's original error: https://github.com/Vaibhavs10/scratchpad/blob/main/cv13_datasets_test.ipynb\r\n\r\nAlso not sure why it looks for `n_shards.json`", "Ok I see, this file is downloaded from the CV dataset script - let me investigate", "Ok I see: when you log out you no longer have access to the repository.\r\n\r\nTherefore the dataset script is loaded from cache:\r\n```\r\nWARNING:datasets.load:Using the latest cached version of the module from /root/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_13_0/22809012aac1fc9803eaffc44122e4149043748e93933935d5ea19898587e4d7 (last modified on Wed Jun 14 10:13:17 2023) since it couldn't be found locally at mozilla-foundation/common_voice_13_0., or remotely on the Hugging Face Hub.\r\n```\r\n\r\nand the script tries to download the n_shards.json but fails", "Is this ok for you https://github.com/huggingface/datasets/pull/5954 ?\r\n\r\nI'll do a release this afternoon", "Cool! ", "this is included in the new release 2.13.0" ]
2023-06-14T10:03:39Z
2023-06-14T16:36:51Z
2023-06-14T12:26:32Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When I attempt to download a model from the Hub that is gated without being logged in, I get a nice error message. E.g.: E.g. ```sh Repository Not Found for url: https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. Invalid username or password.. Will try to load from local cache. ``` If I do the same for a gated dataset on the Hub, I'm not gated a nice error message IMO: ```sh File ~/hf/lib/python3.10/site-packages/fsspec/implementations/http.py:430, in HTTPFileSystem._info(self, url, **kwargs) 427 except Exception as exc: 428 if policy == "get": 429 # If get failed, then raise a FileNotFoundError --> 430 raise FileNotFoundError(url) from exc 431 logger.debug(str(exc)) 433 return {"name": url, "size": None, **info, "type": "file"} FileNotFoundError: https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0/resolve/main/n_shards.json ``` ### Steps to reproduce the bug ``` huggingface-cli logout ``` and then: ```py from datasets import load_dataset, Audio # English stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) en_sample = next(iter(stream_data))["audio"]["array"] # Swahili stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "sw", split="test", streaming=True) stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000)) sw_sample = next(iter(stream_data))["audio"]["array"] ``` ### Expected behavior Better error message ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.12.0 - Platform: Linux-6.2.0-76060200-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.16.0.dev0 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5953/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5953/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6405/comments
https://api.github.com/repos/huggingface/datasets/issues/6405/events
https://github.com/huggingface/datasets/issues/6405
1,990,358,743
I_kwDODunzps52onbX
6,405
ConfigNamesError on a simple CSV file
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "The viewer is working now. \r\n\r\nBased on the repo commit history, the bug was due to the incorrect format of the `features` field in the README YAML (`Value` requires `dtype`, e.g., `Value(\"string\")`, but it was not specified)", "Feel free to close the issue", "Oh, OK! Thanks. So, there was no reason to open an issue" ]
2023-11-13T10:28:29Z
2023-11-13T20:01:24Z
2023-11-13T20:01:24Z
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
See https://huggingface.co/datasets/Nguyendo1999/mmath/discussions/1 ``` Error code: ConfigNamesError Exception: TypeError Message: __init__() missing 1 required positional argument: 'dtype' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 65, in compute_config_names_response for config in sorted(get_dataset_config_names(path=dataset, token=hf_token)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 351, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1512, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1489, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1039, in get_module dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 468, in from_dataset_card_data dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 399, in _from_yaml_dict yaml_data["features"] = Features._from_yaml_list(yaml_data["features"]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1838, in _from_yaml_list return cls.from_dict(from_yaml_inner(yaml_data)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1690, in from_dict obj = generate_from_dict(dic) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1345, in generate_from_dict return {key: generate_from_dict(value) for key, value in obj.items()} File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1345, in <dictcomp> return {key: generate_from_dict(value) for key, value in obj.items()} File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1353, in generate_from_dict return class_type(**{k: v for k, v in obj.items() if k in field_names}) TypeError: __init__() missing 1 required positional argument: 'dtype' ``` This is the CSV file: https://huggingface.co/datasets/Nguyendo1999/mmath/blob/dbcdd7c2c6fc447f852ec136a7532292802bb46f/math_train.csv
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6405/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6405/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6520
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6520/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6520/comments
https://api.github.com/repos/huggingface/datasets/issues/6520/events
https://github.com/huggingface/datasets/pull/6520
2,052,059,078
PR_kwDODunzps5ijUiw
6,520
Support commit_description parameter in push_to_hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6520). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005484 / 0.011353 (-0.005869) | 0.003537 / 0.011008 (-0.007471) | 0.062631 / 0.038508 (0.024123) | 0.048037 / 0.023109 (0.024927) | 0.240342 / 0.275898 (-0.035556) | 0.268103 / 0.323480 (-0.055377) | 0.002927 / 0.007986 (-0.005059) | 0.002609 / 0.004328 (-0.001719) | 0.048112 / 0.004250 (0.043862) | 0.046111 / 0.037052 (0.009058) | 0.249249 / 0.258489 (-0.009240) | 0.277723 / 0.293841 (-0.016118) | 0.028374 / 0.128546 (-0.100172) | 0.010900 / 0.075646 (-0.064746) | 0.206252 / 0.419271 (-0.213019) | 0.035262 / 0.043533 (-0.008271) | 0.247438 / 0.255139 (-0.007701) | 0.270003 / 0.283200 (-0.013197) | 0.019157 / 0.141683 (-0.122526) | 1.116833 / 1.452155 (-0.335322) | 1.174495 / 1.492716 (-0.318221) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092490 / 0.018006 (0.074484) | 0.302794 / 0.000490 (0.302304) | 0.000213 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018669 / 0.037411 (-0.018743) | 0.061902 / 0.014526 (0.047376) | 0.073612 / 0.176557 (-0.102945) | 0.121196 / 0.737135 (-0.615940) | 0.075960 / 0.296338 (-0.220378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286983 / 0.215209 (0.071774) | 2.836819 / 2.077655 (0.759165) | 1.506635 / 1.504120 (0.002515) | 1.387134 / 1.541195 (-0.154061) | 1.442310 / 1.468490 (-0.026180) | 0.571281 / 4.584777 (-4.013496) | 2.440220 / 3.745712 (-1.305492) | 2.775306 / 5.269862 (-2.494555) | 1.727047 / 4.565676 (-2.838630) | 0.064955 / 0.424275 (-0.359320) | 0.004982 / 0.007607 (-0.002625) | 0.343153 / 0.226044 (0.117108) | 3.388745 / 2.268929 (1.119817) | 1.878983 / 55.444624 (-53.565641) | 1.592642 / 6.876477 (-5.283835) | 1.601037 / 2.142072 (-0.541035) | 0.636882 / 4.805227 (-4.168345) | 0.117804 / 6.500664 (-6.382861) | 0.042467 / 0.075469 (-0.033002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941534 / 1.841788 (-0.900254) | 12.093230 / 8.074308 (4.018922) | 10.590854 / 10.191392 (0.399462) | 0.136636 / 0.680424 (-0.543788) | 0.015244 / 0.534201 (-0.518957) | 0.300216 / 0.579283 (-0.279067) | 0.267622 / 0.434364 (-0.166742) | 0.337526 / 0.540337 (-0.202811) | 0.426856 / 1.386936 (-0.960080) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005282 / 0.011353 (-0.006071) | 0.003595 / 0.011008 (-0.007413) | 0.049237 / 0.038508 (0.010729) | 0.054057 / 0.023109 (0.030948) | 0.269781 / 0.275898 (-0.006117) | 0.293544 / 0.323480 (-0.029936) | 0.003991 / 0.007986 (-0.003995) | 0.002705 / 0.004328 (-0.001623) | 0.048755 / 0.004250 (0.044505) | 0.040425 / 0.037052 (0.003373) | 0.264753 / 0.258489 (0.006264) | 0.312773 / 0.293841 (0.018932) | 0.030011 / 0.128546 (-0.098535) | 0.010707 / 0.075646 (-0.064939) | 0.058164 / 0.419271 (-0.361107) | 0.033365 / 0.043533 (-0.010168) | 0.268854 / 0.255139 (0.013715) | 0.283618 / 0.283200 (0.000418) | 0.019571 / 0.141683 (-0.122111) | 1.114738 / 1.452155 (-0.337417) | 1.178990 / 1.492716 (-0.313726) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092183 / 0.018006 (0.074177) | 0.303797 / 0.000490 (0.303307) | 0.000218 / 0.000200 (0.000018) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023088 / 0.037411 (-0.014323) | 0.079813 / 0.014526 (0.065287) | 0.089593 / 0.176557 (-0.086964) | 0.128127 / 0.737135 (-0.609008) | 0.091578 / 0.296338 (-0.204761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300153 / 0.215209 (0.084944) | 2.919532 / 2.077655 (0.841877) | 1.587870 / 1.504120 (0.083750) | 1.459031 / 1.541195 (-0.082164) | 1.483305 / 1.468490 (0.014815) | 0.555865 / 4.584777 (-4.028912) | 2.388350 / 3.745712 (-1.357362) | 2.817947 / 5.269862 (-2.451914) | 1.764446 / 4.565676 (-2.801230) | 0.067142 / 0.424275 (-0.357133) | 0.005148 / 0.007607 (-0.002460) | 0.347998 / 0.226044 (0.121953) | 3.431208 / 2.268929 (1.162280) | 1.942175 / 55.444624 (-53.502450) | 1.676606 / 6.876477 (-5.199871) | 1.692431 / 2.142072 (-0.449641) | 0.645974 / 4.805227 (-4.159253) | 0.117729 / 6.500664 (-6.382935) | 0.041670 / 0.075469 (-0.033799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981554 / 1.841788 (-0.860234) | 12.671959 / 8.074308 (4.597650) | 11.230694 / 10.191392 (1.039302) | 0.132694 / 0.680424 (-0.547730) | 0.015694 / 0.534201 (-0.518507) | 0.290271 / 0.579283 (-0.289013) | 0.279358 / 0.434364 (-0.155006) | 0.326515 / 0.540337 (-0.213823) | 0.421755 / 1.386936 (-0.965181) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0b2147ac644596b66886f398012351641672ee54 \"CML watermark\")\n" ]
2023-12-21T09:36:11Z
2023-12-21T14:49:47Z
2023-12-21T14:43:35Z
MEMBER
null
null
null
Support `commit_description` parameter in `push_to_hub`. CC: @Wauplin
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6520/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6520/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6520.diff", "html_url": "https://github.com/huggingface/datasets/pull/6520", "merged_at": "2023-12-21T14:43:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/6520.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6520" }
https://api.github.com/repos/huggingface/datasets/issues/6368
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6368/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6368/comments
https://api.github.com/repos/huggingface/datasets/issues/6368/events
https://github.com/huggingface/datasets/pull/6368
1,971,193,692
PR_kwDODunzps5eRZwQ
6,368
Fix python formatting for complex types in `format_table`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008047 / 0.011353 (-0.003305) | 0.004649 / 0.011008 (-0.006359) | 0.100275 / 0.038508 (0.061767) | 0.089551 / 0.023109 (0.066442) | 0.369831 / 0.275898 (0.093933) | 0.431023 / 0.323480 (0.107544) | 0.004721 / 0.007986 (-0.003265) | 0.004904 / 0.004328 (0.000575) | 0.076345 / 0.004250 (0.072095) | 0.066902 / 0.037052 (0.029849) | 0.377208 / 0.258489 (0.118718) | 0.430989 / 0.293841 (0.137148) | 0.036260 / 0.128546 (-0.092287) | 0.010158 / 0.075646 (-0.065488) | 0.344923 / 0.419271 (-0.074349) | 0.062504 / 0.043533 (0.018971) | 0.373038 / 0.255139 (0.117899) | 0.399918 / 0.283200 (0.116718) | 0.028257 / 0.141683 (-0.113425) | 1.782546 / 1.452155 (0.330391) | 1.920010 / 1.492716 (0.427293) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277670 / 0.018006 (0.259664) | 0.500543 / 0.000490 (0.500053) | 0.018256 / 0.000200 (0.018056) | 0.000343 / 0.000054 (0.000289) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033337 / 0.037411 (-0.004074) | 0.100542 / 0.014526 (0.086017) | 0.114903 / 0.176557 (-0.061654) | 0.181267 / 0.737135 (-0.555868) | 0.115019 / 0.296338 (-0.181320) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457333 / 0.215209 (0.242124) | 4.542082 / 2.077655 (2.464427) | 2.231817 / 1.504120 (0.727697) | 2.028523 / 1.541195 (0.487328) | 2.110715 / 1.468490 (0.642225) | 0.583162 / 4.584777 (-4.001615) | 4.179413 / 3.745712 (0.433701) | 4.145620 / 5.269862 (-1.124241) | 2.452458 / 4.565676 (-2.113218) | 0.068229 / 0.424275 (-0.356046) | 0.009027 / 0.007607 (0.001420) | 0.549002 / 0.226044 (0.322957) | 5.485707 / 2.268929 (3.216779) | 2.789467 / 55.444624 (-52.655157) | 2.397499 / 6.876477 (-4.478977) | 2.492083 / 2.142072 (0.350010) | 0.692445 / 4.805227 (-4.112782) | 0.160527 / 6.500664 (-6.340137) | 0.071597 / 0.075469 (-0.003872) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.486043 / 1.841788 (-0.355744) | 22.377207 / 8.074308 (14.302899) | 16.443719 / 10.191392 (6.252327) | 0.170740 / 0.680424 (-0.509684) | 0.021511 / 0.534201 (-0.512690) | 0.470798 / 0.579283 (-0.108485) | 0.511851 / 0.434364 (0.077487) | 0.551154 / 0.540337 (0.010817) | 0.768420 / 1.386936 (-0.618516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008049 / 0.011353 (-0.003303) | 0.004676 / 0.011008 (-0.006332) | 0.076360 / 0.038508 (0.037852) | 0.093648 / 0.023109 (0.070539) | 0.480597 / 0.275898 (0.204699) | 0.524674 / 0.323480 (0.201194) | 0.006242 / 0.007986 (-0.001744) | 0.003827 / 0.004328 (-0.000501) | 0.077039 / 0.004250 (0.072788) | 0.067992 / 0.037052 (0.030940) | 0.480287 / 0.258489 (0.221798) | 0.528546 / 0.293841 (0.234706) | 0.038347 / 0.128546 (-0.090199) | 0.010036 / 0.075646 (-0.065611) | 0.084386 / 0.419271 (-0.334885) | 0.057211 / 0.043533 (0.013678) | 0.475993 / 0.255139 (0.220854) | 0.504881 / 0.283200 (0.221682) | 0.026658 / 0.141683 (-0.115025) | 1.777095 / 1.452155 (0.324940) | 1.896446 / 1.492716 (0.403730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242450 / 0.018006 (0.224443) | 0.488864 / 0.000490 (0.488374) | 0.007329 / 0.000200 (0.007129) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039093 / 0.037411 (0.001682) | 0.114724 / 0.014526 (0.100198) | 0.124965 / 0.176557 (-0.051591) | 0.188165 / 0.737135 (-0.548971) | 0.125336 / 0.296338 (-0.171002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515718 / 0.215209 (0.300509) | 5.150865 / 2.077655 (3.073210) | 2.767866 / 1.504120 (1.263746) | 2.571003 / 1.541195 (1.029808) | 2.656224 / 1.468490 (1.187734) | 0.583771 / 4.584777 (-4.001006) | 4.268713 / 3.745712 (0.523001) | 3.938699 / 5.269862 (-1.331163) | 2.413569 / 4.565676 (-2.152108) | 0.068848 / 0.424275 (-0.355427) | 0.008758 / 0.007607 (0.001151) | 0.610831 / 0.226044 (0.384786) | 6.099965 / 2.268929 (3.831037) | 3.337530 / 55.444624 (-52.107095) | 2.910962 / 6.876477 (-3.965514) | 3.149813 / 2.142072 (1.007740) | 0.700576 / 4.805227 (-4.104651) | 0.157569 / 6.500664 (-6.343095) | 0.072237 / 0.075469 (-0.003232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655840 / 1.841788 (-0.185947) | 23.639061 / 8.074308 (15.564753) | 17.301593 / 10.191392 (7.110201) | 0.201717 / 0.680424 (-0.478707) | 0.023836 / 0.534201 (-0.510365) | 0.470941 / 0.579283 (-0.108342) | 0.498157 / 0.434364 (0.063794) | 0.581195 / 0.540337 (0.040857) | 0.788304 / 1.386936 (-0.598632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f657900acfd8ea1afaf47267e552a7ad2c6ef28b \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004823 / 0.011353 (-0.006530) | 0.002976 / 0.011008 (-0.008032) | 0.062070 / 0.038508 (0.023562) | 0.051623 / 0.023109 (0.028513) | 0.242249 / 0.275898 (-0.033649) | 0.271223 / 0.323480 (-0.052257) | 0.003906 / 0.007986 (-0.004079) | 0.002709 / 0.004328 (-0.001620) | 0.047874 / 0.004250 (0.043624) | 0.038123 / 0.037052 (0.001071) | 0.253737 / 0.258489 (-0.004752) | 0.281942 / 0.293841 (-0.011899) | 0.023750 / 0.128546 (-0.104797) | 0.007227 / 0.075646 (-0.068420) | 0.203137 / 0.419271 (-0.216134) | 0.036254 / 0.043533 (-0.007278) | 0.243923 / 0.255139 (-0.011216) | 0.263908 / 0.283200 (-0.019291) | 0.017795 / 0.141683 (-0.123888) | 1.105680 / 1.452155 (-0.346475) | 1.166804 / 1.492716 (-0.325912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097388 / 0.018006 (0.079381) | 0.305481 / 0.000490 (0.304991) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020096 / 0.037411 (-0.017315) | 0.063990 / 0.014526 (0.049464) | 0.073694 / 0.176557 (-0.102863) | 0.122909 / 0.737135 (-0.614227) | 0.076199 / 0.296338 (-0.220140) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285612 / 0.215209 (0.070403) | 2.770524 / 2.077655 (0.692869) | 1.451624 / 1.504120 (-0.052496) | 1.329223 / 1.541195 (-0.211972) | 1.369980 / 1.468490 (-0.098510) | 0.398269 / 4.584777 (-4.186507) | 2.418740 / 3.745712 (-1.326972) | 2.796384 / 5.269862 (-2.473478) | 1.686490 / 4.565676 (-2.879186) | 0.046417 / 0.424275 (-0.377858) | 0.005414 / 0.007607 (-0.002193) | 0.345505 / 0.226044 (0.119460) | 3.391857 / 2.268929 (1.122929) | 1.856696 / 55.444624 (-53.587929) | 1.538061 / 6.876477 (-5.338416) | 1.631489 / 2.142072 (-0.510584) | 0.479188 / 4.805227 (-4.326039) | 0.101549 / 6.500664 (-6.399116) | 0.042150 / 0.075469 (-0.033319) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957961 / 1.841788 (-0.883827) | 12.349371 / 8.074308 (4.275063) | 10.778214 / 10.191392 (0.586822) | 0.141265 / 0.680424 (-0.539158) | 0.014559 / 0.534201 (-0.519642) | 0.272071 / 0.579283 (-0.307212) | 0.262493 / 0.434364 (-0.171871) | 0.310351 / 0.540337 (-0.229986) | 0.399220 / 1.386936 (-0.987716) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005127 / 0.011353 (-0.006226) | 0.002926 / 0.011008 (-0.008082) | 0.048320 / 0.038508 (0.009812) | 0.063082 / 0.023109 (0.039973) | 0.269846 / 0.275898 (-0.006052) | 0.294470 / 0.323480 (-0.029010) | 0.004201 / 0.007986 (-0.003784) | 0.002434 / 0.004328 (-0.001894) | 0.048020 / 0.004250 (0.043770) | 0.043909 / 0.037052 (0.006856) | 0.271328 / 0.258489 (0.012839) | 0.298820 / 0.293841 (0.004979) | 0.024565 / 0.128546 (-0.103981) | 0.007752 / 0.075646 (-0.067894) | 0.054171 / 0.419271 (-0.365101) | 0.033147 / 0.043533 (-0.010386) | 0.266628 / 0.255139 (0.011489) | 0.288651 / 0.283200 (0.005452) | 0.018910 / 0.141683 (-0.122773) | 1.153679 / 1.452155 (-0.298476) | 1.214979 / 1.492716 (-0.277737) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097064 / 0.018006 (0.079057) | 0.307504 / 0.000490 (0.307014) | 0.000230 / 0.000200 (0.000030) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021848 / 0.037411 (-0.015563) | 0.071159 / 0.014526 (0.056633) | 0.081310 / 0.176557 (-0.095247) | 0.120175 / 0.737135 (-0.616961) | 0.082619 / 0.296338 (-0.213720) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296606 / 0.215209 (0.081397) | 2.908495 / 2.077655 (0.830840) | 1.606522 / 1.504120 (0.102402) | 1.528599 / 1.541195 (-0.012596) | 1.508332 / 1.468490 (0.039842) | 0.396336 / 4.584777 (-4.188441) | 2.449163 / 3.745712 (-1.296549) | 2.533372 / 5.269862 (-2.736490) | 1.623061 / 4.565676 (-2.942615) | 0.046723 / 0.424275 (-0.377552) | 0.005120 / 0.007607 (-0.002487) | 0.345763 / 0.226044 (0.119718) | 3.427382 / 2.268929 (1.158454) | 1.962806 / 55.444624 (-53.481819) | 1.678548 / 6.876477 (-5.197929) | 1.865773 / 2.142072 (-0.276300) | 0.477932 / 4.805227 (-4.327295) | 0.100994 / 6.500664 (-6.399670) | 0.042212 / 0.075469 (-0.033258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992766 / 1.841788 (-0.849022) | 12.764885 / 8.074308 (4.690577) | 10.892094 / 10.191392 (0.700702) | 0.143211 / 0.680424 (-0.537213) | 0.016347 / 0.534201 (-0.517853) | 0.270181 / 0.579283 (-0.309102) | 0.278658 / 0.434364 (-0.155706) | 0.307134 / 0.540337 (-0.233203) | 0.396792 / 1.386936 (-0.990144) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6d2f2a5e0fea3827eccfd1717d8021c15fc4292a \"CML watermark\")\n", "Thanks for the fix ! It was probably my mistake (forgot to re-apply the features)" ]
2023-10-31T19:48:08Z
2023-11-02T14:42:28Z
2023-11-02T14:21:16Z
COLLABORATOR
null
null
null
Fix #6366
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6368/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6368/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6368.diff", "html_url": "https://github.com/huggingface/datasets/pull/6368", "merged_at": "2023-11-02T14:21:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/6368.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6368" }
https://api.github.com/repos/huggingface/datasets/issues/5421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5421/comments
https://api.github.com/repos/huggingface/datasets/issues/5421/events
https://github.com/huggingface/datasets/issues/5421
1,532,278,307
I_kwDODunzps5bVLYj
5,421
Support case-insensitive Hub dataset name in load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Closing as case-insensitivity should be only for URL redirection on the Hub. In the APIs, we will only support the canonical name (https://github.com/huggingface/moon-landing/pull/2399#issuecomment-1382085611)" ]
2023-01-13T13:07:07Z
2023-01-13T20:12:32Z
2023-01-13T20:12:32Z
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request The dataset name on the Hub is case-insensitive (see https://github.com/huggingface/moon-landing/pull/2399, internal issue), i.e., https://huggingface.co/datasets/GLUE redirects to https://huggingface.co/datasets/glue. Ideally, we could load the glue dataset using the following: ``` from datasets import load_dataset load_dataset('GLUE', 'cola') ``` It breaks because the loading script `GLUE.py` does not exist (`glue.py` should be selected instead). Minor additional comment: in other cases without a loading script, we can load the dataset, but the automatically generated config name depends on the casing: - `load_dataset('severo/danish-wit')` generates the config name `severo--danish-wit-e6fda5b070deb133`, while - `load_dataset('severo/danish-WIT')` generates the config name `severo--danish-WIT-e6fda5b070deb133` ### Motivation To follow the same UX on the Hub and in the datasets library. ### Your contribution ...
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5421/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5421/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5380
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5380/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5380/comments
https://api.github.com/repos/huggingface/datasets/issues/5380/events
https://github.com/huggingface/datasets/issues/5380
1,504,404,043
I_kwDODunzps5Zq2JL
5,380
Improve dataset `.skip()` speed in streaming mode
{ "avatar_url": "https://avatars.githubusercontent.com/u/173537?v=4", "events_url": "https://api.github.com/users/versae/events{/privacy}", "followers_url": "https://api.github.com/users/versae/followers", "following_url": "https://api.github.com/users/versae/following{/other_user}", "gists_url": "https://api.github.com/users/versae/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/versae", "id": 173537, "login": "versae", "node_id": "MDQ6VXNlcjE3MzUzNw==", "organizations_url": "https://api.github.com/users/versae/orgs", "received_events_url": "https://api.github.com/users/versae/received_events", "repos_url": "https://api.github.com/users/versae/repos", "site_admin": false, "starred_url": "https://api.github.com/users/versae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/versae/subscriptions", "type": "User", "url": "https://api.github.com/users/versae", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues", "id": 3761482852, "name": "good second issue", "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue" } ]
open
false
null
[]
null
[ "Hi! I agree `skip` can be inefficient to use in the current state.\r\n\r\nTo make it fast, we could use \"statistics\" stored in Parquet metadata and read only the chunks needed to form a dataset. \r\n\r\nAnd thanks to the \"datasets-server\" project, which aims to store the Parquet versions of the Hub datasets (only the smaller datasets are covered currently), this solution can also be applied to datasets stored in formats other than Parquet. (cc @severo)", "@mariosasko do the current parquet files created by the datasets-server already have the required \"statistics\"? If not, please open an issue on https://github.com/huggingface/datasets-server with some details to make sure we implement it.", "Yes, nothing has to be changed on the datasets-server side. What I mean by \"statistics\" is that we can use the \"row_group\" metadata embedded in a Parquet file (by default) to fetch the requested rows more efficiently.", "Glad to see the feature could be of interest. \r\n\r\nI'm sure there are many possible ways to implement this feature. I don't know enough about the datasets-server, but I guess that it is not instantaneous, in the sense that user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all), which could be cumbersome. Having optionally that information in the `dataset_infos.json` file would make it easier for users to control the skip process a bit.", "re: statistics:\r\n\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.FileMetaData.html\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.RowGroupMetaData.html\r\n\r\n```python\r\n>>> import pyarrow.parquet as pq\r\n>>> import hffs\r\n>>> fs = hffs.HfFileSystem(\"glue\", repo_type=\"dataset\", revision=\"refs/convert/parquet\")\r\n>>> metadata = pq.read_metadata(\"ax/glue-test.parquet\", filesystem=fs)\r\n>>> metadata\r\n<pyarrow._parquet.FileMetaData object at 0x7f4537cec400>\r\n created_by: parquet-cpp-arrow version 7.0.0\r\n num_columns: 4\r\n num_rows: 1104\r\n num_row_groups: 2\r\n format_version: 1.0\r\n serialized_size: 2902\r\n>>> metadata.row_group(0)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f45564bcbd0>\r\n num_columns: 4\r\n num_rows: 1000\r\n total_byte_size: 164474\r\n>>> metadata.row_group(1)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f455005c400>\r\n num_columns: 4\r\n num_rows: 104\r\n total_byte_size: 13064\r\n```", "> user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all)\r\n\r\nprivate datasets are not supported yet (https://github.com/huggingface/datasets-server/issues/39)", "@versae `Dataset.push_to_hub` writes shards in Parquet, so this solution would also work for such datasets (immediately after the push). ", "@mariosasko that is right. However, there are still a good amount of datasets for which the shards are created manually. In our very specific case, we create medium-sized datasets (rarely over 100-200GB) of both text and audio, we prepare the shards by hand and then upload then. It would be great to have immediate access to this download skipping feature for them too.", "From looking at Arrow's source, it seems Parquet stores metadata at the end, which means one needs to iterate over a Parquet file's data before accessing its metadata. We could mimic Dask to address this \"limitation\" and write metadata in a `_metadata`/`_common_metadata` file in `to_parquet`/`push_to_hub`, which we could then use to optimize reads (if present). Plus, it's handy that PyArrow can also parse these metadata files.", "So if Parquet metadata needs to be in its own file anyway, why not implement this skipping feature by storing the example counts per shard in `dataset_infos.json`? That would allow:\r\n- Support both private and public datasets\r\n- Immediate access to the feature upon uploading of shards\r\n- Use any dataset, not only those uploaded using `.push_to_hub()`\r\n\r\nA proper Parquet metadata file could still be created and \"overwrite\" the `dataset_infos.json` info in the datasets-server." ]
2022-12-20T11:25:23Z
2023-03-08T10:47:12Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add extra information to the `dataset_infos.json` file to include the number of samples/examples in each shard, for example in a new field `num_examples` alongside `num_bytes`. The `.skip()` function could use this information to ignore the download of a shard when in streaming mode, which AFAICT it should speed up the skipping process. ### Motivation When resuming from a checkpoint after a crashed run, using `dataset.skip()` is very convenient to recover the exact state of the data and to not train again over the same examples (assuming same seed, no shuffling). However, I have noticed that for audio datasets in streaming mode this is very costly in terms of time, as shards need to be downloaded every time before skipping the right number of examples. ### Your contribution I took a look already at the code, but it seems a change like this is way deeper than I am able to manage, as it touches the library in several parts. I could give it a try but might need some guidance on the internals.
null
{ "+1": 7, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 7, "url": "https://api.github.com/repos/huggingface/datasets/issues/5380/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5380/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4897
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4897/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4897/comments
https://api.github.com/repos/huggingface/datasets/issues/4897/events
https://github.com/huggingface/datasets/issues/4897
1,351,784,727
I_kwDODunzps5QkpkX
4,897
datasets generate large arrow file
{ "avatar_url": "https://avatars.githubusercontent.com/u/18533904?v=4", "events_url": "https://api.github.com/users/jax11235/events{/privacy}", "followers_url": "https://api.github.com/users/jax11235/followers", "following_url": "https://api.github.com/users/jax11235/following{/other_user}", "gists_url": "https://api.github.com/users/jax11235/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jax11235", "id": 18533904, "login": "jax11235", "node_id": "MDQ6VXNlcjE4NTMzOTA0", "organizations_url": "https://api.github.com/users/jax11235/orgs", "received_events_url": "https://api.github.com/users/jax11235/received_events", "repos_url": "https://api.github.com/users/jax11235/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jax11235/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jax11235/subscriptions", "type": "User", "url": "https://api.github.com/users/jax11235", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi ! The cache files are the results of all the transforms you applied to the dataset using `map` for example.\r\nDid you run a transform that could potentially blow up the size of the dataset ?", "@lhoestq,\r\nI don't remember, but I can't imagine what kind of transform may generate data that grow over 200 times in size. \r\nI think maybe it doesn' matter, it's just cache after all." ]
2022-08-26T05:51:16Z
2022-09-18T05:07:52Z
2022-09-18T05:07:52Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Checking the large file in disk, and found the large cache file in the cifar10 data directory: ![image](https://user-images.githubusercontent.com/18533904/186830449-ba96cdeb-0fe8-4543-994d-2abe7145933f.png) As we know, the size of cifar10 dataset is ~130MB, but the cache file has almost 30GB size, there may be some problems here.
{ "avatar_url": "https://avatars.githubusercontent.com/u/18533904?v=4", "events_url": "https://api.github.com/users/jax11235/events{/privacy}", "followers_url": "https://api.github.com/users/jax11235/followers", "following_url": "https://api.github.com/users/jax11235/following{/other_user}", "gists_url": "https://api.github.com/users/jax11235/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jax11235", "id": 18533904, "login": "jax11235", "node_id": "MDQ6VXNlcjE4NTMzOTA0", "organizations_url": "https://api.github.com/users/jax11235/orgs", "received_events_url": "https://api.github.com/users/jax11235/received_events", "repos_url": "https://api.github.com/users/jax11235/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jax11235/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jax11235/subscriptions", "type": "User", "url": "https://api.github.com/users/jax11235", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4897/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4897/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5961
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5961/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5961/comments
https://api.github.com/repos/huggingface/datasets/issues/5961/events
https://github.com/huggingface/datasets/issues/5961
1,758,525,111
I_kwDODunzps5o0Pa3
5,961
IterableDataset: split by node and map may preprocess samples that will be skipped anyway
{ "avatar_url": "https://avatars.githubusercontent.com/u/27708347?v=4", "events_url": "https://api.github.com/users/johnchienbronci/events{/privacy}", "followers_url": "https://api.github.com/users/johnchienbronci/followers", "following_url": "https://api.github.com/users/johnchienbronci/following{/other_user}", "gists_url": "https://api.github.com/users/johnchienbronci/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/johnchienbronci", "id": 27708347, "login": "johnchienbronci", "node_id": "MDQ6VXNlcjI3NzA4MzQ3", "organizations_url": "https://api.github.com/users/johnchienbronci/orgs", "received_events_url": "https://api.github.com/users/johnchienbronci/received_events", "repos_url": "https://api.github.com/users/johnchienbronci/repos", "site_admin": false, "starred_url": "https://api.github.com/users/johnchienbronci/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnchienbronci/subscriptions", "type": "User", "url": "https://api.github.com/users/johnchienbronci", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Does \"number of shards\" refer to the total number of data?\r\n\r\nmy config:\r\nnproc_per_node=2\r\nds=ds['train'] = load_dataset(streaming=True).take(50000)\r\n\r\nI'm test again: in prepare_data(), data have the same for each GPU\r\n", "The number of shards is `ds.n_shards`. It corresponds generally to the number of files the dataset is made of, to be able to distribute to several nodes.\r\n\r\n**You don't end up with the same data per GPU**. But all the samples are going through your preprocessing function you pass to map. They are just skipped afterwards to only keep 1 sample out of n(GPUs)", "For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end. \r\nIs my understanding correct?\r\n\r\nWhere can I print the actual training data for each GPU?", "> For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\nIs my understanding correct?\r\n\r\nYes exactly :)\r\n\r\n> Where can I print the actual training data for each GPU?\r\n\r\nYou should call print in the data_collator", "I print out n_shards, and under multiple GPUs, this value is always 1.\r\nIs this value correct?", "Yes it's correct, and it explains why you always have the same data passed to your map function (the data can't be split).\r\n\r\nBut after being passed to `map`, each GPU keeps one example out of n(GPUs) so that you don't end up with duplicate data across GPUs", "> > For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\n> > Is my understanding correct?\r\n> \r\n> Yes exactly :)\r\n> \r\n> > Where can I print the actual training data for each GPU?\r\n> \r\n> You should call print in the data_collator\r\n\r\nOK, when printing the train data in the data collator, each GPU sees different data.\r\n\r\nThanks for your reply", "Do we have a solution for this one? Or it's required to get \"number of shards is a factor of number of GPUs: in that case the shards are evenly distributed per GPU\"", "For now it's required to have a number of shards that is a factor of the number of GPUs to not have all the workers process the same data (and then skip the right ones to not end up training on duplicate data).\r\n\r\nIt would be quite complex to implement a strategy that would utilize all the GPUs with an arbitrary number of shards even at the end of training" ]
2023-06-15T10:29:10Z
2023-09-01T10:35:11Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
There are two ways an iterable dataset can be split by node: 1. if the number of shards is a factor of number of GPUs: in that case the shards are evenly distributed per GPU 2. otherwise, each GPU iterate on the data and at the end keeps 1 sample out of n(GPUs) - skipping the others. In case 2. it's therefore possible to have the same examples passed to `prepare_dataset` for each GPU. This doesn't sound optimized though, because it runs the preprocessing on samples that won't be used in the end. Could you open a new issue so that we can discuss about this and find a solution ? _Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/5360#issuecomment-1592729051_
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5961/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5961/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6720
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6720/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6720/comments
https://api.github.com/repos/huggingface/datasets/issues/6720/events
https://github.com/huggingface/datasets/issues/6720
2,173,603,459
I_kwDODunzps6Bjo6D
6,720
TypeError: 'str' object is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! I opened a PR to fix an issue in the Features defined in your code\r\n\r\nBasically changing\r\n```python\r\nSequence(\"float32\")\r\n```\r\n\r\nto\r\n```python\r\nSequence(Value(\"float32\"))\r\n```\r\n\r\n\r\nhttps://huggingface.co/datasets/BramVanroy/hplt_mono_v1_2/discussions/1", "D'oh! Was wondering why the `str() is not callable` was in there. Glad the error is my end though, and not related to zstandard (which I had not used in the past).\r\n\r\nThanks a lot!" ]
2024-03-07T11:07:09Z
2024-03-08T07:34:53Z
2024-03-07T15:13:58Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am trying to get the HPLT datasets on the hub. Downloading/re-uploading would be too time- and resource consuming so I wrote [a dataset loader script](https://huggingface.co/datasets/BramVanroy/hplt_mono_v1_2/blob/main/hplt_mono_v1_2.py). I think I am very close but for some reason I always get the error below. It happens during the clean-up phase where the directory cannot be removed because it is not empty. My only guess would be that this may have to do with zstandard ``` Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1744, in _prepare_split_single writer.write(example, key) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 492, in write self.write_examples_on_file() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 434, in write_examples_on_file if self.schema File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 409, in schema else (pa.schema(self._features.type) if self._features is not None else None) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1643, in type return get_nested_type(self) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in get_nested_type {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in <dictcomp> {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1221, in get_nested_type value_type = get_nested_type(schema.feature) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1228, in get_nested_type return schema() TypeError: 'str' object is not callable During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1753, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 588, in finalize self.write_examples_on_file() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 434, in write_examples_on_file if self.schema File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 409, in schema else (pa.schema(self._features.type) if self._features is not None else None) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1643, in type return get_nested_type(self) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in get_nested_type {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in <dictcomp> {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1221, in get_nested_type value_type = get_nested_type(schema.feature) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1228, in get_nested_type return schema() TypeError: 'str' object is not callable The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 959, in incomplete_dir yield tmp_dir File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1005, in download_and_prepare self._download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1767, in _download_and_prepare super()._download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1100, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1605, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1762, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/pricie/vanroy/.config/JetBrains/PyCharm2023.3/scratches/scratch_5.py", line 4, in <module> ds = load_dataset( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/load.py", line 2549, in load_dataset builder_instance.download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 985, in download_and_prepare with incomplete_dir(self._output_dir) as tmp_output_dir: File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/contextlib.py", line 153, in __exit__ self.gen.throw(typ, value, traceback) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 966, in incomplete_dir shutil.rmtree(tmp_dir) File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/shutil.py", line 731, in rmtree onerror(os.rmdir, path, sys.exc_info()) File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/shutil.py", line 729, in rmtree os.rmdir(path) OSError: [Errno 39] Directory not empty: '/home/pricie/vanroy/.cache/huggingface/datasets/BramVanroy___hplt_mono_v1_2/ky/1.2.0/7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete' ``` Interestingly, though, this directory _does_ appear to be empty: ```shell > cd /home/pricie/vanroy/.cache/huggingface/datasets/BramVanroy___hplt_mono_v1_2/ky/1.2.0/7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete > ls -lah total 0 drwxr-xr-x. 1 vanroy vanroy 0 Mar 7 12:01 . drwxr-xr-x. 1 vanroy vanroy 304 Mar 7 11:52 .. > cd .. > ls 7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47_builder.lock 7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete ``` ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset( "BramVanroy/hplt_mono_v1_2", "ky", trust_remote_code=True ) ``` ### Expected behavior No error. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-284.25.1.el9_2.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.1 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6720/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6720/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4850
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4850/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4850/comments
https://api.github.com/repos/huggingface/datasets/issues/4850/events
https://github.com/huggingface/datasets/pull/4850
1,338,702,306
PR_kwDODunzps49KnZ8
4,850
Fix test of _get_extraction_protocol for TAR files
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-15T08:37:58Z
2022-08-15T09:42:56Z
2022-08-15T09:28:46Z
MEMBER
null
null
null
While working in another PR, I discovered an xpass test (a test that is supposed to xfail but nevertheless passes) when testing `_get_extraction_protocol`: https://github.com/huggingface/datasets/runs/7818845285?check_suite_focus=true ``` XPASS tests/test_streaming_download_manager.py::test_streaming_dl_manager_get_extraction_protocol_throws[https://foo.bar/train.tar] ``` This PR: - refactors the test so that it tests the raise of the exceptions instead of xfailing - fixes the test for TAR files: it does not raise an exception, but returns "tar" - fixes some tests wrongly named: exchange `test_streaming_dl_manager_get_extraction_protocol` with `test_streaming_dl_manager_get_extraction_protocol_gg_drive`
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4850/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4850/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4850.diff", "html_url": "https://github.com/huggingface/datasets/pull/4850", "merged_at": "2022-08-15T09:28:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/4850.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4850" }
https://api.github.com/repos/huggingface/datasets/issues/6339
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6339/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6339/comments
https://api.github.com/repos/huggingface/datasets/issues/6339/events
https://github.com/huggingface/datasets/pull/6339
1,956,912,627
PR_kwDODunzps5dhFfg
6,339
minor release step improvement
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006572 / 0.011353 (-0.004780) | 0.004019 / 0.011008 (-0.006989) | 0.084080 / 0.038508 (0.045572) | 0.070111 / 0.023109 (0.047002) | 0.340440 / 0.275898 (0.064542) | 0.358839 / 0.323480 (0.035359) | 0.005254 / 0.007986 (-0.002732) | 0.003296 / 0.004328 (-0.001032) | 0.064368 / 0.004250 (0.060117) | 0.054549 / 0.037052 (0.017497) | 0.343817 / 0.258489 (0.085328) | 0.369871 / 0.293841 (0.076030) | 0.030621 / 0.128546 (-0.097925) | 0.008457 / 0.075646 (-0.067189) | 0.287839 / 0.419271 (-0.131432) | 0.051700 / 0.043533 (0.008167) | 0.331602 / 0.255139 (0.076463) | 0.339836 / 0.283200 (0.056636) | 0.023224 / 0.141683 (-0.118459) | 1.494597 / 1.452155 (0.042443) | 1.578640 / 1.492716 (0.085924) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236985 / 0.018006 (0.218979) | 0.506153 / 0.000490 (0.505664) | 0.009753 / 0.000200 (0.009553) | 0.000345 / 0.000054 (0.000291) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028355 / 0.037411 (-0.009056) | 0.082104 / 0.014526 (0.067578) | 0.095141 / 0.176557 (-0.081415) | 0.151054 / 0.737135 (-0.586081) | 0.095139 / 0.296338 (-0.201200) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403773 / 0.215209 (0.188564) | 4.025567 / 2.077655 (1.947912) | 2.024641 / 1.504120 (0.520521) | 1.857039 / 1.541195 (0.315845) | 1.957346 / 1.468490 (0.488856) | 0.481486 / 4.584777 (-4.103291) | 3.574463 / 3.745712 (-0.171249) | 3.399311 / 5.269862 (-1.870551) | 1.996806 / 4.565676 (-2.568870) | 0.056644 / 0.424275 (-0.367631) | 0.007503 / 0.007607 (-0.000104) | 0.479480 / 0.226044 (0.253435) | 4.793686 / 2.268929 (2.524757) | 2.481011 / 55.444624 (-52.963613) | 2.176473 / 6.876477 (-4.700004) | 2.203192 / 2.142072 (0.061120) | 0.574071 / 4.805227 (-4.231156) | 0.131852 / 6.500664 (-6.368812) | 0.058883 / 0.075469 (-0.016586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249945 / 1.841788 (-0.591842) | 18.439267 / 8.074308 (10.364959) | 14.100934 / 10.191392 (3.909542) | 0.164191 / 0.680424 (-0.516233) | 0.018086 / 0.534201 (-0.516115) | 0.390821 / 0.579283 (-0.188462) | 0.414166 / 0.434364 (-0.020198) | 0.460073 / 0.540337 (-0.080265) | 0.636299 / 1.386936 (-0.750637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006606 / 0.011353 (-0.004747) | 0.003987 / 0.011008 (-0.007021) | 0.064616 / 0.038508 (0.026108) | 0.070830 / 0.023109 (0.047721) | 0.397340 / 0.275898 (0.121442) | 0.426823 / 0.323480 (0.103343) | 0.005345 / 0.007986 (-0.002641) | 0.003264 / 0.004328 (-0.001065) | 0.064728 / 0.004250 (0.060477) | 0.055763 / 0.037052 (0.018711) | 0.405347 / 0.258489 (0.146858) | 0.433163 / 0.293841 (0.139322) | 0.032394 / 0.128546 (-0.096153) | 0.008474 / 0.075646 (-0.067172) | 0.071583 / 0.419271 (-0.347689) | 0.048424 / 0.043533 (0.004892) | 0.400582 / 0.255139 (0.145443) | 0.418111 / 0.283200 (0.134911) | 0.022257 / 0.141683 (-0.119426) | 1.495521 / 1.452155 (0.043366) | 1.554626 / 1.492716 (0.061910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218249 / 0.018006 (0.200242) | 0.438527 / 0.000490 (0.438037) | 0.005406 / 0.000200 (0.005206) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031600 / 0.037411 (-0.005812) | 0.090836 / 0.014526 (0.076310) | 0.105000 / 0.176557 (-0.071556) | 0.157648 / 0.737135 (-0.579487) | 0.103827 / 0.296338 (-0.192512) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426428 / 0.215209 (0.211219) | 4.259435 / 2.077655 (2.181780) | 2.300795 / 1.504120 (0.796675) | 2.121302 / 1.541195 (0.580108) | 2.145602 / 1.468490 (0.677112) | 0.486856 / 4.584777 (-4.097921) | 3.673568 / 3.745712 (-0.072144) | 3.278619 / 5.269862 (-1.991243) | 2.037760 / 4.565676 (-2.527917) | 0.057699 / 0.424275 (-0.366576) | 0.007269 / 0.007607 (-0.000338) | 0.499549 / 0.226044 (0.273505) | 4.996214 / 2.268929 (2.727285) | 2.766480 / 55.444624 (-52.678144) | 2.417308 / 6.876477 (-4.459168) | 2.581026 / 2.142072 (0.438953) | 0.589463 / 4.805227 (-4.215765) | 0.134820 / 6.500664 (-6.365844) | 0.061699 / 0.075469 (-0.013770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353704 / 1.841788 (-0.488084) | 19.104167 / 8.074308 (11.029859) | 14.652166 / 10.191392 (4.460774) | 0.171885 / 0.680424 (-0.508539) | 0.020222 / 0.534201 (-0.513978) | 0.396777 / 0.579283 (-0.182506) | 0.426304 / 0.434364 (-0.008060) | 0.471347 / 0.540337 (-0.068991) | 0.635887 / 1.386936 (-0.751049) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce19ec527c581eddec306a03ad1db554223cc94a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004686 / 0.011353 (-0.006667) | 0.002998 / 0.011008 (-0.008010) | 0.063604 / 0.038508 (0.025096) | 0.048927 / 0.023109 (0.025818) | 0.247238 / 0.275898 (-0.028660) | 0.272409 / 0.323480 (-0.051071) | 0.003909 / 0.007986 (-0.004077) | 0.002469 / 0.004328 (-0.001859) | 0.048473 / 0.004250 (0.044223) | 0.037514 / 0.037052 (0.000462) | 0.257292 / 0.258489 (-0.001197) | 0.285203 / 0.293841 (-0.008638) | 0.023131 / 0.128546 (-0.105415) | 0.006803 / 0.075646 (-0.068843) | 0.202920 / 0.419271 (-0.216351) | 0.035653 / 0.043533 (-0.007880) | 0.254791 / 0.255139 (-0.000348) | 0.272973 / 0.283200 (-0.010226) | 0.017707 / 0.141683 (-0.123976) | 1.091606 / 1.452155 (-0.360549) | 1.151453 / 1.492716 (-0.341263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093701 / 0.018006 (0.075695) | 0.304199 / 0.000490 (0.303709) | 0.000223 / 0.000200 (0.000023) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019291 / 0.037411 (-0.018120) | 0.062168 / 0.014526 (0.047642) | 0.073273 / 0.176557 (-0.103284) | 0.119497 / 0.737135 (-0.617638) | 0.075008 / 0.296338 (-0.221331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279983 / 0.215209 (0.064774) | 2.774413 / 2.077655 (0.696758) | 1.476678 / 1.504120 (-0.027441) | 1.336273 / 1.541195 (-0.204922) | 1.332349 / 1.468490 (-0.136142) | 0.403150 / 4.584777 (-4.181627) | 2.390026 / 3.745712 (-1.355686) | 2.619151 / 5.269862 (-2.650711) | 1.578607 / 4.565676 (-2.987069) | 0.046632 / 0.424275 (-0.377643) | 0.007352 / 0.007607 (-0.000255) | 0.333419 / 0.226044 (0.107375) | 3.288734 / 2.268929 (1.019805) | 1.843677 / 55.444624 (-53.600947) | 1.536746 / 6.876477 (-5.339731) | 1.573005 / 2.142072 (-0.569067) | 0.475699 / 4.805227 (-4.329529) | 0.104742 / 6.500664 (-6.395922) | 0.042450 / 0.075469 (-0.033019) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.949039 / 1.841788 (-0.892749) | 11.895928 / 8.074308 (3.821620) | 10.650521 / 10.191392 (0.459129) | 0.142308 / 0.680424 (-0.538116) | 0.014207 / 0.534201 (-0.519994) | 0.274011 / 0.579283 (-0.305272) | 0.288259 / 0.434364 (-0.146105) | 0.327729 / 0.540337 (-0.212609) | 0.395728 / 1.386936 (-0.991208) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004830 / 0.011353 (-0.006523) | 0.002978 / 0.011008 (-0.008030) | 0.048623 / 0.038508 (0.010114) | 0.055040 / 0.023109 (0.031930) | 0.276436 / 0.275898 (0.000538) | 0.302403 / 0.323480 (-0.021076) | 0.004080 / 0.007986 (-0.003905) | 0.002479 / 0.004328 (-0.001849) | 0.048078 / 0.004250 (0.043827) | 0.039680 / 0.037052 (0.002627) | 0.279095 / 0.258489 (0.020606) | 0.307399 / 0.293841 (0.013558) | 0.024533 / 0.128546 (-0.104013) | 0.007196 / 0.075646 (-0.068450) | 0.053879 / 0.419271 (-0.365393) | 0.032545 / 0.043533 (-0.010988) | 0.275501 / 0.255139 (0.020362) | 0.298530 / 0.283200 (0.015330) | 0.017992 / 0.141683 (-0.123691) | 1.144191 / 1.452155 (-0.307963) | 1.208309 / 1.492716 (-0.284408) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095690 / 0.018006 (0.077684) | 0.304932 / 0.000490 (0.304442) | 0.000223 / 0.000200 (0.000023) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021409 / 0.037411 (-0.016003) | 0.069861 / 0.014526 (0.055335) | 0.080959 / 0.176557 (-0.095597) | 0.119432 / 0.737135 (-0.617703) | 0.083649 / 0.296338 (-0.212690) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297243 / 0.215209 (0.082034) | 2.909288 / 2.077655 (0.831634) | 1.571512 / 1.504120 (0.067392) | 1.452403 / 1.541195 (-0.088792) | 1.481290 / 1.468490 (0.012800) | 0.405795 / 4.584777 (-4.178982) | 2.452923 / 3.745712 (-1.292789) | 2.513371 / 5.269862 (-2.756490) | 1.593216 / 4.565676 (-2.972460) | 0.048073 / 0.424275 (-0.376202) | 0.005312 / 0.007607 (-0.002296) | 0.355783 / 0.226044 (0.129738) | 3.494062 / 2.268929 (1.225133) | 1.947388 / 55.444624 (-53.497236) | 1.651724 / 6.876477 (-5.224753) | 1.789007 / 2.142072 (-0.353065) | 0.487073 / 4.805227 (-4.318154) | 0.100271 / 6.500664 (-6.400393) | 0.041571 / 0.075469 (-0.033898) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983766 / 1.841788 (-0.858021) | 12.384778 / 8.074308 (4.310469) | 10.669519 / 10.191392 (0.478127) | 0.133105 / 0.680424 (-0.547318) | 0.016665 / 0.534201 (-0.517536) | 0.269479 / 0.579283 (-0.309804) | 0.276498 / 0.434364 (-0.157866) | 0.302105 / 0.540337 (-0.238233) | 0.391204 / 1.386936 (-0.995732) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12ebe695b4748c5a26e08b44ed51955f74f5801d \"CML watermark\")\n" ]
2023-10-23T11:07:04Z
2023-11-07T10:38:54Z
2023-11-07T10:32:41Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6339/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6339/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6339.diff", "html_url": "https://github.com/huggingface/datasets/pull/6339", "merged_at": "2023-11-07T10:32:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/6339.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6339" }
https://api.github.com/repos/huggingface/datasets/issues/6725
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6725/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6725/comments
https://api.github.com/repos/huggingface/datasets/issues/6725/events
https://github.com/huggingface/datasets/issues/6725
2,175,527,530
I_kwDODunzps6Bq-pq
6,725
Request for a comparison of huggingface datasets compared with other data format especially webdataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Luciennnnnnn", "id": 20135317, "login": "Luciennnnnnn", "node_id": "MDQ6VXNlcjIwMTM1MzE3", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "type": "User", "url": "https://api.github.com/users/Luciennnnnnn", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-03-08T08:23:01Z
2024-03-08T08:23:01Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Request for a comparison of huggingface datasets compared with other data format especially webdataset ### Motivation I see huggingface datasets uses Apache Arrow as its backend, it seems to be great, but I'm curious about how it is good compared with other dataset format, like webdataset, what's the pros/cons of them. ### Your contribution More information
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6725/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6725/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4999
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4999/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4999/comments
https://api.github.com/repos/huggingface/datasets/issues/4999/events
https://github.com/huggingface/datasets/pull/4999
1,379,610,030
PR_kwDODunzps4_SQxL
4,999
Add EmptyDatasetError
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-20T15:28:05Z
2022-09-21T12:23:43Z
2022-09-21T12:21:24Z
MEMBER
null
null
null
examples: from the hub: ```python Traceback (most recent call last): File "playground/ttest.py", line 3, in <module> print(load_dataset("lhoestq/empty")) File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1686, in load_dataset **config_kwargs, File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1458, in load_dataset_builder data_files=data_files, File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1171, in dataset_module_factory raise e1 from None File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1162, in dataset_module_factory download_mode=download_mode, File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 760, in get_module else get_data_patterns_in_dataset_repository(hfh_dataset_info, self.data_dir) File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/data_files.py", line 678, in get_data_patterns_in_dataset_repository ) from None datasets.data_files.EmptyDatasetError: The dataset repository at 'lhoestq/empty' doesn't contain any data file. ``` from local directory: ```python Traceback (most recent call last): File "playground/ttest.py", line 3, in <module> print(load_dataset("playground/empty")) File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1686, in load_dataset **config_kwargs, File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1458, in load_dataset_builder data_files=data_files, File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 1107, in dataset_module_factory path, data_dir=data_dir, data_files=data_files, download_mode=download_mode File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/load.py", line 625, in get_module else get_data_patterns_locally(base_path) File "/Users/quentinlhoest/Desktop/hf/nlp/src/datasets/data_files.py", line 460, in get_data_patterns_locally raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data file") from None datasets.data_files.EmptyDatasetError: The directory at playground/empty doesn't contain any data file ``` Close https://github.com/huggingface/datasets/issues/4995
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4999/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4999/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4999.diff", "html_url": "https://github.com/huggingface/datasets/pull/4999", "merged_at": "2022-09-21T12:21:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/4999.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4999" }
https://api.github.com/repos/huggingface/datasets/issues/6842
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6842/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6842/comments
https://api.github.com/repos/huggingface/datasets/issues/6842/events
https://github.com/huggingface/datasets/issues/6842
2,264,692,159
I_kwDODunzps6G_HW_
6,842
Datasets with files with colon : in filenames cannot be used on Windows
{ "avatar_url": "https://avatars.githubusercontent.com/u/1038927?v=4", "events_url": "https://api.github.com/users/jacobjennings/events{/privacy}", "followers_url": "https://api.github.com/users/jacobjennings/followers", "following_url": "https://api.github.com/users/jacobjennings/following{/other_user}", "gists_url": "https://api.github.com/users/jacobjennings/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jacobjennings", "id": 1038927, "login": "jacobjennings", "node_id": "MDQ6VXNlcjEwMzg5Mjc=", "organizations_url": "https://api.github.com/users/jacobjennings/orgs", "received_events_url": "https://api.github.com/users/jacobjennings/received_events", "repos_url": "https://api.github.com/users/jacobjennings/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jacobjennings/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jacobjennings/subscriptions", "type": "User", "url": "https://api.github.com/users/jacobjennings", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-04-26T00:14:16Z
2024-04-26T00:14:16Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Datasets (such as https://huggingface.co/datasets/MLCommons/peoples_speech) cannot be used on Windows due to the fact that windows does not allow colons ":" in filenames. These should be converted into alternative strings. ### Steps to reproduce the bug 1. Attempt to run load_dataset on MLCommons/peoples_speech ### Expected behavior Does not crash during extraction ### Environment info Windows 11, NTFS filesystem, Python 3.12
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6842/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6842/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6366
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6366/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6366/comments
https://api.github.com/repos/huggingface/datasets/issues/6366/events
https://github.com/huggingface/datasets/issues/6366
1,970,213,490
I_kwDODunzps51bxJy
6,366
with_format() function returns bytes instead of PIL images even when image column is not part of "columns"
{ "avatar_url": "https://avatars.githubusercontent.com/u/17809020?v=4", "events_url": "https://api.github.com/users/leot13/events{/privacy}", "followers_url": "https://api.github.com/users/leot13/followers", "following_url": "https://api.github.com/users/leot13/following{/other_user}", "gists_url": "https://api.github.com/users/leot13/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/leot13", "id": 17809020, "login": "leot13", "node_id": "MDQ6VXNlcjE3ODA5MDIw", "organizations_url": "https://api.github.com/users/leot13/orgs", "received_events_url": "https://api.github.com/users/leot13/received_events", "repos_url": "https://api.github.com/users/leot13/repos", "site_admin": false, "starred_url": "https://api.github.com/users/leot13/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leot13/subscriptions", "type": "User", "url": "https://api.github.com/users/leot13", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting! I've opened a PR with a fix." ]
2023-10-31T11:10:48Z
2023-11-02T14:21:17Z
2023-11-02T14:21:17Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When using the with_format() function on a dataset containing images, even if the image column is not part of the columns provided in the function, its type will be changed to bytes. Here is a minimal reproduction of the bug: https://colab.research.google.com/drive/1hyaOspgyhB41oiR1-tXE3k_gJCdJUQCf?usp=sharing ### Steps to reproduce the bug 1. Load the image dataset 2. apply with_format(columns=["text"]) 3. Check the type of images in the "image" column before and after applying with_format ### Expected behavior The type should stay the same, but it does not ### Environment info datasets==2.14.6
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6366/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6366/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5499
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5499/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5499/comments
https://api.github.com/repos/huggingface/datasets/issues/5499/events
https://github.com/huggingface/datasets/issues/5499
1,568,937,026
I_kwDODunzps5dhBRC
5,499
`load_dataset` has ~4 seconds of overhead for cached data
{ "avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4", "events_url": "https://api.github.com/users/davidgilbertson/events{/privacy}", "followers_url": "https://api.github.com/users/davidgilbertson/followers", "following_url": "https://api.github.com/users/davidgilbertson/following{/other_user}", "gists_url": "https://api.github.com/users/davidgilbertson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/davidgilbertson", "id": 4443482, "login": "davidgilbertson", "node_id": "MDQ6VXNlcjQ0NDM0ODI=", "organizations_url": "https://api.github.com/users/davidgilbertson/orgs", "received_events_url": "https://api.github.com/users/davidgilbertson/received_events", "repos_url": "https://api.github.com/users/davidgilbertson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/davidgilbertson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/davidgilbertson/subscriptions", "type": "User", "url": "https://api.github.com/users/davidgilbertson", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! To skip the verification step that checks if newer data exist, you can enable offline mode with `HF_DATASETS_OFFLINE=1`.\r\n\r\nAlthough I agree this step should be much faster for datasets hosted on the HF Hub - we could just compare the commit hash from the local data and the remote git repository. We're not been leveraging the git commit hashes, since the library was built before we even had git repositories for each dataset on HF.", "Thanks @lhoestq, for memory when I recorded those times I had `HF_DATASETS_OFFLINE` set." ]
2023-02-02T23:34:50Z
2023-02-07T19:35:11Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request When loading a dataset that has been cached locally, the `load_dataset` function takes a lot longer than it should take to fetch the dataset from disk (or memory). This is particularly noticeable for smaller datasets. For example, wikitext-2, comparing `load_data` (once cached) and `load_from_disk`, the `load_dataset` method takes 40 times longer. ⏱ 4.84s ⮜ load_dataset ⏱ 119ms ⮜ load_from_disk ### Motivation I assume this is doing something like checking for a newer version. If so, that's an age old problem: do you make the user wait _every single time they load from cache_ or do you do something like load from cache always, _then_ check for a newer version and alert if they have stale data. The decision usually revolves around what percentage of the time the data will have been updated, and how dangerous old data is. For most datasets it's extremely unlikely that there will be a newer version on any given run, so 99% of the time this is just wasted time. Maybe you don't want to make that decision for all users, but at least having the _option_ to not wait for checks would be an improvement. ### Your contribution .
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5499/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5499/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6887
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6887/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6887/comments
https://api.github.com/repos/huggingface/datasets/issues/6887/events
https://github.com/huggingface/datasets/issues/6887
2,286,786,396
I_kwDODunzps6ITZdc
6,887
FAISS load to None
{ "avatar_url": "https://avatars.githubusercontent.com/u/40418544?v=4", "events_url": "https://api.github.com/users/brainer3220/events{/privacy}", "followers_url": "https://api.github.com/users/brainer3220/followers", "following_url": "https://api.github.com/users/brainer3220/following{/other_user}", "gists_url": "https://api.github.com/users/brainer3220/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/brainer3220", "id": 40418544, "login": "brainer3220", "node_id": "MDQ6VXNlcjQwNDE4NTQ0", "organizations_url": "https://api.github.com/users/brainer3220/orgs", "received_events_url": "https://api.github.com/users/brainer3220/received_events", "repos_url": "https://api.github.com/users/brainer3220/repos", "site_admin": false, "starred_url": "https://api.github.com/users/brainer3220/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brainer3220/subscriptions", "type": "User", "url": "https://api.github.com/users/brainer3220", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hello,\r\n\r\nI'm not sure I understand. \r\nThe return value of `ds.load_faiss_index` is None as expected.\r\n\r\nI see that loading an Index on a dataset that doesn't have an `embedding` column doesn't raise an Issue. Is that the issue?\r\n\r\nSo `ds` doesn't have an `embedding` column, but we load an index that looks for it. But this will raise an issue only when calling `ds.search`." ]
2024-05-09T02:43:50Z
2024-05-16T20:44:23Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I've use FAISS with Datasets and save to FAISS. Then load to save FAISS then no error, then ds to None ```python ds.load_faiss_index('embeddings', 'my_index.faiss') ``` ### Steps to reproduce the bug # 1. ```python ds_with_embeddings = ds.map(lambda example: {'embeddings': model(transforms(example['image']).unsqueeze(0)).squeeze()}, batch_size=64) ds_with_embeddings.add_faiss_index(column='embeddings') ds_with_embeddings.save_faiss_index('embeddings', 'index.faiss') ``` # 2. ```python ds.load_faiss_index('embeddings', 'my_index.faiss') ``` ### Expected behavior Add column in Datasets. ### Environment info Google Colab, SageMaker Notebook
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6887/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6887/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6642
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6642/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6642/comments
https://api.github.com/repos/huggingface/datasets/issues/6642/events
https://github.com/huggingface/datasets/issues/6642
2,119,085,766
I_kwDODunzps5-Tq7G
6,642
Differently dataset object saved than it is loaded.
{ "avatar_url": "https://avatars.githubusercontent.com/u/31218150?v=4", "events_url": "https://api.github.com/users/MFajcik/events{/privacy}", "followers_url": "https://api.github.com/users/MFajcik/followers", "following_url": "https://api.github.com/users/MFajcik/following{/other_user}", "gists_url": "https://api.github.com/users/MFajcik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MFajcik", "id": 31218150, "login": "MFajcik", "node_id": "MDQ6VXNlcjMxMjE4MTUw", "organizations_url": "https://api.github.com/users/MFajcik/orgs", "received_events_url": "https://api.github.com/users/MFajcik/received_events", "repos_url": "https://api.github.com/users/MFajcik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MFajcik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MFajcik/subscriptions", "type": "User", "url": "https://api.github.com/users/MFajcik", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I see now, that I have to use `load_from_disk`, in order to load dataset properly, not `load_dataset`. Why is this behavior split? Why do we need both, `load_dataset` and `load_from_disk`?\r\n\r\nUnless answered, I believe this might be helpful for other hf datasets newbies.\r\n\r\nAnyway, made a `load_dataset` compatible dataset in a following way. I created a directory, and just copied jsonl there as `train.jsonl/test.jsonl`.\r\n```python\r\noutput_folder = os.path.join(args.output_folder, f\"{task_meta_type}_{task_type}\")\r\nos.makedirs(output_folder, exist_ok=True)\r\nfile = f\"{task_meta_type}_{task_type}_train.jsonl\"\r\nshutil.copy(os.path.join(input_folder, file),\r\n os.path.join(output_folder, \"train.jsonl\"))\r\n# now test\r\nfile = f\"{task_meta_type}_{task_type}_test.jsonl\"\r\nshutil.copy(os.path.join(input_folder, file),\r\n os.path.join(output_folder, \"test.jsonl\"))\r\n```\r\n", "Hi @MFajcik, \r\n\r\nYou can find information about save_to_disk/load_from_disk in our docs:\r\n- https://huggingface.co/docs/datasets/v2.16.1/en/process#save\r\n- https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/main_classes#datasets.Dataset.save_to_disk\r\n- https://huggingface.co/docs/datasets/v2.16.1/en/package_reference/main_classes#datasets.Dataset.load_from_disk" ]
2024-02-05T17:28:57Z
2024-02-06T09:50:19Z
2024-02-06T09:50:19Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Differently sized object is saved than it is loaded. ### Steps to reproduce the bug Hi, I save dataset in a following way: ``` dataset = load_dataset("json", data_files={ "train": os.path.join(input_folder, f"{task_meta_type}_{task_type}_train.jsonl"), "test": os.path.join(input_folder, f"{task_meta_type}_{task_type}_test.jsonl")}) print(os.path.join(output_folder, f"{task_meta_type}_{task_type}")) print(f"Length of train dataset: {len(dataset['train'])}") print(f"Length of test dataset: {len(dataset['test'])}") dataset.save_to_disk(os.path.join(output_folder, f"{task_meta_type}_{task_type}")) ``` this yields output ``` .data/hf_dataset/propaganda_zanr Length of train dataset: 7642 Length of test dataset: 1000 ``` Everything looks fine. Then I load the dataset ```python from datasets import load_dataset dataset_path = ".data/hf_dataset/propaganda_zanr" dataset = load_dataset(dataset_path) print(f"Length of train dataset: {len(dataset['train'])}") print(f"Length of test dataset: {len(dataset['test'])}") ``` this prints ``` Generating train split: 1 examples [00:00, 72.10 examples/s] Generating test split: 1 examples [00:00, 100.69 examples/s] Length of train dataset: 1 Length of test dataset: 1 ``` I dont' understand :( ### Expected behavior same object is loaded ### Environment info datasets==2.16.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6642/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6642/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7153
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7153/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7153/comments
https://api.github.com/repos/huggingface/datasets/issues/7153/events
https://github.com/huggingface/datasets/issues/7153
2,532,788,555
I_kwDODunzps6W90lL
7,153
Support data files with .ndjson extension
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-09-18T05:54:45Z
2024-09-19T11:25:15Z
2024-09-19T11:25:15Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Support data files with `.ndjson` extension. ### Motivation We already support data files with `.jsonl` extension. ### Your contribution I am opening a PR.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7153/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7153/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6492
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6492/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6492/comments
https://api.github.com/repos/huggingface/datasets/issues/6492/events
https://github.com/huggingface/datasets/pull/6492
2,037,987,267
PR_kwDODunzps5hzjhQ
6,492
Make push_to_hub return CommitInfo
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6492). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "This PR is ready to review @huggingface/datasets.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005093 / 0.011353 (-0.006259) | 0.003695 / 0.011008 (-0.007313) | 0.064648 / 0.038508 (0.026140) | 0.054677 / 0.023109 (0.031568) | 0.242007 / 0.275898 (-0.033891) | 0.265216 / 0.323480 (-0.058264) | 0.003847 / 0.007986 (-0.004138) | 0.003773 / 0.004328 (-0.000556) | 0.048595 / 0.004250 (0.044345) | 0.038122 / 0.037052 (0.001070) | 0.245698 / 0.258489 (-0.012791) | 0.278095 / 0.293841 (-0.015746) | 0.027488 / 0.128546 (-0.101058) | 0.011002 / 0.075646 (-0.064644) | 0.211443 / 0.419271 (-0.207829) | 0.035664 / 0.043533 (-0.007869) | 0.244754 / 0.255139 (-0.010385) | 0.261078 / 0.283200 (-0.022121) | 0.017768 / 0.141683 (-0.123915) | 1.130765 / 1.452155 (-0.321390) | 1.189825 / 1.492716 (-0.302891) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093027 / 0.018006 (0.075021) | 0.302193 / 0.000490 (0.301703) | 0.000207 / 0.000200 (0.000007) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018413 / 0.037411 (-0.018999) | 0.062715 / 0.014526 (0.048190) | 0.073287 / 0.176557 (-0.103269) | 0.120394 / 0.737135 (-0.616741) | 0.077573 / 0.296338 (-0.218765) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284445 / 0.215209 (0.069236) | 2.780718 / 2.077655 (0.703063) | 1.460988 / 1.504120 (-0.043132) | 1.345799 / 1.541195 (-0.195395) | 1.399892 / 1.468490 (-0.068598) | 0.576051 / 4.584777 (-4.008726) | 2.418792 / 3.745712 (-1.326921) | 2.901330 / 5.269862 (-2.368532) | 1.765083 / 4.565676 (-2.800593) | 0.063555 / 0.424275 (-0.360720) | 0.004991 / 0.007607 (-0.002616) | 0.339657 / 0.226044 (0.113613) | 3.372963 / 2.268929 (1.104034) | 1.853667 / 55.444624 (-53.590958) | 1.552022 / 6.876477 (-5.324454) | 1.616452 / 2.142072 (-0.525620) | 0.652309 / 4.805227 (-4.152919) | 0.121125 / 6.500664 (-6.379539) | 0.042420 / 0.075469 (-0.033049) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954514 / 1.841788 (-0.887274) | 11.853736 / 8.074308 (3.779428) | 10.624571 / 10.191392 (0.433179) | 0.134118 / 0.680424 (-0.546306) | 0.014200 / 0.534201 (-0.520001) | 0.290106 / 0.579283 (-0.289177) | 0.270637 / 0.434364 (-0.163727) | 0.336155 / 0.540337 (-0.204182) | 0.443962 / 1.386936 (-0.942974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005282 / 0.011353 (-0.006071) | 0.003526 / 0.011008 (-0.007482) | 0.048994 / 0.038508 (0.010486) | 0.055345 / 0.023109 (0.032236) | 0.271587 / 0.275898 (-0.004311) | 0.294676 / 0.323480 (-0.028804) | 0.003989 / 0.007986 (-0.003996) | 0.002594 / 0.004328 (-0.001735) | 0.048310 / 0.004250 (0.044059) | 0.039945 / 0.037052 (0.002893) | 0.277304 / 0.258489 (0.018815) | 0.312017 / 0.293841 (0.018176) | 0.028364 / 0.128546 (-0.100182) | 0.010683 / 0.075646 (-0.064963) | 0.057990 / 0.419271 (-0.361281) | 0.032418 / 0.043533 (-0.011115) | 0.273835 / 0.255139 (0.018697) | 0.288585 / 0.283200 (0.005385) | 0.018964 / 0.141683 (-0.122719) | 1.148863 / 1.452155 (-0.303292) | 1.195684 / 1.492716 (-0.297032) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091967 / 0.018006 (0.073960) | 0.303236 / 0.000490 (0.302747) | 0.000214 / 0.000200 (0.000015) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021960 / 0.037411 (-0.015452) | 0.068744 / 0.014526 (0.054218) | 0.081167 / 0.176557 (-0.095390) | 0.119623 / 0.737135 (-0.617513) | 0.084965 / 0.296338 (-0.211373) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297740 / 0.215209 (0.082531) | 2.924856 / 2.077655 (0.847201) | 1.602080 / 1.504120 (0.097960) | 1.494083 / 1.541195 (-0.047112) | 1.544662 / 1.468490 (0.076172) | 0.581212 / 4.584777 (-4.003565) | 2.451064 / 3.745712 (-1.294648) | 2.875213 / 5.269862 (-2.394649) | 1.780777 / 4.565676 (-2.784900) | 0.063751 / 0.424275 (-0.360524) | 0.004967 / 0.007607 (-0.002641) | 0.350321 / 0.226044 (0.124276) | 3.449585 / 2.268929 (1.180657) | 1.977666 / 55.444624 (-53.466958) | 1.685125 / 6.876477 (-5.191351) | 1.734466 / 2.142072 (-0.407606) | 0.657477 / 4.805227 (-4.147750) | 0.116767 / 6.500664 (-6.383898) | 0.041400 / 0.075469 (-0.034069) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985751 / 1.841788 (-0.856037) | 12.300065 / 8.074308 (4.225756) | 10.608238 / 10.191392 (0.416846) | 0.139907 / 0.680424 (-0.540517) | 0.015379 / 0.534201 (-0.518822) | 0.283528 / 0.579283 (-0.295755) | 0.278751 / 0.434364 (-0.155613) | 0.328811 / 0.540337 (-0.211527) | 0.584041 / 1.386936 (-0.802895) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef0f986518bd252c5314a7e3a419dedcbb166630 \"CML watermark\")\n" ]
2023-12-12T15:18:16Z
2023-12-13T14:29:01Z
2023-12-13T14:22:41Z
MEMBER
null
null
null
Make `push_to_hub` return `CommitInfo`. This is useful, for example, if we pass `create_pr=True` and we want to know the created PR ID. CC: @severo for the use case in https://huggingface.co/datasets/jmhessel/newyorker_caption_contest/discussions/4
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6492/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6492/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6492.diff", "html_url": "https://github.com/huggingface/datasets/pull/6492", "merged_at": "2023-12-13T14:22:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/6492.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6492" }
https://api.github.com/repos/huggingface/datasets/issues/6997
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6997/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6997/comments
https://api.github.com/repos/huggingface/datasets/issues/6997/events
https://github.com/huggingface/datasets/issues/6997
2,371,966,127
I_kwDODunzps6NYVSv
6,997
CI is broken for tests using hf-internal-testing/librispeech_asr_dummy
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d4c5f9", "default": false, "description": "Maintenance tasks", "id": 4296013012, "name": "maintenance", "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-06-25T07:55:44Z
2024-06-25T08:13:43Z
2024-06-25T08:13:43Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
CI is broken: https://github.com/huggingface/datasets/actions/runs/9657882317/job/26637998686?pr=6996 ``` FAILED tests/test_inspect.py::test_get_dataset_config_names[hf-internal-testing/librispeech_asr_dummy-expected4] - AssertionError: assert ['clean'] == ['clean', 'other'] Right contains one more item: 'other' Full diff: [ 'clean', - 'other', ] FAILED tests/test_inspect.py::test_get_dataset_default_config_name[hf-internal-testing/librispeech_asr_dummy-None] - AssertionError: assert 'clean' is None ``` Note that repository was recently converted to Parquet: https://huggingface.co/datasets/hf-internal-testing/librispeech_asr_dummy/commit/5be91486e11a2d616f4ec5db8d3fd248585ac07a
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6997/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6997/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5837
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5837/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5837/comments
https://api.github.com/repos/huggingface/datasets/issues/5837/events
https://github.com/huggingface/datasets/issues/5837
1,703,019,816
I_kwDODunzps5lggUo
5,837
Use DeepSpeed load myself " .csv " dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/58167546?v=4", "events_url": "https://api.github.com/users/LanShanPi/events{/privacy}", "followers_url": "https://api.github.com/users/LanShanPi/followers", "following_url": "https://api.github.com/users/LanShanPi/following{/other_user}", "gists_url": "https://api.github.com/users/LanShanPi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LanShanPi", "id": 58167546, "login": "LanShanPi", "node_id": "MDQ6VXNlcjU4MTY3NTQ2", "organizations_url": "https://api.github.com/users/LanShanPi/orgs", "received_events_url": "https://api.github.com/users/LanShanPi/received_events", "repos_url": "https://api.github.com/users/LanShanPi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LanShanPi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LanShanPi/subscriptions", "type": "User", "url": "https://api.github.com/users/LanShanPi", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! Doing `load_dataset(\"path/to/data.csv\")` is not supported yet, but you can do\r\n\r\n```python\r\nds = load_dataset(\"csv\", data_files=[\"path/to/data.csv\"])\r\n```", "@lhoestq thank you.", "The other question: \r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1767, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1498, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1127, in dataset_module_factory\r\n return PackagedDatasetModuleFactory(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 708, in get_module\r\n data_files = DataFilesDict.from_local_or_remote(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/data_files.py\", line 796, in from_local_or_remote\r\n DataFilesList.from_local_or_remote(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/data_files.py\", line 764, in from_local_or_remote\r\n data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/data_files.py\", line 362, in resolve_patterns_locally_or_by_urls\r\n for path in _resolve_single_pattern_locally(base_path, pattern, allowed_extensions):\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/data_files.py\", line 306, in _resolve_single_pattern_locally\r\n raise FileNotFoundError(error_msg)\r\nFileNotFoundError: Unable to find '/home/fm001/hzl/Data/qa/' at /\r\n>>> mydata = load_dataset(\"/home/fm001/hzl/Data/qa/\")\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1767, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1508, in load_dataset_builder\r\n builder_cls = import_main_class(dataset_module.module_path)\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 115, in import_main_class\r\n module = importlib.import_module(module_path)\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/importlib/__init__.py\", line 127, in import_module\r\n return _bootstrap._gcd_import(name[level:], package, level)\r\n File \"<frozen importlib._bootstrap>\", line 1014, in _gcd_import\r\n File \"<frozen importlib._bootstrap>\", line 991, in _find_and_load\r\n File \"<frozen importlib._bootstrap>\", line 975, in _find_and_load_unlocked\r\n File \"<frozen importlib._bootstrap>\", line 671, in _load_unlocked\r\n File \"<frozen importlib._bootstrap_external>\", line 783, in exec_module\r\n File \"<frozen importlib._bootstrap>\", line 219, in _call_with_frames_removed\r\n File \"/home/fm001/.cache/huggingface/modules/datasets_modules/datasets/qa/b8b9f481eff9d17b769b4b50f30a51da32b47c94d1af4d2bdffb9fc2c589513a/qa.py\", line 2, in <module>\r\n mydata = load_dataset(\"/home/fm001/hzl/Data/qa/\")\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1767, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py\", line 1524, in load_dataset_builder\r\n builder_instance: DatasetBuilder = builder_cls(\r\nTypeError: 'NoneType' object is not callable\r\n\r\nAnd I follow the setting with https://huggingface.co/docs/datasets/dataset_script" ]
2023-05-10T02:39:28Z
2023-05-15T03:51:36Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When I use DeepSpeed train a model with my own " XXX.csv" dataset I got the follow question: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py", line 1767, in load_dataset builder_instance = load_dataset_builder( File "/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py", line 1498, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/fm001/.conda/envs/hzl/lib/python3.8/site-packages/datasets/load.py", line 1217, in dataset_module_factory raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at /home/fm001/hzl/Data/qa.csv/qa.csv.py or any data file in the same directory. ### Steps to reproduce the bug my code is : from datasets import load_dataset mydata = load_dataset("/home/fm001/hzl/Data/qa.csv") ### Expected behavior 。。。 ### Environment info 。。。
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5837/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5837/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6367
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6367/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6367/comments
https://api.github.com/repos/huggingface/datasets/issues/6367/events
https://github.com/huggingface/datasets/pull/6367
1,971,015,861
PR_kwDODunzps5eQy1D
6,367
Fix time measuring snippet in docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007683 / 0.011353 (-0.003670) | 0.004159 / 0.011008 (-0.006849) | 0.097017 / 0.038508 (0.058509) | 0.074216 / 0.023109 (0.051107) | 0.323115 / 0.275898 (0.047217) | 0.412836 / 0.323480 (0.089356) | 0.005151 / 0.007986 (-0.002834) | 0.004037 / 0.004328 (-0.000292) | 0.067881 / 0.004250 (0.063631) | 0.051395 / 0.037052 (0.014342) | 0.356391 / 0.258489 (0.097901) | 0.386744 / 0.293841 (0.092903) | 0.043571 / 0.128546 (-0.084975) | 0.012844 / 0.075646 (-0.062803) | 0.369440 / 0.419271 (-0.049832) | 0.056944 / 0.043533 (0.013411) | 0.316159 / 0.255139 (0.061020) | 0.435530 / 0.283200 (0.152330) | 0.033622 / 0.141683 (-0.108061) | 1.379602 / 1.452155 (-0.072553) | 1.766400 / 1.492716 (0.273683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304151 / 0.018006 (0.286145) | 0.616365 / 0.000490 (0.615875) | 0.013588 / 0.000200 (0.013389) | 0.000441 / 0.000054 (0.000387) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032812 / 0.037411 (-0.004600) | 0.100914 / 0.014526 (0.086388) | 0.124004 / 0.176557 (-0.052552) | 0.195087 / 0.737135 (-0.542048) | 0.124388 / 0.296338 (-0.171951) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575649 / 0.215209 (0.360440) | 5.665461 / 2.077655 (3.587806) | 2.474892 / 1.504120 (0.970773) | 2.142687 / 1.541195 (0.601492) | 2.254962 / 1.468490 (0.786472) | 0.816635 / 4.584777 (-3.768141) | 5.044279 / 3.745712 (1.298567) | 4.566728 / 5.269862 (-0.703134) | 2.867146 / 4.565676 (-1.698531) | 0.092994 / 0.424275 (-0.331281) | 0.008395 / 0.007607 (0.000788) | 0.680346 / 0.226044 (0.454302) | 6.909875 / 2.268929 (4.640946) | 3.275602 / 55.444624 (-52.169022) | 2.556000 / 6.876477 (-4.320477) | 2.581337 / 2.142072 (0.439264) | 0.997883 / 4.805227 (-3.807344) | 0.204109 / 6.500664 (-6.296555) | 0.069705 / 0.075469 (-0.005764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.504573 / 1.841788 (-0.337215) | 22.219363 / 8.074308 (14.145055) | 19.078040 / 10.191392 (8.886648) | 0.234970 / 0.680424 (-0.445454) | 0.027324 / 0.534201 (-0.506877) | 0.427960 / 0.579283 (-0.151323) | 0.570258 / 0.434364 (0.135894) | 0.502335 / 0.540337 (-0.038003) | 0.788078 / 1.386936 (-0.598858) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008370 / 0.011353 (-0.002982) | 0.004573 / 0.011008 (-0.006435) | 0.073080 / 0.038508 (0.034572) | 0.068752 / 0.023109 (0.045643) | 0.439648 / 0.275898 (0.163750) | 0.499700 / 0.323480 (0.176220) | 0.006119 / 0.007986 (-0.001866) | 0.004300 / 0.004328 (-0.000028) | 0.073173 / 0.004250 (0.068923) | 0.055676 / 0.037052 (0.018624) | 0.464152 / 0.258489 (0.205663) | 0.476954 / 0.293841 (0.183113) | 0.046335 / 0.128546 (-0.082211) | 0.013373 / 0.075646 (-0.062274) | 0.092006 / 0.419271 (-0.327265) | 0.054802 / 0.043533 (0.011269) | 0.456594 / 0.255139 (0.201455) | 0.491931 / 0.283200 (0.208732) | 0.034021 / 0.141683 (-0.107662) | 1.575200 / 1.452155 (0.123045) | 1.689742 / 1.492716 (0.197026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299432 / 0.018006 (0.281426) | 0.605643 / 0.000490 (0.605153) | 0.006280 / 0.000200 (0.006080) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028414 / 0.037411 (-0.008997) | 0.085812 / 0.014526 (0.071286) | 0.109142 / 0.176557 (-0.067414) | 0.163458 / 0.737135 (-0.573677) | 0.100837 / 0.296338 (-0.195501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615557 / 0.215209 (0.400348) | 6.051599 / 2.077655 (3.973944) | 2.872353 / 1.504120 (1.368234) | 2.508322 / 1.541195 (0.967128) | 2.550073 / 1.468490 (1.081583) | 0.835793 / 4.584777 (-3.748983) | 5.208484 / 3.745712 (1.462772) | 4.361846 / 5.269862 (-0.908016) | 2.776164 / 4.565676 (-1.789513) | 0.090831 / 0.424275 (-0.333444) | 0.007320 / 0.007607 (-0.000287) | 0.725533 / 0.226044 (0.499488) | 7.051321 / 2.268929 (4.782393) | 3.515464 / 55.444624 (-51.929160) | 2.798193 / 6.876477 (-4.078284) | 3.022512 / 2.142072 (0.880440) | 0.986744 / 4.805227 (-3.818484) | 0.198050 / 6.500664 (-6.302615) | 0.069200 / 0.075469 (-0.006269) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623759 / 1.841788 (-0.218029) | 22.269700 / 8.074308 (14.195392) | 19.577429 / 10.191392 (9.386037) | 0.215990 / 0.680424 (-0.464434) | 0.033005 / 0.534201 (-0.501196) | 0.436848 / 0.579283 (-0.142435) | 0.591442 / 0.434364 (0.157078) | 0.547701 / 0.540337 (0.007364) | 0.741695 / 1.386936 (-0.645241) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e17e139b1323aca3321a5d2c2da40d82c458bae \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009027 / 0.011353 (-0.002326) | 0.006118 / 0.011008 (-0.004890) | 0.118939 / 0.038508 (0.080431) | 0.089979 / 0.023109 (0.066869) | 0.412425 / 0.275898 (0.136527) | 0.455706 / 0.323480 (0.132227) | 0.006762 / 0.007986 (-0.001224) | 0.004409 / 0.004328 (0.000080) | 0.088002 / 0.004250 (0.083751) | 0.063708 / 0.037052 (0.026656) | 0.417373 / 0.258489 (0.158884) | 0.489582 / 0.293841 (0.195741) | 0.050222 / 0.128546 (-0.078324) | 0.014386 / 0.075646 (-0.061260) | 0.435363 / 0.419271 (0.016092) | 0.069375 / 0.043533 (0.025842) | 0.410242 / 0.255139 (0.155103) | 0.436439 / 0.283200 (0.153239) | 0.039318 / 0.141683 (-0.102365) | 1.857574 / 1.452155 (0.405419) | 1.919402 / 1.492716 (0.426686) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343916 / 0.018006 (0.325910) | 0.633639 / 0.000490 (0.633150) | 0.014756 / 0.000200 (0.014557) | 0.000707 / 0.000054 (0.000652) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031983 / 0.037411 (-0.005429) | 0.097222 / 0.014526 (0.082697) | 0.114644 / 0.176557 (-0.061912) | 0.187787 / 0.737135 (-0.549348) | 0.120595 / 0.296338 (-0.175743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605861 / 0.215209 (0.390652) | 6.039318 / 2.077655 (3.961664) | 2.699251 / 1.504120 (1.195132) | 2.436398 / 1.541195 (0.895203) | 2.493653 / 1.468490 (1.025163) | 0.889423 / 4.584777 (-3.695354) | 5.384769 / 3.745712 (1.639056) | 5.033033 / 5.269862 (-0.236829) | 3.056894 / 4.565676 (-1.508783) | 0.100683 / 0.424275 (-0.323592) | 0.009103 / 0.007607 (0.001495) | 0.737066 / 0.226044 (0.511021) | 7.370485 / 2.268929 (5.101556) | 3.422670 / 55.444624 (-52.021954) | 2.830392 / 6.876477 (-4.046084) | 2.985789 / 2.142072 (0.843717) | 0.999239 / 4.805227 (-3.805989) | 0.203506 / 6.500664 (-6.297158) | 0.076135 / 0.075469 (0.000666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.697001 / 1.841788 (-0.144787) | 24.653975 / 8.074308 (16.579667) | 22.241622 / 10.191392 (12.050230) | 0.257075 / 0.680424 (-0.423349) | 0.029159 / 0.534201 (-0.505041) | 0.493329 / 0.579283 (-0.085954) | 0.596661 / 0.434364 (0.162297) | 0.569431 / 0.540337 (0.029094) | 0.812231 / 1.386936 (-0.574705) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009815 / 0.011353 (-0.001538) | 0.005136 / 0.011008 (-0.005872) | 0.078224 / 0.038508 (0.039716) | 0.103276 / 0.023109 (0.080166) | 0.512742 / 0.275898 (0.236844) | 0.544010 / 0.323480 (0.220530) | 0.007957 / 0.007986 (-0.000029) | 0.004629 / 0.004328 (0.000300) | 0.074983 / 0.004250 (0.070733) | 0.071831 / 0.037052 (0.034778) | 0.542752 / 0.258489 (0.284262) | 0.573176 / 0.293841 (0.279335) | 0.053939 / 0.128546 (-0.074607) | 0.015007 / 0.075646 (-0.060640) | 0.085389 / 0.419271 (-0.333882) | 0.063587 / 0.043533 (0.020055) | 0.509580 / 0.255139 (0.254441) | 0.563374 / 0.283200 (0.280174) | 0.037575 / 0.141683 (-0.104108) | 1.840740 / 1.452155 (0.388585) | 1.836414 / 1.492716 (0.343698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310188 / 0.018006 (0.292182) | 0.641478 / 0.000490 (0.640988) | 0.011057 / 0.000200 (0.010857) | 0.000173 / 0.000054 (0.000119) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043280 / 0.037411 (0.005869) | 0.109256 / 0.014526 (0.094730) | 0.126701 / 0.176557 (-0.049856) | 0.199172 / 0.737135 (-0.537963) | 0.123584 / 0.296338 (-0.172755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649272 / 0.215209 (0.434063) | 6.487501 / 2.077655 (4.409846) | 3.170330 / 1.504120 (1.666210) | 2.960912 / 1.541195 (1.419718) | 3.024531 / 1.468490 (1.556041) | 0.905112 / 4.584777 (-3.679665) | 5.560961 / 3.745712 (1.815249) | 4.920463 / 5.269862 (-0.349399) | 3.158989 / 4.565676 (-1.406687) | 0.095444 / 0.424275 (-0.328831) | 0.008264 / 0.007607 (0.000657) | 0.819292 / 0.226044 (0.593247) | 7.982695 / 2.268929 (5.713767) | 4.098704 / 55.444624 (-51.345921) | 3.442330 / 6.876477 (-3.434147) | 3.763426 / 2.142072 (1.621354) | 1.065464 / 4.805227 (-3.739763) | 0.215089 / 6.500664 (-6.285575) | 0.085280 / 0.075469 (0.009811) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.881770 / 1.841788 (0.039983) | 25.671479 / 8.074308 (17.597171) | 22.367019 / 10.191392 (12.175627) | 0.241377 / 0.680424 (-0.439047) | 0.033555 / 0.534201 (-0.500646) | 0.501786 / 0.579283 (-0.077497) | 0.596376 / 0.434364 (0.162012) | 0.579674 / 0.540337 (0.039337) | 0.855534 / 1.386936 (-0.531402) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c9c1166e1cf81d38534020f9c167b326585339e5 \"CML watermark\")\n" ]
2023-10-31T17:57:17Z
2023-10-31T18:35:53Z
2023-10-31T18:24:02Z
COLLABORATOR
null
null
null
Fix https://discuss.huggingface.co/t/attributeerror-enter/60509
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6367/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6367/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6367.diff", "html_url": "https://github.com/huggingface/datasets/pull/6367", "merged_at": "2023-10-31T18:24:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/6367.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6367" }
https://api.github.com/repos/huggingface/datasets/issues/7385
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7385/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7385/comments
https://api.github.com/repos/huggingface/datasets/issues/7385/events
https://github.com/huggingface/datasets/pull/7385
2,830,664,522
PR_kwDODunzps6KBO6i
7,385
Make IterableDataset (optionally) resumable
{ "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yzhangcs", "id": 18402347, "login": "yzhangcs", "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "repos_url": "https://api.github.com/users/yzhangcs/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "type": "User", "url": "https://api.github.com/users/yzhangcs", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq Hi again~ Just circling back on this\r\nWondering if there’s anything I can do to help move this forward. 🤗 \r\nThanks!", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7385). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-02-04T15:55:33Z
2025-03-03T17:31:40Z
null
CONTRIBUTOR
null
null
null
### What does this PR do? This PR introduces a new `stateful` option to the `dataset.shuffle` method, which defaults to `False`. When enabled, this option allows for resumable shuffling of `IterableDataset` instances, albeit with some additional memory overhead. Key points: * All tests have passed * Docstrings have been updated to reflect the new functionality I'm very looking forward to receiving feedback on this implementation! @lhoestq
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7385/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7385/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7385.diff", "html_url": "https://github.com/huggingface/datasets/pull/7385", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7385.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7385" }
https://api.github.com/repos/huggingface/datasets/issues/6981
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6981/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6981/comments
https://api.github.com/repos/huggingface/datasets/issues/6981/events
https://github.com/huggingface/datasets/pull/6981
2,361,520,022
PR_kwDODunzps5y6tnN
6,981
Update docs on trust_remote_code defaults to False
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6981). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005578 / 0.011353 (-0.005775) | 0.003946 / 0.011008 (-0.007062) | 0.063317 / 0.038508 (0.024808) | 0.031878 / 0.023109 (0.008769) | 0.312571 / 0.275898 (0.036673) | 0.281415 / 0.323480 (-0.042065) | 0.004139 / 0.007986 (-0.003846) | 0.002730 / 0.004328 (-0.001598) | 0.049539 / 0.004250 (0.045289) | 0.045056 / 0.037052 (0.008003) | 0.263820 / 0.258489 (0.005330) | 0.297817 / 0.293841 (0.003976) | 0.029490 / 0.128546 (-0.099056) | 0.012467 / 0.075646 (-0.063179) | 0.204607 / 0.419271 (-0.214664) | 0.036305 / 0.043533 (-0.007228) | 0.244102 / 0.255139 (-0.011037) | 0.267855 / 0.283200 (-0.015345) | 0.019794 / 0.141683 (-0.121889) | 1.130784 / 1.452155 (-0.321371) | 1.172507 / 1.492716 (-0.320209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092430 / 0.018006 (0.074424) | 0.296460 / 0.000490 (0.295970) | 0.000210 / 0.000200 (0.000010) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019467 / 0.037411 (-0.017944) | 0.062850 / 0.014526 (0.048324) | 0.074067 / 0.176557 (-0.102490) | 0.123280 / 0.737135 (-0.613856) | 0.077036 / 0.296338 (-0.219302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282687 / 0.215209 (0.067478) | 2.786715 / 2.077655 (0.709060) | 1.492028 / 1.504120 (-0.012092) | 1.373603 / 1.541195 (-0.167592) | 1.405004 / 1.468490 (-0.063486) | 0.714408 / 4.584777 (-3.870369) | 2.376785 / 3.745712 (-1.368927) | 2.916150 / 5.269862 (-2.353712) | 1.921184 / 4.565676 (-2.644493) | 0.078354 / 0.424275 (-0.345921) | 0.005236 / 0.007607 (-0.002371) | 0.334647 / 0.226044 (0.108603) | 3.262069 / 2.268929 (0.993140) | 1.858300 / 55.444624 (-53.586324) | 1.572968 / 6.876477 (-5.303509) | 1.659145 / 2.142072 (-0.482927) | 0.779546 / 4.805227 (-4.025681) | 0.132623 / 6.500664 (-6.368041) | 0.042423 / 0.075469 (-0.033046) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985516 / 1.841788 (-0.856271) | 12.001321 / 8.074308 (3.927013) | 9.927011 / 10.191392 (-0.264381) | 0.142645 / 0.680424 (-0.537779) | 0.013808 / 0.534201 (-0.520393) | 0.303422 / 0.579283 (-0.275861) | 0.262666 / 0.434364 (-0.171698) | 0.339369 / 0.540337 (-0.200969) | 0.431028 / 1.386936 (-0.955908) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005848 / 0.011353 (-0.005505) | 0.003971 / 0.011008 (-0.007037) | 0.050746 / 0.038508 (0.012238) | 0.031554 / 0.023109 (0.008445) | 0.277678 / 0.275898 (0.001780) | 0.300776 / 0.323480 (-0.022704) | 0.004428 / 0.007986 (-0.003558) | 0.002773 / 0.004328 (-0.001555) | 0.049882 / 0.004250 (0.045632) | 0.039833 / 0.037052 (0.002780) | 0.289143 / 0.258489 (0.030654) | 0.321425 / 0.293841 (0.027584) | 0.031701 / 0.128546 (-0.096845) | 0.012687 / 0.075646 (-0.062960) | 0.060650 / 0.419271 (-0.358621) | 0.033318 / 0.043533 (-0.010215) | 0.277019 / 0.255139 (0.021880) | 0.292345 / 0.283200 (0.009145) | 0.018520 / 0.141683 (-0.123163) | 1.143933 / 1.452155 (-0.308222) | 1.183913 / 1.492716 (-0.308803) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094467 / 0.018006 (0.076461) | 0.298822 / 0.000490 (0.298332) | 0.000201 / 0.000200 (0.000001) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022811 / 0.037411 (-0.014601) | 0.078084 / 0.014526 (0.063558) | 0.089079 / 0.176557 (-0.087477) | 0.130229 / 0.737135 (-0.606906) | 0.090851 / 0.296338 (-0.205487) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294981 / 0.215209 (0.079772) | 2.908294 / 2.077655 (0.830639) | 1.591281 / 1.504120 (0.087161) | 1.446032 / 1.541195 (-0.095162) | 1.469441 / 1.468490 (0.000951) | 0.726477 / 4.584777 (-3.858300) | 0.983086 / 3.745712 (-2.762626) | 2.892715 / 5.269862 (-2.377147) | 1.974092 / 4.565676 (-2.591584) | 0.079500 / 0.424275 (-0.344775) | 0.005497 / 0.007607 (-0.002110) | 0.342220 / 0.226044 (0.116176) | 3.414508 / 2.268929 (1.145579) | 1.941550 / 55.444624 (-53.503074) | 1.645268 / 6.876477 (-5.231209) | 1.805909 / 2.142072 (-0.336163) | 0.814483 / 4.805227 (-3.990744) | 0.135867 / 6.500664 (-6.364797) | 0.041718 / 0.075469 (-0.033751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.999751 / 1.841788 (-0.842036) | 12.488263 / 8.074308 (4.413954) | 10.867040 / 10.191392 (0.675648) | 0.143999 / 0.680424 (-0.536425) | 0.015496 / 0.534201 (-0.518705) | 0.302170 / 0.579283 (-0.277113) | 0.123753 / 0.434364 (-0.310611) | 0.340424 / 0.540337 (-0.199913) | 0.458339 / 1.386936 (-0.928597) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a6ccf944e42c1a84de81bf326accab9999b86c90 \"CML watermark\")\n" ]
2024-06-19T07:12:21Z
2024-06-19T14:32:59Z
2024-06-19T14:26:37Z
MEMBER
null
null
null
Update docs on trust_remote_code defaults to False. The docs needed to be updated due to this PR: - #6954
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6981/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6981/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6981.diff", "html_url": "https://github.com/huggingface/datasets/pull/6981", "merged_at": "2024-06-19T14:26:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/6981.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6981" }
https://api.github.com/repos/huggingface/datasets/issues/7487
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7487/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7487/comments
https://api.github.com/repos/huggingface/datasets/issues/7487/events
https://github.com/huggingface/datasets/pull/7487
2,956,533,448
PR_kwDODunzps6QlF8N
7,487
Write pdf in map
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7487). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-28T15:49:25Z
2025-03-28T17:09:53Z
2025-03-28T17:09:51Z
MEMBER
null
null
null
Fix this error when mapping a PDF dataset ``` pyarrow.lib.ArrowInvalid: Could not convert <pdfplumber.pdf.PDF object at 0x13498ee40> with type PDF: did not recognize Python value type when inferring an Arrow data type ``` and also let map() outputs be lists of images or pdfs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7487/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7487/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7487.diff", "html_url": "https://github.com/huggingface/datasets/pull/7487", "merged_at": "2025-03-28T17:09:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/7487.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7487" }
https://api.github.com/repos/huggingface/datasets/issues/6454
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6454/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6454/comments
https://api.github.com/repos/huggingface/datasets/issues/6454/events
https://github.com/huggingface/datasets/pull/6454
2,013,001,584
PR_kwDODunzps5gej3H
6,454
Refactor `dill` logic
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005490 / 0.011353 (-0.005863) | 0.003554 / 0.011008 (-0.007454) | 0.062183 / 0.038508 (0.023675) | 0.053093 / 0.023109 (0.029984) | 0.245370 / 0.275898 (-0.030528) | 0.271637 / 0.323480 (-0.051842) | 0.002997 / 0.007986 (-0.004989) | 0.002811 / 0.004328 (-0.001517) | 0.047874 / 0.004250 (0.043623) | 0.039673 / 0.037052 (0.002620) | 0.253219 / 0.258489 (-0.005271) | 0.280438 / 0.293841 (-0.013403) | 0.028393 / 0.128546 (-0.100153) | 0.010914 / 0.075646 (-0.064732) | 0.207491 / 0.419271 (-0.211781) | 0.037565 / 0.043533 (-0.005968) | 0.252382 / 0.255139 (-0.002757) | 0.272204 / 0.283200 (-0.010995) | 0.019007 / 0.141683 (-0.122676) | 1.099767 / 1.452155 (-0.352388) | 1.173220 / 1.492716 (-0.319496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098777 / 0.018006 (0.080771) | 0.325912 / 0.000490 (0.325422) | 0.000214 / 0.000200 (0.000014) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018815 / 0.037411 (-0.018596) | 0.070031 / 0.014526 (0.055506) | 0.075395 / 0.176557 (-0.101162) | 0.122633 / 0.737135 (-0.614502) | 0.077621 / 0.296338 (-0.218718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290830 / 0.215209 (0.075621) | 2.869214 / 2.077655 (0.791559) | 1.507337 / 1.504120 (0.003217) | 1.351391 / 1.541195 (-0.189804) | 1.386642 / 1.468490 (-0.081848) | 0.570318 / 4.584777 (-4.014459) | 2.423442 / 3.745712 (-1.322270) | 2.897812 / 5.269862 (-2.372050) | 1.796458 / 4.565676 (-2.769219) | 0.063649 / 0.424275 (-0.360626) | 0.005038 / 0.007607 (-0.002570) | 0.357819 / 0.226044 (0.131774) | 3.535478 / 2.268929 (1.266549) | 1.831764 / 55.444624 (-53.612861) | 1.545035 / 6.876477 (-5.331442) | 1.585919 / 2.142072 (-0.556154) | 0.643333 / 4.805227 (-4.161894) | 0.120319 / 6.500664 (-6.380345) | 0.043031 / 0.075469 (-0.032438) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981155 / 1.841788 (-0.860633) | 12.136069 / 8.074308 (4.061760) | 10.579923 / 10.191392 (0.388531) | 0.152963 / 0.680424 (-0.527461) | 0.014783 / 0.534201 (-0.519418) | 0.289177 / 0.579283 (-0.290106) | 0.271784 / 0.434364 (-0.162580) | 0.322381 / 0.540337 (-0.217956) | 0.420034 / 1.386936 (-0.966902) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005315 / 0.011353 (-0.006038) | 0.003584 / 0.011008 (-0.007424) | 0.048596 / 0.038508 (0.010088) | 0.055940 / 0.023109 (0.032830) | 0.277687 / 0.275898 (0.001789) | 0.301545 / 0.323480 (-0.021935) | 0.004150 / 0.007986 (-0.003836) | 0.002699 / 0.004328 (-0.001629) | 0.047661 / 0.004250 (0.043410) | 0.040618 / 0.037052 (0.003565) | 0.279173 / 0.258489 (0.020684) | 0.306105 / 0.293841 (0.012264) | 0.030099 / 0.128546 (-0.098447) | 0.010784 / 0.075646 (-0.064862) | 0.057418 / 0.419271 (-0.361853) | 0.032632 / 0.043533 (-0.010901) | 0.276064 / 0.255139 (0.020925) | 0.307194 / 0.283200 (0.023995) | 0.017416 / 0.141683 (-0.124267) | 1.107749 / 1.452155 (-0.344406) | 1.161104 / 1.492716 (-0.331612) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102395 / 0.018006 (0.084389) | 0.316933 / 0.000490 (0.316443) | 0.000246 / 0.000200 (0.000046) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022833 / 0.037411 (-0.014579) | 0.069372 / 0.014526 (0.054846) | 0.082139 / 0.176557 (-0.094418) | 0.121666 / 0.737135 (-0.615469) | 0.084039 / 0.296338 (-0.212300) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298775 / 0.215209 (0.083566) | 2.973898 / 2.077655 (0.896244) | 1.614436 / 1.504120 (0.110316) | 1.476112 / 1.541195 (-0.065083) | 1.502031 / 1.468490 (0.033541) | 0.580626 / 4.584777 (-4.004151) | 2.493428 / 3.745712 (-1.252285) | 2.931050 / 5.269862 (-2.338811) | 1.823603 / 4.565676 (-2.742073) | 0.064736 / 0.424275 (-0.359539) | 0.004963 / 0.007607 (-0.002644) | 0.355096 / 0.226044 (0.129052) | 3.522801 / 2.268929 (1.253872) | 1.968690 / 55.444624 (-53.475935) | 1.698624 / 6.876477 (-5.177853) | 1.714166 / 2.142072 (-0.427906) | 0.681734 / 4.805227 (-4.123493) | 0.118940 / 6.500664 (-6.381724) | 0.041960 / 0.075469 (-0.033509) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985311 / 1.841788 (-0.856476) | 12.785393 / 8.074308 (4.711085) | 11.289459 / 10.191392 (1.098067) | 0.145297 / 0.680424 (-0.535127) | 0.016125 / 0.534201 (-0.518076) | 0.289445 / 0.579283 (-0.289838) | 0.278974 / 0.434364 (-0.155390) | 0.322456 / 0.540337 (-0.217881) | 0.418218 / 1.386936 (-0.968718) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#66cef090c55d3561412468d94cb545b47fb000fb \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005142 / 0.011353 (-0.006211) | 0.004180 / 0.011008 (-0.006829) | 0.062647 / 0.038508 (0.024139) | 0.055072 / 0.023109 (0.031962) | 0.254681 / 0.275898 (-0.021217) | 0.282650 / 0.323480 (-0.040830) | 0.003950 / 0.007986 (-0.004035) | 0.002862 / 0.004328 (-0.001466) | 0.048420 / 0.004250 (0.044170) | 0.038447 / 0.037052 (0.001394) | 0.258160 / 0.258489 (-0.000329) | 0.288596 / 0.293841 (-0.005245) | 0.027898 / 0.128546 (-0.100648) | 0.011165 / 0.075646 (-0.064482) | 0.206844 / 0.419271 (-0.212427) | 0.036312 / 0.043533 (-0.007221) | 0.257957 / 0.255139 (0.002819) | 0.277387 / 0.283200 (-0.005812) | 0.018205 / 0.141683 (-0.123478) | 1.109870 / 1.452155 (-0.342284) | 1.175005 / 1.492716 (-0.317712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096692 / 0.018006 (0.078686) | 0.307463 / 0.000490 (0.306973) | 0.000218 / 0.000200 (0.000018) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018602 / 0.037411 (-0.018809) | 0.061489 / 0.014526 (0.046964) | 0.072936 / 0.176557 (-0.103620) | 0.119863 / 0.737135 (-0.617272) | 0.073983 / 0.296338 (-0.222355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291444 / 0.215209 (0.076235) | 2.849024 / 2.077655 (0.771369) | 1.533121 / 1.504120 (0.029001) | 1.402148 / 1.541195 (-0.139046) | 1.406397 / 1.468490 (-0.062094) | 0.564241 / 4.584777 (-4.020536) | 2.402052 / 3.745712 (-1.343660) | 2.772639 / 5.269862 (-2.497223) | 1.732342 / 4.565676 (-2.833334) | 0.062361 / 0.424275 (-0.361914) | 0.004945 / 0.007607 (-0.002662) | 0.355841 / 0.226044 (0.129797) | 3.426931 / 2.268929 (1.158003) | 1.865412 / 55.444624 (-53.579212) | 1.592628 / 6.876477 (-5.283849) | 1.662364 / 2.142072 (-0.479708) | 0.653278 / 4.805227 (-4.151949) | 0.118626 / 6.500664 (-6.382038) | 0.042961 / 0.075469 (-0.032508) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.956279 / 1.841788 (-0.885509) | 11.635540 / 8.074308 (3.561232) | 10.719590 / 10.191392 (0.528198) | 0.130015 / 0.680424 (-0.550409) | 0.014424 / 0.534201 (-0.519777) | 0.288135 / 0.579283 (-0.291148) | 0.270819 / 0.434364 (-0.163545) | 0.320238 / 0.540337 (-0.220099) | 0.421044 / 1.386936 (-0.965892) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005201 / 0.011353 (-0.006152) | 0.003467 / 0.011008 (-0.007541) | 0.048939 / 0.038508 (0.010431) | 0.051841 / 0.023109 (0.028732) | 0.273708 / 0.275898 (-0.002190) | 0.293491 / 0.323480 (-0.029988) | 0.004830 / 0.007986 (-0.003156) | 0.002696 / 0.004328 (-0.001632) | 0.047727 / 0.004250 (0.043476) | 0.041319 / 0.037052 (0.004266) | 0.273837 / 0.258489 (0.015348) | 0.309860 / 0.293841 (0.016019) | 0.029054 / 0.128546 (-0.099492) | 0.010410 / 0.075646 (-0.065237) | 0.058139 / 0.419271 (-0.361133) | 0.032682 / 0.043533 (-0.010850) | 0.273244 / 0.255139 (0.018105) | 0.291579 / 0.283200 (0.008380) | 0.018262 / 0.141683 (-0.123421) | 1.144590 / 1.452155 (-0.307565) | 1.202474 / 1.492716 (-0.290243) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097110 / 0.018006 (0.079104) | 0.307344 / 0.000490 (0.306854) | 0.000229 / 0.000200 (0.000029) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022263 / 0.037411 (-0.015148) | 0.070140 / 0.014526 (0.055614) | 0.081251 / 0.176557 (-0.095306) | 0.120839 / 0.737135 (-0.616297) | 0.083312 / 0.296338 (-0.213026) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297381 / 0.215209 (0.082172) | 2.895530 / 2.077655 (0.817875) | 1.608442 / 1.504120 (0.104322) | 1.476237 / 1.541195 (-0.064958) | 1.491306 / 1.468490 (0.022816) | 0.567272 / 4.584777 (-4.017505) | 2.463543 / 3.745712 (-1.282170) | 2.814764 / 5.269862 (-2.455098) | 1.725845 / 4.565676 (-2.839831) | 0.064149 / 0.424275 (-0.360126) | 0.004953 / 0.007607 (-0.002654) | 0.359629 / 0.226044 (0.133585) | 3.482414 / 2.268929 (1.213486) | 1.949897 / 55.444624 (-53.494727) | 1.677383 / 6.876477 (-5.199094) | 1.683655 / 2.142072 (-0.458418) | 0.645671 / 4.805227 (-4.159557) | 0.115612 / 6.500664 (-6.385053) | 0.041013 / 0.075469 (-0.034456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967843 / 1.841788 (-0.873945) | 12.376877 / 8.074308 (4.302569) | 10.988174 / 10.191392 (0.796782) | 0.134660 / 0.680424 (-0.545764) | 0.015801 / 0.534201 (-0.518400) | 0.288699 / 0.579283 (-0.290584) | 0.284887 / 0.434364 (-0.149477) | 0.322000 / 0.540337 (-0.218337) | 0.412360 / 1.386936 (-0.974576) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#148454d48b7c36507a283217c7c0e3bcc0539f75 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005407 / 0.011353 (-0.005946) | 0.003496 / 0.011008 (-0.007512) | 0.062730 / 0.038508 (0.024222) | 0.051882 / 0.023109 (0.028773) | 0.244766 / 0.275898 (-0.031132) | 0.257963 / 0.323480 (-0.065516) | 0.002894 / 0.007986 (-0.005092) | 0.002567 / 0.004328 (-0.001761) | 0.048756 / 0.004250 (0.044506) | 0.039024 / 0.037052 (0.001971) | 0.247303 / 0.258489 (-0.011186) | 0.278341 / 0.293841 (-0.015500) | 0.026725 / 0.128546 (-0.101821) | 0.010577 / 0.075646 (-0.065069) | 0.210483 / 0.419271 (-0.208789) | 0.035230 / 0.043533 (-0.008303) | 0.246125 / 0.255139 (-0.009014) | 0.264039 / 0.283200 (-0.019160) | 0.019881 / 0.141683 (-0.121802) | 1.113475 / 1.452155 (-0.338679) | 1.149606 / 1.492716 (-0.343110) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092946 / 0.018006 (0.074940) | 0.299985 / 0.000490 (0.299495) | 0.000215 / 0.000200 (0.000016) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018421 / 0.037411 (-0.018991) | 0.060531 / 0.014526 (0.046005) | 0.074459 / 0.176557 (-0.102098) | 0.120369 / 0.737135 (-0.616766) | 0.075505 / 0.296338 (-0.220833) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289497 / 0.215209 (0.074288) | 2.783139 / 2.077655 (0.705485) | 1.482533 / 1.504120 (-0.021587) | 1.371013 / 1.541195 (-0.170182) | 1.379114 / 1.468490 (-0.089376) | 0.563953 / 4.584777 (-4.020824) | 2.389996 / 3.745712 (-1.355716) | 2.788067 / 5.269862 (-2.481795) | 1.751772 / 4.565676 (-2.813904) | 0.062680 / 0.424275 (-0.361595) | 0.004901 / 0.007607 (-0.002706) | 0.365193 / 0.226044 (0.139149) | 3.389181 / 2.268929 (1.120252) | 1.861659 / 55.444624 (-53.582965) | 1.558899 / 6.876477 (-5.317577) | 1.591079 / 2.142072 (-0.550993) | 0.648300 / 4.805227 (-4.156927) | 0.117486 / 6.500664 (-6.383178) | 0.041961 / 0.075469 (-0.033508) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.944391 / 1.841788 (-0.897396) | 11.500823 / 8.074308 (3.426515) | 10.580430 / 10.191392 (0.389038) | 0.142845 / 0.680424 (-0.537579) | 0.014305 / 0.534201 (-0.519896) | 0.290723 / 0.579283 (-0.288560) | 0.266206 / 0.434364 (-0.168158) | 0.325482 / 0.540337 (-0.214856) | 0.416224 / 1.386936 (-0.970712) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005363 / 0.011353 (-0.005990) | 0.003548 / 0.011008 (-0.007460) | 0.048704 / 0.038508 (0.010196) | 0.051025 / 0.023109 (0.027916) | 0.273037 / 0.275898 (-0.002861) | 0.297148 / 0.323480 (-0.026332) | 0.003985 / 0.007986 (-0.004001) | 0.002739 / 0.004328 (-0.001590) | 0.048108 / 0.004250 (0.043857) | 0.040244 / 0.037052 (0.003191) | 0.277825 / 0.258489 (0.019336) | 0.303704 / 0.293841 (0.009863) | 0.029460 / 0.128546 (-0.099086) | 0.010428 / 0.075646 (-0.065218) | 0.057022 / 0.419271 (-0.362249) | 0.032711 / 0.043533 (-0.010822) | 0.274462 / 0.255139 (0.019323) | 0.293499 / 0.283200 (0.010299) | 0.018266 / 0.141683 (-0.123417) | 1.158049 / 1.452155 (-0.294106) | 1.170097 / 1.492716 (-0.322620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093412 / 0.018006 (0.075406) | 0.301538 / 0.000490 (0.301049) | 0.000222 / 0.000200 (0.000022) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021698 / 0.037411 (-0.015713) | 0.068735 / 0.014526 (0.054209) | 0.083010 / 0.176557 (-0.093546) | 0.127491 / 0.737135 (-0.609644) | 0.083005 / 0.296338 (-0.213333) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298299 / 0.215209 (0.083090) | 2.894209 / 2.077655 (0.816554) | 1.597455 / 1.504120 (0.093335) | 1.472953 / 1.541195 (-0.068241) | 1.491553 / 1.468490 (0.023063) | 0.556566 / 4.584777 (-4.028211) | 2.419429 / 3.745712 (-1.326283) | 2.788706 / 5.269862 (-2.481156) | 1.759888 / 4.565676 (-2.805789) | 0.062535 / 0.424275 (-0.361740) | 0.004959 / 0.007607 (-0.002648) | 0.345226 / 0.226044 (0.119182) | 3.438539 / 2.268929 (1.169611) | 1.943842 / 55.444624 (-53.500782) | 1.661080 / 6.876477 (-5.215397) | 1.687632 / 2.142072 (-0.454440) | 0.639971 / 4.805227 (-4.165256) | 0.116012 / 6.500664 (-6.384652) | 0.041723 / 0.075469 (-0.033746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965143 / 1.841788 (-0.876645) | 12.086547 / 8.074308 (4.012238) | 10.708787 / 10.191392 (0.517395) | 0.129506 / 0.680424 (-0.550918) | 0.015254 / 0.534201 (-0.518947) | 0.288326 / 0.579283 (-0.290957) | 0.271976 / 0.434364 (-0.162388) | 0.328402 / 0.540337 (-0.211936) | 0.418102 / 1.386936 (-0.968834) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18b6f13ede3dccedf335bb2d8ff04db306dc710a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005375 / 0.011353 (-0.005978) | 0.003530 / 0.011008 (-0.007478) | 0.062521 / 0.038508 (0.024013) | 0.051514 / 0.023109 (0.028405) | 0.241623 / 0.275898 (-0.034275) | 0.269054 / 0.323480 (-0.054426) | 0.002877 / 0.007986 (-0.005109) | 0.002724 / 0.004328 (-0.001605) | 0.049045 / 0.004250 (0.044794) | 0.038560 / 0.037052 (0.001507) | 0.248437 / 0.258489 (-0.010052) | 0.276762 / 0.293841 (-0.017079) | 0.027522 / 0.128546 (-0.101024) | 0.010817 / 0.075646 (-0.064829) | 0.208686 / 0.419271 (-0.210585) | 0.035818 / 0.043533 (-0.007715) | 0.249398 / 0.255139 (-0.005741) | 0.268288 / 0.283200 (-0.014911) | 0.019039 / 0.141683 (-0.122644) | 1.135115 / 1.452155 (-0.317040) | 1.195531 / 1.492716 (-0.297185) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093126 / 0.018006 (0.075120) | 0.301028 / 0.000490 (0.300539) | 0.000222 / 0.000200 (0.000023) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018385 / 0.037411 (-0.019027) | 0.060902 / 0.014526 (0.046376) | 0.073168 / 0.176557 (-0.103389) | 0.119216 / 0.737135 (-0.617919) | 0.074225 / 0.296338 (-0.222114) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283749 / 0.215209 (0.068540) | 2.741609 / 2.077655 (0.663954) | 1.483439 / 1.504120 (-0.020681) | 1.352896 / 1.541195 (-0.188299) | 1.378824 / 1.468490 (-0.089667) | 0.548731 / 4.584777 (-4.036046) | 2.342717 / 3.745712 (-1.402995) | 2.791592 / 5.269862 (-2.478269) | 1.740605 / 4.565676 (-2.825071) | 0.062059 / 0.424275 (-0.362216) | 0.005028 / 0.007607 (-0.002579) | 0.339205 / 0.226044 (0.113161) | 3.353386 / 2.268929 (1.084458) | 1.785717 / 55.444624 (-53.658907) | 1.523390 / 6.876477 (-5.353086) | 1.556999 / 2.142072 (-0.585073) | 0.636745 / 4.805227 (-4.168483) | 0.115821 / 6.500664 (-6.384843) | 0.042200 / 0.075469 (-0.033269) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948678 / 1.841788 (-0.893110) | 11.588670 / 8.074308 (3.514362) | 10.897130 / 10.191392 (0.705738) | 0.140068 / 0.680424 (-0.540356) | 0.014565 / 0.534201 (-0.519636) | 0.286336 / 0.579283 (-0.292947) | 0.265292 / 0.434364 (-0.169072) | 0.324146 / 0.540337 (-0.216192) | 0.413463 / 1.386936 (-0.973473) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005187 / 0.011353 (-0.006165) | 0.003471 / 0.011008 (-0.007537) | 0.048968 / 0.038508 (0.010460) | 0.051285 / 0.023109 (0.028176) | 0.283286 / 0.275898 (0.007388) | 0.307046 / 0.323480 (-0.016434) | 0.004017 / 0.007986 (-0.003969) | 0.002655 / 0.004328 (-0.001673) | 0.047762 / 0.004250 (0.043512) | 0.039855 / 0.037052 (0.002803) | 0.283101 / 0.258489 (0.024612) | 0.312905 / 0.293841 (0.019064) | 0.028188 / 0.128546 (-0.100358) | 0.010849 / 0.075646 (-0.064797) | 0.058112 / 0.419271 (-0.361159) | 0.032163 / 0.043533 (-0.011369) | 0.280825 / 0.255139 (0.025686) | 0.300946 / 0.283200 (0.017747) | 0.017409 / 0.141683 (-0.124274) | 1.127360 / 1.452155 (-0.324795) | 1.180409 / 1.492716 (-0.312307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093186 / 0.018006 (0.075180) | 0.300827 / 0.000490 (0.300338) | 0.000220 / 0.000200 (0.000020) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021560 / 0.037411 (-0.015851) | 0.069158 / 0.014526 (0.054632) | 0.080953 / 0.176557 (-0.095603) | 0.119071 / 0.737135 (-0.618064) | 0.082817 / 0.296338 (-0.213521) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.307259 / 0.215209 (0.092050) | 2.996058 / 2.077655 (0.918404) | 1.627406 / 1.504120 (0.123286) | 1.500715 / 1.541195 (-0.040480) | 1.524278 / 1.468490 (0.055788) | 0.569711 / 4.584777 (-4.015066) | 2.436132 / 3.745712 (-1.309580) | 2.796995 / 5.269862 (-2.472866) | 1.760701 / 4.565676 (-2.804975) | 0.063521 / 0.424275 (-0.360754) | 0.004909 / 0.007607 (-0.002698) | 0.359129 / 0.226044 (0.133085) | 3.567278 / 2.268929 (1.298349) | 2.013821 / 55.444624 (-53.430804) | 1.708021 / 6.876477 (-5.168456) | 1.738959 / 2.142072 (-0.403114) | 0.648620 / 4.805227 (-4.156607) | 0.122016 / 6.500664 (-6.378648) | 0.041802 / 0.075469 (-0.033667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985208 / 1.841788 (-0.856579) | 12.307785 / 8.074308 (4.233477) | 10.587262 / 10.191392 (0.395870) | 0.130468 / 0.680424 (-0.549956) | 0.014912 / 0.534201 (-0.519289) | 0.293822 / 0.579283 (-0.285461) | 0.283021 / 0.434364 (-0.151343) | 0.329560 / 0.540337 (-0.210777) | 0.424741 / 1.386936 (-0.962195) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#04426d9c8e0aa5c97af2826064287f8cab6bece0 \"CML watermark\")\n" ]
2023-11-27T20:01:25Z
2023-11-28T16:29:58Z
2023-11-28T16:29:31Z
COLLABORATOR
null
null
null
Refactor the `dill` logic to make it easier to maintain (and fix some issues along the way) It makes the following improvements to the serialization API: * consistent order of a `dict`'s keys * support for hashing `torch.compile`-ed modules and functions * deprecates `datasets.fingerprint.hashregister` as the `hashregister`-ed reducers are never invoked anyways (does not support nested data as `pickle`/`dill` do) ~~TODO: optimize hashing of `pa.Table` and `datasets.table.Table`~~ The `pa_array.to_string` approach is faster for large arrays because it outputs the first 10 and last 10 elements (by default). The problem is that this can produce identical hashes for non-identical arrays if their differing elements get ellipsed... Fix https://github.com/huggingface/datasets/issues/6440, fix https://github.com/huggingface/datasets/issues/5839
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6454/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6454/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6454.diff", "html_url": "https://github.com/huggingface/datasets/pull/6454", "merged_at": "2023-11-28T16:29:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/6454.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6454" }
https://api.github.com/repos/huggingface/datasets/issues/5822
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5822/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5822/comments
https://api.github.com/repos/huggingface/datasets/issues/5822/events
https://github.com/huggingface/datasets/issues/5822
1,696,627,308
I_kwDODunzps5lIHps
5,822
Audio Dataset with_format torch problem
{ "avatar_url": "https://avatars.githubusercontent.com/u/20282916?v=4", "events_url": "https://api.github.com/users/paulbauriegel/events{/privacy}", "followers_url": "https://api.github.com/users/paulbauriegel/followers", "following_url": "https://api.github.com/users/paulbauriegel/following{/other_user}", "gists_url": "https://api.github.com/users/paulbauriegel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/paulbauriegel", "id": 20282916, "login": "paulbauriegel", "node_id": "MDQ6VXNlcjIwMjgyOTE2", "organizations_url": "https://api.github.com/users/paulbauriegel/orgs", "received_events_url": "https://api.github.com/users/paulbauriegel/received_events", "repos_url": "https://api.github.com/users/paulbauriegel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/paulbauriegel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/paulbauriegel/subscriptions", "type": "User", "url": "https://api.github.com/users/paulbauriegel", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Can you try with a more recent version of `datasets` ?", "Ok, yes it worked with the most recent version. Thanks" ]
2023-05-04T20:07:51Z
2023-05-11T20:45:53Z
2023-05-11T20:45:53Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Common Voice v10 Delta (German) Dataset from here https://commonvoice.mozilla.org/de/datasets ``` audio_dataset = \ (Dataset .from_dict({"audio": ('/tmp/cv-corpus-10.0-delta-2022-07-04/de/clips/' + df.path).to_list()}) .cast_column("audio", Audio(sampling_rate=16_000)) .with_format('numpy')) audio_dataset[0]["audio"] ``` works, but ``` audio_dataset = \ (Dataset .from_dict({"audio": ('/tmp/cv-corpus-10.0-delta-2022-07-04/de/clips/' + df.path).to_list()}) .cast_column("audio", Audio(sampling_rate=16_000)) .with_format('torch')) audio_dataset[0]["audio"] ``` does not instead I get ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[54], line 1 ----> 1 audio_dataset[0]["audio"] File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/arrow_dataset.py:2154, in Dataset.__getitem__(self, key) 2152 def __getitem__(self, key): # noqa: F811 2153 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 2154 return self._getitem( 2155 key, 2156 ) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/arrow_dataset.py:2139, in Dataset._getitem(self, key, decoded, **kwargs) 2137 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs) 2138 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 2139 formatted_output = format_table( 2140 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 2141 ) 2142 return formatted_output File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns) 530 python_formatter = PythonFormatter(features=None) 531 if format_columns is None: --> 532 return formatter(pa_table, query_type=query_type) 533 elif query_type == "column": 534 if key in format_columns: File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type) 279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: 280 if query_type == "row": --> 281 return self.format_row(pa_table) 282 elif query_type == "column": 283 return self.format_column(pa_table) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:58, in TorchFormatter.format_row(self, pa_table) 56 def format_row(self, pa_table: pa.Table) -> dict: 57 row = self.numpy_arrow_extractor().extract_row(pa_table) ---> 58 return self.recursive_tensorize(row) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:54, in TorchFormatter.recursive_tensorize(self, data_struct) 53 def recursive_tensorize(self, data_struct: dict): ---> 54 return map_nested(self._recursive_tensorize, data_struct, map_list=False) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:356, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm, desc) 354 num_proc = 1 355 if num_proc <= 1 or len(iterable) <= num_proc: --> 356 mapped = [ 357 _single_map_nested((function, obj, types, None, True, None)) 358 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc) 359 ] 360 else: 361 split_kwds = [] # We organize the splits ourselve (contiguous splits) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:357, in <listcomp>(.0) 354 num_proc = 1 355 if num_proc <= 1 or len(iterable) <= num_proc: 356 mapped = [ --> 357 _single_map_nested((function, obj, types, None, True, None)) 358 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc) 359 ] 360 else: 361 split_kwds = [] # We organize the splits ourselve (contiguous splits) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:309, in _single_map_nested(args) 306 pbar = logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) 308 if isinstance(data_struct, dict): --> 309 return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} 310 else: 311 mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:309, in <dictcomp>(.0) 306 pbar = logging.tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) 308 if isinstance(data_struct, dict): --> 309 return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} 310 else: 311 mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar] File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/utils/py_utils.py:293, in _single_map_nested(args) 291 # Singleton first to spare some computation 292 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 293 return function(data_struct) 295 # Reduce logging to keep things readable in multiprocessing with tqdm 296 if rank is not None and logging.get_verbosity() < logging.WARNING: File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:51, in TorchFormatter._recursive_tensorize(self, data_struct) 49 if data_struct.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects 50 return [self.recursive_tensorize(substruct) for substruct in data_struct] ---> 51 return self._tensorize(data_struct) File /anaconda/envs/azureml_py38/lib/python3.8/site-packages/datasets/formatting/torch_formatter.py:38, in TorchFormatter._tensorize(self, value) 35 import torch 37 default_dtype = {} ---> 38 if np.issubdtype(value.dtype, np.integer): 39 default_dtype = {"dtype": torch.int64} 40 elif np.issubdtype(value.dtype, np.floating): AttributeError: 'NoneType' object has no attribute 'dtype' ``` ### Steps to reproduce the bug 1. Download some audio dataset in this case I used Common Voice v10 Delta (German) Dataset from here https://commonvoice.mozilla.org/de/datasets 2. Try the Code from above ### Expected behavior It should work for torch ### Environment info pytorch: 2.0.0 datasets: 2.3.2 numpy: 1.21.6 Python: 3.8 Linux
{ "avatar_url": "https://avatars.githubusercontent.com/u/20282916?v=4", "events_url": "https://api.github.com/users/paulbauriegel/events{/privacy}", "followers_url": "https://api.github.com/users/paulbauriegel/followers", "following_url": "https://api.github.com/users/paulbauriegel/following{/other_user}", "gists_url": "https://api.github.com/users/paulbauriegel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/paulbauriegel", "id": 20282916, "login": "paulbauriegel", "node_id": "MDQ6VXNlcjIwMjgyOTE2", "organizations_url": "https://api.github.com/users/paulbauriegel/orgs", "received_events_url": "https://api.github.com/users/paulbauriegel/received_events", "repos_url": "https://api.github.com/users/paulbauriegel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/paulbauriegel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/paulbauriegel/subscriptions", "type": "User", "url": "https://api.github.com/users/paulbauriegel", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5822/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5822/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5994
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5994/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5994/comments
https://api.github.com/repos/huggingface/datasets/issues/5994/events
https://github.com/huggingface/datasets/pull/5994
1,776,829,004
PR_kwDODunzps5UB1cA
5,994
Fix select_columns columns order
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005969 / 0.011353 (-0.005384) | 0.003687 / 0.011008 (-0.007321) | 0.100843 / 0.038508 (0.062335) | 0.036912 / 0.023109 (0.013803) | 0.312389 / 0.275898 (0.036491) | 0.370335 / 0.323480 (0.046855) | 0.003434 / 0.007986 (-0.004552) | 0.003710 / 0.004328 (-0.000619) | 0.076899 / 0.004250 (0.072648) | 0.053647 / 0.037052 (0.016594) | 0.324825 / 0.258489 (0.066336) | 0.367711 / 0.293841 (0.073870) | 0.028079 / 0.128546 (-0.100467) | 0.008326 / 0.075646 (-0.067320) | 0.312342 / 0.419271 (-0.106930) | 0.047423 / 0.043533 (0.003890) | 0.321063 / 0.255139 (0.065924) | 0.336508 / 0.283200 (0.053308) | 0.019973 / 0.141683 (-0.121710) | 1.529334 / 1.452155 (0.077179) | 1.573746 / 1.492716 (0.081030) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210849 / 0.018006 (0.192843) | 0.418798 / 0.000490 (0.418309) | 0.007347 / 0.000200 (0.007147) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022718 / 0.037411 (-0.014694) | 0.098400 / 0.014526 (0.083874) | 0.106590 / 0.176557 (-0.069967) | 0.168460 / 0.737135 (-0.568675) | 0.108401 / 0.296338 (-0.187938) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443066 / 0.215209 (0.227857) | 4.416658 / 2.077655 (2.339003) | 2.088844 / 1.504120 (0.584724) | 1.879564 / 1.541195 (0.338369) | 1.933815 / 1.468490 (0.465325) | 0.565085 / 4.584777 (-4.019692) | 3.412440 / 3.745712 (-0.333273) | 1.754686 / 5.269862 (-3.515175) | 1.024576 / 4.565676 (-3.541100) | 0.067909 / 0.424275 (-0.356366) | 0.011054 / 0.007607 (0.003447) | 0.534748 / 0.226044 (0.308703) | 5.351457 / 2.268929 (3.082529) | 2.517368 / 55.444624 (-52.927256) | 2.182762 / 6.876477 (-4.693715) | 2.238205 / 2.142072 (0.096133) | 0.672962 / 4.805227 (-4.132265) | 0.136098 / 6.500664 (-6.364566) | 0.066534 / 0.075469 (-0.008935) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281241 / 1.841788 (-0.560547) | 13.872881 / 8.074308 (5.798573) | 13.161023 / 10.191392 (2.969631) | 0.130011 / 0.680424 (-0.550412) | 0.016759 / 0.534201 (-0.517442) | 0.359802 / 0.579283 (-0.219481) | 0.392577 / 0.434364 (-0.041787) | 0.427742 / 0.540337 (-0.112595) | 0.522241 / 1.386936 (-0.864695) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005985 / 0.011353 (-0.005368) | 0.003705 / 0.011008 (-0.007304) | 0.077699 / 0.038508 (0.039191) | 0.035686 / 0.023109 (0.012577) | 0.420356 / 0.275898 (0.144458) | 0.476753 / 0.323480 (0.153273) | 0.003510 / 0.007986 (-0.004475) | 0.002807 / 0.004328 (-0.001521) | 0.077151 / 0.004250 (0.072901) | 0.046420 / 0.037052 (0.009368) | 0.391781 / 0.258489 (0.133292) | 0.461128 / 0.293841 (0.167287) | 0.027847 / 0.128546 (-0.100699) | 0.008322 / 0.075646 (-0.067324) | 0.082768 / 0.419271 (-0.336503) | 0.042629 / 0.043533 (-0.000904) | 0.405745 / 0.255139 (0.150606) | 0.430797 / 0.283200 (0.147598) | 0.019832 / 0.141683 (-0.121851) | 1.556208 / 1.452155 (0.104054) | 1.612166 / 1.492716 (0.119450) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230633 / 0.018006 (0.212626) | 0.401667 / 0.000490 (0.401178) | 0.000776 / 0.000200 (0.000576) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024959 / 0.037411 (-0.012452) | 0.100560 / 0.014526 (0.086034) | 0.109175 / 0.176557 (-0.067382) | 0.159919 / 0.737135 (-0.577217) | 0.112810 / 0.296338 (-0.183528) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.460601 / 0.215209 (0.245392) | 4.620039 / 2.077655 (2.542385) | 2.257900 / 1.504120 (0.753780) | 2.039192 / 1.541195 (0.497997) | 2.064451 / 1.468490 (0.595961) | 0.557887 / 4.584777 (-4.026890) | 3.356100 / 3.745712 (-0.389612) | 1.703578 / 5.269862 (-3.566284) | 1.024984 / 4.565676 (-3.540693) | 0.067602 / 0.424275 (-0.356673) | 0.011450 / 0.007607 (0.003842) | 0.563230 / 0.226044 (0.337186) | 5.632150 / 2.268929 (3.363221) | 2.698701 / 55.444624 (-52.745924) | 2.363218 / 6.876477 (-4.513259) | 2.363997 / 2.142072 (0.221925) | 0.671260 / 4.805227 (-4.133967) | 0.136166 / 6.500664 (-6.364499) | 0.067094 / 0.075469 (-0.008375) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303030 / 1.841788 (-0.538757) | 14.137277 / 8.074308 (6.062969) | 13.937631 / 10.191392 (3.746239) | 0.162626 / 0.680424 (-0.517798) | 0.016687 / 0.534201 (-0.517514) | 0.363657 / 0.579283 (-0.215626) | 0.392021 / 0.434364 (-0.042343) | 0.427275 / 0.540337 (-0.113062) | 0.512192 / 1.386936 (-0.874744) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#42603528d9bd8c3ab287ed0eadc7fa3d1ef4cfd8 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005974 / 0.011353 (-0.005378) | 0.003947 / 0.011008 (-0.007061) | 0.098604 / 0.038508 (0.060096) | 0.036947 / 0.023109 (0.013838) | 0.311844 / 0.275898 (0.035946) | 0.375243 / 0.323480 (0.051763) | 0.003453 / 0.007986 (-0.004533) | 0.003834 / 0.004328 (-0.000495) | 0.077943 / 0.004250 (0.073692) | 0.052956 / 0.037052 (0.015904) | 0.320812 / 0.258489 (0.062323) | 0.373963 / 0.293841 (0.080122) | 0.028382 / 0.128546 (-0.100164) | 0.008525 / 0.075646 (-0.067121) | 0.311306 / 0.419271 (-0.107965) | 0.047029 / 0.043533 (0.003496) | 0.309933 / 0.255139 (0.054794) | 0.335114 / 0.283200 (0.051915) | 0.019629 / 0.141683 (-0.122054) | 1.569771 / 1.452155 (0.117617) | 1.585899 / 1.492716 (0.093182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216565 / 0.018006 (0.198559) | 0.426717 / 0.000490 (0.426228) | 0.003609 / 0.000200 (0.003409) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023079 / 0.037411 (-0.014332) | 0.096954 / 0.014526 (0.082428) | 0.105398 / 0.176557 (-0.071158) | 0.165433 / 0.737135 (-0.571703) | 0.109703 / 0.296338 (-0.186636) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456227 / 0.215209 (0.241018) | 4.529857 / 2.077655 (2.452202) | 2.214054 / 1.504120 (0.709934) | 2.029716 / 1.541195 (0.488521) | 2.081175 / 1.468490 (0.612685) | 0.563642 / 4.584777 (-4.021135) | 3.355393 / 3.745712 (-0.390320) | 1.765938 / 5.269862 (-3.503924) | 1.039062 / 4.565676 (-3.526615) | 0.067952 / 0.424275 (-0.356323) | 0.011044 / 0.007607 (0.003437) | 0.556935 / 0.226044 (0.330890) | 5.588167 / 2.268929 (3.319239) | 2.667217 / 55.444624 (-52.777407) | 2.337383 / 6.876477 (-4.539094) | 2.429590 / 2.142072 (0.287517) | 0.676972 / 4.805227 (-4.128256) | 0.135782 / 6.500664 (-6.364882) | 0.066323 / 0.075469 (-0.009146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237358 / 1.841788 (-0.604429) | 13.910492 / 8.074308 (5.836184) | 13.227275 / 10.191392 (3.035883) | 0.146857 / 0.680424 (-0.533567) | 0.016991 / 0.534201 (-0.517210) | 0.363637 / 0.579283 (-0.215646) | 0.392462 / 0.434364 (-0.041902) | 0.450009 / 0.540337 (-0.090329) | 0.536077 / 1.386936 (-0.850859) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006067 / 0.011353 (-0.005286) | 0.003851 / 0.011008 (-0.007158) | 0.078462 / 0.038508 (0.039954) | 0.036221 / 0.023109 (0.013112) | 0.389195 / 0.275898 (0.113297) | 0.428710 / 0.323480 (0.105230) | 0.004645 / 0.007986 (-0.003341) | 0.002973 / 0.004328 (-0.001355) | 0.078299 / 0.004250 (0.074048) | 0.047076 / 0.037052 (0.010024) | 0.375673 / 0.258489 (0.117184) | 0.432352 / 0.293841 (0.138511) | 0.028212 / 0.128546 (-0.100334) | 0.008475 / 0.075646 (-0.067172) | 0.083902 / 0.419271 (-0.335369) | 0.046699 / 0.043533 (0.003166) | 0.364502 / 0.255139 (0.109363) | 0.389792 / 0.283200 (0.106592) | 0.025266 / 0.141683 (-0.116417) | 1.517458 / 1.452155 (0.065303) | 1.543634 / 1.492716 (0.050918) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236479 / 0.018006 (0.218472) | 0.411528 / 0.000490 (0.411038) | 0.005213 / 0.000200 (0.005013) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025764 / 0.037411 (-0.011647) | 0.103174 / 0.014526 (0.088648) | 0.110609 / 0.176557 (-0.065948) | 0.164630 / 0.737135 (-0.572506) | 0.114863 / 0.296338 (-0.181475) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457155 / 0.215209 (0.241946) | 4.550675 / 2.077655 (2.473021) | 2.350473 / 1.504120 (0.846353) | 2.204919 / 1.541195 (0.663724) | 2.076724 / 1.468490 (0.608234) | 0.563107 / 4.584777 (-4.021670) | 3.390669 / 3.745712 (-0.355043) | 1.741111 / 5.269862 (-3.528751) | 1.033268 / 4.565676 (-3.532408) | 0.068400 / 0.424275 (-0.355875) | 0.011607 / 0.007607 (0.004000) | 0.561944 / 0.226044 (0.335900) | 5.620224 / 2.268929 (3.351296) | 2.705241 / 55.444624 (-52.739384) | 2.344520 / 6.876477 (-4.531957) | 2.386119 / 2.142072 (0.244046) | 0.681583 / 4.805227 (-4.123644) | 0.137272 / 6.500664 (-6.363392) | 0.069217 / 0.075469 (-0.006252) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322690 / 1.841788 (-0.519098) | 14.464953 / 8.074308 (6.390645) | 14.269350 / 10.191392 (4.077958) | 0.158879 / 0.680424 (-0.521545) | 0.016722 / 0.534201 (-0.517479) | 0.360299 / 0.579283 (-0.218984) | 0.391609 / 0.434364 (-0.042755) | 0.420507 / 0.540337 (-0.119831) | 0.512822 / 1.386936 (-0.874114) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ca68191900d97b29abb3c2c4ba0502fe30d137d1 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007106 / 0.011353 (-0.004247) | 0.005224 / 0.011008 (-0.005784) | 0.127563 / 0.038508 (0.089055) | 0.055067 / 0.023109 (0.031958) | 0.418660 / 0.275898 (0.142761) | 0.487891 / 0.323480 (0.164411) | 0.005712 / 0.007986 (-0.002274) | 0.004585 / 0.004328 (0.000256) | 0.090994 / 0.004250 (0.086743) | 0.071837 / 0.037052 (0.034784) | 0.446957 / 0.258489 (0.188468) | 0.475966 / 0.293841 (0.182125) | 0.038062 / 0.128546 (-0.090484) | 0.010056 / 0.075646 (-0.065590) | 0.406796 / 0.419271 (-0.012475) | 0.066542 / 0.043533 (0.023009) | 0.413676 / 0.255139 (0.158537) | 0.448624 / 0.283200 (0.165424) | 0.030332 / 0.141683 (-0.111351) | 1.895307 / 1.452155 (0.443152) | 1.904411 / 1.492716 (0.411694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221246 / 0.018006 (0.203240) | 0.461288 / 0.000490 (0.460799) | 0.005957 / 0.000200 (0.005757) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029255 / 0.037411 (-0.008156) | 0.131299 / 0.014526 (0.116773) | 0.135814 / 0.176557 (-0.040742) | 0.201342 / 0.737135 (-0.535793) | 0.141748 / 0.296338 (-0.154591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463936 / 0.215209 (0.248727) | 4.709621 / 2.077655 (2.631966) | 2.093844 / 1.504120 (0.589724) | 1.897963 / 1.541195 (0.356768) | 1.927865 / 1.468490 (0.459375) | 0.610879 / 4.584777 (-3.973898) | 4.481370 / 3.745712 (0.735658) | 2.112235 / 5.269862 (-3.157627) | 1.203349 / 4.565676 (-3.362327) | 0.074828 / 0.424275 (-0.349447) | 0.013121 / 0.007607 (0.005514) | 0.580894 / 0.226044 (0.354849) | 5.801872 / 2.268929 (3.532943) | 2.579950 / 55.444624 (-52.864674) | 2.251569 / 6.876477 (-4.624908) | 2.421305 / 2.142072 (0.279232) | 0.760938 / 4.805227 (-4.044289) | 0.169554 / 6.500664 (-6.331110) | 0.077499 / 0.075469 (0.002030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.410419 / 1.841788 (-0.431368) | 17.442331 / 8.074308 (9.368023) | 15.782183 / 10.191392 (5.590791) | 0.180649 / 0.680424 (-0.499775) | 0.021790 / 0.534201 (-0.512411) | 0.511040 / 0.579283 (-0.068243) | 0.510472 / 0.434364 (0.076108) | 0.607141 / 0.540337 (0.066804) | 0.724794 / 1.386936 (-0.662142) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007280 / 0.011353 (-0.004073) | 0.004712 / 0.011008 (-0.006296) | 0.089225 / 0.038508 (0.050717) | 0.053157 / 0.023109 (0.030048) | 0.431949 / 0.275898 (0.156051) | 0.478128 / 0.323480 (0.154648) | 0.006181 / 0.007986 (-0.001804) | 0.003387 / 0.004328 (-0.000941) | 0.083741 / 0.004250 (0.079490) | 0.071610 / 0.037052 (0.034557) | 0.414698 / 0.258489 (0.156209) | 0.484422 / 0.293841 (0.190581) | 0.034988 / 0.128546 (-0.093558) | 0.009831 / 0.075646 (-0.065816) | 0.089644 / 0.419271 (-0.329628) | 0.057053 / 0.043533 (0.013520) | 0.413144 / 0.255139 (0.158005) | 0.445464 / 0.283200 (0.162264) | 0.026109 / 0.141683 (-0.115574) | 1.842899 / 1.452155 (0.390745) | 1.923774 / 1.492716 (0.431057) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245051 / 0.018006 (0.227045) | 0.460444 / 0.000490 (0.459954) | 0.000444 / 0.000200 (0.000244) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034835 / 0.037411 (-0.002577) | 0.130078 / 0.014526 (0.115553) | 0.147012 / 0.176557 (-0.029544) | 0.203097 / 0.737135 (-0.534038) | 0.149636 / 0.296338 (-0.146702) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521664 / 0.215209 (0.306455) | 5.283865 / 2.077655 (3.206210) | 2.456701 / 1.504120 (0.952581) | 2.266059 / 1.541195 (0.724864) | 2.295387 / 1.468490 (0.826897) | 0.613200 / 4.584777 (-3.971577) | 4.526107 / 3.745712 (0.780394) | 2.047327 / 5.269862 (-3.222535) | 1.261063 / 4.565676 (-3.304614) | 0.070402 / 0.424275 (-0.353873) | 0.014128 / 0.007607 (0.006521) | 0.620929 / 0.226044 (0.394884) | 6.109127 / 2.268929 (3.840198) | 3.081406 / 55.444624 (-52.363218) | 2.658224 / 6.876477 (-4.218253) | 2.671974 / 2.142072 (0.529902) | 0.744081 / 4.805227 (-4.061146) | 0.161498 / 6.500664 (-6.339166) | 0.075148 / 0.075469 (-0.000321) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.585640 / 1.841788 (-0.256148) | 17.884321 / 8.074308 (9.810013) | 15.938937 / 10.191392 (5.747545) | 0.220818 / 0.680424 (-0.459605) | 0.021452 / 0.534201 (-0.512749) | 0.499747 / 0.579283 (-0.079536) | 0.512318 / 0.434364 (0.077954) | 0.562853 / 0.540337 (0.022515) | 0.678512 / 1.386936 (-0.708424) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aa50937d82256827aee3dbd749c7a23555e05e38 \"CML watermark\")\n" ]
2023-06-27T12:32:46Z
2023-06-27T15:40:47Z
2023-06-27T15:32:43Z
MEMBER
null
null
null
Fix the order of the columns in dataset.features when the order changes with `dataset.select_columns()`. I also fixed the same issue for `dataset.flatten()` Close https://github.com/huggingface/datasets/issues/5993
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5994/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5994/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5994.diff", "html_url": "https://github.com/huggingface/datasets/pull/5994", "merged_at": "2023-06-27T15:32:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/5994.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5994" }
https://api.github.com/repos/huggingface/datasets/issues/4936
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4936/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4936/comments
https://api.github.com/repos/huggingface/datasets/issues/4936/events
https://github.com/huggingface/datasets/issues/4936
1,363,274,907
I_kwDODunzps5RQeyb
4,936
vivos (Vietnamese speech corpus) dataset not accessible
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "If you need an example of a small audio datasets, I just created few hours ago a speech dataset with only 300MB of compressed audio files https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia. It works also with streaming (@albertvillanova helped me adding this functionality) :-)", "@cahya-wirawan omg this is awesome!! thank you! ", "We have contacted the authors to ask them." ]
2022-09-06T13:17:55Z
2022-09-21T06:06:02Z
2022-09-12T07:14:20Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug VIVOS data is not accessible anymore, neither of these links work (at least from France): * https://ailab.hcmus.edu.vn/assets/vivos.tar.gz (data) * https://ailab.hcmus.edu.vn/vivos (dataset page) Therefore `load_dataset` doesn't work. ## Steps to reproduce the bug ```python ds = load_dataset("vivos") ``` ## Expected results dataset loaded ## Actual results ``` ConnectionError: Couldn't reach https://ailab.hcmus.edu.vn/assets/vivos.tar.gz (ConnectionError(MaxRetryError("HTTPSConnectionPool(host='ailab.hcmus.edu.vn', port=443): Max retries exceeded with url: /assets/vivos.tar.gz (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7f9d8a27d190>: Failed to establish a new connection: [Errno -5] No address associated with hostname'))"))) ``` Will try to contact the authors, as we wanted to use Vivos as an example in documentation on how to create scripts for audio datasets (https://github.com/huggingface/datasets/pull/4872), because it's small and straightforward and uses tar archives.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4936/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4936/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4582
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4582/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4582/comments
https://api.github.com/repos/huggingface/datasets/issues/4582/events
https://github.com/huggingface/datasets/pull/4582
1,286,517,060
PR_kwDODunzps46dC59
4,582
add_column should preserve _indexes
{ "avatar_url": "https://avatars.githubusercontent.com/u/15624271?v=4", "events_url": "https://api.github.com/users/cceyda/events{/privacy}", "followers_url": "https://api.github.com/users/cceyda/followers", "following_url": "https://api.github.com/users/cceyda/following{/other_user}", "gists_url": "https://api.github.com/users/cceyda/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cceyda", "id": 15624271, "login": "cceyda", "node_id": "MDQ6VXNlcjE1NjI0Mjcx", "organizations_url": "https://api.github.com/users/cceyda/orgs", "received_events_url": "https://api.github.com/users/cceyda/received_events", "repos_url": "https://api.github.com/users/cceyda/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cceyda/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cceyda/subscriptions", "type": "User", "url": "https://api.github.com/users/cceyda", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4582). All of your documentation changes will be reflected on that endpoint." ]
2022-06-27T22:35:47Z
2022-07-06T15:19:54Z
null
CONTRIBUTOR
null
null
null
https://github.com/huggingface/datasets/issues/3769#issuecomment-1167146126 doing `.add_column("x",x_data)` also removed any `_indexes` on the dataset, decided this shouldn't be the case. This was because `add_column` was creating a new `Dataset(...)` and wasn't possible to pass indexes on init. with this PR now can pass 'indexes' on init through `IndexableMixin` - [x] Added test
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4582/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4582/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4582.diff", "html_url": "https://github.com/huggingface/datasets/pull/4582", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4582.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4582" }
https://api.github.com/repos/huggingface/datasets/issues/6669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6669/comments
https://api.github.com/repos/huggingface/datasets/issues/6669/events
https://github.com/huggingface/datasets/issues/6669
2,138,322,662
I_kwDODunzps5_dDbm
6,669
attribute error when writing trainer.train()
{ "avatar_url": "https://avatars.githubusercontent.com/u/112316000?v=4", "events_url": "https://api.github.com/users/prashanth19bolukonda/events{/privacy}", "followers_url": "https://api.github.com/users/prashanth19bolukonda/followers", "following_url": "https://api.github.com/users/prashanth19bolukonda/following{/other_user}", "gists_url": "https://api.github.com/users/prashanth19bolukonda/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/prashanth19bolukonda", "id": 112316000, "login": "prashanth19bolukonda", "node_id": "U_kgDOBrHOYA", "organizations_url": "https://api.github.com/users/prashanth19bolukonda/orgs", "received_events_url": "https://api.github.com/users/prashanth19bolukonda/received_events", "repos_url": "https://api.github.com/users/prashanth19bolukonda/repos", "site_admin": false, "starred_url": "https://api.github.com/users/prashanth19bolukonda/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/prashanth19bolukonda/subscriptions", "type": "User", "url": "https://api.github.com/users/prashanth19bolukonda", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! Kaggle notebooks use an outdated version of `datasets`, so you should update the `datasets` installation (with `!pip install -U datasets`) to avoid the error.", "Thank you for your response\r\n\r\nOn Thu, Feb 29, 2024 at 10:55 PM Mario Šaško ***@***.***>\r\nwrote:\r\n\r\n> Closed #6669 <https://github.com/huggingface/datasets/issues/6669> as\r\n> completed.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6669#event-11969246964>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/A2Y44YG2RRVMYONNKPLBVE3YV5SAPAVCNFSM6AAAAABDLZ3BTSVHI2DSMVQWIX3LMV45UABCJFZXG5LFIV3GK3TUJZXXI2LGNFRWC5DJN5XDWMJRHE3DSMRUGY4TMNA>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2024-02-16T10:40:49Z
2024-03-01T10:58:00Z
2024-02-29T17:25:17Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug AttributeError Traceback (most recent call last) Cell In[39], line 2 1 # Start the training process ----> 2 trainer.train() File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1539, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs) 1537 hf_hub_utils.enable_progress_bars() 1538 else: -> 1539 return inner_training_loop( 1540 args=args, 1541 resume_from_checkpoint=resume_from_checkpoint, 1542 trial=trial, 1543 ignore_keys_for_eval=ignore_keys_for_eval, 1544 ) File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1836, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval) 1833 rng_to_sync = True 1835 step = -1 -> 1836 for step, inputs in enumerate(epoch_iterator): 1837 total_batched_samples += 1 1839 if self.args.include_num_input_tokens_seen: File /opt/conda/lib/python3.10/site-packages/accelerate/data_loader.py:451, in DataLoaderShard.__iter__(self) 449 # We iterate one batch ahead to check when we are at the end 450 try: --> 451 current_batch = next(dataloader_iter) 452 except StopIteration: 453 yield File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:630, in _BaseDataLoaderIter.__next__(self) 627 if self._sampler_iter is None: 628 # TODO([https://github.com/pytorch/pytorch/issues/76750)](https://github.com/pytorch/pytorch/issues/76750)%3C/span%3E) 629 self._reset() # type: ignore[call-arg] --> 630 data = self._next_data() 631 self._num_yielded += 1 632 if self._dataset_kind == _DatasetKind.Iterable and \ 633 self._IterableDataset_len_called is not None and \ 634 self._num_yielded > self._IterableDataset_len_called: File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:674, in _SingleProcessDataLoaderIter._next_data(self) 672 def _next_data(self): 673 index = self._next_index() # may raise StopIteration --> 674 data = self._dataset_fetcher.fetch(index) # may raise StopIteration 675 if self._pin_memory: 676 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) File /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:51, in _MapDatasetFetcher.fetch(self, possibly_batched_index) 49 data = self.dataset.__getitems__(possibly_batched_index) 50 else: ---> 51 data = [self.dataset[idx] for idx in possibly_batched_index] 52 else: 53 data = self.dataset[possibly_batched_index] File /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:51, in <listcomp>(.0) 49 data = self.dataset.__getitems__(possibly_batched_index) 50 else: ---> 51 data = [self.dataset[idx] for idx in possibly_batched_index] 52 else: 53 data = self.dataset[possibly_batched_index] File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1764, in Dataset.__getitem__(self, key) 1762 def __getitem__(self, key): # noqa: F811 1763 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 1764 return self._getitem( 1765 key, 1766 ) File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1749, in Dataset._getitem(self, key, decoded, **kwargs) 1747 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs) 1748 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 1749 formatted_output = format_table( 1750 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 1751 ) 1752 return formatted_output File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:540, in format_table(table, key, formatter, format_columns, output_all_columns) 538 else: 539 pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns) --> 540 formatted_output = formatter(pa_table_to_format, query_type=query_type) 541 if output_all_columns: 542 if isinstance(formatted_output, MutableMapping): File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type) 279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: 280 if query_type == "row": --> 281 return self.format_row(pa_table) 282 elif query_type == "column": 283 return self.format_column(pa_table) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py:57, in TorchFormatter.format_row(self, pa_table) 56 def format_row(self, pa_table: pa.Table) -> dict: ---> 57 row = self.numpy_arrow_extractor().extract_row(pa_table) 58 return self.recursive_tensorize(row) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:154, in NumpyArrowExtractor.extract_row(self, pa_table) 153 def extract_row(self, pa_table: pa.Table) -> dict: --> 154 return _unnest(self.extract_batch(pa_table)) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:160, in NumpyArrowExtractor.extract_batch(self, pa_table) 159 def extract_batch(self, pa_table: pa.Table) -> dict: --> 160 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:160, in <dictcomp>(.0) 159 def extract_batch(self, pa_table: pa.Table) -> dict: --> 160 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:196, in NumpyArrowExtractor._arrow_array_to_numpy(self, pa_array) 194 array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() 195 if len(array) > 0: --> 196 if any( 197 (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) 198 or (isinstance(x, float) and np.isnan(x)) 199 for x in array 200 ): 201 return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) 202 return np.array(array, copy=False, **self.np_array_kwargs) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:197, in <genexpr>(.0) 194 array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() 195 if len(array) > 0: 196 if any( --> 197 (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) 198 or (isinstance(x, float) and np.isnan(x)) 199 for x in array 200 ): 201 return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) 202 return np.array(array, copy=False, **self.np_array_kwargs) File /opt/conda/lib/python3.10/site-packages/numpy/__init__.py:324, in __getattr__(attr) 319 warnings.warn( 320 f"In the future `np.{attr}` will be defined as the " 321 "corresponding NumPy scalar.", FutureWarning, stacklevel=2) 323 if attr in __former_attrs__: --> 324 raise AttributeError(__former_attrs__[attr]) 326 if attr == 'testing': 327 import numpy.testing as testing AttributeError: module 'numpy' has no attribute 'object'. `np.object` was a deprecated alias for the builtin `object`. To avoid this error in existing code, use `object` by itself. Doing this will not modify any behavior and is safe. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecationsAttributeError Traceback (most recent call last) Cell In[39], line 2 1 # Start the training process ----> 2 trainer.train() File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1539, in Trainer.train(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs) 1537 hf_hub_utils.enable_progress_bars() 1538 else: -> 1539 return inner_training_loop( 1540 args=args, 1541 resume_from_checkpoint=resume_from_checkpoint, 1542 trial=trial, 1543 ignore_keys_for_eval=ignore_keys_for_eval, 1544 ) File /opt/conda/lib/python3.10/site-packages/transformers/trainer.py:1836, in Trainer._inner_training_loop(self, batch_size, args, resume_from_checkpoint, trial, ignore_keys_for_eval) 1833 rng_to_sync = True 1835 step = -1 -> 1836 for step, inputs in enumerate(epoch_iterator): 1837 total_batched_samples += 1 1839 if self.args.include_num_input_tokens_seen: File /opt/conda/lib/python3.10/site-packages/accelerate/data_loader.py:451, in DataLoaderShard.__iter__(self) 449 # We iterate one batch ahead to check when we are at the end 450 try: --> 451 current_batch = next(dataloader_iter) 452 except StopIteration: 453 yield File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:630, in _BaseDataLoaderIter.__next__(self) 627 if self._sampler_iter is None: 628 # TODO([https://github.com/pytorch/pytorch/issues/76750)](https://github.com/pytorch/pytorch/issues/76750)%3C/span%3E) 629 self._reset() # type: ignore[call-arg] --> 630 data = self._next_data() 631 self._num_yielded += 1 632 if self._dataset_kind == _DatasetKind.Iterable and \ 633 self._IterableDataset_len_called is not None and \ 634 self._num_yielded > self._IterableDataset_len_called: File /opt/conda/lib/python3.10/site-packages/torch/utils/data/dataloader.py:674, in _SingleProcessDataLoaderIter._next_data(self) 672 def _next_data(self): 673 index = self._next_index() # may raise StopIteration --> 674 data = self._dataset_fetcher.fetch(index) # may raise StopIteration 675 if self._pin_memory: 676 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) File /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:51, in _MapDatasetFetcher.fetch(self, possibly_batched_index) 49 data = self.dataset.__getitems__(possibly_batched_index) 50 else: ---> 51 data = [self.dataset[idx] for idx in possibly_batched_index] 52 else: 53 data = self.dataset[possibly_batched_index] File /opt/conda/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py:51, in <listcomp>(.0) 49 data = self.dataset.__getitems__(possibly_batched_index) 50 else: ---> 51 data = [self.dataset[idx] for idx in possibly_batched_index] 52 else: 53 data = self.dataset[possibly_batched_index] File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1764, in Dataset.__getitem__(self, key) 1762 def __getitem__(self, key): # noqa: F811 1763 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).""" -> 1764 return self._getitem( 1765 key, 1766 ) File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:1749, in Dataset._getitem(self, key, decoded, **kwargs) 1747 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs) 1748 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None) -> 1749 formatted_output = format_table( 1750 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns 1751 ) 1752 return formatted_output File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:540, in format_table(table, key, formatter, format_columns, output_all_columns) 538 else: 539 pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns) --> 540 formatted_output = formatter(pa_table_to_format, query_type=query_type) 541 if output_all_columns: 542 if isinstance(formatted_output, MutableMapping): File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type) 279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]: 280 if query_type == "row": --> 281 return self.format_row(pa_table) 282 elif query_type == "column": 283 return self.format_column(pa_table) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py:57, in TorchFormatter.format_row(self, pa_table) 56 def format_row(self, pa_table: pa.Table) -> dict: ---> 57 row = self.numpy_arrow_extractor().extract_row(pa_table) 58 return self.recursive_tensorize(row) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:154, in NumpyArrowExtractor.extract_row(self, pa_table) 153 def extract_row(self, pa_table: pa.Table) -> dict: --> 154 return _unnest(self.extract_batch(pa_table)) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:160, in NumpyArrowExtractor.extract_batch(self, pa_table) 159 def extract_batch(self, pa_table: pa.Table) -> dict: --> 160 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:160, in <dictcomp>(.0) 159 def extract_batch(self, pa_table: pa.Table) -> dict: --> 160 return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names} File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:196, in NumpyArrowExtractor._arrow_array_to_numpy(self, pa_array) 194 array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() 195 if len(array) > 0: --> 196 if any( 197 (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) 198 or (isinstance(x, float) and np.isnan(x)) 199 for x in array 200 ): 201 return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) 202 return np.array(array, copy=False, **self.np_array_kwargs) File /opt/conda/lib/python3.10/site-packages/datasets/formatting/formatting.py:197, in <genexpr>(.0) 194 array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist() 195 if len(array) > 0: 196 if any( --> 197 (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) 198 or (isinstance(x, float) and np.isnan(x)) 199 for x in array 200 ): 201 return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) 202 return np.array(array, copy=False, **self.np_array_kwargs) File /opt/conda/lib/python3.10/site-packages/numpy/__init__.py:324, in __getattr__(attr) 319 warnings.warn( 320 f"In the future `np.{attr}` will be defined as the " 321 "corresponding NumPy scalar.", FutureWarning, stacklevel=2) 323 if attr in __former_attrs__: --> 324 raise AttributeError(__former_attrs__[attr]) 326 if attr == 'testing': 327 import numpy.testing as testing AttributeError: module 'numpy' has no attribute 'object'. `np.object` was a deprecated alias for the builtin `object`. To avoid this error in existing code, use `object` by itself. Doing this will not modify any behavior and is safe. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations Please help me to resolve the above error ### Steps to reproduce the bug Please resolve the issue of deprecated function np.object to object in the numpy ### Expected behavior np.object should be written as object only ### Environment info kaggle notebook
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6669/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6669/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5554
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5554/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5554/comments
https://api.github.com/repos/huggingface/datasets/issues/5554/events
https://github.com/huggingface/datasets/pull/5554
1,592,285,062
PR_kwDODunzps5KXhZh
5,554
Add resampy dep
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008735 / 0.011353 (-0.002618) | 0.004514 / 0.011008 (-0.006494) | 0.099348 / 0.038508 (0.060840) | 0.030060 / 0.023109 (0.006951) | 0.302189 / 0.275898 (0.026291) | 0.339535 / 0.323480 (0.016055) | 0.007053 / 0.007986 (-0.000933) | 0.003420 / 0.004328 (-0.000909) | 0.076967 / 0.004250 (0.072717) | 0.034484 / 0.037052 (-0.002568) | 0.304349 / 0.258489 (0.045860) | 0.354032 / 0.293841 (0.060191) | 0.033552 / 0.128546 (-0.094995) | 0.011405 / 0.075646 (-0.064241) | 0.324773 / 0.419271 (-0.094498) | 0.041103 / 0.043533 (-0.002429) | 0.313559 / 0.255139 (0.058420) | 0.333251 / 0.283200 (0.050052) | 0.087580 / 0.141683 (-0.054103) | 1.460324 / 1.452155 (0.008169) | 1.552239 / 1.492716 (0.059523) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183759 / 0.018006 (0.165753) | 0.413274 / 0.000490 (0.412784) | 0.001684 / 0.000200 (0.001484) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023341 / 0.037411 (-0.014071) | 0.098368 / 0.014526 (0.083842) | 0.105522 / 0.176557 (-0.071034) | 0.151581 / 0.737135 (-0.585554) | 0.108980 / 0.296338 (-0.187358) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417856 / 0.215209 (0.202647) | 4.167570 / 2.077655 (2.089915) | 1.843669 / 1.504120 (0.339549) | 1.643130 / 1.541195 (0.101936) | 1.717587 / 1.468490 (0.249097) | 0.696392 / 4.584777 (-3.888384) | 3.427617 / 3.745712 (-0.318096) | 2.816486 / 5.269862 (-2.453376) | 1.539519 / 4.565676 (-3.026157) | 0.082112 / 0.424275 (-0.342163) | 0.012425 / 0.007607 (0.004818) | 0.525325 / 0.226044 (0.299281) | 5.251710 / 2.268929 (2.982781) | 2.273641 / 55.444624 (-53.170983) | 1.931002 / 6.876477 (-4.945474) | 1.977253 / 2.142072 (-0.164819) | 0.804794 / 4.805227 (-4.000434) | 0.147324 / 6.500664 (-6.353340) | 0.064966 / 0.075469 (-0.010503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193173 / 1.841788 (-0.648615) | 13.705127 / 8.074308 (5.630819) | 14.348408 / 10.191392 (4.157016) | 0.165374 / 0.680424 (-0.515050) | 0.028288 / 0.534201 (-0.505913) | 0.402546 / 0.579283 (-0.176737) | 0.413503 / 0.434364 (-0.020861) | 0.473298 / 0.540337 (-0.067039) | 0.567571 / 1.386936 (-0.819365) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004601 / 0.011008 (-0.006407) | 0.077414 / 0.038508 (0.038906) | 0.027402 / 0.023109 (0.004293) | 0.353469 / 0.275898 (0.077571) | 0.381697 / 0.323480 (0.058218) | 0.005076 / 0.007986 (-0.002910) | 0.004665 / 0.004328 (0.000336) | 0.076210 / 0.004250 (0.071960) | 0.039114 / 0.037052 (0.002061) | 0.354980 / 0.258489 (0.096491) | 0.389648 / 0.293841 (0.095807) | 0.031674 / 0.128546 (-0.096872) | 0.011752 / 0.075646 (-0.063894) | 0.086330 / 0.419271 (-0.332942) | 0.041530 / 0.043533 (-0.002003) | 0.343002 / 0.255139 (0.087863) | 0.365959 / 0.283200 (0.082760) | 0.091848 / 0.141683 (-0.049835) | 1.519427 / 1.452155 (0.067272) | 1.591529 / 1.492716 (0.098813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216458 / 0.018006 (0.198452) | 0.403326 / 0.000490 (0.402836) | 0.000432 / 0.000200 (0.000232) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025106 / 0.037411 (-0.012305) | 0.101113 / 0.014526 (0.086588) | 0.108104 / 0.176557 (-0.068453) | 0.142342 / 0.737135 (-0.594794) | 0.112012 / 0.296338 (-0.184326) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443128 / 0.215209 (0.227919) | 4.434707 / 2.077655 (2.357052) | 2.115434 / 1.504120 (0.611315) | 1.902865 / 1.541195 (0.361670) | 1.996981 / 1.468490 (0.528491) | 0.702485 / 4.584777 (-3.882292) | 3.419151 / 3.745712 (-0.326561) | 1.911977 / 5.269862 (-3.357884) | 1.178195 / 4.565676 (-3.387481) | 0.082985 / 0.424275 (-0.341290) | 0.012415 / 0.007607 (0.004808) | 0.546188 / 0.226044 (0.320144) | 5.463592 / 2.268929 (3.194664) | 2.574911 / 55.444624 (-52.869713) | 2.232883 / 6.876477 (-4.643594) | 2.284391 / 2.142072 (0.142319) | 0.807389 / 4.805227 (-3.997839) | 0.151461 / 6.500664 (-6.349203) | 0.067831 / 0.075469 (-0.007638) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286605 / 1.841788 (-0.555183) | 14.230328 / 8.074308 (6.156020) | 13.944645 / 10.191392 (3.753253) | 0.153725 / 0.680424 (-0.526699) | 0.016876 / 0.534201 (-0.517325) | 0.386109 / 0.579283 (-0.193174) | 0.401798 / 0.434364 (-0.032566) | 0.467883 / 0.540337 (-0.072454) | 0.557788 / 1.386936 (-0.829148) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c07f5c9268ce55d0e2022b018d5f44cfcedf1e43 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009305 / 0.011353 (-0.002048) | 0.004978 / 0.011008 (-0.006031) | 0.101687 / 0.038508 (0.063179) | 0.035339 / 0.023109 (0.012230) | 0.294770 / 0.275898 (0.018872) | 0.355491 / 0.323480 (0.032011) | 0.008183 / 0.007986 (0.000197) | 0.004076 / 0.004328 (-0.000253) | 0.077552 / 0.004250 (0.073302) | 0.042891 / 0.037052 (0.005838) | 0.305727 / 0.258489 (0.047238) | 0.336508 / 0.293841 (0.042667) | 0.038525 / 0.128546 (-0.090022) | 0.011878 / 0.075646 (-0.063768) | 0.334136 / 0.419271 (-0.085136) | 0.047548 / 0.043533 (0.004015) | 0.301749 / 0.255139 (0.046610) | 0.318221 / 0.283200 (0.035022) | 0.099172 / 0.141683 (-0.042511) | 1.440638 / 1.452155 (-0.011516) | 1.503505 / 1.492716 (0.010789) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202748 / 0.018006 (0.184742) | 0.433670 / 0.000490 (0.433181) | 0.003139 / 0.000200 (0.002939) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025555 / 0.037411 (-0.011856) | 0.107156 / 0.014526 (0.092631) | 0.116706 / 0.176557 (-0.059851) | 0.153165 / 0.737135 (-0.583970) | 0.122614 / 0.296338 (-0.173724) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398912 / 0.215209 (0.183703) | 3.965048 / 2.077655 (1.887394) | 1.894678 / 1.504120 (0.390558) | 1.706925 / 1.541195 (0.165730) | 1.745264 / 1.468490 (0.276774) | 0.691174 / 4.584777 (-3.893603) | 3.824583 / 3.745712 (0.078871) | 3.876806 / 5.269862 (-1.393055) | 1.898991 / 4.565676 (-2.666685) | 0.083687 / 0.424275 (-0.340588) | 0.012122 / 0.007607 (0.004514) | 0.510870 / 0.226044 (0.284825) | 5.094523 / 2.268929 (2.825594) | 2.265557 / 55.444624 (-53.179067) | 1.930882 / 6.876477 (-4.945594) | 2.016090 / 2.142072 (-0.125983) | 0.833108 / 4.805227 (-3.972119) | 0.164804 / 6.500664 (-6.335860) | 0.062864 / 0.075469 (-0.012605) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.192673 / 1.841788 (-0.649115) | 14.730393 / 8.074308 (6.656085) | 14.550736 / 10.191392 (4.359344) | 0.154451 / 0.680424 (-0.525973) | 0.029222 / 0.534201 (-0.504979) | 0.440939 / 0.579283 (-0.138345) | 0.442772 / 0.434364 (0.008409) | 0.543948 / 0.540337 (0.003610) | 0.638113 / 1.386936 (-0.748824) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007589 / 0.011353 (-0.003764) | 0.005208 / 0.011008 (-0.005800) | 0.073797 / 0.038508 (0.035289) | 0.034021 / 0.023109 (0.010912) | 0.366120 / 0.275898 (0.090222) | 0.397105 / 0.323480 (0.073625) | 0.005837 / 0.007986 (-0.002148) | 0.004028 / 0.004328 (-0.000301) | 0.073502 / 0.004250 (0.069252) | 0.051233 / 0.037052 (0.014181) | 0.359849 / 0.258489 (0.101360) | 0.397476 / 0.293841 (0.103635) | 0.036727 / 0.128546 (-0.091819) | 0.012249 / 0.075646 (-0.063397) | 0.086600 / 0.419271 (-0.332671) | 0.051156 / 0.043533 (0.007623) | 0.343441 / 0.255139 (0.088302) | 0.389672 / 0.283200 (0.106472) | 0.105180 / 0.141683 (-0.036503) | 1.439719 / 1.452155 (-0.012435) | 1.537779 / 1.492716 (0.045062) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199429 / 0.018006 (0.181422) | 0.440837 / 0.000490 (0.440347) | 0.005333 / 0.000200 (0.005133) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029581 / 0.037411 (-0.007830) | 0.113789 / 0.014526 (0.099263) | 0.123799 / 0.176557 (-0.052758) | 0.163772 / 0.737135 (-0.573363) | 0.127156 / 0.296338 (-0.169183) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422803 / 0.215209 (0.207594) | 4.192400 / 2.077655 (2.114745) | 1.994561 / 1.504120 (0.490441) | 1.807085 / 1.541195 (0.265890) | 1.927539 / 1.468490 (0.459049) | 0.708804 / 4.584777 (-3.875973) | 3.790662 / 3.745712 (0.044950) | 3.667207 / 5.269862 (-1.602655) | 1.985107 / 4.565676 (-2.580570) | 0.086609 / 0.424275 (-0.337666) | 0.012613 / 0.007607 (0.005006) | 0.520167 / 0.226044 (0.294122) | 5.208657 / 2.268929 (2.939729) | 2.500383 / 55.444624 (-52.944241) | 2.129817 / 6.876477 (-4.746660) | 2.181205 / 2.142072 (0.039133) | 0.847925 / 4.805227 (-3.957303) | 0.168293 / 6.500664 (-6.332372) | 0.065066 / 0.075469 (-0.010403) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261053 / 1.841788 (-0.580735) | 15.091644 / 8.074308 (7.017336) | 14.126139 / 10.191392 (3.934747) | 0.184956 / 0.680424 (-0.495468) | 0.017909 / 0.534201 (-0.516292) | 0.428918 / 0.579283 (-0.150365) | 0.429637 / 0.434364 (-0.004727) | 0.530900 / 0.540337 (-0.009437) | 0.627966 / 1.386936 (-0.758970) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a72fd153d3499a5c5eda783673073c9f557f11e0 \"CML watermark\")\n", "I think we should also suggest installing `resampy` in the error message thrown by the Audio feature when `librosa` is not installed.", "exploring a better solution at https://github.com/huggingface/datasets/pull/5556" ]
2023-02-20T18:15:43Z
2023-09-24T10:07:29Z
2023-02-21T12:43:38Z
MEMBER
null
null
null
In librosa 0.10 they removed the `resmpy` dependency and set it to optional. However it is necessary for resampling. I added it to the "audio" extra dependencies.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5554/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5554/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5554.diff", "html_url": "https://github.com/huggingface/datasets/pull/5554", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5554.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5554" }
https://api.github.com/repos/huggingface/datasets/issues/6319
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6319/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6319/comments
https://api.github.com/repos/huggingface/datasets/issues/6319/events
https://github.com/huggingface/datasets/issues/6319
1,952,101,717
I_kwDODunzps50WrVV
6,319
Datasets.map is severely broken
{ "avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4", "events_url": "https://api.github.com/users/phalexo/events{/privacy}", "followers_url": "https://api.github.com/users/phalexo/followers", "following_url": "https://api.github.com/users/phalexo/following{/other_user}", "gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/phalexo", "id": 4603365, "login": "phalexo", "node_id": "MDQ6VXNlcjQ2MDMzNjU=", "organizations_url": "https://api.github.com/users/phalexo/orgs", "received_events_url": "https://api.github.com/users/phalexo/received_events", "repos_url": "https://api.github.com/users/phalexo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phalexo/subscriptions", "type": "User", "url": "https://api.github.com/users/phalexo", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi! Instead of processing a single example at a time, you should use the batched `map` for the best performance (with `num_proc=1`) - the fast tokenizers can process a batch's samples in parallel in that scenario.\r\n\r\nE.g., the following code in Colab takes an hour to complete:\r\n```python\r\n# !pip install datasets transformers\r\nfrom datasets import load_dataset\r\nfrom transformers import AutoTokenizer\r\ntokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n```", "Batched is far worse. A single batch of 1000 took hours and that was only 1%\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> Hi! You should use the batched map for the best performance (with\r\n> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n> parallel.\r\n>\r\n> E.g., the following code in Colab takes an hour to complete:\r\n>\r\n> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Can you please provide a self-contained reproducer?", "Which specific version of datasets are you using?\r\n\r\nWhat is the architecture of your colab setup? Ram? Cores? OS?\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:27 PM pensive introvert ***@***.***>\r\nwrote:\r\n\r\n> Batched is far worse. A single batch of 1000 took hours and that was only\r\n> 1%\r\n>\r\n>\r\n> On Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Hi! You should use the batched map for the best performance (with\r\n>> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n>> parallel.\r\n>>\r\n>> E.g., the following code in Colab takes an hour to complete:\r\n>>\r\n>> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "from functools import partial\r\nimport transformers\r\nfrom datasets import load_dataset, concatenate_datasets, load_from_disk\r\n\r\nmodel_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\noutput_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\ncache_dir=\"/opt/data/data/LongLoRA/cache\"\r\nmodel_max_length=16384\r\n\r\nIGNORE_INDEX = -100\r\nDEFAULT_PAD_TOKEN = \"[PAD]\"\r\nDEFAULT_EOS_TOKEN = \"</s>\"\r\nDEFAULT_BOS_TOKEN = \"<s>\"\r\nDEFAULT_UNK_TOKEN = \"<unk>\"\r\n\r\n\r\ntokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n model_name_or_path,\r\n cache_dir=cache_dir,\r\n model_max_length=model_max_length,\r\n padding_side=\"right\",\r\n use_fast=True,\r\n #use_fast=False\r\n)\r\n\r\nspecial_tokens_dict = dict()\r\nif tokenizer.pad_token is None:\r\n special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\nif tokenizer.eos_token is None:\r\n special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\nif tokenizer.bos_token is None:\r\n special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\nif tokenizer.unk_token is None:\r\n special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n\r\ntokenizer.add_special_tokens(special_tokens_dict)\r\n\r\ndef tokenize_fn(tokenizer, example):\r\n context_length = tokenizer.model_max_length\r\n outputs = tokenizer(\r\n tokenizer.eos_token.join(example[\"text\"]),\r\n #truncation=False,\r\n truncation=True,\r\n return_tensors=\"pt\",\r\n #return_tensors=\"np\",\r\n pad_to_multiple_of=context_length,\r\n padding=True,\r\n )\r\n return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n\r\nfor idx in range(100):\r\n dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\ncache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\nnum_proc=16, remove_columns=[\"text\", \"meta\"])\r\n dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\nwrote:\r\n\r\n> Can you please provide a self-contained reproducer?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "I changed the tokenizer to one without \"Fast suffix, and something changed.\r\nThe fraction, although still slowed a lot at 80% was able to get over the\r\nfinish line of 100%\r\n\r\nI have to do more testng, see if the whole set can be processed\r\n\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> from functools import partial\r\n> import transformers\r\n> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>\r\n> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n> model_max_length=16384\r\n>\r\n> IGNORE_INDEX = -100\r\n> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n> DEFAULT_EOS_TOKEN = \"</s>\"\r\n> DEFAULT_BOS_TOKEN = \"<s>\"\r\n> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>\r\n>\r\n> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n> model_name_or_path,\r\n> cache_dir=cache_dir,\r\n> model_max_length=model_max_length,\r\n> padding_side=\"right\",\r\n> use_fast=True,\r\n> #use_fast=False\r\n> )\r\n>\r\n> special_tokens_dict = dict()\r\n> if tokenizer.pad_token is None:\r\n> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n> if tokenizer.eos_token is None:\r\n> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n> if tokenizer.bos_token is None:\r\n> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n> if tokenizer.unk_token is None:\r\n> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>\r\n> tokenizer.add_special_tokens(special_tokens_dict)\r\n>\r\n> def tokenize_fn(tokenizer, example):\r\n> context_length = tokenizer.model_max_length\r\n> outputs = tokenizer(\r\n> tokenizer.eos_token.join(example[\"text\"]),\r\n> #truncation=False,\r\n> truncation=True,\r\n> return_tensors=\"pt\",\r\n> #return_tensors=\"np\",\r\n> pad_to_multiple_of=context_length,\r\n> padding=True,\r\n> )\r\n> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>\r\n> for idx in range(100):\r\n> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n> dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Can you please provide a self-contained reproducer?\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "So, using LlamaTokenizerFast was the problem. Changing it to LlamaTokenizer\r\nfixed things,\r\n\r\nOn Thu, Oct 19, 2023 at 4:04 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> I changed the tokenizer to one without \"Fast suffix, and something\r\n> changed. The fraction, although still slowed a lot at 80% was able to get\r\n> over the finish line of 100%\r\n>\r\n> I have to do more testng, see if the whole set can be processed\r\n>\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n> ***@***.***> wrote:\r\n>\r\n>> from functools import partial\r\n>> import transformers\r\n>> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>>\r\n>> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n>> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n>> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n>> model_max_length=16384\r\n>>\r\n>> IGNORE_INDEX = -100\r\n>> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n>> DEFAULT_EOS_TOKEN = \"</s>\"\r\n>> DEFAULT_BOS_TOKEN = \"<s>\"\r\n>> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>>\r\n>>\r\n>> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n>> model_name_or_path,\r\n>> cache_dir=cache_dir,\r\n>> model_max_length=model_max_length,\r\n>> padding_side=\"right\",\r\n>> use_fast=True,\r\n>> #use_fast=False\r\n>> )\r\n>>\r\n>> special_tokens_dict = dict()\r\n>> if tokenizer.pad_token is None:\r\n>> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n>> if tokenizer.eos_token is None:\r\n>> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n>> if tokenizer.bos_token is None:\r\n>> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n>> if tokenizer.unk_token is None:\r\n>> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>>\r\n>> tokenizer.add_special_tokens(special_tokens_dict)\r\n>>\r\n>> def tokenize_fn(tokenizer, example):\r\n>> context_length = tokenizer.model_max_length\r\n>> outputs = tokenizer(\r\n>> tokenizer.eos_token.join(example[\"text\"]),\r\n>> #truncation=False,\r\n>> truncation=True,\r\n>> return_tensors=\"pt\",\r\n>> #return_tensors=\"np\",\r\n>> pad_to_multiple_of=context_length,\r\n>> padding=True,\r\n>> )\r\n>> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>>\r\n>> for idx in range(100):\r\n>> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n>> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n>> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n>> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n>> dataset.save_to_disk(training_args.cache_dir +\r\n>> f\"/training_data_{idx}\")\r\n>>\r\n>>\r\n>> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n>> wrote:\r\n>>\r\n>>> Can you please provide a self-contained reproducer?\r\n>>>\r\n>>> —\r\n>>> Reply to this email directly, view it on GitHub\r\n>>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>>> or unsubscribe\r\n>>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>>> .\r\n>>> You are receiving this because you authored the thread.Message ID:\r\n>>> ***@***.***>\r\n>>>\r\n>>\r\n", "Indeed, the tokenizer is super slow. Perhaps @ArthurZucker knows the reason why.\r\n\r\n([This](https://colab.research.google.com/drive/1VgeurX-4Fl2X6aBQTwh_X4kuQKZ6K9L1?usp=sharing) simplified Colab can be used to reproduce the behavior)", "same issue here\r\nsample to reproduce: https://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\nwith following map line\r\nhttps://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\n\r\nIf I directly iterate over the dataset and call the mapping method, it is very fast\r\n```py\r\nfor sample in dataset:\r\n def preprocess_documents_for_donut(sample):\r\n```\r\n\r\nif i removed `.convert('RGB')` It can run to completion without getting stuck. I suspect it has something to do with the Image.\r\n\r\nIf I use batch, it's even slower.", "@ewfian \r\n\r\n> If I directly iterate over the dataset and call the mapping method, it is very fast\r\n\r\n`Dataset.map` must also convert the images into bytes to write them to an Arrow file (the write itself takes some time, too). \r\n\r\nYou can make the `map` faster by manually converting the images into an \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used when saving an image, which seems particularly slow for the notebook's case.\r\n\r\n```python\r\ndef preprocess_documents_for_donut(sample):\r\n text = json.loads(sample[\"text\"])\r\n d_doc = task_start_token + json2token(text) + eos_token\r\n image = sample[\"image\"].convert('RGB')\r\n # convert image to bytes\r\n buffer = io.BytesIO()\r\n image.save(buffer, format=\"PNG\", compress_level=1)\r\n return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n\r\nproc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n```", "The problem I had was to do with map using fork and copying locks from the\r\nparent process in acquired state. I ended up changing the context to use\r\nforkserver instead.\r\n\r\n\r\nOn Wed, Nov 29, 2023, 10:04 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> @ewfian <https://github.com/ewfian>\r\n>\r\n> If I directly iterate over the dataset and call the mapping method, it is\r\n> very fast\r\n>\r\n> Dataset.map must also convert the images into bytes to write them to an\r\n> Arrow file (the write itself takes some time, too).\r\n>\r\n> You can make the map faster by manually converting the images into an\r\n> \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used\r\n> when saving an image, which seems particularly slow for the notebook's case.\r\n>\r\n> def preprocess_documents_for_donut(sample):\r\n> text = json.loads(sample[\"text\"])\r\n> d_doc = task_start_token + json2token(text) + eos_token\r\n> image = sample[\"image\"].convert('RGB')\r\n> # convert image to bytes\r\n> buffer = io.BytesIO()\r\n> image.save(buffer, format=\"PNG\", compress_level=1)\r\n> return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n> proc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1833033973>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZKKEKJVWBFH7QHLRJ3YG7ZUJAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQMZTGAZTGOJXGM>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "I face the same issue many times.\r\n\r\nNot only when using the transformers' tokenizer, but also when applying nltk's [pos_tag](https://www.nltk.org/api/nltk.tag.pos_tag.html) to the entire English Wikipedia. So I suspect the cause is not in the tokenizer but in the Dataset.map\r\n\r\nMy case:\r\nAt the beginning of the run, the speed was 600 samples/s, but it slowed down to 20 samples/s at around 90% (after 3 hours). I am concerned that the CPU usage was only about 5% at the end of the run, even though there was still lots of data left.", "It is the interaction of fork() inside the map and tokenizer mutexes/locks.\r\n\r\nYou have to set up your own process pool and use fork server instead of\r\nfork.\r\n\r\n\r\nOn Tue, Aug 6, 2024, 11:44 AM yuji96 ***@***.***> wrote:\r\n\r\n> I face the same issue many times.\r\n>\r\n> Not only when using the transformers' tokenizer, but also when applying\r\n> nltk's pos_tag <https://www.nltk.org/api/nltk.tag.pos_tag.html> to the\r\n> entire English Wikipedia. So I suspect the cause is not in the tokenizer\r\n> but in the Dataset.map\r\n>\r\n> My case:\r\n> At the beginning of the run, the speed was 600 samples/s, but it slowed\r\n> down to 20 samples/s at around 90% (after 3 hours). I am concerned that the\r\n> CPU usage was only about 5% at the end of the run, even though there was\r\n> still lots of data left.\r\n>\r\n> #6319 (comment)\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771629160>\r\n> It's very nice to hear that the run is complete, but the original issue\r\n> has not been solved, which is that it gets slower and slower. As it is now,\r\n> Dataset.map will not be able to handle the large datasets that are getting\r\n> larger day by day.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-2271603976>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZLFHSIGNNXAEJJIXWLZQDVPTAVCNFSM6AAAAABMCTVK2SVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDENZRGYYDGOJXGY>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Thank you for your advice!\r\n\r\nI added `multiprocess.set_start_method(\"forkserver\")` but the result seemed to be the same. In my case, it may be due to the very simple fact that about 10% of the process, which includes long text, never ends. I'll try shard by data size.\r\n![image](https://github.com/user-attachments/assets/03f4be67-1a6b-4d33-88f6-a46a9b1d37f4)\r\n", "Would recommend using `LlamaTokenizerFast` not `LlamaTokenizer` ! " ]
2023-10-19T12:19:33Z
2024-08-08T17:05:08Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Regardless of how many cores I used, I have 16 or 32 threads, map slows down to a crawl at around 80% done, lingers maybe until 97% extremely slowly and NEVER finishes the job. It just hangs. After watching this for 27 hours I control-C out of it. Until the end one process appears to be doing something, but it never ends. I saw some comments about fast tokenizers using Rust and all and tried different variations. NOTHING works. ### Steps to reproduce the bug Running it without breaking the dataset into parts results in the same behavior. The loop was an attempt to see if this was a RAM issue. for idx in range(100): dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]') dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False, num_proc=1, remove_columns=["text", "meta"]) dataset.save_to_disk(training_args.cache_dir + f"/training_data_{idx}") ### Expected behavior I expect map to run at more or less the same speed it starts with and FINISH its processing. ### Environment info Python 3.8, same with 3.10 makes no difference. Ubuntu 20.04,
null
{ "+1": 6, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 6, "url": "https://api.github.com/repos/huggingface/datasets/issues/6319/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6319/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6964
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6964/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6964/comments
https://api.github.com/repos/huggingface/datasets/issues/6964/events
https://github.com/huggingface/datasets/pull/6964
2,344,973,229
PR_kwDODunzps5yCNGa
6,964
Fix resuming arrow format
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6964). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005735 / 0.011353 (-0.005618) | 0.003746 / 0.011008 (-0.007263) | 0.063115 / 0.038508 (0.024606) | 0.033557 / 0.023109 (0.010447) | 0.247599 / 0.275898 (-0.028299) | 0.275310 / 0.323480 (-0.048170) | 0.004203 / 0.007986 (-0.003783) | 0.002770 / 0.004328 (-0.001558) | 0.050951 / 0.004250 (0.046700) | 0.046609 / 0.037052 (0.009557) | 0.256237 / 0.258489 (-0.002252) | 0.292050 / 0.293841 (-0.001791) | 0.027991 / 0.128546 (-0.100556) | 0.010367 / 0.075646 (-0.065279) | 0.202295 / 0.419271 (-0.216977) | 0.037287 / 0.043533 (-0.006246) | 0.250330 / 0.255139 (-0.004809) | 0.281250 / 0.283200 (-0.001950) | 0.018832 / 0.141683 (-0.122851) | 1.117303 / 1.452155 (-0.334852) | 1.141593 / 1.492716 (-0.351123) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097318 / 0.018006 (0.079312) | 0.304853 / 0.000490 (0.304364) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020353 / 0.037411 (-0.017058) | 0.065497 / 0.014526 (0.050971) | 0.076205 / 0.176557 (-0.100351) | 0.122471 / 0.737135 (-0.614665) | 0.079522 / 0.296338 (-0.216816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282604 / 0.215209 (0.067395) | 2.743198 / 2.077655 (0.665543) | 1.480436 / 1.504120 (-0.023684) | 1.373935 / 1.541195 (-0.167260) | 1.388901 / 1.468490 (-0.079589) | 0.571961 / 4.584777 (-4.012816) | 2.431790 / 3.745712 (-1.313922) | 2.942126 / 5.269862 (-2.327736) | 1.857361 / 4.565676 (-2.708316) | 0.063535 / 0.424275 (-0.360740) | 0.005039 / 0.007607 (-0.002568) | 0.331726 / 0.226044 (0.105682) | 3.282504 / 2.268929 (1.013576) | 1.852303 / 55.444624 (-53.592321) | 1.506665 / 6.876477 (-5.369812) | 1.577524 / 2.142072 (-0.564548) | 0.646267 / 4.805227 (-4.158960) | 0.118706 / 6.500664 (-6.381958) | 0.043437 / 0.075469 (-0.032033) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978073 / 1.841788 (-0.863714) | 12.028575 / 8.074308 (3.954267) | 10.066303 / 10.191392 (-0.125090) | 0.131763 / 0.680424 (-0.548661) | 0.016479 / 0.534201 (-0.517722) | 0.286012 / 0.579283 (-0.293271) | 0.266824 / 0.434364 (-0.167540) | 0.328452 / 0.540337 (-0.211885) | 0.414562 / 1.386936 (-0.972374) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005943 / 0.011353 (-0.005409) | 0.003992 / 0.011008 (-0.007016) | 0.051159 / 0.038508 (0.012651) | 0.033805 / 0.023109 (0.010695) | 0.268425 / 0.275898 (-0.007474) | 0.295662 / 0.323480 (-0.027818) | 0.004473 / 0.007986 (-0.003512) | 0.002910 / 0.004328 (-0.001418) | 0.048595 / 0.004250 (0.044345) | 0.043724 / 0.037052 (0.006671) | 0.280552 / 0.258489 (0.022063) | 0.319052 / 0.293841 (0.025211) | 0.031269 / 0.128546 (-0.097278) | 0.010976 / 0.075646 (-0.064671) | 0.060128 / 0.419271 (-0.359144) | 0.034198 / 0.043533 (-0.009335) | 0.269664 / 0.255139 (0.014525) | 0.292249 / 0.283200 (0.009049) | 0.019950 / 0.141683 (-0.121733) | 1.143073 / 1.452155 (-0.309082) | 1.188553 / 1.492716 (-0.304164) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095188 / 0.018006 (0.077182) | 0.300207 / 0.000490 (0.299717) | 0.000205 / 0.000200 (0.000005) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023610 / 0.037411 (-0.013802) | 0.082868 / 0.014526 (0.068342) | 0.089059 / 0.176557 (-0.087498) | 0.131735 / 0.737135 (-0.605401) | 0.091467 / 0.296338 (-0.204872) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302497 / 0.215209 (0.087287) | 2.985794 / 2.077655 (0.908140) | 1.590783 / 1.504120 (0.086663) | 1.468819 / 1.541195 (-0.072375) | 1.503115 / 1.468490 (0.034625) | 0.575109 / 4.584777 (-4.009668) | 0.972370 / 3.745712 (-2.773342) | 2.727976 / 5.269862 (-2.541886) | 1.793438 / 4.565676 (-2.772238) | 0.068840 / 0.424275 (-0.355435) | 0.005440 / 0.007607 (-0.002167) | 0.351843 / 0.226044 (0.125799) | 3.523108 / 2.268929 (1.254180) | 1.928576 / 55.444624 (-53.516049) | 1.627939 / 6.876477 (-5.248538) | 1.837618 / 2.142072 (-0.304454) | 0.669351 / 4.805227 (-4.135876) | 0.121822 / 6.500664 (-6.378842) | 0.042056 / 0.075469 (-0.033413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020081 / 1.841788 (-0.821707) | 13.417448 / 8.074308 (5.343140) | 10.974516 / 10.191392 (0.783124) | 0.135240 / 0.680424 (-0.545184) | 0.017581 / 0.534201 (-0.516620) | 0.289080 / 0.579283 (-0.290203) | 0.127679 / 0.434364 (-0.306685) | 0.331818 / 0.540337 (-0.208520) | 0.453143 / 1.386936 (-0.933793) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef2fb358433678b322d275c0bdee3239fa6485b2 \"CML watermark\")\n" ]
2024-06-10T22:40:33Z
2024-06-14T15:04:49Z
2024-06-14T14:58:37Z
MEMBER
null
null
null
following https://github.com/huggingface/datasets/pull/6658
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6964/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6964/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6964.diff", "html_url": "https://github.com/huggingface/datasets/pull/6964", "merged_at": "2024-06-14T14:58:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/6964.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6964" }
https://api.github.com/repos/huggingface/datasets/issues/5775
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5775/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5775/comments
https://api.github.com/repos/huggingface/datasets/issues/5775/events
https://github.com/huggingface/datasets/issues/5775
1,677,089,901
I_kwDODunzps5j9lxt
5,775
ArrowDataset.save_to_disk lost some logic of remote
{ "avatar_url": "https://avatars.githubusercontent.com/u/29817738?v=4", "events_url": "https://api.github.com/users/Zoupers/events{/privacy}", "followers_url": "https://api.github.com/users/Zoupers/followers", "following_url": "https://api.github.com/users/Zoupers/following{/other_user}", "gists_url": "https://api.github.com/users/Zoupers/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Zoupers", "id": 29817738, "login": "Zoupers", "node_id": "MDQ6VXNlcjI5ODE3NzM4", "organizations_url": "https://api.github.com/users/Zoupers/orgs", "received_events_url": "https://api.github.com/users/Zoupers/received_events", "repos_url": "https://api.github.com/users/Zoupers/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Zoupers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Zoupers/subscriptions", "type": "User", "url": "https://api.github.com/users/Zoupers", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "We just fixed this on `main` and will do a new release soon :)" ]
2023-04-20T16:58:01Z
2023-04-26T12:11:36Z
2023-04-26T12:11:17Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug https://github.com/huggingface/datasets/blob/e7ce0ac60c7efc10886471932854903a7c19f172/src/datasets/arrow_dataset.py#L1371 Here is the bug point, when I want to save from a `DatasetDict` class and the items of the instance is like `[('train', Dataset({features: ..., num_rows: ...}))]` , there is no guarantee that there exists a directory name `train` under `dataset_dict_path`. ### Steps to reproduce the bug 1. Mock a DatasetDict with items like what I said. 2. using save_to_disk with storage_options, u can use local sftp. code may like below ```python from datasets import load_dataset dataset = load_dataset(...) dataset.save_to_disk('sftp:///tmp', storage_options={'host': 'localhost', 'username': 'admin'}) ``` I suppose u can reproduce the bug by these steps. ### Expected behavior Should create the folder if it does not exists, just like we do locally. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-6.2.10-arch1-1-x86_64-with-glibc2.35 - Python version: 3.10.9 - Huggingface_hub version: 0.13.2 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5775/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5775/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6762
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6762/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6762/comments
https://api.github.com/repos/huggingface/datasets/issues/6762/events
https://github.com/huggingface/datasets/pull/6762
2,213,275,468
PR_kwDODunzps5rDpBe
6,762
Allow polars as valid output type
{ "avatar_url": "https://avatars.githubusercontent.com/u/11325244?v=4", "events_url": "https://api.github.com/users/psmyth94/events{/privacy}", "followers_url": "https://api.github.com/users/psmyth94/followers", "following_url": "https://api.github.com/users/psmyth94/following{/other_user}", "gists_url": "https://api.github.com/users/psmyth94/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/psmyth94", "id": 11325244, "login": "psmyth94", "node_id": "MDQ6VXNlcjExMzI1MjQ0", "organizations_url": "https://api.github.com/users/psmyth94/orgs", "received_events_url": "https://api.github.com/users/psmyth94/received_events", "repos_url": "https://api.github.com/users/psmyth94/repos", "site_admin": false, "starred_url": "https://api.github.com/users/psmyth94/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psmyth94/subscriptions", "type": "User", "url": "https://api.github.com/users/psmyth94", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6762). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Hello @lhoestq, I added the test and modified [update_data](https://github.com/huggingface/datasets/blob/bececdac927160b5c7e883736d7cc79d5699ad0a/src/datasets/arrow_dataset.py#L3437) to include `polars` as an updatable type. Although, it seems pretty redundant to do the type checks both before `validate_function_output` and then immediately afterward within the call stack. Could consider adding `allowable_types` in `validation_function_output`.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005530 / 0.011353 (-0.005823) | 0.004012 / 0.011008 (-0.006996) | 0.062474 / 0.038508 (0.023966) | 0.031896 / 0.023109 (0.008787) | 0.239620 / 0.275898 (-0.036278) | 0.264694 / 0.323480 (-0.058785) | 0.003199 / 0.007986 (-0.004786) | 0.003141 / 0.004328 (-0.001187) | 0.048726 / 0.004250 (0.044475) | 0.044795 / 0.037052 (0.007743) | 0.250661 / 0.258489 (-0.007828) | 0.279658 / 0.293841 (-0.014183) | 0.029857 / 0.128546 (-0.098689) | 0.012293 / 0.075646 (-0.063353) | 0.203626 / 0.419271 (-0.215646) | 0.036284 / 0.043533 (-0.007249) | 0.241678 / 0.255139 (-0.013461) | 0.259380 / 0.283200 (-0.023820) | 0.020400 / 0.141683 (-0.121283) | 1.142334 / 1.452155 (-0.309821) | 1.199068 / 1.492716 (-0.293648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097348 / 0.018006 (0.079341) | 0.303468 / 0.000490 (0.302978) | 0.000219 / 0.000200 (0.000019) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018646 / 0.037411 (-0.018766) | 0.062374 / 0.014526 (0.047848) | 0.074585 / 0.176557 (-0.101972) | 0.120380 / 0.737135 (-0.616755) | 0.075685 / 0.296338 (-0.220653) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277488 / 0.215209 (0.062279) | 2.741734 / 2.077655 (0.664080) | 1.451901 / 1.504120 (-0.052219) | 1.341712 / 1.541195 (-0.199482) | 1.395209 / 1.468490 (-0.073282) | 0.736334 / 4.584777 (-3.848443) | 2.358225 / 3.745712 (-1.387487) | 2.951838 / 5.269862 (-2.318023) | 1.892027 / 4.565676 (-2.673649) | 0.077913 / 0.424275 (-0.346362) | 0.005188 / 0.007607 (-0.002419) | 0.328790 / 0.226044 (0.102745) | 3.259387 / 2.268929 (0.990459) | 1.826102 / 55.444624 (-53.618522) | 1.526635 / 6.876477 (-5.349842) | 1.576392 / 2.142072 (-0.565680) | 0.786244 / 4.805227 (-4.018983) | 0.133909 / 6.500664 (-6.366756) | 0.044544 / 0.075469 (-0.030925) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965314 / 1.841788 (-0.876474) | 11.786831 / 8.074308 (3.712523) | 9.568519 / 10.191392 (-0.622873) | 0.140628 / 0.680424 (-0.539796) | 0.014442 / 0.534201 (-0.519759) | 0.300876 / 0.579283 (-0.278407) | 0.262647 / 0.434364 (-0.171717) | 0.339141 / 0.540337 (-0.201196) | 0.430254 / 1.386936 (-0.956683) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006020 / 0.011353 (-0.005333) | 0.004191 / 0.011008 (-0.006818) | 0.050006 / 0.038508 (0.011498) | 0.033247 / 0.023109 (0.010138) | 0.270677 / 0.275898 (-0.005221) | 0.299539 / 0.323480 (-0.023941) | 0.004391 / 0.007986 (-0.003595) | 0.002825 / 0.004328 (-0.001504) | 0.048573 / 0.004250 (0.044322) | 0.042461 / 0.037052 (0.005409) | 0.283812 / 0.258489 (0.025323) | 0.324302 / 0.293841 (0.030461) | 0.033264 / 0.128546 (-0.095282) | 0.012405 / 0.075646 (-0.063241) | 0.060298 / 0.419271 (-0.358973) | 0.034833 / 0.043533 (-0.008700) | 0.271133 / 0.255139 (0.015994) | 0.290712 / 0.283200 (0.007512) | 0.019762 / 0.141683 (-0.121920) | 1.138644 / 1.452155 (-0.313511) | 1.204628 / 1.492716 (-0.288088) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096171 / 0.018006 (0.078164) | 0.308916 / 0.000490 (0.308427) | 0.000213 / 0.000200 (0.000013) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023077 / 0.037411 (-0.014334) | 0.078865 / 0.014526 (0.064339) | 0.091031 / 0.176557 (-0.085526) | 0.133536 / 0.737135 (-0.603599) | 0.093308 / 0.296338 (-0.203030) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301466 / 0.215209 (0.086257) | 2.995190 / 2.077655 (0.917535) | 1.616545 / 1.504120 (0.112425) | 1.472572 / 1.541195 (-0.068622) | 1.477191 / 1.468490 (0.008701) | 0.730240 / 4.584777 (-3.854537) | 0.966591 / 3.745712 (-2.779121) | 2.979970 / 5.269862 (-2.289892) | 1.908275 / 4.565676 (-2.657401) | 0.081346 / 0.424275 (-0.342929) | 0.005150 / 0.007607 (-0.002458) | 0.349066 / 0.226044 (0.123022) | 3.504363 / 2.268929 (1.235435) | 1.973355 / 55.444624 (-53.471270) | 1.659337 / 6.876477 (-5.217139) | 1.701282 / 2.142072 (-0.440790) | 0.813493 / 4.805227 (-3.991735) | 0.133537 / 6.500664 (-6.367127) | 0.041207 / 0.075469 (-0.034262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020368 / 1.841788 (-0.821420) | 12.444848 / 8.074308 (4.370540) | 10.113832 / 10.191392 (-0.077560) | 0.137782 / 0.680424 (-0.542642) | 0.015217 / 0.534201 (-0.518984) | 0.300419 / 0.579283 (-0.278864) | 0.128868 / 0.434364 (-0.305496) | 0.342831 / 0.540337 (-0.197506) | 0.443036 / 1.386936 (-0.943900) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f42139a2c5583a55d34a2f60d537f5fba285c28 \"CML watermark\")\n" ]
2024-03-28T13:40:28Z
2024-08-16T15:54:37Z
2024-08-16T13:10:37Z
CONTRIBUTOR
null
null
null
I was trying out polars as an output for a map function and found that it wasn't a valid return type in `validate_function_output`. Thought that we should accommodate this by creating and adding it to the `allowed_processed_input_types` variable.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6762/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6762/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6762.diff", "html_url": "https://github.com/huggingface/datasets/pull/6762", "merged_at": "2024-08-16T13:10:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/6762.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6762" }
https://api.github.com/repos/huggingface/datasets/issues/5356
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5356/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5356/comments
https://api.github.com/repos/huggingface/datasets/issues/5356/events
https://github.com/huggingface/datasets/pull/5356
1,494,961,609
PR_kwDODunzps5FW-c9
5,356
Clean filesystem and logging docstrings
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-13T18:54:09Z
2022-12-14T17:25:58Z
2022-12-14T17:22:16Z
MEMBER
null
null
null
This PR cleans the `Filesystems` and `Logging` docstrings.
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5356/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5356/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5356.diff", "html_url": "https://github.com/huggingface/datasets/pull/5356", "merged_at": "2022-12-14T17:22:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/5356.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5356" }
https://api.github.com/repos/huggingface/datasets/issues/5390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5390/comments
https://api.github.com/repos/huggingface/datasets/issues/5390/events
https://github.com/huggingface/datasets/issues/5390
1,509,357,553
I_kwDODunzps5Z9vfx
5,390
Error when pushing to the CI hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hmmm, git bisect tells me that the behavior is the same since https://github.com/huggingface/datasets/commit/67e65c90e9490810b89ee140da11fdd13c356c9c (3 Oct), i.e. https://github.com/huggingface/datasets/pull/4926", "Maybe related to the discussions in https://github.com/huggingface/datasets/pull/5196", "Maybe the current version of moonlanding in Hub CI is the issue.\r\n\r\nI relaunched tests that were working two days ago: now they are failing. https://github.com/huggingface/datasets-server/commit/746414449cae4b311733f8a76e5b3b4ca73b38a9 for example\r\n\r\ncc @huggingface/moon-landing ", "Hi! I don't think this has anything to do with `datasets`. Hub CI seems to be the culprit - the identical failure can be found in [this](https://github.com/huggingface/datasets/pull/5389) PR (with unrelated changes) opened today.", "OK! Thanks for looking at it. Closing then." ]
2022-12-23T13:36:37Z
2022-12-23T20:29:02Z
2022-12-23T20:29:02Z
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Note that it's a special case where the Hub URL is "https://hub-ci.huggingface.co", which does not appear if we do the same on the Hub (https://huggingface.co). The call to `dataset.push_to_hub(` fails: ``` Pushing dataset shards to the dataset hub: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.93s/it] Traceback (most recent call last): File "reproduce_hubci.py", line 16, in <module> dataset.push_to_hub(repo_id=repo_id, private=False, token=USER_TOKEN, embed_external_files=True) File "/home/slesage/hf/datasets/src/datasets/arrow_dataset.py", line 5025, in push_to_hub HfApi(endpoint=config.HF_ENDPOINT).upload_file( File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1346, in upload_file raise err File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1337, in upload_file r.raise_for_status() File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/requests/models.py", line 953, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_DATASETS_SERVER_USER__/bug-16718047265472/upload/main/README.md ``` ### Steps to reproduce the bug ```python # reproduce.py from datasets import Dataset import time USER = "__DUMMY_DATASETS_SERVER_USER__" USER_TOKEN = "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" dataset = Dataset.from_dict({"a": [1, 2, 3]}) repo_id = f"{USER}/bug-{int(time.time() * 10e3)}" dataset.push_to_hub(repo_id=repo_id, private=False, token=USER_TOKEN, embed_external_files=True) ``` ```bash $ HF_ENDPOINT="https://hub-ci.huggingface.co" python reproduce.py ``` ### Expected behavior No error and the dataset should be uploaded to the Hub with the README file (which generates the error). ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.0-1026-aws-x86_64-with-glibc2.35 - Python version: 3.9.15 - PyArrow version: 7.0.0 - Pandas version: 1.5.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5390/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5390/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5948
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5948/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5948/comments
https://api.github.com/repos/huggingface/datasets/issues/5948/events
https://github.com/huggingface/datasets/pull/5948
1,754,794,611
PR_kwDODunzps5S4dUt
5,948
Fix sequence of array support for most dtype
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007220 / 0.011353 (-0.004133) | 0.004558 / 0.011008 (-0.006451) | 0.116647 / 0.038508 (0.078139) | 0.046845 / 0.023109 (0.023736) | 0.352429 / 0.275898 (0.076531) | 0.429739 / 0.323480 (0.106259) | 0.006620 / 0.007986 (-0.001366) | 0.003731 / 0.004328 (-0.000597) | 0.088683 / 0.004250 (0.084433) | 0.070583 / 0.037052 (0.033530) | 0.366699 / 0.258489 (0.108210) | 0.420730 / 0.293841 (0.126889) | 0.037342 / 0.128546 (-0.091204) | 0.010041 / 0.075646 (-0.065605) | 0.383477 / 0.419271 (-0.035795) | 0.060279 / 0.043533 (0.016746) | 0.349988 / 0.255139 (0.094849) | 0.371423 / 0.283200 (0.088224) | 0.026725 / 0.141683 (-0.114958) | 1.736886 / 1.452155 (0.284731) | 1.812874 / 1.492716 (0.320157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253256 / 0.018006 (0.235250) | 0.563470 / 0.000490 (0.562980) | 0.010475 / 0.000200 (0.010275) | 0.000164 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030518 / 0.037411 (-0.006893) | 0.133324 / 0.014526 (0.118798) | 0.137095 / 0.176557 (-0.039461) | 0.202227 / 0.737135 (-0.534909) | 0.144195 / 0.296338 (-0.152143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480870 / 0.215209 (0.265661) | 4.822713 / 2.077655 (2.745058) | 2.124183 / 1.504120 (0.620064) | 1.910733 / 1.541195 (0.369538) | 1.970266 / 1.468490 (0.501776) | 0.624695 / 4.584777 (-3.960082) | 4.459659 / 3.745712 (0.713947) | 2.210123 / 5.269862 (-3.059739) | 1.300520 / 4.565676 (-3.265157) | 0.077096 / 0.424275 (-0.347180) | 0.013333 / 0.007607 (0.005726) | 0.596841 / 0.226044 (0.370797) | 5.917397 / 2.268929 (3.648469) | 2.699397 / 55.444624 (-52.745228) | 2.274833 / 6.876477 (-4.601644) | 2.525376 / 2.142072 (0.383304) | 0.755718 / 4.805227 (-4.049510) | 0.163587 / 6.500664 (-6.337077) | 0.072817 / 0.075469 (-0.002653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.524306 / 1.841788 (-0.317481) | 18.843312 / 8.074308 (10.769004) | 15.694644 / 10.191392 (5.503252) | 0.177400 / 0.680424 (-0.503024) | 0.020104 / 0.534201 (-0.514097) | 0.466421 / 0.579283 (-0.112862) | 0.537274 / 0.434364 (0.102910) | 0.576920 / 0.540337 (0.036583) | 0.718889 / 1.386936 (-0.668047) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007671 / 0.011353 (-0.003682) | 0.004850 / 0.011008 (-0.006158) | 0.090085 / 0.038508 (0.051576) | 0.052023 / 0.023109 (0.028914) | 0.508575 / 0.275898 (0.232677) | 0.590024 / 0.323480 (0.266544) | 0.004564 / 0.007986 (-0.003422) | 0.005345 / 0.004328 (0.001017) | 0.087904 / 0.004250 (0.083653) | 0.064446 / 0.037052 (0.027394) | 0.525625 / 0.258489 (0.267136) | 0.584307 / 0.293841 (0.290466) | 0.037221 / 0.128546 (-0.091325) | 0.010588 / 0.075646 (-0.065059) | 0.098612 / 0.419271 (-0.320659) | 0.059597 / 0.043533 (0.016064) | 0.488064 / 0.255139 (0.232925) | 0.522330 / 0.283200 (0.239131) | 0.030004 / 0.141683 (-0.111679) | 1.732512 / 1.452155 (0.280357) | 1.809027 / 1.492716 (0.316310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218741 / 0.018006 (0.200735) | 0.494946 / 0.000490 (0.494456) | 0.004580 / 0.000200 (0.004380) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034916 / 0.037411 (-0.002495) | 0.133695 / 0.014526 (0.119169) | 0.147964 / 0.176557 (-0.028592) | 0.213210 / 0.737135 (-0.523926) | 0.148850 / 0.296338 (-0.147488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508855 / 0.215209 (0.293646) | 5.065088 / 2.077655 (2.987433) | 2.473110 / 1.504120 (0.968990) | 2.259765 / 1.541195 (0.718570) | 2.359189 / 1.468490 (0.890699) | 0.639082 / 4.584777 (-3.945695) | 4.768195 / 3.745712 (1.022482) | 2.253803 / 5.269862 (-3.016059) | 1.442996 / 4.565676 (-3.122680) | 0.078761 / 0.424275 (-0.345514) | 0.013936 / 0.007607 (0.006329) | 0.625977 / 0.226044 (0.399933) | 6.260817 / 2.268929 (3.991888) | 3.149640 / 55.444624 (-52.294985) | 2.753555 / 6.876477 (-4.122921) | 2.831872 / 2.142072 (0.689799) | 0.781294 / 4.805227 (-4.023933) | 0.169109 / 6.500664 (-6.331555) | 0.075810 / 0.075469 (0.000341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.533282 / 1.841788 (-0.308506) | 19.460579 / 8.074308 (11.386271) | 17.250424 / 10.191392 (7.059032) | 0.193485 / 0.680424 (-0.486939) | 0.020650 / 0.534201 (-0.513551) | 0.472110 / 0.579283 (-0.107173) | 0.532276 / 0.434364 (0.097912) | 0.613152 / 0.540337 (0.072814) | 0.684684 / 1.386936 (-0.702252) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#650a86ee122209d4a8c8e8068c01ebfd3ba553f5 \"CML watermark\")\n" ]
2023-06-13T12:38:59Z
2023-06-14T15:11:55Z
2023-06-14T15:03:33Z
MEMBER
null
null
null
Fixes #5936 Also, a related fix to #5927
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5948/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5948/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5948.diff", "html_url": "https://github.com/huggingface/datasets/pull/5948", "merged_at": "2023-06-14T15:03:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/5948.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5948" }
https://api.github.com/repos/huggingface/datasets/issues/5854
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5854/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5854/comments
https://api.github.com/repos/huggingface/datasets/issues/5854/events
https://github.com/huggingface/datasets/issues/5854
1,708,779,300
I_kwDODunzps5l2eck
5,854
Can not load audiofolder dataset on kaggle
{ "avatar_url": "https://avatars.githubusercontent.com/u/93691919?v=4", "events_url": "https://api.github.com/users/ILG2021/events{/privacy}", "followers_url": "https://api.github.com/users/ILG2021/followers", "following_url": "https://api.github.com/users/ILG2021/following{/other_user}", "gists_url": "https://api.github.com/users/ILG2021/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ILG2021", "id": 93691919, "login": "ILG2021", "node_id": "U_kgDOBZWgDw", "organizations_url": "https://api.github.com/users/ILG2021/orgs", "received_events_url": "https://api.github.com/users/ILG2021/received_events", "repos_url": "https://api.github.com/users/ILG2021/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ILG2021/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ILG2021/subscriptions", "type": "User", "url": "https://api.github.com/users/ILG2021", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! `audiofolder` requires `datasets>=2.5.0`, so please update the `datasets`' installation (`pip install -U datasets`) in the environment (and restart the env for the update to take effect) to resolve the issue.", "> Hi! `audiofolder` requires `datasets>=2.5.0`, so please update the `datasets`' installation (`pip install -U datasets`) in the environment to resolve the issue.\r\n\r\nI don't think it is a problem of the version. It runs ok on colab or local machine. Only on kaggle will has this bug.", "Based on your dataset info, the installed version is `2.1.0`, which does not include `audiofolder`.\r\n\r\nBy default, Kaggle preinstalls `datasets` into a new env, but the version it installs is outdated and does not contain newer features such as `audiofolder`" ]
2023-05-14T00:50:47Z
2023-08-16T13:35:36Z
2023-07-21T13:53:45Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug It's crash log: FileNotFoundError: Couldn't find a dataset script at /kaggle/working/audiofolder/audiofolder.py or any data file in the same directory. Couldn't find 'audiofolder' on the Hugging Face Hub either: FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/audiofolder/audiofolder.py ### Steps to reproduce the bug ![image](https://github.com/huggingface/datasets/assets/93691919/a2829d27-d15c-4acc-86fb-d1987c760468) common_voice = load_dataset("audiofolder", data_dir="/kaggle/working/data") ### Expected behavior load dataset without error. It works ok on colab, but on kaggle it happends. ### Environment info - `datasets` version: 2.1.0 - Platform: Linux-5.15.109+-x86_64-with-glibc2.31 - Python version: 3.10.10 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5854/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5854/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5765
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5765/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5765/comments
https://api.github.com/repos/huggingface/datasets/issues/5765/events
https://github.com/huggingface/datasets/issues/5765
1,671,388,824
I_kwDODunzps5jn16Y
5,765
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text']
{ "avatar_url": "https://avatars.githubusercontent.com/u/109907638?v=4", "events_url": "https://api.github.com/users/sauravtii/events{/privacy}", "followers_url": "https://api.github.com/users/sauravtii/followers", "following_url": "https://api.github.com/users/sauravtii/following{/other_user}", "gists_url": "https://api.github.com/users/sauravtii/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sauravtii", "id": 109907638, "login": "sauravtii", "node_id": "U_kgDOBo0Otg", "organizations_url": "https://api.github.com/users/sauravtii/orgs", "received_events_url": "https://api.github.com/users/sauravtii/received_events", "repos_url": "https://api.github.com/users/sauravtii/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sauravtii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sauravtii/subscriptions", "type": "User", "url": "https://api.github.com/users/sauravtii", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You need to remove the `text` and `text_en` columns before passing the dataset to the `DataLoader` to avoid this error:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n```\r\n", "Thanks @mariosasko. Now I am getting this error:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"client_2.py\", line 138, in <module>\r\n main()\r\n File \"client_2.py\", line 134, in main\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 208, in start_numpy_client\r\n start_client(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 142, in start_client\r\n client_message, sleep_duration, keep_going = handle(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 68, in handle\r\n return _fit(client, server_msg.fit_ins), 0, True\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 157, in _fit\r\n fit_res = client.fit(fit_ins)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 252, in _fit\r\n results = self.numpy_client.fit(parameters, ins.config) # type: ignore\r\n File \"client_2.py\", line 124, in fit\r\n train(net, trainloader, epochs=1)\r\n File \"client_2.py\", line 78, in train\r\n for batch in trainloader:\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 652, in __next__\r\n data = self._next_data()\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 692, in _next_data\r\n data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in fetch\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in <listcomp>\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1525, in __getitem__\r\n return self._getitem(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1517, in _getitem\r\n pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 373, in query_table\r\n pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 55, in _query_table_with_indices_mapping\r\n return _query_table(table, key)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 79, in _query_table\r\n return table.fast_slice(key % table.num_rows, 1)\r\nZeroDivisionError: integer division or modulo by zero\r\n```\r\n\r\nThis is my code:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n#from transformers import tokenized_datasets\r\n\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n# DEVICE = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nDEVICE = \"cpu\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"yhavinga/imdb_dutch\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n # random 100 samples\r\n population = random.sample(range(len(raw_datasets[\"train\"])), 100)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n tokenized_datasets[\"train\"] = tokenized_datasets[\"train\"].select(population)\r\n tokenized_datasets[\"test\"] = tokenized_datasets[\"test\"].select(population)\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n # tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text_en\")\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets[\"train\"].column_names)\r\n \r\n tokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n \r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-4)\r\n net.train()\r\n for _ in range(epochs):\r\n for batch in trainloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n return float(loss), len(testloader), {\"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```", "Please also remove/comment these lines:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n```", "Thanks @mariosasko .\r\n\r\nNow, I am trying out this [tutorial](https://flower.dev/docs/quickstart-huggingface.html) which basically trains distil-BERT with IMDB dataset (very similar to this [tutorial](https://huggingface.co/docs/transformers/main/tasks/sequence_classification)). But I don't know why my accuracy isn't increasing even after training for a significant amount of time and also by using the entire dataset. Below I have attached `client.py` file:\r\n\r\n`client.py`:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n\r\nDEVICE = \"cuda:1\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"imdb\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-5)\r\n net.train()\r\n for i in range(epochs):\r\n print(\"Epoch: \", i+1)\r\n j = 1\r\n print(\"####################### The length of the trainloader is: \", len(trainloader)) \r\n for batch in trainloader:\r\n print(\"####################### The batch number is: \", j)\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n j += 1\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n print({\"loss\": float(loss), \"accuracy\": float(accuracy)})\r\n return float(loss), len(testloader), {\"loss\": float(loss), \"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:5040\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nCan I get any help, please?" ]
2023-04-17T15:00:50Z
2023-04-25T13:50:45Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Following is my code that I am trying to run, but facing an error (have attached the whole error below): My code: ``` from collections import OrderedDict import warnings import flwr as fl import torch import numpy as np import random from torch.utils.data import DataLoader from datasets import load_dataset, load_metric from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification from transformers import AdamW #from transformers import tokenized_datasets warnings.filterwarnings("ignore", category=UserWarning) # DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") DEVICE = "cpu" CHECKPOINT = "distilbert-base-uncased" # transformer model checkpoint def load_data(): """Load IMDB data (training and eval)""" raw_datasets = load_dataset("yhavinga/imdb_dutch") raw_datasets = raw_datasets.shuffle(seed=42) # remove unnecessary data split del raw_datasets["unsupervised"] tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT) def tokenize_function(examples): return tokenizer(examples["text"], truncation=True) # random 100 samples population = random.sample(range(len(raw_datasets["train"])), 100) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets["train"] = tokenized_datasets["train"].select(population) tokenized_datasets["test"] = tokenized_datasets["test"].select(population) # tokenized_datasets = tokenized_datasets.remove_columns("text") # tokenized_datasets = tokenized_datasets.rename_column("label", "labels") tokenized_datasets = tokenized_datasets.remove_columns("attention_mask") tokenized_datasets = tokenized_datasets.remove_columns("input_ids") tokenized_datasets = tokenized_datasets.remove_columns("label") tokenized_datasets = tokenized_datasets.remove_columns("text_en") # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets["train"].column_names) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) trainloader = DataLoader( tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator, ) testloader = DataLoader( tokenized_datasets["test"], batch_size=32, collate_fn=data_collator ) return trainloader, testloader def train(net, trainloader, epochs): optimizer = AdamW(net.parameters(), lr=5e-4) net.train() for _ in range(epochs): for batch in trainloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} outputs = net(**batch) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() def test(net, testloader): metric = load_metric("accuracy") loss = 0 net.eval() for batch in testloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} with torch.no_grad(): outputs = net(**batch) logits = outputs.logits loss += outputs.loss.item() predictions = torch.argmax(logits, dim=-1) metric.add_batch(predictions=predictions, references=batch["labels"]) loss /= len(testloader.dataset) accuracy = metric.compute()["accuracy"] return loss, accuracy def main(): net = AutoModelForSequenceClassification.from_pretrained( CHECKPOINT, num_labels=2 ).to(DEVICE) trainloader, testloader = load_data() # Flower client class IMDBClient(fl.client.NumPyClient): def get_parameters(self, config): return [val.cpu().numpy() for _, val in net.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(net.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) net.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) print("Training Started...") train(net, trainloader, epochs=1) print("Training Finished.") return self.get_parameters(config={}), len(trainloader), {} def evaluate(self, parameters, config): self.set_parameters(parameters) loss, accuracy = test(net, testloader) return float(loss), len(testloader), {"accuracy": float(accuracy)} # Start client fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) if __name__ == "__main__": main() ``` Error: ``` Traceback (most recent call last): File "client_2.py", line 136, in <module> main() File "client_2.py", line 132, in main fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 208, in start_numpy_client start_client( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 142, in start_client client_message, sleep_duration, keep_going = handle( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 68, in handle return _fit(client, server_msg.fit_ins), 0, True File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 157, in _fit fit_res = client.fit(fit_ins) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 252, in _fit results = self.numpy_client.fit(parameters, ins.config) # type: ignore File "client_2.py", line 122, in fit train(net, trainloader, epochs=1) File "client_2.py", line 76, in train for batch in trainloader: File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 652, in __next__ data = self._next_data() File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 692, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch return self.collate_fn(data) File "/home/saurav/.local/lib/python3.8/site-packages/transformers/data/data_collator.py", line 221, in __call__ batch = self.tokenizer.pad( File "/home/saurav/.local/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2713, in pad raise ValueError( ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text'] ``` ### Steps to reproduce the bug Run the above code. ### Expected behavior Don't know, doing it for the first time. ### Environment info - `datasets` version: 1.12.1 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 11.0.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5765/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5765/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7487
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7487/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7487/comments
https://api.github.com/repos/huggingface/datasets/issues/7487/events
https://github.com/huggingface/datasets/pull/7487
2,956,533,448
PR_kwDODunzps6QlF8N
7,487
Write pdf in map
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7487). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-28T15:49:25Z
2025-03-28T17:09:53Z
2025-03-28T17:09:51Z
MEMBER
null
null
null
Fix this error when mapping a PDF dataset ``` pyarrow.lib.ArrowInvalid: Could not convert <pdfplumber.pdf.PDF object at 0x13498ee40> with type PDF: did not recognize Python value type when inferring an Arrow data type ``` and also let map() outputs be lists of images or pdfs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7487/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7487/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7487.diff", "html_url": "https://github.com/huggingface/datasets/pull/7487", "merged_at": "2025-03-28T17:09:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/7487.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7487" }
https://api.github.com/repos/huggingface/datasets/issues/5115
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5115/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5115/comments
https://api.github.com/repos/huggingface/datasets/issues/5115/events
https://github.com/huggingface/datasets/pull/5115
1,409,250,020
PR_kwDODunzps5Az9Pm
5,115
Fix iter_batches
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I also ran the code in https://github.com/huggingface/datasets/issues/5111 and it works fine now :)", "This is ready for review :)" ]
2022-10-14T12:06:14Z
2022-10-14T15:02:15Z
2022-10-14T14:59:58Z
MEMBER
null
null
null
The `pa.Table.to_reader()` method available in `pyarrow>=8.0.0` may return chunks of size < `max_chunksize`, therefore `iter_batches` can return batches smaller than the `batch_size` specified by the user Therefore batched `map` couldn't always use batches of the right size, e.g. this fails because it runs only on one batch of one element: ```python from datasets import Dataset, concatenate_datasets ds = concatenate_datasets([Dataset.from_dict({"a": [i]}) for i in range(10)]) ds2 = ds.map(lambda _: {}, batched=True) assert list(ds2) == list(ds) ``` This was introduced in https://github.com/huggingface/datasets/pull/5030 Close https://github.com/huggingface/datasets/issues/5111 This will require a patch release along with https://github.com/huggingface/datasets/pull/5113 TODO: - [x] fix tests - [x] add more tests
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5115/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5115/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5115.diff", "html_url": "https://github.com/huggingface/datasets/pull/5115", "merged_at": "2022-10-14T14:59:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/5115.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5115" }
https://api.github.com/repos/huggingface/datasets/issues/7156
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7156/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7156/comments
https://api.github.com/repos/huggingface/datasets/issues/7156/events
https://github.com/huggingface/datasets/issues/7156
2,539,360,617
I_kwDODunzps6XW5Fp
7,156
interleave_datasets resets shuffle state
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "It also does preserve `split_by_node`, so in the meantime you should call `shuffle` or `split_by_node` AFTER `interleave_datasets` or `concatenate_datasets`" ]
2024-09-20T17:57:54Z
2025-03-18T10:56:25Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ``` import datasets import torch.utils.data def gen(shards): yield {"shards": shards} def main(): dataset = datasets.IterableDataset.from_generator( gen, gen_kwargs={'shards': list(range(25))} ) dataset = dataset.shuffle(buffer_size=1) dataset = datasets.interleave_datasets( [dataset, dataset], probabilities=[1, 0], stopping_strategy="all_exhausted" ) dataloader = torch.utils.data.DataLoader( dataset, batch_size=8, num_workers=8, ) for i, batch in enumerate(dataloader): print(batch) if i >= 10: break if __name__ == "__main__": main() ``` ### Steps to reproduce the bug Run the script, it will output ``` {'shards': [tensor([ 0, 8, 16, 24, 0, 8, 16, 24])]} {'shards': [tensor([ 1, 9, 17, 1, 9, 17, 1, 9])]} {'shards': [tensor([ 2, 10, 18, 2, 10, 18, 2, 10])]} {'shards': [tensor([ 3, 11, 19, 3, 11, 19, 3, 11])]} {'shards': [tensor([ 4, 12, 20, 4, 12, 20, 4, 12])]} {'shards': [tensor([ 5, 13, 21, 5, 13, 21, 5, 13])]} {'shards': [tensor([ 6, 14, 22, 6, 14, 22, 6, 14])]} {'shards': [tensor([ 7, 15, 23, 7, 15, 23, 7, 15])]} {'shards': [tensor([ 0, 8, 16, 24, 0, 8, 16, 24])]} {'shards': [tensor([17, 1, 9, 17, 1, 9, 17, 1])]} {'shards': [tensor([18, 2, 10, 18, 2, 10, 18, 2])]} ``` ### Expected behavior The shards should be shuffled. ### Environment info - `datasets` version: 3.0.0 - Platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.25.0 - PyArrow version: 17.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2023.6.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7156/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7156/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7495/comments
https://api.github.com/repos/huggingface/datasets/issues/7495/events
https://github.com/huggingface/datasets/issues/7495
2,967,034,060
I_kwDODunzps6w2VjM
7,495
Columns in the dataset obtained though load_dataset do not correspond to the one in the dataset viewer since 3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-02T17:01:11Z
2025-04-03T09:54:22Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have noticed that on my dataset named [BrunoHays/Accueil_UBS](https://huggingface.co/datasets/BrunoHays/Accueil_UBS), since the version 3.4.0, every column except audio is missing when I load the dataset. Interestingly, the dataset viewer still shows the correct columns ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset("BrunoHays/Accueil_UBS", streaming=True) print(next(iter(ds["test"])).keys()) ``` With datasets >= 3.4.0: -> dict_keys(['audio']) With datasets == 3.3.2: -> dict_keys(['audio', 'id', 'speaker', 'sentence', 'raw_sentence', 'start_timestamp', 'end_timestamp', 'overlap']) ### Expected behavior All the columns should be present ### Environment info - `datasets` version: 3.3.2 - Platform: macOS-14.6.1-x86_64-i386-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.30.1 - PyArrow version: 16.1.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7495/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7495/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4928
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4928/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4928/comments
https://api.github.com/repos/huggingface/datasets/issues/4928/events
https://github.com/huggingface/datasets/pull/4928
1,360,941,172
PR_kwDODunzps4-Ubi4
4,928
Add ability to read-write to SQL databases.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4", "events_url": "https://api.github.com/users/Dref360/events{/privacy}", "followers_url": "https://api.github.com/users/Dref360/followers", "following_url": "https://api.github.com/users/Dref360/following{/other_user}", "gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Dref360", "id": 8976546, "login": "Dref360", "node_id": "MDQ6VXNlcjg5NzY1NDY=", "organizations_url": "https://api.github.com/users/Dref360/orgs", "received_events_url": "https://api.github.com/users/Dref360/received_events", "repos_url": "https://api.github.com/users/Dref360/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dref360/subscriptions", "type": "User", "url": "https://api.github.com/users/Dref360", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Ah CI runs with `pandas=1.3.5` which doesn't return the number of row inserted.", "wow this is super cool!", "@lhoestq I'm getting error in integration tests, not sure if it's related to my PR. Any help would be appreciated :) \r\n\r\n```\r\nif not self._is_valid_token(token):\r\n> raise ValueError(\"Invalid token passed!\")\r\nE ValueError: Invalid token passed!\r\n```", "I just relaunched the tests, it should be fixed now", "Thanks a lot for working on this!\r\n\r\nI have some concerns with the current design:\r\n* Besides SQLite, the loader should also work with the other engines supported by SQLAlchemy. (A better name for it in the current state would be `sqlite` :))\r\n* It should support arbitrary queries/table names - only the latter currently works.\r\n* Exposing this loader as a packaged builder (`load_dataset(\"sql\", ...)`) is not a good idea for the following reasons:\r\n * Considering the scenario where a table with the same name is present in multiple files is very unlikely, the data files resolution is not needed here. And if we remove that, what the name of the default split should be? \"train\"?\r\n * `load_dataset(\"sql\", ...)` also implies that streaming should work, but that's not the case. And I don't think we can change that, considering how hard it is to make SQLite files streamable.\r\n\r\nAll this makes me think we shouldn't expose this builder as a packaged module and, instead, limit the API to `Dataset.from_sql`/`Dataset.to_sql` (with the signatures matching the ones in pandas as much as possible; regarding this, note that SQLAlchemy connections are not hashable/picklable, which is required for caching, but I think it's OK only to allow URI strings as connections to bypass that (Dask has the same limitation).\r\n\r\nWDYT?", "Hi @mariosasko thank you for your review.\r\n\r\nI agree that `load_dataset('sql',...)` is a bit weird and I would be happy to remove it. To be honest, I only added it when I saw that it was the preferred way in `loading.mdx`. \r\n\r\nI agree that the `SELECT` should be a parameters as well. I'll add it.\r\n\r\nSo far, only `Dataset.to_sql` explicitly supports any SQLAlchemy Connexion, I'm pretty sure that `Dataset.from_sql` would work with a Connexion as well, but it would break the typing from the parent class which is `path_or_paths: NestedDataStructureLike[PathLike]`. I would prefer not to break this API Contract.\r\n\r\n\r\nI will have time to work on this over the weekend. Please let me know what you think if I do the following:\r\n* Remove `load_dataset('sql', ...)` and edit the documentation to use `to_sql, from_sql`.\r\n* Tentatively make `Dataset.from_sql` typing work with SQLAlchemy Connexion.\r\n* Add support for custom queries (Default would be `SELECT * FROM {table_name}`).\r\n\r\nCheers!", "Perhaps after we merge https://github.com/huggingface/datasets/pull/4957 (**Done!**), you can subclass `AbstractDatasetInputStream` instead of `AbstractDatasetReader` to not break the contract with the connection object. Also, let's avoid having the default value for the query/table (you can set it to `None` in the builder and raise an error in the builder config's `__post_init__` if it's not provided). Other than that, sounds good!", "@Dref360 I've made final changes/refinements to align the SQL API with Pandas/Dask. Let me know what you think.\r\n", "Thank you so much! I was missing a lot of things sorry about that.\r\nLGTM", "I think we can merge if the tests pass. \r\n\r\nOne last thing I would like to get your opinion on - currently, if SQLAlchemy is not installed, the missing dependency error will be thrown inside `pandas.read_sql`. Do you think we should be the ones throwing this error, e.g. after the imports in `packaged_modules/sql/sql.py` if `SQLALCHEMY_AVAILABLE` is `False` (note that this would mean making `sqlalchemy` a required dependency for the docs to be able to add `SqlConfig` to the package reference)?", "> One last thing I would like to get your opinion on - currently, if SQLAlchemy is not installed, the missing dependency error will be thrown inside pandas.read_sql\r\n\r\nIs sqlalchemy always required for pd.read_sql ? If so, I think we can raise the error on our side.\r\nBut sqlalchemy should still be an optional dependency for `datasets` IMO", "@lhoestq \r\n> Is sqlalchemy always required for pd.read_sql ? If so, I think we can raise the error on our side.\r\n\r\nIn our case, it's always required as we only support database URIs.\r\n\r\n> But sqlalchemy should still be an optional dependency for datasets IMO\r\n\r\nYes, it will remain optional for datasets but will be required for building the docs (as is`s3fs`, for instance). ", "Ok I see ! Sounds good :)" ]
2022-09-03T19:09:08Z
2022-10-03T16:34:36Z
2022-10-03T16:32:28Z
CONTRIBUTOR
null
null
null
Fixes #3094 Add ability to read/write to SQLite files and also read from any SQL database supported by SQLAlchemy. I didn't add SQLAlchemy as a dependence as it is fairly big and it remains optional. I also recorded a Loom to showcase the feature. https://www.loom.com/share/f0e602c2de8a46f58bca4b43333d541f
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 2, "heart": 4, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 8, "url": "https://api.github.com/repos/huggingface/datasets/issues/4928/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4928/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4928.diff", "html_url": "https://github.com/huggingface/datasets/pull/4928", "merged_at": "2022-10-03T16:32:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/4928.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4928" }
https://api.github.com/repos/huggingface/datasets/issues/7297
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7297/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7297/comments
https://api.github.com/repos/huggingface/datasets/issues/7297/events
https://github.com/huggingface/datasets/issues/7297
2,683,977,430
I_kwDODunzps6f-j7W
7,297
wrong return type for `IterableDataset.shard()`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47225236?v=4", "events_url": "https://api.github.com/users/ysngshn/events{/privacy}", "followers_url": "https://api.github.com/users/ysngshn/followers", "following_url": "https://api.github.com/users/ysngshn/following{/other_user}", "gists_url": "https://api.github.com/users/ysngshn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ysngshn", "id": 47225236, "login": "ysngshn", "node_id": "MDQ6VXNlcjQ3MjI1MjM2", "organizations_url": "https://api.github.com/users/ysngshn/orgs", "received_events_url": "https://api.github.com/users/ysngshn/received_events", "repos_url": "https://api.github.com/users/ysngshn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ysngshn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ysngshn/subscriptions", "type": "User", "url": "https://api.github.com/users/ysngshn", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Oops my bad ! thanks for reporting" ]
2024-11-22T17:25:46Z
2024-12-03T14:27:27Z
2024-12-03T14:27:03Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug `IterableDataset.shard()` has the wrong typing for its return as `"Dataset"`. It should be `"IterableDataset"`. Makes my IDE unhappy. ### Steps to reproduce the bug look at [the source code](https://github.com/huggingface/datasets/blob/main/src/datasets/iterable_dataset.py#L2668)? ### Expected behavior Correct return type as `"IterableDataset"` ### Environment info datasets==3.1.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7297/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7297/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6007
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6007/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6007/comments
https://api.github.com/repos/huggingface/datasets/issues/6007/events
https://github.com/huggingface/datasets/issues/6007
1,789,782,693
I_kwDODunzps5qreql
6,007
Get an error "OverflowError: Python int too large to convert to C long" when loading a large dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/2529049?v=4", "events_url": "https://api.github.com/users/silverriver/events{/privacy}", "followers_url": "https://api.github.com/users/silverriver/followers", "following_url": "https://api.github.com/users/silverriver/following{/other_user}", "gists_url": "https://api.github.com/users/silverriver/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/silverriver", "id": 2529049, "login": "silverriver", "node_id": "MDQ6VXNlcjI1MjkwNDk=", "organizations_url": "https://api.github.com/users/silverriver/orgs", "received_events_url": "https://api.github.com/users/silverriver/received_events", "repos_url": "https://api.github.com/users/silverriver/repos", "site_admin": false, "starred_url": "https://api.github.com/users/silverriver/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/silverriver/subscriptions", "type": "User", "url": "https://api.github.com/users/silverriver", "user_view_type": "public" }
[ { "color": "c2e0c6", "default": false, "description": "Related to Apache Arrow", "id": 5705560427, "name": "arrow", "node_id": "LA_kwDODunzps8AAAABVBPxaw", "url": "https://api.github.com/repos/huggingface/datasets/labels/arrow" } ]
open
false
null
[]
null
[ "This error means that one of the int32 (`Value(\"int32\")`) columns in the dataset has a value that is out of the valid (int32) range.\r\n\r\nI'll open a PR to print the name of a problematic column to make debugging such errors easier.", "I am afraid int32 is not the reason for this error.\r\n\r\nI have submitted a commit to use int64 for all ints in the dataset:\r\nhttps://huggingface.co/datasets/liwu/MNBVC/commit/857ac00d9eab96a6708ad6a82bd9001686042a9e\r\n\r\nand I have updated my env to the latest datasets release:\r\nCopy-and-paste the text below in your GitHub issue.\r\n\r\n- `datasets` version: 2.13.1\r\n- Platform: macOS-13.2.1-arm64-arm-64bit\r\n- Python version: 3.11.2\r\n- Huggingface_hub version: 0.13.4\r\n- PyArrow version: 11.0.0\r\n- Pandas version: 1.5.3\r\n\r\nBut the error still exist\r\n\r\n```\r\nDownloading and preparing dataset mnbvc/news_peoples_daily to /Users/silver/.cache/huggingface/datasets/liwu___mnbvc/news_peoples_daily/0.0.1/ee380f6309fe9b8b0d1fb14d77118f132444f22c8c4b28bf5c1645312688e051...\r\nDownloading data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 9070.40it/s]\r\nExtracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 2697.16it/s]\r\n---------------------------------------------------------------------------\r\nOverflowError Traceback (most recent call last)\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1647, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\r\n 1646 example = self.info.features.encode_example(record) if self.info.features is not None else record\r\n-> 1647 writer.write(example, key)\r\n 1648 num_examples_progress_update += 1\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:490, in ArrowWriter.write(self, example, key, writer_batch_size)\r\n 488 self.hkey_record = []\r\n--> 490 self.write_examples_on_file()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:448, in ArrowWriter.write_examples_on_file(self)\r\n 444 batch_examples[col] = [\r\n 445 row[0][col].to_pylist()[0] if isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) else row[0][col]\r\n 446 for row in self.current_examples\r\n 447 ]\r\n--> 448 self.write_batch(batch_examples=batch_examples)\r\n 449 self.current_examples = []\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:553, in ArrowWriter.write_batch(self, batch_examples, writer_batch_size)\r\n 552 typed_sequence = OptimizedTypedSequence(col_values, type=col_type, try_type=col_try_type, col=col)\r\n--> 553 arrays.append(pa.array(typed_sequence))\r\n 554 inferred_features[col] = typed_sequence.get_inferred_type()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:236, in pyarrow.lib.array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:110, in pyarrow.lib._handle_arrow_array_protocol()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:189, in TypedSequence.__arrow_array__(self, type)\r\n 188 trying_cast_to_python_objects = True\r\n--> 189 out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True))\r\n 190 # use smaller integer precisions if possible\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:320, in pyarrow.lib.array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:39, in pyarrow.lib._sequence_to_array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()\r\n\r\nOverflowError: Python int too large to convert to C long\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nOverflowError Traceback (most recent call last)\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1656, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\r\n 1655 num_shards = shard_id + 1\r\n-> 1656 num_examples, num_bytes = writer.finalize()\r\n 1657 writer.close()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:584, in ArrowWriter.finalize(self, close_stream)\r\n 583 self.hkey_record = []\r\n--> 584 self.write_examples_on_file()\r\n 585 # If schema is known, infer features even if no examples were written\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:448, in ArrowWriter.write_examples_on_file(self)\r\n 444 batch_examples[col] = [\r\n 445 row[0][col].to_pylist()[0] if isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) else row[0][col]\r\n 446 for row in self.current_examples\r\n 447 ]\r\n--> 448 self.write_batch(batch_examples=batch_examples)\r\n 449 self.current_examples = []\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:553, in ArrowWriter.write_batch(self, batch_examples, writer_batch_size)\r\n 552 typed_sequence = OptimizedTypedSequence(col_values, type=col_type, try_type=col_try_type, col=col)\r\n--> 553 arrays.append(pa.array(typed_sequence))\r\n 554 inferred_features[col] = typed_sequence.get_inferred_type()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:236, in pyarrow.lib.array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:110, in pyarrow.lib._handle_arrow_array_protocol()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/arrow_writer.py:189, in TypedSequence.__arrow_array__(self, type)\r\n 188 trying_cast_to_python_objects = True\r\n--> 189 out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True))\r\n 190 # use smaller integer precisions if possible\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:320, in pyarrow.lib.array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/array.pxi:39, in pyarrow.lib._sequence_to_array()\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()\r\n\r\nOverflowError: Python int too large to convert to C long\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nDatasetGenerationError Traceback (most recent call last)\r\nCell In[2], line 1\r\n----> 1 dataset = load_dataset(\"liwu/MNBVC\", 'news_peoples_daily', split='train')\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/load.py:1809, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1806 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n 1808 # Download and prepare data\r\n-> 1809 builder_instance.download_and_prepare(\r\n 1810 download_config=download_config,\r\n 1811 download_mode=download_mode,\r\n 1812 verification_mode=verification_mode,\r\n 1813 try_from_hf_gcs=try_from_hf_gcs,\r\n 1814 num_proc=num_proc,\r\n 1815 storage_options=storage_options,\r\n 1816 )\r\n 1818 # Build dataset for splits\r\n 1819 keep_in_memory = (\r\n 1820 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1821 )\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:909, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\r\n 907 if num_proc is not None:\r\n 908 prepare_split_kwargs[\"num_proc\"] = num_proc\r\n--> 909 self._download_and_prepare(\r\n 910 dl_manager=dl_manager,\r\n 911 verification_mode=verification_mode,\r\n 912 **prepare_split_kwargs,\r\n 913 **download_and_prepare_kwargs,\r\n 914 )\r\n 915 # Sync info\r\n 916 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1670, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs)\r\n 1669 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs):\r\n-> 1670 super()._download_and_prepare(\r\n 1671 dl_manager,\r\n 1672 verification_mode,\r\n 1673 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS\r\n 1674 or verification_mode == VerificationMode.ALL_CHECKS,\r\n 1675 **prepare_splits_kwargs,\r\n 1676 )\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1004, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)\r\n 1000 split_dict.add(split_generator.split_info)\r\n 1002 try:\r\n 1003 # Prepare split will record examples associated to the split\r\n-> 1004 self._prepare_split(split_generator, **prepare_split_kwargs)\r\n 1005 except OSError as e:\r\n 1006 raise OSError(\r\n 1007 \"Cannot find data file. \"\r\n 1008 + (self.manual_download_instructions or \"\")\r\n 1009 + \"\\nOriginal error:\\n\"\r\n 1010 + str(e)\r\n 1011 ) from None\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1508, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\r\n 1506 job_id = 0\r\n 1507 with pbar:\r\n-> 1508 for job_id, done, content in self._prepare_split_single(\r\n 1509 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args\r\n 1510 ):\r\n 1511 if done:\r\n 1512 result = content\r\n\r\nFile ~/git/venv/lib/python3.11/site-packages/datasets/builder.py:1665, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\r\n 1663 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:\r\n 1664 e = e.__context__\r\n-> 1665 raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\n 1667 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)\r\n\r\nDatasetGenerationError: An error occurred while generating the dataset\r\n```\r\n\r\nBesides, it works fine when I am using streamed dataset.", "`simhash` is the problematic column - it has values such as `18329103420363166823` that are out of the int64 range. You can fix this by setting the feature type to `Value(\"string\")` (it's advised to use this type for hash values in general)\r\n\r\n> Besides, it works fine when I am using streamed dataset.\r\n\r\nStreaming yields Python dictionaries from the script without converting them to the Arrow representation, as this conversion step is not that cheap performance-wise.", "i am using uint64 for simhash\r\n\r\nuint64 ranges up to about 3.69E19.\r\n\r\n18329103420363166823 is less than this value.\r\n\r\nmoreover, our simhash algorithm use 64 bits. it should fit in uint64.\r\n\r\n\r\n\r\n", "You are right. I overlooked the feature type.\r\n\r\nThis is a reproducer:\r\n```python\r\nimport pyarrow as pa\r\nfrom datasets.arrow_writer import TypedSequence\r\n\r\npa.array(TypedSequence([18329103420363166823], type=Value(\"uint64\")))\r\n```\r\n\r\n`pa.array([18329103420363166823])` also fails with the same error, so it seems PyArrow does not always infer the correct type as NumPy does (`uint64` in this case).\r\n\r\nI'll report this issue in the Arrow repo.\r\n\r\n`pa.array([18329103420363166823], pa.uint64)` works, so maybe we can implement a temporary fix (supporting complex input such as `[{\"image\": pil_image, \"num\": uint64_value}]` would be hard though).\r\n\r\nIn the meantime, you should be able to bypass this error by returning the `simhash` values as NumPy scalars in the script:\r\n```python\r\ndef _generate_examples(self, ...):\r\n ...\r\n yield {..., \"simhash\": np.uint64(simhash), ...}\r\n```", "Thank you for checking this issue in detail.\r\n\r\nHowever, it seems that using `np.uint64(simhash)` does not work. The same issue still exists.\r\n\r\nhttps://huggingface.co/datasets/liwu/MNBVC/commit/1e44f1e400b7e61052647d44c99cdae3bae9c830\r\n\r\nAnyway, we decide to use string type for these simhash values. Hope pyarrow can fix their bug soon.", "Arrow issue: https://github.com/apache/arrow/issues/36520", "May be something read your training data line by line.\r\nThen your training data just only one line. \r\nIt is so large.\r\nI guess.\r\n" ]
2023-07-05T15:16:50Z
2024-02-07T22:22:35Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When load a large dataset with the following code ```python from datasets import load_dataset dataset = load_dataset("liwu/MNBVC", 'news_peoples_daily', split='train') ``` We encountered the error: "OverflowError: Python int too large to convert to C long" The error look something like: ``` OverflowError: Python int too large to convert to C long During handling of the above exception, another exception occurred: OverflowError Traceback (most recent call last) <ipython-input-7-0ed8700e662d> in <module> ----> 1 dataset = load_dataset("liwu/MNBVC", 'news_peoples_daily', split='train', cache_dir='/sfs/MNBVC/.cache/') /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1749 ignore_verifications=ignore_verifications, 1750 try_from_hf_gcs=try_from_hf_gcs, -> 1751 use_auth_token=use_auth_token, 1752 ) 1753 /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 703 if not downloaded_from_gcs: 704 self._download_and_prepare( --> 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 706 ) 707 # Sync info /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 1225 1226 def _download_and_prepare(self, dl_manager, verify_infos): -> 1227 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) 1228 1229 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 791 try: 792 # Prepare split will record examples associated to the split --> 793 self._prepare_split(split_generator, **prepare_split_kwargs) 794 except OSError as e: 795 raise OSError( /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/builder.py in _prepare_split(self, split_generator, check_duplicate_keys) 1219 writer.write(example, key) 1220 finally: -> 1221 num_examples, num_bytes = writer.finalize() 1222 1223 split_generator.split_info.num_examples = num_examples /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/arrow_writer.py in finalize(self, close_stream) 536 # Re-intializing to empty list for next batch 537 self.hkey_record = [] --> 538 self.write_examples_on_file() 539 if self.pa_writer is None: 540 if self.schema: /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/arrow_writer.py in write_examples_on_file(self) 407 # Since current_examples contains (example, key) tuples 408 batch_examples[col] = [row[0][col] for row in self.current_examples] --> 409 self.write_batch(batch_examples=batch_examples) 410 self.current_examples = [] 411 /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/arrow_writer.py in write_batch(self, batch_examples, writer_batch_size) 506 col_try_type = try_features[col] if try_features is not None and col in try_features else None 507 typed_sequence = OptimizedTypedSequence(batch_examples[col], type=col_type, try_type=col_try_type, col=col) --> 508 arrays.append(pa.array(typed_sequence)) 509 inferred_features[col] = typed_sequence.get_inferred_type() 510 schema = inferred_features.arrow_schema if self.pa_writer is None else self.schema /sfs/MNBVC/venv/lib64/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /sfs/MNBVC/venv/lib64/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib._handle_arrow_array_protocol() /sfs/MNBVC/venv/lib64/python3.6/site-packages/datasets/arrow_writer.py in __arrow_array__(self, type) 180 else: 181 trying_cast_to_python_objects = True --> 182 out = pa.array(cast_to_python_objects(data, only_1d_for_numpy=True)) 183 # use smaller integer precisions if possible 184 if self.trying_int_optimization: /sfs/MNBVC/venv/lib64/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib.array() /sfs/MNBVC/venv/lib64/python3.6/site-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array() /sfs/MNBVC/venv/lib64/python3.6/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() OverflowError: Python int too large to convert to C long ``` However, that dataset can be loaded in a streaming manner: ```python from datasets import load_dataset dataset = load_dataset("liwu/MNBVC", 'news_peoples_daily', split='train', streaming=True) for i in dataset: pass # it work well ``` Another issue is reported in our dataset hub: https://huggingface.co/datasets/liwu/MNBVC/discussions/2 ### Steps to reproduce the bug from datasets import load_dataset dataset = load_dataset("liwu/MNBVC", 'news_peoples_daily', split='train') ### Expected behavior the dataset can be safely loaded ### Environment info - `datasets` version: 2.4.0 - Platform: Linux-3.10.0-1160.an7.x86_64-x86_64-with-centos-7.9 - Python version: 3.6.8 - PyArrow version: 6.0.1 - Pandas version: 1.1.5
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6007/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6007/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4704
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4704/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4704/comments
https://api.github.com/repos/huggingface/datasets/issues/4704/events
https://github.com/huggingface/datasets/pull/4704
1,308,147,876
PR_kwDODunzps47lCFt
4,704
Skip tests only for lz4/zstd params if not installed
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-07-18T15:41:40Z
2022-07-19T13:02:31Z
2022-07-19T12:49:18Z
MEMBER
null
null
null
Currently, if `zstandard` or `lz4` are not installed, `test_compression_filesystems` and `test_streaming_dl_manager_extract_all_supported_single_file_compression_types` are skipped for all compression format parameters. This PR fixes these tests, so that if `zstandard` or `lz4` are not installed, the tests are skipped only for the corresponding compression parameters (`zstd` or `lz4`), whereas the tests are not skipped for all the other compression parameters (`gzip`, `xz` and `bz2`). Related to: - #4688
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4704/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4704/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4704.diff", "html_url": "https://github.com/huggingface/datasets/pull/4704", "merged_at": "2022-07-19T12:49:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/4704.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4704" }
https://api.github.com/repos/huggingface/datasets/issues/6937
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6937/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6937/comments
https://api.github.com/repos/huggingface/datasets/issues/6937/events
https://github.com/huggingface/datasets/issues/6937
2,327,212,611
I_kwDODunzps6KtnJD
6,937
JSON loader implicitly coerces floats to integers
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-05-31T08:09:12Z
2024-05-31T08:11:57Z
null
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
The JSON loader implicitly coerces floats to integers. The column values `[0.0, 1.0, 2.0]` are coerced to `[0, 1, 2]`. See CI error in dataset-viewer: https://github.com/huggingface/dataset-viewer/actions/runs/9290164936/job/25576926446 ``` =================================== FAILURES =================================== ___________________________ test_statistics_endpoint ___________________________ normal_user_public_json_dataset = 'DVUser/tmp-dataset-17170199043860' def test_statistics_endpoint(normal_user_public_json_dataset: str) -> None: dataset = normal_user_public_json_dataset config, split = get_default_config_split() statistics_response = poll_until_ready_and_assert( relative_url=f"/statistics?dataset={dataset}&config={config}&split={split}", check_x_revision=True, dataset=dataset, ) content = statistics_response.json() assert len(content) == 3 assert sorted(content) == ["num_examples", "partial", "statistics"], statistics_response statistics = content["statistics"] num_examples = content["num_examples"] partial = content["partial"] assert isinstance(statistics, list), statistics assert len(statistics) == 6 assert num_examples == 4 assert partial is False string_label_column = statistics[0] assert "column_name" in string_label_column assert "column_statistics" in string_label_column assert "column_type" in string_label_column assert string_label_column["column_name"] == "col_1" assert string_label_column["column_type"] == "string_label" # 4 unique values -> label assert isinstance(string_label_column["column_statistics"], dict) assert string_label_column["column_statistics"] == { "nan_count": 0, "nan_proportion": 0.0, "no_label_count": 0, "no_label_proportion": 0.0, "n_unique": 4, "frequencies": { "There goes another one.": 1, "Vader turns round and round in circles as his ship spins into space.": 1, "We count thirty Rebel ships, Lord Vader.": 1, "The wingman spots the pirateship coming at him and warns the Dark Lord": 1, }, } int_column = statistics[1] assert "column_name" in int_column assert "column_statistics" in int_column assert "column_type" in int_column assert int_column["column_name"] == "col_2" assert int_column["column_type"] == "int" assert isinstance(int_column["column_statistics"], dict) assert int_column["column_statistics"] == { "histogram": {"bin_edges": [0, 1, 2, 3, 3], "hist": [1, 1, 1, 1]}, "max": 3, "mean": 1.5, "median": 1.5, "min": 0, "nan_count": 0, "nan_proportion": 0.0, "std": 1.29099, } float_column = statistics[2] assert "column_name" in float_column assert "column_statistics" in float_column assert "column_type" in float_column assert float_column["column_name"] == "col_3" > assert float_column["column_type"] == "float" E AssertionError: assert 'int' == 'float' E - float E + int tests/test_14_statistics.py:72: AssertionError =========================== short test summary info ============================ FAILED tests/test_14_statistics.py::test_statistics_endpoint - AssertionError: assert 'int' == 'float' - float + int ``` This bug was introduced after: - #6914 We have reported the issue to pandas: - https://github.com/pandas-dev/pandas/issues/58866
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6937/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6937/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4623
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4623/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4623/comments
https://api.github.com/repos/huggingface/datasets/issues/4623/events
https://github.com/huggingface/datasets/issues/4623
1,293,042,894
I_kwDODunzps5NEkTO
4,623
Loading MNIST as Pytorch Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/56592797?v=4", "events_url": "https://api.github.com/users/jameschapman19/events{/privacy}", "followers_url": "https://api.github.com/users/jameschapman19/followers", "following_url": "https://api.github.com/users/jameschapman19/following{/other_user}", "gists_url": "https://api.github.com/users/jameschapman19/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jameschapman19", "id": 56592797, "login": "jameschapman19", "node_id": "MDQ6VXNlcjU2NTkyNzk3", "organizations_url": "https://api.github.com/users/jameschapman19/orgs", "received_events_url": "https://api.github.com/users/jameschapman19/received_events", "repos_url": "https://api.github.com/users/jameschapman19/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jameschapman19/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jameschapman19/subscriptions", "type": "User", "url": "https://api.github.com/users/jameschapman19", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi ! We haven't implemented the conversion from images data to PyTorch tensors yet I think\r\n\r\ncc @mariosasko ", "So I understand:\r\n\r\nset_format() does not properly do the conversion to pytorch tensors from PIL images.\r\n\r\nSo that someone who stumbles on this can use the package:\r\n\r\n```python\r\ndataset = load_dataset(\"mnist\", split=\"train\")\r\ndef transform_func(examples):\r\n examples[\"image\"] = [np.array(img) for img in examples[\"image\"]]\r\n return examples\r\ndataset = dataset.with_transform(transform_func)\r\ndataset[0]\r\n``` ", "This then appears to work with pytorch dataloaders as:\r\n```\r\ndataloader=torch.utils.data.DataLoader(dataset,batch_size=1)\r\n```\r\n\r\nand tensorflow as:\r\n```\r\ndataset=dataset.to_tf_dataset(batch_size=1)\r\n```", "Hi! `set_transform`/`with_transform` is indeed the correct solution for the conversion. Improving this part of the API is one of the things I'm working on currently, so stay tuned!" ]
2022-07-04T11:33:10Z
2022-07-04T14:40:50Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Conversion of MNIST dataset to pytorch fails with bug ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("mnist", split="train") dataset.set_format('torch') dataset[0] print() ``` ## Expected results Expect to see torch tensors image and label ## Actual results Traceback (most recent call last): File "C:\Program Files\JetBrains\PyCharm 2020.3.3\plugins\python\helpers\pydev\pydevd.py", line 1491, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "C:\Program Files\JetBrains\PyCharm 2020.3.3\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "C:/Users/chapm/PycharmProjects/multiviewdata/multiviewdata/huggingface/mnist.py", line 13, in <module> dataset[0] File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\arrow_dataset.py", line 2154, in __getitem__ return self._getitem( File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\arrow_dataset.py", line 2139, in _getitem formatted_output = format_table( File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\formatting.py", line 532, in format_table return formatter(pa_table, query_type=query_type) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\formatting.py", line 281, in __call__ return self.format_row(pa_table) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\torch_formatter.py", line 58, in format_row return self.recursive_tensorize(row) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\torch_formatter.py", line 54, in recursive_tensorize return map_nested(self._recursive_tensorize, data_struct, map_list=False) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\utils\py_utils.py", line 356, in map_nested mapped = [ File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\utils\py_utils.py", line 357, in <listcomp> _single_map_nested((function, obj, types, None, True, None)) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\utils\py_utils.py", line 309, in _single_map_nested return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\utils\py_utils.py", line 309, in <dictcomp> return {k: _single_map_nested((function, v, types, None, True, None)) for k, v in pbar} File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\utils\py_utils.py", line 293, in _single_map_nested return function(data_struct) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\torch_formatter.py", line 51, in _recursive_tensorize return self._tensorize(data_struct) File "C:\Users\chapm\PycharmProjects\multiviewdata\venv\lib\site-packages\datasets\formatting\torch_formatter.py", line 38, in _tensorize if np.issubdtype(value.dtype, np.integer): AttributeError: 'bytes' object has no attribute 'dtype' python-BaseException ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.3.2 - Platform: Windows-10-10.0.22579-SP0 - Python version: 3.9.2 - PyArrow version: 8.0.0 - Pandas version: 1.4.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4623/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4623/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6813
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6813/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6813/comments
https://api.github.com/repos/huggingface/datasets/issues/6813/events
https://github.com/huggingface/datasets/pull/6813
2,245,626,870
PR_kwDODunzps5sx-9V
6,813
Add Dataset.take and Dataset.skip
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6813). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005153 / 0.011353 (-0.006200) | 0.003560 / 0.011008 (-0.007448) | 0.063142 / 0.038508 (0.024634) | 0.030799 / 0.023109 (0.007690) | 0.241754 / 0.275898 (-0.034144) | 0.264874 / 0.323480 (-0.058606) | 0.003099 / 0.007986 (-0.004887) | 0.002629 / 0.004328 (-0.001700) | 0.049006 / 0.004250 (0.044756) | 0.044831 / 0.037052 (0.007779) | 0.258961 / 0.258489 (0.000472) | 0.286939 / 0.293841 (-0.006902) | 0.026756 / 0.128546 (-0.101791) | 0.010443 / 0.075646 (-0.065204) | 0.207264 / 0.419271 (-0.212007) | 0.035242 / 0.043533 (-0.008291) | 0.250440 / 0.255139 (-0.004699) | 0.265405 / 0.283200 (-0.017794) | 0.018924 / 0.141683 (-0.122759) | 1.138607 / 1.452155 (-0.313547) | 1.203017 / 1.492716 (-0.289700) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091293 / 0.018006 (0.073286) | 0.303937 / 0.000490 (0.303447) | 0.000266 / 0.000200 (0.000066) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018667 / 0.037411 (-0.018744) | 0.061310 / 0.014526 (0.046784) | 0.073565 / 0.176557 (-0.102991) | 0.119044 / 0.737135 (-0.618091) | 0.074484 / 0.296338 (-0.221854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286324 / 0.215209 (0.071114) | 2.836637 / 2.077655 (0.758982) | 1.458531 / 1.504120 (-0.045589) | 1.333081 / 1.541195 (-0.208114) | 1.328398 / 1.468490 (-0.140092) | 0.571467 / 4.584777 (-4.013310) | 2.409869 / 3.745712 (-1.335843) | 2.760241 / 5.269862 (-2.509621) | 1.728153 / 4.565676 (-2.837523) | 0.063008 / 0.424275 (-0.361267) | 0.005375 / 0.007607 (-0.002232) | 0.338574 / 0.226044 (0.112530) | 3.355485 / 2.268929 (1.086556) | 1.812741 / 55.444624 (-53.631884) | 1.507435 / 6.876477 (-5.369041) | 1.516957 / 2.142072 (-0.625116) | 0.643790 / 4.805227 (-4.161437) | 0.117465 / 6.500664 (-6.383199) | 0.041960 / 0.075469 (-0.033509) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.993787 / 1.841788 (-0.848001) | 11.439076 / 8.074308 (3.364768) | 9.636815 / 10.191392 (-0.554577) | 0.131292 / 0.680424 (-0.549132) | 0.014916 / 0.534201 (-0.519285) | 0.287309 / 0.579283 (-0.291974) | 0.261971 / 0.434364 (-0.172392) | 0.324453 / 0.540337 (-0.215885) | 0.420306 / 1.386936 (-0.966630) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005138 / 0.011353 (-0.006215) | 0.003719 / 0.011008 (-0.007289) | 0.050411 / 0.038508 (0.011903) | 0.031334 / 0.023109 (0.008225) | 0.281752 / 0.275898 (0.005854) | 0.299445 / 0.323480 (-0.024035) | 0.004194 / 0.007986 (-0.003792) | 0.002737 / 0.004328 (-0.001591) | 0.048527 / 0.004250 (0.044277) | 0.040294 / 0.037052 (0.003242) | 0.291763 / 0.258489 (0.033274) | 0.317597 / 0.293841 (0.023757) | 0.029014 / 0.128546 (-0.099532) | 0.010372 / 0.075646 (-0.065274) | 0.058704 / 0.419271 (-0.360568) | 0.033259 / 0.043533 (-0.010273) | 0.278109 / 0.255139 (0.022970) | 0.299593 / 0.283200 (0.016393) | 0.018048 / 0.141683 (-0.123635) | 1.185558 / 1.452155 (-0.266597) | 1.203481 / 1.492716 (-0.289236) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091149 / 0.018006 (0.073143) | 0.306152 / 0.000490 (0.305662) | 0.000246 / 0.000200 (0.000046) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022082 / 0.037411 (-0.015330) | 0.074487 / 0.014526 (0.059961) | 0.086112 / 0.176557 (-0.090444) | 0.124303 / 0.737135 (-0.612832) | 0.088831 / 0.296338 (-0.207508) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291745 / 0.215209 (0.076536) | 2.878397 / 2.077655 (0.800742) | 1.606920 / 1.504120 (0.102801) | 1.492352 / 1.541195 (-0.048843) | 1.509725 / 1.468490 (0.041235) | 0.567087 / 4.584777 (-4.017690) | 2.436423 / 3.745712 (-1.309290) | 2.793930 / 5.269862 (-2.475932) | 1.748329 / 4.565676 (-2.817347) | 0.063424 / 0.424275 (-0.360851) | 0.005476 / 0.007607 (-0.002131) | 0.346211 / 0.226044 (0.120167) | 3.461288 / 2.268929 (1.192360) | 1.979362 / 55.444624 (-53.465262) | 1.702877 / 6.876477 (-5.173600) | 1.699087 / 2.142072 (-0.442985) | 0.645116 / 4.805227 (-4.160112) | 0.116186 / 6.500664 (-6.384478) | 0.041246 / 0.075469 (-0.034223) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.017540 / 1.841788 (-0.824248) | 12.016640 / 8.074308 (3.942332) | 10.234085 / 10.191392 (0.042693) | 0.147558 / 0.680424 (-0.532866) | 0.015096 / 0.534201 (-0.519105) | 0.288077 / 0.579283 (-0.291206) | 0.274629 / 0.434364 (-0.159735) | 0.334097 / 0.540337 (-0.206241) | 0.425476 / 1.386936 (-0.961460) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#55eb1d9a34a91dbf2418166f9f1d92f7181e778b \"CML watermark\")\n" ]
2024-04-16T09:53:42Z
2024-04-16T14:12:14Z
2024-04-16T14:06:07Z
MEMBER
null
null
null
...to be aligned with IterableDataset.take and IterableDataset.skip
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6813/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6813/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6813.diff", "html_url": "https://github.com/huggingface/datasets/pull/6813", "merged_at": "2024-04-16T14:06:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/6813.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6813" }
https://api.github.com/repos/huggingface/datasets/issues/6169
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6169/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6169/comments
https://api.github.com/repos/huggingface/datasets/issues/6169/events
https://github.com/huggingface/datasets/issues/6169
1,862,360,199
I_kwDODunzps5vAVyH
6,169
Configurations in yaml not working
{ "avatar_url": "https://avatars.githubusercontent.com/u/45085098?v=4", "events_url": "https://api.github.com/users/tsor13/events{/privacy}", "followers_url": "https://api.github.com/users/tsor13/followers", "following_url": "https://api.github.com/users/tsor13/following{/other_user}", "gists_url": "https://api.github.com/users/tsor13/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tsor13", "id": 45085098, "login": "tsor13", "node_id": "MDQ6VXNlcjQ1MDg1MDk4", "organizations_url": "https://api.github.com/users/tsor13/orgs", "received_events_url": "https://api.github.com/users/tsor13/received_events", "repos_url": "https://api.github.com/users/tsor13/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tsor13/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tsor13/subscriptions", "type": "User", "url": "https://api.github.com/users/tsor13", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Unfortunately, I cannot reproduce this behavior on my machine or Colab - the reproducer returns `['main_data', 'additional_data']` as expected.", "Thank you for looking into this, Mario. Is this on [my repository](https://huggingface.co/datasets/tsor13/test), or on another one that you have reproduced? Would you mind pointing me to it if so?", "Whoa, in colab I received the correct behavior using my dataset. It must have something to do with my local copy of `datasets` (which again just failed).\r\n\r\nI've tried uninstalling/reinstnalling to no avail", "hi @tsor13 , I haven't been able to reproduce your issue on `tsor13/test` dataset locally either. reinstalling doesn't help?" ]
2023-08-23T00:13:22Z
2023-08-23T15:35:31Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Dataset configurations cannot be created in YAML/README Hello! I'm trying to follow the docs here in order to create structure in my dataset as added from here (#5331): https://github.com/huggingface/datasets/blob/8b8e6ee067eb74e7965ca2a6768f15f9398cb7c8/docs/source/repository_structure.mdx#L110-L118 I have the exact example in my config file for [my data repo](https://huggingface.co/datasets/tsor13/test): ``` configs: - config_name: main_data data_files: "main_data.csv" - config_name: additional_data data_files: "additional_data.csv" ``` Yet, I'm unable to load different configurations: ``` from datasets import get_dataset_config_names get_dataset_config_names('tsor13/test', use_auth_token=True) ``` returns a single split, `['tsor13--test']` Does anyone have any insights? @polinaeterna thank you for adding this feature, it is super useful. Do you happen to have any ideas? ### Steps to reproduce the bug from datasets import get_dataset_config_names get_dataset_config_names('tsor13/test') ### Expected behavior I would expect there to be two splits, `main_data` and `additional_data`. However, only `['tsor13--test']` test is returned. ### Environment info - `datasets` version: 2.14.4 - Platform: macOS-13.4-arm64-arm-64bit - Python version: 3.11.4 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.5.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6169/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6169/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4967
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4967/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4967/comments
https://api.github.com/repos/huggingface/datasets/issues/4967/events
https://github.com/huggingface/datasets/pull/4967
1,369,092,452
PR_kwDODunzps4-vbS-
4,967
Strip "/" in local dataset path to avoid empty dataset name error
{ "avatar_url": "https://avatars.githubusercontent.com/u/40543?v=4", "events_url": "https://api.github.com/users/apohllo/events{/privacy}", "followers_url": "https://api.github.com/users/apohllo/followers", "following_url": "https://api.github.com/users/apohllo/following{/other_user}", "gists_url": "https://api.github.com/users/apohllo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/apohllo", "id": 40543, "login": "apohllo", "node_id": "MDQ6VXNlcjQwNTQz", "organizations_url": "https://api.github.com/users/apohllo/orgs", "received_events_url": "https://api.github.com/users/apohllo/received_events", "repos_url": "https://api.github.com/users/apohllo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/apohllo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/apohllo/subscriptions", "type": "User", "url": "https://api.github.com/users/apohllo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Cool :-)" ]
2022-09-11T23:09:16Z
2022-09-29T10:46:21Z
2022-09-12T15:30:38Z
CONTRIBUTOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4967/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4967/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4967.diff", "html_url": "https://github.com/huggingface/datasets/pull/4967", "merged_at": "2022-09-12T15:30:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/4967.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4967" }
https://api.github.com/repos/huggingface/datasets/issues/7391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7391/comments
https://api.github.com/repos/huggingface/datasets/issues/7391/events
https://github.com/huggingface/datasets/issues/7391
2,845,184,764
I_kwDODunzps6plhL8
7,391
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/25193686?v=4", "events_url": "https://api.github.com/users/LinXin04/events{/privacy}", "followers_url": "https://api.github.com/users/LinXin04/followers", "following_url": "https://api.github.com/users/LinXin04/following{/other_user}", "gists_url": "https://api.github.com/users/LinXin04/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LinXin04", "id": 25193686, "login": "LinXin04", "node_id": "MDQ6VXNlcjI1MTkzNjg2", "organizations_url": "https://api.github.com/users/LinXin04/orgs", "received_events_url": "https://api.github.com/users/LinXin04/received_events", "repos_url": "https://api.github.com/users/LinXin04/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LinXin04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LinXin04/subscriptions", "type": "User", "url": "https://api.github.com/users/LinXin04", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-11T12:02:26Z
2025-02-11T12:02:26Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
pyarrow 尝试了若干个版本都不可以
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7391/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7391/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4838
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4838/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4838/comments
https://api.github.com/repos/huggingface/datasets/issues/4838/events
https://github.com/huggingface/datasets/pull/4838
1,337,194,918
PR_kwDODunzps49F08R
4,838
Fix documentation card of adv_glue dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "The failing test has nothing to do with this PR:\r\n```\r\nFAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files\r\n```" ]
2022-08-12T13:15:26Z
2022-08-15T10:17:14Z
2022-08-15T10:02:11Z
MEMBER
null
null
null
Fix documentation card of adv_glue dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4838/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4838/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4838.diff", "html_url": "https://github.com/huggingface/datasets/pull/4838", "merged_at": "2022-08-15T10:02:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/4838.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4838" }
https://api.github.com/repos/huggingface/datasets/issues/6371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6371/comments
https://api.github.com/repos/huggingface/datasets/issues/6371/events
https://github.com/huggingface/datasets/issues/6371
1,972,807,579
I_kwDODunzps51lqeb
6,371
`Dataset.from_generator` should not try to download from HF GCS
{ "avatar_url": "https://avatars.githubusercontent.com/u/43726198?v=4", "events_url": "https://api.github.com/users/yundai424/events{/privacy}", "followers_url": "https://api.github.com/users/yundai424/followers", "following_url": "https://api.github.com/users/yundai424/following{/other_user}", "gists_url": "https://api.github.com/users/yundai424/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yundai424", "id": 43726198, "login": "yundai424", "node_id": "MDQ6VXNlcjQzNzI2MTk4", "organizations_url": "https://api.github.com/users/yundai424/orgs", "received_events_url": "https://api.github.com/users/yundai424/received_events", "repos_url": "https://api.github.com/users/yundai424/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yundai424/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yundai424/subscriptions", "type": "User", "url": "https://api.github.com/users/yundai424", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Indeed, setting `try_from_gcs` to `False` makes sense for `from_generator`.\r\n\r\nWe plan to deprecate and remove `try_from_hf_gcs` soon, as we can use Hub for file hosting now, but this is a good temporary fix.\r\n" ]
2023-11-01T17:36:17Z
2023-11-02T15:52:10Z
2023-11-02T15:52:10Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When using [`Dataset.from_generator`](https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/arrow_dataset.py#L1072) with `streaming=False`, the internal logic will call [`download_and_prepare`](https://github.com/huggingface/datasets/blob/main/src/datasets/io/generator.py#L47) which will attempt to download from HF GCS which is redundant, because user has already provided the generator from which the data should be drawn. If someone attempts to call `Dataset.from_generator` from an environment that doesn't have external internet access (for example internal production machine) and doesn't set `HF_DATASETS_OFFLINE=1`, this will result in process being stuck at building connection. ### Steps to reproduce the bug ```python import datasets def gen(): for _ in range(100): yield {"text": "dummy text"} dataset = datasets.Dataset.from_generator(gen) ``` A minimum example executed on any environment that doesn't have access to HF GCS can result in the error ### Expected behavior `try_from_hf_gcs` should be set to False here https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/io/generator.py#L51 ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-3.10.0-1160.90.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.10.12 - Huggingface_hub version: 0.17.1 - PyArrow version: 12.0.1 - Pandas version: 2.0.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6371/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6371/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6847
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6847/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6847/comments
https://api.github.com/repos/huggingface/datasets/issues/6847/events
https://github.com/huggingface/datasets/issues/6847
2,268,589,177
I_kwDODunzps6HN-x5
6,847
[Streaming] Only load requested splits without resolving files for the other splits
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "This should help fixing this issue: https://github.com/huggingface/datasets/pull/6832", "I'm having a similar issue when using splices:\r\n<img width=\"947\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/2153faac-e1fe-4b6d-a79b-30b2699407e8\">\r\n<img width=\"823\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/80919eca-eb6c-407d-8070-52642fdcee54\">\r\n<img width=\"914\" alt=\"image\" src=\"https://github.com/huggingface/datasets/assets/28941213/5219c201-e22e-4536-acc3-a922677785ff\">\r\n\r\n\r\nIt seems to be downloading, loading, and generating splits using the entire dataset." ]
2024-04-29T09:49:32Z
2024-05-07T04:43:59Z
null
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
e.g. [thangvip](https://huggingface.co/thangvip)/[cosmopedia_vi_math](https://huggingface.co/datasets/thangvip/cosmopedia_vi_math) has 300 splits and it takes a very long time to load only one split. This is due to `load_dataset()` resolving the files of all the splits even if only one is needed. In `dataset-viewer` the splits are loaded in different jobs so it results in 300 jobs that resolve 300 splits -> 90k calls to `/paths-info`
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6847/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6847/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5938
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5938/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5938/comments
https://api.github.com/repos/huggingface/datasets/issues/5938/events
https://github.com/huggingface/datasets/pull/5938
1,749,462,851
PR_kwDODunzps5SmbkI
5,938
Make get_from_cache use custom temp filename that is locked
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007241 / 0.011353 (-0.004112) | 0.004574 / 0.011008 (-0.006434) | 0.120481 / 0.038508 (0.081973) | 0.040492 / 0.023109 (0.017383) | 0.391399 / 0.275898 (0.115501) | 0.422844 / 0.323480 (0.099365) | 0.004441 / 0.007986 (-0.003545) | 0.004544 / 0.004328 (0.000216) | 0.089482 / 0.004250 (0.085231) | 0.052939 / 0.037052 (0.015887) | 0.393649 / 0.258489 (0.135160) | 0.433852 / 0.293841 (0.140011) | 0.035882 / 0.128546 (-0.092664) | 0.010172 / 0.075646 (-0.065474) | 0.410331 / 0.419271 (-0.008940) | 0.061481 / 0.043533 (0.017948) | 0.405066 / 0.255139 (0.149927) | 0.417732 / 0.283200 (0.134532) | 0.121647 / 0.141683 (-0.020035) | 1.790624 / 1.452155 (0.338469) | 1.863398 / 1.492716 (0.370681) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250650 / 0.018006 (0.232644) | 0.489044 / 0.000490 (0.488554) | 0.010421 / 0.000200 (0.010222) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030340 / 0.037411 (-0.007071) | 0.128318 / 0.014526 (0.113792) | 0.140463 / 0.176557 (-0.036093) | 0.205762 / 0.737135 (-0.531373) | 0.147996 / 0.296338 (-0.148342) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.493158 / 0.215209 (0.277949) | 4.858346 / 2.077655 (2.780691) | 2.242942 / 1.504120 (0.738822) | 2.010092 / 1.541195 (0.468897) | 2.076765 / 1.468490 (0.608275) | 0.636669 / 4.584777 (-3.948108) | 4.478027 / 3.745712 (0.732314) | 2.157843 / 5.269862 (-3.112019) | 1.305133 / 4.565676 (-3.260543) | 0.079220 / 0.424275 (-0.345055) | 0.013858 / 0.007607 (0.006251) | 0.604501 / 0.226044 (0.378457) | 5.950071 / 2.268929 (3.681143) | 2.738373 / 55.444624 (-52.706251) | 2.380275 / 6.876477 (-4.496201) | 2.517108 / 2.142072 (0.375035) | 0.772249 / 4.805227 (-4.032979) | 0.169874 / 6.500664 (-6.330790) | 0.078026 / 0.075469 (0.002557) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.450200 / 1.841788 (-0.391588) | 17.810965 / 8.074308 (9.736657) | 15.518998 / 10.191392 (5.327606) | 0.200469 / 0.680424 (-0.479954) | 0.020777 / 0.534201 (-0.513424) | 0.504556 / 0.579283 (-0.074727) | 0.518493 / 0.434364 (0.084129) | 0.615335 / 0.540337 (0.074998) | 0.754065 / 1.386936 (-0.632871) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007224 / 0.011353 (-0.004129) | 0.004663 / 0.011008 (-0.006345) | 0.092151 / 0.038508 (0.053643) | 0.038359 / 0.023109 (0.015250) | 0.486413 / 0.275898 (0.210515) | 0.521596 / 0.323480 (0.198116) | 0.004207 / 0.007986 (-0.003778) | 0.003745 / 0.004328 (-0.000583) | 0.089840 / 0.004250 (0.085589) | 0.050996 / 0.037052 (0.013943) | 0.498090 / 0.258489 (0.239601) | 0.533647 / 0.293841 (0.239806) | 0.035151 / 0.128546 (-0.093395) | 0.010293 / 0.075646 (-0.065354) | 0.099056 / 0.419271 (-0.320215) | 0.057365 / 0.043533 (0.013833) | 0.470652 / 0.255139 (0.215513) | 0.509801 / 0.283200 (0.226602) | 0.115650 / 0.141683 (-0.026033) | 1.810860 / 1.452155 (0.358705) | 1.896775 / 1.492716 (0.404059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261887 / 0.018006 (0.243880) | 0.489919 / 0.000490 (0.489430) | 0.006117 / 0.000200 (0.005917) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035033 / 0.037411 (-0.002378) | 0.141093 / 0.014526 (0.126567) | 0.152613 / 0.176557 (-0.023943) | 0.218351 / 0.737135 (-0.518785) | 0.158366 / 0.296338 (-0.137972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.542219 / 0.215209 (0.327010) | 5.479358 / 2.077655 (3.401703) | 2.749586 / 1.504120 (1.245466) | 2.537686 / 1.541195 (0.996491) | 2.582351 / 1.468490 (1.113861) | 0.636750 / 4.584777 (-3.948027) | 4.537501 / 3.745712 (0.791789) | 2.141392 / 5.269862 (-3.128469) | 1.279711 / 4.565676 (-3.285965) | 0.079227 / 0.424275 (-0.345048) | 0.014141 / 0.007607 (0.006534) | 0.662070 / 0.226044 (0.436025) | 6.572144 / 2.268929 (4.303215) | 3.321349 / 55.444624 (-52.123275) | 2.928219 / 6.876477 (-3.948258) | 3.002732 / 2.142072 (0.860659) | 0.773808 / 4.805227 (-4.031419) | 0.166017 / 6.500664 (-6.334647) | 0.076424 / 0.075469 (0.000955) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584325 / 1.841788 (-0.257463) | 18.359247 / 8.074308 (10.284938) | 16.977875 / 10.191392 (6.786483) | 0.195381 / 0.680424 (-0.485043) | 0.021048 / 0.534201 (-0.513153) | 0.512237 / 0.579283 (-0.067047) | 0.511435 / 0.434364 (0.077071) | 0.592856 / 0.540337 (0.052518) | 0.711905 / 1.386936 (-0.675031) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d536e37b21a6dd5c122b6d8113994ec50846c5b5 \"CML watermark\")\n" ]
2023-06-09T09:01:13Z
2023-06-14T13:35:38Z
2023-06-14T13:27:24Z
MEMBER
null
null
null
This PR ensures that the temporary filename created is the same as the one that is locked, while writing to the cache. This PR stops using `tempfile` to generate the temporary filename. Additionally, the behavior now is aligned for both `resume_download` `True` and `False`. Refactor temp_file_manager so that it uses the filename that is locked: - Use: `cache_path + ".incomplete"`, when the locked one is `cache_path + ".lock"` Before it was using `tempfile` inside `cache_dir`, which was not locked: although very improbable name collision (8 random characters), this was not impossible when huge number of multiple processes. Maybe related to "Stale file handle" issues caused by `tempfile`: - [ ] https://huggingface.co/datasets/tapaco/discussions/4 - [ ] https://huggingface.co/datasets/xcsr/discussions/1 - [ ] https://huggingface.co/datasets/covost2/discussions/3 ``` Error code: ConfigNamesError Exception: OSError Message: [Errno 116] Stale file handle Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 61, in compute_config_names_response for config in sorted(get_dataset_config_names(path=dataset, use_auth_token=use_auth_token)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 323, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1219, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1188, in dataset_module_factory return HubDatasetModuleFactoryWithScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 907, in get_module dataset_readme_path = self.download_dataset_readme_file() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 896, in download_dataset_readme_file return cached_path( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 183, in cached_path output_path = get_from_cache( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 611, in get_from_cache http_get( File "/usr/local/lib/python3.9/tempfile.py", line 496, in __exit__ result = self.file.__exit__(exc, value, tb) OSError: [Errno 116] Stale file handle ``` - the stale file handle error can be raised when `tempfile` tries to close (when exiting its context manager) a filename that has been already closed by other process - note that `tempfile` filenames are randomly generated but not locked in our code CC: @severo
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5938/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5938/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5938.diff", "html_url": "https://github.com/huggingface/datasets/pull/5938", "merged_at": "2023-06-14T13:27:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/5938.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5938" }