url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
list
state
string
locked
bool
assignee
dict
assignees
list
milestone
dict
comments
list
created_at
timestamp[ns, tz=UTC]
updated_at
timestamp[ns, tz=UTC]
closed_at
timestamp[ns, tz=UTC]
author_association
string
type
float64
active_lock_reason
float64
sub_issues_summary
dict
body
string
closed_by
dict
reactions
dict
timeline_url
string
performed_via_github_app
float64
state_reason
string
draft
float64
pull_request
dict
https://api.github.com/repos/huggingface/datasets/issues/7460
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7460/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7460/comments
https://api.github.com/repos/huggingface/datasets/issues/7460/events
https://github.com/huggingface/datasets/pull/7460
2,925,605,865
PR_kwDODunzps6O9Ccc
7,460
release: 3.4.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7460). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-17T15:58:31Z
2025-03-17T16:01:14Z
2025-03-17T15:59:19Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7460/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7460/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7460.diff", "html_url": "https://github.com/huggingface/datasets/pull/7460", "merged_at": "2025-03-17T15:59:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/7460.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7460" }
https://api.github.com/repos/huggingface/datasets/issues/7198
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7198/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7198/comments
https://api.github.com/repos/huggingface/datasets/issues/7198/events
https://github.com/huggingface/datasets/pull/7198
2,566,064,849
PR_kwDODunzps59mwgu
7,198
Add repeat method to datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "@lhoestq does this look reasonable?", "updated and added test cases!", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7198). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "thanks for the fixes!" ]
2024-10-04T10:45:16Z
2025-02-05T16:32:31Z
2025-02-05T16:32:31Z
CONTRIBUTOR
null
null
null
Following up on discussion in #6623 and #7198 I thought this would be pretty useful for my case so had a go at implementing. My main motivation is to be able to call iterable_dataset.repeat(None).take(samples_per_epoch) to safely avoid timeout issues in a distributed training setting. This would provide a straightforward workaround for several open issues related to this situation: https://github.com/huggingface/datasets/issues/6437, https://github.com/huggingface/datasets/issues/6594, https://github.com/huggingface/datasets/issues/6623, https://github.com/huggingface/datasets/issues/6719. @lhoestq let me know if this looks on the right track!
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7198/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7198/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7198.diff", "html_url": "https://github.com/huggingface/datasets/pull/7198", "merged_at": "2025-02-05T16:32:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/7198.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7198" }
https://api.github.com/repos/huggingface/datasets/issues/5516
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5516/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5516/comments
https://api.github.com/repos/huggingface/datasets/issues/5516/events
https://github.com/huggingface/datasets/pull/5516
1,577,661,640
PR_kwDODunzps5JmzPQ
5,516
Reload features from Parquet metadata
{ "avatar_url": "https://avatars.githubusercontent.com/u/6368040?v=4", "events_url": "https://api.github.com/users/MFreidank/events{/privacy}", "followers_url": "https://api.github.com/users/MFreidank/followers", "following_url": "https://api.github.com/users/MFreidank/following{/other_user}", "gists_url": "https://api.github.com/users/MFreidank/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MFreidank", "id": 6368040, "login": "MFreidank", "node_id": "MDQ6VXNlcjYzNjgwNDA=", "organizations_url": "https://api.github.com/users/MFreidank/orgs", "received_events_url": "https://api.github.com/users/MFreidank/received_events", "repos_url": "https://api.github.com/users/MFreidank/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MFreidank/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MFreidank/subscriptions", "type": "User", "url": "https://api.github.com/users/MFreidank", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks a lot for your help @lhoestq. I've simplified what turned out to be a simple fix and added the unit test.\r\n\r\nDoes this look ready to be merged or is there anything I'm still missing?", "Cool ! I think you just need to remove the unused import in `io/parquet.py`\r\n```\r\nsrc/datasets/io/parquet.py:4:1: F401 'pyarrow as pa' imported but unused\r\n```\r\nand we're good to merge :)", "_The documentation is not available anymore as the PR was closed or merged._", "> Cool ! I think you just need to remove the unused import in `io/parquet.py`\r\n> \r\n> ```\r\n> src/datasets/io/parquet.py:4:1: F401 'pyarrow as pa' imported but unused\r\n> ```\r\n> \r\n> and we're good to merge :)\r\n\r\nDone! Thanks a lot, this was fun :)" ]
2023-02-09T10:52:15Z
2023-02-12T16:00:00Z
2023-02-12T15:57:01Z
CONTRIBUTOR
null
null
null
Resolves #5482. Attaches feature metadata to parquet files serialised using `Dataset.to_parquet`. This allows retrieving data with "rich" feature types (e.g., `datasets.features.image.Image` or `datasets.features.audio.Audio`) from parquet files without cumbersome casting (for an example, see #5482). @lhoestq It seems that it is sufficient to attach metadata to the schema prior to serialising and features are loaded back with correct types afterwards automatically. I used the following script to test the implementation: ```python from pathlib import Path import datasets dataset_name = "Maysee/tiny-imagenet" ds = datasets.load_dataset(dataset_name, split=datasets.Split.TRAIN) output_directory_path = Path(__file__).parent.joinpath("example_test_outputs", dataset_name.replace("/", "_")) output_directory_path.mkdir(exist_ok=True, parents=True) output_filepath = output_directory_path.joinpath("ds.parquet") ds.to_parquet(str(output_filepath)) reloaded_ds = datasets.load_dataset(str(output_directory_path), split=datasets.Split.TRAIN) assert ds.features == reloaded_ds.features ``` Prior to the change in this PR this script raises an `AssertionError` and the `Image` features lose their type after serialisation. After the change in this PR, the assertion does not raise an error and manual inspection of the features shows type `Image` for the respective columns of `reloaded_ds `. Some open questions: * How/where can I best add new unit tests for this implementation? * What dataset would I best use in the tests? I chose `Maysee/tiny-imagenet` mainly because it is small and contains an ?Image` feature that can be used to test, but I'd be happy for suggestions on a suitable data source to use. * Currently I'm calling `datasets.arrow_writer.ArrowWriter._build_metadata` as I need the same logic. However, I'm not happy with the coupling between `datasets.io.parquet` and `datasets.arrow_writer` it leaves me with. Suggest to factor this common logic out into a helper function and reuse it from both of these. Do you agree and if yes, could you please guide me where I would best place this function? Many thanks in advance and kind regards, MFreidank
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5516/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5516/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5516.diff", "html_url": "https://github.com/huggingface/datasets/pull/5516", "merged_at": "2023-02-12T15:57:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/5516.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5516" }
https://api.github.com/repos/huggingface/datasets/issues/5019
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5019/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5019/comments
https://api.github.com/repos/huggingface/datasets/issues/5019/events
https://github.com/huggingface/datasets/pull/5019
1,384,673,718
PR_kwDODunzps4_iq9b
5,019
Update swiss judgment prediction
{ "avatar_url": "https://avatars.githubusercontent.com/u/3775944?v=4", "events_url": "https://api.github.com/users/JoelNiklaus/events{/privacy}", "followers_url": "https://api.github.com/users/JoelNiklaus/followers", "following_url": "https://api.github.com/users/JoelNiklaus/following{/other_user}", "gists_url": "https://api.github.com/users/JoelNiklaus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JoelNiklaus", "id": 3775944, "login": "JoelNiklaus", "node_id": "MDQ6VXNlcjM3NzU5NDQ=", "organizations_url": "https://api.github.com/users/JoelNiklaus/orgs", "received_events_url": "https://api.github.com/users/JoelNiklaus/received_events", "repos_url": "https://api.github.com/users/JoelNiklaus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JoelNiklaus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JoelNiklaus/subscriptions", "type": "User", "url": "https://api.github.com/users/JoelNiklaus", "user_view_type": "public" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
[]
null
[ "Thank you very much for the detailed review @albertvillanova!\r\n\r\nI updated the PR with the requested changes. ", "At the end, I had to manually fix the conflict, so that CI tests are launched.\r\n\r\nPLEASE NOTE: you should first pull to incorporate the previous commit\r\n```shell\r\ngit pull\r\n```", "_The documentation is not available anymore as the PR was closed or merged._", "Thank you very much for the detailed feedback and your time @albertvillanova! \r\nYes, thanks. My other datasets are already on the hub: https://huggingface.co/joelito\r\n" ]
2022-09-24T13:28:57Z
2022-09-28T07:13:39Z
2022-09-28T05:48:50Z
CONTRIBUTOR
null
null
null
Hi, I updated the dataset to include additional data made available recently. When I test it locally, it seems to work. However, I get the following error with the dummy data creation: `Dummy data generation done but dummy data test failed since splits ['train', 'validation', 'test'] have 0 examples for config 'fr'`. Do you know why this could be the case? Cheers, Joel
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5019/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5019/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5019.diff", "html_url": "https://github.com/huggingface/datasets/pull/5019", "merged_at": "2022-09-28T05:48:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/5019.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5019" }
https://api.github.com/repos/huggingface/datasets/issues/5153
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5153/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5153/comments
https://api.github.com/repos/huggingface/datasets/issues/5153/events
https://github.com/huggingface/datasets/issues/5153
1,420,833,457
I_kwDODunzps5UsDKx
5,153
default Image/AudioFolder infers labels when there is no metadata files even if there is only one dir
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" } ]
null
[ "Makes sense! For the last structure, we could count the path segments (delimited by \"/\" for URLs and `os.sep` for local paths) to ensure all inferred labels are on the same level. Otherwise, I think it's safe to assume they are meaningless and ignore them.\r\n" ]
2022-10-24T13:28:18Z
2022-11-15T16:31:10Z
2022-11-15T16:31:09Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug By default FolderBasedBuilder infers labels if there is not metadata files, even if it's meaningless (for example, they are in a single directory or in the root folder, see this repo as an example: https://huggingface.co/datasets/patrickvonplaten/audios As this is a corner case for quick exploration of images or audios on the Hub. ### Steps to reproduce the bug If you have directory like this: ``` repo image1.jpg image2.jpg image3.jpg ``` or ``` repo data image1.jpg image2.jpg image3.jpg ``` doing `ds = load_dataset(repo)` would create `label` feature: ```python print(ds["train"][0]) >> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x375 at 0x7FB5326468E0>, 'label': 0} ``` Also, if you have the following structure: ``` repo data image1.jpg image2.jpg image3.jpg image4.jpg image5.jpg image6.jpg ``` it will infer two labels: ```python print(ds["train"][0]) print(ds["train"][-1]) >> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x375 at 0x7FB5326468E0>, 'label': 1} >> {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x415 at 0x7FB5326555B0>, 'label': 0} ``` ### Expected behavior We should have only one base feature (Image/Audio) in such cases. ### Environment info all versions of `datasets`
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5153/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5153/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6646
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6646/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6646/comments
https://api.github.com/repos/huggingface/datasets/issues/6646/events
https://github.com/huggingface/datasets/pull/6646
2,123,134,128
PR_kwDODunzps5mRIma
6,646
Better multi-gpu example
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6646). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005598 / 0.011353 (-0.005755) | 0.003640 / 0.011008 (-0.007369) | 0.064557 / 0.038508 (0.026049) | 0.029645 / 0.023109 (0.006536) | 0.243695 / 0.275898 (-0.032203) | 0.261252 / 0.323480 (-0.062228) | 0.004067 / 0.007986 (-0.003919) | 0.002883 / 0.004328 (-0.001446) | 0.049192 / 0.004250 (0.044942) | 0.045299 / 0.037052 (0.008246) | 0.273207 / 0.258489 (0.014718) | 0.288668 / 0.293841 (-0.005173) | 0.028114 / 0.128546 (-0.100432) | 0.010597 / 0.075646 (-0.065049) | 0.215345 / 0.419271 (-0.203927) | 0.036119 / 0.043533 (-0.007414) | 0.243718 / 0.255139 (-0.011421) | 0.266657 / 0.283200 (-0.016543) | 0.018176 / 0.141683 (-0.123507) | 1.127926 / 1.452155 (-0.324229) | 1.168066 / 1.492716 (-0.324650) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096001 / 0.018006 (0.077994) | 0.304317 / 0.000490 (0.303828) | 0.000209 / 0.000200 (0.000009) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018241 / 0.037411 (-0.019170) | 0.061505 / 0.014526 (0.046979) | 0.072456 / 0.176557 (-0.104101) | 0.118315 / 0.737135 (-0.618821) | 0.075154 / 0.296338 (-0.221184) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278748 / 0.215209 (0.063538) | 2.729923 / 2.077655 (0.652268) | 1.416835 / 1.504120 (-0.087285) | 1.294016 / 1.541195 (-0.247179) | 1.323249 / 1.468490 (-0.145241) | 0.575389 / 4.584777 (-4.009388) | 2.404923 / 3.745712 (-1.340789) | 2.769233 / 5.269862 (-2.500629) | 1.742340 / 4.565676 (-2.823336) | 0.062664 / 0.424275 (-0.361611) | 0.004951 / 0.007607 (-0.002656) | 0.335024 / 0.226044 (0.108979) | 3.291446 / 2.268929 (1.022518) | 1.797095 / 55.444624 (-53.647530) | 1.532963 / 6.876477 (-5.343513) | 1.529315 / 2.142072 (-0.612758) | 0.654922 / 4.805227 (-4.150305) | 0.118772 / 6.500664 (-6.381892) | 0.042034 / 0.075469 (-0.033435) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983646 / 1.841788 (-0.858141) | 11.518625 / 8.074308 (3.444317) | 9.538781 / 10.191392 (-0.652611) | 0.140300 / 0.680424 (-0.540124) | 0.013966 / 0.534201 (-0.520235) | 0.287071 / 0.579283 (-0.292212) | 0.270201 / 0.434364 (-0.164163) | 0.323294 / 0.540337 (-0.217044) | 0.418130 / 1.386936 (-0.968806) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005508 / 0.011353 (-0.005844) | 0.003714 / 0.011008 (-0.007294) | 0.050031 / 0.038508 (0.011523) | 0.031866 / 0.023109 (0.008756) | 0.272248 / 0.275898 (-0.003650) | 0.295105 / 0.323480 (-0.028375) | 0.005179 / 0.007986 (-0.002807) | 0.002820 / 0.004328 (-0.001508) | 0.048896 / 0.004250 (0.044646) | 0.045975 / 0.037052 (0.008922) | 0.287662 / 0.258489 (0.029173) | 0.321139 / 0.293841 (0.027298) | 0.049242 / 0.128546 (-0.079304) | 0.010732 / 0.075646 (-0.064914) | 0.057943 / 0.419271 (-0.361328) | 0.033527 / 0.043533 (-0.010006) | 0.271746 / 0.255139 (0.016607) | 0.291404 / 0.283200 (0.008204) | 0.019351 / 0.141683 (-0.122332) | 1.157221 / 1.452155 (-0.294934) | 1.215757 / 1.492716 (-0.276959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096950 / 0.018006 (0.078944) | 0.312002 / 0.000490 (0.311512) | 0.000223 / 0.000200 (0.000023) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022288 / 0.037411 (-0.015123) | 0.075282 / 0.014526 (0.060756) | 0.087445 / 0.176557 (-0.089112) | 0.125617 / 0.737135 (-0.611519) | 0.088878 / 0.296338 (-0.207460) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291961 / 0.215209 (0.076752) | 2.881445 / 2.077655 (0.803790) | 1.586128 / 1.504120 (0.082008) | 1.458636 / 1.541195 (-0.082558) | 1.487001 / 1.468490 (0.018511) | 0.575466 / 4.584777 (-4.009311) | 2.454941 / 3.745712 (-1.290771) | 2.878077 / 5.269862 (-2.391785) | 1.787215 / 4.565676 (-2.778462) | 0.064010 / 0.424275 (-0.360265) | 0.005092 / 0.007607 (-0.002516) | 0.360500 / 0.226044 (0.134455) | 3.465574 / 2.268929 (1.196646) | 1.957516 / 55.444624 (-53.487108) | 1.666282 / 6.876477 (-5.210195) | 1.690070 / 2.142072 (-0.452002) | 0.661323 / 4.805227 (-4.143905) | 0.117824 / 6.500664 (-6.382840) | 0.042286 / 0.075469 (-0.033183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.026517 / 1.841788 (-0.815270) | 12.083347 / 8.074308 (4.009039) | 10.269319 / 10.191392 (0.077927) | 0.139253 / 0.680424 (-0.541171) | 0.016258 / 0.534201 (-0.517943) | 0.290583 / 0.579283 (-0.288700) | 0.284338 / 0.434364 (-0.150026) | 0.335865 / 0.540337 (-0.204473) | 0.416600 / 1.386936 (-0.970336) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ba3cfad91e9366cda0ba203700fc745d8bcd1f17 \"CML watermark\")\n", "Thanks, I was needing this example today <3 " ]
2024-02-07T14:15:01Z
2024-02-09T17:43:32Z
2024-02-07T14:59:11Z
MEMBER
null
null
null
Use Qwen1.5-0.5B-Chat as an easy example for multi-GPU the previous example was using a model for translation and the way it was setup was not really the right way to use the model.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6646/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6646/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6646.diff", "html_url": "https://github.com/huggingface/datasets/pull/6646", "merged_at": "2024-02-07T14:59:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/6646.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6646" }
https://api.github.com/repos/huggingface/datasets/issues/7475
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7475/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7475/comments
https://api.github.com/repos/huggingface/datasets/issues/7475/events
https://github.com/huggingface/datasets/issues/7475
2,946,640,570
I_kwDODunzps6voiq6
7,475
IterableDataset's state_dict shard_example_idx is always equal to the number of samples in a shard
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" } ]
null
[ "Hey, I’d love to work on this issue but I am a beginner, can I work it with you?", "Hello. I'm sorry but I don't have much time to get in the details for now.\nHave you managed to reproduce the issue with the code provided ?\nIf you want to work on it, you can self-assign and ask @lhoestq for directions", "Hi Bruno, I am trying to reproduce it this later in this week and let you know what I found.", "#self-assign", "Good catch, I tried and if the dataset is bigger (e.g. `range(9999)`) it returns `\"shard_example_idx\": 1000` with is the `config.DEFAULT_MAX_BATCH_SIZE`\n\nhttps://github.com/huggingface/datasets/blob/94ccd1b4fada8a92cea96dc8df4e915041d695b6/src/datasets/arrow_dataset.py#L5313-L5317\n\nIt looks like the state_dict is incorrect in that case, it should account for this and use the `RebatchedArrowExamplesIterable` which buffers the batch of 1000 rows and counts the iteration within the batch in the state_dict", "\nHello @lhoestq,\n\nI’ve been debugging the `IterableDataset.state_dict()` behavior and applied a patch to `ArrowExamplesIterable._iter_arrow()` in an attempt to fix the issue described in #7475—specifically, that `shard_example_idx` always equals the number of samples in the shard, even if only a few examples have been consumed.\n\n### What I Tried\n\nI updated `_iter_arrow` to slice off already-consumed rows and increment the state only by the number of actual examples yielded, like this:\n\n```python\nclass ArrowExamplesIterable(_BaseExamplesIterable):\n # ... __init__ and _init_state_dict as before ...\n\n def _iter_arrow(self):\n shard_idx_start = self._state_dict[\"shard_idx\"] if self._state_dict else 0\n\n for gen_kwargs in islice(\n _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards),\n shard_idx_start, None\n ):\n shard_example_idx_start = self._state_dict[\"shard_example_idx\"] if self._state_dict else 0\n shard_example_idx = 0\n\n for key, pa_table in self.generate_tables_fn(**gen_kwargs):\n num_rows = len(pa_table)\n next_idx = shard_example_idx + num_rows\n\n if next_idx <= shard_example_idx_start:\n shard_example_idx = next_idx\n continue\n\n offset = max(0, shard_example_idx_start - shard_example_idx)\n sliced_table = pa_table.slice(offset)\n\n if self._state_dict:\n self._state_dict[\"shard_example_idx\"] += len(sliced_table)\n\n yield key, sliced_table\n shard_example_idx = next_idx\n\n if self._state_dict:\n self._state_dict[\"shard_idx\"] += 1\n self._state_dict[\"shard_example_idx\"] = 0\n```\n\nI verified that the updated code was being used, and I added debug prints to confirm the table slicing and counter updates.\n\n### The Issue Still Exists\n\nDespite the changes, the behavior remains the same. Running this minimal repro:\n\n```python\nds = Dataset.from_dict({\"a\": range(6)}).to_iterable_dataset(num_shards=1)\nfor idx, example in enumerate(ds):\n print(example)\n if idx == 2:\n print(\"checkpoint\")\n print(ds.state_dict())\n break\n```\n\nStill outputs:\n\n```bash\n{'a': 0}\n{'a': 1}\n{'a': 2}\ncheckpoint\n{'examples_iterable': {'shard_idx': 0, 'shard_example_idx': 6, 'type': 'ArrowExamplesIterable'}, 'epoch': 0}\n```\n\nEven though only 3 examples were consumed, `shard_example_idx` jumps to 6.\n\n### Questions\n\n- Could there be another place (e.g., in `__iter__`, `RebatchedArrowExamplesIterable`, or the `IterableDataset` wrapper) that's still using the old logic and overriding the state?\n- Is there a better location to intercept and count yielded examples?\n- Would you recommend tracking a new `true_example_idx` to avoid modifying existing behavior?\n\nLet me know your thoughts—happy to iterate further and submit a PR once we align on the right approach. Thanks again for your help and feedback!" ]
2025-03-25T13:58:07Z
2025-04-18T00:49:37Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I've noticed a strange behaviour with Iterable state_dict: the value of shard_example_idx is always equal to the amount of samples in a shard. ### Steps to reproduce the bug I am reusing the example from the doc ```python from datasets import Dataset ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=1) state_dict = None # Iterate through the dataset and print examples for idx, example in enumerate(ds): print(example) if idx == 2: state_dict = ds.state_dict() print("checkpoint") break print(state_dict) ``` Returns: ``` {'a': 0} {'a': 1} checkpoint {'examples_iterable': {'shard_idx': 0, 'shard_example_idx': 6, 'type': 'ArrowExamplesIterable'}, 'epoch': 0} ``` ### Expected behavior shard_example_idx should be 2 instead of 6 If we run with num_shards=2, then shard_example_idx is 3 instead of 2 and so on. ### Environment info - `datasets` version: 3.4.1 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.9 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7475/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7475/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6986
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6986/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6986/comments
https://api.github.com/repos/huggingface/datasets/issues/6986/events
https://github.com/huggingface/datasets/pull/6986
2,362,584,179
PR_kwDODunzps5y-Zi0
6,986
Add large_list type support in string_to_arrow
{ "avatar_url": "https://avatars.githubusercontent.com/u/16257131?v=4", "events_url": "https://api.github.com/users/arthasking123/events{/privacy}", "followers_url": "https://api.github.com/users/arthasking123/followers", "following_url": "https://api.github.com/users/arthasking123/following{/other_user}", "gists_url": "https://api.github.com/users/arthasking123/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/arthasking123", "id": 16257131, "login": "arthasking123", "node_id": "MDQ6VXNlcjE2MjU3MTMx", "organizations_url": "https://api.github.com/users/arthasking123/orgs", "received_events_url": "https://api.github.com/users/arthasking123/received_events", "repos_url": "https://api.github.com/users/arthasking123/repos", "site_admin": false, "starred_url": "https://api.github.com/users/arthasking123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arthasking123/subscriptions", "type": "User", "url": "https://api.github.com/users/arthasking123", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "@albertvillanova @KennethEnevoldsen" ]
2024-06-19T14:54:25Z
2024-08-12T14:43:48Z
2024-08-12T14:43:47Z
NONE
null
null
null
add large_list type support in string_to_arrow() and _arrow_to_datasets_dtype() in features.py Fix #6984
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6986/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6986/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6986.diff", "html_url": "https://github.com/huggingface/datasets/pull/6986", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6986.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6986" }
https://api.github.com/repos/huggingface/datasets/issues/4833
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4833/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4833/comments
https://api.github.com/repos/huggingface/datasets/issues/4833/events
https://github.com/huggingface/datasets/pull/4833
1,336,946,965
PR_kwDODunzps49E_Nk
4,833
Fix missing tags in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-12T09:04:52Z
2022-09-22T14:41:23Z
2022-08-12T09:45:55Z
MEMBER
null
null
null
Fix missing tags in dataset cards: - boolq - break_data - definite_pronoun_resolution - emo - kor_nli - pg19 - quartz - sciq - squad_es - wmt14 - wmt15 - wmt16 - wmt17 - wmt18 - wmt19 - wmt_t2t This PR partially fixes the missing tags in dataset cards. Subsequent PRs will follow to complete this task.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4833/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4833/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4833.diff", "html_url": "https://github.com/huggingface/datasets/pull/4833", "merged_at": "2022-08-12T09:45:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/4833.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4833" }
https://api.github.com/repos/huggingface/datasets/issues/5252
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5252/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5252/comments
https://api.github.com/repos/huggingface/datasets/issues/5252/events
https://github.com/huggingface/datasets/pull/5252
1,451,765,838
PR_kwDODunzps5DCI1U
5,252
Support for decoding Image/Audio types in map when format type is not default one
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5252). All of your documentation changes will be reflected on that endpoint.", "Yes, if the image column is the first in the batch keys, it will decode the images because it reads the actual values. We could avoid this by checking the batch type, and if it's `LazyDict`, `num_examples` is equal to `len(batch.pa_table)`, which doesn't lead to decoding.", "Good idea. This can be done in a subsequent PR btw, since it's out of scope of the original goal of this PR", "Just fixed a small bug where it would show the pyarrow 10 warning about None -> empty lists conversions even with an Array2D with no nulls", "Fixed another bug when your map function returns a mix of LazyDict or regular dict and added some tests" ]
2022-11-16T15:02:13Z
2022-12-13T17:01:54Z
2022-12-13T16:59:04Z
COLLABORATOR
null
null
null
Add support for decoding the `Image`/`Audio` types in `map` for the formats (Numpy, TF, Jax, PyTorch) other than the default one (Python). Additional improvements: * make `Dataset`'s "iter" API cleaner by removing `_iter` and replacing `_iter_batches` with `iter(batch_size)` (also implemented for `IterableDataset`) * iterate over arrow tables in `map` to avoid `_getitem` calls, which are much slower than `__iter__`/`iter(batch_size)`, when the `format_type` is not Python * fix `_iter_batches` (now named `iter`) when `drop_last_batch=True` and `pyarrow<=8.0.0` is installed * lazily extract and decode arrow data in the default format TODO: * [x] update the `iter` benchmark in the docs (the `BeamBuilder` cannot load the preprocessed datasets from our bucket, so wait for this to be fixed (cc @lhoestq)) Fix https://github.com/huggingface/datasets/issues/3992, fix https://github.com/huggingface/datasets/issues/3756
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5252/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5252/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5252.diff", "html_url": "https://github.com/huggingface/datasets/pull/5252", "merged_at": "2022-12-13T16:59:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/5252.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5252" }
https://api.github.com/repos/huggingface/datasets/issues/7434
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7434/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7434/comments
https://api.github.com/repos/huggingface/datasets/issues/7434/events
https://github.com/huggingface/datasets/pull/7434
2,893,075,908
PR_kwDODunzps6NP-vn
7,434
Refactor `Dataset.map` to reuse cache files mapped with different `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq please let me know what you think about this.", "It looks like I can't change the merge target to #7435, so it will look like there is a bunch of extra stuff until #7435 is in main.", "@lhoestq Thanks so much for reviewing #7435! Now that that's merged, I think this PR is ready!! Can you kick off CI when you get the chance?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7434). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Do you mind kicking off CI again?", "The change I made to support windows paths in 637c1600fe7dd601eff571fda446937bd96c5c84 ended up breaking causing these tests in [tests/test_data_files.py](https://github.com/huggingface/datasets/actions/runs/13858546629/job/38781008643#step:10:6991). When I removed `glob_pattern_to_regex` in 583c28e7560b9d6db2e13048731f41ec8fa11361, none of the tests failed. So I'm thinking the `unicode_escape` may be handling the what `glob_pattern_to_regex` was doing.\r\n", "@lhoestq will you have a chance to review this today?" ]
2025-03-04T06:12:37Z
2025-03-21T12:37:16Z
null
CONTRIBUTOR
null
null
null
Fixes #7433 This refactor unifies `num_proc is None or num_proc == 1` and `num_proc > 1`; instead of handling them completely separately where one uses a list of kwargs and shards and the other just uses a single set of kwargs and `self`, by wrapping the `num_proc == 1` case in a list and making the difference just whether or not you use a pool, you set up either case to be able to load each other's cache files just by changing `num_shards`; `num_proc == 1` can sequentially load the shards of a dataset mapped `num_shards > 1` and map any missing shards Other than the structural refactor, the main contribution of this PR is `existing_cache_file_map`, which uses a regex of `cache_file_name` and `suffix_template` to find existing cache files, grouped by their `num_shards`; using this data structure, we can reset `num_shards` to an existing set of cache files, and load them accordingly
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7434/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7434/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7434.diff", "html_url": "https://github.com/huggingface/datasets/pull/7434", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7434.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7434" }
https://api.github.com/repos/huggingface/datasets/issues/5367
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5367/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5367/comments
https://api.github.com/repos/huggingface/datasets/issues/5367/events
https://github.com/huggingface/datasets/pull/5367
1,499,174,749
PR_kwDODunzps5FlevK
5,367
Fix remove columns from lazy dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-15T22:04:12Z
2022-12-15T22:27:53Z
2022-12-15T22:24:50Z
MEMBER
null
null
null
This was introduced in https://github.com/huggingface/datasets/pull/5252 and causing the transformers CI to break: https://app.circleci.com/pipelines/github/huggingface/transformers/53886/workflows/522faf2e-a053-454c-94f8-a617fde33393/jobs/648597 Basically this code should return a dataset with only one column: ```python from datasets import * ds = Dataset.from_dict({"a": range(5)}) def f(x): x["b"] = x["a"] return x ds = ds.map(f, remove_columns=["a"]) assert ds.column_names == ["b"] ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5367/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5367/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5367.diff", "html_url": "https://github.com/huggingface/datasets/pull/5367", "merged_at": "2022-12-15T22:24:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/5367.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5367" }
https://api.github.com/repos/huggingface/datasets/issues/5181
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5181/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5181/comments
https://api.github.com/repos/huggingface/datasets/issues/5181/events
https://github.com/huggingface/datasets/issues/5181
1,431,027,102
I_kwDODunzps5VS72e
5,181
Add a guide for semantic segmentation
{ "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul", "user_view_type": "public" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul", "user_view_type": "public" } ]
null
[ "Sure this sounds great! Would this be pure torchvision, albumentations, or something else?", "I am considering `torchvision` and `albumentations`. Also [works with TensorFlow](https://github.com/deep-diver/segformer-tf-transformers/blob/main/notebooks/TFSegFormer_Finetune.ipynb). \r\n\r\nI am assigning the issue to myself then. " ]
2022-11-01T07:54:50Z
2022-11-04T18:23:36Z
2022-11-04T18:23:36Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Currently, we have these guides for object detection and image classification: * https://huggingface.co/docs/datasets/object_detection * https://huggingface.co/docs/datasets/image_classification I am proposing adding a similar guide for semantic segmentation. I am happy to contribute a PR for it. Cc: @osanseviero @nateraw
{ "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sayakpaul", "id": 22957388, "login": "sayakpaul", "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "repos_url": "https://api.github.com/users/sayakpaul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "type": "User", "url": "https://api.github.com/users/sayakpaul", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5181/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5181/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6262
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6262/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6262/comments
https://api.github.com/repos/huggingface/datasets/issues/6262/events
https://github.com/huggingface/datasets/pull/6262
1,914,895,459
PR_kwDODunzps5bTh6H
6,262
Fix CI 404 errors
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008220 / 0.011353 (-0.003133) | 0.005560 / 0.011008 (-0.005448) | 0.100147 / 0.038508 (0.061639) | 0.070106 / 0.023109 (0.046996) | 0.411906 / 0.275898 (0.136008) | 0.432825 / 0.323480 (0.109345) | 0.004795 / 0.007986 (-0.003190) | 0.004094 / 0.004328 (-0.000235) | 0.075719 / 0.004250 (0.071468) | 0.067426 / 0.037052 (0.030374) | 0.428531 / 0.258489 (0.170042) | 0.437114 / 0.293841 (0.143273) | 0.045603 / 0.128546 (-0.082943) | 0.013333 / 0.075646 (-0.062313) | 0.353137 / 0.419271 (-0.066134) | 0.067902 / 0.043533 (0.024369) | 0.396633 / 0.255139 (0.141494) | 0.399185 / 0.283200 (0.115985) | 0.036377 / 0.141683 (-0.105306) | 1.624249 / 1.452155 (0.172094) | 1.792575 / 1.492716 (0.299859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315847 / 0.018006 (0.297840) | 0.595009 / 0.000490 (0.594519) | 0.018876 / 0.000200 (0.018676) | 0.000613 / 0.000054 (0.000558) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029886 / 0.037411 (-0.007526) | 0.085765 / 0.014526 (0.071239) | 0.108680 / 0.176557 (-0.067877) | 0.174588 / 0.737135 (-0.562548) | 0.104494 / 0.296338 (-0.191844) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.594429 / 0.215209 (0.379220) | 5.912352 / 2.077655 (3.834698) | 2.408501 / 1.504120 (0.904381) | 2.050914 / 1.541195 (0.509720) | 2.199349 / 1.468490 (0.730859) | 0.813797 / 4.584777 (-3.770980) | 5.169577 / 3.745712 (1.423864) | 4.653951 / 5.269862 (-0.615911) | 2.805423 / 4.565676 (-1.760253) | 0.092278 / 0.424275 (-0.331997) | 0.007394 / 0.007607 (-0.000213) | 0.684029 / 0.226044 (0.457985) | 6.964260 / 2.268929 (4.695331) | 3.108408 / 55.444624 (-52.336217) | 2.470907 / 6.876477 (-4.405569) | 2.460153 / 2.142072 (0.318081) | 0.986445 / 4.805227 (-3.818782) | 0.213069 / 6.500664 (-6.287596) | 0.074061 / 0.075469 (-0.001408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.590732 / 1.841788 (-0.251056) | 23.736918 / 8.074308 (15.662609) | 21.223910 / 10.191392 (11.032518) | 0.236173 / 0.680424 (-0.444251) | 0.030056 / 0.534201 (-0.504145) | 0.489461 / 0.579283 (-0.089822) | 0.607582 / 0.434364 (0.173218) | 0.539889 / 0.540337 (-0.000449) | 0.817942 / 1.386936 (-0.568994) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008042 / 0.011353 (-0.003311) | 0.004836 / 0.011008 (-0.006173) | 0.075434 / 0.038508 (0.036926) | 0.080818 / 0.023109 (0.057709) | 0.474797 / 0.275898 (0.198899) | 0.526168 / 0.323480 (0.202689) | 0.006463 / 0.007986 (-0.001522) | 0.004031 / 0.004328 (-0.000297) | 0.074141 / 0.004250 (0.069891) | 0.068265 / 0.037052 (0.031212) | 0.562550 / 0.258489 (0.304061) | 0.544820 / 0.293841 (0.250979) | 0.047263 / 0.128546 (-0.081283) | 0.014113 / 0.075646 (-0.061534) | 0.086061 / 0.419271 (-0.333210) | 0.062475 / 0.043533 (0.018942) | 0.479912 / 0.255139 (0.224773) | 0.494784 / 0.283200 (0.211584) | 0.035847 / 0.141683 (-0.105836) | 1.726452 / 1.452155 (0.274297) | 1.770113 / 1.492716 (0.277396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286713 / 0.018006 (0.268707) | 0.609704 / 0.000490 (0.609214) | 0.009342 / 0.000200 (0.009143) | 0.000134 / 0.000054 (0.000080) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035137 / 0.037411 (-0.002275) | 0.099331 / 0.014526 (0.084805) | 0.108971 / 0.176557 (-0.067586) | 0.170952 / 0.737135 (-0.566183) | 0.111736 / 0.296338 (-0.184603) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.617434 / 0.215209 (0.402225) | 6.204351 / 2.077655 (4.126697) | 2.854347 / 1.504120 (1.350227) | 2.557424 / 1.541195 (1.016229) | 2.638173 / 1.468490 (1.169683) | 0.854234 / 4.584777 (-3.730543) | 5.383288 / 3.745712 (1.637576) | 4.698098 / 5.269862 (-0.571763) | 2.903860 / 4.565676 (-1.661817) | 0.094689 / 0.424275 (-0.329586) | 0.007892 / 0.007607 (0.000285) | 0.729420 / 0.226044 (0.503376) | 7.356691 / 2.268929 (5.087763) | 3.708039 / 55.444624 (-51.736585) | 2.979734 / 6.876477 (-3.896743) | 2.978983 / 2.142072 (0.836911) | 1.040554 / 4.805227 (-3.764673) | 0.211246 / 6.500664 (-6.289418) | 0.079880 / 0.075469 (0.004411) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.676057 / 1.841788 (-0.165731) | 23.428443 / 8.074308 (15.354135) | 21.016293 / 10.191392 (10.824901) | 0.260927 / 0.680424 (-0.419497) | 0.030689 / 0.534201 (-0.503512) | 0.495652 / 0.579283 (-0.083632) | 0.622976 / 0.434364 (0.188612) | 0.561175 / 0.540337 (0.020837) | 0.786733 / 1.386936 (-0.600203) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fb621b9630a69643255d25f192fdb011935122b1 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005942 / 0.011353 (-0.005410) | 0.003706 / 0.011008 (-0.007302) | 0.081002 / 0.038508 (0.042493) | 0.056854 / 0.023109 (0.033745) | 0.358668 / 0.275898 (0.082770) | 0.369718 / 0.323480 (0.046238) | 0.005202 / 0.007986 (-0.002784) | 0.002841 / 0.004328 (-0.001487) | 0.062976 / 0.004250 (0.058726) | 0.051308 / 0.037052 (0.014255) | 0.373636 / 0.258489 (0.115147) | 0.390480 / 0.293841 (0.096639) | 0.027480 / 0.128546 (-0.101067) | 0.007960 / 0.075646 (-0.067686) | 0.262719 / 0.419271 (-0.156552) | 0.046488 / 0.043533 (0.002955) | 0.347299 / 0.255139 (0.092160) | 0.393448 / 0.283200 (0.110249) | 0.019445 / 0.141683 (-0.122238) | 1.431314 / 1.452155 (-0.020841) | 1.495578 / 1.492716 (0.002862) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223724 / 0.018006 (0.205718) | 0.416929 / 0.000490 (0.416440) | 0.005253 / 0.000200 (0.005053) | 0.000217 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023571 / 0.037411 (-0.013841) | 0.073503 / 0.014526 (0.058978) | 0.081366 / 0.176557 (-0.095190) | 0.142716 / 0.737135 (-0.594420) | 0.082612 / 0.296338 (-0.213727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407319 / 0.215209 (0.192109) | 4.141404 / 2.077655 (2.063749) | 1.910842 / 1.504120 (0.406722) | 1.731694 / 1.541195 (0.190499) | 1.805228 / 1.468490 (0.336738) | 0.497109 / 4.584777 (-4.087668) | 3.107624 / 3.745712 (-0.638088) | 2.890687 / 5.269862 (-2.379174) | 1.795913 / 4.565676 (-2.769763) | 0.057099 / 0.424275 (-0.367176) | 0.006414 / 0.007607 (-0.001194) | 0.482127 / 0.226044 (0.256083) | 4.835158 / 2.268929 (2.566229) | 2.368909 / 55.444624 (-53.075715) | 2.001608 / 6.876477 (-4.874868) | 2.004492 / 2.142072 (-0.137580) | 0.579910 / 4.805227 (-4.225317) | 0.123541 / 6.500664 (-6.377123) | 0.059651 / 0.075469 (-0.015818) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.242364 / 1.841788 (-0.599424) | 16.982676 / 8.074308 (8.908368) | 13.718885 / 10.191392 (3.527493) | 0.132759 / 0.680424 (-0.547665) | 0.017012 / 0.534201 (-0.517189) | 0.333447 / 0.579283 (-0.245836) | 0.360149 / 0.434364 (-0.074215) | 0.385526 / 0.540337 (-0.154811) | 0.536915 / 1.386936 (-0.850021) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005946 / 0.011353 (-0.005407) | 0.003442 / 0.011008 (-0.007566) | 0.062595 / 0.038508 (0.024087) | 0.058699 / 0.023109 (0.035590) | 0.442626 / 0.275898 (0.166728) | 0.473773 / 0.323480 (0.150293) | 0.004622 / 0.007986 (-0.003364) | 0.002812 / 0.004328 (-0.001516) | 0.064099 / 0.004250 (0.059849) | 0.046784 / 0.037052 (0.009731) | 0.466049 / 0.258489 (0.207560) | 0.487912 / 0.293841 (0.194071) | 0.028372 / 0.128546 (-0.100174) | 0.007992 / 0.075646 (-0.067654) | 0.068151 / 0.419271 (-0.351120) | 0.041010 / 0.043533 (-0.002523) | 0.442331 / 0.255139 (0.187192) | 0.469686 / 0.283200 (0.186487) | 0.019694 / 0.141683 (-0.121989) | 1.467928 / 1.452155 (0.015774) | 1.525635 / 1.492716 (0.032918) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204459 / 0.018006 (0.186453) | 0.407766 / 0.000490 (0.407276) | 0.003898 / 0.000200 (0.003698) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025909 / 0.037411 (-0.011503) | 0.080341 / 0.014526 (0.065816) | 0.088231 / 0.176557 (-0.088325) | 0.144056 / 0.737135 (-0.593079) | 0.089769 / 0.296338 (-0.206569) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462876 / 0.215209 (0.247667) | 4.625983 / 2.077655 (2.548329) | 2.580079 / 1.504120 (1.075959) | 2.402792 / 1.541195 (0.861597) | 2.424982 / 1.468490 (0.956491) | 0.503654 / 4.584777 (-4.081123) | 3.178995 / 3.745712 (-0.566717) | 2.956126 / 5.269862 (-2.313735) | 1.847837 / 4.565676 (-2.717840) | 0.057964 / 0.424275 (-0.366311) | 0.006405 / 0.007607 (-0.001202) | 0.536036 / 0.226044 (0.309992) | 5.374416 / 2.268929 (3.105487) | 3.036440 / 55.444624 (-52.408184) | 2.682054 / 6.876477 (-4.194422) | 2.683462 / 2.142072 (0.541390) | 0.592751 / 4.805227 (-4.212477) | 0.124313 / 6.500664 (-6.376351) | 0.061127 / 0.075469 (-0.014342) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.383539 / 1.841788 (-0.458249) | 17.766221 / 8.074308 (9.691913) | 15.306600 / 10.191392 (5.115208) | 0.145035 / 0.680424 (-0.535389) | 0.018078 / 0.534201 (-0.516123) | 0.330102 / 0.579283 (-0.249181) | 0.375380 / 0.434364 (-0.058984) | 0.388531 / 0.540337 (-0.151807) | 0.548720 / 1.386936 (-0.838216) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0082342ac792a05f4a615e4985d1c791e155115a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006757 / 0.011353 (-0.004596) | 0.004110 / 0.011008 (-0.006898) | 0.084727 / 0.038508 (0.046219) | 0.074328 / 0.023109 (0.051219) | 0.310467 / 0.275898 (0.034569) | 0.343209 / 0.323480 (0.019729) | 0.004228 / 0.007986 (-0.003757) | 0.003400 / 0.004328 (-0.000929) | 0.065546 / 0.004250 (0.061296) | 0.063057 / 0.037052 (0.026005) | 0.315023 / 0.258489 (0.056534) | 0.356395 / 0.293841 (0.062554) | 0.031959 / 0.128546 (-0.096588) | 0.008577 / 0.075646 (-0.067069) | 0.289075 / 0.419271 (-0.130196) | 0.055011 / 0.043533 (0.011478) | 0.308861 / 0.255139 (0.053722) | 0.328691 / 0.283200 (0.045491) | 0.027037 / 0.141683 (-0.114646) | 1.464314 / 1.452155 (0.012159) | 1.549644 / 1.492716 (0.056927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238330 / 0.018006 (0.220324) | 0.451570 / 0.000490 (0.451080) | 0.010873 / 0.000200 (0.010673) | 0.000341 / 0.000054 (0.000286) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029909 / 0.037411 (-0.007503) | 0.085222 / 0.014526 (0.070696) | 0.100180 / 0.176557 (-0.076377) | 0.154842 / 0.737135 (-0.582293) | 0.099253 / 0.296338 (-0.197086) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401603 / 0.215209 (0.186394) | 4.009781 / 2.077655 (1.932126) | 2.021807 / 1.504120 (0.517687) | 1.861017 / 1.541195 (0.319822) | 2.009072 / 1.468490 (0.540582) | 0.483798 / 4.584777 (-4.100979) | 3.580394 / 3.745712 (-0.165318) | 3.464587 / 5.269862 (-1.805275) | 2.018400 / 4.565676 (-2.547276) | 0.057134 / 0.424275 (-0.367141) | 0.007303 / 0.007607 (-0.000304) | 0.473627 / 0.226044 (0.247582) | 4.722634 / 2.268929 (2.453706) | 2.490884 / 55.444624 (-52.953741) | 2.121568 / 6.876477 (-4.754909) | 2.200699 / 2.142072 (0.058626) | 0.576728 / 4.805227 (-4.228499) | 0.135633 / 6.500664 (-6.365032) | 0.061625 / 0.075469 (-0.013844) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250545 / 1.841788 (-0.591243) | 19.167642 / 8.074308 (11.093334) | 14.189891 / 10.191392 (3.998499) | 0.164552 / 0.680424 (-0.515872) | 0.018215 / 0.534201 (-0.515986) | 0.389962 / 0.579283 (-0.189321) | 0.413972 / 0.434364 (-0.020392) | 0.460253 / 0.540337 (-0.080085) | 0.647897 / 1.386936 (-0.739039) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006714 / 0.011353 (-0.004639) | 0.004081 / 0.011008 (-0.006927) | 0.065627 / 0.038508 (0.027119) | 0.077644 / 0.023109 (0.054535) | 0.409950 / 0.275898 (0.134052) | 0.442940 / 0.323480 (0.119460) | 0.005523 / 0.007986 (-0.002463) | 0.003366 / 0.004328 (-0.000962) | 0.065425 / 0.004250 (0.061174) | 0.056222 / 0.037052 (0.019169) | 0.429928 / 0.258489 (0.171439) | 0.457136 / 0.293841 (0.163296) | 0.032356 / 0.128546 (-0.096190) | 0.008676 / 0.075646 (-0.066970) | 0.071785 / 0.419271 (-0.347486) | 0.048458 / 0.043533 (0.004925) | 0.408003 / 0.255139 (0.152864) | 0.433529 / 0.283200 (0.150330) | 0.023232 / 0.141683 (-0.118450) | 1.483640 / 1.452155 (0.031485) | 1.552425 / 1.492716 (0.059709) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282347 / 0.018006 (0.264341) | 0.448742 / 0.000490 (0.448253) | 0.039590 / 0.000200 (0.039390) | 0.000407 / 0.000054 (0.000353) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032516 / 0.037411 (-0.004896) | 0.095269 / 0.014526 (0.080744) | 0.106363 / 0.176557 (-0.070193) | 0.157945 / 0.737135 (-0.579191) | 0.106783 / 0.296338 (-0.189556) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436334 / 0.215209 (0.221125) | 4.348147 / 2.077655 (2.270492) | 2.326830 / 1.504120 (0.822710) | 2.162586 / 1.541195 (0.621391) | 2.257769 / 1.468490 (0.789279) | 0.491677 / 4.584777 (-4.093099) | 3.707385 / 3.745712 (-0.038328) | 3.567147 / 5.269862 (-1.702715) | 2.099451 / 4.565676 (-2.466226) | 0.058486 / 0.424275 (-0.365789) | 0.007324 / 0.007607 (-0.000283) | 0.510962 / 0.226044 (0.284917) | 5.106550 / 2.268929 (2.837622) | 2.785723 / 55.444624 (-52.658901) | 2.452928 / 6.876477 (-4.423548) | 2.545034 / 2.142072 (0.402961) | 0.611124 / 4.805227 (-4.194103) | 0.133503 / 6.500664 (-6.367161) | 0.061118 / 0.075469 (-0.014351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.386640 / 1.841788 (-0.455148) | 20.485670 / 8.074308 (12.411362) | 15.332223 / 10.191392 (5.140831) | 0.164070 / 0.680424 (-0.516354) | 0.019962 / 0.534201 (-0.514239) | 0.394217 / 0.579283 (-0.185066) | 0.428442 / 0.434364 (-0.005922) | 0.473784 / 0.540337 (-0.066553) | 0.665141 / 1.386936 (-0.721795) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c722eb75a6cc56eac530c44a17ff679ca805aa89 \"CML watermark\")\n", "The CI errors seem unrelated to this PR but I think they need further investigation in another PR.\r\n```\r\nFAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008766 / 0.011353 (-0.002587) | 0.005289 / 0.011008 (-0.005720) | 0.097220 / 0.038508 (0.058712) | 0.072246 / 0.023109 (0.049137) | 0.369359 / 0.275898 (0.093461) | 0.422571 / 0.323480 (0.099091) | 0.004941 / 0.007986 (-0.003044) | 0.006103 / 0.004328 (0.001774) | 0.075828 / 0.004250 (0.071578) | 0.065795 / 0.037052 (0.028743) | 0.412835 / 0.258489 (0.154346) | 0.430062 / 0.293841 (0.136221) | 0.045806 / 0.128546 (-0.082741) | 0.013760 / 0.075646 (-0.061887) | 0.351542 / 0.419271 (-0.067729) | 0.064836 / 0.043533 (0.021304) | 0.370162 / 0.255139 (0.115023) | 0.434949 / 0.283200 (0.151749) | 0.039198 / 0.141683 (-0.102485) | 1.670940 / 1.452155 (0.218785) | 1.809677 / 1.492716 (0.316961) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295104 / 0.018006 (0.277097) | 0.594584 / 0.000490 (0.594095) | 0.010923 / 0.000200 (0.010723) | 0.000479 / 0.000054 (0.000425) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029174 / 0.037411 (-0.008237) | 0.094637 / 0.014526 (0.080111) | 0.102948 / 0.176557 (-0.073608) | 0.171048 / 0.737135 (-0.566087) | 0.111465 / 0.296338 (-0.184873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582017 / 0.215209 (0.366808) | 5.727008 / 2.077655 (3.649354) | 2.563211 / 1.504120 (1.059091) | 2.308912 / 1.541195 (0.767717) | 2.301258 / 1.468490 (0.832768) | 0.819594 / 4.584777 (-3.765183) | 5.177536 / 3.745712 (1.431824) | 4.473602 / 5.269862 (-0.796260) | 2.743819 / 4.565676 (-1.821857) | 0.090052 / 0.424275 (-0.334223) | 0.007903 / 0.007607 (0.000295) | 0.679142 / 0.226044 (0.453097) | 6.887891 / 2.268929 (4.618962) | 3.337926 / 55.444624 (-52.106699) | 2.659228 / 6.876477 (-4.217249) | 2.641289 / 2.142072 (0.499216) | 0.974829 / 4.805227 (-3.830398) | 0.205775 / 6.500664 (-6.294890) | 0.075268 / 0.075469 (-0.000201) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.500562 / 1.841788 (-0.341226) | 22.688483 / 8.074308 (14.614175) | 19.634878 / 10.191392 (9.443486) | 0.227409 / 0.680424 (-0.453015) | 0.029794 / 0.534201 (-0.504407) | 0.475204 / 0.579283 (-0.104079) | 0.579379 / 0.434364 (0.145016) | 0.541244 / 0.540337 (0.000907) | 0.739187 / 1.386936 (-0.647749) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008641 / 0.011353 (-0.002712) | 0.006139 / 0.011008 (-0.004870) | 0.075048 / 0.038508 (0.036540) | 0.074070 / 0.023109 (0.050961) | 0.508288 / 0.275898 (0.232390) | 0.539770 / 0.323480 (0.216290) | 0.006092 / 0.007986 (-0.001894) | 0.003748 / 0.004328 (-0.000581) | 0.077945 / 0.004250 (0.073695) | 0.056989 / 0.037052 (0.019936) | 0.526889 / 0.258489 (0.268400) | 0.560862 / 0.293841 (0.267021) | 0.046507 / 0.128546 (-0.082040) | 0.013249 / 0.075646 (-0.062397) | 0.088363 / 0.419271 (-0.330908) | 0.058776 / 0.043533 (0.015243) | 0.495869 / 0.255139 (0.240730) | 0.538615 / 0.283200 (0.255415) | 0.034055 / 0.141683 (-0.107628) | 1.658713 / 1.452155 (0.206558) | 1.736599 / 1.492716 (0.243883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.288355 / 0.018006 (0.270349) | 0.571481 / 0.000490 (0.570991) | 0.006765 / 0.000200 (0.006565) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031836 / 0.037411 (-0.005575) | 0.101312 / 0.014526 (0.086786) | 0.111433 / 0.176557 (-0.065124) | 0.169599 / 0.737135 (-0.567536) | 0.114595 / 0.296338 (-0.181743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.645258 / 0.215209 (0.430049) | 6.446653 / 2.077655 (4.368998) | 2.983498 / 1.504120 (1.479379) | 2.573820 / 1.541195 (1.032625) | 2.624286 / 1.468490 (1.155796) | 0.815997 / 4.584777 (-3.768780) | 5.140248 / 3.745712 (1.394536) | 4.636915 / 5.269862 (-0.632947) | 2.866313 / 4.565676 (-1.699364) | 0.096643 / 0.424275 (-0.327633) | 0.008452 / 0.007607 (0.000845) | 0.765837 / 0.226044 (0.539793) | 7.622897 / 2.268929 (5.353968) | 3.796247 / 55.444624 (-51.648378) | 3.019349 / 6.876477 (-3.857128) | 3.034187 / 2.142072 (0.892115) | 1.001682 / 4.805227 (-3.803546) | 0.211841 / 6.500664 (-6.288823) | 0.073351 / 0.075469 (-0.002119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.740254 / 1.841788 (-0.101534) | 23.465619 / 8.074308 (15.391311) | 21.651670 / 10.191392 (11.460278) | 0.226129 / 0.680424 (-0.454294) | 0.029611 / 0.534201 (-0.504590) | 0.441140 / 0.579283 (-0.138143) | 0.605591 / 0.434364 (0.171227) | 0.552427 / 0.540337 (0.012090) | 0.771975 / 1.386936 (-0.614961) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef5751522c424c758df0647ff9a449b8b0404b6a \"CML watermark\")\n", "> The CI errors seem unrelated to this PR but I think they need further investigation in another PR.\r\n> \r\n> ```\r\n> FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files - KeyError: 'url'\r\n> ```\r\n\r\nWe need to wait for `huggingface_hub`'s next release to fix this (see https://github.com/huggingface/huggingface_hub/pull/1675; 409 error is currently ignored, hence the `KeyError`)\r\n\r\nAlso, we should be able to fix `test_push_dataset_dict_to_hub_overwrite_files` by inserting `gc.collect()` (to drop the \"reference\" to an Arrow file) between the `load_dataset` calls to avoid the `PermissionError` (also reported in https://github.com/huggingface/datasets/issues/3139)\r\n\r\n(Indeed, this can be addressed in subsequent PRs.)\r\n\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008988 / 0.011353 (-0.002365) | 0.005270 / 0.011008 (-0.005738) | 0.114577 / 0.038508 (0.076068) | 0.091630 / 0.023109 (0.068521) | 0.409217 / 0.275898 (0.133319) | 0.440903 / 0.323480 (0.117424) | 0.005226 / 0.007986 (-0.002760) | 0.004289 / 0.004328 (-0.000040) | 0.082246 / 0.004250 (0.077995) | 0.084926 / 0.037052 (0.047873) | 0.407822 / 0.258489 (0.149333) | 0.440891 / 0.293841 (0.147051) | 0.052225 / 0.128546 (-0.076321) | 0.014218 / 0.075646 (-0.061429) | 0.436994 / 0.419271 (0.017722) | 0.066433 / 0.043533 (0.022901) | 0.413909 / 0.255139 (0.158770) | 0.425729 / 0.283200 (0.142530) | 0.039576 / 0.141683 (-0.102107) | 1.905604 / 1.452155 (0.453449) | 1.907032 / 1.492716 (0.414315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313662 / 0.018006 (0.295655) | 0.614541 / 0.000490 (0.614051) | 0.015631 / 0.000200 (0.015431) | 0.000507 / 0.000054 (0.000453) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029049 / 0.037411 (-0.008362) | 0.094626 / 0.014526 (0.080100) | 0.104718 / 0.176557 (-0.071838) | 0.187346 / 0.737135 (-0.549790) | 0.108001 / 0.296338 (-0.188337) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578997 / 0.215209 (0.363788) | 5.815546 / 2.077655 (3.737892) | 2.411301 / 1.504120 (0.907181) | 2.110088 / 1.541195 (0.568893) | 2.147839 / 1.468490 (0.679349) | 0.861285 / 4.584777 (-3.723492) | 5.264245 / 3.745712 (1.518533) | 4.695786 / 5.269862 (-0.574076) | 2.867522 / 4.565676 (-1.698154) | 0.096523 / 0.424275 (-0.327752) | 0.008777 / 0.007607 (0.001170) | 0.716316 / 0.226044 (0.490272) | 7.257574 / 2.268929 (4.988645) | 3.141502 / 55.444624 (-52.303123) | 2.480604 / 6.876477 (-4.395872) | 2.530031 / 2.142072 (0.387958) | 1.054274 / 4.805227 (-3.750953) | 0.210781 / 6.500664 (-6.289883) | 0.073837 / 0.075469 (-0.001632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607689 / 1.841788 (-0.234099) | 23.856780 / 8.074308 (15.782472) | 19.507196 / 10.191392 (9.315804) | 0.232712 / 0.680424 (-0.447712) | 0.027037 / 0.534201 (-0.507164) | 0.466613 / 0.579283 (-0.112670) | 0.571139 / 0.434364 (0.136775) | 0.543109 / 0.540337 (0.002771) | 0.785558 / 1.386936 (-0.601378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008104 / 0.011353 (-0.003249) | 0.004923 / 0.011008 (-0.006086) | 0.075093 / 0.038508 (0.036585) | 0.075218 / 0.023109 (0.052109) | 0.476615 / 0.275898 (0.200717) | 0.506984 / 0.323480 (0.183504) | 0.006371 / 0.007986 (-0.001614) | 0.004818 / 0.004328 (0.000489) | 0.075634 / 0.004250 (0.071383) | 0.059513 / 0.037052 (0.022461) | 0.523763 / 0.258489 (0.265274) | 0.531858 / 0.293841 (0.238017) | 0.048168 / 0.128546 (-0.080379) | 0.014110 / 0.075646 (-0.061537) | 0.086052 / 0.419271 (-0.333219) | 0.058369 / 0.043533 (0.014836) | 0.475537 / 0.255139 (0.220398) | 0.509429 / 0.283200 (0.226229) | 0.033924 / 0.141683 (-0.107758) | 1.657490 / 1.452155 (0.205336) | 1.762544 / 1.492716 (0.269828) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263863 / 0.018006 (0.245857) | 0.584468 / 0.000490 (0.583978) | 0.007063 / 0.000200 (0.006863) | 0.000181 / 0.000054 (0.000126) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032229 / 0.037411 (-0.005183) | 0.096750 / 0.014526 (0.082224) | 0.117798 / 0.176557 (-0.058758) | 0.173376 / 0.737135 (-0.563760) | 0.117241 / 0.296338 (-0.179098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.701935 / 0.215209 (0.486726) | 6.544655 / 2.077655 (4.467001) | 3.055531 / 1.504120 (1.551411) | 2.896339 / 1.541195 (1.355144) | 3.013157 / 1.468490 (1.544667) | 0.852989 / 4.584777 (-3.731788) | 5.399355 / 3.745712 (1.653643) | 5.119811 / 5.269862 (-0.150051) | 3.167269 / 4.565676 (-1.398407) | 0.096962 / 0.424275 (-0.327313) | 0.008843 / 0.007607 (0.001236) | 0.776170 / 0.226044 (0.550125) | 7.735093 / 2.268929 (5.466164) | 3.792629 / 55.444624 (-51.651996) | 3.249911 / 6.876477 (-3.626565) | 3.235590 / 2.142072 (1.093517) | 1.046426 / 4.805227 (-3.758801) | 0.239854 / 6.500664 (-6.260810) | 0.100648 / 0.075469 (0.025179) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.774488 / 1.841788 (-0.067300) | 25.646958 / 8.074308 (17.572650) | 23.181577 / 10.191392 (12.990185) | 0.231948 / 0.680424 (-0.448476) | 0.030147 / 0.534201 (-0.504054) | 0.464161 / 0.579283 (-0.115122) | 0.598980 / 0.434364 (0.164616) | 0.571156 / 0.540337 (0.030819) | 0.833221 / 1.386936 (-0.553715) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ad876e8908188dcd56759a35c4da182bf121535a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006010 / 0.011353 (-0.005343) | 0.003662 / 0.011008 (-0.007346) | 0.079971 / 0.038508 (0.041463) | 0.066790 / 0.023109 (0.043681) | 0.311387 / 0.275898 (0.035489) | 0.346781 / 0.323480 (0.023301) | 0.003500 / 0.007986 (-0.004485) | 0.002831 / 0.004328 (-0.001498) | 0.063238 / 0.004250 (0.058988) | 0.056163 / 0.037052 (0.019110) | 0.317456 / 0.258489 (0.058967) | 0.356106 / 0.293841 (0.062265) | 0.027358 / 0.128546 (-0.101188) | 0.007906 / 0.075646 (-0.067741) | 0.261779 / 0.419271 (-0.157492) | 0.046385 / 0.043533 (0.002852) | 0.312587 / 0.255139 (0.057448) | 0.339513 / 0.283200 (0.056314) | 0.021474 / 0.141683 (-0.120209) | 1.418637 / 1.452155 (-0.033518) | 1.510257 / 1.492716 (0.017540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211761 / 0.018006 (0.193755) | 0.424387 / 0.000490 (0.423898) | 0.002579 / 0.000200 (0.002379) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024038 / 0.037411 (-0.013374) | 0.072524 / 0.014526 (0.057998) | 0.083443 / 0.176557 (-0.093113) | 0.144835 / 0.737135 (-0.592300) | 0.084754 / 0.296338 (-0.211585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392423 / 0.215209 (0.177214) | 3.927220 / 2.077655 (1.849565) | 1.877853 / 1.504120 (0.373733) | 1.699275 / 1.541195 (0.158081) | 1.793144 / 1.468490 (0.324654) | 0.503809 / 4.584777 (-4.080968) | 3.052569 / 3.745712 (-0.693143) | 2.907432 / 5.269862 (-2.362429) | 1.811220 / 4.565676 (-2.754457) | 0.057249 / 0.424275 (-0.367026) | 0.006433 / 0.007607 (-0.001174) | 0.463257 / 0.226044 (0.237213) | 4.631038 / 2.268929 (2.362109) | 2.315870 / 55.444624 (-53.128754) | 2.000476 / 6.876477 (-4.876001) | 2.043581 / 2.142072 (-0.098492) | 0.588911 / 4.805227 (-4.216317) | 0.125370 / 6.500664 (-6.375295) | 0.061721 / 0.075469 (-0.013748) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244486 / 1.841788 (-0.597301) | 17.862422 / 8.074308 (9.788114) | 13.890205 / 10.191392 (3.698813) | 0.145467 / 0.680424 (-0.534957) | 0.016856 / 0.534201 (-0.517345) | 0.329357 / 0.579283 (-0.249926) | 0.367550 / 0.434364 (-0.066814) | 0.377541 / 0.540337 (-0.162796) | 0.534087 / 1.386936 (-0.852849) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006030 / 0.011353 (-0.005323) | 0.003650 / 0.011008 (-0.007359) | 0.063300 / 0.038508 (0.024792) | 0.058877 / 0.023109 (0.035767) | 0.454662 / 0.275898 (0.178764) | 0.489362 / 0.323480 (0.165882) | 0.004856 / 0.007986 (-0.003130) | 0.002909 / 0.004328 (-0.001420) | 0.063356 / 0.004250 (0.059105) | 0.047867 / 0.037052 (0.010814) | 0.465461 / 0.258489 (0.206972) | 0.506684 / 0.293841 (0.212843) | 0.028599 / 0.128546 (-0.099947) | 0.008076 / 0.075646 (-0.067570) | 0.068695 / 0.419271 (-0.350576) | 0.041487 / 0.043533 (-0.002045) | 0.448676 / 0.255139 (0.193537) | 0.471206 / 0.283200 (0.188007) | 0.020401 / 0.141683 (-0.121282) | 1.461181 / 1.452155 (0.009026) | 1.517079 / 1.492716 (0.024363) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222827 / 0.018006 (0.204821) | 0.425074 / 0.000490 (0.424585) | 0.004153 / 0.000200 (0.003953) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026980 / 0.037411 (-0.010431) | 0.080786 / 0.014526 (0.066260) | 0.092040 / 0.176557 (-0.084517) | 0.146082 / 0.737135 (-0.591053) | 0.092739 / 0.296338 (-0.203600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461663 / 0.215209 (0.246454) | 4.604828 / 2.077655 (2.527173) | 2.566926 / 1.504120 (1.062806) | 2.394419 / 1.541195 (0.853224) | 2.458375 / 1.468490 (0.989885) | 0.505140 / 4.584777 (-4.079637) | 3.155916 / 3.745712 (-0.589796) | 3.014474 / 5.269862 (-2.255388) | 1.900296 / 4.565676 (-2.665380) | 0.058063 / 0.424275 (-0.366212) | 0.006409 / 0.007607 (-0.001198) | 0.541165 / 0.226044 (0.315120) | 5.410700 / 2.268929 (3.141772) | 3.010239 / 55.444624 (-52.434386) | 2.668103 / 6.876477 (-4.208373) | 2.730418 / 2.142072 (0.588346) | 0.603471 / 4.805227 (-4.201756) | 0.129852 / 6.500664 (-6.370812) | 0.061507 / 0.075469 (-0.013962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.355272 / 1.841788 (-0.486516) | 18.170088 / 8.074308 (10.095780) | 15.583855 / 10.191392 (5.392463) | 0.146246 / 0.680424 (-0.534178) | 0.018093 / 0.534201 (-0.516108) | 0.331695 / 0.579283 (-0.247588) | 0.380845 / 0.434364 (-0.053519) | 0.388564 / 0.540337 (-0.151774) | 0.551465 / 1.386936 (-0.835471) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#afc3c2b034481a3502f5476186a110cf8613a248 \"CML watermark\")\n" ]
2023-09-27T07:40:18Z
2023-09-28T15:39:16Z
2023-09-28T15:30:40Z
MEMBER
null
null
null
Currently our CI usually raises 404 errors when trying to delete temporary repositories. See, e.g.: https://github.com/huggingface/datasets/actions/runs/6314980985/job/17146507884 ``` FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_multiple_files_with_max_shard_size - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fb99-4a52c561752ece3d77eb6d57;2b61cae4-613d-4a73-bbb1-2faf9e32b02d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_to_hub_custom_features_audio - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbb2-0333dd666d42f0e173c2bb68;dfdc4271-b49b-4008-8c49-f05cf7c1d53d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. FAILED tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_dict_to_hub_custom_splits - huggingface_hub.utils._errors.RepositoryNotFoundError: 404 Client Error. (Request ID: Root=1-6512fbca-167690694f39770a5b3a444e;baeaa905-0a57-4585-ac97-9aaae12dd47d) Repository Not Found for url: https://hub-ci.huggingface.co/api/repos/delete. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. ``` I think this can be caused by collisions in temporary repository IDs because we create them in multiprocessing: ```python with temporary_repo(f"{CI_HUB_USER}/test-{int(time.time() * 10e3)}") as ds_name: ``` This can also be caused when there is another issue that does not allow the creation of the repository, thus making it impossible to delete it. This PR tries to fix this issue by increasing the precision of the number on the repository ID: `10e6` instead of `10e3`. Additionally, this PR catches RepositoryNotFoundError.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6262/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6262/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6262.diff", "html_url": "https://github.com/huggingface/datasets/pull/6262", "merged_at": "2023-09-28T15:30:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/6262.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6262" }
https://api.github.com/repos/huggingface/datasets/issues/6912
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6912/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6912/comments
https://api.github.com/repos/huggingface/datasets/issues/6912/events
https://github.com/huggingface/datasets/issues/6912
2,309,365,961
I_kwDODunzps6JpiDJ
6,912
Add MedImg for streaming
{ "avatar_url": "https://avatars.githubusercontent.com/u/72926928?v=4", "events_url": "https://api.github.com/users/lhallee/events{/privacy}", "followers_url": "https://api.github.com/users/lhallee/followers", "following_url": "https://api.github.com/users/lhallee/following{/other_user}", "gists_url": "https://api.github.com/users/lhallee/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhallee", "id": 72926928, "login": "lhallee", "node_id": "MDQ6VXNlcjcyOTI2OTI4", "organizations_url": "https://api.github.com/users/lhallee/orgs", "received_events_url": "https://api.github.com/users/lhallee/received_events", "repos_url": "https://api.github.com/users/lhallee/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhallee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhallee/subscriptions", "type": "User", "url": "https://api.github.com/users/lhallee", "user_view_type": "public" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
[]
null
[ "@mariosasko, @lhoestq, @albertvillanova\r\nHello! Can anyone help? or can you guys suggest who can help with this?", "Hi ! Feel free to download the dataset and create a `Dataset` object with it.\r\n\r\nThen your'll be able to use `push_to_hub()` to upload the dataset to HF in Parquet format and make it streamable :)", "> Hi ! Feel free to download the dataset and create a `Dataset` object with it.\r\n> \r\n> Then your'll be able to use `push_to_hub()` to upload the dataset to HF in Parquet format and make it streamable :)\r\n\r\nThe dataset is several TB in total, which I do not have the resources to handle.", "Hi @lhoestq and @albertvillanova , just following up about this.", "for big datasets you can push_to_hub one part at a time (e.g. as different splits) and merge the parts (just a simple modification in the YAML part of the README)", "Sure, that makes sense. However, isn't there a size limit to what typical users can push?", "Yes there is a limit, simply let us know by email at datasets [at] huggingface.co - this way we can give you a storage grant also help making sure the dataset is all good for people to use it easily", "> Yes there is a limit, simply let us know by email at datasets [at] huggingface.co - this way we can give you a storage grant also help making sure the dataset is all good for people to use it easily\r\n\r\nGot it, that would be great." ]
2024-05-22T00:55:30Z
2024-09-05T16:53:54Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Host the MedImg dataset (similar to Imagenet but for biomedical images). ### Motivation There is a clear need for biomedical image foundation models and large scale biomedical datasets that are easily streamable. This would be an excellent tool for the biomedical community. ### Your contribution MedImg can be found [here](https://www.cuilab.cn/medimg/#).
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6912/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6912/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7134
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7134/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7134/comments
https://api.github.com/repos/huggingface/datasets/issues/7134/events
https://github.com/huggingface/datasets/issues/7134
2,499,484,041
I_kwDODunzps6U-xmJ
7,134
Attempting to return a rank 3 grayscale image from dataset.map results in extreme slowdown
{ "avatar_url": "https://avatars.githubusercontent.com/u/46371349?v=4", "events_url": "https://api.github.com/users/navidmafi/events{/privacy}", "followers_url": "https://api.github.com/users/navidmafi/followers", "following_url": "https://api.github.com/users/navidmafi/following{/other_user}", "gists_url": "https://api.github.com/users/navidmafi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/navidmafi", "id": 46371349, "login": "navidmafi", "node_id": "MDQ6VXNlcjQ2MzcxMzQ5", "organizations_url": "https://api.github.com/users/navidmafi/orgs", "received_events_url": "https://api.github.com/users/navidmafi/received_events", "repos_url": "https://api.github.com/users/navidmafi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/navidmafi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/navidmafi/subscriptions", "type": "User", "url": "https://api.github.com/users/navidmafi", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-09-01T13:55:41Z
2024-09-02T10:34:53Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Background: Digital images are often represented as a (Height, Width, Channel) tensor. This is the same for huggingface datasets that contain images. These images are loaded in Pillow containers which offer, for example, the `.convert` method. I can convert an image from a (H,W,3) shape to a grayscale (H,W) image and I have no problems with this. But when attempting to return a (H,W,1) shaped matrix from a map function, it never completes and sometimes even results in an OOM from the OS. I've used various methods to expand a (H,W) shaped array to a (H,W,1) array. But they all resulted in extremely long map operations consuming a lot of CPU and RAM. ### Steps to reproduce the bug Below is a minimal example using two methods to get the desired output. Both of which don't work ```py import tensorflow as tf import datasets import numpy as np ds = datasets.load_dataset("project-sloth/captcha-images") to_gray_pillow = lambda sample: {'image': np.expand_dims(sample['image'].convert("L"), axis=-1)} ds_gray = ds.map(to_gray_pillow) # Alternatively ds = datasets.load_dataset("project-sloth/captcha-images").with_format("tensorflow") to_gray_tf = lambda sample: {'image': tf.expand_dims(tf.image.rgb_to_grayscale(sample['image']), axis=-1)} ds_gray = ds.map(to_gray_tf) ``` ### Expected behavior I expect the map operation to complete and return a new dataset containing grayscale images in a (H,W,1) shape. ### Environment info datasets 2.21.0 python tested with both 3.11 and 3.12 host os : linux
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7134/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7134/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7018
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7018/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7018/comments
https://api.github.com/repos/huggingface/datasets/issues/7018/events
https://github.com/huggingface/datasets/issues/7018
2,383,700,286
I_kwDODunzps6OFGE-
7,018
`load_dataset` fails to load dataset saved by `save_to_disk`
{ "avatar_url": "https://avatars.githubusercontent.com/u/2307997?v=4", "events_url": "https://api.github.com/users/sliedes/events{/privacy}", "followers_url": "https://api.github.com/users/sliedes/followers", "following_url": "https://api.github.com/users/sliedes/following{/other_user}", "gists_url": "https://api.github.com/users/sliedes/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sliedes", "id": 2307997, "login": "sliedes", "node_id": "MDQ6VXNlcjIzMDc5OTc=", "organizations_url": "https://api.github.com/users/sliedes/orgs", "received_events_url": "https://api.github.com/users/sliedes/received_events", "repos_url": "https://api.github.com/users/sliedes/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sliedes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sliedes/subscriptions", "type": "User", "url": "https://api.github.com/users/sliedes", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "In my case the error was:\r\n```\r\nValueError: You are trying to load a dataset that was saved using `save_to_disk`. Please use `load_from_disk` instead.\r\n```\r\nDid you try `load_from_disk`?", "More generally, any reason there is no API consistency between save_to_disk and push_to_hub ? \r\n\r\nWould be nice to be able to save_to_disk and then upload manually to the hub and load_dataset (which works in some situations but not all)...", "I have the exact same problem !", "`load_from_disk` managed to load the dataset, but the bug with `load_dataset` needs to be fixed. " ]
2024-07-01T12:19:19Z
2024-12-03T11:26:17Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug This code fails to load the dataset it just saved: ```python from datasets import load_dataset from transformers import AutoTokenizer MODEL = "google-bert/bert-base-cased" tokenizer = AutoTokenizer.from_pretrained(MODEL) dataset = load_dataset("yelp_review_full") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) tokenized_datasets.save_to_disk("dataset") tokenized_datasets = load_dataset("dataset/") # raises ``` It raises `ValueError: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('test'): ('json', {})}`. I believe this bug is caused by the [logic that tries to infer dataset format](https://github.com/huggingface/datasets/blob/9af8dd3de7626183a9a9ec8973cebc672d690400/src/datasets/load.py#L556). It counts the most common file extension. However, a small dataset can fit in a single `.arrow` file and have two JSON metadata files, causing the format to be inferred as JSON: ```shell $ ls -l dataset/test -rw-r--r-- 1 sliedes sliedes 191498784 Jul 1 13:55 data-00000-of-00001.arrow -rw-r--r-- 1 sliedes sliedes 1730 Jul 1 13:55 dataset_info.json -rw-r--r-- 1 sliedes sliedes 249 Jul 1 13:55 state.json ``` ### Steps to reproduce the bug Execute the code above. ### Expected behavior The dataset is loaded successfully. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.9.3-arch1-1-x86_64-with-glibc2.39 - Python version: 3.12.4 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
null
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7018/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7018/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4689
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4689/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4689/comments
https://api.github.com/repos/huggingface/datasets/issues/4689/events
https://github.com/huggingface/datasets/pull/4689
1,306,230,203
PR_kwDODunzps47eyw5
4,689
Test extractors for all compression formats
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-07-15T16:29:55Z
2022-07-15T17:47:02Z
2022-07-15T17:35:24Z
MEMBER
null
null
null
This PR: - Adds all compression formats to `test_extractor` - Tests each base extractor for all compression formats Note that all compression formats are tested except "rar".
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4689/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4689/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4689.diff", "html_url": "https://github.com/huggingface/datasets/pull/4689", "merged_at": "2022-07-15T17:35:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/4689.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4689" }
https://api.github.com/repos/huggingface/datasets/issues/7256
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7256/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7256/comments
https://api.github.com/repos/huggingface/datasets/issues/7256/events
https://github.com/huggingface/datasets/pull/7256
2,618,580,188
PR_kwDODunzps6AG_qk
7,256
Retry all requests timeouts
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7256). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-10-28T14:23:16Z
2024-10-28T14:56:28Z
2024-10-28T14:56:26Z
MEMBER
null
null
null
as reported in https://github.com/huggingface/datasets/issues/6843
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7256/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7256/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7256.diff", "html_url": "https://github.com/huggingface/datasets/pull/7256", "merged_at": "2024-10-28T14:56:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/7256.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7256" }
https://api.github.com/repos/huggingface/datasets/issues/7150
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7150/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7150/comments
https://api.github.com/repos/huggingface/datasets/issues/7150/events
https://github.com/huggingface/datasets/issues/7150
2,527,571,175
I_kwDODunzps6Wp6zn
7,150
WebDataset loader splits keys differently than WebDataset library
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2024-09-16T06:02:47Z
2024-09-16T15:26:35Z
2024-09-16T15:26:35Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
As reported by @ragavsachdeva (see discussion here: https://github.com/huggingface/datasets/pull/7144#issuecomment-2348307792), our webdataset loader is not aligned with the `webdataset` library when splitting keys from filenames. For example, we get a different key splitting for filename `/some/path/22.0/1.1.png`: - datasets library: `/some/path/22` and `0/1.1.png` - webdataset library: `/some/path/22.0/1`, `1.png` ```python import webdataset as wds wds.tariterators.base_plus_ext("/some/path/22.0/1.1.png") # ('/some/path/22.0/1', '1.png') ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7150/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7150/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7314
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7314/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7314/comments
https://api.github.com/repos/huggingface/datasets/issues/7314/events
https://github.com/huggingface/datasets/pull/7314
2,727,502,630
PR_kwDODunzps6EkCi5
7,314
Resolved for empty datafiles
{ "avatar_url": "https://avatars.githubusercontent.com/u/20582290?v=4", "events_url": "https://api.github.com/users/sahillihas/events{/privacy}", "followers_url": "https://api.github.com/users/sahillihas/followers", "following_url": "https://api.github.com/users/sahillihas/following{/other_user}", "gists_url": "https://api.github.com/users/sahillihas/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sahillihas", "id": 20582290, "login": "sahillihas", "node_id": "MDQ6VXNlcjIwNTgyMjkw", "organizations_url": "https://api.github.com/users/sahillihas/orgs", "received_events_url": "https://api.github.com/users/sahillihas/received_events", "repos_url": "https://api.github.com/users/sahillihas/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sahillihas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sahillihas/subscriptions", "type": "User", "url": "https://api.github.com/users/sahillihas", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Closes #6152 ", "@mariosasko I hope this resolves #6152 " ]
2024-12-09T15:47:22Z
2024-12-27T18:20:21Z
null
NONE
null
null
null
Resolved for Issue#6152
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7314/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7314/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7314.diff", "html_url": "https://github.com/huggingface/datasets/pull/7314", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7314.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7314" }
https://api.github.com/repos/huggingface/datasets/issues/7378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7378/comments
https://api.github.com/repos/huggingface/datasets/issues/7378/events
https://github.com/huggingface/datasets/issues/7378
2,802,957,388
I_kwDODunzps6nEbxM
7,378
Allow pushing config version to hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/129072?v=4", "events_url": "https://api.github.com/users/momeara/events{/privacy}", "followers_url": "https://api.github.com/users/momeara/followers", "following_url": "https://api.github.com/users/momeara/following{/other_user}", "gists_url": "https://api.github.com/users/momeara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/momeara", "id": 129072, "login": "momeara", "node_id": "MDQ6VXNlcjEyOTA3Mg==", "organizations_url": "https://api.github.com/users/momeara/orgs", "received_events_url": "https://api.github.com/users/momeara/received_events", "repos_url": "https://api.github.com/users/momeara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/momeara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/momeara/subscriptions", "type": "User", "url": "https://api.github.com/users/momeara", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! This sounds reasonable to me, feel free to open a PR :)" ]
2025-01-21T22:35:07Z
2025-01-30T13:56:56Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Currently, when datasets are created, they can be versioned by passing the `version` argument to `load_dataset(...)`. For example creating `outcomes.csv` on the command line ``` echo "id,value\n1,0\n2,0\n3,1\n4,1\n" > outcomes.csv ``` and creating it ``` import datasets dataset = datasets.load_dataset( "csv", data_files ="outcomes.csv", keep_in_memory = True, version = '1.0.0') ``` The version info is stored in the `info` and can be accessed e.g. by `next(iter(dataset.values())).info.version` This dataset can be uploaded to the hub with `dataset.push_to_hub(repo_id = "maomlab/example_dataset")`. This will create a dataset on the hub with the following in the `README.md`, but it doesn't upload the version information: ``` --- dataset_info: features: - name: id dtype: int64 - name: value dtype: int64 splits: - name: train num_bytes: 64 num_examples: 4 download_size: 1332 dataset_size: 64 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` However, when I download from the hub, the version information is missing: ``` dataset_from_hub_no_version = datasets.load_dataset("maomlab/example_dataset") next(iter(dataset.values())).info.version ``` I can add the version information manually to the hub, by appending it to the end of config section: ``` ... configs: - config_name: default data_files: - split: train path: data/train-* version: 1.0.0 --- ``` And then when I download it, the version information is correct. ### Motivation ### Why adding version information for each config makes sense 1. The version information is already recorded in the dataset config info data structure and is able to parse it correctly, so it makes sense to sync it with `push_to_hub`. 2. Keeping the version info in at the config level is different from version info at the branch level. As the former relates to the version of the specific dataset the config refers to rather than the version of the dataset curation itself. ## A explanation for the current behavior: In [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 ), the `_INCLUDED_INFO_IN_YAML` variable doesn't include `"version"`. If my reading of the code is right, adding `"version"` to `_INCLUDED_INFO_IN_YAML`, would allow the version information to be uploaded to the hub. ### Your contribution Request: add `"version"` to `_INCLUDE_INFO_IN_YAML` in [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 )
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7378/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6398
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6398/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6398/comments
https://api.github.com/repos/huggingface/datasets/issues/6398/events
https://github.com/huggingface/datasets/pull/6398
1,987,786,446
PR_kwDODunzps5fJlP7
6,398
Remove redundant condition in builders
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004475 / 0.011353 (-0.006878) | 0.002840 / 0.011008 (-0.008168) | 0.061544 / 0.038508 (0.023036) | 0.031237 / 0.023109 (0.008128) | 0.243270 / 0.275898 (-0.032628) | 0.271903 / 0.323480 (-0.051577) | 0.002906 / 0.007986 (-0.005080) | 0.003118 / 0.004328 (-0.001210) | 0.047362 / 0.004250 (0.043112) | 0.047840 / 0.037052 (0.010788) | 0.244044 / 0.258489 (-0.014445) | 0.279310 / 0.293841 (-0.014531) | 0.023408 / 0.128546 (-0.105138) | 0.007110 / 0.075646 (-0.068536) | 0.207328 / 0.419271 (-0.211943) | 0.058463 / 0.043533 (0.014930) | 0.245631 / 0.255139 (-0.009508) | 0.267755 / 0.283200 (-0.015445) | 0.018147 / 0.141683 (-0.123536) | 1.086877 / 1.452155 (-0.365278) | 1.155380 / 1.492716 (-0.337337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091925 / 0.018006 (0.073919) | 0.299858 / 0.000490 (0.299368) | 0.000232 / 0.000200 (0.000032) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018416 / 0.037411 (-0.018995) | 0.062608 / 0.014526 (0.048082) | 0.073897 / 0.176557 (-0.102660) | 0.120216 / 0.737135 (-0.616919) | 0.075788 / 0.296338 (-0.220550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287823 / 0.215209 (0.072614) | 2.797546 / 2.077655 (0.719891) | 1.470878 / 1.504120 (-0.033242) | 1.347497 / 1.541195 (-0.193698) | 1.363837 / 1.468490 (-0.104653) | 0.400069 / 4.584777 (-4.184708) | 2.338870 / 3.745712 (-1.406842) | 2.564075 / 5.269862 (-2.705787) | 1.568454 / 4.565676 (-2.997222) | 0.047103 / 0.424275 (-0.377172) | 0.004783 / 0.007607 (-0.002824) | 0.345244 / 0.226044 (0.119200) | 3.407752 / 2.268929 (1.138823) | 1.826552 / 55.444624 (-53.618073) | 1.536714 / 6.876477 (-5.339763) | 1.543138 / 2.142072 (-0.598934) | 0.478996 / 4.805227 (-4.326232) | 0.099580 / 6.500664 (-6.401085) | 0.041994 / 0.075469 (-0.033475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.947106 / 1.841788 (-0.894682) | 11.391262 / 8.074308 (3.316954) | 10.531141 / 10.191392 (0.339749) | 0.141497 / 0.680424 (-0.538927) | 0.014214 / 0.534201 (-0.519987) | 0.269346 / 0.579283 (-0.309937) | 0.268129 / 0.434364 (-0.166235) | 0.309496 / 0.540337 (-0.230841) | 0.429207 / 1.386936 (-0.957729) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004770 / 0.011353 (-0.006583) | 0.002878 / 0.011008 (-0.008130) | 0.048248 / 0.038508 (0.009740) | 0.051068 / 0.023109 (0.027959) | 0.272076 / 0.275898 (-0.003822) | 0.292423 / 0.323480 (-0.031057) | 0.004016 / 0.007986 (-0.003970) | 0.002522 / 0.004328 (-0.001807) | 0.047617 / 0.004250 (0.043367) | 0.038168 / 0.037052 (0.001115) | 0.275236 / 0.258489 (0.016746) | 0.303811 / 0.293841 (0.009970) | 0.023816 / 0.128546 (-0.104730) | 0.007177 / 0.075646 (-0.068469) | 0.053453 / 0.419271 (-0.365818) | 0.032425 / 0.043533 (-0.011108) | 0.271620 / 0.255139 (0.016481) | 0.289618 / 0.283200 (0.006418) | 0.017986 / 0.141683 (-0.123697) | 1.154225 / 1.452155 (-0.297930) | 1.224244 / 1.492716 (-0.268472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090477 / 0.018006 (0.072471) | 0.299461 / 0.000490 (0.298971) | 0.000224 / 0.000200 (0.000024) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022043 / 0.037411 (-0.015369) | 0.070327 / 0.014526 (0.055801) | 0.080132 / 0.176557 (-0.096425) | 0.120007 / 0.737135 (-0.617128) | 0.083037 / 0.296338 (-0.213301) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294538 / 0.215209 (0.079329) | 2.882791 / 2.077655 (0.805136) | 1.582923 / 1.504120 (0.078803) | 1.457091 / 1.541195 (-0.084104) | 1.536149 / 1.468490 (0.067659) | 0.401539 / 4.584777 (-4.183238) | 2.440919 / 3.745712 (-1.304793) | 2.503108 / 5.269862 (-2.766753) | 1.509216 / 4.565676 (-3.056460) | 0.046267 / 0.424275 (-0.378008) | 0.004790 / 0.007607 (-0.002817) | 0.336137 / 0.226044 (0.110093) | 3.331655 / 2.268929 (1.062726) | 1.954228 / 55.444624 (-53.490396) | 1.686637 / 6.876477 (-5.189840) | 1.650278 / 2.142072 (-0.491794) | 0.473895 / 4.805227 (-4.331333) | 0.096908 / 6.500664 (-6.403756) | 0.040387 / 0.075469 (-0.035082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972999 / 1.841788 (-0.868789) | 11.978367 / 8.074308 (3.904059) | 10.861092 / 10.191392 (0.669699) | 0.129054 / 0.680424 (-0.551369) | 0.015988 / 0.534201 (-0.518213) | 0.268827 / 0.579283 (-0.310456) | 0.271714 / 0.434364 (-0.162649) | 0.304045 / 0.540337 (-0.236293) | 0.413158 / 1.386936 (-0.973778) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e4348a233a75907c305b3159ac9cb183cf30ea5 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005286 / 0.011353 (-0.006067) | 0.002860 / 0.011008 (-0.008149) | 0.062449 / 0.038508 (0.023941) | 0.035346 / 0.023109 (0.012237) | 0.241685 / 0.275898 (-0.034213) | 0.268116 / 0.323480 (-0.055364) | 0.003050 / 0.007986 (-0.004935) | 0.003134 / 0.004328 (-0.001194) | 0.048818 / 0.004250 (0.044567) | 0.049187 / 0.037052 (0.012135) | 0.247395 / 0.258489 (-0.011094) | 0.280301 / 0.293841 (-0.013540) | 0.023801 / 0.128546 (-0.104745) | 0.007653 / 0.075646 (-0.067994) | 0.204185 / 0.419271 (-0.215087) | 0.071251 / 0.043533 (0.027718) | 0.244409 / 0.255139 (-0.010730) | 0.262363 / 0.283200 (-0.020836) | 0.018631 / 0.141683 (-0.123052) | 1.110152 / 1.452155 (-0.342003) | 1.165093 / 1.492716 (-0.327624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099536 / 0.018006 (0.081530) | 0.309598 / 0.000490 (0.309109) | 0.000207 / 0.000200 (0.000007) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019213 / 0.037411 (-0.018198) | 0.069296 / 0.014526 (0.054770) | 0.074752 / 0.176557 (-0.101804) | 0.121314 / 0.737135 (-0.615822) | 0.081274 / 0.296338 (-0.215065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281345 / 0.215209 (0.066136) | 2.755435 / 2.077655 (0.677780) | 1.453358 / 1.504120 (-0.050762) | 1.328222 / 1.541195 (-0.212973) | 1.392281 / 1.468490 (-0.076209) | 0.410539 / 4.584777 (-4.174238) | 2.452072 / 3.745712 (-1.293640) | 2.777757 / 5.269862 (-2.492105) | 1.656719 / 4.565676 (-2.908958) | 0.046844 / 0.424275 (-0.377431) | 0.004785 / 0.007607 (-0.002822) | 0.336567 / 0.226044 (0.110522) | 3.317564 / 2.268929 (1.048635) | 1.830737 / 55.444624 (-53.613888) | 1.528464 / 6.876477 (-5.348013) | 1.620527 / 2.142072 (-0.521545) | 0.480662 / 4.805227 (-4.324565) | 0.100819 / 6.500664 (-6.399845) | 0.042501 / 0.075469 (-0.032968) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962593 / 1.841788 (-0.879195) | 12.508048 / 8.074308 (4.433740) | 11.117398 / 10.191392 (0.926006) | 0.131265 / 0.680424 (-0.549159) | 0.014469 / 0.534201 (-0.519732) | 0.271627 / 0.579283 (-0.307656) | 0.274966 / 0.434364 (-0.159398) | 0.313260 / 0.540337 (-0.227077) | 0.444741 / 1.386936 (-0.942195) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004974 / 0.011353 (-0.006379) | 0.003383 / 0.011008 (-0.007626) | 0.048792 / 0.038508 (0.010284) | 0.052821 / 0.023109 (0.029712) | 0.267123 / 0.275898 (-0.008775) | 0.293604 / 0.323480 (-0.029876) | 0.003968 / 0.007986 (-0.004018) | 0.002594 / 0.004328 (-0.001735) | 0.047690 / 0.004250 (0.043439) | 0.040236 / 0.037052 (0.003183) | 0.267805 / 0.258489 (0.009315) | 0.310543 / 0.293841 (0.016702) | 0.025707 / 0.128546 (-0.102839) | 0.008012 / 0.075646 (-0.067634) | 0.054460 / 0.419271 (-0.364812) | 0.033545 / 0.043533 (-0.009988) | 0.270166 / 0.255139 (0.015027) | 0.285965 / 0.283200 (0.002765) | 0.019391 / 0.141683 (-0.122292) | 1.144991 / 1.452155 (-0.307164) | 1.198491 / 1.492716 (-0.294225) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094757 / 0.018006 (0.076751) | 0.306712 / 0.000490 (0.306222) | 0.000218 / 0.000200 (0.000018) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020995 / 0.037411 (-0.016417) | 0.070293 / 0.014526 (0.055767) | 0.081441 / 0.176557 (-0.095116) | 0.119538 / 0.737135 (-0.617597) | 0.081454 / 0.296338 (-0.214885) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293451 / 0.215209 (0.078242) | 2.880378 / 2.077655 (0.802723) | 1.572547 / 1.504120 (0.068427) | 1.439172 / 1.541195 (-0.102023) | 1.506343 / 1.468490 (0.037853) | 0.402764 / 4.584777 (-4.182013) | 2.501341 / 3.745712 (-1.244371) | 2.538494 / 5.269862 (-2.731367) | 1.524306 / 4.565676 (-3.041371) | 0.046401 / 0.424275 (-0.377874) | 0.004781 / 0.007607 (-0.002826) | 0.349448 / 0.226044 (0.123404) | 3.416181 / 2.268929 (1.147252) | 1.964204 / 55.444624 (-53.480420) | 1.648564 / 6.876477 (-5.227912) | 1.675977 / 2.142072 (-0.466095) | 0.475717 / 4.805227 (-4.329511) | 0.098416 / 6.500664 (-6.402248) | 0.041212 / 0.075469 (-0.034257) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975928 / 1.841788 (-0.865860) | 12.066648 / 8.074308 (3.992340) | 10.943181 / 10.191392 (0.751789) | 0.149687 / 0.680424 (-0.530736) | 0.015107 / 0.534201 (-0.519094) | 0.268950 / 0.579283 (-0.310333) | 0.280419 / 0.434364 (-0.153945) | 0.305263 / 0.540337 (-0.235074) | 0.408486 / 1.386936 (-0.978450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#344086a7a1707ef20b57399f813ef64ce679e956 \"CML watermark\")\n" ]
2023-11-10T14:56:43Z
2023-11-14T10:49:15Z
2023-11-14T10:43:00Z
MEMBER
null
null
null
Minor refactoring to remove redundant condition.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6398/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6398/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6398.diff", "html_url": "https://github.com/huggingface/datasets/pull/6398", "merged_at": "2023-11-14T10:43:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/6398.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6398" }
https://api.github.com/repos/huggingface/datasets/issues/7182
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7182/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7182/comments
https://api.github.com/repos/huggingface/datasets/issues/7182/events
https://github.com/huggingface/datasets/pull/7182
2,556,333,671
PR_kwDODunzps59GdLS
7,182
Support features in metadata configs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7182). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The CI issue is unrelated:\r\n- #7183" ]
2024-09-30T11:14:53Z
2024-10-09T16:03:57Z
2024-10-09T16:03:54Z
MEMBER
null
null
null
Support features in metadata configs, like: ``` configs: - config_name: default features: - name: id dtype: int64 - name: name dtype: string - name: score dtype: float64 ``` This will allow to avoid inference of data types. Currently, we allow passing this information in the `dataset_info` (instead of `configs`) field, but this is not intuitive and it is not properly documented. TODO: - [ ] Document usage
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7182/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7182/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7182.diff", "html_url": "https://github.com/huggingface/datasets/pull/7182", "merged_at": "2024-10-09T16:03:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/7182.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7182" }
https://api.github.com/repos/huggingface/datasets/issues/7213
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7213/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7213/comments
https://api.github.com/repos/huggingface/datasets/issues/7213/events
https://github.com/huggingface/datasets/issues/7213
2,578,675,565
I_kwDODunzps6Zs3dt
7,213
Add with_rank to Dataset.from_generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/17828087?v=4", "events_url": "https://api.github.com/users/muthissar/events{/privacy}", "followers_url": "https://api.github.com/users/muthissar/followers", "following_url": "https://api.github.com/users/muthissar/following{/other_user}", "gists_url": "https://api.github.com/users/muthissar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/muthissar", "id": 17828087, "login": "muthissar", "node_id": "MDQ6VXNlcjE3ODI4MDg3", "organizations_url": "https://api.github.com/users/muthissar/orgs", "received_events_url": "https://api.github.com/users/muthissar/received_events", "repos_url": "https://api.github.com/users/muthissar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/muthissar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/muthissar/subscriptions", "type": "User", "url": "https://api.github.com/users/muthissar", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-10-10T12:15:29Z
2024-10-10T12:17:11Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add `with_rank` to `Dataset.from_generator` similar to `Dataset.map` and `Dataset.filter`. ### Motivation As for `Dataset.map` and `Dataset.filter`, this is useful when creating cache files using multi-GPU, where the rank can be used to select GPU IDs. For now, rank can be added in the `gen_kwars` argument; however, this, in turn, includes the rank when computing the fingerprint. ### Your contribution Added #7199 which passes rank based on the `job_id` set by `num_proc`.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7213/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7213/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6093
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6093/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6093/comments
https://api.github.com/repos/huggingface/datasets/issues/6093/events
https://github.com/huggingface/datasets/pull/6093
1,826,210,490
PR_kwDODunzps5WpLfh
6,093
Deprecate `download_custom`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007498 / 0.011353 (-0.003855) | 0.004158 / 0.011008 (-0.006850) | 0.087568 / 0.038508 (0.049060) | 0.083265 / 0.023109 (0.060156) | 0.378505 / 0.275898 (0.102607) | 0.399025 / 0.323480 (0.075545) | 0.006173 / 0.007986 (-0.001813) | 0.003743 / 0.004328 (-0.000586) | 0.071958 / 0.004250 (0.067707) | 0.059323 / 0.037052 (0.022271) | 0.377084 / 0.258489 (0.118595) | 0.408358 / 0.293841 (0.114517) | 0.035191 / 0.128546 (-0.093356) | 0.009408 / 0.075646 (-0.066238) | 0.312587 / 0.419271 (-0.106685) | 0.058073 / 0.043533 (0.014540) | 0.381977 / 0.255139 (0.126838) | 0.395611 / 0.283200 (0.112411) | 0.024191 / 0.141683 (-0.117491) | 1.572735 / 1.452155 (0.120581) | 1.687186 / 1.492716 (0.194470) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208886 / 0.018006 (0.190879) | 0.474625 / 0.000490 (0.474135) | 0.006261 / 0.000200 (0.006061) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031401 / 0.037411 (-0.006011) | 0.086433 / 0.014526 (0.071907) | 0.108405 / 0.176557 (-0.068152) | 0.174564 / 0.737135 (-0.562571) | 0.099932 / 0.296338 (-0.196407) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407059 / 0.215209 (0.191850) | 4.102056 / 2.077655 (2.024401) | 1.975397 / 1.504120 (0.471277) | 1.807117 / 1.541195 (0.265922) | 1.908667 / 1.468490 (0.440177) | 0.525880 / 4.584777 (-4.058897) | 3.899639 / 3.745712 (0.153927) | 4.358664 / 5.269862 (-0.911198) | 2.586185 / 4.565676 (-1.979492) | 0.061967 / 0.424275 (-0.362308) | 0.007656 / 0.007607 (0.000049) | 0.504851 / 0.226044 (0.278807) | 5.004429 / 2.268929 (2.735500) | 2.515540 / 55.444624 (-52.929084) | 2.183142 / 6.876477 (-4.693334) | 2.369835 / 2.142072 (0.227763) | 0.623527 / 4.805227 (-4.181700) | 0.145105 / 6.500664 (-6.355559) | 0.063924 / 0.075469 (-0.011546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.472661 / 1.841788 (-0.369126) | 21.781655 / 8.074308 (13.707347) | 15.628820 / 10.191392 (5.437428) | 0.182342 / 0.680424 (-0.498082) | 0.021139 / 0.534201 (-0.513062) | 0.438610 / 0.579283 (-0.140673) | 0.451343 / 0.434364 (0.016979) | 0.563320 / 0.540337 (0.022983) | 0.740976 / 1.386936 (-0.645960) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007492 / 0.011353 (-0.003861) | 0.004429 / 0.011008 (-0.006579) | 0.068517 / 0.038508 (0.030008) | 0.078533 / 0.023109 (0.055424) | 0.383530 / 0.275898 (0.107632) | 0.435061 / 0.323480 (0.111581) | 0.005955 / 0.007986 (-0.002030) | 0.003645 / 0.004328 (-0.000683) | 0.068792 / 0.004250 (0.064541) | 0.062452 / 0.037052 (0.025399) | 0.408768 / 0.258489 (0.150279) | 0.438538 / 0.293841 (0.144697) | 0.032038 / 0.128546 (-0.096508) | 0.009196 / 0.075646 (-0.066450) | 0.074495 / 0.419271 (-0.344776) | 0.051322 / 0.043533 (0.007789) | 0.394458 / 0.255139 (0.139319) | 0.424763 / 0.283200 (0.141564) | 0.024890 / 0.141683 (-0.116793) | 1.568322 / 1.452155 (0.116167) | 1.703903 / 1.492716 (0.211187) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249630 / 0.018006 (0.231624) | 0.471412 / 0.000490 (0.470923) | 0.000435 / 0.000200 (0.000235) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033054 / 0.037411 (-0.004358) | 0.100150 / 0.014526 (0.085624) | 0.101704 / 0.176557 (-0.074853) | 0.164031 / 0.737135 (-0.573104) | 0.112497 / 0.296338 (-0.183841) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.487150 / 0.215209 (0.271941) | 4.662335 / 2.077655 (2.584681) | 2.477285 / 1.504120 (0.973165) | 2.294033 / 1.541195 (0.752838) | 2.380143 / 1.468490 (0.911653) | 0.519182 / 4.584777 (-4.065595) | 3.983589 / 3.745712 (0.237877) | 3.669895 / 5.269862 (-1.599967) | 2.267147 / 4.565676 (-2.298529) | 0.063300 / 0.424275 (-0.360975) | 0.008839 / 0.007607 (0.001232) | 0.566766 / 0.226044 (0.340721) | 5.533475 / 2.268929 (3.264546) | 3.033412 / 55.444624 (-52.411212) | 2.701793 / 6.876477 (-4.174684) | 2.899444 / 2.142072 (0.757372) | 0.614236 / 4.805227 (-4.190991) | 0.139533 / 6.500664 (-6.361131) | 0.067537 / 0.075469 (-0.007932) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.505572 / 1.841788 (-0.336216) | 22.859062 / 8.074308 (14.784754) | 15.044777 / 10.191392 (4.853385) | 0.169153 / 0.680424 (-0.511271) | 0.021027 / 0.534201 (-0.513174) | 0.447979 / 0.579283 (-0.131304) | 0.460676 / 0.434364 (0.026312) | 0.506327 / 0.540337 (-0.034010) | 0.737880 / 1.386936 (-0.649057) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#db7180eb7e3ebf52b9d1f2c6629db6d92d8a29ba \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003692 / 0.011008 (-0.007316) | 0.080606 / 0.038508 (0.042098) | 0.062014 / 0.023109 (0.038905) | 0.391886 / 0.275898 (0.115988) | 0.423978 / 0.323480 (0.100498) | 0.004968 / 0.007986 (-0.003017) | 0.002911 / 0.004328 (-0.001417) | 0.062867 / 0.004250 (0.058617) | 0.049493 / 0.037052 (0.012441) | 0.395656 / 0.258489 (0.137167) | 0.432406 / 0.293841 (0.138565) | 0.027242 / 0.128546 (-0.101304) | 0.007938 / 0.075646 (-0.067709) | 0.261703 / 0.419271 (-0.157569) | 0.045922 / 0.043533 (0.002389) | 0.391544 / 0.255139 (0.136405) | 0.417902 / 0.283200 (0.134703) | 0.021339 / 0.141683 (-0.120344) | 1.508391 / 1.452155 (0.056236) | 1.518970 / 1.492716 (0.026254) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.181159 / 0.018006 (0.163153) | 0.431402 / 0.000490 (0.430912) | 0.003849 / 0.000200 (0.003649) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024498 / 0.037411 (-0.012914) | 0.072758 / 0.014526 (0.058233) | 0.084910 / 0.176557 (-0.091646) | 0.148314 / 0.737135 (-0.588821) | 0.085212 / 0.296338 (-0.211126) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386693 / 0.215209 (0.171484) | 3.852652 / 2.077655 (1.774997) | 1.891758 / 1.504120 (0.387638) | 1.718793 / 1.541195 (0.177598) | 1.747595 / 1.468490 (0.279104) | 0.498593 / 4.584777 (-4.086184) | 3.057907 / 3.745712 (-0.687805) | 4.728449 / 5.269862 (-0.541413) | 2.966368 / 4.565676 (-1.599308) | 0.057538 / 0.424275 (-0.366737) | 0.006415 / 0.007607 (-0.001192) | 0.461652 / 0.226044 (0.235608) | 4.625944 / 2.268929 (2.357015) | 2.306938 / 55.444624 (-53.137686) | 1.974670 / 6.876477 (-4.901806) | 2.146327 / 2.142072 (0.004254) | 0.585033 / 4.805227 (-4.220195) | 0.125936 / 6.500664 (-6.374728) | 0.062365 / 0.075469 (-0.013104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263415 / 1.841788 (-0.578373) | 18.380651 / 8.074308 (10.306343) | 13.853410 / 10.191392 (3.662018) | 0.144674 / 0.680424 (-0.535749) | 0.016833 / 0.534201 (-0.517368) | 0.330812 / 0.579283 (-0.248471) | 0.357553 / 0.434364 (-0.076810) | 0.383529 / 0.540337 (-0.156809) | 0.558923 / 1.386936 (-0.828013) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006074 / 0.011353 (-0.005278) | 0.003655 / 0.011008 (-0.007353) | 0.062981 / 0.038508 (0.024473) | 0.061457 / 0.023109 (0.038348) | 0.366471 / 0.275898 (0.090573) | 0.408463 / 0.323480 (0.084983) | 0.004854 / 0.007986 (-0.003132) | 0.002916 / 0.004328 (-0.001412) | 0.062745 / 0.004250 (0.058494) | 0.051136 / 0.037052 (0.014084) | 0.380313 / 0.258489 (0.121824) | 0.416945 / 0.293841 (0.123104) | 0.027228 / 0.128546 (-0.101318) | 0.008031 / 0.075646 (-0.067615) | 0.067941 / 0.419271 (-0.351331) | 0.042886 / 0.043533 (-0.000647) | 0.370112 / 0.255139 (0.114973) | 0.397111 / 0.283200 (0.113911) | 0.023063 / 0.141683 (-0.118620) | 1.476955 / 1.452155 (0.024800) | 1.534783 / 1.492716 (0.042066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231462 / 0.018006 (0.213456) | 0.439559 / 0.000490 (0.439069) | 0.000364 / 0.000200 (0.000164) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026925 / 0.037411 (-0.010486) | 0.079623 / 0.014526 (0.065097) | 0.088694 / 0.176557 (-0.087862) | 0.143163 / 0.737135 (-0.593972) | 0.089900 / 0.296338 (-0.206438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.451429 / 0.215209 (0.236220) | 4.510723 / 2.077655 (2.433069) | 2.491853 / 1.504120 (0.987733) | 2.334670 / 1.541195 (0.793475) | 2.395519 / 1.468490 (0.927029) | 0.501369 / 4.584777 (-4.083408) | 3.014019 / 3.745712 (-0.731693) | 2.809199 / 5.269862 (-2.460662) | 1.842195 / 4.565676 (-2.723481) | 0.057675 / 0.424275 (-0.366600) | 0.006742 / 0.007607 (-0.000865) | 0.524402 / 0.226044 (0.298358) | 5.245296 / 2.268929 (2.976367) | 2.957990 / 55.444624 (-52.486634) | 2.649807 / 6.876477 (-4.226670) | 2.755909 / 2.142072 (0.613836) | 0.589610 / 4.805227 (-4.215617) | 0.125708 / 6.500664 (-6.374956) | 0.062237 / 0.075469 (-0.013232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362758 / 1.841788 (-0.479030) | 18.343694 / 8.074308 (10.269386) | 13.621521 / 10.191392 (3.430129) | 0.128866 / 0.680424 (-0.551558) | 0.016608 / 0.534201 (-0.517593) | 0.333071 / 0.579283 (-0.246212) | 0.341917 / 0.434364 (-0.092447) | 0.381075 / 0.540337 (-0.159263) | 0.512485 / 1.386936 (-0.874451) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ab3f0165d4a2a8ab1aee1ebc4628893e17e27387 \"CML watermark\")\n", "I forgot to mention this in the initial comment, but only one public dataset (excluding gated) uses this method - `pg19`, which I just fixed.\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007838 / 0.011353 (-0.003515) | 0.004791 / 0.011008 (-0.006217) | 0.102596 / 0.038508 (0.064088) | 0.087678 / 0.023109 (0.064569) | 0.373858 / 0.275898 (0.097960) | 0.416643 / 0.323480 (0.093163) | 0.006147 / 0.007986 (-0.001839) | 0.003837 / 0.004328 (-0.000491) | 0.076706 / 0.004250 (0.072456) | 0.063449 / 0.037052 (0.026396) | 0.378392 / 0.258489 (0.119903) | 0.431768 / 0.293841 (0.137927) | 0.036648 / 0.128546 (-0.091898) | 0.010042 / 0.075646 (-0.065604) | 0.350277 / 0.419271 (-0.068995) | 0.062892 / 0.043533 (0.019359) | 0.376151 / 0.255139 (0.121012) | 0.420929 / 0.283200 (0.137729) | 0.027816 / 0.141683 (-0.113867) | 1.791607 / 1.452155 (0.339452) | 1.903045 / 1.492716 (0.410328) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224688 / 0.018006 (0.206682) | 0.491941 / 0.000490 (0.491451) | 0.004482 / 0.000200 (0.004282) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033495 / 0.037411 (-0.003917) | 0.099855 / 0.014526 (0.085329) | 0.114593 / 0.176557 (-0.061964) | 0.190947 / 0.737135 (-0.546189) | 0.116202 / 0.296338 (-0.180136) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488581 / 0.215209 (0.273372) | 4.869531 / 2.077655 (2.791876) | 2.527920 / 1.504120 (1.023800) | 2.340021 / 1.541195 (0.798826) | 2.432661 / 1.468490 (0.964171) | 0.569646 / 4.584777 (-4.015131) | 4.392036 / 3.745712 (0.646324) | 4.987253 / 5.269862 (-0.282608) | 2.866604 / 4.565676 (-1.699073) | 0.067393 / 0.424275 (-0.356882) | 0.008759 / 0.007607 (0.001152) | 0.584327 / 0.226044 (0.358283) | 5.853000 / 2.268929 (3.584072) | 3.206721 / 55.444624 (-52.237904) | 2.730867 / 6.876477 (-4.145610) | 2.944814 / 2.142072 (0.802742) | 0.703336 / 4.805227 (-4.101891) | 0.173985 / 6.500664 (-6.326679) | 0.075333 / 0.075469 (-0.000137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.519755 / 1.841788 (-0.322033) | 22.918038 / 8.074308 (14.843730) | 17.211160 / 10.191392 (7.019768) | 0.196941 / 0.680424 (-0.483483) | 0.021833 / 0.534201 (-0.512368) | 0.476835 / 0.579283 (-0.102448) | 0.464513 / 0.434364 (0.030149) | 0.559180 / 0.540337 (0.018843) | 0.748232 / 1.386936 (-0.638704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008461 / 0.011353 (-0.002892) | 0.004799 / 0.011008 (-0.006209) | 0.077466 / 0.038508 (0.038958) | 0.103562 / 0.023109 (0.080453) | 0.453661 / 0.275898 (0.177763) | 0.531126 / 0.323480 (0.207647) | 0.006618 / 0.007986 (-0.001367) | 0.004048 / 0.004328 (-0.000280) | 0.075446 / 0.004250 (0.071196) | 0.072815 / 0.037052 (0.035762) | 0.497145 / 0.258489 (0.238656) | 0.533828 / 0.293841 (0.239987) | 0.037657 / 0.128546 (-0.090890) | 0.010139 / 0.075646 (-0.065507) | 0.083759 / 0.419271 (-0.335512) | 0.061401 / 0.043533 (0.017868) | 0.441785 / 0.255139 (0.186646) | 0.491678 / 0.283200 (0.208479) | 0.033100 / 0.141683 (-0.108583) | 1.753612 / 1.452155 (0.301458) | 1.838956 / 1.492716 (0.346240) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.395023 / 0.018006 (0.377017) | 0.509362 / 0.000490 (0.508872) | 0.060742 / 0.000200 (0.060542) | 0.000545 / 0.000054 (0.000491) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039327 / 0.037411 (0.001916) | 0.117345 / 0.014526 (0.102819) | 0.124540 / 0.176557 (-0.052017) | 0.200743 / 0.737135 (-0.536392) | 0.126750 / 0.296338 (-0.169589) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488597 / 0.215209 (0.273388) | 4.875534 / 2.077655 (2.797880) | 2.714364 / 1.504120 (1.210244) | 2.603707 / 1.541195 (1.062513) | 2.733547 / 1.468490 (1.265057) | 0.575183 / 4.584777 (-4.009594) | 4.126096 / 3.745712 (0.380384) | 3.853803 / 5.269862 (-1.416058) | 2.395160 / 4.565676 (-2.170516) | 0.067391 / 0.424275 (-0.356884) | 0.009108 / 0.007607 (0.001501) | 0.585865 / 0.226044 (0.359820) | 5.864878 / 2.268929 (3.595949) | 3.153369 / 55.444624 (-52.291256) | 2.759064 / 6.876477 (-4.117413) | 3.032489 / 2.142072 (0.890416) | 0.702615 / 4.805227 (-4.102613) | 0.160034 / 6.500664 (-6.340630) | 0.077294 / 0.075469 (0.001825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.595069 / 1.841788 (-0.246719) | 23.231191 / 8.074308 (15.156883) | 16.365137 / 10.191392 (6.173745) | 0.188360 / 0.680424 (-0.492063) | 0.021704 / 0.534201 (-0.512497) | 0.469996 / 0.579283 (-0.109287) | 0.463255 / 0.434364 (0.028891) | 0.560506 / 0.540337 (0.020169) | 0.751006 / 1.386936 (-0.635930) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#50d9a70c666ff46ff9974c47cedc77d9f88d6471 \"CML watermark\")\n", "@mariosasko How would you stream a split zip file with just [download_and_extract or download](https://github.com/huggingface/datasets/blob/main/src/datasets/download/download_manager.py#L353)? With download_custom, it is possible to combine a split zip file. Perhaps add an option in [download](https://huggingface.co/docs/datasets/v2.2.1/en/package_reference/builder_classes#datasets.DownloadManager.download) to combine split zips. This issue may apply to other multipart file-types.\r\n\r\nEdit - \r\nIn case asked why I use split zips, I haven't been able to upload zips larger than 50 GB to HuggingFace.\r\n\r\nEdit2 -\r\nIssue is [tackled](https://discuss.huggingface.co/t/download-custom-method-of-streamingdownloadmanager-not-implemented/28298/8) for split zips. " ]
2023-07-28T10:49:06Z
2023-08-21T17:51:34Z
2023-07-28T11:30:02Z
COLLABORATOR
null
null
null
Deprecate `DownloadManager.download_custom`. Users should use `fsspec` URLs (cacheable) or make direct requests with `fsspec`/`requests` (not cacheable) instead. We should deprecate this method as it's not compatible with streaming, and implementing the streaming version of it is hard/impossible. There have been requests to implement the streaming version of this method on the forum, but the reason for this seems to be a tip in the docs that "promotes" this method (this PR removes it).
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6093/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6093/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6093.diff", "html_url": "https://github.com/huggingface/datasets/pull/6093", "merged_at": "2023-07-28T11:30:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/6093.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6093" }
https://api.github.com/repos/huggingface/datasets/issues/7316
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7316/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7316/comments
https://api.github.com/repos/huggingface/datasets/issues/7316/events
https://github.com/huggingface/datasets/pull/7316
2,730,196,085
PR_kwDODunzps6Etc0U
7,316
More docs to from_dict to mention that the result lives in RAM
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7316). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-12-10T13:56:01Z
2024-12-10T13:58:32Z
2024-12-10T13:57:02Z
MEMBER
null
null
null
following discussions at https://discuss.huggingface.co/t/how-to-load-this-simple-audio-data-set-and-use-dataset-map-without-memory-issues/17722/14
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7316/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7316/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7316.diff", "html_url": "https://github.com/huggingface/datasets/pull/7316", "merged_at": "2024-12-10T13:57:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/7316.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7316" }
https://api.github.com/repos/huggingface/datasets/issues/5950
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5950/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5950/comments
https://api.github.com/repos/huggingface/datasets/issues/5950/events
https://github.com/huggingface/datasets/issues/5950
1,755,197,946
I_kwDODunzps5onjH6
5,950
Support for data with instance-wise dictionary as features
{ "avatar_url": "https://avatars.githubusercontent.com/u/33274336?v=4", "events_url": "https://api.github.com/users/richardwth/events{/privacy}", "followers_url": "https://api.github.com/users/richardwth/followers", "following_url": "https://api.github.com/users/richardwth/following{/other_user}", "gists_url": "https://api.github.com/users/richardwth/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/richardwth", "id": 33274336, "login": "richardwth", "node_id": "MDQ6VXNlcjMzMjc0MzM2", "organizations_url": "https://api.github.com/users/richardwth/orgs", "received_events_url": "https://api.github.com/users/richardwth/received_events", "repos_url": "https://api.github.com/users/richardwth/repos", "site_admin": false, "starred_url": "https://api.github.com/users/richardwth/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/richardwth/subscriptions", "type": "User", "url": "https://api.github.com/users/richardwth", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! We use the Arrow columnar format under the hood, which doesn't support such dictionaries: each field must have a fixed type and exist in each sample.\r\n\r\nInstead you can restructure your data like\r\n```\r\n{\r\n \"index\": 0,\r\n \"keys\": [\"2 * x + y >= 3\"],\r\n \"values\": [[\"2 * x + y >= 3\", \"4 * x + 2 * y >= 6\"]],\r\n }\r\n},\r\n...\r\n{\r\n \"index\": 9999,\r\n \"keys\": [\"x >= 6\"],\r\n \"values\": [[\"x >= 6\", \"x >= 0\", \"x >= -1\"]],\r\n},\r\n...\r\n```", "Maybe there could be some type of automated conversion from dicts to tuples. I am also trying to wrangle a json-based dataset into `datasets` and it's awful because of this issue.", "Alternatively we can maybe support the [Json extension type](https://arrow.apache.org/docs/python/generated/pyarrow.JsonType.html#pyarrow.JsonType) in `pyarrow` ?\n\nbtw `datasets` is open to contributions on this subject if you'd like to take a look", "Hmm, I'll think about this a bit.\n\nhttps://arrow.apache.org/docs/python/json.html\n\n> Nested JSON objects convert to a struct type, and inference proceeds recursively on the JSON objects’ values.\n\nhttps://arrow.apache.org/docs/dev/python/generated/pyarrow.JsonType.html\n\nHmm... AFAICT from reading the docs, the `JsonType` seems like a string that is annotated as JSON. So when you read it, it's literally just the encoded JSON. So that's not ideal.\n\nI guess there are conceptually two components to using this:\n1. Modifying schema inference to use JsonType when \"appropriate\". More on that below.\n2. Handling JsonType when reading. I guess we would want to call `json.loads` for the user on any JsonType columns?\n\n### Schema inference\n\nI can think of a few ways forward:\n1. Add a JSON builder option that converts nested JSON objects to JsonTypes instead.\n2. Use some heuristic to detect when a struct type is bad (e.g., average number of `None` values) and convert those to JsonTypes instead.\n\nThe first option is the easiest, but also would remove the nested structure from the arrow schema. Does this matter?", "The first option sounds good indeed, and more explicit / flexible.\n\n> but also would remove the nested structure from the arrow schema. Does this matter?\n\nWell I expect some `pyarrow.compute` functions for nested data to not work for JsonType, and maybe exporting to a pandas / polars dataframe can have a few issues. But it's ok as a first step and we can iterate imo", "So this will be harder than I thought. I thought pyarrow would provide a separate type inference function, but it seems like it doesn't. Type inference is wrapped into the conversion/loading functions, which are, of course, failing.", "Since we use pandas to load the JSON before converting to arrow, maybe we can do some conversion there.\n\n```\nIn [29]: df = pd.read_json(\"/tmp/wtf.json\")\n\nIn [30]: df\nOut[30]: \n lol\n0 [42, []]\n\nIn [31]: pa.Table.from_pandas(df)\n---------------------------------------------------------------------------\nArrowInvalid Traceback (most recent call last)\n```\n\nBut if we convert the problem column to a string, we can proceed:\n\n```\nIn [38]: df['lol'] = df['lol'].astype(str)\n\nIn [39]: df\nOut[39]: \n lol\n0 [42, []]\n\nIn [40]: pa.Table.from_pandas(df)\nOut[40]: \npyarrow.Table\nlol: string\n----\nlol: [[\"[42, []]\"]]\n```\n\nSo I guess we could coerce columns to strings until we're able to convert to arrow, and then convert those coerced columns to JsonType in the final arrow. This feels kind of icky to me though. But I think it might work.", "Makes sense, yes it's maybe the way to go to have it working short term.\n\nLonger term `pyarrow` should handle it though IMO via its JSON reader, have you opened an issue there already by any chance ?", "> Longer term pyarrow should handle it though IMO via its JSON reader, have you opened an issue there already by any chance ?\n\nI agree that `pyarrow` changes are a better solution long term. I haven't opened any issues yet. Were you thinking:\n \n* To separate the inference function\n* Open an issue with an incompatible JSON file and see what they suggest?", "I was thinking of seeing what they suggest in case of incompatible JSON, it's also possible that other members of the community have asked for for help / requested such a feature already. But sharing about the inference function idea can be interesting as well", "Thanks, I will do this and see what they suggest.\r\n\r\nOn Mon, Apr 7, 2025, 9:18 AM Quentin Lhoest - ***@***.***\r\n***@***.***> wrote:\r\n\r\n> I was thinking of seeing what they suggest in case of incompatible JSON,\r\n> it's also possible that other members of the community have asked for for\r\n> help / requested such a feature already. But sharing about the inference\r\n> function idea can be interesting as well\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5950#issuecomment-2783312654>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AAHYKZKUPOK5IBQBMMVDCTT2YJ3LXAVCNFSM6AAAAAB2H43DQKVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOOBTGMYTENRVGQ>\r\n> .\r\n> You are receiving this because you are subscribed to this thread.Message\r\n> ID: ***@***.***>\r\n> [image: lhoestq]*lhoestq* left a comment (huggingface/datasets#5950)\r\n> <https://github.com/huggingface/datasets/issues/5950#issuecomment-2783312654>\r\n>\r\n> I was thinking of seeing what they suggest in case of incompatible JSON,\r\n> it's also possible that other members of the community have asked for for\r\n> help / requested such a feature already. But sharing about the inference\r\n> function idea can be interesting as well\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5950#issuecomment-2783312654>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AAHYKZKUPOK5IBQBMMVDCTT2YJ3LXAVCNFSM6AAAAAB2H43DQKVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOOBTGMYTENRVGQ>\r\n> .\r\n> You are receiving this because you are subscribed to this thread.Message\r\n> ID: ***@***.***>\r\n>\r\n" ]
2023-06-13T15:49:00Z
2025-04-07T13:20:37Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request I notice that when loading data instances with feature type of python dictionary, the dictionary keys would be broadcast so that every instance has the same set of keys. Please see an example in the Motivation section. It is possible to avoid this behavior, i.e., load dictionary features as it is and do not broadcast the keys among instances? Please note that these dictionaries would have to be processed dynamically at each training iteration into strings (and tokenized). ### Motivation I am trying to load a dataset from a json file. Each instance of the dataset has a feature that is a dictionary but its keys depend on the instance. Every two instances may have different keys. For example, imagine a dataset that contains a set of math expressions from a bunch of mutually redundant expressions: ``` { "index": 0, "feature": { "2 * x + y >= 3": ["2 * x + y >= 3", "4 * x + 2 * y >= 6"], ... } }, ... { "index": 9999, "feature": { "x >= 6": ["x >= 6", "x >= 0", "x >= -1"], ... } }, ... ``` When directly loading the dataset using `data = load_dataset("json", data_files=file_paths, split='train')`, each instance would have all the keys from other instances and None as values. That is, instance of index 0 becomes: ``` { "index": 0, "feature": { "2 * x + y >= 3": ["2 * x + y >= 3", "4 * x + 2 * y >= 6"], ... "x >= 6": None, # keys from other instances ... } }, ``` This is not desirable. Moreover, issue would be raised if I attempt to combine two such datasets using `data = concatenate_datasets(multi_datasets)`, perhaps because their dictionary features contain different keys. A solution I can think of is to store the dictionary features as a long string, and evaluate it later. Please kindly suggest any other solution using existing methods of datasets. ### Your contribution N/A
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5950/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5950/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5328
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5328/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5328/comments
https://api.github.com/repos/huggingface/datasets/issues/5328/events
https://github.com/huggingface/datasets/pull/5328
1,471,661,437
PR_kwDODunzps5EFAyT
5,328
Fix docs building for main
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "EDIT\r\nAt least the docs for ~~main~~ PR branch are now built:\r\n- https://github.com/huggingface/datasets/actions/runs/3594847760/jobs/6053620813", "Build documentation for main branch was triggered after this PR being merged: https://github.com/huggingface/datasets/actions/runs/3603370082/jobs/6071482470" ]
2022-12-01T17:07:45Z
2022-12-02T16:29:00Z
2022-12-02T16:26:00Z
MEMBER
null
null
null
This PR reverts the triggering event for building documentation introduced by: - #5250 Fix #5326.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5328/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5328/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5328.diff", "html_url": "https://github.com/huggingface/datasets/pull/5328", "merged_at": "2022-12-02T16:26:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/5328.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5328" }
https://api.github.com/repos/huggingface/datasets/issues/5858
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5858/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5858/comments
https://api.github.com/repos/huggingface/datasets/issues/5858/events
https://github.com/huggingface/datasets/issues/5858
1,709,332,632
I_kwDODunzps5l4liY
5,858
Throw an error when dataset improperly indexed
{ "avatar_url": "https://avatars.githubusercontent.com/u/8027676?v=4", "events_url": "https://api.github.com/users/sarahwie/events{/privacy}", "followers_url": "https://api.github.com/users/sarahwie/followers", "following_url": "https://api.github.com/users/sarahwie/following{/other_user}", "gists_url": "https://api.github.com/users/sarahwie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sarahwie", "id": 8027676, "login": "sarahwie", "node_id": "MDQ6VXNlcjgwMjc2NzY=", "organizations_url": "https://api.github.com/users/sarahwie/orgs", "received_events_url": "https://api.github.com/users/sarahwie/received_events", "repos_url": "https://api.github.com/users/sarahwie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sarahwie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sarahwie/subscriptions", "type": "User", "url": "https://api.github.com/users/sarahwie", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @sarahwie.\r\n\r\nPlease note that in `datasets` we do not have vectorized operation like `pandas`. Therefore, your equality comparisons above are `False`:\r\n- For example: `squad['question']` returns a `list`, and this list is not equal to `\"Who was the Norse leader?\"`\r\n\r\nThe `False` value is equivalent to `0` when indexing a dataset, thus the reason why you get the first element (with index 0): \r\n- For example: `squad[False]` is equivalent to `squad[0]`\r\n\r\nMaybe we should an exception instead of assuming that `False` is equivalent to `0` (and `True` is equivalent to `1`) in the context of indexing." ]
2023-05-15T05:15:53Z
2023-05-25T16:23:19Z
2023-05-25T16:23:19Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Pandas-style subset indexing on dataset does not throw an error, when maybe it should. Instead returns the first instance of the dataset regardless of index condition. ### Steps to reproduce the bug Steps to reproduce the behavior: 1. `squad = datasets.load_dataset("squad_v2", split="validation")` 2. `item = squad[squad['question'] == "Who was the Norse leader?"]` or `it = squad[squad['id'] == '56ddde6b9a695914005b962b']` 3. returns the first item in the dataset, which does not satisfy the above conditions: `{'id': '56ddde6b9a695914005b9628', 'title': 'Normans', 'context': 'The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries.', 'question': 'In what country is Normandy located?', 'answers': {'text': ['France', 'France', 'France', 'France'], 'answer_start': [159, 159, 159, 159]}}` ### Expected behavior Should either throw an error message, or return the dataset item that satisfies the condition. ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-13.3.1-arm64-arm-64bit - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5858/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5858/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5194
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5194/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5194/comments
https://api.github.com/repos/huggingface/datasets/issues/5194/events
https://github.com/huggingface/datasets/pull/5194
1,434,206,951
PR_kwDODunzps5CHPNY
5,194
Fix docs about dataset_info in YAML
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-11-03T07:10:23Z
2022-11-03T13:31:27Z
2022-11-03T13:29:21Z
MEMBER
null
null
null
This PR fixes some misalignment in the docs after we transferred the dataset_info from `dataset_infos.json` to YAML in the dataset card: - #4926 Related to: - #5193
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5194/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5194/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5194.diff", "html_url": "https://github.com/huggingface/datasets/pull/5194", "merged_at": "2022-11-03T13:29:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/5194.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5194" }
https://api.github.com/repos/huggingface/datasets/issues/5472
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5472/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5472/comments
https://api.github.com/repos/huggingface/datasets/issues/5472/events
https://github.com/huggingface/datasets/pull/5472
1,558,662,251
PR_kwDODunzps5Inlp8
5,472
Release: 2.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008578 / 0.011353 (-0.002775) | 0.004535 / 0.011008 (-0.006473) | 0.100694 / 0.038508 (0.062186) | 0.029570 / 0.023109 (0.006460) | 0.296384 / 0.275898 (0.020486) | 0.354405 / 0.323480 (0.030925) | 0.006962 / 0.007986 (-0.001024) | 0.003405 / 0.004328 (-0.000924) | 0.077275 / 0.004250 (0.073025) | 0.036623 / 0.037052 (-0.000429) | 0.309844 / 0.258489 (0.051355) | 0.340343 / 0.293841 (0.046502) | 0.033626 / 0.128546 (-0.094920) | 0.011433 / 0.075646 (-0.064214) | 0.322659 / 0.419271 (-0.096612) | 0.040509 / 0.043533 (-0.003024) | 0.294002 / 0.255139 (0.038863) | 0.323259 / 0.283200 (0.040059) | 0.088023 / 0.141683 (-0.053660) | 1.462039 / 1.452155 (0.009885) | 1.495401 / 1.492716 (0.002684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218614 / 0.018006 (0.200608) | 0.482359 / 0.000490 (0.481869) | 0.001216 / 0.000200 (0.001016) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023167 / 0.037411 (-0.014245) | 0.098468 / 0.014526 (0.083942) | 0.108273 / 0.176557 (-0.068284) | 0.139991 / 0.737135 (-0.597144) | 0.109032 / 0.296338 (-0.187307) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421526 / 0.215209 (0.206317) | 4.216808 / 2.077655 (2.139153) | 1.860550 / 1.504120 (0.356431) | 1.654518 / 1.541195 (0.113323) | 1.699064 / 1.468490 (0.230574) | 0.691489 / 4.584777 (-3.893287) | 3.401885 / 3.745712 (-0.343827) | 2.792860 / 5.269862 (-2.477001) | 1.516269 / 4.565676 (-3.049408) | 0.081627 / 0.424275 (-0.342648) | 0.012556 / 0.007607 (0.004949) | 0.531535 / 0.226044 (0.305491) | 5.320752 / 2.268929 (3.051823) | 2.314502 / 55.444624 (-53.130123) | 1.967118 / 6.876477 (-4.909359) | 2.008252 / 2.142072 (-0.133821) | 0.809730 / 4.805227 (-3.995497) | 0.148112 / 6.500664 (-6.352552) | 0.064821 / 0.075469 (-0.010648) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269754 / 1.841788 (-0.572033) | 13.884200 / 8.074308 (5.809892) | 13.914390 / 10.191392 (3.722998) | 0.150176 / 0.680424 (-0.530248) | 0.028463 / 0.534201 (-0.505738) | 0.398723 / 0.579283 (-0.180561) | 0.400433 / 0.434364 (-0.033931) | 0.485169 / 0.540337 (-0.055169) | 0.565995 / 1.386936 (-0.820941) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006479 / 0.011353 (-0.004874) | 0.004504 / 0.011008 (-0.006504) | 0.097905 / 0.038508 (0.059397) | 0.027140 / 0.023109 (0.004031) | 0.408742 / 0.275898 (0.132844) | 0.448707 / 0.323480 (0.125228) | 0.004819 / 0.007986 (-0.003166) | 0.004761 / 0.004328 (0.000433) | 0.075456 / 0.004250 (0.071205) | 0.036282 / 0.037052 (-0.000771) | 0.405961 / 0.258489 (0.147472) | 0.449411 / 0.293841 (0.155570) | 0.031159 / 0.128546 (-0.097387) | 0.011693 / 0.075646 (-0.063954) | 0.321124 / 0.419271 (-0.098147) | 0.041369 / 0.043533 (-0.002164) | 0.408070 / 0.255139 (0.152931) | 0.428704 / 0.283200 (0.145504) | 0.086839 / 0.141683 (-0.054844) | 1.477772 / 1.452155 (0.025617) | 1.555913 / 1.492716 (0.063197) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239494 / 0.018006 (0.221488) | 0.410785 / 0.000490 (0.410295) | 0.000989 / 0.000200 (0.000789) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023805 / 0.037411 (-0.013607) | 0.097904 / 0.014526 (0.083378) | 0.106437 / 0.176557 (-0.070120) | 0.140555 / 0.737135 (-0.596580) | 0.107169 / 0.296338 (-0.189170) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470233 / 0.215209 (0.255024) | 4.700451 / 2.077655 (2.622797) | 2.391712 / 1.504120 (0.887592) | 2.191125 / 1.541195 (0.649930) | 2.268924 / 1.468490 (0.800434) | 0.692421 / 4.584777 (-3.892356) | 3.387117 / 3.745712 (-0.358595) | 1.881731 / 5.269862 (-3.388130) | 1.155759 / 4.565676 (-3.409917) | 0.082040 / 0.424275 (-0.342236) | 0.012687 / 0.007607 (0.005080) | 0.567556 / 0.226044 (0.341511) | 5.701408 / 2.268929 (3.432480) | 2.864368 / 55.444624 (-52.580256) | 2.512073 / 6.876477 (-4.364404) | 2.546078 / 2.142072 (0.404005) | 0.795939 / 4.805227 (-4.009288) | 0.150078 / 6.500664 (-6.350586) | 0.067644 / 0.075469 (-0.007825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281681 / 1.841788 (-0.560107) | 13.967107 / 8.074308 (5.892799) | 13.293648 / 10.191392 (3.102256) | 0.128027 / 0.680424 (-0.552397) | 0.016791 / 0.534201 (-0.517410) | 0.379400 / 0.579283 (-0.199884) | 0.386847 / 0.434364 (-0.047517) | 0.469859 / 0.540337 (-0.070478) | 0.564203 / 1.386936 (-0.822733) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90832b5e33774ea8ec35ccb92ac14649a345bdbe \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008701 / 0.011353 (-0.002652) | 0.004564 / 0.011008 (-0.006444) | 0.100578 / 0.038508 (0.062070) | 0.029209 / 0.023109 (0.006100) | 0.315308 / 0.275898 (0.039410) | 0.381022 / 0.323480 (0.057542) | 0.007152 / 0.007986 (-0.000834) | 0.003511 / 0.004328 (-0.000817) | 0.078361 / 0.004250 (0.074110) | 0.035394 / 0.037052 (-0.001658) | 0.331076 / 0.258489 (0.072586) | 0.366613 / 0.293841 (0.072772) | 0.033466 / 0.128546 (-0.095080) | 0.011521 / 0.075646 (-0.064126) | 0.322178 / 0.419271 (-0.097093) | 0.040891 / 0.043533 (-0.002641) | 0.320418 / 0.255139 (0.065279) | 0.345199 / 0.283200 (0.062000) | 0.087906 / 0.141683 (-0.053777) | 1.476801 / 1.452155 (0.024646) | 1.497738 / 1.492716 (0.005022) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178094 / 0.018006 (0.160087) | 0.408317 / 0.000490 (0.407827) | 0.001825 / 0.000200 (0.001625) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022402 / 0.037411 (-0.015010) | 0.097104 / 0.014526 (0.082578) | 0.105361 / 0.176557 (-0.071196) | 0.139728 / 0.737135 (-0.597407) | 0.109613 / 0.296338 (-0.186725) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418245 / 0.215209 (0.203036) | 4.155655 / 2.077655 (2.078000) | 1.865892 / 1.504120 (0.361772) | 1.659003 / 1.541195 (0.117809) | 1.725649 / 1.468490 (0.257159) | 0.688733 / 4.584777 (-3.896044) | 3.323529 / 3.745712 (-0.422184) | 1.867807 / 5.269862 (-3.402054) | 1.157740 / 4.565676 (-3.407936) | 0.081947 / 0.424275 (-0.342329) | 0.012471 / 0.007607 (0.004864) | 0.529333 / 0.226044 (0.303288) | 5.284898 / 2.268929 (3.015970) | 2.321741 / 55.444624 (-53.122883) | 1.975683 / 6.876477 (-4.900794) | 2.029691 / 2.142072 (-0.112381) | 0.810212 / 4.805227 (-3.995015) | 0.148185 / 6.500664 (-6.352479) | 0.064594 / 0.075469 (-0.010875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.183391 / 1.841788 (-0.658396) | 13.574760 / 8.074308 (5.500452) | 14.215015 / 10.191392 (4.023623) | 0.150776 / 0.680424 (-0.529648) | 0.029058 / 0.534201 (-0.505143) | 0.404071 / 0.579283 (-0.175212) | 0.401289 / 0.434364 (-0.033075) | 0.490946 / 0.540337 (-0.049392) | 0.582292 / 1.386936 (-0.804644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006695 / 0.011353 (-0.004658) | 0.004499 / 0.011008 (-0.006510) | 0.097633 / 0.038508 (0.059125) | 0.027606 / 0.023109 (0.004496) | 0.413191 / 0.275898 (0.137293) | 0.441896 / 0.323480 (0.118416) | 0.005703 / 0.007986 (-0.002283) | 0.004608 / 0.004328 (0.000280) | 0.074392 / 0.004250 (0.070141) | 0.037966 / 0.037052 (0.000913) | 0.410736 / 0.258489 (0.152247) | 0.448581 / 0.293841 (0.154740) | 0.031594 / 0.128546 (-0.096952) | 0.011597 / 0.075646 (-0.064049) | 0.319632 / 0.419271 (-0.099639) | 0.041189 / 0.043533 (-0.002343) | 0.407120 / 0.255139 (0.151981) | 0.433416 / 0.283200 (0.150216) | 0.089932 / 0.141683 (-0.051751) | 1.453919 / 1.452155 (0.001764) | 1.545892 / 1.492716 (0.053176) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224302 / 0.018006 (0.206296) | 0.415519 / 0.000490 (0.415029) | 0.000407 / 0.000200 (0.000207) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024104 / 0.037411 (-0.013307) | 0.098202 / 0.014526 (0.083676) | 0.106416 / 0.176557 (-0.070140) | 0.141090 / 0.737135 (-0.596045) | 0.110188 / 0.296338 (-0.186150) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478252 / 0.215209 (0.263043) | 4.739684 / 2.077655 (2.662029) | 2.419040 / 1.504120 (0.914920) | 2.217705 / 1.541195 (0.676510) | 2.303288 / 1.468490 (0.834798) | 0.696682 / 4.584777 (-3.888095) | 3.401962 / 3.745712 (-0.343750) | 1.886015 / 5.269862 (-3.383846) | 1.175084 / 4.565676 (-3.390592) | 0.083064 / 0.424275 (-0.341211) | 0.012613 / 0.007607 (0.005006) | 0.579105 / 0.226044 (0.353060) | 5.792119 / 2.268929 (3.523191) | 2.889778 / 55.444624 (-52.554846) | 2.537438 / 6.876477 (-4.339039) | 2.574814 / 2.142072 (0.432741) | 0.803438 / 4.805227 (-4.001789) | 0.151912 / 6.500664 (-6.348752) | 0.068291 / 0.075469 (-0.007178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286002 / 1.841788 (-0.555786) | 14.179443 / 8.074308 (6.105135) | 13.443939 / 10.191392 (3.252547) | 0.152427 / 0.680424 (-0.527996) | 0.017248 / 0.534201 (-0.516953) | 0.378734 / 0.579283 (-0.200549) | 0.382276 / 0.434364 (-0.052087) | 0.465323 / 0.540337 (-0.075014) | 0.556454 / 1.386936 (-0.830482) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b5672a956d5de864e6f5550e493527d962d6ae55 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008675 / 0.011353 (-0.002678) | 0.004537 / 0.011008 (-0.006471) | 0.100179 / 0.038508 (0.061671) | 0.029307 / 0.023109 (0.006198) | 0.294687 / 0.275898 (0.018789) | 0.356868 / 0.323480 (0.033388) | 0.006992 / 0.007986 (-0.000994) | 0.003380 / 0.004328 (-0.000949) | 0.076961 / 0.004250 (0.072710) | 0.036047 / 0.037052 (-0.001005) | 0.308037 / 0.258489 (0.049548) | 0.341089 / 0.293841 (0.047248) | 0.033416 / 0.128546 (-0.095131) | 0.011534 / 0.075646 (-0.064112) | 0.322976 / 0.419271 (-0.096296) | 0.040894 / 0.043533 (-0.002639) | 0.296501 / 0.255139 (0.041362) | 0.324605 / 0.283200 (0.041405) | 0.086713 / 0.141683 (-0.054970) | 1.502784 / 1.452155 (0.050630) | 1.535013 / 1.492716 (0.042297) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186647 / 0.018006 (0.168641) | 0.411003 / 0.000490 (0.410514) | 0.003594 / 0.000200 (0.003394) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023704 / 0.037411 (-0.013707) | 0.096154 / 0.014526 (0.081629) | 0.103671 / 0.176557 (-0.072885) | 0.138878 / 0.737135 (-0.598258) | 0.106947 / 0.296338 (-0.189391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417180 / 0.215209 (0.201970) | 4.149579 / 2.077655 (2.071925) | 1.865763 / 1.504120 (0.361643) | 1.669722 / 1.541195 (0.128527) | 1.722345 / 1.468490 (0.253855) | 0.695910 / 4.584777 (-3.888867) | 3.342266 / 3.745712 (-0.403446) | 1.884568 / 5.269862 (-3.385294) | 1.265013 / 4.565676 (-3.300664) | 0.081836 / 0.424275 (-0.342439) | 0.012371 / 0.007607 (0.004764) | 0.522997 / 0.226044 (0.296953) | 5.225434 / 2.268929 (2.956506) | 2.304701 / 55.444624 (-53.139924) | 1.949067 / 6.876477 (-4.927410) | 2.016347 / 2.142072 (-0.125725) | 0.809850 / 4.805227 (-3.995377) | 0.148396 / 6.500664 (-6.352268) | 0.063340 / 0.075469 (-0.012129) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224621 / 1.841788 (-0.617167) | 13.814223 / 8.074308 (5.739915) | 13.879728 / 10.191392 (3.688336) | 0.149530 / 0.680424 (-0.530894) | 0.028439 / 0.534201 (-0.505762) | 0.392726 / 0.579283 (-0.186557) | 0.396894 / 0.434364 (-0.037469) | 0.474395 / 0.540337 (-0.065943) | 0.569090 / 1.386936 (-0.817847) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006483 / 0.011353 (-0.004870) | 0.004527 / 0.011008 (-0.006481) | 0.098038 / 0.038508 (0.059530) | 0.027239 / 0.023109 (0.004130) | 0.441773 / 0.275898 (0.165875) | 0.471448 / 0.323480 (0.147968) | 0.005034 / 0.007986 (-0.002951) | 0.004732 / 0.004328 (0.000403) | 0.075036 / 0.004250 (0.070785) | 0.036711 / 0.037052 (-0.000341) | 0.442634 / 0.258489 (0.184145) | 0.476479 / 0.293841 (0.182638) | 0.031303 / 0.128546 (-0.097243) | 0.011642 / 0.075646 (-0.064005) | 0.320750 / 0.419271 (-0.098521) | 0.048698 / 0.043533 (0.005165) | 0.441205 / 0.255139 (0.186066) | 0.464845 / 0.283200 (0.181645) | 0.092716 / 0.141683 (-0.048967) | 1.510028 / 1.452155 (0.057874) | 1.574065 / 1.492716 (0.081349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220756 / 0.018006 (0.202750) | 0.393971 / 0.000490 (0.393482) | 0.002506 / 0.000200 (0.002306) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024455 / 0.037411 (-0.012956) | 0.100164 / 0.014526 (0.085638) | 0.108053 / 0.176557 (-0.068504) | 0.142973 / 0.737135 (-0.594163) | 0.110108 / 0.296338 (-0.186231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473639 / 0.215209 (0.258430) | 4.737521 / 2.077655 (2.659866) | 2.466208 / 1.504120 (0.962088) | 2.272608 / 1.541195 (0.731413) | 2.349255 / 1.468490 (0.880764) | 0.699928 / 4.584777 (-3.884849) | 3.348443 / 3.745712 (-0.397269) | 2.604611 / 5.269862 (-2.665250) | 1.543080 / 4.565676 (-3.022597) | 0.082627 / 0.424275 (-0.341648) | 0.012251 / 0.007607 (0.004644) | 0.569949 / 0.226044 (0.343905) | 5.732316 / 2.268929 (3.463388) | 2.913541 / 55.444624 (-52.531084) | 2.560584 / 6.876477 (-4.315892) | 2.615192 / 2.142072 (0.473120) | 0.803822 / 4.805227 (-4.001406) | 0.150821 / 6.500664 (-6.349843) | 0.067128 / 0.075469 (-0.008341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272278 / 1.841788 (-0.569510) | 13.783339 / 8.074308 (5.709030) | 13.243601 / 10.191392 (3.052209) | 0.136421 / 0.680424 (-0.544003) | 0.016565 / 0.534201 (-0.517636) | 0.381102 / 0.579283 (-0.198181) | 0.386166 / 0.434364 (-0.048197) | 0.474249 / 0.540337 (-0.066089) | 0.566826 / 1.386936 (-0.820110) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b5672a956d5de864e6f5550e493527d962d6ae55 \"CML watermark\")\n" ]
2023-01-26T19:29:42Z
2023-01-26T19:40:44Z
2023-01-26T19:33:00Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5472/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5472/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5472.diff", "html_url": "https://github.com/huggingface/datasets/pull/5472", "merged_at": "2023-01-26T19:33:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/5472.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5472" }
https://api.github.com/repos/huggingface/datasets/issues/7358
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7358/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7358/comments
https://api.github.com/repos/huggingface/datasets/issues/7358/events
https://github.com/huggingface/datasets/pull/7358
2,770,927,769
PR_kwDODunzps6G1kka
7,358
Fix remove_columns in the formatted case
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7358). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-01-06T15:44:23Z
2025-01-06T15:46:46Z
null
MEMBER
null
null
null
`remove_columns` had no effect when running a function in `.map()` on dataset that is formatted This aligns the logic of `map()` with the non formatted case and also with with https://github.com/huggingface/datasets/pull/7353
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7358/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7358/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7358.diff", "html_url": "https://github.com/huggingface/datasets/pull/7358", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7358.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7358" }
https://api.github.com/repos/huggingface/datasets/issues/6661
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6661/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6661/comments
https://api.github.com/repos/huggingface/datasets/issues/6661/events
https://github.com/huggingface/datasets/issues/6661
2,132,296,267
I_kwDODunzps5_GEJL
6,661
Import error on Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/16103566?v=4", "events_url": "https://api.github.com/users/kithogue/events{/privacy}", "followers_url": "https://api.github.com/users/kithogue/followers", "following_url": "https://api.github.com/users/kithogue/following{/other_user}", "gists_url": "https://api.github.com/users/kithogue/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kithogue", "id": 16103566, "login": "kithogue", "node_id": "MDQ6VXNlcjE2MTAzNTY2", "organizations_url": "https://api.github.com/users/kithogue/orgs", "received_events_url": "https://api.github.com/users/kithogue/received_events", "repos_url": "https://api.github.com/users/kithogue/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kithogue/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kithogue/subscriptions", "type": "User", "url": "https://api.github.com/users/kithogue", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! This can happen if an incompatible `pyarrow` version (`pyarrow<12.0.0`) has been imported before the `datasets` installation and the Colab session hasn't been restarted afterward. To avoid the error, go to \"Runtime -> Restart session\" after `!pip install -U datasets` and before `import datasets`, or insert the `import os; os.kill(os.getpid(), 9)` cell between `!pip install -U datasets` and `import datasets` to do the same programmatically.", "One possible cause might be the one pointed out by @mariosasko above, and you get the following warning on Colab:\r\n```\r\nWARNING: The following packages were previously imported in this runtime:\r\n [pyarrow]\r\nYou must restart the runtime in order to use newly installed versions.\r\n```\r\n\r\nOn the other hand, if the old version of `pyarrow` is not previously imported (before the installation of `datasets`), the reported issue here is not reproducible: `datasets` can be installed, imported and used on Colab.", "Duplicate of:\r\n- #5923", "Google Colab now pre-installs PyArrow 14.0.2, making this issue unlikely to happen. So, I'm unpinning it." ]
2024-02-13T13:12:40Z
2024-02-25T16:37:54Z
2024-02-14T08:04:47Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Cannot be imported on Google Colab, the import throws the following error: ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug 1. `! pip install -U datasets` 2. `import datasets` ### Expected behavior Should be possible to use the library ### Environment info - `datasets` version: 2.17.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.6.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6661/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6661/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4537
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4537/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4537/comments
https://api.github.com/repos/huggingface/datasets/issues/4537/events
https://github.com/huggingface/datasets/pull/4537
1,279,144,310
PR_kwDODunzps46ESJn
4,537
Fix WMT dataset loading issue and docs update
{ "avatar_url": "https://avatars.githubusercontent.com/u/8711912?v=4", "events_url": "https://api.github.com/users/khushmeeet/events{/privacy}", "followers_url": "https://api.github.com/users/khushmeeet/followers", "following_url": "https://api.github.com/users/khushmeeet/following{/other_user}", "gists_url": "https://api.github.com/users/khushmeeet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/khushmeeet", "id": 8711912, "login": "khushmeeet", "node_id": "MDQ6VXNlcjg3MTE5MTI=", "organizations_url": "https://api.github.com/users/khushmeeet/orgs", "received_events_url": "https://api.github.com/users/khushmeeet/received_events", "repos_url": "https://api.github.com/users/khushmeeet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/khushmeeet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khushmeeet/subscriptions", "type": "User", "url": "https://api.github.com/users/khushmeeet", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The PR branch now has some commits unrelated to the changes, probably due to rebasing. Can you please close this PR and open a new one from a new branch? You can use `git cherry-pick` to preserve the relevant changes:\r\n```bash\r\ngit checkout master\r\ngit remote add upstream git@github.com:huggingface/datasets.git\r\ngit pull --ff-only upstream master\r\ngit checkout -b wmt-datasets-fix2\r\ngit cherry-pick f2d6c995d5153131168f64fc60fe33a7813739a4 a9fdead5f435aeb88c237600be28eb8d4fde4c55\r\n```", "Closing this PR due to unwanted commit changes. Will be opening new PR for the same issue." ]
2022-06-21T21:48:02Z
2022-06-24T07:05:43Z
2022-06-24T07:05:10Z
CONTRIBUTOR
null
null
null
This PR is a fix for #4354 Changes are made for `wmt14`, `wmt15`, `wmt16`, `wmt17`, `wmt18`, `wmt19` and `wmt_t2t`. And READMEs are updated for the corresponding datasets. As I am on a M1 Mac, I am not able to create a virtual `dev` environment using `pip install -e ".[dev]"`. Issue is with `tensorflow-text` not supported on M1s and there is no supporting repo by Apple or Google. So, if I was needed to perform local testing, I am not able to do that. Let me know, if any additional changes are required. Thanks
{ "avatar_url": "https://avatars.githubusercontent.com/u/8711912?v=4", "events_url": "https://api.github.com/users/khushmeeet/events{/privacy}", "followers_url": "https://api.github.com/users/khushmeeet/followers", "following_url": "https://api.github.com/users/khushmeeet/following{/other_user}", "gists_url": "https://api.github.com/users/khushmeeet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/khushmeeet", "id": 8711912, "login": "khushmeeet", "node_id": "MDQ6VXNlcjg3MTE5MTI=", "organizations_url": "https://api.github.com/users/khushmeeet/orgs", "received_events_url": "https://api.github.com/users/khushmeeet/received_events", "repos_url": "https://api.github.com/users/khushmeeet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/khushmeeet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khushmeeet/subscriptions", "type": "User", "url": "https://api.github.com/users/khushmeeet", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4537/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4537/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4537.diff", "html_url": "https://github.com/huggingface/datasets/pull/4537", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4537.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4537" }
https://api.github.com/repos/huggingface/datasets/issues/7096
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7096/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7096/comments
https://api.github.com/repos/huggingface/datasets/issues/7096/events
https://github.com/huggingface/datasets/pull/7096
2,456,929,173
PR_kwDODunzps535Xkr
7,096
Automatically create `cache_dir` from `cache_file_name`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi @albertvillanova, is this PR looking okay to you? Anything else you'd like to see?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7096). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005278 / 0.011353 (-0.006075) | 0.003536 / 0.011008 (-0.007472) | 0.062604 / 0.038508 (0.024096) | 0.030704 / 0.023109 (0.007595) | 0.242178 / 0.275898 (-0.033720) | 0.264335 / 0.323480 (-0.059145) | 0.004118 / 0.007986 (-0.003868) | 0.002789 / 0.004328 (-0.001539) | 0.048813 / 0.004250 (0.044563) | 0.041787 / 0.037052 (0.004735) | 0.252369 / 0.258489 (-0.006120) | 0.280981 / 0.293841 (-0.012859) | 0.029646 / 0.128546 (-0.098900) | 0.012093 / 0.075646 (-0.063553) | 0.203036 / 0.419271 (-0.216235) | 0.035814 / 0.043533 (-0.007719) | 0.248929 / 0.255139 (-0.006210) | 0.266568 / 0.283200 (-0.016632) | 0.018761 / 0.141683 (-0.122922) | 1.188443 / 1.452155 (-0.263712) | 1.219324 / 1.492716 (-0.273392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095256 / 0.018006 (0.077250) | 0.301069 / 0.000490 (0.300579) | 0.000219 / 0.000200 (0.000019) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018541 / 0.037411 (-0.018870) | 0.067333 / 0.014526 (0.052807) | 0.075483 / 0.176557 (-0.101073) | 0.121301 / 0.737135 (-0.615834) | 0.076924 / 0.296338 (-0.219414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284722 / 0.215209 (0.069513) | 2.817656 / 2.077655 (0.740001) | 1.483827 / 1.504120 (-0.020293) | 1.363072 / 1.541195 (-0.178123) | 1.380472 / 1.468490 (-0.088018) | 0.739543 / 4.584777 (-3.845234) | 2.390699 / 3.745712 (-1.355013) | 2.980347 / 5.269862 (-2.289515) | 1.897881 / 4.565676 (-2.667795) | 0.078827 / 0.424275 (-0.345448) | 0.005193 / 0.007607 (-0.002414) | 0.342739 / 0.226044 (0.116695) | 3.370871 / 2.268929 (1.101942) | 1.846475 / 55.444624 (-53.598150) | 1.577860 / 6.876477 (-5.298617) | 1.628606 / 2.142072 (-0.513466) | 0.815686 / 4.805227 (-3.989541) | 0.134985 / 6.500664 (-6.365679) | 0.042330 / 0.075469 (-0.033139) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962530 / 1.841788 (-0.879258) | 11.271449 / 8.074308 (3.197141) | 9.615452 / 10.191392 (-0.575940) | 0.140322 / 0.680424 (-0.540101) | 0.014057 / 0.534201 (-0.520144) | 0.306212 / 0.579283 (-0.273071) | 0.266758 / 0.434364 (-0.167606) | 0.341229 / 0.540337 (-0.199108) | 0.428974 / 1.386936 (-0.957962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005980 / 0.011353 (-0.005373) | 0.003831 / 0.011008 (-0.007177) | 0.049837 / 0.038508 (0.011329) | 0.030602 / 0.023109 (0.007493) | 0.274107 / 0.275898 (-0.001791) | 0.298175 / 0.323480 (-0.025305) | 0.004492 / 0.007986 (-0.003494) | 0.002840 / 0.004328 (-0.001489) | 0.048984 / 0.004250 (0.044733) | 0.040001 / 0.037052 (0.002949) | 0.286130 / 0.258489 (0.027641) | 0.321546 / 0.293841 (0.027705) | 0.032675 / 0.128546 (-0.095871) | 0.012222 / 0.075646 (-0.063424) | 0.060321 / 0.419271 (-0.358950) | 0.034456 / 0.043533 (-0.009077) | 0.272408 / 0.255139 (0.017269) | 0.294714 / 0.283200 (0.011515) | 0.018568 / 0.141683 (-0.123115) | 1.169826 / 1.452155 (-0.282329) | 1.223906 / 1.492716 (-0.268810) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093734 / 0.018006 (0.075727) | 0.305915 / 0.000490 (0.305425) | 0.000210 / 0.000200 (0.000010) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022389 / 0.037411 (-0.015022) | 0.076640 / 0.014526 (0.062114) | 0.088660 / 0.176557 (-0.087897) | 0.128998 / 0.737135 (-0.608137) | 0.090346 / 0.296338 (-0.205992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291642 / 0.215209 (0.076433) | 2.897270 / 2.077655 (0.819615) | 1.571564 / 1.504120 (0.067444) | 1.449533 / 1.541195 (-0.091662) | 1.458744 / 1.468490 (-0.009746) | 0.725465 / 4.584777 (-3.859312) | 0.962597 / 3.745712 (-2.783115) | 3.035056 / 5.269862 (-2.234806) | 1.902542 / 4.565676 (-2.663135) | 0.079869 / 0.424275 (-0.344407) | 0.005172 / 0.007607 (-0.002435) | 0.352099 / 0.226044 (0.126055) | 3.469058 / 2.268929 (1.200129) | 1.953402 / 55.444624 (-53.491222) | 1.647182 / 6.876477 (-5.229294) | 1.686473 / 2.142072 (-0.455599) | 0.797218 / 4.805227 (-4.008009) | 0.134161 / 6.500664 (-6.366503) | 0.041563 / 0.075469 (-0.033906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.045855 / 1.841788 (-0.795933) | 12.271390 / 8.074308 (4.197082) | 10.186889 / 10.191392 (-0.004503) | 0.141141 / 0.680424 (-0.539283) | 0.015482 / 0.534201 (-0.518719) | 0.305699 / 0.579283 (-0.273584) | 0.128539 / 0.434364 (-0.305825) | 0.348492 / 0.540337 (-0.191845) | 0.444867 / 1.386936 (-0.942069) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#93dc73501298ccb1d31d854ba20fcf2c3b2fea8b \"CML watermark\")\n" ]
2024-08-09T01:34:06Z
2024-08-15T17:25:26Z
2024-08-15T10:13:22Z
CONTRIBUTOR
null
null
null
You get a pretty unhelpful error message when specifying a `cache_file_name` in a directory that doesn't exist, e.g. `cache_file_name="./cache/data.map"` ```python import datasets cache_file_name="./cache/train.map" dataset = datasets.load_dataset("ylecun/mnist") dataset["train"].map(lambda x: x, cache_file_name=cache_file_name) ``` ``` FileNotFoundError: [Errno 2] No such file or directory: '/.../cache/tmp48r61siw' ``` It is simple enough to create and I was expecting that this would have been the case. cc: @albertvillanova @lhoestq
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7096/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7096/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7096.diff", "html_url": "https://github.com/huggingface/datasets/pull/7096", "merged_at": "2024-08-15T10:13:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/7096.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7096" }
https://api.github.com/repos/huggingface/datasets/issues/5531
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5531/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5531/comments
https://api.github.com/repos/huggingface/datasets/issues/5531/events
https://github.com/huggingface/datasets/issues/5531
1,584,387,276
I_kwDODunzps5eb9TM
5,531
Invalid Arrow data from JSONL
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[]
2023-02-14T15:39:49Z
2023-02-14T15:46:09Z
null
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
This code fails: ```python from datasets import Dataset ds = Dataset.from_json(path_to_file) ds.data.validate() ``` raises ```python ArrowInvalid: Column 2: In chunk 1: Invalid: Struct child array #3 invalid: Invalid: Length spanned by list offsets (4064) larger than values array (length 4063) ``` This causes many issues for @TevenLeScao: - `map` fails because it fails to rewrite invalid arrow arrays ```python ~/Desktop/hf/datasets/src/datasets/arrow_writer.py in write_examples_on_file(self) 438 if all(isinstance(row[0][col], (pa.Array, pa.ChunkedArray)) for row in self.current_examples): 439 arrays = [row[0][col] for row in self.current_examples] --> 440 batch_examples[col] = array_concat(arrays) 441 else: 442 batch_examples[col] = [ ~/Desktop/hf/datasets/src/datasets/table.py in array_concat(arrays) 1885 1886 if not _is_extension_type(array_type): -> 1887 return pa.concat_arrays(arrays) 1888 1889 def _offsets_concat(offsets): ~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/pyarrow/array.pxi in pyarrow.lib.concat_arrays() ~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status() ~/.virtualenvs/hf-datasets/lib/python3.7/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status() ArrowIndexError: array slice would exceed array length ``` - `to_dict()` **segfaults** ⚠️ ```python /Users/runner/work/crossbow/crossbow/arrow/cpp/src/arrow/array/data.cc:99: Check failed: (off) <= (length) Slice offset greater than array length ``` To reproduce: unzip the archive and run the above code using `sanity_oscar_en.jsonl` [sanity_oscar_en.jsonl.zip](https://github.com/huggingface/datasets/files/10734124/sanity_oscar_en.jsonl.zip) PS: reading using pandas and converting to Arrow works though (note that the dataset lives in RAM in this case): ```python ds = Dataset.from_pandas(pd.read_json(path_to_file, lines=True)) ds.data.validate() ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5531/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5531/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7249
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7249/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7249/comments
https://api.github.com/repos/huggingface/datasets/issues/7249/events
https://github.com/huggingface/datasets/issues/7249
2,610,136,636
I_kwDODunzps6bk4Y8
7,249
How to debugging
{ "avatar_url": "https://avatars.githubusercontent.com/u/49576595?v=4", "events_url": "https://api.github.com/users/ShDdu/events{/privacy}", "followers_url": "https://api.github.com/users/ShDdu/followers", "following_url": "https://api.github.com/users/ShDdu/following{/other_user}", "gists_url": "https://api.github.com/users/ShDdu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ShDdu", "id": 49576595, "login": "ShDdu", "node_id": "MDQ6VXNlcjQ5NTc2NTk1", "organizations_url": "https://api.github.com/users/ShDdu/orgs", "received_events_url": "https://api.github.com/users/ShDdu/received_events", "repos_url": "https://api.github.com/users/ShDdu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ShDdu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ShDdu/subscriptions", "type": "User", "url": "https://api.github.com/users/ShDdu", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-10-24T01:03:51Z
2024-10-24T01:03:51Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I wanted to use my own script to handle the processing, and followed the tutorial documentation by rewriting the MyDatasetConfig and MyDatasetBuilder (which contains the _info,_split_generators and _generate_examples methods) classes. Testing with simple data was able to output the results of the processing, but when I wished to do more complex processing, I found that I was unable to debug (even the simple samples were inaccessible). There are no errors reported, and I am able to print the _info,_split_generators and _generate_examples messages, but I am unable to access the breakpoints. ### Steps to reproduce the bug # my_dataset.py import json import datasets class MyDatasetConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(MyDatasetConfig, self).__init__(**kwargs) class MyDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ MyDatasetConfig( name="default", version=VERSION, description="myDATASET" ), ] def _info(self): print("info") # breakpoints return datasets.DatasetInfo( description="myDATASET", features=datasets.Features( { "id": datasets.Value("int32"), "text": datasets.Value("string"), "label": datasets.ClassLabel(names=["negative", "positive"]), } ), supervised_keys=("text", "label"), ) def _split_generators(self, dl_manager): print("generate") # breakpoints data_file = "data.json" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file} ), ] def _generate_examples(self, filepath): print("example") # breakpoints with open(filepath, encoding="utf-8") as f: data = json.load(f) for idx, sample in enumerate(data): yield idx, { "id": sample["id"], "text": sample["text"], "label": sample["label"], } #main.py import os os.environ["TRANSFORMERS_NO_MULTIPROCESSING"] = "1" from datasets import load_dataset dataset = load_dataset("my_dataset.py", split="train", cache_dir=None) print(dataset[:5]) ### Expected behavior Pause at breakpoints while running debugging ### Environment info pycharm
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7249/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7249/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6742
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6742/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6742/comments
https://api.github.com/repos/huggingface/datasets/issues/6742/events
https://github.com/huggingface/datasets/pull/6742
2,195,134,854
PR_kwDODunzps5qGSfG
6,742
Fix missing download_config in get_data_patterns
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6742). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005394 / 0.011353 (-0.005959) | 0.003780 / 0.011008 (-0.007228) | 0.063459 / 0.038508 (0.024951) | 0.028883 / 0.023109 (0.005774) | 0.239159 / 0.275898 (-0.036739) | 0.258123 / 0.323480 (-0.065357) | 0.003134 / 0.007986 (-0.004851) | 0.003452 / 0.004328 (-0.000876) | 0.049255 / 0.004250 (0.045005) | 0.042727 / 0.037052 (0.005675) | 0.257387 / 0.258489 (-0.001102) | 0.280762 / 0.293841 (-0.013079) | 0.027921 / 0.128546 (-0.100625) | 0.010867 / 0.075646 (-0.064779) | 0.207878 / 0.419271 (-0.211393) | 0.036003 / 0.043533 (-0.007530) | 0.247457 / 0.255139 (-0.007682) | 0.260231 / 0.283200 (-0.022969) | 0.019741 / 0.141683 (-0.121942) | 1.143645 / 1.452155 (-0.308510) | 1.188789 / 1.492716 (-0.303927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092065 / 0.018006 (0.074059) | 0.286021 / 0.000490 (0.285531) | 0.000220 / 0.000200 (0.000020) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018934 / 0.037411 (-0.018477) | 0.062474 / 0.014526 (0.047949) | 0.073384 / 0.176557 (-0.103172) | 0.121276 / 0.737135 (-0.615860) | 0.077792 / 0.296338 (-0.218546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285352 / 0.215209 (0.070143) | 2.783110 / 2.077655 (0.705456) | 1.487983 / 1.504120 (-0.016137) | 1.364264 / 1.541195 (-0.176930) | 1.388757 / 1.468490 (-0.079733) | 0.568347 / 4.584777 (-4.016430) | 2.402451 / 3.745712 (-1.343261) | 2.835577 / 5.269862 (-2.434285) | 1.754853 / 4.565676 (-2.810824) | 0.063355 / 0.424275 (-0.360920) | 0.005010 / 0.007607 (-0.002598) | 0.332061 / 0.226044 (0.106016) | 3.287121 / 2.268929 (1.018193) | 1.829520 / 55.444624 (-53.615104) | 1.542669 / 6.876477 (-5.333808) | 1.560679 / 2.142072 (-0.581393) | 0.642371 / 4.805227 (-4.162856) | 0.118636 / 6.500664 (-6.382028) | 0.042262 / 0.075469 (-0.033207) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984803 / 1.841788 (-0.856985) | 11.578044 / 8.074308 (3.503735) | 9.383428 / 10.191392 (-0.807964) | 0.141367 / 0.680424 (-0.539057) | 0.014047 / 0.534201 (-0.520154) | 0.291505 / 0.579283 (-0.287778) | 0.270199 / 0.434364 (-0.164165) | 0.329874 / 0.540337 (-0.210463) | 0.429386 / 1.386936 (-0.957550) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005322 / 0.011353 (-0.006031) | 0.004023 / 0.011008 (-0.006986) | 0.050126 / 0.038508 (0.011618) | 0.029937 / 0.023109 (0.006828) | 0.275985 / 0.275898 (0.000087) | 0.297965 / 0.323480 (-0.025515) | 0.004429 / 0.007986 (-0.003557) | 0.002729 / 0.004328 (-0.001599) | 0.048995 / 0.004250 (0.044744) | 0.044940 / 0.037052 (0.007888) | 0.288397 / 0.258489 (0.029908) | 0.317716 / 0.293841 (0.023875) | 0.029705 / 0.128546 (-0.098841) | 0.010972 / 0.075646 (-0.064674) | 0.058592 / 0.419271 (-0.360680) | 0.054640 / 0.043533 (0.011108) | 0.276456 / 0.255139 (0.021317) | 0.295119 / 0.283200 (0.011919) | 0.020032 / 0.141683 (-0.121651) | 1.175740 / 1.452155 (-0.276415) | 1.227246 / 1.492716 (-0.265471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092204 / 0.018006 (0.074197) | 0.300344 / 0.000490 (0.299855) | 0.000213 / 0.000200 (0.000013) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021540 / 0.037411 (-0.015871) | 0.076252 / 0.014526 (0.061726) | 0.087582 / 0.176557 (-0.088975) | 0.125977 / 0.737135 (-0.611159) | 0.090649 / 0.296338 (-0.205689) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294544 / 0.215209 (0.079335) | 2.883736 / 2.077655 (0.806082) | 1.570932 / 1.504120 (0.066812) | 1.449082 / 1.541195 (-0.092113) | 1.463262 / 1.468490 (-0.005228) | 0.559625 / 4.584777 (-4.025152) | 2.448593 / 3.745712 (-1.297119) | 2.663857 / 5.269862 (-2.606005) | 1.757812 / 4.565676 (-2.807865) | 0.061999 / 0.424275 (-0.362276) | 0.005100 / 0.007607 (-0.002507) | 0.343620 / 0.226044 (0.117575) | 3.487059 / 2.268929 (1.218130) | 1.963078 / 55.444624 (-53.481546) | 1.661758 / 6.876477 (-5.214719) | 1.799130 / 2.142072 (-0.342942) | 0.650194 / 4.805227 (-4.155034) | 0.117375 / 6.500664 (-6.383289) | 0.040957 / 0.075469 (-0.034512) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.037882 / 1.841788 (-0.803906) | 12.239784 / 8.074308 (4.165476) | 10.478186 / 10.191392 (0.286794) | 0.164446 / 0.680424 (-0.515978) | 0.014901 / 0.534201 (-0.519300) | 0.302485 / 0.579283 (-0.276798) | 0.283994 / 0.434364 (-0.150370) | 0.338473 / 0.540337 (-0.201864) | 0.468901 / 1.386936 (-0.918035) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5fa934e275d240d9b1228b2f598bc96390299339 \"CML watermark\")\n" ]
2024-03-19T14:29:25Z
2024-03-19T18:24:39Z
2024-03-19T18:15:13Z
MEMBER
null
null
null
Reported in https://github.com/huggingface/datasets-server/issues/2607
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6742/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6742/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6742.diff", "html_url": "https://github.com/huggingface/datasets/pull/6742", "merged_at": "2024-03-19T18:15:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/6742.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6742" }
https://api.github.com/repos/huggingface/datasets/issues/6993
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6993/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6993/comments
https://api.github.com/repos/huggingface/datasets/issues/6993/events
https://github.com/huggingface/datasets/pull/6993
2,370,444,104
PR_kwDODunzps5zYN7P
6,993
less script docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6993). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005810 / 0.011353 (-0.005543) | 0.003984 / 0.011008 (-0.007024) | 0.064347 / 0.038508 (0.025839) | 0.031943 / 0.023109 (0.008834) | 0.252596 / 0.275898 (-0.023302) | 0.274032 / 0.323480 (-0.049448) | 0.003494 / 0.007986 (-0.004492) | 0.002817 / 0.004328 (-0.001511) | 0.050132 / 0.004250 (0.045881) | 0.048008 / 0.037052 (0.010955) | 0.249037 / 0.258489 (-0.009452) | 0.288526 / 0.293841 (-0.005315) | 0.031038 / 0.128546 (-0.097509) | 0.012542 / 0.075646 (-0.063104) | 0.205682 / 0.419271 (-0.213590) | 0.038022 / 0.043533 (-0.005511) | 0.259001 / 0.255139 (0.003862) | 0.267455 / 0.283200 (-0.015744) | 0.021980 / 0.141683 (-0.119703) | 1.123996 / 1.452155 (-0.328159) | 1.173801 / 1.492716 (-0.318915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102827 / 0.018006 (0.084821) | 0.317210 / 0.000490 (0.316720) | 0.000222 / 0.000200 (0.000022) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019483 / 0.037411 (-0.017928) | 0.064098 / 0.014526 (0.049572) | 0.076219 / 0.176557 (-0.100337) | 0.122898 / 0.737135 (-0.614237) | 0.080657 / 0.296338 (-0.215681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.215209 (0.063169) | 2.792314 / 2.077655 (0.714659) | 1.516439 / 1.504120 (0.012319) | 1.374052 / 1.541195 (-0.167143) | 1.370848 / 1.468490 (-0.097642) | 0.756002 / 4.584777 (-3.828775) | 2.349581 / 3.745712 (-1.396131) | 2.994094 / 5.269862 (-2.275768) | 1.904242 / 4.565676 (-2.661435) | 0.078769 / 0.424275 (-0.345506) | 0.005103 / 0.007607 (-0.002505) | 0.336331 / 0.226044 (0.110287) | 3.329502 / 2.268929 (1.060574) | 1.863545 / 55.444624 (-53.581079) | 1.554690 / 6.876477 (-5.321787) | 1.588448 / 2.142072 (-0.553624) | 0.787322 / 4.805227 (-4.017905) | 0.138345 / 6.500664 (-6.362320) | 0.042228 / 0.075469 (-0.033241) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968607 / 1.841788 (-0.873181) | 11.972076 / 8.074308 (3.897768) | 9.927608 / 10.191392 (-0.263784) | 0.141666 / 0.680424 (-0.538758) | 0.014591 / 0.534201 (-0.519610) | 0.301995 / 0.579283 (-0.277288) | 0.274360 / 0.434364 (-0.160004) | 0.338396 / 0.540337 (-0.201941) | 0.431081 / 1.386936 (-0.955855) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006122 / 0.011353 (-0.005231) | 0.004201 / 0.011008 (-0.006807) | 0.050204 / 0.038508 (0.011695) | 0.033222 / 0.023109 (0.010113) | 0.274357 / 0.275898 (-0.001542) | 0.296238 / 0.323480 (-0.027242) | 0.004542 / 0.007986 (-0.003444) | 0.002880 / 0.004328 (-0.001449) | 0.049103 / 0.004250 (0.044852) | 0.042294 / 0.037052 (0.005242) | 0.286459 / 0.258489 (0.027970) | 0.324988 / 0.293841 (0.031147) | 0.032084 / 0.128546 (-0.096462) | 0.012329 / 0.075646 (-0.063318) | 0.060261 / 0.419271 (-0.359010) | 0.034130 / 0.043533 (-0.009403) | 0.271432 / 0.255139 (0.016293) | 0.306251 / 0.283200 (0.023051) | 0.019744 / 0.141683 (-0.121939) | 1.153483 / 1.452155 (-0.298672) | 1.209126 / 1.492716 (-0.283591) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004737 / 0.018006 (-0.013270) | 0.313458 / 0.000490 (0.312968) | 0.000216 / 0.000200 (0.000017) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022472 / 0.037411 (-0.014939) | 0.076725 / 0.014526 (0.062199) | 0.091356 / 0.176557 (-0.085201) | 0.132427 / 0.737135 (-0.604708) | 0.091072 / 0.296338 (-0.205266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294414 / 0.215209 (0.079205) | 2.913695 / 2.077655 (0.836040) | 1.567309 / 1.504120 (0.063189) | 1.448664 / 1.541195 (-0.092531) | 1.466386 / 1.468490 (-0.002105) | 0.718605 / 4.584777 (-3.866172) | 0.951963 / 3.745712 (-2.793749) | 2.812565 / 5.269862 (-2.457297) | 1.886483 / 4.565676 (-2.679193) | 0.077912 / 0.424275 (-0.346363) | 0.005371 / 0.007607 (-0.002236) | 0.349528 / 0.226044 (0.123484) | 3.431049 / 2.268929 (1.162121) | 1.920210 / 55.444624 (-53.524414) | 1.637927 / 6.876477 (-5.238549) | 1.767502 / 2.142072 (-0.374570) | 0.808672 / 4.805227 (-3.996555) | 0.134261 / 6.500664 (-6.366403) | 0.041295 / 0.075469 (-0.034174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023454 / 1.841788 (-0.818334) | 12.433731 / 8.074308 (4.359423) | 10.413191 / 10.191392 (0.221799) | 0.156813 / 0.680424 (-0.523611) | 0.015446 / 0.534201 (-0.518755) | 0.301935 / 0.579283 (-0.277348) | 0.133655 / 0.434364 (-0.300709) | 0.340296 / 0.540337 (-0.200041) | 0.466314 / 1.386936 (-0.920622) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6cf563fd57807e923a29ebbe327fecb4ef969877 \"CML watermark\")\n", "Hi @lhoestq,\r\n\r\nI was confused by `legacy` prefix added to the [image data loading](https://huggingface.co/docs/datasets/main/en/image_dataset#legacy-loading-script) script section. I have a custom image dataset and have looked through the documentation to find something similar but can't find a good alternative What is now the recommend way to create a custom image dataset then? I want the HF format but will not host it on the hub.\r\n\r\nApologies in advance if this is the wrong place to ask such questions...", "We stopped making new features for datasets with scripts for obvious security reasons, that's why they are marked as \"legacy\". What is blocking you from hosting on HF ?", "Hi, thanks for the prompt answer :) I am working on proprietary datasets for the company where I am employed. We want to keep the data in-house but would like to investigate the use of the HF ecosystem.", "I see ! Note that it's possible to have private repos on HF (+ dataset viewer) and you can even choose the storage region, if it can help" ]
2024-06-24T14:45:28Z
2024-07-08T13:10:53Z
2024-06-27T09:31:21Z
MEMBER
null
null
null
+ mark as legacy in some parts of the docs since we'll not build new features for script datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6993/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6993/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6993.diff", "html_url": "https://github.com/huggingface/datasets/pull/6993", "merged_at": "2024-06-27T09:31:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/6993.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6993" }
https://api.github.com/repos/huggingface/datasets/issues/4633
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4633/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4633/comments
https://api.github.com/repos/huggingface/datasets/issues/4633/events
https://github.com/huggingface/datasets/pull/4633
1,294,367,783
PR_kwDODunzps462_qX
4,633
[data_files] Only match separated split names
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I ran a script to find affected datasets (just did it on non-private non-gated). Adding \"testing\" and \"evaluation\" fixes all of of them except one:\r\n- projecte-aina/cat_manynames:\thuman_annotated_testset.tsv\r\n\r\nLet me open a PR on their repository to fix it\r\nEDIT: pr [here](https://huggingface.co/datasets/projecte-aina/cat_manynames/discussions/2)", "Feel free to merge @albertvillanova if it's all good to you :)", "Thanks for the feedback @albertvillanova I took your comments into account :)\r\n- added numbers as supported delimiters\r\n- used list comprehension to create the patterns list\r\n- updated the docs and the tests according to your comments\r\n\r\nLet me know what you think !", "I ended up removing the patching and the context manager :) merging" ]
2022-07-05T14:18:11Z
2022-07-18T13:20:29Z
2022-07-18T13:07:33Z
MEMBER
null
null
null
As reported in https://github.com/huggingface/datasets/issues/4477, the current pattern matching to infer which file goes into which split is too permissive. For example a file "contest.py" would be considered part of a test split (it contains "test") and "seqeval.py" as well (it contains "eval"). In this PR I made the pattern matching more robust by only matching split names **between separators**. The supported separators are dots, dashes, spaces and underscores. I updated the docs accordingly. One detail about the tests: I had to update one test because it was using `PurePath.match` as a reference for globbing, but it doesn't support the `[..]` glob pattern. Therefore I added a `mock_fs` context manager that can be used to easily define a dummy filesystem with certain files in it and run pattern matching tests. Its code comes mostly from test_streaming_download_manager.py Close https://github.com/huggingface/datasets/issues/4477
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4633/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4633/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4633.diff", "html_url": "https://github.com/huggingface/datasets/pull/4633", "merged_at": "2022-07-18T13:07:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/4633.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4633" }
https://api.github.com/repos/huggingface/datasets/issues/7530
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7530/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7530/comments
https://api.github.com/repos/huggingface/datasets/issues/7530/events
https://github.com/huggingface/datasets/issues/7530
3,007,452,499
I_kwDODunzps6zQhVT
7,530
How to solve "Spaces stuck in Building" problems
{ "avatar_url": "https://avatars.githubusercontent.com/u/185799756?v=4", "events_url": "https://api.github.com/users/kakamond/events{/privacy}", "followers_url": "https://api.github.com/users/kakamond/followers", "following_url": "https://api.github.com/users/kakamond/following{/other_user}", "gists_url": "https://api.github.com/users/kakamond/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kakamond", "id": 185799756, "login": "kakamond", "node_id": "U_kgDOCxMUTA", "organizations_url": "https://api.github.com/users/kakamond/orgs", "received_events_url": "https://api.github.com/users/kakamond/received_events", "repos_url": "https://api.github.com/users/kakamond/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kakamond/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kakamond/subscriptions", "type": "User", "url": "https://api.github.com/users/kakamond", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n", "> I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n\nAlso see https://github.com/huggingface/huggingface_hub/issues/3019", "I'm facing the same issue. The build fails with the same error, and restarting won't help. Is there a fix or ETA? " ]
2025-04-21T03:08:38Z
2025-04-22T07:49:52Z
2025-04-22T07:49:52Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Public spaces may stuck in Building after restarting, error log as follows: build error Unexpected job error ERROR: failed to push spaces-registry.huggingface.tech/spaces/*:cpu-*-*: unexpected status from HEAD request to https://spaces-registry.huggingface.tech/v2/spaces/*/manifests/cpu-*-*: 401 Unauthorized ### Steps to reproduce the bug Restart space / Factory rebuild cannot avoid it ### Expected behavior Fix this problem ### Environment info no requirements.txt can still happen python gradio spaces
{ "avatar_url": "https://avatars.githubusercontent.com/u/185799756?v=4", "events_url": "https://api.github.com/users/kakamond/events{/privacy}", "followers_url": "https://api.github.com/users/kakamond/followers", "following_url": "https://api.github.com/users/kakamond/following{/other_user}", "gists_url": "https://api.github.com/users/kakamond/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kakamond", "id": 185799756, "login": "kakamond", "node_id": "U_kgDOCxMUTA", "organizations_url": "https://api.github.com/users/kakamond/orgs", "received_events_url": "https://api.github.com/users/kakamond/received_events", "repos_url": "https://api.github.com/users/kakamond/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kakamond/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kakamond/subscriptions", "type": "User", "url": "https://api.github.com/users/kakamond", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7530/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7530/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7275
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7275/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7275/comments
https://api.github.com/repos/huggingface/datasets/issues/7275/events
https://github.com/huggingface/datasets/issues/7275
2,631,713,397
I_kwDODunzps6c3MJ1
7,275
load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/46941974?v=4", "events_url": "https://api.github.com/users/santiagobp99/events{/privacy}", "followers_url": "https://api.github.com/users/santiagobp99/followers", "following_url": "https://api.github.com/users/santiagobp99/following{/other_user}", "gists_url": "https://api.github.com/users/santiagobp99/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/santiagobp99", "id": 46941974, "login": "santiagobp99", "node_id": "MDQ6VXNlcjQ2OTQxOTc0", "organizations_url": "https://api.github.com/users/santiagobp99/orgs", "received_events_url": "https://api.github.com/users/santiagobp99/received_events", "repos_url": "https://api.github.com/users/santiagobp99/repos", "site_admin": false, "starred_url": "https://api.github.com/users/santiagobp99/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/santiagobp99/subscriptions", "type": "User", "url": "https://api.github.com/users/santiagobp99", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-04T03:01:44Z
2024-11-04T03:01:44Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am performing two operations I see on a hugging face tutorial (Fine-tune a language model), and I am defining every aspect inside the mapped functions, also some imports of the library because it doesnt identify anything not defined outside that function where the dataset elements are being mapped: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb#scrollTo=iaAJy5Hu3l_B `- lm_datasets = tokenized_datasets.map( group_texts, batched=True, batch_size=batch_size, num_proc=4, ) - tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"]) def tokenize_function(examples): model_checkpoint = 'gpt2' from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True) return tokenizer(examples["text"])` ### Steps to reproduce the bug Currently handle all the imports inside the function ### Expected behavior The code must work es expected in the notebook, but currently this is not happening. https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb#scrollTo=iaAJy5Hu3l_B ### Environment info print(transformers.__version__) 4.46.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7275/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7275/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4832
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4832/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4832/comments
https://api.github.com/repos/huggingface/datasets/issues/4832/events
https://github.com/huggingface/datasets/pull/4832
1,336,727,389
PR_kwDODunzps49EQav
4,832
Fix tags in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "The non-passing tests are caused by other missing information in the dataset cards." ]
2022-08-12T04:11:23Z
2022-08-12T04:41:55Z
2022-08-12T04:27:24Z
MEMBER
null
null
null
Fix wrong tags in dataset cards.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4832/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4832/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4832.diff", "html_url": "https://github.com/huggingface/datasets/pull/4832", "merged_at": "2022-08-12T04:27:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/4832.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4832" }
https://api.github.com/repos/huggingface/datasets/issues/5535
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5535/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5535/comments
https://api.github.com/repos/huggingface/datasets/issues/5535/events
https://github.com/huggingface/datasets/pull/5535
1,586,520,369
PR_kwDODunzps5KEb5L
5,535
Add JAX-formatting documentation
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "> Awesome thank you !\r\n> \r\n> Could you also explain how to use certain types like ClassLabel, Image or Audio with jax ? You can get a lot of inspiration from the \"Other feature types\" section in the [PyTorch page](https://huggingface.co/docs/datasets/use_with_pytorch)\r\n> \r\n> I also think it's be nice if this page had the same structure as the pytorch or tf ones, with sections named\r\n> \r\n> * Dataset format\r\n> \r\n> * N-dimensional arrays\r\n> \r\n> * Other feature types\r\n> \r\n> * Data loading\r\n\r\nSure @lhoestq I'll do that later this afternoon whenever I'm done working! Thanks for the feedback as always 🤗", "Also, @lhoestq do you want me to elaborate more on the `## Data loading` section on how to use `datasets` to train a JAX model offering alternatives e.g. `Flax`, or do I keep it pure JAX? Thanks!", "If you have a good example with `flax` it can also be helpful for users", "For now, I think that probably it's not worth adding a `Flax` example, as train loops need to be done manually as in pure JAX, so probably the JAX example is enough. Anyway, let me know if you see something missing/incomplete/misleading/etc. and I'll update that ASAP 👍🏻 ", "P.S. I see that the `benchmark` action is being triggered on every PR, is it worth it? e.g. now I'm just editing the docs, so does it make any sense to trigger still the whole CI pipeline (including `benchmark`)? Just asking because in this PR for example it could be skipped.", "> P.S. I see that the benchmark action is being triggered on every PR, is it worth it? e.g. now I'm just editing the docs, so does it make any sense to trigger still the whole CI pipeline (including benchmark)? Just asking because in this PR for example it could be skipped.\r\n\r\nWe could restrict it to PRs modifying files in src/ indeed ^^'", "> LGTM :)\n\nCool thanks! My bad I didn't update those code blocks 🙃 Thanks for doing so before merge!", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009336 / 0.011353 (-0.002017) | 0.005037 / 0.011008 (-0.005971) | 0.102168 / 0.038508 (0.063659) | 0.035351 / 0.023109 (0.012242) | 0.299616 / 0.275898 (0.023718) | 0.333269 / 0.323480 (0.009789) | 0.008215 / 0.007986 (0.000229) | 0.005047 / 0.004328 (0.000718) | 0.074257 / 0.004250 (0.070007) | 0.045080 / 0.037052 (0.008028) | 0.300657 / 0.258489 (0.042168) | 0.357569 / 0.293841 (0.063728) | 0.038614 / 0.128546 (-0.089932) | 0.011995 / 0.075646 (-0.063651) | 0.369141 / 0.419271 (-0.050130) | 0.047603 / 0.043533 (0.004070) | 0.297694 / 0.255139 (0.042555) | 0.315380 / 0.283200 (0.032180) | 0.105009 / 0.141683 (-0.036674) | 1.421077 / 1.452155 (-0.031078) | 1.550024 / 1.492716 (0.057308) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239026 / 0.018006 (0.221020) | 0.550010 / 0.000490 (0.549520) | 0.003294 / 0.000200 (0.003094) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027180 / 0.037411 (-0.010231) | 0.107942 / 0.014526 (0.093416) | 0.121092 / 0.176557 (-0.055464) | 0.161028 / 0.737135 (-0.576108) | 0.124615 / 0.296338 (-0.171723) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399492 / 0.215209 (0.184283) | 3.984685 / 2.077655 (1.907030) | 1.794784 / 1.504120 (0.290664) | 1.604849 / 1.541195 (0.063654) | 1.682994 / 1.468490 (0.214504) | 0.691197 / 4.584777 (-3.893580) | 3.741816 / 3.745712 (-0.003897) | 2.092151 / 5.269862 (-3.177711) | 1.319106 / 4.565676 (-3.246570) | 0.083875 / 0.424275 (-0.340400) | 0.012473 / 0.007607 (0.004866) | 0.514057 / 0.226044 (0.288012) | 5.110217 / 2.268929 (2.841288) | 2.259105 / 55.444624 (-53.185519) | 1.914021 / 6.876477 (-4.962455) | 1.958371 / 2.142072 (-0.183701) | 0.819800 / 4.805227 (-3.985428) | 0.161153 / 6.500664 (-6.339511) | 0.061967 / 0.075469 (-0.013502) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.198553 / 1.841788 (-0.643234) | 14.793201 / 8.074308 (6.718893) | 14.646807 / 10.191392 (4.455415) | 0.152805 / 0.680424 (-0.527619) | 0.029206 / 0.534201 (-0.504995) | 0.440875 / 0.579283 (-0.138408) | 0.434925 / 0.434364 (0.000561) | 0.533495 / 0.540337 (-0.006842) | 0.624479 / 1.386936 (-0.762457) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007346 / 0.011353 (-0.004007) | 0.005422 / 0.011008 (-0.005586) | 0.073930 / 0.038508 (0.035422) | 0.032978 / 0.023109 (0.009869) | 0.335182 / 0.275898 (0.059284) | 0.371916 / 0.323480 (0.048436) | 0.005851 / 0.007986 (-0.002135) | 0.005582 / 0.004328 (0.001254) | 0.073090 / 0.004250 (0.068839) | 0.048395 / 0.037052 (0.011342) | 0.353921 / 0.258489 (0.095432) | 0.380678 / 0.293841 (0.086837) | 0.036628 / 0.128546 (-0.091919) | 0.012392 / 0.075646 (-0.063254) | 0.086265 / 0.419271 (-0.333006) | 0.049262 / 0.043533 (0.005729) | 0.334790 / 0.255139 (0.079651) | 0.355278 / 0.283200 (0.072078) | 0.102714 / 0.141683 (-0.038969) | 1.536366 / 1.452155 (0.084211) | 1.565984 / 1.492716 (0.073268) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216050 / 0.018006 (0.198043) | 0.554972 / 0.000490 (0.554482) | 0.002432 / 0.000200 (0.002232) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028602 / 0.037411 (-0.008809) | 0.123681 / 0.014526 (0.109155) | 0.136763 / 0.176557 (-0.039793) | 0.170083 / 0.737135 (-0.567052) | 0.138771 / 0.296338 (-0.157567) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420036 / 0.215209 (0.204827) | 4.188734 / 2.077655 (2.111079) | 2.014758 / 1.504120 (0.510638) | 1.818423 / 1.541195 (0.277228) | 1.940790 / 1.468490 (0.472300) | 0.691420 / 4.584777 (-3.893357) | 3.782996 / 3.745712 (0.037284) | 2.131278 / 5.269862 (-3.138583) | 1.363043 / 4.565676 (-3.202633) | 0.087182 / 0.424275 (-0.337093) | 0.012448 / 0.007607 (0.004841) | 0.519296 / 0.226044 (0.293252) | 5.220397 / 2.268929 (2.951469) | 2.474243 / 55.444624 (-52.970381) | 2.139726 / 6.876477 (-4.736751) | 2.200700 / 2.142072 (0.058627) | 0.841171 / 4.805227 (-3.964056) | 0.169234 / 6.500664 (-6.331430) | 0.063879 / 0.075469 (-0.011590) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260262 / 1.841788 (-0.581526) | 14.853209 / 8.074308 (6.778901) | 13.944085 / 10.191392 (3.752693) | 0.192014 / 0.680424 (-0.488410) | 0.017811 / 0.534201 (-0.516390) | 0.427166 / 0.579283 (-0.152117) | 0.438263 / 0.434364 (0.003899) | 0.538815 / 0.540337 (-0.001523) | 0.641398 / 1.386936 (-0.745538) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#139e9ae67a88cd79274bbf8315d861ee8bc7175f \"CML watermark\")\n" ]
2023-02-15T20:35:11Z
2023-02-20T10:39:42Z
2023-02-20T10:32:39Z
MEMBER
null
null
null
## What's in this PR? As a follow-up of #5522, I've created this entry in the documentation to explain how to use `.with_format("jax")` and why is it useful. @lhoestq Feel free to drop any feedback and/or suggestion, as probably more useful features can be included there!
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5535/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5535/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5535.diff", "html_url": "https://github.com/huggingface/datasets/pull/5535", "merged_at": "2023-02-20T10:32:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/5535.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5535" }
https://api.github.com/repos/huggingface/datasets/issues/5451
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5451/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5451/comments
https://api.github.com/repos/huggingface/datasets/issues/5451/events
https://github.com/huggingface/datasets/issues/5451
1,552,336,300
I_kwDODunzps5chsWs
5,451
ImageFolder BadZipFile: Bad offset for central directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/1524208?v=4", "events_url": "https://api.github.com/users/hmartiro/events{/privacy}", "followers_url": "https://api.github.com/users/hmartiro/followers", "following_url": "https://api.github.com/users/hmartiro/following{/other_user}", "gists_url": "https://api.github.com/users/hmartiro/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hmartiro", "id": 1524208, "login": "hmartiro", "node_id": "MDQ6VXNlcjE1MjQyMDg=", "organizations_url": "https://api.github.com/users/hmartiro/orgs", "received_events_url": "https://api.github.com/users/hmartiro/received_events", "repos_url": "https://api.github.com/users/hmartiro/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hmartiro/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hmartiro/subscriptions", "type": "User", "url": "https://api.github.com/users/hmartiro", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Could you share the full stack trace ? Which dataset did you try to load ?\r\n\r\nit may be related to https://github.com/huggingface/datasets/pull/5640", "The `BadZipFile` error means the ZIP file is corrupted, so I'm closing this issue as it's not directly related to `datasets`.", "For others that find this issue following a `BadZipFile` error, I had the same problem because I had a file in a folder dataset `my-image.target` and the datasets library was incorrectly determining that the (PNG) file was a zip archive. When it tried to extract the file, this error occurred. \r\n\r\nUpdating to `datasets==2.12.0` fixed the problem for me." ]
2023-01-22T23:50:12Z
2023-05-23T10:35:48Z
2023-02-10T16:31:36Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I'm getting the following exception: ``` lib/python3.10/zipfile.py:1353 in _RealGetContents │ │ │ │ 1350 │ │ # self.start_dir: Position of start of central directory │ │ 1351 │ │ self.start_dir = offset_cd + concat │ │ 1352 │ │ if self.start_dir < 0: │ │ ❱ 1353 │ │ │ raise BadZipFile("Bad offset for central directory") │ │ 1354 │ │ fp.seek(self.start_dir, 0) │ │ 1355 │ │ data = fp.read(size_cd) │ │ 1356 │ │ fp = io.BytesIO(data) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ BadZipFile: Bad offset for central directory Extracting data files: 35%|█████████████████▊ | 38572/110812 [00:10<00:20, 3576.26it/s] ``` ### Steps to reproduce the bug ``` load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ), ``` ### Expected behavior loads the dataset ### Environment info datasets==2.8.0 Python 3.10.8 Linux 129-146-3-202 5.15.0-52-generic #58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5451/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5451/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6155
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6155/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6155/comments
https://api.github.com/repos/huggingface/datasets/issues/6155/events
https://github.com/huggingface/datasets/pull/6155
1,854,661,682
PR_kwDODunzps5YI8Pc
6,155
Raise FileNotFoundError when passing data_files that don't exist
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009288 / 0.011353 (-0.002065) | 0.005950 / 0.011008 (-0.005058) | 0.122376 / 0.038508 (0.083868) | 0.093177 / 0.023109 (0.070068) | 0.448517 / 0.275898 (0.172619) | 0.474999 / 0.323480 (0.151520) | 0.005133 / 0.007986 (-0.002853) | 0.005123 / 0.004328 (0.000795) | 0.085479 / 0.004250 (0.081229) | 0.065613 / 0.037052 (0.028561) | 0.451179 / 0.258489 (0.192690) | 0.516876 / 0.293841 (0.223036) | 0.047536 / 0.128546 (-0.081010) | 0.013894 / 0.075646 (-0.061752) | 0.382149 / 0.419271 (-0.037122) | 0.067380 / 0.043533 (0.023848) | 0.419282 / 0.255139 (0.164143) | 0.482042 / 0.283200 (0.198842) | 0.041230 / 0.141683 (-0.100452) | 1.818127 / 1.452155 (0.365972) | 1.938123 / 1.492716 (0.445406) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271824 / 0.018006 (0.253817) | 0.604933 / 0.000490 (0.604443) | 0.004953 / 0.000200 (0.004753) | 0.000173 / 0.000054 (0.000119) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036682 / 0.037411 (-0.000729) | 0.095604 / 0.014526 (0.081078) | 0.116862 / 0.176557 (-0.059695) | 0.191335 / 0.737135 (-0.545800) | 0.116620 / 0.296338 (-0.179718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620735 / 0.215209 (0.405526) | 6.157119 / 2.077655 (4.079465) | 2.848548 / 1.504120 (1.344428) | 2.493731 / 1.541195 (0.952536) | 2.505801 / 1.468490 (1.037311) | 0.837315 / 4.584777 (-3.747462) | 5.360653 / 3.745712 (1.614941) | 4.908863 / 5.269862 (-0.360999) | 3.184672 / 4.565676 (-1.381004) | 0.105687 / 0.424275 (-0.318588) | 0.011350 / 0.007607 (0.003743) | 0.745729 / 0.226044 (0.519684) | 7.431584 / 2.268929 (5.162655) | 3.644670 / 55.444624 (-51.799954) | 2.910159 / 6.876477 (-3.966317) | 3.257137 / 2.142072 (1.115065) | 1.041377 / 4.805227 (-3.763851) | 0.213289 / 6.500664 (-6.287375) | 0.089208 / 0.075469 (0.013739) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.727274 / 1.841788 (-0.114513) | 25.448436 / 8.074308 (17.374128) | 23.016108 / 10.191392 (12.824716) | 0.219454 / 0.680424 (-0.460970) | 0.028531 / 0.534201 (-0.505670) | 0.500231 / 0.579283 (-0.079052) | 0.614631 / 0.434364 (0.180267) | 0.557926 / 0.540337 (0.017588) | 0.786261 / 1.386936 (-0.600675) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008608 / 0.011353 (-0.002745) | 0.006185 / 0.011008 (-0.004823) | 0.089258 / 0.038508 (0.050750) | 0.090109 / 0.023109 (0.067000) | 0.522200 / 0.275898 (0.246302) | 0.559218 / 0.323480 (0.235738) | 0.008983 / 0.007986 (0.000997) | 0.004488 / 0.004328 (0.000159) | 0.083658 / 0.004250 (0.079408) | 0.064962 / 0.037052 (0.027909) | 0.519477 / 0.258489 (0.260988) | 0.573842 / 0.293841 (0.280001) | 0.053984 / 0.128546 (-0.074562) | 0.014665 / 0.075646 (-0.060982) | 0.089438 / 0.419271 (-0.329834) | 0.065756 / 0.043533 (0.022223) | 0.525131 / 0.255139 (0.269992) | 0.568934 / 0.283200 (0.285734) | 0.037308 / 0.141683 (-0.104375) | 1.928790 / 1.452155 (0.476635) | 2.027926 / 1.492716 (0.535209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.309595 / 0.018006 (0.291588) | 0.615675 / 0.000490 (0.615186) | 0.004869 / 0.000200 (0.004669) | 0.000116 / 0.000054 (0.000061) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033306 / 0.037411 (-0.004105) | 0.104429 / 0.014526 (0.089904) | 0.116989 / 0.176557 (-0.059568) | 0.183638 / 0.737135 (-0.553497) | 0.132624 / 0.296338 (-0.163714) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644511 / 0.215209 (0.429302) | 6.425544 / 2.077655 (4.347889) | 3.079071 / 1.504120 (1.574951) | 2.720963 / 1.541195 (1.179769) | 2.835607 / 1.468490 (1.367117) | 0.863561 / 4.584777 (-3.721216) | 5.333462 / 3.745712 (1.587750) | 4.843183 / 5.269862 (-0.426678) | 3.106858 / 4.565676 (-1.458819) | 0.106790 / 0.424275 (-0.317485) | 0.008829 / 0.007607 (0.001222) | 0.759003 / 0.226044 (0.532958) | 7.771247 / 2.268929 (5.502318) | 3.896844 / 55.444624 (-51.547780) | 3.246671 / 6.876477 (-3.629806) | 3.486167 / 2.142072 (1.344094) | 1.071290 / 4.805227 (-3.733937) | 0.217972 / 6.500664 (-6.282692) | 0.089848 / 0.075469 (0.014379) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816048 / 1.841788 (-0.025739) | 25.625084 / 8.074308 (17.550776) | 24.490882 / 10.191392 (14.299490) | 0.242356 / 0.680424 (-0.438067) | 0.027886 / 0.534201 (-0.506315) | 0.496997 / 0.579283 (-0.082286) | 0.613815 / 0.434364 (0.179451) | 0.607132 / 0.540337 (0.066795) | 0.833051 / 1.386936 (-0.553885) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0adfa9ada14c38fce5973b5e3f196a2c46dc9170 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011580 / 0.011353 (0.000227) | 0.004199 / 0.011008 (-0.006809) | 0.084055 / 0.038508 (0.045547) | 0.096824 / 0.023109 (0.073715) | 0.308755 / 0.275898 (0.032857) | 0.341717 / 0.323480 (0.018237) | 0.006018 / 0.007986 (-0.001968) | 0.003597 / 0.004328 (-0.000731) | 0.064953 / 0.004250 (0.060702) | 0.059577 / 0.037052 (0.022525) | 0.316292 / 0.258489 (0.057803) | 0.358991 / 0.293841 (0.065150) | 0.033925 / 0.128546 (-0.094621) | 0.008828 / 0.075646 (-0.066818) | 0.288673 / 0.419271 (-0.130599) | 0.055494 / 0.043533 (0.011961) | 0.311181 / 0.255139 (0.056042) | 0.345220 / 0.283200 (0.062021) | 0.024033 / 0.141683 (-0.117649) | 1.504709 / 1.452155 (0.052554) | 1.587920 / 1.492716 (0.095204) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.301099 / 0.018006 (0.283093) | 0.594497 / 0.000490 (0.594007) | 0.006244 / 0.000200 (0.006044) | 0.000228 / 0.000054 (0.000174) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027663 / 0.037411 (-0.009748) | 0.081767 / 0.014526 (0.067241) | 0.097342 / 0.176557 (-0.079215) | 0.153200 / 0.737135 (-0.583935) | 0.097474 / 0.296338 (-0.198864) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405929 / 0.215209 (0.190719) | 4.045398 / 2.077655 (1.967743) | 2.044669 / 1.504120 (0.540549) | 1.872889 / 1.541195 (0.331694) | 1.911901 / 1.468490 (0.443411) | 0.480939 / 4.584777 (-4.103838) | 3.652833 / 3.745712 (-0.092879) | 3.281659 / 5.269862 (-1.988202) | 2.038023 / 4.565676 (-2.527654) | 0.056501 / 0.424275 (-0.367775) | 0.007571 / 0.007607 (-0.000036) | 0.481053 / 0.226044 (0.255009) | 4.802048 / 2.268929 (2.533119) | 2.560479 / 55.444624 (-52.884145) | 2.164852 / 6.876477 (-4.711625) | 2.374595 / 2.142072 (0.232523) | 0.576309 / 4.805227 (-4.228918) | 0.134831 / 6.500664 (-6.365833) | 0.060649 / 0.075469 (-0.014820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254210 / 1.841788 (-0.587578) | 19.826143 / 8.074308 (11.751835) | 14.446391 / 10.191392 (4.254999) | 0.165707 / 0.680424 (-0.514717) | 0.018221 / 0.534201 (-0.515980) | 0.395996 / 0.579283 (-0.183287) | 0.424567 / 0.434364 (-0.009796) | 0.459836 / 0.540337 (-0.080501) | 0.635969 / 1.386936 (-0.750967) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006696 / 0.011353 (-0.004657) | 0.004131 / 0.011008 (-0.006877) | 0.064587 / 0.038508 (0.026079) | 0.079189 / 0.023109 (0.056080) | 0.359977 / 0.275898 (0.084079) | 0.389331 / 0.323480 (0.065851) | 0.005502 / 0.007986 (-0.002483) | 0.003492 / 0.004328 (-0.000837) | 0.064967 / 0.004250 (0.060716) | 0.055953 / 0.037052 (0.018901) | 0.363997 / 0.258489 (0.105508) | 0.398405 / 0.293841 (0.104564) | 0.031292 / 0.128546 (-0.097254) | 0.008693 / 0.075646 (-0.066953) | 0.070451 / 0.419271 (-0.348820) | 0.048965 / 0.043533 (0.005432) | 0.358288 / 0.255139 (0.103149) | 0.379136 / 0.283200 (0.095936) | 0.024364 / 0.141683 (-0.117319) | 1.478998 / 1.452155 (0.026843) | 1.547282 / 1.492716 (0.054566) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.328188 / 0.018006 (0.310182) | 0.525968 / 0.000490 (0.525478) | 0.003782 / 0.000200 (0.003582) | 0.000089 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032528 / 0.037411 (-0.004883) | 0.087685 / 0.014526 (0.073159) | 0.100684 / 0.176557 (-0.075872) | 0.155944 / 0.737135 (-0.581192) | 0.101949 / 0.296338 (-0.194389) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418591 / 0.215209 (0.203382) | 4.199235 / 2.077655 (2.121580) | 2.183880 / 1.504120 (0.679760) | 2.024502 / 1.541195 (0.483307) | 2.017435 / 1.468490 (0.548945) | 0.488881 / 4.584777 (-4.095896) | 3.635002 / 3.745712 (-0.110710) | 3.359992 / 5.269862 (-1.909870) | 2.089686 / 4.565676 (-2.475991) | 0.057813 / 0.424275 (-0.366462) | 0.007349 / 0.007607 (-0.000258) | 0.490719 / 0.226044 (0.264674) | 4.859950 / 2.268929 (2.591022) | 2.616711 / 55.444624 (-52.827914) | 2.238671 / 6.876477 (-4.637806) | 2.442262 / 2.142072 (0.300190) | 0.598368 / 4.805227 (-4.206859) | 0.135281 / 6.500664 (-6.365383) | 0.063072 / 0.075469 (-0.012397) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356396 / 1.841788 (-0.485392) | 20.075123 / 8.074308 (12.000815) | 14.191317 / 10.191392 (3.999925) | 0.167691 / 0.680424 (-0.512732) | 0.018290 / 0.534201 (-0.515911) | 0.392881 / 0.579283 (-0.186402) | 0.413665 / 0.434364 (-0.020699) | 0.480766 / 0.540337 (-0.059571) | 0.655625 / 1.386936 (-0.731311) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a46ca9cc138754629be261522301e725c7d14152 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007834 / 0.011353 (-0.003519) | 0.004744 / 0.011008 (-0.006264) | 0.102061 / 0.038508 (0.063553) | 0.089246 / 0.023109 (0.066137) | 0.399936 / 0.275898 (0.124038) | 0.436974 / 0.323480 (0.113494) | 0.004791 / 0.007986 (-0.003195) | 0.005976 / 0.004328 (0.001647) | 0.079336 / 0.004250 (0.075086) | 0.065947 / 0.037052 (0.028894) | 0.403747 / 0.258489 (0.145258) | 0.460249 / 0.293841 (0.166408) | 0.038065 / 0.128546 (-0.090482) | 0.010179 / 0.075646 (-0.065467) | 0.403620 / 0.419271 (-0.015652) | 0.066439 / 0.043533 (0.022906) | 0.412123 / 0.255139 (0.156984) | 0.452121 / 0.283200 (0.168921) | 0.033533 / 0.141683 (-0.108150) | 1.858650 / 1.452155 (0.406495) | 1.916248 / 1.492716 (0.423532) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237180 / 0.018006 (0.219174) | 0.526844 / 0.000490 (0.526354) | 0.004220 / 0.000200 (0.004020) | 0.000123 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033860 / 0.037411 (-0.003552) | 0.105054 / 0.014526 (0.090528) | 0.116494 / 0.176557 (-0.060063) | 0.185990 / 0.737135 (-0.551145) | 0.119072 / 0.296338 (-0.177266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488549 / 0.215209 (0.273340) | 4.884950 / 2.077655 (2.807295) | 2.521819 / 1.504120 (1.017699) | 2.329382 / 1.541195 (0.788188) | 2.413710 / 1.468490 (0.945220) | 0.568325 / 4.584777 (-4.016452) | 4.243505 / 3.745712 (0.497793) | 3.785983 / 5.269862 (-1.483879) | 2.387146 / 4.565676 (-2.178531) | 0.067176 / 0.424275 (-0.357099) | 0.009145 / 0.007607 (0.001538) | 0.571482 / 0.226044 (0.345437) | 5.688822 / 2.268929 (3.419894) | 3.067346 / 55.444624 (-52.377278) | 2.688723 / 6.876477 (-4.187754) | 2.883785 / 2.142072 (0.741713) | 0.679326 / 4.805227 (-4.125901) | 0.156018 / 6.500664 (-6.344646) | 0.070947 / 0.075469 (-0.004522) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.556611 / 1.841788 (-0.285177) | 23.545074 / 8.074308 (15.470766) | 17.125108 / 10.191392 (6.933716) | 0.180180 / 0.680424 (-0.500244) | 0.021420 / 0.534201 (-0.512781) | 0.466888 / 0.579283 (-0.112395) | 0.485746 / 0.434364 (0.051383) | 0.606181 / 0.540337 (0.065843) | 0.776691 / 1.386936 (-0.610245) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007820 / 0.011353 (-0.003533) | 0.004531 / 0.011008 (-0.006478) | 0.076142 / 0.038508 (0.037634) | 0.086367 / 0.023109 (0.063258) | 0.456150 / 0.275898 (0.180252) | 0.499712 / 0.323480 (0.176232) | 0.006545 / 0.007986 (-0.001441) | 0.003760 / 0.004328 (-0.000568) | 0.076400 / 0.004250 (0.072150) | 0.069689 / 0.037052 (0.032637) | 0.459732 / 0.258489 (0.201243) | 0.504217 / 0.293841 (0.210376) | 0.037838 / 0.128546 (-0.090709) | 0.009804 / 0.075646 (-0.065843) | 0.084654 / 0.419271 (-0.334617) | 0.060301 / 0.043533 (0.016768) | 0.452984 / 0.255139 (0.197845) | 0.479956 / 0.283200 (0.196757) | 0.029674 / 0.141683 (-0.112009) | 1.814059 / 1.452155 (0.361904) | 1.878886 / 1.492716 (0.386170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326174 / 0.018006 (0.308168) | 0.539722 / 0.000490 (0.539232) | 0.025637 / 0.000200 (0.025437) | 0.000209 / 0.000054 (0.000154) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036328 / 0.037411 (-0.001084) | 0.106369 / 0.014526 (0.091843) | 0.118598 / 0.176557 (-0.057958) | 0.182760 / 0.737135 (-0.554376) | 0.120013 / 0.296338 (-0.176326) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507328 / 0.215209 (0.292119) | 5.092689 / 2.077655 (3.015034) | 2.962334 / 1.504120 (1.458214) | 2.507699 / 1.541195 (0.966504) | 2.612245 / 1.468490 (1.143755) | 0.568625 / 4.584777 (-4.016152) | 4.296484 / 3.745712 (0.550772) | 4.037788 / 5.269862 (-1.232073) | 2.579826 / 4.565676 (-1.985850) | 0.068558 / 0.424275 (-0.355717) | 0.008916 / 0.007607 (0.001309) | 0.601054 / 0.226044 (0.375010) | 6.016061 / 2.268929 (3.747133) | 3.311880 / 55.444624 (-52.132744) | 2.912926 / 6.876477 (-3.963551) | 3.101465 / 2.142072 (0.959393) | 0.686848 / 4.805227 (-4.118380) | 0.160243 / 6.500664 (-6.340421) | 0.074084 / 0.075469 (-0.001385) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.754343 / 1.841788 (-0.087444) | 24.215302 / 8.074308 (16.140994) | 17.211007 / 10.191392 (7.019615) | 0.188370 / 0.680424 (-0.492054) | 0.028157 / 0.534201 (-0.506044) | 0.490879 / 0.579283 (-0.088404) | 0.501508 / 0.434364 (0.067144) | 0.599719 / 0.540337 (0.059381) | 0.852438 / 1.386936 (-0.534498) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d84cd1d6f51ca75ec5f5c3db3f372f093758cac9 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009736 / 0.011353 (-0.001617) | 0.004761 / 0.011008 (-0.006247) | 0.100069 / 0.038508 (0.061561) | 0.077944 / 0.023109 (0.054835) | 0.419944 / 0.275898 (0.144046) | 0.459803 / 0.323480 (0.136323) | 0.006296 / 0.007986 (-0.001689) | 0.005375 / 0.004328 (0.001047) | 0.089457 / 0.004250 (0.085207) | 0.060585 / 0.037052 (0.023532) | 0.437988 / 0.258489 (0.179499) | 0.482676 / 0.293841 (0.188835) | 0.049126 / 0.128546 (-0.079420) | 0.015043 / 0.075646 (-0.060603) | 0.342500 / 0.419271 (-0.076771) | 0.067088 / 0.043533 (0.023555) | 0.418364 / 0.255139 (0.163225) | 0.458259 / 0.283200 (0.175059) | 0.034091 / 0.141683 (-0.107592) | 1.721589 / 1.452155 (0.269434) | 1.823142 / 1.492716 (0.330426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212110 / 0.018006 (0.194103) | 0.530957 / 0.000490 (0.530467) | 0.003581 / 0.000200 (0.003382) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030202 / 0.037411 (-0.007210) | 0.100552 / 0.014526 (0.086026) | 0.108150 / 0.176557 (-0.068407) | 0.173203 / 0.737135 (-0.563932) | 0.108624 / 0.296338 (-0.187715) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.577340 / 0.215209 (0.362131) | 5.794197 / 2.077655 (3.716543) | 2.396285 / 1.504120 (0.892165) | 2.151972 / 1.541195 (0.610777) | 2.109485 / 1.468490 (0.640995) | 0.873906 / 4.584777 (-3.710871) | 5.083302 / 3.745712 (1.337589) | 4.600756 / 5.269862 (-0.669105) | 2.891731 / 4.565676 (-1.673945) | 0.096293 / 0.424275 (-0.327982) | 0.008651 / 0.007607 (0.001044) | 0.719095 / 0.226044 (0.493051) | 7.193225 / 2.268929 (4.924297) | 3.220145 / 55.444624 (-52.224479) | 2.496715 / 6.876477 (-4.379762) | 2.672972 / 2.142072 (0.530900) | 1.031656 / 4.805227 (-3.773571) | 0.207854 / 6.500664 (-6.292810) | 0.074507 / 0.075469 (-0.000962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.552821 / 1.841788 (-0.288967) | 22.573015 / 8.074308 (14.498707) | 21.074321 / 10.191392 (10.882929) | 0.231911 / 0.680424 (-0.448513) | 0.027761 / 0.534201 (-0.506440) | 0.474644 / 0.579283 (-0.104639) | 0.563780 / 0.434364 (0.129416) | 0.527593 / 0.540337 (-0.012745) | 0.732299 / 1.386936 (-0.654637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008675 / 0.011353 (-0.002678) | 0.005268 / 0.011008 (-0.005741) | 0.079078 / 0.038508 (0.040570) | 0.073505 / 0.023109 (0.050395) | 0.453982 / 0.275898 (0.178083) | 0.487839 / 0.323480 (0.164359) | 0.005950 / 0.007986 (-0.002035) | 0.003848 / 0.004328 (-0.000481) | 0.076004 / 0.004250 (0.071754) | 0.058410 / 0.037052 (0.021358) | 0.460099 / 0.258489 (0.201610) | 0.514860 / 0.293841 (0.221019) | 0.048843 / 0.128546 (-0.079703) | 0.014275 / 0.075646 (-0.061371) | 0.090243 / 0.419271 (-0.329029) | 0.060092 / 0.043533 (0.016559) | 0.455669 / 0.255139 (0.200530) | 0.484738 / 0.283200 (0.201538) | 0.033012 / 0.141683 (-0.108671) | 1.738854 / 1.452155 (0.286699) | 1.852552 / 1.492716 (0.359835) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245453 / 0.018006 (0.227447) | 0.519929 / 0.000490 (0.519439) | 0.007262 / 0.000200 (0.007062) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031446 / 0.037411 (-0.005965) | 0.094236 / 0.014526 (0.079710) | 0.114457 / 0.176557 (-0.062100) | 0.167448 / 0.737135 (-0.569687) | 0.108791 / 0.296338 (-0.187548) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.603331 / 0.215209 (0.388122) | 6.051556 / 2.077655 (3.973902) | 2.797110 / 1.504120 (1.292990) | 2.500517 / 1.541195 (0.959322) | 2.531421 / 1.468490 (1.062931) | 0.852075 / 4.584777 (-3.732702) | 5.034140 / 3.745712 (1.288427) | 4.576573 / 5.269862 (-0.693289) | 2.973541 / 4.565676 (-1.592135) | 0.101303 / 0.424275 (-0.322972) | 0.008467 / 0.007607 (0.000860) | 0.707143 / 0.226044 (0.481098) | 7.262803 / 2.268929 (4.993874) | 3.548841 / 55.444624 (-51.895783) | 2.895975 / 6.876477 (-3.980502) | 3.063521 / 2.142072 (0.921449) | 1.014961 / 4.805227 (-3.790266) | 0.208527 / 6.500664 (-6.292137) | 0.074939 / 0.075469 (-0.000530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.670708 / 1.841788 (-0.171080) | 22.685227 / 8.074308 (14.610919) | 20.393017 / 10.191392 (10.201625) | 0.239303 / 0.680424 (-0.441121) | 0.027742 / 0.534201 (-0.506459) | 0.467230 / 0.579283 (-0.112053) | 0.564169 / 0.434364 (0.129805) | 0.554859 / 0.540337 (0.014522) | 0.767471 / 1.386936 (-0.619465) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#72a57356a46ded67f4d7a02741141a96061246a8 \"CML watermark\")\n" ]
2023-08-17T09:49:48Z
2023-08-18T13:45:58Z
2023-08-18T13:35:13Z
MEMBER
null
null
null
e.g. when running `load_dataset("parquet", data_files="doesnt_exist.parquet")`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6155/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6155/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6155.diff", "html_url": "https://github.com/huggingface/datasets/pull/6155", "merged_at": "2023-08-18T13:35:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/6155.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6155" }
https://api.github.com/repos/huggingface/datasets/issues/6745
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6745/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6745/comments
https://api.github.com/repos/huggingface/datasets/issues/6745/events
https://github.com/huggingface/datasets/issues/6745
2,198,541,732
I_kwDODunzps6DCxWk
6,745
Scraping the whole of github including private repos is bad; kindly stop
{ "avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4", "events_url": "https://api.github.com/users/ghost/events{/privacy}", "followers_url": "https://api.github.com/users/ghost/followers", "following_url": "https://api.github.com/users/ghost/following{/other_user}", "gists_url": "https://api.github.com/users/ghost/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ghost", "id": 10137, "login": "ghost", "node_id": "MDQ6VXNlcjEwMTM3", "organizations_url": "https://api.github.com/users/ghost/orgs", "received_events_url": "https://api.github.com/users/ghost/received_events", "repos_url": "https://api.github.com/users/ghost/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghost/subscriptions", "type": "User", "url": "https://api.github.com/users/ghost", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "It's not twitter here" ]
2024-03-20T20:54:06Z
2024-03-21T12:28:04Z
2024-03-21T10:24:56Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request https://github.com/bigcode-project/opt-out-v2 - opt out is not consent. kindly quit this ridiculous nonsense. ### Motivation [EDITED: insults not tolerated] ### Your contribution [EDITED: insults not tolerated]
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6745/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6745/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6992
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6992/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6992/comments
https://api.github.com/repos/huggingface/datasets/issues/6992/events
https://github.com/huggingface/datasets/issues/6992
2,367,890,622
I_kwDODunzps6NIyS-
6,992
Dataset with streaming doesn't work with proxy
{ "avatar_url": "https://avatars.githubusercontent.com/u/57779173?v=4", "events_url": "https://api.github.com/users/YHL04/events{/privacy}", "followers_url": "https://api.github.com/users/YHL04/followers", "following_url": "https://api.github.com/users/YHL04/following{/other_user}", "gists_url": "https://api.github.com/users/YHL04/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/YHL04", "id": 57779173, "login": "YHL04", "node_id": "MDQ6VXNlcjU3Nzc5MTcz", "organizations_url": "https://api.github.com/users/YHL04/orgs", "received_events_url": "https://api.github.com/users/YHL04/received_events", "repos_url": "https://api.github.com/users/YHL04/repos", "site_admin": false, "starred_url": "https://api.github.com/users/YHL04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/YHL04/subscriptions", "type": "User", "url": "https://api.github.com/users/YHL04", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! can you try updating `datasets` and `huggingface_hub` ?\r\n\r\n```\r\npip install -U datasets huggingface_hub\r\n```" ]
2024-06-22T16:12:08Z
2024-06-25T15:43:05Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I'm currently trying to stream data using dataset since the dataset is too big but it hangs indefinitely without loading the first batch. I use AIMOS which is a supercomputer that uses proxy to connect to the internet. I assume it has to do with the network configurations. I've already set up both HTTP_PROXY and HTTPS_PROXY. streaming = False works fine. ### Steps to reproduce the bug use load_dataset with streaming = True in AIMOS ### Expected behavior does not hang indefinitely and loads batches to start training run ### Environment info _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge _pytorch_select 2.0 cuda_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 abseil-cpp 20220623.0 h9888cd1_6 conda-forge absl-py 1.0.0 py311h399429b_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 aiofiles 23.2.1 pyhd8ed1ab_0 conda-forge aiohttp 3.8.6 py311hf118e41_0 aiosignal 1.2.0 pyhd3eb1b0_0 archspec 0.2.3 pyhd8ed1ab_0 conda-forge arrow-cpp 11.0.0 ha3edaa6_5_cpu conda-forge async-timeout 4.0.2 py311h6ffa863_0 attrs 23.1.0 py311h6ffa863_0 av 10.0.0 py311he6153ed_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 aws-c-auth 0.6.24 hb81f6d7_5 conda-forge aws-c-cal 0.5.20 h3c2b4d9_6 conda-forge aws-c-common 0.8.11 h4194056_0 conda-forge aws-c-compression 0.2.16 ha19333d_3 conda-forge aws-c-event-stream 0.2.18 h12a9399_6 conda-forge aws-c-http 0.7.4 ha2cde00_2 conda-forge aws-c-io 0.13.17 h9189062_2 conda-forge aws-c-mqtt 0.8.6 h40d1a04_6 conda-forge aws-c-s3 0.2.4 hbdbe4f0_3 conda-forge aws-c-sdkutils 0.1.7 ha19333d_3 conda-forge aws-checksums 0.1.14 ha19333d_3 conda-forge aws-crt-cpp 0.19.7 hd018011_7 conda-forge aws-sdk-cpp 1.10.57 hb9575ba_4 conda-forge blas 1.0 openblas blinker 1.8.2 pyhd8ed1ab_0 conda-forge boltons 23.0.0 py311h6ffa863_0 boost-cpp 1.82.0 h25e6d66_2 bottleneck 1.3.5 py311h34f6284_0 brotli 1.0.9 hf118e41_7 brotli-bin 1.0.9 hf118e41_7 brotli-python 1.0.9 py311h4a02239_7 bzip2 1.0.8 h7b6447c_0 c-ares 1.19.1 hf118e41_0 ca-certificates 2024.6.2 h0f6029e_0 conda-forge cachetools 5.3.3 pyhd8ed1ab_0 conda-forge certifi 2024.6.2 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311hf118e41_3 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.7 unix_pyh707e725_0 conda-forge conda 24.5.0 py311h1af927a_0 conda-forge conda-content-trust 0.2.0 py311h6ffa863_0 conda-libmamba-solver 23.11.1 py311h6ffa863_0 conda-package-handling 2.2.0 py311h6ffa863_0 conda-package-streaming 0.9.0 py311h6ffa863_0 contourpy 1.0.5 py311h25e6d66_0 cryptography 41.0.3 py311hb0e80e7_0 cudatoolkit 11.8.0 hedcfb66_13 conda-forge cudnn 8.9.2_11.8 h9ceb136_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 cycler 0.11.0 pyhd3eb1b0_0 datasets 2.12.0 py311h6ffa863_0 dill 0.3.6 py311h6ffa863_0 distro 1.9.0 pyhd8ed1ab_0 conda-forge ffmpeg 4.2.2 opence_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 filelock 3.9.0 py311h6ffa863_0 fmt 9.1.0 h25e6d66_0 fonttools 4.25.0 pyhd3eb1b0_0 freetype 2.12.1 hd23a775_0 frozendict 2.4.4 py311hb02d432_0 conda-forge frozenlist 1.4.0 py311hf118e41_0 fsspec 2023.9.2 py311h6ffa863_0 gflags 2.2.2 he6710b0_0 giflib 5.2.1 hf118e41_3 glog 0.6.0 hbe088e0_0 conda-forge gmp 6.3.0 h46f38da_0 conda-forge gmpy2 2.1.5 py311h2758da7_1 conda-forge google-auth 2.30.0 pyhff2d567_0 conda-forge google-auth-oauthlib 0.5.3 pyhd8ed1ab_0 conda-forge grpc-cpp 1.51.1 h8ba971d_1 conda-forge grpcio 1.54.3 py311h414e0d3_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 huggingface_hub 0.17.3 py311h6ffa863_0 icu 73.1 h4a02239_0 idna 3.4 py311h6ffa863_0 importlib-metadata 6.0.0 py311h6ffa863_0 jinja2 3.1.4 pyhd8ed1ab_0 conda-forge jpeg 9e hf118e41_1 jsonpatch 1.32 pyhd3eb1b0_0 jsonpointer 2.1 pyhd3eb1b0_0 kiwisolver 1.4.4 py311h4a02239_0 krb5 1.20.1 hc019ccd_1 lame 3.100 hb283c62_1003 conda-forge lcms2 2.12 h2045e0b_0 ld_impl_linux-ppc64le 2.38 hec883e6_1 lerc 3.0 h29c3540_0 leveldb 1.23 h24532b4_1 conda-forge libabseil 20220623.0 cxx17_h9235812_6 conda-forge libarchive 3.6.2 hd8ab008_2 libarrow 11.0.0 h837770b_5_cpu conda-forge libboost 1.82.0 haf51a6a_2 libbrotlicommon 1.0.9 hf118e41_7 libbrotlidec 1.0.9 hf118e41_7 libbrotlienc 1.0.9 hf118e41_7 libcrc32c 1.1.2 h3b9df90_0 conda-forge libcurl 8.4.0 h4d62439_0 libdeflate 1.17 hf118e41_1 libedit 3.1.20221030 hf118e41_0 libev 4.33 h140841e_1 libevent 2.1.10 h19c23f1_4 conda-forge libexpat 2.6.2 h46f38da_0 conda-forge libffi 3.4.4 h4a02239_0 libgcc-ng 13.2.0 h31e42bb_10 conda-forge libgfortran-ng 11.2.0 hb3889a9_1 libgfortran5 11.2.0 h1234567_1 libgomp 13.2.0 h31e42bb_10 conda-forge libgoogle-cloud 2.7.0 h11140b6_1 conda-forge libgrpc 1.51.1 h4d29a31_1 conda-forge libmamba 1.5.3 h7c6fafd_0 libmambapy 1.5.3 py311h828bf7b_0 libnghttp2 1.57.0 h44e5816_0 libnsl 2.0.1 ha17a0cc_0 conda-forge libopenblas 0.3.23 hc5a31fb_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 libopus 1.3.1 h4e0d66e_1 conda-forge libpng 1.6.39 hf118e41_0 libprotobuf 3.21.12 h1776448_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 libsolv 0.7.24 h0f529ac_0 libsqlite 3.45.3 hd4bbf49_0 conda-forge libssh2 1.10.0 h50fa78f_2 libstdcxx-ng 13.2.0 h262982c_10 conda-forge libthrift 0.18.0 h82f1162_0 conda-forge libtiff 4.5.1 h4a02239_0 libutf8proc 2.8.0 hb283c62_0 conda-forge libuuid 2.38.1 h4194056_0 conda-forge libvpx 1.13.1 h46f38da_0 conda-forge libwebp 1.3.2 h0f96ee2_0 libwebp-base 1.3.2 hf118e41_0 libxcrypt 4.4.36 ha17a0cc_1 conda-forge libxml2 2.10.4 h18e3229_1 libzlib 1.2.13 h1f2b957_6 conda-forge llvm-openmp 14.0.6 hc028133_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 lmdb 0.9.31 ha17a0cc_1 conda-forge lz4-c 1.9.4 h4a02239_0 markdown 3.4.4 pyhd8ed1ab_0 conda-forge markupsafe 2.1.5 py311h32d8acf_0 conda-forge matplotlib 3.8.0 py311h6ffa863_0 matplotlib-base 3.8.0 py311h52e1fcc_0 menuinst 2.1.1 py311h1af927a_0 conda-forge mpc 1.3.1 heaf1863_0 conda-forge mpfr 4.2.1 haad2271_1 conda-forge mpmath 1.3.0 pyhd8ed1ab_0 conda-forge multidict 6.0.2 py311hf118e41_0 multiprocess 0.70.14 py311h6ffa863_0 munkres 1.1.4 py_0 mypy_extensions 1.0.0 pyha770c72_0 conda-forge nccl 2.18.3 cuda11.8_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 ncurses 6.4 h4a02239_0 nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge networkx 2.8.8 pyhd8ed1ab_0 conda-forge nomkl 3.0 0 https://ftp.osuosl.org/pub/open-ce/1.10.0 numactl 2.0.16 hba61f60_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 numexpr 2.8.7 py311hc46fc55_0 numpy 1.24.3 py311h148a09e_0 numpy-base 1.24.3 py311h06b82f6_0 oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge openjpeg 2.4.0 hfe35807_0 openssl 3.3.1 h1f2b957_0 conda-forge orc 1.8.2 h341c9a4_2 conda-forge packaging 23.1 py311h6ffa863_0 pandas 2.1.1 py311h52e1fcc_0 pcre2 10.42 h280155c_0 pillow 10.0.1 py311he33076b_0 pip 23.3 py311h6ffa863_0 platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge pluggy 1.0.0 py311h6ffa863_1 pooch 1.8.2 pyhd8ed1ab_0 conda-forge protobuf 4.21.12 py311ha7baec7_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 psutil 5.9.8 py311hd26027c_0 conda-forge pyarrow 11.0.0 py311h04a18d5_1 pyasn1 0.6.0 pyhd8ed1ab_0 conda-forge pyasn1-modules 0.4.0 pyhd8ed1ab_0 conda-forge pybind11-abi 4 hd3eb1b0_1 pycosat 0.6.6 py311hf118e41_0 pycparser 2.21 pyhd3eb1b0_0 pyjwt 2.8.0 pyhd8ed1ab_1 conda-forge pyopenssl 23.2.0 py311h6ffa863_0 pyparsing 3.0.9 py311h6ffa863_0 pyre-extensions 0.0.30 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 py311h6ffa863_0 python 3.11.8 h3332dee_0_cpython conda-forge python-dateutil 2.8.2 pyhd3eb1b0_0 python-tzdata 2023.3 pyhd3eb1b0_0 python-xxhash 2.0.2 py311hf118e41_1 python_abi 3.11 4_cp311 conda-forge pytorch 2.0.1 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytorch-base 2.0.1 cuda11.8_py311_pb4.21.12_4 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytz 2023.3.post1 py311h6ffa863_0 pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge pyyaml 6.0.1 py311hf118e41_0 re2 2023.02.01 h883269e_0 conda-forge readline 8.2 hf118e41_0 regex 2023.10.3 py311hf118e41_0 reproc 14.2.4 h29c3540_1 reproc-cpp 14.2.4 h29c3540_1 requests 2.31.0 py311h6ffa863_0 requests-oauthlib 2.0.0 pyhd8ed1ab_0 conda-forge responses 0.13.3 pyhd3eb1b0_0 rsa 4.9 pyhd8ed1ab_0 conda-forge ruamel.yaml 0.17.21 py311hf118e41_0 s2n 1.3.37 h5e47323_0 conda-forge safetensors 0.4.0 py311hda16d9e_0 scipy 1.11.1 py311hd69e9bb_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 sentencepiece 0.1.97 h1e74c73_py311_pb4.21.12_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 setuptools 68.0.0 py311h6ffa863_0 six 1.16.0 pyhd3eb1b0_1 snappy 1.1.9 h29c3540_0 sqlite 3.41.2 hf118e41_0 sympy 1.12.1 pypyh2585a3b_103 conda-forge tabulate 0.8.10 pyhd8ed1ab_0 conda-forge tensorboard 2.13.0 pyhab0730d_pb4.21.12_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-data-server 0.7.0 pyh6f84499_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-plugin-wit 1.6.0 pyh9f0ad1d_0 conda-forge tk 8.6.13 hd4bbf49_0 conda-forge tokenizers 0.13.3 py311h3d4f45a_0 torchdata 0.6.0 py311_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchsnapshot 0.1.0 pyhd8ed1ab_0 conda-forge torchtext-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchtnt 0.2.4 pyhd8ed1ab_0 conda-forge torchvision-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tornado 6.3.3 py311hf118e41_0 tqdm 4.65.0 py311h7837921_0 transformers 4.32.1 py311h6ffa863_0 truststore 0.8.0 py311h6ffa863_0 typing-extensions 4.7.1 py311h6ffa863_0 typing_extensions 4.7.1 py311h6ffa863_0 typing_inspect 0.9.0 pyhd8ed1ab_0 conda-forge tzdata 2023c h04d1e81_0 urllib3 1.26.18 py311h6ffa863_0 utf8proc 2.6.1 h140841e_0 werkzeug 2.3.8 pyhd8ed1ab_0 conda-forge wheel 0.41.2 py311h6ffa863_0 xxhash 0.8.0 h140841e_3 xz 5.4.2 hf118e41_0 yaml 0.2.5 h7b6447c_0 yaml-cpp 0.8.0 h4a02239_0 yarl 1.8.1 py311hf118e41_0 zipp 3.11.0 py311h6ffa863_0 zlib 1.2.13 h1f2b957_6 conda-forge zstandard 0.19.0 py311hf118e41_0 zstd 1.5.5 h57e4825_0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6992/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6992/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5456/comments
https://api.github.com/repos/huggingface/datasets/issues/5456/events
https://github.com/huggingface/datasets/pull/5456
1,553,905,148
PR_kwDODunzps5IXq92
5,456
feat: tqdm for `to_parquet`
{ "avatar_url": "https://avatars.githubusercontent.com/u/33707069?v=4", "events_url": "https://api.github.com/users/zanussbaum/events{/privacy}", "followers_url": "https://api.github.com/users/zanussbaum/followers", "following_url": "https://api.github.com/users/zanussbaum/following{/other_user}", "gists_url": "https://api.github.com/users/zanussbaum/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zanussbaum", "id": 33707069, "login": "zanussbaum", "node_id": "MDQ6VXNlcjMzNzA3MDY5", "organizations_url": "https://api.github.com/users/zanussbaum/orgs", "received_events_url": "https://api.github.com/users/zanussbaum/received_events", "repos_url": "https://api.github.com/users/zanussbaum/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zanussbaum/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zanussbaum/subscriptions", "type": "User", "url": "https://api.github.com/users/zanussbaum", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012395 / 0.011353 (0.001042) | 0.006466 / 0.011008 (-0.004542) | 0.127605 / 0.038508 (0.089097) | 0.044929 / 0.023109 (0.021820) | 0.399856 / 0.275898 (0.123958) | 0.491341 / 0.323480 (0.167861) | 0.009193 / 0.007986 (0.001207) | 0.005419 / 0.004328 (0.001090) | 0.100577 / 0.004250 (0.096327) | 0.045338 / 0.037052 (0.008286) | 0.409970 / 0.258489 (0.151481) | 0.452941 / 0.293841 (0.159100) | 0.054350 / 0.128546 (-0.074197) | 0.019069 / 0.075646 (-0.056578) | 0.427036 / 0.419271 (0.007765) | 0.073616 / 0.043533 (0.030083) | 0.395384 / 0.255139 (0.140245) | 0.442381 / 0.283200 (0.159181) | 0.123185 / 0.141683 (-0.018498) | 1.797640 / 1.452155 (0.345485) | 1.888860 / 1.492716 (0.396143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211041 / 0.018006 (0.193035) | 0.539350 / 0.000490 (0.538860) | 0.001683 / 0.000200 (0.001483) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031699 / 0.037411 (-0.005712) | 0.132696 / 0.014526 (0.118170) | 0.133710 / 0.176557 (-0.042846) | 0.190074 / 0.737135 (-0.547061) | 0.142919 / 0.296338 (-0.153420) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643521 / 0.215209 (0.428312) | 6.137350 / 2.077655 (4.059695) | 2.463894 / 1.504120 (0.959774) | 2.120043 / 1.541195 (0.578848) | 2.121898 / 1.468490 (0.653408) | 1.287319 / 4.584777 (-3.297458) | 5.517864 / 3.745712 (1.772151) | 5.070820 / 5.269862 (-0.199042) | 2.948967 / 4.565676 (-1.616710) | 0.175861 / 0.424275 (-0.248415) | 0.015292 / 0.007607 (0.007685) | 0.843195 / 0.226044 (0.617150) | 7.884275 / 2.268929 (5.615347) | 3.182821 / 55.444624 (-52.261803) | 2.576093 / 6.876477 (-4.300384) | 2.537160 / 2.142072 (0.395088) | 1.510029 / 4.805227 (-3.295198) | 0.249404 / 6.500664 (-6.251260) | 0.080434 / 0.075469 (0.004965) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.618695 / 1.841788 (-0.223093) | 18.879207 / 8.074308 (10.804899) | 21.075272 / 10.191392 (10.883880) | 0.260781 / 0.680424 (-0.419643) | 0.046387 / 0.534201 (-0.487813) | 0.570709 / 0.579283 (-0.008574) | 0.619050 / 0.434364 (0.184686) | 0.642295 / 0.540337 (0.101958) | 0.780070 / 1.386936 (-0.606866) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010418 / 0.011353 (-0.000935) | 0.006104 / 0.011008 (-0.004905) | 0.133609 / 0.038508 (0.095101) | 0.035101 / 0.023109 (0.011992) | 0.471931 / 0.275898 (0.196033) | 0.504498 / 0.323480 (0.181018) | 0.007388 / 0.007986 (-0.000598) | 0.004852 / 0.004328 (0.000523) | 0.094535 / 0.004250 (0.090284) | 0.056832 / 0.037052 (0.019779) | 0.470513 / 0.258489 (0.212024) | 0.531285 / 0.293841 (0.237444) | 0.058271 / 0.128546 (-0.070276) | 0.020523 / 0.075646 (-0.055123) | 0.437398 / 0.419271 (0.018126) | 0.065390 / 0.043533 (0.021857) | 0.503702 / 0.255139 (0.248563) | 0.515876 / 0.283200 (0.232677) | 0.118615 / 0.141683 (-0.023068) | 1.865380 / 1.452155 (0.413225) | 1.990316 / 1.492716 (0.497600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246772 / 0.018006 (0.228766) | 0.560607 / 0.000490 (0.560118) | 0.005675 / 0.000200 (0.005475) | 0.000142 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034692 / 0.037411 (-0.002719) | 0.174016 / 0.014526 (0.159490) | 0.179838 / 0.176557 (0.003282) | 0.217118 / 0.737135 (-0.520018) | 0.184811 / 0.296338 (-0.111527) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.675970 / 0.215209 (0.460760) | 6.787039 / 2.077655 (4.709384) | 2.932619 / 1.504120 (1.428499) | 2.545076 / 1.541195 (1.003882) | 2.566705 / 1.468490 (1.098215) | 1.287365 / 4.584777 (-3.297412) | 5.468441 / 3.745712 (1.722729) | 5.227726 / 5.269862 (-0.042136) | 2.868970 / 4.565676 (-1.696706) | 0.153535 / 0.424275 (-0.270740) | 0.020087 / 0.007607 (0.012480) | 0.860562 / 0.226044 (0.634518) | 8.656109 / 2.268929 (6.387180) | 3.749424 / 55.444624 (-51.695200) | 3.011337 / 6.876477 (-3.865139) | 3.119045 / 2.142072 (0.976973) | 1.562174 / 4.805227 (-3.243053) | 0.279161 / 6.500664 (-6.221504) | 0.084905 / 0.075469 (0.009436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.638684 / 1.841788 (-0.203104) | 18.834760 / 8.074308 (10.760452) | 21.554310 / 10.191392 (11.362918) | 0.274518 / 0.680424 (-0.405906) | 0.030343 / 0.534201 (-0.503858) | 0.539094 / 0.579283 (-0.040189) | 0.627258 / 0.434364 (0.192895) | 0.624638 / 0.540337 (0.084301) | 0.742776 / 1.386936 (-0.644160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98c9b27be45e1f5bc8c18d8bb2414478efe68055 \"CML watermark\")\n" ]
2023-01-23T22:05:38Z
2023-01-24T11:26:47Z
2023-01-24T11:17:12Z
CONTRIBUTOR
null
null
null
As described in #5418 I noticed also that the `to_json` function supports multi-workers whereas `to_parquet`, is that not possible/not needed with Parquet or something that hasn't been implemented yet?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5456/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5456/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5456.diff", "html_url": "https://github.com/huggingface/datasets/pull/5456", "merged_at": "2023-01-24T11:17:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/5456.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5456" }
https://api.github.com/repos/huggingface/datasets/issues/5165
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5165/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5165/comments
https://api.github.com/repos/huggingface/datasets/issues/5165/events
https://github.com/huggingface/datasets/issues/5165
1,423,616,677
I_kwDODunzps5U2qql
5,165
Memory explosion when trying to access 4d tensors in datasets cast to torch or np
{ "avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4", "events_url": "https://api.github.com/users/clefourrier/events{/privacy}", "followers_url": "https://api.github.com/users/clefourrier/followers", "following_url": "https://api.github.com/users/clefourrier/following{/other_user}", "gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/clefourrier", "id": 22726840, "login": "clefourrier", "node_id": "MDQ6VXNlcjIyNzI2ODQw", "organizations_url": "https://api.github.com/users/clefourrier/orgs", "received_events_url": "https://api.github.com/users/clefourrier/received_events", "repos_url": "https://api.github.com/users/clefourrier/repos", "site_admin": false, "starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions", "type": "User", "url": "https://api.github.com/users/clefourrier", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2022-10-26T08:14:47Z
2022-10-26T08:14:47Z
null
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When trying to access an item by index, in a datasets.Dataset cast to torch/np using `set_format` or `with_format`, we get a memory explosion if the item contains 4d (or above) tensors. ### Steps to reproduce the bug MWE: ```python from datasets import load_dataset import numpy as np def create_4d_tensor(item): i = item["num_nodes"] item["x_big"] = np.random.rand(i, 2*i, int(i/2), 1) + 1 # we create a big 4d tensor return item if __name__ == "__main__": dataset = load_dataset(path=f"graphs-datasets/PROTEINS") # This works print(dataset["train"].format) print(dataset["train"][0].keys()) dataset = dataset.map( create_4d_tensor, batched=False, writer_batch_size=100, ) # This works print(dataset["train"].format) print(dataset["train"][0].keys()) dataset.set_format("torch") print(dataset["train"].format) # This gets killed :( print(dataset["train"][0].keys()) ``` The problem likely comes from `format_table` [here](https://cs.github.com/huggingface/datasets/blob/f09f781be3278156ce3aa6ec90c1926b1846a78f/src/datasets/arrow_dataset.py#L2328) ### Expected behavior No memory explosion when trying to access dataset items after cast. ### Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.14.0-1054-oem-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5165/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5165/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6523
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6523/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6523/comments
https://api.github.com/repos/huggingface/datasets/issues/6523/events
https://github.com/huggingface/datasets/pull/6523
2,052,643,484
PR_kwDODunzps5ilV6d
6,523
fix tests
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6523). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005160 / 0.011353 (-0.006192) | 0.003962 / 0.011008 (-0.007046) | 0.064952 / 0.038508 (0.026444) | 0.053291 / 0.023109 (0.030182) | 0.237182 / 0.275898 (-0.038716) | 0.263855 / 0.323480 (-0.059625) | 0.004157 / 0.007986 (-0.003829) | 0.002901 / 0.004328 (-0.001428) | 0.050679 / 0.004250 (0.046428) | 0.044885 / 0.037052 (0.007832) | 0.243806 / 0.258489 (-0.014683) | 0.273828 / 0.293841 (-0.020013) | 0.028681 / 0.128546 (-0.099866) | 0.011086 / 0.075646 (-0.064560) | 0.211987 / 0.419271 (-0.207285) | 0.035881 / 0.043533 (-0.007652) | 0.249618 / 0.255139 (-0.005521) | 0.262880 / 0.283200 (-0.020319) | 0.017788 / 0.141683 (-0.123895) | 1.209060 / 1.452155 (-0.243094) | 1.272143 / 1.492716 (-0.220574) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004594 / 0.018006 (-0.013412) | 0.305188 / 0.000490 (0.304698) | 0.000213 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019526 / 0.037411 (-0.017886) | 0.062280 / 0.014526 (0.047754) | 0.074983 / 0.176557 (-0.101573) | 0.123466 / 0.737135 (-0.613670) | 0.076240 / 0.296338 (-0.220099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276001 / 0.215209 (0.060792) | 2.689614 / 2.077655 (0.611959) | 1.441092 / 1.504120 (-0.063028) | 1.319775 / 1.541195 (-0.221419) | 1.386904 / 1.468490 (-0.081587) | 0.561388 / 4.584777 (-4.023389) | 2.386718 / 3.745712 (-1.358994) | 2.813959 / 5.269862 (-2.455903) | 1.727447 / 4.565676 (-2.838230) | 0.061965 / 0.424275 (-0.362310) | 0.004977 / 0.007607 (-0.002630) | 0.335077 / 0.226044 (0.109032) | 3.313860 / 2.268929 (1.044932) | 1.814018 / 55.444624 (-53.630606) | 1.542840 / 6.876477 (-5.333637) | 1.586887 / 2.142072 (-0.555185) | 0.643225 / 4.805227 (-4.162002) | 0.117834 / 6.500664 (-6.382830) | 0.044024 / 0.075469 (-0.031445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.952804 / 1.841788 (-0.888984) | 12.447378 / 8.074308 (4.373070) | 11.281734 / 10.191392 (1.090342) | 0.143407 / 0.680424 (-0.537017) | 0.014749 / 0.534201 (-0.519452) | 0.289298 / 0.579283 (-0.289985) | 0.268217 / 0.434364 (-0.166146) | 0.327995 / 0.540337 (-0.212343) | 0.430302 / 1.386936 (-0.956634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005683 / 0.011353 (-0.005670) | 0.003813 / 0.011008 (-0.007195) | 0.048943 / 0.038508 (0.010435) | 0.060730 / 0.023109 (0.037621) | 0.266925 / 0.275898 (-0.008973) | 0.292553 / 0.323480 (-0.030927) | 0.004236 / 0.007986 (-0.003750) | 0.002790 / 0.004328 (-0.001538) | 0.048962 / 0.004250 (0.044711) | 0.040354 / 0.037052 (0.003302) | 0.266353 / 0.258489 (0.007864) | 0.298397 / 0.293841 (0.004556) | 0.029977 / 0.128546 (-0.098570) | 0.010788 / 0.075646 (-0.064858) | 0.057529 / 0.419271 (-0.361743) | 0.032896 / 0.043533 (-0.010636) | 0.266696 / 0.255139 (0.011557) | 0.283422 / 0.283200 (0.000223) | 0.020939 / 0.141683 (-0.120744) | 1.169867 / 1.452155 (-0.282287) | 1.213586 / 1.492716 (-0.279130) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097035 / 0.018006 (0.079029) | 0.306968 / 0.000490 (0.306478) | 0.000234 / 0.000200 (0.000034) | 0.000046 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023343 / 0.037411 (-0.014068) | 0.078238 / 0.014526 (0.063712) | 0.091083 / 0.176557 (-0.085474) | 0.131487 / 0.737135 (-0.605649) | 0.092614 / 0.296338 (-0.203724) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294454 / 0.215209 (0.079245) | 2.881053 / 2.077655 (0.803398) | 1.623934 / 1.504120 (0.119814) | 1.509001 / 1.541195 (-0.032194) | 1.567541 / 1.468490 (0.099051) | 0.574326 / 4.584777 (-4.010451) | 2.476826 / 3.745712 (-1.268886) | 2.826183 / 5.269862 (-2.443678) | 1.771949 / 4.565676 (-2.793727) | 0.063663 / 0.424275 (-0.360613) | 0.005039 / 0.007607 (-0.002568) | 0.354861 / 0.226044 (0.128816) | 3.397655 / 2.268929 (1.128727) | 1.961958 / 55.444624 (-53.482666) | 1.694795 / 6.876477 (-5.181682) | 1.719459 / 2.142072 (-0.422614) | 0.654512 / 4.805227 (-4.150715) | 0.119285 / 6.500664 (-6.381379) | 0.042146 / 0.075469 (-0.033323) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982187 / 1.841788 (-0.859601) | 12.944627 / 8.074308 (4.870319) | 11.370381 / 10.191392 (1.178989) | 0.142759 / 0.680424 (-0.537665) | 0.016319 / 0.534201 (-0.517882) | 0.291339 / 0.579283 (-0.287944) | 0.276842 / 0.434364 (-0.157522) | 0.324285 / 0.540337 (-0.216052) | 0.426234 / 1.386936 (-0.960702) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e1b82eaa75d2c610e59b463a67d685ec858c0838 \"CML watermark\")\n" ]
2023-12-21T15:36:21Z
2023-12-21T15:56:54Z
2023-12-21T15:50:38Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6523/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6523/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6523.diff", "html_url": "https://github.com/huggingface/datasets/pull/6523", "merged_at": "2023-12-21T15:50:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/6523.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6523" }
https://api.github.com/repos/huggingface/datasets/issues/5543
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5543/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5543/comments
https://api.github.com/repos/huggingface/datasets/issues/5543/events
https://github.com/huggingface/datasets/issues/5543
1,588,951,379
I_kwDODunzps5etXlT
5,543
the pile datasets url seems to change back
{ "avatar_url": "https://avatars.githubusercontent.com/u/5126316?v=4", "events_url": "https://api.github.com/users/wjfwzzc/events{/privacy}", "followers_url": "https://api.github.com/users/wjfwzzc/followers", "following_url": "https://api.github.com/users/wjfwzzc/following{/other_user}", "gists_url": "https://api.github.com/users/wjfwzzc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wjfwzzc", "id": 5126316, "login": "wjfwzzc", "node_id": "MDQ6VXNlcjUxMjYzMTY=", "organizations_url": "https://api.github.com/users/wjfwzzc/orgs", "received_events_url": "https://api.github.com/users/wjfwzzc/received_events", "repos_url": "https://api.github.com/users/wjfwzzc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wjfwzzc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wjfwzzc/subscriptions", "type": "User", "url": "https://api.github.com/users/wjfwzzc", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @wjfwzzc.\r\n\r\nI am transferring this issue to the corresponding dataset on the Hub: https://huggingface.co/datasets/bookcorpusopen/discussions/1", "Thank you. All fixes are done:\r\n- [x] https://huggingface.co/datasets/bookcorpusopen/discussions/2\r\n- [x] https://huggingface.co/datasets/the_pile/discussions/1\r\n- [x] https://huggingface.co/datasets/the_pile_books3/discussions/1\r\n- [x] https://huggingface.co/datasets/the_pile_openwebtext2/discussions/2\r\n- [x] https://huggingface.co/datasets/the_pile_stack_exchange/discussions/2" ]
2023-02-17T08:40:11Z
2023-02-21T06:37:00Z
2023-02-20T08:41:33Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug in #3627, the host url of the pile dataset became `https://mystic.the-eye.eu`. Now the new url is broken, but `https://the-eye.eu` seems to work again. ### Steps to reproduce the bug ```python3 from datasets import load_dataset dataset = load_dataset("bookcorpusopen") ``` shows ```python3 ConnectionError: Couldn't reach https://mystic.the-eye.eu/public/AI/pile_preliminary_components/books1.tar.gz (ProxyError(MaxRetryError("HTTPSConnectionPool(host='mystic.the-eye.eu', port=443): Max retries exceeded with url: /public/AI/pile_pr eliminary_components/books1.tar.gz (Caused by ProxyError('Cannot connect to proxy.', OSError('Tunnel connection failed: 504 Gateway Timeout')))"))) ``` ### Expected behavior Downloading as normal. ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-5.4.143.bsk.7-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - PyArrow version: 6.0.1 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5543/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5543/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6333
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6333/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6333/comments
https://api.github.com/repos/huggingface/datasets/issues/6333/events
https://github.com/huggingface/datasets/issues/6333
1,956,714,423
I_kwDODunzps50oRe3
6,333
Support fsspec 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Hi @albertvillanova @lhoestq \r\n\r\nI believe the pull request that pins the fsspec version (https://github.com/huggingface/datasets/pull/6331) was merged by mistake. Another fix for the issue was merged on the same day an hour apart. See https://github.com/huggingface/datasets/pull/6334\r\n\r\nI'm now having an issue in my project where I can't use newer versions of fsspec.\r\n\r\nCan we remove the pin?\r\n\r\nHave a nice day! :)", "Hi @tomscholz,\r\n\r\nThanks for pointing this out. I think you are right.\r\n\r\nI am doing some cross-checks and fixing it. ", "Hi again, @tomscholz.\r\n\r\nAfter a more cautious investigation, I think the pin is OK because there are other reasons for it. Chronologically:\r\n- #6331 \r\n- #6334\r\n- #6336 \r\n- #6337 \r\n\r\nThe reason is that after version 2023.10.0, they changed again the behavior of their `glob` function. See: https://github.com/huggingface/datasets/pull/6337#issuecomment-1774930135\r\nWe are working on our side to support both previous and new glob behavior.\r\n\r\nNote:\r\n- First pin was < 2023.10.0\r\n- Last pin is <= 2023.10.0", "Fixed by #6334 and #6336." ]
2023-10-23T09:14:53Z
2024-02-07T12:39:58Z
2024-02-07T12:39:58Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Once root issue is fixed, remove temporary pin of fsspec < 2023.10.0 introduced by: - #6331 Related to issue: - #6330 As @ZachNagengast suggested, the issue might be related to: - https://github.com/fsspec/filesystem_spec/pull/1381
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6333/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6333/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4916
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4916/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4916/comments
https://api.github.com/repos/huggingface/datasets/issues/4916/events
https://github.com/huggingface/datasets/issues/4916
1,357,076,940
I_kwDODunzps5Q41nM
4,916
Apache Beam unable to write the downloaded wikipedia dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/71849081?v=4", "events_url": "https://api.github.com/users/Shilpac20/events{/privacy}", "followers_url": "https://api.github.com/users/Shilpac20/followers", "following_url": "https://api.github.com/users/Shilpac20/following{/other_user}", "gists_url": "https://api.github.com/users/Shilpac20/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Shilpac20", "id": 71849081, "login": "Shilpac20", "node_id": "MDQ6VXNlcjcxODQ5MDgx", "organizations_url": "https://api.github.com/users/Shilpac20/orgs", "received_events_url": "https://api.github.com/users/Shilpac20/received_events", "repos_url": "https://api.github.com/users/Shilpac20/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Shilpac20/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Shilpac20/subscriptions", "type": "User", "url": "https://api.github.com/users/Shilpac20", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "See:\r\n- #4915" ]
2022-08-31T09:39:25Z
2022-08-31T10:53:19Z
2022-08-31T10:53:19Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Hi, I am currently trying to download wikipedia dataset using load_dataset("wikipedia", language="aa", date="20220401", split="train",beam_runner='DirectRunner'). However, I end up in getting filenotfound error. I get this error for any language I try to download. It downloads the file but while saving it in hugging face cache it fails to write. This happens for any available date of any language in wikipedia dump. I had raised another issue earlier #4915 but probably was not that clear and the solution provider misunderstood my problem. Hence raising one more issue. Any help is appreciated. ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("wikipedia", language="aa", date="20220401", split="train",beam_runner='DirectRunner') ``` ## Expected results to load the dataset ## Actual results I am pasting the error trace here: Downloading builder script: 35.9kB [00:00, ?B/s] Downloading metadata: 30.4kB [00:00, 1.94MB/s] Using custom data configuration 20220401.aa-date=20220401,language=aa Downloading and preparing dataset wikipedia/20220401.aa to C:\Users\Shilpa.cache\huggingface\datasets\wikipedia\20220401.aa-date=20220401,language=aa\2.0.0\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559... Downloading data: 100%|████████████████████████████████████████████████████████████| 11.1k/11.1k [00:00<00:00, 712kB/s] Downloading data files: 100%|████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.82s/it] Extracting data files: 100%|█████████████████████████████████████████████████████████████████████| 1/1 [00:00<?, ?it/s] Downloading data: 100%|███████████████████████████████████████████████████████████| 35.6k/35.6k [00:00<00:00, 84.3kB/s] Downloading data files: 100%|████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.93s/it] Traceback (most recent call last): File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1571, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "G:\Python3.7\lib\site-packages\apache_beam\io\iobase.py", line 1193, in process self.writer = self.sink.open_writer(init_result, str(uuid.uuid4())) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 202, in open_writer return FileBasedSinkWriter(self, writer_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 419, in init self.temp_handle = self.sink.open(temp_shard_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\parquetio.py", line 553, in open self._file_handle = super().open(temp_path) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 139, in open temp_path, self.mime_type, self.compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\filesystems.py", line 224, in create return filesystem.create(path, mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 163, in create return self._path_open(path, 'wb', mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 140, in _path_open raw_file = io.open(path, mode) FileNotFoundError: [Errno 2] No such file or directory: 'C:\Users\Shilpa\.cache\huggingface\datasets\wikipedia\20220401.aa-date=20220401,language=aa\2.0.0\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559.incomplete\beam-temp-wikipedia-train-880233e8287e11edaf9d3ca067f2714e\20a05238-6106-4420-a713-4eca6dd5959a.wikipedia-train' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "G:/abc/temp.py", line 32, in beam_runner='DirectRunner') File "G:\Python3.7\lib\site-packages\datasets\load.py", line 1751, in load_dataset use_auth_token=use_auth_token, File "G:\Python3.7\lib\site-packages\datasets\builder.py", line 705, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "G:\Python3.7\lib\site-packages\datasets\builder.py", line 1394, in _download_and_prepare pipeline_results = pipeline.run() File "G:\Python3.7\lib\site-packages\apache_beam\pipeline.py", line 574, in run return self.runner.run_pipeline(self, self._options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\direct\direct_runner.py", line 131, in run_pipeline return runner.run_pipeline(pipeline, options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 201, in run_pipeline options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 212, in run_via_runner_api return self.run_stages(stage_context, stages) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 443, in run_stages runner_execution_context, bundle_context_manager, bundle_input) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 776, in _execute_bundle bundle_manager)) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 1000, in _run_bundle data_input, data_output, input_timers, expected_timer_output) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 1309, in process_bundle result_future = self._worker_handler.control_conn.push(process_bundle_req) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\worker_handlers.py", line 380, in push response = self.worker.do_instruction(request) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\sdk_worker.py", line 598, in do_instruction getattr(request, request_type), request.instruction_id) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\sdk_worker.py", line 635, in process_bundle bundle_processor.process_bundle(instruction_id)) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\bundle_processor.py", line 1004, in process_bundle element.data) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\bundle_processor.py", line 227, in process_encoded self.output(decoded_value) File "apache_beam\runners\worker\operations.py", line 526, in apache_beam.runners.worker.operations.Operation.output File "apache_beam\runners\worker\operations.py", line 528, in apache_beam.runners.worker.operations.Operation.output File "apache_beam\runners\worker\operations.py", line 237, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 324, in apache_beam.runners.worker.operations.GeneralPurposeConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 905, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1507, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1571, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "G:\Python3.7\lib\site-packages\apache_beam\io\iobase.py", line 1193, in process self.writer = self.sink.open_writer(init_result, str(uuid.uuid4())) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 202, in open_writer return FileBasedSinkWriter(self, writer_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 419, in init self.temp_handle = self.sink.open(temp_shard_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\parquetio.py", line 553, in open self._file_handle = super().open(temp_path) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 139, in open temp_path, self.mime_type, self.compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\filesystems.py", line 224, in create return filesystem.create(path, mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 163, in create return self._path_open(path, 'wb', mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 140, in _path_open raw_file = io.open(path, mode) RuntimeError: FileNotFoundError: [Errno 2] No such file or directory: 'C:\Users\Shilpa\.cache\huggingface\datasets\wikipedia\20220401.aa-date=20220401,language=aa\2.0.0\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559.incomplete\beam-temp-wikipedia-train-880233e8287e11edaf9d3ca067f2714e\20a05238-6106-4420-a713-4eca6dd5959a.wikipedia-train' [while running 'train/Save to parquet/Write/WriteImpl/WriteBundles'] ## Environment info Python: 3.7.6 Windows 10 Pro datasets :2.4.0 apache_beam: 2.41.0 mwparserfromhell: 0.6.4
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4916/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4916/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6376
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6376/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6376/comments
https://api.github.com/repos/huggingface/datasets/issues/6376/events
https://github.com/huggingface/datasets/issues/6376
1,973,927,468
I_kwDODunzps51p74s
6,376
Caching problem when deleting a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4", "events_url": "https://api.github.com/users/clefourrier/events{/privacy}", "followers_url": "https://api.github.com/users/clefourrier/followers", "following_url": "https://api.github.com/users/clefourrier/following{/other_user}", "gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/clefourrier", "id": 22726840, "login": "clefourrier", "node_id": "MDQ6VXNlcjIyNzI2ODQw", "organizations_url": "https://api.github.com/users/clefourrier/orgs", "received_events_url": "https://api.github.com/users/clefourrier/received_events", "repos_url": "https://api.github.com/users/clefourrier/repos", "site_admin": false, "starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions", "type": "User", "url": "https://api.github.com/users/clefourrier", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting! Can you also share the error message printed in step 5?", "I did not store it at the time but I'll try to re-do a mwe next week to get it again", "I haven't managed to reproduce this issue using a [notebook](https://colab.research.google.com/drive/1m6eduYun7pFTkigrCJAFgw0BghlbvXIL?usp=sharing) that follows the steps to reproduce the bug. So, I'm closing it.\r\n\r\nBut feel free to re-open it if you have a better reproducer." ]
2023-11-02T10:15:58Z
2023-12-04T16:53:34Z
2023-12-04T16:53:33Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Pushing a dataset with n + m features to a repo which was deleted, but contained n features, will fail. ### Steps to reproduce the bug 1. Create a dataset with n features per row 2. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)` 3. Go on the hub, delete the repo at `YOUR_PATH` 4. Update your local dataset to have n + m features per row 5. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)` will fail because of a mismatch in features number ### Expected behavior Step 5 should work or display a message to indicate the cache has not been cleared ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-88-generic-x86_64-with-glibc2.31 - Python version: 3.10.10 - Huggingface_hub version: 0.16.4 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6376/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6376/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4915
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4915/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4915/comments
https://api.github.com/repos/huggingface/datasets/issues/4915/events
https://github.com/huggingface/datasets/issues/4915
1,356,009,042
I_kwDODunzps5Q0w5S
4,915
FileNotFoundError while downloading wikipedia dataset for any language
{ "avatar_url": "https://avatars.githubusercontent.com/u/71849081?v=4", "events_url": "https://api.github.com/users/Shilpac20/events{/privacy}", "followers_url": "https://api.github.com/users/Shilpac20/followers", "following_url": "https://api.github.com/users/Shilpac20/following{/other_user}", "gists_url": "https://api.github.com/users/Shilpac20/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Shilpac20", "id": 71849081, "login": "Shilpac20", "node_id": "MDQ6VXNlcjcxODQ5MDgx", "organizations_url": "https://api.github.com/users/Shilpac20/orgs", "received_events_url": "https://api.github.com/users/Shilpac20/received_events", "repos_url": "https://api.github.com/users/Shilpac20/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Shilpac20/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Shilpac20/subscriptions", "type": "User", "url": "https://api.github.com/users/Shilpac20", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Hi @Shilpac20,\r\n\r\nAs explained in the Wikipedia dataset card: https://huggingface.co/datasets/wikipedia\r\n> You can find the full list of languages and dates [here](https://dumps.wikimedia.org/backup-index.html).\r\n\r\nThis means that, before passing a specific date, you should first make sure it is available online, as Wikimedia only keeps last X months (depending on the size of the corresponding language dump)): e.g. to see which dates \"aa\" Wikipedia is available online, see https://dumps.wikimedia.org/aawiki/ (as of today 2022-08-31, the available dates are from [20220401](https://dumps.wikimedia.org/aawiki/20220401/) to [20220820](https://dumps.wikimedia.org/aawiki/20220820/)).", "Hi, the date that I have specified \"20220401\" is available for the language \"aa\". The error persists for any other available dates as present in https://dumps.wikimedia.org/aawiki/. The error is mainly due to apache beam not able to write the downloaded files. Any help on this?", "I see, sorry, I misread your issue.\r\n\r\nWe are investigating this.", "I am struggling with basically the same issue. I am trying to download the German Wikipedia dump.\r\n\r\nAs per the [documentation](https://huggingface.co/datasets/wikipedia), `\"20220301.de\"` should be available as a pre-processed dataset.\r\n\r\nIssuing the command mentioned in the documentation cited above\r\n\r\n from datasets import load_dataset\r\n load_dataset(\"wikipedia\", \"20220301.de\")\r\n\r\nraises the following `FileNotFound` error\r\n\r\n FileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/dewiki/20220301/dumpstatus.json\r\n\r\nUsing the ([undocumented](https://huggingface.co/docs/datasets/v1.2.1/package_reference/loading_methods.html#datasets.load_dataset)?) call to `load_dataset()` with `language` and `date` parameters\r\n\r\n load_dataset(\"wikipedia\", language=\"de\", date=\"20220301\", beam_runner=\"DirectRunner\")\r\n\r\nproduces the same error.\r\n\r\nEDIT: as I am using `datasets` v2.7.1, I should be looking at [that version's documentation](https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/loading_methods#datasets.load_dataset)! It is mentioned there, that additional `kwargs` are \"passed to the [BuilderConfig](https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/builder_classes#datasets.BuilderConfig) and used in the [DatasetBuilder](https://huggingface.co/docs/datasets/v2.7.1/en/package_reference/builder_classes#datasets.DatasetBuilder)\". So I guess that is how `language` and `date` are used.\r\n\r\nAs I can see a folder `20221130` on `https://dumps.wikimedia.org/dewiki/`, I also tried\r\n\r\n from datasets import load_dataset\r\n load_dataset(\"wikipedia\", \"20221130.de\")\r\n\r\nwhich throws another error:\r\n\r\n ValueError: BuilderConfig 20221120.de not found. Available: ['20220301.aa', ... '20220301.de', ...\r\n\r\nbasically telling me that the dataset I originally requested (`'20220301.de'`) is available...\r\n\r\nIt seems that `load_dataset` is not handling the vanishing older dumps for Wikipedia correctly?", "I am able to start downloading the dataset when trying anything with the recent dumps for 20221201. But obviously, those are the big wiki dumps and I need the smaller preloaded version.\r\n\r\nI am now getting some error when the files show up in my cache but it will say FileNotFoundError at the end of the download for some reason. The cache directory to the datasets\\wikipedia\\date.bn\\ had something in it, then when the error came up it disappeared. \r\n\r\nIt is easy to test with the langauge \"bn\" because the amount of files is low.\r\n\r\ndataset = load_dataset('wikipedia', date=\"20221201\", language=\"bn\", split='train', beam_runner='DirectRunner')" ]
2022-08-30T16:15:46Z
2022-12-04T22:20:33Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Hi, I am currently trying to download wikipedia dataset using load_dataset("wikipedia", language="aa", date="20220401", split="train",beam_runner='DirectRunner'). However, I end up in getting filenotfound error. I get this error for any language I try to download. Environment: ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("wikipedia", language="aa", date="20220401", split="train",beam_runner='DirectRunner') ``` ## Expected results to load the dataset ## Actual results I am pasting the error trace here: Downloading builder script: 35.9kB [00:00, ?B/s] Downloading metadata: 30.4kB [00:00, 1.94MB/s] Using custom data configuration 20220401.aa-date=20220401,language=aa Downloading and preparing dataset wikipedia/20220401.aa to C:\Users\Shilpa\.cache\huggingface\datasets\wikipedia\20220401.aa-date=20220401,language=aa\2.0.0\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559... Downloading data: 100%|████████████████████████████████████████████████████████████| 11.1k/11.1k [00:00<00:00, 712kB/s] Downloading data files: 100%|████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.82s/it] Extracting data files: 100%|█████████████████████████████████████████████████████████████████████| 1/1 [00:00<?, ?it/s] Downloading data: 100%|███████████████████████████████████████████████████████████| 35.6k/35.6k [00:00<00:00, 84.3kB/s] Downloading data files: 100%|████████████████████████████████████████████████████████████| 1/1 [00:02<00:00, 2.93s/it] Traceback (most recent call last): File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1571, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "G:\Python3.7\lib\site-packages\apache_beam\io\iobase.py", line 1193, in process self.writer = self.sink.open_writer(init_result, str(uuid.uuid4())) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 202, in open_writer return FileBasedSinkWriter(self, writer_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 419, in __init__ self.temp_handle = self.sink.open(temp_shard_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\parquetio.py", line 553, in open self._file_handle = super().open(temp_path) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 139, in open temp_path, self.mime_type, self.compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\filesystems.py", line 224, in create return filesystem.create(path, mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 163, in create return self._path_open(path, 'wb', mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 140, in _path_open raw_file = io.open(path, mode) FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Shilpa\\.cache\\huggingface\\datasets\\wikipedia\\20220401.aa-date=20220401,language=aa\\2.0.0\\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559.incomplete\\beam-temp-wikipedia-train-880233e8287e11edaf9d3ca067f2714e\\20a05238-6106-4420-a713-4eca6dd5959a.wikipedia-train' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "G:/abc/temp.py", line 32, in <module> beam_runner='DirectRunner') File "G:\Python3.7\lib\site-packages\datasets\load.py", line 1751, in load_dataset use_auth_token=use_auth_token, File "G:\Python3.7\lib\site-packages\datasets\builder.py", line 705, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "G:\Python3.7\lib\site-packages\datasets\builder.py", line 1394, in _download_and_prepare pipeline_results = pipeline.run() File "G:\Python3.7\lib\site-packages\apache_beam\pipeline.py", line 574, in run return self.runner.run_pipeline(self, self._options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\direct\direct_runner.py", line 131, in run_pipeline return runner.run_pipeline(pipeline, options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 201, in run_pipeline options) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 212, in run_via_runner_api return self.run_stages(stage_context, stages) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 443, in run_stages runner_execution_context, bundle_context_manager, bundle_input) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 776, in _execute_bundle bundle_manager)) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 1000, in _run_bundle data_input, data_output, input_timers, expected_timer_output) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\fn_runner.py", line 1309, in process_bundle result_future = self._worker_handler.control_conn.push(process_bundle_req) File "G:\Python3.7\lib\site-packages\apache_beam\runners\portability\fn_api_runner\worker_handlers.py", line 380, in push response = self.worker.do_instruction(request) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\sdk_worker.py", line 598, in do_instruction getattr(request, request_type), request.instruction_id) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\sdk_worker.py", line 635, in process_bundle bundle_processor.process_bundle(instruction_id)) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\bundle_processor.py", line 1004, in process_bundle element.data) File "G:\Python3.7\lib\site-packages\apache_beam\runners\worker\bundle_processor.py", line 227, in process_encoded self.output(decoded_value) File "apache_beam\runners\worker\operations.py", line 526, in apache_beam.runners.worker.operations.Operation.output File "apache_beam\runners\worker\operations.py", line 528, in apache_beam.runners.worker.operations.Operation.output File "apache_beam\runners\worker\operations.py", line 237, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 324, in apache_beam.runners.worker.operations.GeneralPurposeConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 905, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 623, in apache_beam.runners.common.SimpleInvoker.invoke_process File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1491, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1581, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "apache_beam\runners\common.py", line 1694, in apache_beam.runners.common._OutputHandler._write_value_to_tag File "apache_beam\runners\worker\operations.py", line 240, in apache_beam.runners.worker.operations.SingletonElementConsumerSet.receive File "apache_beam\runners\worker\operations.py", line 907, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\worker\operations.py", line 908, in apache_beam.runners.worker.operations.DoOperation.process File "apache_beam\runners\common.py", line 1419, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 1507, in apache_beam.runners.common.DoFnRunner._reraise_augmented File "apache_beam\runners\common.py", line 1417, in apache_beam.runners.common.DoFnRunner.process File "apache_beam\runners\common.py", line 837, in apache_beam.runners.common.PerWindowInvoker.invoke_process File "apache_beam\runners\common.py", line 981, in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window File "apache_beam\runners\common.py", line 1571, in apache_beam.runners.common._OutputHandler.handle_process_outputs File "G:\Python3.7\lib\site-packages\apache_beam\io\iobase.py", line 1193, in process self.writer = self.sink.open_writer(init_result, str(uuid.uuid4())) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 202, in open_writer return FileBasedSinkWriter(self, writer_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 419, in __init__ self.temp_handle = self.sink.open(temp_shard_path) File "G:\Python3.7\lib\site-packages\apache_beam\io\parquetio.py", line 553, in open self._file_handle = super().open(temp_path) File "G:\Python3.7\lib\site-packages\apache_beam\options\value_provider.py", line 193, in _f return fnc(self, *args, **kwargs) File "G:\Python3.7\lib\site-packages\apache_beam\io\filebasedsink.py", line 139, in open temp_path, self.mime_type, self.compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\filesystems.py", line 224, in create return filesystem.create(path, mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 163, in create return self._path_open(path, 'wb', mime_type, compression_type) File "G:\Python3.7\lib\site-packages\apache_beam\io\localfilesystem.py", line 140, in _path_open raw_file = io.open(path, mode) RuntimeError: FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Shilpa\\.cache\\huggingface\\datasets\\wikipedia\\20220401.aa-date=20220401,language=aa\\2.0.0\\aa542ed919df55cc5d3347f42dd4521d05ca68751f50dbc32bae2a7f1e167559.incomplete\\beam-temp-wikipedia-train-880233e8287e11edaf9d3ca067f2714e\\20a05238-6106-4420-a713-4eca6dd5959a.wikipedia-train' [while running 'train/Save to parquet/Write/WriteImpl/WriteBundles'] ## Environment info Python: 3.7.6 Windows 10 Pro datasets :2.4.0 apache_beam: 2.41.0 mwparserfromhell: 0.6.4
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4915/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4915/timeline
null
reopened
null
null
https://api.github.com/repos/huggingface/datasets/issues/5317
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5317/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5317/comments
https://api.github.com/repos/huggingface/datasets/issues/5317/events
https://github.com/huggingface/datasets/issues/5317
1,470,390,164
I_kwDODunzps5XpF-U
5,317
`ImageFolder` performs poorly with large datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/1086393?v=4", "events_url": "https://api.github.com/users/salieri/events{/privacy}", "followers_url": "https://api.github.com/users/salieri/followers", "following_url": "https://api.github.com/users/salieri/following{/other_user}", "gists_url": "https://api.github.com/users/salieri/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/salieri", "id": 1086393, "login": "salieri", "node_id": "MDQ6VXNlcjEwODYzOTM=", "organizations_url": "https://api.github.com/users/salieri/orgs", "received_events_url": "https://api.github.com/users/salieri/received_events", "repos_url": "https://api.github.com/users/salieri/repos", "site_admin": false, "starred_url": "https://api.github.com/users/salieri/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/salieri/subscriptions", "type": "User", "url": "https://api.github.com/users/salieri", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! ImageFolder is made for small scale datasets indeed. For large scale image datasets you better group your images in TAR archives or Arrow/Parquet files. This is true not just for ImageFolder loading performance, but also because having millions of files is not ideal for your filesystem or when moving the data around.\r\n\r\nOption 1. use TAR archives\r\n\r\nI'd suggest you to take a look at how we load [Imagenet](https://huggingface.co/datasets/imagenet-1k/tree/main) for example. The dataset is sharded in multiple TAR archives and there is a [script](https://huggingface.co/datasets/imagenet-1k/blob/main/imagenet-1k.py) that iterates over the archives to load the images.\r\n\r\nOption 2. use Arrow/Parquet\r\n\r\nYou can load your images as an Arrow Dataset with\r\n```python\r\nfrom datasets import Dataset, Image, load_from_disk, load_dataset\r\n\r\nds = Dataset.from_dict({\"image\": list(glob.glob(\"path/to/dir/**/*.jpg\"))})\r\n\r\ndef add_metadata(example):\r\n ...\r\n\r\nds = ds.map(add_metadata, num_proc=16) # num_proc for multiprocessing\r\nds = ds.cast_column(\"image\", Image())\r\n\r\n# save as Arrow locally\r\nds.save_to_disk(\"output_dir\")\r\nreloaded = load_from_disk(\"output_dir\")\r\n\r\n# OR save as Parquet on the HF Hub\r\nds.push_to_hub(\"username/dataset_name\")\r\nreloaded = load_dataset(\"username/dataset_name\")\r\n# reloaded = load_dataset(\"username/dataset_name\", num_proc=16) # to use multiprocessing\r\n```\r\n\r\nPS: maybe we can actually have something similar to ImageFolder but for image archives at one point ?", "@lhoestq Thanks!\r\n\r\nPerhaps it'd be worth adding a note on the documentation that `ImageFolder` is not intended for large datasets? This limitation is not intuitively obvious to someone who has not used it before, I think.", "Thanks for the feedback @salieri! I opened #5329 to make it clear `ImageFolder` is not intended for large datasets. Please feel free to comment if you have any other feedback! 🙂 " ]
2022-12-01T00:04:21Z
2022-12-01T21:49:26Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug While testing image dataset creation, I'm seeing significant performance bottlenecks with imagefolders when scanning a directory structure with large number of images. ## Setup * Nested directories (5 levels deep) * 3M+ images * 1 `metadata.jsonl` file ## Performance Degradation Point 1 Degradation occurs because [`get_data_files_patterns`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L231-L243) runs the exact same scan for many different types of patterns, and there doesn't seem to be a way to easily limit this. It's controlled by the definition of [`ALL_DEFAULT_PATTERNS`](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L82-L85). One scan with 3M+ files takes about 10-15 minutes to complete on my setup, so having those extra scans really slows things down – from 10 minutes to 60+. Most of the scans return no matches, but they still take a significant amount of time to complete – hence the poor performance. As a side effect, when this scan is run on 3M+ image files, Python also consumes up to 12 GB of RAM, which is not ideal. ## Performance Degradation Point 2 The second performance bottleneck is in [`PackagedDatasetModuleFactory.get_module`](https://github.com/huggingface/datasets/blob/d7dfbc83d68e87ba002c5eb2555f7a932e59038a/src/datasets/load.py#L707-L711), which calls `DataFilesDict.from_local_or_remote`. It runs for a long time (60min+), consuming significant amounts of RAM – even more than the point 1 above. Based on `iostat -d 2`, it performs **zero** disk operations, which to me suggests that there is a code based bottleneck there that could be sorted out. ### Steps to reproduce the bug ```python from datasets import load_dataset import os import huggingface_hub dataset = load_dataset( 'imagefolder', data_dir='/some/path', # just to spell it out: split=None, drop_labels=True, keep_in_memory=False ) dataset.push_to_hub('account/dataset', private=True) ``` ### Expected behavior While it's certainly possible to write a custom loader to replace `ImageFolder` with, it'd be great if the off-the-shelf `ImageFolder` would by default have a setup that can scale to large datasets. Or perhaps there could be a dedicated loader just for large datasets that trades off flexibility for performance? As in, maybe you have to define explicitly how you want it to work rather than it trying to guess your data structure like `_get_data_files_patterns()` does? ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-4.14.296-222.539.amzn2.x86_64-x86_64-with-glibc2.2.5 - Python version: 3.7.10 - PyArrow version: 10.0.1 - Pandas version: 1.3.5
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5317/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5317/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6008
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6008/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6008/comments
https://api.github.com/repos/huggingface/datasets/issues/6008/events
https://github.com/huggingface/datasets/issues/6008
1,789,869,344
I_kwDODunzps5qrz0g
6,008
Dataset.from_generator consistently freezes at ~1000 rows
{ "avatar_url": "https://avatars.githubusercontent.com/u/27695722?v=4", "events_url": "https://api.github.com/users/andreemic/events{/privacy}", "followers_url": "https://api.github.com/users/andreemic/followers", "following_url": "https://api.github.com/users/andreemic/following{/other_user}", "gists_url": "https://api.github.com/users/andreemic/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andreemic", "id": 27695722, "login": "andreemic", "node_id": "MDQ6VXNlcjI3Njk1NzIy", "organizations_url": "https://api.github.com/users/andreemic/orgs", "received_events_url": "https://api.github.com/users/andreemic/received_events", "repos_url": "https://api.github.com/users/andreemic/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andreemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andreemic/subscriptions", "type": "User", "url": "https://api.github.com/users/andreemic", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "By default, we write data to disk (so it can be memory-mapped) every 1000 rows/samples. You can control this with the `writer_batch_size` parameter. Also, when working with fixed-size arrays, the `ArrayXD` feature types yield better performance (e.g., in your case, `features=datasets.Features({\"i\": datasets.Array3D(shape=(512,512,3), dtype=\"float32\")})` should be faster).\r\n\r\nOur support for multi-dim arrays could be better, and we plan to improve it as part of https://github.com/huggingface/datasets/issues/5272.", "> By default, we write data to disk (so it can be memory-mapped) every 1000 rows/samples. You can control this with the `writer_batch_size` parameter. Also, when working with fixed-size arrays, the `ArrayXD` feature types yield better performance (e.g., in your case, `features=datasets.Features({\"i\": datasets.Array3D(shape=(512,512,3), dtype=\"float32\")})` should be faster).\r\n> \r\n> Our support for multi-dim arrays could be better, and we plan to improve it as part of #5272.\r\n\r\nThanks for the explanation! The Image array was just for demonstration, I use PIL Images in practice. Does that make a difference? What's the best approach for a dataset with PIL Images as rows?", "It's best to use the `datasets.Image()` feature type for PIL images (to save space) :)" ]
2023-07-05T16:06:48Z
2023-07-10T13:46:39Z
2023-07-10T13:46:39Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Whenever I try to create a dataset which contains images using `Dataset.from_generator`, it freezes around 996 rows. I suppose it has something to do with memory consumption, but there's more memory available. I Somehow it worked a few times but mostly this makes the datasets library much more cumbersome to work with because generators are the easiest way to turn an existing dataset into a Hugging Face dataset. I've let it run in the frozen state for way longer than it can possibly take to load the actual dataset. Let me know if you have ideas how to resolve it! ### Steps to reproduce the bug ```python from datasets import Dataset import numpy as np def gen(): for row in range(10000): yield {"i": np.random.rand(512, 512, 3)} Dataset.from_generator(gen) # -> 90% of the time gets stuck around 1000 rows ``` ### Expected behavior Should continue and go through all the examples yielded by the generator, or at least throw an error or somehow communicate what's going on. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 12.0.1 - Pandas version: 1.5.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6008/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6008/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6188
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6188/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6188/comments
https://api.github.com/repos/huggingface/datasets/issues/6188/events
https://github.com/huggingface/datasets/issues/6188
1,870,987,640
I_kwDODunzps5vhQF4
6,188
[Feature Request] Check the length of batch before writing so that empty batch is allowed
{ "avatar_url": "https://avatars.githubusercontent.com/u/61188463?v=4", "events_url": "https://api.github.com/users/namespace-Pt/events{/privacy}", "followers_url": "https://api.github.com/users/namespace-Pt/followers", "following_url": "https://api.github.com/users/namespace-Pt/following{/other_user}", "gists_url": "https://api.github.com/users/namespace-Pt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/namespace-Pt", "id": 61188463, "login": "namespace-Pt", "node_id": "MDQ6VXNlcjYxMTg4NDYz", "organizations_url": "https://api.github.com/users/namespace-Pt/orgs", "received_events_url": "https://api.github.com/users/namespace-Pt/received_events", "repos_url": "https://api.github.com/users/namespace-Pt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/namespace-Pt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/namespace-Pt/subscriptions", "type": "User", "url": "https://api.github.com/users/namespace-Pt", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I think this error means you filter all examples within an (input) batch by deleting its columns. In that case, to avoid the error, you can set the column value to an empty list (`input_batch[\"col\"] = []`) instead." ]
2023-08-29T06:37:34Z
2023-09-19T21:55:38Z
2023-09-19T21:55:37Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Use Case I use `dataset.map(process_fn, batched=True)` to process the dataset, with data **augmentations or filtering**. However, when all examples within a batch is filtered out, i.e. **an empty batch is returned**, the following error will be thrown: ``` ValueError: Schema and number of arrays unequal ``` This is because the empty batch does not comply with the schema of other batches. I think an empty batch should be allowed to facilitate coding (one does not need to assign an empty list manually for all keys.) A simple fix is to check the length of `batch` before writing: ``` if len(batch): writer.write_batch(batch) ``` instead of https://github.com/huggingface/datasets/blob/74d60213dcbd7c99484c62ce1d3dfd90a1df0770/src/datasets/arrow_dataset.py#L3493
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6188/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6188/timeline
null
not_planned
null
null
https://api.github.com/repos/huggingface/datasets/issues/4564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4564/comments
https://api.github.com/repos/huggingface/datasets/issues/4564/events
https://github.com/huggingface/datasets/pull/4564
1,283,932,333
PR_kwDODunzps46UqUN
4,564
Support streaming bookcorpus dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-06-24T16:13:39Z
2022-07-06T09:34:48Z
2022-07-06T09:23:04Z
MEMBER
null
null
null
Support streaming bookcorpus dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4564/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4564/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4564.diff", "html_url": "https://github.com/huggingface/datasets/pull/4564", "merged_at": "2022-07-06T09:23:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/4564.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4564" }
https://api.github.com/repos/huggingface/datasets/issues/6770
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6770/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6770/comments
https://api.github.com/repos/huggingface/datasets/issues/6770/events
https://github.com/huggingface/datasets/issues/6770
2,218,991,883
I_kwDODunzps6EQyEL
6,770
[Bug Report] `datasets==2.18.0` is not compatible with `fsspec==2023.12.2`
{ "avatar_url": "https://avatars.githubusercontent.com/u/19348888?v=4", "events_url": "https://api.github.com/users/fshp971/events{/privacy}", "followers_url": "https://api.github.com/users/fshp971/followers", "following_url": "https://api.github.com/users/fshp971/following{/other_user}", "gists_url": "https://api.github.com/users/fshp971/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fshp971", "id": 19348888, "login": "fshp971", "node_id": "MDQ6VXNlcjE5MzQ4ODg4", "organizations_url": "https://api.github.com/users/fshp971/orgs", "received_events_url": "https://api.github.com/users/fshp971/received_events", "repos_url": "https://api.github.com/users/fshp971/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fshp971/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fshp971/subscriptions", "type": "User", "url": "https://api.github.com/users/fshp971", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You should be able to fix this by updating `huggingface_hub` with `pip install -U huggingface_hub`. We use this package under the hood to resolve the Hub's files." ]
2024-04-01T20:17:48Z
2024-04-11T17:31:44Z
2024-04-11T17:31:44Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug `Datasets==2.18.0` is not compatible with `fsspec==2023.12.2`. I have to downgrade fsspec to `fsspec==2023.10.0` to make `Datasets==2.18.0` work properly. ### Steps to reproduce the bug To reproduce the bug: 1. Make sure that `Datasets==2.18.0` and `fsspec==2023.12.2`. 2. Run the following code: ``` from datasets import load_dataset dataset = load_dataset("trec") ``` 3. Then one will get the following error message: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 2265, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( File "/opt/conda/lib/python3.10/site-packages/datasets/builder.py", line 371, in __init__ self.config, self.config_id = self._create_builder_config( File "/opt/conda/lib/python3.10/site-packages/datasets/builder.py", line 620, in _create_builder_config builder_config._resolve_data_files( File "/opt/conda/lib/python3.10/site-packages/datasets/builder.py", line 211, in _resolve_data_files self.data_files = self.data_files.resolve(base_path, download_config) File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 799, in resolve out[key] = data_files_patterns_list.resolve(base_path, download_config) File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 752, in resolve resolve_pattern( File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 393, in resolve_pattern raise FileNotFoundError(error_msg) FileNotFoundError: Unable to find 'hf://datasets/trec@65752bf53af25bc935a0dce92fb5b6c930728450/default/train/0000.parquet' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip'] ``` 4. Similar issue also found for the following code: ``` dataset = load_dataset("sst", "default") ``` ### Expected behavior If the dataset is loaded correctly, one will have: ``` >>> print(dataset) DatasetDict({ train: Dataset({ features: ['text', 'coarse_label', 'fine_label'], num_rows: 5452 }) test: Dataset({ features: ['text', 'coarse_label', 'fine_label'], num_rows: 500 }) }) >>> ``` ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-6.2.0-35-generic-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.1 - Pandas version: 2.2.1 - `fsspec` version: 2023.12.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6770/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6770/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6462
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6462/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6462/comments
https://api.github.com/repos/huggingface/datasets/issues/6462/events
https://github.com/huggingface/datasets/pull/6462
2,019,238,388
PR_kwDODunzps5gz68T
6,462
Missing DatasetNotFoundError
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005594 / 0.011353 (-0.005759) | 0.003672 / 0.011008 (-0.007337) | 0.062796 / 0.038508 (0.024288) | 0.059432 / 0.023109 (0.036323) | 0.253976 / 0.275898 (-0.021922) | 0.281155 / 0.323480 (-0.042325) | 0.003023 / 0.007986 (-0.004962) | 0.003320 / 0.004328 (-0.001008) | 0.049059 / 0.004250 (0.044809) | 0.040252 / 0.037052 (0.003200) | 0.259526 / 0.258489 (0.001037) | 0.318798 / 0.293841 (0.024957) | 0.027883 / 0.128546 (-0.100663) | 0.010883 / 0.075646 (-0.064763) | 0.206948 / 0.419271 (-0.212323) | 0.036335 / 0.043533 (-0.007198) | 0.253209 / 0.255139 (-0.001930) | 0.275173 / 0.283200 (-0.008026) | 0.020365 / 0.141683 (-0.121318) | 1.121630 / 1.452155 (-0.330524) | 1.174680 / 1.492716 (-0.318036) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098372 / 0.018006 (0.080366) | 0.309949 / 0.000490 (0.309460) | 0.000225 / 0.000200 (0.000025) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019495 / 0.037411 (-0.017916) | 0.062321 / 0.014526 (0.047795) | 0.074525 / 0.176557 (-0.102031) | 0.121832 / 0.737135 (-0.615303) | 0.077612 / 0.296338 (-0.218727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288156 / 0.215209 (0.072947) | 2.816411 / 2.077655 (0.738756) | 1.497926 / 1.504120 (-0.006193) | 1.378137 / 1.541195 (-0.163058) | 1.446466 / 1.468490 (-0.022024) | 0.566195 / 4.584777 (-4.018582) | 2.391933 / 3.745712 (-1.353780) | 2.929290 / 5.269862 (-2.340572) | 1.828215 / 4.565676 (-2.737462) | 0.063312 / 0.424275 (-0.360963) | 0.005199 / 0.007607 (-0.002408) | 0.342883 / 0.226044 (0.116838) | 3.378388 / 2.268929 (1.109459) | 1.865710 / 55.444624 (-53.578915) | 1.573442 / 6.876477 (-5.303035) | 1.631228 / 2.142072 (-0.510845) | 0.651614 / 4.805227 (-4.153613) | 0.118177 / 6.500664 (-6.382487) | 0.043303 / 0.075469 (-0.032166) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.950694 / 1.841788 (-0.891094) | 12.559851 / 8.074308 (4.485543) | 10.751123 / 10.191392 (0.559731) | 0.143107 / 0.680424 (-0.537317) | 0.014469 / 0.534201 (-0.519732) | 0.289531 / 0.579283 (-0.289752) | 0.267316 / 0.434364 (-0.167047) | 0.327748 / 0.540337 (-0.212590) | 0.437758 / 1.386936 (-0.949178) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005669 / 0.011353 (-0.005684) | 0.003831 / 0.011008 (-0.007177) | 0.049096 / 0.038508 (0.010588) | 0.061408 / 0.023109 (0.038299) | 0.274571 / 0.275898 (-0.001327) | 0.299978 / 0.323480 (-0.023501) | 0.004216 / 0.007986 (-0.003769) | 0.002848 / 0.004328 (-0.001480) | 0.048755 / 0.004250 (0.044504) | 0.042576 / 0.037052 (0.005524) | 0.276781 / 0.258489 (0.018292) | 0.300903 / 0.293841 (0.007062) | 0.030243 / 0.128546 (-0.098303) | 0.010967 / 0.075646 (-0.064679) | 0.057879 / 0.419271 (-0.361392) | 0.033206 / 0.043533 (-0.010327) | 0.277620 / 0.255139 (0.022481) | 0.296263 / 0.283200 (0.013064) | 0.019022 / 0.141683 (-0.122660) | 1.125615 / 1.452155 (-0.326539) | 1.278016 / 1.492716 (-0.214700) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096836 / 0.018006 (0.078830) | 0.307491 / 0.000490 (0.307001) | 0.000230 / 0.000200 (0.000030) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021552 / 0.037411 (-0.015859) | 0.071099 / 0.014526 (0.056573) | 0.082432 / 0.176557 (-0.094124) | 0.121826 / 0.737135 (-0.615310) | 0.084902 / 0.296338 (-0.211437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.328113 / 0.215209 (0.112904) | 2.989613 / 2.077655 (0.911959) | 1.604904 / 1.504120 (0.100784) | 1.485459 / 1.541195 (-0.055735) | 1.524829 / 1.468490 (0.056339) | 0.580589 / 4.584777 (-4.004188) | 2.440087 / 3.745712 (-1.305625) | 2.944697 / 5.269862 (-2.325164) | 1.832728 / 4.565676 (-2.732949) | 0.064423 / 0.424275 (-0.359852) | 0.004991 / 0.007607 (-0.002616) | 0.357878 / 0.226044 (0.131834) | 3.515415 / 2.268929 (1.246487) | 1.964492 / 55.444624 (-53.480132) | 1.684058 / 6.876477 (-5.192418) | 1.730294 / 2.142072 (-0.411778) | 0.661228 / 4.805227 (-4.143999) | 0.122894 / 6.500664 (-6.377770) | 0.041776 / 0.075469 (-0.033693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969849 / 1.841788 (-0.871939) | 12.897067 / 8.074308 (4.822758) | 10.908200 / 10.191392 (0.716808) | 0.141139 / 0.680424 (-0.539285) | 0.015377 / 0.534201 (-0.518824) | 0.288625 / 0.579283 (-0.290658) | 0.279020 / 0.434364 (-0.155344) | 0.328386 / 0.540337 (-0.211951) | 0.590833 / 1.386936 (-0.796103) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#39ea60eaabb05d8ee38c072f375816cf87fce1a9 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004986 / 0.011353 (-0.006367) | 0.003070 / 0.011008 (-0.007938) | 0.062433 / 0.038508 (0.023925) | 0.050639 / 0.023109 (0.027530) | 0.241807 / 0.275898 (-0.034091) | 0.262517 / 0.323480 (-0.060963) | 0.003826 / 0.007986 (-0.004160) | 0.002602 / 0.004328 (-0.001727) | 0.048508 / 0.004250 (0.044257) | 0.037276 / 0.037052 (0.000224) | 0.245757 / 0.258489 (-0.012732) | 0.272969 / 0.293841 (-0.020871) | 0.027139 / 0.128546 (-0.101407) | 0.010265 / 0.075646 (-0.065381) | 0.207279 / 0.419271 (-0.211992) | 0.035312 / 0.043533 (-0.008221) | 0.247535 / 0.255139 (-0.007604) | 0.260668 / 0.283200 (-0.022532) | 0.016496 / 0.141683 (-0.125187) | 1.137510 / 1.452155 (-0.314645) | 1.167870 / 1.492716 (-0.324847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091743 / 0.018006 (0.073736) | 0.298649 / 0.000490 (0.298159) | 0.000208 / 0.000200 (0.000009) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019053 / 0.037411 (-0.018359) | 0.060300 / 0.014526 (0.045774) | 0.072154 / 0.176557 (-0.104402) | 0.120293 / 0.737135 (-0.616842) | 0.073923 / 0.296338 (-0.222415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283058 / 0.215209 (0.067849) | 2.769503 / 2.077655 (0.691849) | 1.457016 / 1.504120 (-0.047104) | 1.335753 / 1.541195 (-0.205441) | 1.325986 / 1.468490 (-0.142504) | 0.562553 / 4.584777 (-4.022224) | 2.406144 / 3.745712 (-1.339568) | 2.778063 / 5.269862 (-2.491799) | 1.782199 / 4.565676 (-2.783477) | 0.062490 / 0.424275 (-0.361785) | 0.004912 / 0.007607 (-0.002695) | 0.338500 / 0.226044 (0.112456) | 3.309746 / 2.268929 (1.040818) | 1.819693 / 55.444624 (-53.624931) | 1.510295 / 6.876477 (-5.366182) | 1.578402 / 2.142072 (-0.563671) | 0.637517 / 4.805227 (-4.167710) | 0.117018 / 6.500664 (-6.383647) | 0.048149 / 0.075469 (-0.027320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.939424 / 1.841788 (-0.902364) | 11.494891 / 8.074308 (3.420583) | 10.115194 / 10.191392 (-0.076198) | 0.126751 / 0.680424 (-0.553673) | 0.013567 / 0.534201 (-0.520634) | 0.282501 / 0.579283 (-0.296782) | 0.260594 / 0.434364 (-0.173770) | 0.325940 / 0.540337 (-0.214397) | 0.426186 / 1.386936 (-0.960750) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005405 / 0.011353 (-0.005948) | 0.003557 / 0.011008 (-0.007451) | 0.051139 / 0.038508 (0.012631) | 0.053446 / 0.023109 (0.030337) | 0.268051 / 0.275898 (-0.007847) | 0.292343 / 0.323480 (-0.031136) | 0.004716 / 0.007986 (-0.003269) | 0.002677 / 0.004328 (-0.001651) | 0.047634 / 0.004250 (0.043384) | 0.041062 / 0.037052 (0.004009) | 0.269225 / 0.258489 (0.010736) | 0.297462 / 0.293841 (0.003621) | 0.029292 / 0.128546 (-0.099254) | 0.010947 / 0.075646 (-0.064699) | 0.057845 / 0.419271 (-0.361426) | 0.032793 / 0.043533 (-0.010740) | 0.265308 / 0.255139 (0.010169) | 0.288242 / 0.283200 (0.005043) | 0.018311 / 0.141683 (-0.123372) | 1.140957 / 1.452155 (-0.311197) | 1.204883 / 1.492716 (-0.287833) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091375 / 0.018006 (0.073368) | 0.285922 / 0.000490 (0.285432) | 0.000238 / 0.000200 (0.000038) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021277 / 0.037411 (-0.016134) | 0.068853 / 0.014526 (0.054328) | 0.081002 / 0.176557 (-0.095555) | 0.120998 / 0.737135 (-0.616138) | 0.082741 / 0.296338 (-0.213598) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299398 / 0.215209 (0.084189) | 2.909622 / 2.077655 (0.831967) | 1.624381 / 1.504120 (0.120261) | 1.501683 / 1.541195 (-0.039512) | 1.523045 / 1.468490 (0.054555) | 0.548960 / 4.584777 (-4.035817) | 2.413297 / 3.745712 (-1.332415) | 2.817852 / 5.269862 (-2.452010) | 1.754407 / 4.565676 (-2.811270) | 0.061912 / 0.424275 (-0.362363) | 0.004880 / 0.007607 (-0.002727) | 0.353989 / 0.226044 (0.127944) | 3.496147 / 2.268929 (1.227219) | 2.003026 / 55.444624 (-53.441598) | 1.702013 / 6.876477 (-5.174463) | 1.680935 / 2.142072 (-0.461137) | 0.630183 / 4.805227 (-4.175044) | 0.113786 / 6.500664 (-6.386878) | 0.040061 / 0.075469 (-0.035408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957218 / 1.841788 (-0.884569) | 11.914469 / 8.074308 (3.840160) | 10.488896 / 10.191392 (0.297504) | 0.129292 / 0.680424 (-0.551132) | 0.016603 / 0.534201 (-0.517598) | 0.287367 / 0.579283 (-0.291916) | 0.271332 / 0.434364 (-0.163032) | 0.325577 / 0.540337 (-0.214761) | 0.560553 / 1.386936 (-0.826383) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2d31e434bbeafdf6a70cb80539342d8fe5f5fd27 \"CML watermark\")\n" ]
2023-11-30T18:09:43Z
2023-11-30T18:36:40Z
2023-11-30T18:30:30Z
MEMBER
null
null
null
continuation of https://github.com/huggingface/datasets/pull/6431 this should fix the CI in https://github.com/huggingface/datasets/pull/6458 too
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6462/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6462/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6462.diff", "html_url": "https://github.com/huggingface/datasets/pull/6462", "merged_at": "2023-11-30T18:30:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/6462.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6462" }
https://api.github.com/repos/huggingface/datasets/issues/6159
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6159/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6159/comments
https://api.github.com/repos/huggingface/datasets/issues/6159/events
https://github.com/huggingface/datasets/issues/6159
1,855,691,512
I_kwDODunzps5um5r4
6,159
Add `BoundingBox` feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "My proposal would look like this:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\nfrom datasets.features import Sequence, BboxFeature\r\n\r\n# load images along with boxes\r\ndataset = load_dataset(\"imagefolder\", data_dir=\"/path/to/folder\", split=\"train\")\r\n\r\n# map the boxes column to the appropriate format\r\ndataset = dataset.map(lambda example: map_to_ymin_xmin_ymax_xmax(example))\r\n\r\n# cast to feature\r\ndataset = dataset.cast_column('boxes', Sequence(BboxFeature))\r\n````\r\nWe could for instance make [BboxFeature](https://www.tensorflow.org/datasets/api_docs/python/tfds/features/BBoxFeature) default to normalized coordinates in the ymin, xmin, ymax, xmax format. This is just one of the many different formats of bounding boxes, so we would for instance default to the format used by Tensorflow datasets." ]
2023-08-17T20:49:51Z
2024-11-18T17:58:43Z
null
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
... to make working with object detection datasets easier. Currently, `Sequence(int_or_float, length=4)` can be used to represent this feature optimally (in the storage backend), so I only see this feature being useful if we make it work with the viewer. Also, bounding boxes usually come in 4 different formats (explained [here](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/)), so we need to decide which one to support (or maybe all of them). cc @NielsRogge @severo
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6159/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6159/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7271
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7271/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7271/comments
https://api.github.com/repos/huggingface/datasets/issues/7271/events
https://github.com/huggingface/datasets/pull/7271
2,627,135,540
PR_kwDODunzps6AiZaj
7,271
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7271). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-10-31T15:22:51Z
2024-10-31T15:25:27Z
2024-10-31T15:22:59Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7271/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7271/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7271.diff", "html_url": "https://github.com/huggingface/datasets/pull/7271", "merged_at": "2024-10-31T15:22:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/7271.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7271" }
https://api.github.com/repos/huggingface/datasets/issues/5806
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5806/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5806/comments
https://api.github.com/repos/huggingface/datasets/issues/5806/events
https://github.com/huggingface/datasets/issues/5806
1,688,598,095
I_kwDODunzps5kpfZP
5,806
Return the name of the currently loaded file in the load_dataset function.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16948304?v=4", "events_url": "https://api.github.com/users/s-JoL/events{/privacy}", "followers_url": "https://api.github.com/users/s-JoL/followers", "following_url": "https://api.github.com/users/s-JoL/following{/other_user}", "gists_url": "https://api.github.com/users/s-JoL/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/s-JoL", "id": 16948304, "login": "s-JoL", "node_id": "MDQ6VXNlcjE2OTQ4MzA0", "organizations_url": "https://api.github.com/users/s-JoL/orgs", "received_events_url": "https://api.github.com/users/s-JoL/received_events", "repos_url": "https://api.github.com/users/s-JoL/repos", "site_admin": false, "starred_url": "https://api.github.com/users/s-JoL/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/s-JoL/subscriptions", "type": "User", "url": "https://api.github.com/users/s-JoL", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/49894149?v=4", "events_url": "https://api.github.com/users/tsabbir96/events{/privacy}", "followers_url": "https://api.github.com/users/tsabbir96/followers", "following_url": "https://api.github.com/users/tsabbir96/following{/other_user}", "gists_url": "https://api.github.com/users/tsabbir96/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tsabbir96", "id": 49894149, "login": "tsabbir96", "node_id": "MDQ6VXNlcjQ5ODk0MTQ5", "organizations_url": "https://api.github.com/users/tsabbir96/orgs", "received_events_url": "https://api.github.com/users/tsabbir96/received_events", "repos_url": "https://api.github.com/users/tsabbir96/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tsabbir96/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tsabbir96/subscriptions", "type": "User", "url": "https://api.github.com/users/tsabbir96", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/49894149?v=4", "events_url": "https://api.github.com/users/tsabbir96/events{/privacy}", "followers_url": "https://api.github.com/users/tsabbir96/followers", "following_url": "https://api.github.com/users/tsabbir96/following{/other_user}", "gists_url": "https://api.github.com/users/tsabbir96/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tsabbir96", "id": 49894149, "login": "tsabbir96", "node_id": "MDQ6VXNlcjQ5ODk0MTQ5", "organizations_url": "https://api.github.com/users/tsabbir96/orgs", "received_events_url": "https://api.github.com/users/tsabbir96/received_events", "repos_url": "https://api.github.com/users/tsabbir96/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tsabbir96/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tsabbir96/subscriptions", "type": "User", "url": "https://api.github.com/users/tsabbir96", "user_view_type": "public" } ]
null
[ "Implementing this makes sense (e.g., `tensorflow_datasets`' imagefolder returns image filenames). Also, in Datasets 3.0, we plan only to store the bytes of an image/audio, not its path, so this feature would be useful when the path info is still needed.", "Hey @mariosasko, Can I work on this issue, this one seems interesting to implement. I have contributed to jupyterlab recently, and would love to contribute here as well. ", "@tsabbir96 if you are planning to start working on this, you can take on this issue by writing a comment with only the keyword: #self-assign", "#self-assign", "@albertvillanova thank you for letting me contribute here. \r\n@albertvillanova @mariosasko As I am totally new to this repo, could you tell me something more about this issue or perhaps give me some idea on how I can proceed with it? Thanks!", "Hello there, is this issue resolved? @tsabbir96 are you still working on it? Otherwise I would love to give it a try", "@EduardoPach This issue is still relevant, so feel free to work on it.", "Hey @mariosasko, I've taken the time to take a look at how we load the datasets usually. My main question now is about the final solution.\r\n\r\nSo the idea is that whenever we load the datasets we also add a new column in the _generate_tables() method from the builders called filename (or file_name) that should be related files contained in each split, right?\r\n\r\nDo you have any suggestions of where I could add that? ", "Is this issue still open? If yes, I'd like to work upon on it. Thanks", "> Is this issue still open? If yes, I'd like to work upon on it. Thanks\n\nDefinitely still open. I gave it a try, but then didn't get any feedback on my last question so I stopped . Feel free to work on it.", "It's still open, so feel free to work on it. This can be implemented by adding a param to the packaged builders' configs that inserts a column with file names (in `_generate_tables`) when `True`. Naming this column `file_name` sounds good to me.", "Hi is the issues still open, is see no activity since September but it shows that it is still assigned to tsabbir96. If \r\ntsabbir96 is not planning to continue, can i get it assigned to me.", "Looking forward to your implementation. I also really need this feature. \r\nThanks", "Hi. I am new and would like to contribute to this issue @tsabbir96", "Hi,is this issue still open?if yes ,I d like to work on it .Thanks" ]
2023-04-28T13:50:15Z
2025-03-21T12:07:15Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add an optional parameter return_file_name in the load_dataset function. When it is set to True, the function will include the name of the file corresponding to the current line as a feature in the returned output. ### Motivation When training large language models, machine problems may interrupt the training process. In such cases, it is common to load a previously saved checkpoint to resume training. I would like to be able to obtain the names of the previously trained data shards, so that I can skip these parts of the data during continued training to avoid overfitting and redundant training time. ### Your contribution I currently use a dataset in jsonl format, so I am primarily interested in the json format. I suggest adding the file name to the returned table here https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/json/json.py#L92.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5806/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5806/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4890
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4890/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4890/comments
https://api.github.com/repos/huggingface/datasets/issues/4890/events
https://github.com/huggingface/datasets/pull/4890
1,350,578,029
PR_kwDODunzps49x1YC
4,890
add Dataset.from_list
{ "avatar_url": "https://avatars.githubusercontent.com/u/48946947?v=4", "events_url": "https://api.github.com/users/sanderland/events{/privacy}", "followers_url": "https://api.github.com/users/sanderland/followers", "following_url": "https://api.github.com/users/sanderland/following{/other_user}", "gists_url": "https://api.github.com/users/sanderland/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanderland", "id": 48946947, "login": "sanderland", "node_id": "MDQ6VXNlcjQ4OTQ2OTQ3", "organizations_url": "https://api.github.com/users/sanderland/orgs", "received_events_url": "https://api.github.com/users/sanderland/received_events", "repos_url": "https://api.github.com/users/sanderland/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanderland/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanderland/subscriptions", "type": "User", "url": "https://api.github.com/users/sanderland", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "@albertvillanova it seems tests fail on pyarrow 6, perhaps from_pylist is a v7 method? How do you usually handle these version differences?\r\nAdded something that at least works" ]
2022-08-25T09:05:58Z
2022-09-02T10:22:59Z
2022-09-02T10:20:33Z
CONTRIBUTOR
null
null
null
As discussed in #4885 I initially added this bit at the end, thinking filling this field was necessary as it is done in from_dict. However, it seems the constructor takes care of filling info when it is empty. ``` if info.features is None: info.features = Features( { col: generate_from_arrow_type(coldata.type) for col, coldata in zip(pa_table.column_names, pa_table.columns) } ) ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4890/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4890/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4890.diff", "html_url": "https://github.com/huggingface/datasets/pull/4890", "merged_at": "2022-09-02T10:20:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/4890.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4890" }
https://api.github.com/repos/huggingface/datasets/issues/7446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7446/comments
https://api.github.com/repos/huggingface/datasets/issues/7446/events
https://github.com/huggingface/datasets/issues/7446
2,913,050,552
I_kwDODunzps6toZ-4
7,446
pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int'
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-12T07:48:37Z
2025-03-12T07:48:37Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug A dict with its keys are all str but get following error ```python test_data=[{'input_ids':[1,2,3],'labels':[[Counter({2:1})]]}] dataset = datasets.Dataset.from_list(test_data) ``` ```bash pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info datasets 3.3.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7446/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7446/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4951
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4951/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4951/comments
https://api.github.com/repos/huggingface/datasets/issues/4951/events
https://github.com/huggingface/datasets/pull/4951
1,365,954,814
PR_kwDODunzps4-lDqd
4,951
Fix license information in qasc dataset card
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-08T10:04:39Z
2022-09-08T14:54:47Z
2022-09-08T14:52:05Z
MEMBER
null
null
null
This PR adds the license information to `qasc` dataset, once reported via GitHub by Tushar Khot, the dataset is licensed under CC BY 4.0: - https://github.com/allenai/qasc/issues/5
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4951/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4951/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4951.diff", "html_url": "https://github.com/huggingface/datasets/pull/4951", "merged_at": "2022-09-08T14:52:05Z", "patch_url": "https://github.com/huggingface/datasets/pull/4951.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4951" }
https://api.github.com/repos/huggingface/datasets/issues/4659
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4659/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4659/comments
https://api.github.com/repos/huggingface/datasets/issues/4659/events
https://github.com/huggingface/datasets/pull/4659
1,297,094,140
PR_kwDODunzps47AQo9
4,659
Transfer CI to GitHub Actions
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks a lot @albertvillanova ! I hope we're finally done with flakiness on windows ^^\r\n\r\nAlso thanks for paying extra attention to billing and avoiding running unnecessary jobs. Though for certain aspects (see my comments), I think it's worth having the extra jobs to make our life easier", "~@lhoestq I think you forgot to add your comments?~\r\n\r\nI had missed it among all the other comments...", "@lhoestq, I'm specially enthusiastic with the fail-fast policy: it was in my TODO list for a long time. I really think it will have a positive impact (I would love to know the spent time saving it will enable, besides the carbon footprint reduction). :wink: \r\n\r\nSo yes, as you said above, let's give it a try at least. If we encounter any inconvenience, we can easily disable it.\r\n\r\nQuestion: I guess I have to disable CircleCI CI before merging this PR?\r\n\r\n" ]
2022-07-07T09:29:47Z
2022-07-12T11:30:20Z
2022-07-12T11:18:25Z
MEMBER
null
null
null
This PR transfers CI from CircleCI to GitHub Actions. The implementation in GitHub Actions tries to be as faithful as possible to the implementation in CircleCI and get the same output results (exceptions below). **IMPORTANT NOTE**: The fast-fail policy (described below) is not finally implemented, so that: - we can continue merging PRs with CI in red because of some random error returned by the Hub - it is not annoying for maintainers to have to relaunch failed CI jobs See comments here: https://github.com/huggingface/datasets/pull/4659#discussion_r918802348 Differences in the implementation in GitHub Actions compared to the CircleCI one: - This PR introduces some *fail-fast* mechanisms to significantly reduce the total time CI is running, both because of environmental impact and because CI in GitHub Actions billing depends on the minutes per month running time (see [About billing for GitHub Actions](https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions)): - All tests *depend* on `check_code_quality` job: only if `check_code_quality` passes, then the other test jobs are launched - The tests are implemented with a matrix strategy (cross-product: OS and PyArrow versions) and fail-fast: if any of the 4 processes fails, the others are cancelled - OS dependencies for Linux (see table below) | OS dependencies | Passed tests | Skipped tests | | --- | ---: | ---: | | libsndfile1-dev | 4786 | 3119 | | libsndfile1 | 4786 | 3119 | | libsndfile1, sox | 4788 | 3117 | - This PR replaces `libsndfile1-dev` with `libsndfile1`: the same number of passing tests but less packages installed - This PR adds `sox`: required by MP3 tests (2 more tests are passed: 4788 instead of 4786) - For tests using PyArrow 6, this PR uses 6.0.1 instead of 6.0.0 TO DO: - [ ] Remove old CircleCI CI: kept for the moment to compare stability and performance Close #4658. ## Comparison between CircleCI and GitHub Actions | | | CircleCI | GitHub Actions | | --- | --- | ---: | ---: | | Ubuntu, pyarrow-latest |||| || Passed tests | 4786 | 4788 | || Duration | 11m 0s | 10m 10s | | Windows, pyarrow-latest |||| || Passed tests | 4783 | 4783 | || Duration | 29m 59s | 22m 56s |
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4659/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4659/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4659.diff", "html_url": "https://github.com/huggingface/datasets/pull/4659", "merged_at": "2022-07-12T11:18:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/4659.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4659" }
https://api.github.com/repos/huggingface/datasets/issues/6578
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6578/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6578/comments
https://api.github.com/repos/huggingface/datasets/issues/6578/events
https://github.com/huggingface/datasets/pull/6578
2,074,923,321
PR_kwDODunzps5jtthB
6,578
Faster webdataset streaming
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6578). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I added faster streaming support using streaming Requests instances in `huggingface_hub` and will be available in 0.21.\r\n\r\nThis PR can be used with https://github.com/huggingface/huggingface_hub/pull/1967 to get fast WebDataset streaming", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004941 / 0.011353 (-0.006412) | 0.003431 / 0.011008 (-0.007577) | 0.062768 / 0.038508 (0.024260) | 0.029212 / 0.023109 (0.006103) | 0.253053 / 0.275898 (-0.022845) | 0.273061 / 0.323480 (-0.050419) | 0.004114 / 0.007986 (-0.003871) | 0.002713 / 0.004328 (-0.001616) | 0.048481 / 0.004250 (0.044231) | 0.040001 / 0.037052 (0.002949) | 0.268461 / 0.258489 (0.009971) | 0.287767 / 0.293841 (-0.006074) | 0.027885 / 0.128546 (-0.100661) | 0.010474 / 0.075646 (-0.065172) | 0.207989 / 0.419271 (-0.211282) | 0.035893 / 0.043533 (-0.007640) | 0.256833 / 0.255139 (0.001694) | 0.274197 / 0.283200 (-0.009003) | 0.017283 / 0.141683 (-0.124400) | 1.133597 / 1.452155 (-0.318558) | 1.206661 / 1.492716 (-0.286055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089610 / 0.018006 (0.071604) | 0.306051 / 0.000490 (0.305562) | 0.000217 / 0.000200 (0.000017) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018686 / 0.037411 (-0.018725) | 0.061253 / 0.014526 (0.046727) | 0.073654 / 0.176557 (-0.102903) | 0.120499 / 0.737135 (-0.616637) | 0.074827 / 0.296338 (-0.221511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293756 / 0.215209 (0.078547) | 2.897755 / 2.077655 (0.820100) | 1.558146 / 1.504120 (0.054026) | 1.458020 / 1.541195 (-0.083174) | 1.453489 / 1.468490 (-0.015001) | 0.576666 / 4.584777 (-4.008111) | 2.423441 / 3.745712 (-1.322271) | 2.727760 / 5.269862 (-2.542102) | 1.750287 / 4.565676 (-2.815390) | 0.062094 / 0.424275 (-0.362181) | 0.004940 / 0.007607 (-0.002667) | 0.338815 / 0.226044 (0.112770) | 3.342677 / 2.268929 (1.073748) | 1.928335 / 55.444624 (-53.516290) | 1.629965 / 6.876477 (-5.246511) | 1.651836 / 2.142072 (-0.490236) | 0.644354 / 4.805227 (-4.160874) | 0.117890 / 6.500664 (-6.382774) | 0.041907 / 0.075469 (-0.033562) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984399 / 1.841788 (-0.857389) | 11.516572 / 8.074308 (3.442264) | 10.326922 / 10.191392 (0.135530) | 0.130821 / 0.680424 (-0.549603) | 0.014084 / 0.534201 (-0.520117) | 0.287078 / 0.579283 (-0.292205) | 0.263466 / 0.434364 (-0.170898) | 0.326867 / 0.540337 (-0.213470) | 0.425313 / 1.386936 (-0.961623) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005305 / 0.011353 (-0.006048) | 0.003646 / 0.011008 (-0.007362) | 0.049402 / 0.038508 (0.010894) | 0.031719 / 0.023109 (0.008610) | 0.272579 / 0.275898 (-0.003319) | 0.295241 / 0.323480 (-0.028239) | 0.004309 / 0.007986 (-0.003677) | 0.002781 / 0.004328 (-0.001548) | 0.048134 / 0.004250 (0.043883) | 0.044702 / 0.037052 (0.007650) | 0.288201 / 0.258489 (0.029712) | 0.320351 / 0.293841 (0.026510) | 0.051327 / 0.128546 (-0.077219) | 0.011019 / 0.075646 (-0.064628) | 0.057983 / 0.419271 (-0.361288) | 0.034211 / 0.043533 (-0.009322) | 0.272856 / 0.255139 (0.017717) | 0.290007 / 0.283200 (0.006807) | 0.018656 / 0.141683 (-0.123027) | 1.135017 / 1.452155 (-0.317138) | 1.183904 / 1.492716 (-0.308813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090854 / 0.018006 (0.072847) | 0.299654 / 0.000490 (0.299165) | 0.000224 / 0.000200 (0.000024) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021882 / 0.037411 (-0.015529) | 0.075297 / 0.014526 (0.060771) | 0.086620 / 0.176557 (-0.089937) | 0.127125 / 0.737135 (-0.610011) | 0.088622 / 0.296338 (-0.207717) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287104 / 0.215209 (0.071895) | 2.802723 / 2.077655 (0.725068) | 1.570137 / 1.504120 (0.066017) | 1.452234 / 1.541195 (-0.088961) | 1.465457 / 1.468490 (-0.003033) | 0.564965 / 4.584777 (-4.019812) | 2.416724 / 3.745712 (-1.328988) | 2.645057 / 5.269862 (-2.624805) | 1.727599 / 4.565676 (-2.838078) | 0.063338 / 0.424275 (-0.360937) | 0.005018 / 0.007607 (-0.002589) | 0.345280 / 0.226044 (0.119235) | 3.384323 / 2.268929 (1.115395) | 1.957227 / 55.444624 (-53.487397) | 1.667620 / 6.876477 (-5.208856) | 1.795339 / 2.142072 (-0.346733) | 0.642049 / 4.805227 (-4.163178) | 0.114853 / 6.500664 (-6.385811) | 0.040459 / 0.075469 (-0.035010) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023640 / 1.841788 (-0.818147) | 11.998130 / 8.074308 (3.923822) | 10.858137 / 10.191392 (0.666744) | 0.130235 / 0.680424 (-0.550189) | 0.016201 / 0.534201 (-0.518000) | 0.289743 / 0.579283 (-0.289540) | 0.275100 / 0.434364 (-0.159264) | 0.329299 / 0.540337 (-0.211039) | 0.418632 / 1.386936 (-0.968304) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98495237883c5ed5a36fac125e68cad97598916f \"CML watermark\")\n" ]
2024-01-10T18:18:09Z
2024-01-30T18:46:02Z
2024-01-30T18:39:51Z
MEMBER
null
null
null
requests.get(..., streaming=True) is faster than using HTTP range requests when streaming large TAR files it can be enabled using block_size=0 in fsspec cc @rwightman
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6578/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6578/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6578.diff", "html_url": "https://github.com/huggingface/datasets/pull/6578", "merged_at": "2024-01-30T18:39:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/6578.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6578" }
https://api.github.com/repos/huggingface/datasets/issues/7433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7433/comments
https://api.github.com/repos/huggingface/datasets/issues/7433/events
https://github.com/huggingface/datasets/issues/7433
2,890,240,400
I_kwDODunzps6sRZGQ
7,433
`Dataset.map` ignores existing caches and remaps when ran with different `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "This feels related: https://github.com/huggingface/datasets/issues/3044", "@lhoestq This comment specifically, I agree:\n\n* https://github.com/huggingface/datasets/issues/3044#issuecomment-1239877570\n\n> Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\n> \n> Is there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch.\n\n" ]
2025-03-03T05:51:26Z
2025-03-04T05:55:08Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug If you `map` a dataset and save it to a specific `cache_file_name` with a specific `num_proc`, and then call map again with that same existing `cache_file_name` but a different `num_proc`, the dataset will be re-mapped. ### Steps to reproduce the bug 1. Download a dataset ```python import datasets dataset = datasets.load_dataset("ylecun/mnist") ``` ``` Generating train split: 100%|██████████| 60000/60000 [00:00<00:00, 116429.85 examples/s] Generating test split: 100%|██████████| 10000/10000 [00:00<00:00, 103310.27 examples/s] ``` 2. `map` and cache it with a specific `num_proc` ```python cache_file_name="./cache/train.map" dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=2) ``` ``` Map (num_proc=2): 100%|██████████| 60000/60000 [00:01<00:00, 53764.03 examples/s] ``` 3. `map` it with a different `num_proc` and the same `cache_file_name` as before ```python dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=3) ``` ``` Map (num_proc=3): 100%|██████████| 60000/60000 [00:00<00:00, 65377.12 examples/s] ``` ### Expected behavior If I specify an existing `cache_file_name`, I don't expect using a different `num_proc` than the one that was used to generate it to cause the dataset to have be be re-mapped. ### Environment info ```console $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7433/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7433/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6936
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6936/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6936/comments
https://api.github.com/repos/huggingface/datasets/issues/6936/events
https://github.com/huggingface/datasets/issues/6936
2,326,119,853
I_kwDODunzps6KpcWt
6,936
save_to_disk() freezes when saving on s3 bucket with multiprocessing
{ "avatar_url": "https://avatars.githubusercontent.com/u/54974949?v=4", "events_url": "https://api.github.com/users/ycattan/events{/privacy}", "followers_url": "https://api.github.com/users/ycattan/followers", "following_url": "https://api.github.com/users/ycattan/following{/other_user}", "gists_url": "https://api.github.com/users/ycattan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ycattan", "id": 54974949, "login": "ycattan", "node_id": "MDQ6VXNlcjU0OTc0OTQ5", "organizations_url": "https://api.github.com/users/ycattan/orgs", "received_events_url": "https://api.github.com/users/ycattan/received_events", "repos_url": "https://api.github.com/users/ycattan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ycattan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ycattan/subscriptions", "type": "User", "url": "https://api.github.com/users/ycattan", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I got the same issue. Any updates so far for this issue?", "Same here. Any updates?", "+1, experiencing this as well" ]
2024-05-30T16:48:39Z
2025-02-06T22:12:52Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I'm trying to save a `Dataset` using the `save_to_disk()` function with: - `num_proc > 1` - `dataset_path` being a s3 bucket path e.g. "s3://{bucket_name}/{dataset_folder}/" The hf progress bar shows up but the saving does not seem to start. When using one processor only (`num_proc=1`), everything works fine. When saving the dataset on local disk (as opposed to s3 bucket) with `num_proc > 1`, everything works fine. Thank you for your help! :) ### Steps to reproduce the bug I tried without any storage options: ``` from datasets import load_dataset sandbox_ds = load_dataset("openai_humaneval") sandbox_ds["test"].save_to_disk( "s3://bucket-name/test_multiprocessing_saving/", num_proc=4, ) ``` and with the specific s3fs storage options: ``` from datasets import load_dataset from s3fs import S3FileSystem def get_s3fs(): return S3FileSystem() sandbox_ds = load_dataset("openai_humaneval") sandbox_ds["test"].save_to_disk( "s3://bucket-name/test_multiprocessing_saving/", num_proc=4, storage_options=get_s3fs().storage_options, # also tried: storage_options=S3FileSystem().storage_options ) ``` I'm guessing I might use `storage_options` parameter wrongly, but I didn't find anything online that made it work. **NB**: Behavior is the same when trying to save the whole `DatasetDict`. ### Expected behavior Progress bar fills in and saving is carried out. ### Environment info `datasets==2.18.0`
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6936/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6936/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6313/comments
https://api.github.com/repos/huggingface/datasets/issues/6313/events
https://github.com/huggingface/datasets/pull/6313
1,951,527,712
PR_kwDODunzps5dPGmL
6,313
Fix commit message formatting in multi-commit uploads
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006760 / 0.011353 (-0.004593) | 0.003918 / 0.011008 (-0.007091) | 0.084016 / 0.038508 (0.045508) | 0.069927 / 0.023109 (0.046818) | 0.307898 / 0.275898 (0.032000) | 0.337453 / 0.323480 (0.013973) | 0.004132 / 0.007986 (-0.003854) | 0.003248 / 0.004328 (-0.001081) | 0.064526 / 0.004250 (0.060275) | 0.056424 / 0.037052 (0.019371) | 0.316313 / 0.258489 (0.057824) | 0.356302 / 0.293841 (0.062461) | 0.030634 / 0.128546 (-0.097912) | 0.008467 / 0.075646 (-0.067180) | 0.286676 / 0.419271 (-0.132595) | 0.051813 / 0.043533 (0.008280) | 0.309874 / 0.255139 (0.054735) | 0.332513 / 0.283200 (0.049313) | 0.023919 / 0.141683 (-0.117764) | 1.509033 / 1.452155 (0.056878) | 1.549636 / 1.492716 (0.056920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221464 / 0.018006 (0.203458) | 0.447873 / 0.000490 (0.447384) | 0.002408 / 0.000200 (0.002208) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027634 / 0.037411 (-0.009777) | 0.081802 / 0.014526 (0.067276) | 0.781489 / 0.176557 (0.604933) | 0.165184 / 0.737135 (-0.571951) | 0.121526 / 0.296338 (-0.174813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408215 / 0.215209 (0.193006) | 4.091192 / 2.077655 (2.013538) | 2.062608 / 1.504120 (0.558488) | 1.895747 / 1.541195 (0.354552) | 1.873682 / 1.468490 (0.405192) | 0.484184 / 4.584777 (-4.100593) | 3.469096 / 3.745712 (-0.276616) | 3.365325 / 5.269862 (-1.904537) | 2.000333 / 4.565676 (-2.565343) | 0.056661 / 0.424275 (-0.367614) | 0.007100 / 0.007607 (-0.000507) | 0.478587 / 0.226044 (0.252542) | 4.768703 / 2.268929 (2.499774) | 2.472432 / 55.444624 (-52.972192) | 2.133611 / 6.876477 (-4.742865) | 2.154296 / 2.142072 (0.012223) | 0.582293 / 4.805227 (-4.222934) | 0.131932 / 6.500664 (-6.368732) | 0.060259 / 0.075469 (-0.015211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259167 / 1.841788 (-0.582620) | 18.465604 / 8.074308 (10.391296) | 14.024528 / 10.191392 (3.833136) | 0.162320 / 0.680424 (-0.518104) | 0.018144 / 0.534201 (-0.516057) | 0.389931 / 0.579283 (-0.189352) | 0.396456 / 0.434364 (-0.037908) | 0.454734 / 0.540337 (-0.085603) | 0.636406 / 1.386936 (-0.750530) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006565 / 0.011353 (-0.004788) | 0.004008 / 0.011008 (-0.007000) | 0.064526 / 0.038508 (0.026018) | 0.071963 / 0.023109 (0.048854) | 0.415456 / 0.275898 (0.139557) | 0.441199 / 0.323480 (0.117719) | 0.005619 / 0.007986 (-0.002366) | 0.003261 / 0.004328 (-0.001067) | 0.064817 / 0.004250 (0.060567) | 0.055349 / 0.037052 (0.018296) | 0.425172 / 0.258489 (0.166683) | 0.452629 / 0.293841 (0.158788) | 0.031676 / 0.128546 (-0.096870) | 0.008432 / 0.075646 (-0.067214) | 0.071752 / 0.419271 (-0.347519) | 0.047176 / 0.043533 (0.003643) | 0.408641 / 0.255139 (0.153502) | 0.428579 / 0.283200 (0.145380) | 0.021548 / 0.141683 (-0.120135) | 1.495153 / 1.452155 (0.042999) | 1.557933 / 1.492716 (0.065217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212749 / 0.018006 (0.194743) | 0.441263 / 0.000490 (0.440773) | 0.005831 / 0.000200 (0.005631) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031844 / 0.037411 (-0.005567) | 0.091590 / 0.014526 (0.077064) | 0.102859 / 0.176557 (-0.073697) | 0.155859 / 0.737135 (-0.581276) | 0.104717 / 0.296338 (-0.191622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425924 / 0.215209 (0.210715) | 4.292829 / 2.077655 (2.215174) | 2.314350 / 1.504120 (0.810230) | 2.163087 / 1.541195 (0.621892) | 2.217310 / 1.468490 (0.748820) | 0.490889 / 4.584777 (-4.093887) | 3.498287 / 3.745712 (-0.247425) | 3.224980 / 5.269862 (-2.044881) | 1.987739 / 4.565676 (-2.577938) | 0.057486 / 0.424275 (-0.366790) | 0.007199 / 0.007607 (-0.000408) | 0.501194 / 0.226044 (0.275149) | 5.015202 / 2.268929 (2.746273) | 2.816307 / 55.444624 (-52.628318) | 2.474593 / 6.876477 (-4.401884) | 2.649510 / 2.142072 (0.507437) | 0.597167 / 4.805227 (-4.208060) | 0.131199 / 6.500664 (-6.369465) | 0.059532 / 0.075469 (-0.015938) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384053 / 1.841788 (-0.457734) | 18.964201 / 8.074308 (10.889893) | 14.336209 / 10.191392 (4.144817) | 0.187522 / 0.680424 (-0.492902) | 0.020201 / 0.534201 (-0.514000) | 0.394778 / 0.579283 (-0.184505) | 0.408393 / 0.434364 (-0.025971) | 0.470965 / 0.540337 (-0.069373) | 0.667974 / 1.386936 (-0.718962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b3333d790800ddaa3bf386ee71dc800258c921c \"CML watermark\")\n" ]
2023-10-19T07:53:56Z
2023-10-20T14:06:13Z
2023-10-20T13:57:39Z
MEMBER
null
null
null
Currently, the commit message keeps on adding: - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00000-of-00002) (part 00001-of-00002)` Introduced in https://github.com/huggingface/datasets/pull/6269 This PR fixes this issue to have - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00001-of-00002)`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6313/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6313/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6313.diff", "html_url": "https://github.com/huggingface/datasets/pull/6313", "merged_at": "2023-10-20T13:57:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/6313.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6313" }
https://api.github.com/repos/huggingface/datasets/issues/4952
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4952/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4952/comments
https://api.github.com/repos/huggingface/datasets/issues/4952/events
https://github.com/huggingface/datasets/pull/4952
1,366,354,604
PR_kwDODunzps4-meM0
4,952
Add test-datasets CI job
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Closing this one since the dataset scripts will be removed in https://github.com/huggingface/datasets/pull/4974" ]
2022-09-08T13:38:30Z
2023-09-24T10:05:57Z
2022-09-16T13:25:48Z
MEMBER
null
null
null
To avoid having too many conflicts in the datasets and metrics dependencies I split the CI into test and test-catalog test does the test of the core of the `datasets` lib, while test-catalog tests the datasets scripts and metrics scripts This also makes `pip install -e .[dev]` much smaller for developers WDYT @albertvillanova ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4952/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4952/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4952.diff", "html_url": "https://github.com/huggingface/datasets/pull/4952", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4952.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4952" }
https://api.github.com/repos/huggingface/datasets/issues/6788
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6788/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6788/comments
https://api.github.com/repos/huggingface/datasets/issues/6788/events
https://github.com/huggingface/datasets/issues/6788
2,229,207,521
I_kwDODunzps6E3wHh
6,788
A Question About the Map Function
{ "avatar_url": "https://avatars.githubusercontent.com/u/87431052?v=4", "events_url": "https://api.github.com/users/Klein-Lan/events{/privacy}", "followers_url": "https://api.github.com/users/Klein-Lan/followers", "following_url": "https://api.github.com/users/Klein-Lan/following{/other_user}", "gists_url": "https://api.github.com/users/Klein-Lan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Klein-Lan", "id": 87431052, "login": "Klein-Lan", "node_id": "MDQ6VXNlcjg3NDMxMDUy", "organizations_url": "https://api.github.com/users/Klein-Lan/orgs", "received_events_url": "https://api.github.com/users/Klein-Lan/received_events", "repos_url": "https://api.github.com/users/Klein-Lan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Klein-Lan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Klein-Lan/subscriptions", "type": "User", "url": "https://api.github.com/users/Klein-Lan", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "All data is saved in the arrow format on disk.\r\nIf you return a tensor it gets converted to arrow before saving to disk when using map.\r\n\r\nTo get a tensor when you access data elements you can use `dataset.set_format(\"pt\")`.\r\nNote that this just changes how the data is loaded, not how it is stored.", "> All data is saved in the arrow format on disk. If you return a tensor it gets converted to arrow before saving to disk when using map.\r\n> \r\n> To get a tensor when you access data elements you can use `dataset.set_format(\"pt\")`. Note that this just changes how the data is loaded, not how it is stored.\r\n\r\nThank you very much for your explanation, I understand what you mean now. So you're saying that when streaming=True, there's no need to convert it to the arrow format and save it to disk. But if we directly load all formats and then convert them into the arrow format after passing through the map function, it will convert torch.Tensor into a List. I see." ]
2024-04-06T11:45:23Z
2024-04-11T05:29:35Z
2024-04-11T05:29:35Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hello, I have a question regarding the map function in the Hugging Face datasets. The situation is as follows: when I load a jsonl file using load_dataset(..., streaming=False), and then utilize the map function to process it, I specify that the returned example should be of type Torch.tensor. However, I noticed that after applying the map function, the datatype automatically changes to List, which leads to errors in my program. I attempted to use load_dataset(..., streaming=True), and this issue no longer occurs. I'm not entirely clear on why this happens. Could you please provide some insights into this? ### Steps to reproduce the bug 1.dataset = load_dataset(xxx, streaming = False) 2. dataset.map(function), function will return torch.Tensor. 3. you will find the format of data in dataset is List. ### Expected behavior I expected to receieve the format of data is torch.Tensor. ### Environment info 2.18.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/87431052?v=4", "events_url": "https://api.github.com/users/Klein-Lan/events{/privacy}", "followers_url": "https://api.github.com/users/Klein-Lan/followers", "following_url": "https://api.github.com/users/Klein-Lan/following{/other_user}", "gists_url": "https://api.github.com/users/Klein-Lan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Klein-Lan", "id": 87431052, "login": "Klein-Lan", "node_id": "MDQ6VXNlcjg3NDMxMDUy", "organizations_url": "https://api.github.com/users/Klein-Lan/orgs", "received_events_url": "https://api.github.com/users/Klein-Lan/received_events", "repos_url": "https://api.github.com/users/Klein-Lan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Klein-Lan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Klein-Lan/subscriptions", "type": "User", "url": "https://api.github.com/users/Klein-Lan", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6788/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6788/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5976
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5976/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5976/comments
https://api.github.com/repos/huggingface/datasets/issues/5976/events
https://github.com/huggingface/datasets/pull/5976
1,768,503,913
PR_kwDODunzps5TmAFp
5,976
Avoid stuck map operation when subprocesses crashes
{ "avatar_url": "https://avatars.githubusercontent.com/u/1213561?v=4", "events_url": "https://api.github.com/users/pappacena/events{/privacy}", "followers_url": "https://api.github.com/users/pappacena/followers", "following_url": "https://api.github.com/users/pappacena/following{/other_user}", "gists_url": "https://api.github.com/users/pappacena/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/pappacena", "id": 1213561, "login": "pappacena", "node_id": "MDQ6VXNlcjEyMTM1NjE=", "organizations_url": "https://api.github.com/users/pappacena/orgs", "received_events_url": "https://api.github.com/users/pappacena/received_events", "repos_url": "https://api.github.com/users/pappacena/repos", "site_admin": false, "starred_url": "https://api.github.com/users/pappacena/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pappacena/subscriptions", "type": "User", "url": "https://api.github.com/users/pappacena", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Do you think this can be fixed at the Pool level ? Ideally it should be the Pool responsibility to handle this, not the `map` code. We could even subclass Pool if needed (at least the one from `multiprocess`)", "@lhoestq it makes sense to me. Just pushed a refactoring creating a `class ProcessPool(multiprocess.pool.Pool)` to keep track of the PID changes.", "_The documentation is not available anymore as the PR was closed or merged._", "I managed to raise an error without subclassing Pool with two additions to `iflatmap_unordered`:\r\n\r\n1. at the beggining\r\n```python\r\noriginal_pool = list(pool._pool)\r\n```\r\n\r\n2. in the loop\r\n```python\r\nif any(async_result._pool != original_pool for async_result in async_results) and queue.empty():\r\n raise RuntimeError(\r\n \"One of the subprocesses has abruptly died during map operation.\"\r\n \"To debug the error, disable multiprocessing.\"\r\n )\r\n```\r\n\r\nIt's still a fix that only works for `iflatmap_unordered` (so not for map, imap etc) but is maybe simpler that subclassing. It also works for both multiprocessing.Pool and multiprocess.Pool", "@lhoestq sorry for the delay. Busy weeks here. \r\n\r\nI just pushed the change you requested. It looks closer to the original proposal, actually.\r\n\r\nIt seems that `map` actually uses `iflatmap_unordered` ([here](https://github.com/huggingface/datasets/blob/819bb4346434912eb405ce3f3e9f21dc25a2fe85/src/datasets/arrow_dataset.py#L1509)). I think this solution works fine for the `map` method (which is the one being tested by the new `tests/test_arrow_dataset.py::BaseDatasetTest::test_map_crash_subprocess`, right?).", "Yes fixing iflatmap_unordered does fix Dataset.map, but it won't fix any Pool.map that we may use elsewhere so we'll have to keep this in mind.", "It looks all good to me, feel free to fix code formatting by running `make style` and we can merge :)", "> Yes fixing iflatmap_unordered does fix Dataset.map, but it won't fix any Pool.map that we may use elsewhere so we'll have to keep this in mind.\r\n\r\nRight, I agree. The best way moving forward is probably not using the buggy `multiprocess.Pool` anymore, and replace it with `concurrent.futures.ProcessPoolExecutor` as much as possible.\r\n\r\nAnyway, I've run `make style` now. Thanks for the support!", "It looks like checking the async_result._pool doesn't always work - sorry about that. We might just go back to your original solution then. Would also be cool to open an issue in `multiprocess` to ask if they have a solution or if they plan to fix this.", "@lhoestq no problem! Reverted to the previous version.\r\n\r\nTBH, given the discussions [in this python issue](https://github.com/python/cpython/issues/66587), I don't think the error in `multiprocess` will be merged upstream any time soon...", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006060 / 0.011353 (-0.005293) | 0.003695 / 0.011008 (-0.007313) | 0.080484 / 0.038508 (0.041976) | 0.061894 / 0.023109 (0.038785) | 0.312510 / 0.275898 (0.036612) | 0.352398 / 0.323480 (0.028918) | 0.004638 / 0.007986 (-0.003348) | 0.002918 / 0.004328 (-0.001410) | 0.062932 / 0.004250 (0.058681) | 0.050859 / 0.037052 (0.013807) | 0.316812 / 0.258489 (0.058323) | 0.357684 / 0.293841 (0.063843) | 0.027622 / 0.128546 (-0.100924) | 0.008012 / 0.075646 (-0.067634) | 0.260970 / 0.419271 (-0.158302) | 0.045807 / 0.043533 (0.002275) | 0.321235 / 0.255139 (0.066096) | 0.343162 / 0.283200 (0.059962) | 0.021136 / 0.141683 (-0.120547) | 1.465886 / 1.452155 (0.013731) | 1.500216 / 1.492716 (0.007500) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187286 / 0.018006 (0.169279) | 0.428724 / 0.000490 (0.428235) | 0.003029 / 0.000200 (0.002829) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022703 / 0.037411 (-0.014708) | 0.072740 / 0.014526 (0.058215) | 0.083436 / 0.176557 (-0.093120) | 0.144559 / 0.737135 (-0.592577) | 0.083958 / 0.296338 (-0.212380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435729 / 0.215209 (0.220520) | 4.351146 / 2.077655 (2.273491) | 2.316627 / 1.504120 (0.812508) | 2.144587 / 1.541195 (0.603393) | 2.209182 / 1.468490 (0.740692) | 0.501131 / 4.584777 (-4.083646) | 3.077085 / 3.745712 (-0.668627) | 4.353706 / 5.269862 (-0.916156) | 2.621523 / 4.565676 (-1.944154) | 0.058976 / 0.424275 (-0.365299) | 0.006467 / 0.007607 (-0.001141) | 0.506690 / 0.226044 (0.280646) | 5.085787 / 2.268929 (2.816858) | 2.731336 / 55.444624 (-52.713289) | 2.419451 / 6.876477 (-4.457025) | 2.583649 / 2.142072 (0.441577) | 0.589869 / 4.805227 (-4.215359) | 0.131040 / 6.500664 (-6.369624) | 0.061332 / 0.075469 (-0.014137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220542 / 1.841788 (-0.621245) | 18.169643 / 8.074308 (10.095335) | 13.251704 / 10.191392 (3.060312) | 0.142952 / 0.680424 (-0.537472) | 0.016639 / 0.534201 (-0.517562) | 0.334851 / 0.579283 (-0.244432) | 0.361865 / 0.434364 (-0.072499) | 0.380933 / 0.540337 (-0.159404) | 0.527374 / 1.386936 (-0.859562) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006319 / 0.011353 (-0.005034) | 0.003778 / 0.011008 (-0.007231) | 0.062388 / 0.038508 (0.023880) | 0.062228 / 0.023109 (0.039119) | 0.373727 / 0.275898 (0.097829) | 0.399442 / 0.323480 (0.075962) | 0.005434 / 0.007986 (-0.002551) | 0.003020 / 0.004328 (-0.001308) | 0.062774 / 0.004250 (0.058524) | 0.052784 / 0.037052 (0.015732) | 0.376428 / 0.258489 (0.117939) | 0.405039 / 0.293841 (0.111198) | 0.027884 / 0.128546 (-0.100662) | 0.008086 / 0.075646 (-0.067561) | 0.067078 / 0.419271 (-0.352194) | 0.042927 / 0.043533 (-0.000606) | 0.372142 / 0.255139 (0.117003) | 0.389604 / 0.283200 (0.106405) | 0.021582 / 0.141683 (-0.120101) | 1.473332 / 1.452155 (0.021177) | 1.536018 / 1.492716 (0.043302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184729 / 0.018006 (0.166723) | 0.421065 / 0.000490 (0.420575) | 0.002681 / 0.000200 (0.002481) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026067 / 0.037411 (-0.011344) | 0.077138 / 0.014526 (0.062612) | 0.085178 / 0.176557 (-0.091379) | 0.139681 / 0.737135 (-0.597454) | 0.087528 / 0.296338 (-0.208810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444899 / 0.215209 (0.229690) | 4.459168 / 2.077655 (2.381513) | 2.408792 / 1.504120 (0.904672) | 2.237243 / 1.541195 (0.696048) | 2.296298 / 1.468490 (0.827808) | 0.498508 / 4.584777 (-4.086269) | 3.067064 / 3.745712 (-0.678648) | 4.470577 / 5.269862 (-0.799284) | 2.701972 / 4.565676 (-1.863705) | 0.057711 / 0.424275 (-0.366564) | 0.006443 / 0.007607 (-0.001164) | 0.524046 / 0.226044 (0.298002) | 5.229928 / 2.268929 (2.961000) | 2.862101 / 55.444624 (-52.582523) | 2.545972 / 6.876477 (-4.330504) | 2.606459 / 2.142072 (0.464387) | 0.593285 / 4.805227 (-4.211942) | 0.124913 / 6.500664 (-6.375751) | 0.061942 / 0.075469 (-0.013527) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322162 / 1.841788 (-0.519625) | 18.745796 / 8.074308 (10.671488) | 13.955443 / 10.191392 (3.764051) | 0.145610 / 0.680424 (-0.534814) | 0.016817 / 0.534201 (-0.517384) | 0.331180 / 0.579283 (-0.248103) | 0.343019 / 0.434364 (-0.091345) | 0.379459 / 0.540337 (-0.160878) | 0.526403 / 1.386936 (-0.860533) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aca4cdcc79f16ec5157a2a3a665fdef0e3aa176d \"CML watermark\")\n" ]
2023-06-21T21:18:31Z
2023-07-10T09:58:39Z
2023-07-10T09:50:07Z
CONTRIBUTOR
null
null
null
I've been using Dataset.map() with `num_proc=os.cpu_count()` to leverage multicore processing for my datasets, but from time to time I get stuck processes waiting forever. Apparently, when one of the subprocesses is abruptly killed (OOM killer, segfault, SIGKILL, etc), the main process keeps waiting for the async task sent to that child process to finish. It seems to be easy to reproduce the issue with the following script: ``` import os from datasets import Dataset, Features, Value def do_stuck(item): os.kill(os.getpid(), 9) data = { "col1": list(range(5)), "col2": list(range(5)), } ds = Dataset.from_dict( data, features=Features({ "col1": Value("int64"), "col2": Value("int64"), }), ) print(ds.map(do_stuck, num_proc=4)) ``` This is an old behavior in Python, which apparently was fixed a few years ago in `concurrent.futures.ProcessPoolExecutor` ([ref](https://bugs.python.org/issue9205)), but not in `multiprocessing.pool.Pool` / `multiprocess.pool.Pool`, which is used by `Dataset.map` ([ref](https://bugs.python.org/issue22393)). This PR is an idea to try to detect when a child process gets killed, and raises a `RuntimeError` warning the dataset.map() caller. EDIT: Related proposal for future improvement: https://github.com/huggingface/datasets/discussions/5977
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5976/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5976/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5976.diff", "html_url": "https://github.com/huggingface/datasets/pull/5976", "merged_at": "2023-07-10T09:50:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/5976.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5976" }
https://api.github.com/repos/huggingface/datasets/issues/5278
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5278/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5278/comments
https://api.github.com/repos/huggingface/datasets/issues/5278/events
https://github.com/huggingface/datasets/issues/5278
1,459,574,490
I_kwDODunzps5W_1ba
5,278
load_dataset does not read jsonl metadata file properly
{ "avatar_url": "https://avatars.githubusercontent.com/u/81414263?v=4", "events_url": "https://api.github.com/users/065294847/events{/privacy}", "followers_url": "https://api.github.com/users/065294847/followers", "following_url": "https://api.github.com/users/065294847/following{/other_user}", "gists_url": "https://api.github.com/users/065294847/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/065294847", "id": 81414263, "login": "065294847", "node_id": "MDQ6VXNlcjgxNDE0MjYz", "organizations_url": "https://api.github.com/users/065294847/orgs", "received_events_url": "https://api.github.com/users/065294847/received_events", "repos_url": "https://api.github.com/users/065294847/repos", "site_admin": false, "starred_url": "https://api.github.com/users/065294847/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/065294847/subscriptions", "type": "User", "url": "https://api.github.com/users/065294847", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Can you try to remove \"drop_labels=false\" ? It may force the loader to infer the labels instead of reading the metadata", "Hi, thanks for responding. I tried that, but it does not change anything.", "Can you try updating `datasets` ? Metadata support was added in `datasets` 2.4", "Probably the issue, will report back asap!", "Okay, now it seems to actually load the metadata and create the train_split, but it still says only returns \"image\" and \"label\", which is always 0 since all images are from same folder", "> Can you try updating `datasets` ? Metadata support was added in `datasets` 2.4\r\n\r\nUpdate: This was the issue." ]
2022-11-22T10:24:46Z
2023-02-14T14:48:16Z
2022-11-23T11:38:35Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi, I'm following [this page](https://huggingface.co/docs/datasets/image_dataset) to create a dataset of images and captions via an image folder and a metadata.json file, but I can't seem to get the dataloader to recognize the "text" column. It just spits out "image" and "label" as features. Below is code to reproduce my exact example/problem. ### Steps to reproduce the bug ```ruby dataset_link="19Unu89Ih_kP6zsE7f9Mkw8dy3NwHopRF" id = dataset_link output = 'Godardv01.zip' gdown.download(id=id, output=output, quiet=False) ds = load_dataset("imagefolder", data_dir="/kaggle/working/Volumes/TOSHIBA/Godard_imgs/Volumes/TOSHIBA/Godard_imgs/Full/train", split="train", drop_labels=False) print(ds) ``` ### Expected behavior I would expect that it returned "image" and "text" columns from the code above. ### Environment info - `datasets` version: 2.1.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 5.0.0 - Pandas version: 1.3.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/81414263?v=4", "events_url": "https://api.github.com/users/065294847/events{/privacy}", "followers_url": "https://api.github.com/users/065294847/followers", "following_url": "https://api.github.com/users/065294847/following{/other_user}", "gists_url": "https://api.github.com/users/065294847/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/065294847", "id": 81414263, "login": "065294847", "node_id": "MDQ6VXNlcjgxNDE0MjYz", "organizations_url": "https://api.github.com/users/065294847/orgs", "received_events_url": "https://api.github.com/users/065294847/received_events", "repos_url": "https://api.github.com/users/065294847/repos", "site_admin": false, "starred_url": "https://api.github.com/users/065294847/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/065294847/subscriptions", "type": "User", "url": "https://api.github.com/users/065294847", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5278/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5278/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5797
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5797/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5797/comments
https://api.github.com/repos/huggingface/datasets/issues/5797/events
https://github.com/huggingface/datasets/issues/5797
1,685,501,199
I_kwDODunzps5kdrUP
5,797
load_dataset is case sentitive?
{ "avatar_url": "https://avatars.githubusercontent.com/u/34729065?v=4", "events_url": "https://api.github.com/users/haonan-li/events{/privacy}", "followers_url": "https://api.github.com/users/haonan-li/followers", "following_url": "https://api.github.com/users/haonan-li/following{/other_user}", "gists_url": "https://api.github.com/users/haonan-li/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/haonan-li", "id": 34729065, "login": "haonan-li", "node_id": "MDQ6VXNlcjM0NzI5MDY1", "organizations_url": "https://api.github.com/users/haonan-li/orgs", "received_events_url": "https://api.github.com/users/haonan-li/received_events", "repos_url": "https://api.github.com/users/haonan-li/repos", "site_admin": false, "starred_url": "https://api.github.com/users/haonan-li/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/haonan-li/subscriptions", "type": "User", "url": "https://api.github.com/users/haonan-li", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi @haonan-li , thank you for the report! It seems to be a bug on the [`huggingface_hub`](https://github.com/huggingface/huggingface_hub) site, there is even no such dataset as `mbzuai/bactrian-x` on the Hub. I opened and [issue](https://github.com/huggingface/huggingface_hub/issues/1453) there.", "I think `load_dataset(\"mbzuai/bactrian-x\")` shouldn't be loaded at all and raise an error but because of [this fallback](https://github.com/huggingface/datasets/blob/main/src/datasets/load.py#L1194) to packaged loaders when no other options are applicable, it loads the dataset with standard `json` loader instead of the custom loading script." ]
2023-04-26T18:19:04Z
2023-04-27T11:56:58Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug load_dataset() function is case sensitive? ### Steps to reproduce the bug The following two code, get totally different behavior. 1. load_dataset('mbzuai/bactrian-x','en') 2. load_dataset('MBZUAI/Bactrian-X','en') ### Expected behavior Compare 1 and 2. 1 will download all 52 subsets, shell output: ```Downloading and preparing dataset json/MBZUAI--bactrian-X to xxx``` 2 will only download single subset, shell output ```Downloading and preparing dataset bactrian-x/en to xxx``` ### Environment info Python 3.10.11 datasets Version: 2.11.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5797/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5797/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6558
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6558/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6558/comments
https://api.github.com/repos/huggingface/datasets/issues/6558/events
https://github.com/huggingface/datasets/issues/6558
2,064,885,984
I_kwDODunzps57E6jg
6,558
OSError: image file is truncated (1 bytes not processed) #28323
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can add \r\n\r\n```python\r\nfrom PIL import ImageFile\r\nImageFile.LOAD_TRUNCATED_IMAGES = True\r\n```\r\n\r\nafter the imports to be able to read truncated images." ]
2024-01-04T02:15:13Z
2024-02-21T00:38:12Z
2024-02-21T00:38:12Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ``` --------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[24], line 28 23 return example 25 # Filter the dataset 26 # filtered_dataset = dataset.filter(contains_number) 27 # Add the 'label' field in the dataset ---> 28 labeled_dataset = dataset.filter(contains_number).map(add_label) 29 # View the structure of the updated dataset 30 print(labeled_dataset) File /usr/local/lib/python3.10/dist-packages/datasets/dataset_dict.py:975, in DatasetDict.filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, fn_kwargs, num_proc, desc) 972 if cache_file_names is None: 973 cache_file_names = {k: None for k in self} 974 return DatasetDict( --> 975 { 976 k: dataset.filter( 977 function=function, 978 with_indices=with_indices, 979 input_columns=input_columns, 980 batched=batched, 981 batch_size=batch_size, 982 keep_in_memory=keep_in_memory, 983 load_from_cache_file=load_from_cache_file, 984 cache_file_name=cache_file_names[k], 985 writer_batch_size=writer_batch_size, 986 fn_kwargs=fn_kwargs, 987 num_proc=num_proc, 988 desc=desc, 989 ) 990 for k, dataset in self.items() 991 } 992 ) File /usr/local/lib/python3.10/dist-packages/datasets/dataset_dict.py:976, in <dictcomp>(.0) 972 if cache_file_names is None: 973 cache_file_names = {k: None for k in self} 974 return DatasetDict( 975 { --> 976 k: dataset.filter( 977 function=function, 978 with_indices=with_indices, 979 input_columns=input_columns, 980 batched=batched, 981 batch_size=batch_size, 982 keep_in_memory=keep_in_memory, 983 load_from_cache_file=load_from_cache_file, 984 cache_file_name=cache_file_names[k], 985 writer_batch_size=writer_batch_size, 986 fn_kwargs=fn_kwargs, 987 num_proc=num_proc, 988 desc=desc, 989 ) 990 for k, dataset in self.items() 991 } 992 ) File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output File /usr/local/lib/python3.10/dist-packages/datasets/fingerprint.py:481, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs) 477 validate_fingerprint(kwargs[fingerprint_name]) 479 # Call actual function --> 481 out = func(dataset, *args, **kwargs) 483 # Update fingerprint of in-place transforms + update in-place history of transforms 485 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3623, in Dataset.filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3620 if len(self) == 0: 3621 return self -> 3623 indices = self.map( 3624 function=partial( 3625 get_indices_from_mask_function, function, batched, with_indices, input_columns, self._indices 3626 ), 3627 with_indices=True, 3628 features=Features({"indices": Value("uint64")}), 3629 batched=True, 3630 batch_size=batch_size, 3631 remove_columns=self.column_names, 3632 keep_in_memory=keep_in_memory, 3633 load_from_cache_file=load_from_cache_file, 3634 cache_file_name=cache_file_name, 3635 writer_batch_size=writer_batch_size, 3636 fn_kwargs=fn_kwargs, 3637 num_proc=num_proc, 3638 suffix_template=suffix_template, 3639 new_fingerprint=new_fingerprint, 3640 input_columns=input_columns, 3641 desc=desc or "Filter", 3642 ) 3643 new_dataset = copy.deepcopy(self) 3644 new_dataset._indices = indices.data File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:592, in transmit_tasks.<locals>.wrapper(*args, **kwargs) 590 self: "Dataset" = kwargs.pop("self") 591 # apply actual function --> 592 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 593 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 594 for dataset in datasets: 595 # Remove task templates if a column mapping of the template is no longer valid File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:557, in transmit_format.<locals>.wrapper(*args, **kwargs) 550 self_format = { 551 "type": self._format_type, 552 "format_kwargs": self._format_kwargs, 553 "columns": self._format_columns, 554 "output_all_columns": self._output_all_columns, 555 } 556 # apply actual function --> 557 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 558 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 559 # re-apply format to the output File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3093, in Dataset.map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 3087 if transformed_dataset is None: 3088 with hf_tqdm( 3089 unit=" examples", 3090 total=pbar_total, 3091 desc=desc or "Map", 3092 ) as pbar: -> 3093 for rank, done, content in Dataset._map_single(**dataset_kwargs): 3094 if done: 3095 shards_done += 1 File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3470, in Dataset._map_single(shard, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset) 3466 indices = list( 3467 range(*(slice(i, i + batch_size).indices(shard.num_rows))) 3468 ) # Something simpler? 3469 try: -> 3470 batch = apply_function_on_filtered_inputs( 3471 batch, 3472 indices, 3473 check_same_num_examples=len(shard.list_indexes()) > 0, 3474 offset=offset, 3475 ) 3476 except NumExamplesMismatchError: 3477 raise DatasetTransformationNotAllowedError( 3478 "Using `.map` in batched mode on a dataset with attached indexes is allowed only if it doesn't create or remove existing examples. You can first run `.drop_index() to remove your index and then re-add it." 3479 ) from None File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:3349, in Dataset._map_single.<locals>.apply_function_on_filtered_inputs(pa_inputs, indices, check_same_num_examples, offset) 3347 if with_rank: 3348 additional_args += (rank,) -> 3349 processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) 3350 if isinstance(processed_inputs, LazyDict): 3351 processed_inputs = { 3352 k: v for k, v in processed_inputs.data.items() if k not in processed_inputs.keys_to_format 3353 } File /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:6212, in get_indices_from_mask_function(function, batched, with_indices, input_columns, indices_mapping, *args, **fn_kwargs) 6209 if input_columns is None: 6210 # inputs only contains a batch of examples 6211 batch: dict = inputs[0] -> 6212 num_examples = len(batch[next(iter(batch.keys()))]) 6213 for i in range(num_examples): 6214 example = {key: batch[key][i] for key in batch} File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:272, in LazyDict.__getitem__(self, key) 270 value = self.data[key] 271 if key in self.keys_to_format: --> 272 value = self.format(key) 273 self.data[key] = value 274 self.keys_to_format.remove(key) File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:375, in LazyBatch.format(self, key) 374 def format(self, key): --> 375 return self.formatter.format_column(self.pa_table.select([key])) File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:442, in PythonFormatter.format_column(self, pa_table) 440 def format_column(self, pa_table: pa.Table) -> list: 441 column = self.python_arrow_extractor().extract_column(pa_table) --> 442 column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) 443 return column File /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:218, in PythonFeaturesDecoder.decode_column(self, column, column_name) 217 def decode_column(self, column: list, column_name: str) -> list: --> 218 return self.features.decode_column(column, column_name) if self.features else column File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1951, in Features.decode_column(self, column, column_name) 1938 def decode_column(self, column: list, column_name: str): 1939 """Decode column with custom feature decoding. 1940 1941 Args: (...) 1948 `list[Any]` 1949 """ 1950 return ( -> 1951 [decode_nested_example(self[column_name], value) if value is not None else None for value in column] 1952 if self._column_requires_decoding[column_name] 1953 else column 1954 ) File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1951, in <listcomp>(.0) 1938 def decode_column(self, column: list, column_name: str): 1939 """Decode column with custom feature decoding. 1940 1941 Args: (...) 1948 `list[Any]` 1949 """ 1950 return ( -> 1951 [decode_nested_example(self[column_name], value) if value is not None else None for value in column] 1952 if self._column_requires_decoding[column_name] 1953 else column 1954 ) File /usr/local/lib/python3.10/dist-packages/datasets/features/features.py:1339, in decode_nested_example(schema, obj, token_per_repo_id) 1336 elif isinstance(schema, (Audio, Image)): 1337 # we pass the token to read and decode files from private repositories in streaming mode 1338 if obj is not None and schema.decode: -> 1339 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) 1340 return obj File /usr/local/lib/python3.10/dist-packages/datasets/features/image.py:185, in Image.decode_example(self, value, token_per_repo_id) 183 else: 184 image = PIL.Image.open(BytesIO(bytes_)) --> 185 image.load() # to avoid "Too many open files" errors 186 return image File /usr/local/lib/python3.10/dist-packages/PIL/ImageFile.py:254, in ImageFile.load(self) 252 break 253 else: --> 254 raise OSError( 255 "image file is truncated " 256 f"({len(b)} bytes not processed)" 257 ) 259 b = b + s 260 n, err_code = decoder.decode(b) OSError: image file is truncated (1 bytes not processed) ``` ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset("mehul7/captioned_military_aircraft") from transformers import AutoImageProcessor checkpoint = "microsoft/resnet-50" image_processor = AutoImageProcessor.from_pretrained(checkpoint) import re from PIL import Image import io def contains_number(example): try: image = Image.open(io.BytesIO(example["image"]['bytes'])) t = image_processor(images=image, return_tensors="pt")['pixel_values'] except Exception as e: print(f"Error processing image:{example['text']}") return False return bool(re.search(r'\d', example['text'])) # Define a function to add the 'label' field def add_label(example): lab = example['text'].split() temp = 'NOT' for item in lab: if str(item[-1]).isdigit(): temp = item break example['label'] = temp return example # Filter the dataset # filtered_dataset = dataset.filter(contains_number) # Add the 'label' field in the dataset labeled_dataset = dataset.filter(contains_number).map(add_label) # View the structure of the updated dataset print(labeled_dataset) ``` ### Expected behavior needs to form labels same as : https://www.kaggle.com/code/jiabaowangts/dataset-air/notebook ### Environment info Kaggle notebook P100
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6558/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6558/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4910
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4910/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4910/comments
https://api.github.com/repos/huggingface/datasets/issues/4910/events
https://github.com/huggingface/datasets/issues/4910
1,354,374,328
I_kwDODunzps5Quhy4
4,910
Identical keywords in build_kwargs and config_kwargs lead to TypeError in load_dataset_builder()
{ "avatar_url": "https://avatars.githubusercontent.com/u/57184353?v=4", "events_url": "https://api.github.com/users/bablf/events{/privacy}", "followers_url": "https://api.github.com/users/bablf/followers", "following_url": "https://api.github.com/users/bablf/following{/other_user}", "gists_url": "https://api.github.com/users/bablf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bablf", "id": 57184353, "login": "bablf", "node_id": "MDQ6VXNlcjU3MTg0MzUz", "organizations_url": "https://api.github.com/users/bablf/orgs", "received_events_url": "https://api.github.com/users/bablf/received_events", "repos_url": "https://api.github.com/users/bablf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bablf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bablf/subscriptions", "type": "User", "url": "https://api.github.com/users/bablf", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/21123710?v=4", "events_url": "https://api.github.com/users/thepurpleowl/events{/privacy}", "followers_url": "https://api.github.com/users/thepurpleowl/followers", "following_url": "https://api.github.com/users/thepurpleowl/following{/other_user}", "gists_url": "https://api.github.com/users/thepurpleowl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thepurpleowl", "id": 21123710, "login": "thepurpleowl", "node_id": "MDQ6VXNlcjIxMTIzNzEw", "organizations_url": "https://api.github.com/users/thepurpleowl/orgs", "received_events_url": "https://api.github.com/users/thepurpleowl/received_events", "repos_url": "https://api.github.com/users/thepurpleowl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thepurpleowl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thepurpleowl/subscriptions", "type": "User", "url": "https://api.github.com/users/thepurpleowl", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/21123710?v=4", "events_url": "https://api.github.com/users/thepurpleowl/events{/privacy}", "followers_url": "https://api.github.com/users/thepurpleowl/followers", "following_url": "https://api.github.com/users/thepurpleowl/following{/other_user}", "gists_url": "https://api.github.com/users/thepurpleowl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thepurpleowl", "id": 21123710, "login": "thepurpleowl", "node_id": "MDQ6VXNlcjIxMTIzNzEw", "organizations_url": "https://api.github.com/users/thepurpleowl/orgs", "received_events_url": "https://api.github.com/users/thepurpleowl/received_events", "repos_url": "https://api.github.com/users/thepurpleowl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thepurpleowl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thepurpleowl/subscriptions", "type": "User", "url": "https://api.github.com/users/thepurpleowl", "user_view_type": "public" } ]
null
[ "I am getting similar error - `TypeError: type object got multiple values for keyword argument 'name'` while following this [tutorial](https://huggingface.co/docs/datasets/dataset_script#create-a-dataset-loading-script). I am getting this error with the `dataset-cli test` command.\r\n\r\n`datasets` version: 2.4.0", "In my case, this was happening because I defined multiple `BuilderConfig` for multiple types, but didn't had all the data files that are requierd by those configs. \r\n\r\nI think this is different than the original issue by @bablf .", "Hi ! I think this can be fixed by letting the config_kwargs take over the builder kwargs here:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7feeb5648a63b6135a8259dedc3b1e19185ee4c7/src/datasets/load.py#L1533-L1534\r\n\r\nmaybe something like this ?\r\n```python\r\n **{**builder_kwargs, **config_kwargs}\r\n```\r\n\r\nLet me know if you'd like to contribute and fix this bug, so I can assign you :)\r\n\r\n> In my case, this was happening because I defined multiple BuilderConfig for multiple types, but didn't had all the data files that are requierd by those configs.\r\n> \r\n> I think this is different than the original issue by @bablf .\r\n\r\nFeel free to to open an new issue, I'd be happy to help\r\n", "@lhoestq Yeah, I want to, please assign.", "Cool thank you ! Let me know if you have questions or if I can help", "@lhoestq On second thoughts, I think this might be expected behavior; although a better error message might help.\r\n\r\nReasoning: Given n configs, if no data file is provided for any config, then it should be an error. Then why it should not be the case if out of n configs, for some data files are provided but not for others. Also, I was using `--all_configs` flag with `dataset-cli test`.", "Ok I see - maybe we should check the values of builder_kwargs raise an error if any key in config_kwargs tries to overwrite it ? The builder kwargs are determined from the builder's type and location (in some cases it forces the base_path, data_files and config name for example)" ]
2022-08-29T14:11:48Z
2022-09-13T11:58:46Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug In `load_dataset_builder()`, `build_kwargs` and `config_kwargs` can contain the same keywords leading to a TypeError("type object got multiple values for keyword argument "xyz"). I ran into this problem with the keyword: `base_path`. It might happen with other kwargs as well. I think a quickfix would be ```python builder_cls = import_main_class(dataset_module.module_path) builder_kwargs = dataset_module.builder_kwargs data_files = builder_kwargs.pop("data_files", data_files) config_name = builder_kwargs.pop("config_name", name) hash = builder_kwargs.pop("hash") base_path = builder_kwargs.pop("base_path") ``` and then pass base_path into `builder_cls`. ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("rotten_tomatoes", base_path="./sample_data") ``` ## Expected results The docs state: `**config_kwargs` — Keyword arguments to be passed to the [BuilderConfig](https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/builder_classes#datasets.BuilderConfig) and used in the [DatasetBuilder](https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/builder_classes#datasets.DatasetBuilder). So I would expect to be able to pass the base_path into `load_dataset()`. ## Actual results TypeError("type object got multiple values for keyword argument "base_path"). ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.4.0 - Platform: macOS-12.5-arm64-arm-64bit - Python version: 3.8.9 - PyArrow version: 9.0.0
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4910/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4910/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6178
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6178/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6178/comments
https://api.github.com/repos/huggingface/datasets/issues/6178/events
https://github.com/huggingface/datasets/issues/6178
1,866,610,102
I_kwDODunzps5vQjW2
6,178
'import datasets' throws "invalid syntax error"
{ "avatar_url": "https://avatars.githubusercontent.com/u/128580829?v=4", "events_url": "https://api.github.com/users/elia-ashraf/events{/privacy}", "followers_url": "https://api.github.com/users/elia-ashraf/followers", "following_url": "https://api.github.com/users/elia-ashraf/following{/other_user}", "gists_url": "https://api.github.com/users/elia-ashraf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/elia-ashraf", "id": 128580829, "login": "elia-ashraf", "node_id": "U_kgDOB6n83Q", "organizations_url": "https://api.github.com/users/elia-ashraf/orgs", "received_events_url": "https://api.github.com/users/elia-ashraf/received_events", "repos_url": "https://api.github.com/users/elia-ashraf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/elia-ashraf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/elia-ashraf/subscriptions", "type": "User", "url": "https://api.github.com/users/elia-ashraf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "This seems to be related to your environment and not the `datasets` code (e.g., this could happen when exposing the Python 3.9 site packages to a lower Python version (interpreter))" ]
2023-08-25T08:35:14Z
2023-09-27T17:33:39Z
2023-09-27T17:33:39Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi, I have been trying to import the datasets library but I keep gtting this error. `Traceback (most recent call last): File /opt/local/jupyterhub/lib64/python3.9/site-packages/IPython/core/interactiveshell.py:3508 in run_code exec(code_obj, self.user_global_ns, self.user_ns) Cell In[2], line 1 import datasets File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/__init__.py:22 from .arrow_dataset import Dataset File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/arrow_dataset.py:67 from .arrow_writer import ArrowWriter, OptimizedTypedSequence File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/arrow_writer.py:27 from .features import Features, Image, Value File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/features/__init__.py:17 from .audio import Audio File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/features/audio.py:11 from ..download.streaming_download_manager import xopen, xsplitext File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/download/__init__.py:10 from .streaming_download_manager import StreamingDownloadManager File /opt/local/jupyterhub/lib64/python3.9/site-packages/datasets/download/streaming_download_manager.py:18 from aiohttp.client_exceptions import ClientError File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/__init__.py:7 from .connector import * # noqa File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/connector.py:12 from .client import ClientRequest File /opt/local/jupyterhub/lib64/python3.9/site-packages/aiohttp/client.py:144 yield from asyncio.async(resp.release(), loop=loop) ^ SyntaxError: invalid syntax` I have simply used these commands: `import datasets` and `from datasets import load_dataset` ### Environment info The library has been installed a virtual machine on JupyterHub. Although I have used this library multiple times (on the same VM) before, to train/test an ASR or other ML models, I had never encountered this error.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6178/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6178/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5213
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5213/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5213/comments
https://api.github.com/repos/huggingface/datasets/issues/5213/events
https://github.com/huggingface/datasets/pull/5213
1,440,037,534
PR_kwDODunzps5CalQ_
5,213
Add support for different configs with `push_to_hub`
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" } ]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5213). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5213). All of your documentation changes will be reflected on that endpoint.", "Nice thanks !\r\n\r\nWould it be possible to have the new folders at the same level as \"data\" ? This way they're all separated\r\n```\r\n├─ config-v1/\r\n│ ├── train-00000-00002-...-.parquet\r\n│ └── train-00001-00002-...-.parquet\r\n└ config-v2/\r\n ├── train-00000-00002-...-.parquet\r\n └── train-00001-00002-...-.parquet\r\n```\r\nand if you don't provide a config name, it goes in a folder named \"default\" instead, that would be loaded by default.\r\n\r\nWe could also write in the YAML something like\r\n```yaml\r\nconfigs:\r\n- name: config-v1\r\n data_dir: config-v1\r\n- name: config-v2\r\n data_dir: config-v2\r\n```\r\nand loading `config-v1` would be equivalent to run `load_dataset(ds_name, \"config-v1\", data_dir=\"config-v1\")`\r\n\r\nDo you think it would make sense ?\r\n\r\nFor backward compatibility we can just keep the \"data/*\" pattern. It's ok to expect users to have an updated version of `datasets` to be able to load datasets with configurations.", "@lhoestq thank you for the feedback! i'll reflect on this on Moday, my mind just melted because of the fever.\r\n\r\n@mariosasko @albertvillanova what do you think?", "Thanks for addressing this, @polinaeterna. It is good:\r\n- we support configs for datasets without scripts\r\n- we align the behavior to datasets with scripts as much as possible\r\n\r\nMaybe adding some tests will help clarify what is the expected behavior...", "After some discussion with @lhoestq we decided that it's better to rely on metadata file than on data files patterns. \r\n\r\nSo we decided to introduce a new field to yaml (like `configs` or smth like that) that would contain arbitrary configs kwargs to be passed to loader, including `data_dir` and `data_files`. \r\nThis is more aligned with datasets with custom scripts where we explicitly write all the supported configs and config parameters in the code and is extendable to all packaged modules.\r\nThis would solve https://github.com/huggingface/datasets/issues/5209\r\n\r\n(@lhoestq was right 21 days ago, this is a more general solution idk why i ignored this...)", "closed in favor of https://github.com/huggingface/datasets/pull/5331" ]
2022-11-08T11:45:47Z
2022-12-02T16:48:23Z
2022-12-02T16:44:07Z
CONTRIBUTOR
null
null
null
will solve #5151 @lhoestq @albertvillanova @mariosasko This is still a super draft so please ignore code issues but I want to discuss some conceptually important things. I suggest a way to do `.push_to_hub("repo_id", "config_name")` with pushing parquet files to directories named as `config_name` (inside `data/` dir as it is now), for example: ``` data |__config-v1 train-00000-00002-...-.parquet train-00001-00002-...-.parquet ... |__config-v2 .... ``` When loading a dataset, I parse these configs from repository data files (only for `"data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*"` pattern that is used for parquet datasets pushed with `.push_to_hub`). Therefore, - when user tries to load a dataset that has configs parsed from data files dir names without providing a config (like `load_dataset("repo")` instead of `load_dataset("repo", "config-v1")`) - raise error and asks for config - to be aligned with how it works in datasets with scripts. - for backward compatibility: if user tries to `.push_to_hub(""repo", "config_name")` to an existing parquet repo with no configurations (all parquet files are directly in `data/` dir) - raise error. My initial idea was to raise a warning and move these files to another dir with name (config) like "default" or smth but in a PR and suggest user to merge it on the Hub. But there is no support for renaming (moving) files via `HfApi` yet so it would require deleting and pushing again if I understand it right. This parsing approach can be extended to other Hub packaged modules, and to local packaged modules and other data files patterns (except for cases when splits are in dir names `KEYWORDS_IN_DIR_NAME_BASE_PATTERNS` because we allow for arbitrary depth of directory hierarchy). Do you think it's reasonable? Not sure how to provide flexibility (and backward compatibility) to not parsing configs and load all the data in a single config as it is now. I also thought about getting information about configs from Readme.md `dataset_info` ([example](https://huggingface.co/datasets/polinaeterna/test_push_two_configs/blob/main/README.md)). But that way we are dependent on if it exists. It is created automatically with `.push_to_hub` but what if it is accidentally deleted or smth). Also, what I don't like is that this parsing is a part of Module/DataFiles logic, not Builder's one, which is not aligned with datasets with custom scripts. But I don't know to implement the second approach in current library's logic. What do you think about this all? Am I missing smth? TODO: - [ ] save cache in the same dir for configs of the same datasets - [ ] fix verification errors - [ ] correctly update `dataset_infos.json` too - [ ] ...
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5213/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5213/timeline
null
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/5213.diff", "html_url": "https://github.com/huggingface/datasets/pull/5213", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5213.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5213" }
https://api.github.com/repos/huggingface/datasets/issues/6253
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6253/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6253/comments
https://api.github.com/repos/huggingface/datasets/issues/6253/events
https://github.com/huggingface/datasets/pull/6253
1,906,618,910
PR_kwDODunzps5a3s__
6,253
Check builder cls default config name in inspect
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006591 / 0.011353 (-0.004762) | 0.003991 / 0.011008 (-0.007017) | 0.085197 / 0.038508 (0.046689) | 0.080312 / 0.023109 (0.057202) | 0.342026 / 0.275898 (0.066128) | 0.370749 / 0.323480 (0.047269) | 0.004124 / 0.007986 (-0.003861) | 0.003413 / 0.004328 (-0.000916) | 0.064363 / 0.004250 (0.060113) | 0.055920 / 0.037052 (0.018868) | 0.340667 / 0.258489 (0.082178) | 0.380138 / 0.293841 (0.086297) | 0.031115 / 0.128546 (-0.097431) | 0.008511 / 0.075646 (-0.067135) | 0.289065 / 0.419271 (-0.130207) | 0.052266 / 0.043533 (0.008734) | 0.343808 / 0.255139 (0.088669) | 0.353578 / 0.283200 (0.070378) | 0.024006 / 0.141683 (-0.117676) | 1.490322 / 1.452155 (0.038168) | 1.591133 / 1.492716 (0.098417) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234718 / 0.018006 (0.216712) | 0.447023 / 0.000490 (0.446533) | 0.009343 / 0.000200 (0.009143) | 0.000259 / 0.000054 (0.000204) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030466 / 0.037411 (-0.006945) | 0.083367 / 0.014526 (0.068841) | 0.100532 / 0.176557 (-0.076024) | 0.158018 / 0.737135 (-0.579117) | 0.098280 / 0.296338 (-0.198059) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408501 / 0.215209 (0.193292) | 4.066937 / 2.077655 (1.989282) | 2.034029 / 1.504120 (0.529909) | 1.842982 / 1.541195 (0.301788) | 1.987319 / 1.468490 (0.518829) | 0.492126 / 4.584777 (-4.092651) | 3.554027 / 3.745712 (-0.191685) | 3.289023 / 5.269862 (-1.980839) | 2.069796 / 4.565676 (-2.495880) | 0.057930 / 0.424275 (-0.366346) | 0.007308 / 0.007607 (-0.000299) | 0.482596 / 0.226044 (0.256552) | 4.830714 / 2.268929 (2.561785) | 2.506787 / 55.444624 (-52.937838) | 2.163498 / 6.876477 (-4.712979) | 2.389135 / 2.142072 (0.247062) | 0.597538 / 4.805227 (-4.207689) | 0.134268 / 6.500664 (-6.366396) | 0.061189 / 0.075469 (-0.014280) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245328 / 1.841788 (-0.596460) | 19.145151 / 8.074308 (11.070843) | 14.742121 / 10.191392 (4.550729) | 0.144749 / 0.680424 (-0.535675) | 0.018433 / 0.534201 (-0.515768) | 0.391867 / 0.579283 (-0.187416) | 0.416555 / 0.434364 (-0.017809) | 0.454341 / 0.540337 (-0.085997) | 0.646833 / 1.386936 (-0.740103) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006669 / 0.011353 (-0.004684) | 0.004031 / 0.011008 (-0.006978) | 0.064347 / 0.038508 (0.025839) | 0.076857 / 0.023109 (0.053748) | 0.415864 / 0.275898 (0.139966) | 0.468615 / 0.323480 (0.145135) | 0.005383 / 0.007986 (-0.002603) | 0.003314 / 0.004328 (-0.001015) | 0.064829 / 0.004250 (0.060578) | 0.057182 / 0.037052 (0.020129) | 0.417055 / 0.258489 (0.158566) | 0.472725 / 0.293841 (0.178884) | 0.031938 / 0.128546 (-0.096608) | 0.008564 / 0.075646 (-0.067082) | 0.070649 / 0.419271 (-0.348623) | 0.047439 / 0.043533 (0.003906) | 0.409589 / 0.255139 (0.154450) | 0.433700 / 0.283200 (0.150500) | 0.024132 / 0.141683 (-0.117551) | 1.500825 / 1.452155 (0.048670) | 1.592059 / 1.492716 (0.099343) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225652 / 0.018006 (0.207646) | 0.444188 / 0.000490 (0.443698) | 0.004581 / 0.000200 (0.004381) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033272 / 0.037411 (-0.004139) | 0.096833 / 0.014526 (0.082307) | 0.107134 / 0.176557 (-0.069422) | 0.159299 / 0.737135 (-0.577836) | 0.107533 / 0.296338 (-0.188806) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429100 / 0.215209 (0.213890) | 4.281051 / 2.077655 (2.203396) | 2.318713 / 1.504120 (0.814593) | 2.165645 / 1.541195 (0.624451) | 2.250224 / 1.468490 (0.781734) | 0.495791 / 4.584777 (-4.088986) | 3.591953 / 3.745712 (-0.153760) | 3.303426 / 5.269862 (-1.966436) | 2.076861 / 4.565676 (-2.488816) | 0.058369 / 0.424275 (-0.365906) | 0.007387 / 0.007607 (-0.000220) | 0.501270 / 0.226044 (0.275225) | 5.014987 / 2.268929 (2.746059) | 2.800951 / 55.444624 (-52.643673) | 2.464316 / 6.876477 (-4.412161) | 2.685259 / 2.142072 (0.543187) | 0.584797 / 4.805227 (-4.220430) | 0.131889 / 6.500664 (-6.368775) | 0.061021 / 0.075469 (-0.014448) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.366982 / 1.841788 (-0.474806) | 19.820376 / 8.074308 (11.746068) | 14.968664 / 10.191392 (4.777272) | 0.165344 / 0.680424 (-0.515080) | 0.019956 / 0.534201 (-0.514245) | 0.395843 / 0.579283 (-0.183441) | 0.420854 / 0.434364 (-0.013510) | 0.465065 / 0.540337 (-0.075272) | 0.651531 / 1.386936 (-0.735405) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#980ca0e13300f5392cd87189d5afd5942927afc7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005974 / 0.011353 (-0.005379) | 0.003714 / 0.011008 (-0.007294) | 0.080049 / 0.038508 (0.041541) | 0.061233 / 0.023109 (0.038124) | 0.317187 / 0.275898 (0.041289) | 0.352725 / 0.323480 (0.029245) | 0.004867 / 0.007986 (-0.003119) | 0.002953 / 0.004328 (-0.001376) | 0.063156 / 0.004250 (0.058905) | 0.046752 / 0.037052 (0.009700) | 0.320171 / 0.258489 (0.061682) | 0.367572 / 0.293841 (0.073731) | 0.027253 / 0.128546 (-0.101293) | 0.008100 / 0.075646 (-0.067546) | 0.261206 / 0.419271 (-0.158066) | 0.044581 / 0.043533 (0.001048) | 0.331169 / 0.255139 (0.076030) | 0.348719 / 0.283200 (0.065519) | 0.021397 / 0.141683 (-0.120286) | 1.528315 / 1.452155 (0.076160) | 1.533789 / 1.492716 (0.041073) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233336 / 0.018006 (0.215329) | 0.416866 / 0.000490 (0.416376) | 0.008805 / 0.000200 (0.008605) | 0.000240 / 0.000054 (0.000186) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024754 / 0.037411 (-0.012657) | 0.073311 / 0.014526 (0.058785) | 0.085419 / 0.176557 (-0.091138) | 0.146380 / 0.737135 (-0.590756) | 0.085545 / 0.296338 (-0.210793) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431426 / 0.215209 (0.216217) | 4.315899 / 2.077655 (2.238244) | 2.232492 / 1.504120 (0.728372) | 2.064174 / 1.541195 (0.522979) | 2.158982 / 1.468490 (0.690492) | 0.499375 / 4.584777 (-4.085402) | 3.093259 / 3.745712 (-0.652454) | 2.848260 / 5.269862 (-2.421601) | 1.853097 / 4.565676 (-2.712579) | 0.057143 / 0.424275 (-0.367132) | 0.006349 / 0.007607 (-0.001258) | 0.507747 / 0.226044 (0.281702) | 5.078872 / 2.268929 (2.809944) | 2.717697 / 55.444624 (-52.726927) | 2.363564 / 6.876477 (-4.512913) | 2.485756 / 2.142072 (0.343684) | 0.595888 / 4.805227 (-4.209340) | 0.127285 / 6.500664 (-6.373379) | 0.060639 / 0.075469 (-0.014830) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219287 / 1.841788 (-0.622501) | 17.300038 / 8.074308 (9.225730) | 13.747230 / 10.191392 (3.555838) | 0.144841 / 0.680424 (-0.535583) | 0.016587 / 0.534201 (-0.517614) | 0.336891 / 0.579283 (-0.242392) | 0.376128 / 0.434364 (-0.058236) | 0.385749 / 0.540337 (-0.154588) | 0.552218 / 1.386936 (-0.834718) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006477 / 0.011353 (-0.004876) | 0.003709 / 0.011008 (-0.007299) | 0.064708 / 0.038508 (0.026200) | 0.062627 / 0.023109 (0.039518) | 0.444721 / 0.275898 (0.168823) | 0.477825 / 0.323480 (0.154345) | 0.004890 / 0.007986 (-0.003096) | 0.002896 / 0.004328 (-0.001432) | 0.063781 / 0.004250 (0.059530) | 0.050488 / 0.037052 (0.013436) | 0.453466 / 0.258489 (0.194977) | 0.483303 / 0.293841 (0.189462) | 0.028814 / 0.128546 (-0.099732) | 0.008207 / 0.075646 (-0.067440) | 0.070140 / 0.419271 (-0.349131) | 0.041487 / 0.043533 (-0.002045) | 0.454599 / 0.255139 (0.199460) | 0.468374 / 0.283200 (0.185174) | 0.019758 / 0.141683 (-0.121925) | 1.437542 / 1.452155 (-0.014613) | 1.507965 / 1.492716 (0.015249) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223358 / 0.018006 (0.205352) | 0.413824 / 0.000490 (0.413334) | 0.004593 / 0.000200 (0.004393) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026278 / 0.037411 (-0.011134) | 0.081992 / 0.014526 (0.067466) | 0.089969 / 0.176557 (-0.086587) | 0.143668 / 0.737135 (-0.593467) | 0.091273 / 0.296338 (-0.205066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461198 / 0.215209 (0.245989) | 4.615398 / 2.077655 (2.537743) | 2.552291 / 1.504120 (1.048171) | 2.373789 / 1.541195 (0.832595) | 2.431591 / 1.468490 (0.963101) | 0.507683 / 4.584777 (-4.077094) | 3.148771 / 3.745712 (-0.596941) | 2.849118 / 5.269862 (-2.420744) | 1.883001 / 4.565676 (-2.682675) | 0.059423 / 0.424275 (-0.364852) | 0.006463 / 0.007607 (-0.001144) | 0.535129 / 0.226044 (0.309085) | 5.362870 / 2.268929 (3.093941) | 3.016548 / 55.444624 (-52.428076) | 2.666205 / 6.876477 (-4.210271) | 2.821396 / 2.142072 (0.679324) | 0.606596 / 4.805227 (-4.198631) | 0.125991 / 6.500664 (-6.374673) | 0.063566 / 0.075469 (-0.011903) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.364771 / 1.841788 (-0.477017) | 18.000713 / 8.074308 (9.926404) | 14.840330 / 10.191392 (4.648937) | 0.144770 / 0.680424 (-0.535653) | 0.018060 / 0.534201 (-0.516141) | 0.334470 / 0.579283 (-0.244813) | 0.387386 / 0.434364 (-0.046978) | 0.398743 / 0.540337 (-0.141595) | 0.555437 / 1.386936 (-0.831499) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5b974c9af6b45b6ebdbbf4b3418f25506c1c0618 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006491 / 0.011353 (-0.004862) | 0.004058 / 0.011008 (-0.006950) | 0.084462 / 0.038508 (0.045954) | 0.072310 / 0.023109 (0.049201) | 0.352458 / 0.275898 (0.076560) | 0.385829 / 0.323480 (0.062350) | 0.003978 / 0.007986 (-0.004007) | 0.003455 / 0.004328 (-0.000873) | 0.064070 / 0.004250 (0.059819) | 0.055577 / 0.037052 (0.018525) | 0.361288 / 0.258489 (0.102799) | 0.400147 / 0.293841 (0.106306) | 0.030785 / 0.128546 (-0.097761) | 0.008676 / 0.075646 (-0.066971) | 0.287481 / 0.419271 (-0.131791) | 0.052643 / 0.043533 (0.009110) | 0.354670 / 0.255139 (0.099531) | 0.382322 / 0.283200 (0.099122) | 0.025657 / 0.141683 (-0.116026) | 1.486798 / 1.452155 (0.034643) | 1.588439 / 1.492716 (0.095723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240881 / 0.018006 (0.222875) | 0.463997 / 0.000490 (0.463507) | 0.009688 / 0.000200 (0.009488) | 0.000601 / 0.000054 (0.000546) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029071 / 0.037411 (-0.008340) | 0.083077 / 0.014526 (0.068551) | 0.119857 / 0.176557 (-0.056699) | 0.153387 / 0.737135 (-0.583749) | 0.132162 / 0.296338 (-0.164177) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383822 / 0.215209 (0.168613) | 3.828572 / 2.077655 (1.750918) | 1.877629 / 1.504120 (0.373509) | 1.708757 / 1.541195 (0.167562) | 1.771658 / 1.468490 (0.303168) | 0.482439 / 4.584777 (-4.102338) | 3.496247 / 3.745712 (-0.249466) | 3.282055 / 5.269862 (-1.987807) | 2.053069 / 4.565676 (-2.512607) | 0.056626 / 0.424275 (-0.367649) | 0.007338 / 0.007607 (-0.000269) | 0.461257 / 0.226044 (0.235213) | 4.605326 / 2.268929 (2.336397) | 2.408365 / 55.444624 (-53.036260) | 1.986550 / 6.876477 (-4.889926) | 2.225220 / 2.142072 (0.083148) | 0.601301 / 4.805227 (-4.203927) | 0.132217 / 6.500664 (-6.368447) | 0.061217 / 0.075469 (-0.014252) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268706 / 1.841788 (-0.573081) | 18.892026 / 8.074308 (10.817717) | 14.093892 / 10.191392 (3.902500) | 0.162483 / 0.680424 (-0.517941) | 0.018372 / 0.534201 (-0.515829) | 0.391901 / 0.579283 (-0.187382) | 0.401578 / 0.434364 (-0.032786) | 0.456741 / 0.540337 (-0.083596) | 0.646760 / 1.386936 (-0.740176) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006657 / 0.011353 (-0.004696) | 0.003981 / 0.011008 (-0.007027) | 0.066126 / 0.038508 (0.027617) | 0.072673 / 0.023109 (0.049564) | 0.409970 / 0.275898 (0.134072) | 0.430797 / 0.323480 (0.107317) | 0.005477 / 0.007986 (-0.002508) | 0.003362 / 0.004328 (-0.000966) | 0.065532 / 0.004250 (0.061282) | 0.056018 / 0.037052 (0.018966) | 0.406676 / 0.258489 (0.148187) | 0.438516 / 0.293841 (0.144675) | 0.032795 / 0.128546 (-0.095751) | 0.008580 / 0.075646 (-0.067066) | 0.072692 / 0.419271 (-0.346579) | 0.048110 / 0.043533 (0.004577) | 0.396826 / 0.255139 (0.141687) | 0.418442 / 0.283200 (0.135242) | 0.023269 / 0.141683 (-0.118414) | 1.499438 / 1.452155 (0.047283) | 1.568842 / 1.492716 (0.076126) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218729 / 0.018006 (0.200723) | 0.450771 / 0.000490 (0.450281) | 0.004996 / 0.000200 (0.004796) | 0.000086 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031484 / 0.037411 (-0.005928) | 0.092927 / 0.014526 (0.078401) | 0.107849 / 0.176557 (-0.068707) | 0.156658 / 0.737135 (-0.580478) | 0.106373 / 0.296338 (-0.189965) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434658 / 0.215209 (0.219449) | 4.336386 / 2.077655 (2.258731) | 2.322577 / 1.504120 (0.818457) | 2.149505 / 1.541195 (0.608310) | 2.201967 / 1.468490 (0.733476) | 0.496994 / 4.584777 (-4.087783) | 3.533065 / 3.745712 (-0.212647) | 3.235750 / 5.269862 (-2.034112) | 2.034854 / 4.565676 (-2.530823) | 0.058258 / 0.424275 (-0.366017) | 0.007260 / 0.007607 (-0.000347) | 0.509115 / 0.226044 (0.283071) | 5.088427 / 2.268929 (2.819499) | 2.793551 / 55.444624 (-52.651073) | 2.430588 / 6.876477 (-4.445889) | 2.625998 / 2.142072 (0.483926) | 0.611676 / 4.805227 (-4.193552) | 0.133343 / 6.500664 (-6.367321) | 0.059888 / 0.075469 (-0.015581) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.377292 / 1.841788 (-0.464496) | 19.214299 / 8.074308 (11.139991) | 14.629146 / 10.191392 (4.437754) | 0.171283 / 0.680424 (-0.509141) | 0.020348 / 0.534201 (-0.513853) | 0.397823 / 0.579283 (-0.181461) | 0.411590 / 0.434364 (-0.022774) | 0.470850 / 0.540337 (-0.069487) | 0.658667 / 1.386936 (-0.728269) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a1e1867e932f14233244fb25713f3c94c46ff50a \"CML watermark\")\n" ]
2023-09-21T10:15:32Z
2023-09-21T14:16:44Z
2023-09-21T14:08:00Z
MEMBER
null
null
null
Fix https://github.com/huggingface/datasets-server/issues/1812 this was causing this issue: ```ipython In [1]: from datasets import * In [2]: inspect.get_dataset_config_names("aakanksha/udpos") Out[2]: ['default'] In [3]: load_dataset_builder("aakanksha/udpos").config.name Out[3]: 'en' ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6253/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6253/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6253.diff", "html_url": "https://github.com/huggingface/datasets/pull/6253", "merged_at": "2023-09-21T14:08:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/6253.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6253" }
https://api.github.com/repos/huggingface/datasets/issues/6602
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6602/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6602/comments
https://api.github.com/repos/huggingface/datasets/issues/6602/events
https://github.com/huggingface/datasets/issues/6602
2,089,217,483
I_kwDODunzps58hu3L
6,602
Index error when data is large
{ "avatar_url": "https://avatars.githubusercontent.com/u/35147961?v=4", "events_url": "https://api.github.com/users/ChenchaoZhao/events{/privacy}", "followers_url": "https://api.github.com/users/ChenchaoZhao/followers", "following_url": "https://api.github.com/users/ChenchaoZhao/following{/other_user}", "gists_url": "https://api.github.com/users/ChenchaoZhao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ChenchaoZhao", "id": 35147961, "login": "ChenchaoZhao", "node_id": "MDQ6VXNlcjM1MTQ3OTYx", "organizations_url": "https://api.github.com/users/ChenchaoZhao/orgs", "received_events_url": "https://api.github.com/users/ChenchaoZhao/received_events", "repos_url": "https://api.github.com/users/ChenchaoZhao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ChenchaoZhao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ChenchaoZhao/subscriptions", "type": "User", "url": "https://api.github.com/users/ChenchaoZhao", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I'm facing this problem while doing my translation of [mteb/stackexchange-clustering](https://huggingface.co/datasets/mteb/stackexchange-clustering). each row has lots of samples (up to 100k samples), because in this dataset, each row represent multiple clusters.\nmy hack is to setting `max_shard_size` to 20Gb or even larger\n```py\nfinal_dataset.push_to_hub(\n output_dataset, \n private=True,\n max_shard_size=\"20GB\" # This will ensure appropriate sharding based on data size\n )\n```\nIt will work, but depends on your data size. " ]
2024-01-18T23:00:47Z
2025-04-16T04:13:01Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug At `save_to_disk` step, the `max_shard_size` by default is `500MB`. However, one row of the dataset might be larger than `500MB` then the saving will throw an index error. Without looking at the source code, the bug is due to wrong calculation of number of shards which i think is `total_size / min(max_shard_size, row_size)` which should be `total_size / max(max_shard_size, row_size)` The fix is setting a larger `max_shard_size` ### Steps to reproduce the bug 1. create a dataset with large dense tensors per row 2. set a small `max_shard_size` say 1MB 3. `save_to_disk` ### Expected behavior ``` raise IndexError(f"Index {index} out of range for dataset of size {size}.") IndexError: Index 10 out of range for dataset of size 10. ``` ### Environment info - `datasets` version: 2.16.0 - Platform: Linux-5.10.201-168.748.amzn2int.x86_64-x86_64-with-glibc2.26 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.2 - Pandas version: 2.1.4 - `fsspec` version: 2023.12.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6602/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6602/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6888
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6888/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6888/comments
https://api.github.com/repos/huggingface/datasets/issues/6888/events
https://github.com/huggingface/datasets/pull/6888
2,287,169,676
PR_kwDODunzps5u9omr
6,888
Support WebDataset containing file basenames with dots
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6888). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I think webdataset splits the file name and extension using the first dot no ?\r\n\r\nhttps://github.com/webdataset/webdataset/blob/945b251a872ec0d337be8f9ea17a9c5b0d017ff3/webdataset/tariterators.py#L226\r\n\r\nlinks to this function that splits on first dot\r\n\r\n```python\r\n\r\ndef base_plus_ext(path):\r\n \"\"\"Split off all file extensions.\r\n\r\n Returns base, allext.\r\n\r\n Args:\r\n path: path with extensions\r\n\r\n Returns:\r\n path with all extensions removed\r\n \"\"\"\r\n match = re.match(r\"^((?:.*/|)[^.]+)[.]([^/]*)$\", path)\r\n if not match:\r\n return None, None\r\n return match.group(1), match.group(2)\r\n```", "So maybe the original issue is actually due to one of the files containing a dot in its file name that is not for the extension\r\n\r\n```python\r\n>>> base_plus_ext(\"15_Cohen_1-s2.0-S0929664620300449-gr3_lrg-b.png\")\r\n('15_Cohen_1-s2', '0-S0929664620300449-gr3_lrg-b.png')\r\n```", "Thanks for your review, @lhoestq.\r\n\r\nI was not aware that `webdataset` requires filenames without dots in their basenames.", "I they can have dots for the extension (that becomes the column name) but not in the key used to group files into samples" ]
2024-05-09T08:25:30Z
2024-05-10T13:54:06Z
2024-05-10T13:54:06Z
MEMBER
null
null
null
Support WebDataset containing file basenames with dots. Fix #6880.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6888/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6888/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6888.diff", "html_url": "https://github.com/huggingface/datasets/pull/6888", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6888.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6888" }
https://api.github.com/repos/huggingface/datasets/issues/5561
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5561/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5561/comments
https://api.github.com/repos/huggingface/datasets/issues/5561/events
https://github.com/huggingface/datasets/pull/5561
1,593,862,388
PR_kwDODunzps5Kcxw_
5,561
Add pre-commit config yaml file to enable automatic code formatting
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Better yet have someone enable pre-commit CI https://pre-commit.ci/ and it will apply the pre-commit fixes to the PR automatically as an additional commit.", "@Skylion007 hi! I agree with @nateraw here, I'd better not force to use pre-commit so I'm not setting it up in the CI for now. And regarding end-of-file - currently it's being done by `black`. \r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008704 / 0.011353 (-0.002649) | 0.004448 / 0.011008 (-0.006560) | 0.099530 / 0.038508 (0.061022) | 0.029739 / 0.023109 (0.006629) | 0.329267 / 0.275898 (0.053369) | 0.368805 / 0.323480 (0.045325) | 0.006852 / 0.007986 (-0.001133) | 0.004575 / 0.004328 (0.000246) | 0.076838 / 0.004250 (0.072588) | 0.033885 / 0.037052 (-0.003167) | 0.336340 / 0.258489 (0.077851) | 0.384880 / 0.293841 (0.091039) | 0.034051 / 0.128546 (-0.094495) | 0.011638 / 0.075646 (-0.064009) | 0.321650 / 0.419271 (-0.097622) | 0.041202 / 0.043533 (-0.002330) | 0.330841 / 0.255139 (0.075702) | 0.361329 / 0.283200 (0.078130) | 0.084864 / 0.141683 (-0.056819) | 1.454005 / 1.452155 (0.001850) | 1.542167 / 1.492716 (0.049451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196207 / 0.018006 (0.178200) | 0.400675 / 0.000490 (0.400185) | 0.000403 / 0.000200 (0.000203) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022694 / 0.037411 (-0.014717) | 0.095139 / 0.014526 (0.080613) | 0.104129 / 0.176557 (-0.072427) | 0.168688 / 0.737135 (-0.568447) | 0.109243 / 0.296338 (-0.187096) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427520 / 0.215209 (0.212311) | 4.237726 / 2.077655 (2.160071) | 2.191887 / 1.504120 (0.687767) | 1.987750 / 1.541195 (0.446555) | 1.996540 / 1.468490 (0.528050) | 0.696416 / 4.584777 (-3.888361) | 3.454536 / 3.745712 (-0.291176) | 2.023600 / 5.269862 (-3.246261) | 1.336394 / 4.565676 (-3.229282) | 0.082933 / 0.424275 (-0.341342) | 0.012572 / 0.007607 (0.004965) | 0.534330 / 0.226044 (0.308285) | 5.347588 / 2.268929 (3.078659) | 2.640397 / 55.444624 (-52.804228) | 2.338266 / 6.876477 (-4.538211) | 2.431969 / 2.142072 (0.289897) | 0.821335 / 4.805227 (-3.983893) | 0.151905 / 6.500664 (-6.348759) | 0.067983 / 0.075469 (-0.007486) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228841 / 1.841788 (-0.612947) | 13.660437 / 8.074308 (5.586128) | 13.729442 / 10.191392 (3.538050) | 0.165835 / 0.680424 (-0.514589) | 0.028753 / 0.534201 (-0.505448) | 0.400143 / 0.579283 (-0.179140) | 0.403714 / 0.434364 (-0.030650) | 0.492168 / 0.540337 (-0.048170) | 0.581151 / 1.386936 (-0.805785) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006289 / 0.011353 (-0.005064) | 0.004419 / 0.011008 (-0.006589) | 0.077220 / 0.038508 (0.038712) | 0.027170 / 0.023109 (0.004060) | 0.344988 / 0.275898 (0.069090) | 0.374150 / 0.323480 (0.050670) | 0.004842 / 0.007986 (-0.003144) | 0.003289 / 0.004328 (-0.001039) | 0.076200 / 0.004250 (0.071950) | 0.036287 / 0.037052 (-0.000766) | 0.345764 / 0.258489 (0.087275) | 0.387439 / 0.293841 (0.093599) | 0.031547 / 0.128546 (-0.096999) | 0.011586 / 0.075646 (-0.064060) | 0.086599 / 0.419271 (-0.332672) | 0.042338 / 0.043533 (-0.001195) | 0.355384 / 0.255139 (0.100246) | 0.369474 / 0.283200 (0.086275) | 0.090945 / 0.141683 (-0.050738) | 1.488632 / 1.452155 (0.036477) | 1.554606 / 1.492716 (0.061890) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212962 / 0.018006 (0.194956) | 0.399647 / 0.000490 (0.399157) | 0.003055 / 0.000200 (0.002856) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024349 / 0.037411 (-0.013062) | 0.100342 / 0.014526 (0.085817) | 0.105657 / 0.176557 (-0.070899) | 0.175139 / 0.737135 (-0.561997) | 0.110014 / 0.296338 (-0.186324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434785 / 0.215209 (0.219575) | 4.346950 / 2.077655 (2.269295) | 2.045411 / 1.504120 (0.541291) | 1.844258 / 1.541195 (0.303064) | 1.889503 / 1.468490 (0.421013) | 0.704530 / 4.584777 (-3.880247) | 3.362435 / 3.745712 (-0.383277) | 2.797205 / 5.269862 (-2.472656) | 1.504431 / 4.565676 (-3.061245) | 0.083331 / 0.424275 (-0.340945) | 0.012274 / 0.007607 (0.004666) | 0.531123 / 0.226044 (0.305078) | 5.322588 / 2.268929 (3.053660) | 2.483875 / 55.444624 (-52.960750) | 2.147218 / 6.876477 (-4.729258) | 2.164024 / 2.142072 (0.021952) | 0.807191 / 4.805227 (-3.998036) | 0.151189 / 6.500664 (-6.349475) | 0.068027 / 0.075469 (-0.007442) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.316001 / 1.841788 (-0.525787) | 13.892785 / 8.074308 (5.818477) | 13.485982 / 10.191392 (3.294590) | 0.138904 / 0.680424 (-0.541520) | 0.016748 / 0.534201 (-0.517453) | 0.379840 / 0.579283 (-0.199443) | 0.384854 / 0.434364 (-0.049510) | 0.464275 / 0.540337 (-0.076063) | 0.553622 / 1.386936 (-0.833314) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a940972a9a38543b2066129dc6e7987e08dca082 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009179 / 0.011353 (-0.002174) | 0.005080 / 0.011008 (-0.005929) | 0.099061 / 0.038508 (0.060553) | 0.035252 / 0.023109 (0.012143) | 0.293496 / 0.275898 (0.017598) | 0.360365 / 0.323480 (0.036886) | 0.007757 / 0.007986 (-0.000229) | 0.003985 / 0.004328 (-0.000343) | 0.076021 / 0.004250 (0.071771) | 0.042286 / 0.037052 (0.005233) | 0.316542 / 0.258489 (0.058053) | 0.341711 / 0.293841 (0.047870) | 0.037970 / 0.128546 (-0.090576) | 0.011977 / 0.075646 (-0.063670) | 0.333341 / 0.419271 (-0.085931) | 0.049211 / 0.043533 (0.005678) | 0.297401 / 0.255139 (0.042262) | 0.313424 / 0.283200 (0.030224) | 0.105719 / 0.141683 (-0.035964) | 1.487879 / 1.452155 (0.035724) | 1.529785 / 1.492716 (0.037068) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201062 / 0.018006 (0.183056) | 0.438024 / 0.000490 (0.437534) | 0.002129 / 0.000200 (0.001929) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026422 / 0.037411 (-0.010989) | 0.104863 / 0.014526 (0.090337) | 0.114934 / 0.176557 (-0.061623) | 0.179173 / 0.737135 (-0.557962) | 0.119734 / 0.296338 (-0.176604) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397195 / 0.215209 (0.181986) | 3.959945 / 2.077655 (1.882290) | 1.794059 / 1.504120 (0.289939) | 1.606814 / 1.541195 (0.065619) | 1.674681 / 1.468490 (0.206191) | 0.680130 / 4.584777 (-3.904646) | 3.742730 / 3.745712 (-0.002982) | 2.021793 / 5.269862 (-3.248069) | 1.322726 / 4.565676 (-3.242950) | 0.084519 / 0.424275 (-0.339756) | 0.012012 / 0.007607 (0.004405) | 0.510076 / 0.226044 (0.284032) | 5.084163 / 2.268929 (2.815234) | 2.241032 / 55.444624 (-53.203592) | 1.911936 / 6.876477 (-4.964540) | 1.947992 / 2.142072 (-0.194080) | 0.838779 / 4.805227 (-3.966448) | 0.165103 / 6.500664 (-6.335561) | 0.060722 / 0.075469 (-0.014747) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180274 / 1.841788 (-0.661514) | 14.285364 / 8.074308 (6.211056) | 12.941205 / 10.191392 (2.749813) | 0.153815 / 0.680424 (-0.526609) | 0.028554 / 0.534201 (-0.505647) | 0.441551 / 0.579283 (-0.137732) | 0.434906 / 0.434364 (0.000542) | 0.516120 / 0.540337 (-0.024217) | 0.603062 / 1.386936 (-0.783874) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007287 / 0.011353 (-0.004066) | 0.004998 / 0.011008 (-0.006010) | 0.074997 / 0.038508 (0.036489) | 0.033209 / 0.023109 (0.010100) | 0.336836 / 0.275898 (0.060938) | 0.365562 / 0.323480 (0.042082) | 0.005739 / 0.007986 (-0.002246) | 0.003942 / 0.004328 (-0.000387) | 0.074681 / 0.004250 (0.070430) | 0.049530 / 0.037052 (0.012478) | 0.335642 / 0.258489 (0.077153) | 0.388874 / 0.293841 (0.095033) | 0.037198 / 0.128546 (-0.091349) | 0.011983 / 0.075646 (-0.063664) | 0.087601 / 0.419271 (-0.331671) | 0.053761 / 0.043533 (0.010228) | 0.334142 / 0.255139 (0.079003) | 0.351348 / 0.283200 (0.068148) | 0.107462 / 0.141683 (-0.034221) | 1.497015 / 1.452155 (0.044860) | 1.608287 / 1.492716 (0.115571) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255395 / 0.018006 (0.237389) | 0.439141 / 0.000490 (0.438651) | 0.021391 / 0.000200 (0.021191) | 0.000230 / 0.000054 (0.000176) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028331 / 0.037411 (-0.009080) | 0.108744 / 0.014526 (0.094218) | 0.118201 / 0.176557 (-0.058355) | 0.189556 / 0.737135 (-0.547579) | 0.123112 / 0.296338 (-0.173226) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431394 / 0.215209 (0.216185) | 4.296121 / 2.077655 (2.218466) | 2.126371 / 1.504120 (0.622251) | 1.978178 / 1.541195 (0.436983) | 2.082674 / 1.468490 (0.614184) | 0.701789 / 4.584777 (-3.882988) | 3.791495 / 3.745712 (0.045783) | 2.115267 / 5.269862 (-3.154594) | 1.342159 / 4.565676 (-3.223517) | 0.088132 / 0.424275 (-0.336143) | 0.011903 / 0.007607 (0.004295) | 0.528398 / 0.226044 (0.302354) | 5.270077 / 2.268929 (3.001148) | 2.498860 / 55.444624 (-52.945765) | 2.155515 / 6.876477 (-4.720962) | 2.192866 / 2.142072 (0.050793) | 0.859596 / 4.805227 (-3.945631) | 0.170544 / 6.500664 (-6.330120) | 0.063883 / 0.075469 (-0.011587) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240679 / 1.841788 (-0.601109) | 14.497379 / 8.074308 (6.423071) | 12.881417 / 10.191392 (2.690025) | 0.147295 / 0.680424 (-0.533129) | 0.017465 / 0.534201 (-0.516736) | 0.424695 / 0.579283 (-0.154588) | 0.414929 / 0.434364 (-0.019435) | 0.536079 / 0.540337 (-0.004259) | 0.638245 / 1.386936 (-0.748691) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a940972a9a38543b2066129dc6e7987e08dca082 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008806 / 0.011353 (-0.002547) | 0.004712 / 0.011008 (-0.006297) | 0.102383 / 0.038508 (0.063875) | 0.030260 / 0.023109 (0.007151) | 0.330175 / 0.275898 (0.054277) | 0.376816 / 0.323480 (0.053337) | 0.008065 / 0.007986 (0.000079) | 0.003534 / 0.004328 (-0.000794) | 0.078824 / 0.004250 (0.074573) | 0.036704 / 0.037052 (-0.000349) | 0.331848 / 0.258489 (0.073359) | 0.351031 / 0.293841 (0.057190) | 0.033406 / 0.128546 (-0.095140) | 0.011543 / 0.075646 (-0.064103) | 0.322114 / 0.419271 (-0.097157) | 0.041249 / 0.043533 (-0.002284) | 0.309413 / 0.255139 (0.054274) | 0.329156 / 0.283200 (0.045956) | 0.088636 / 0.141683 (-0.053047) | 1.508226 / 1.452155 (0.056071) | 1.557203 / 1.492716 (0.064487) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196696 / 0.018006 (0.178690) | 0.426360 / 0.000490 (0.425870) | 0.001263 / 0.000200 (0.001064) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023747 / 0.037411 (-0.013664) | 0.100756 / 0.014526 (0.086230) | 0.105817 / 0.176557 (-0.070739) | 0.172573 / 0.737135 (-0.564562) | 0.110705 / 0.296338 (-0.185634) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436913 / 0.215209 (0.221704) | 4.365753 / 2.077655 (2.288099) | 2.201346 / 1.504120 (0.697226) | 1.978800 / 1.541195 (0.437605) | 1.951585 / 1.468490 (0.483094) | 0.699208 / 4.584777 (-3.885569) | 3.381492 / 3.745712 (-0.364220) | 2.966174 / 5.269862 (-2.303687) | 1.487521 / 4.565676 (-3.078156) | 0.082673 / 0.424275 (-0.341602) | 0.012436 / 0.007607 (0.004829) | 0.553276 / 0.226044 (0.327232) | 5.554081 / 2.268929 (3.285153) | 2.653286 / 55.444624 (-52.791339) | 2.404788 / 6.876477 (-4.471689) | 2.484610 / 2.142072 (0.342537) | 0.817073 / 4.805227 (-3.988154) | 0.151619 / 6.500664 (-6.349045) | 0.068259 / 0.075469 (-0.007210) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273481 / 1.841788 (-0.568306) | 13.908825 / 8.074308 (5.834517) | 13.106695 / 10.191392 (2.915303) | 0.139609 / 0.680424 (-0.540815) | 0.028425 / 0.534201 (-0.505776) | 0.395626 / 0.579283 (-0.183657) | 0.405526 / 0.434364 (-0.028838) | 0.465628 / 0.540337 (-0.074709) | 0.542824 / 1.386936 (-0.844112) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006821 / 0.011353 (-0.004532) | 0.004570 / 0.011008 (-0.006438) | 0.076568 / 0.038508 (0.038060) | 0.028109 / 0.023109 (0.004999) | 0.342768 / 0.275898 (0.066870) | 0.390680 / 0.323480 (0.067200) | 0.005056 / 0.007986 (-0.002930) | 0.003359 / 0.004328 (-0.000970) | 0.075835 / 0.004250 (0.071584) | 0.038888 / 0.037052 (0.001836) | 0.343489 / 0.258489 (0.085000) | 0.400766 / 0.293841 (0.106925) | 0.031816 / 0.128546 (-0.096730) | 0.011637 / 0.075646 (-0.064009) | 0.085474 / 0.419271 (-0.333797) | 0.041740 / 0.043533 (-0.001793) | 0.342501 / 0.255139 (0.087362) | 0.377467 / 0.283200 (0.094267) | 0.091532 / 0.141683 (-0.050151) | 1.457368 / 1.452155 (0.005213) | 1.537187 / 1.492716 (0.044471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187507 / 0.018006 (0.169501) | 0.415706 / 0.000490 (0.415217) | 0.001816 / 0.000200 (0.001616) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026251 / 0.037411 (-0.011161) | 0.106609 / 0.014526 (0.092083) | 0.109822 / 0.176557 (-0.066735) | 0.180462 / 0.737135 (-0.556674) | 0.114647 / 0.296338 (-0.181691) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438804 / 0.215209 (0.223595) | 4.387960 / 2.077655 (2.310306) | 2.056804 / 1.504120 (0.552684) | 1.848584 / 1.541195 (0.307389) | 1.939470 / 1.468490 (0.470980) | 0.702539 / 4.584777 (-3.882238) | 3.419535 / 3.745712 (-0.326177) | 1.933889 / 5.269862 (-3.335973) | 1.189631 / 4.565676 (-3.376045) | 0.084105 / 0.424275 (-0.340170) | 0.012520 / 0.007607 (0.004913) | 0.538125 / 0.226044 (0.312081) | 5.370000 / 2.268929 (3.101072) | 2.497487 / 55.444624 (-52.947137) | 2.156054 / 6.876477 (-4.720423) | 2.225909 / 2.142072 (0.083837) | 0.811456 / 4.805227 (-3.993771) | 0.151461 / 6.500664 (-6.349203) | 0.066940 / 0.075469 (-0.008530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301246 / 1.841788 (-0.540542) | 14.459755 / 8.074308 (6.385447) | 13.147151 / 10.191392 (2.955759) | 0.129236 / 0.680424 (-0.551188) | 0.016427 / 0.534201 (-0.517774) | 0.380047 / 0.579283 (-0.199236) | 0.392217 / 0.434364 (-0.042147) | 0.470338 / 0.540337 (-0.069999) | 0.559800 / 1.386936 (-0.827136) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a940972a9a38543b2066129dc6e7987e08dca082 \"CML watermark\")\n" ]
2023-02-21T17:35:07Z
2023-02-28T15:37:22Z
2023-02-23T18:23:29Z
CONTRIBUTOR
null
null
null
@huggingface/datasets do you think it would be useful? Motivation - sometimes PRs are like 30% "fix: style" commits :) If so - I need to double check the config but for me locally it works as expected.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5561/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5561/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5561.diff", "html_url": "https://github.com/huggingface/datasets/pull/5561", "merged_at": "2023-02-23T18:23:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5561.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5561" }
https://api.github.com/repos/huggingface/datasets/issues/6215
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6215/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6215/comments
https://api.github.com/repos/huggingface/datasets/issues/6215/events
https://github.com/huggingface/datasets/pull/6215
1,882,176,970
PR_kwDODunzps5ZlcqC
6,215
Fix checking patterns to infer packaged builder
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "oh wow good catch", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006681 / 0.011353 (-0.004672) | 0.003967 / 0.011008 (-0.007041) | 0.085590 / 0.038508 (0.047082) | 0.079285 / 0.023109 (0.056176) | 0.311583 / 0.275898 (0.035685) | 0.345578 / 0.323480 (0.022098) | 0.004115 / 0.007986 (-0.003871) | 0.004286 / 0.004328 (-0.000043) | 0.064405 / 0.004250 (0.060155) | 0.055084 / 0.037052 (0.018032) | 0.316117 / 0.258489 (0.057628) | 0.354737 / 0.293841 (0.060896) | 0.031280 / 0.128546 (-0.097266) | 0.008395 / 0.075646 (-0.067251) | 0.288910 / 0.419271 (-0.130362) | 0.051291 / 0.043533 (0.007759) | 0.309125 / 0.255139 (0.053986) | 0.349673 / 0.283200 (0.066473) | 0.025016 / 0.141683 (-0.116667) | 1.475577 / 1.452155 (0.023422) | 1.558967 / 1.492716 (0.066251) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208504 / 0.018006 (0.190498) | 0.462270 / 0.000490 (0.461780) | 0.003476 / 0.000200 (0.003276) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030371 / 0.037411 (-0.007041) | 0.086157 / 0.014526 (0.071631) | 0.098162 / 0.176557 (-0.078395) | 0.154649 / 0.737135 (-0.582486) | 0.098697 / 0.296338 (-0.197642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405883 / 0.215209 (0.190674) | 4.049614 / 2.077655 (1.971959) | 2.075047 / 1.504120 (0.570927) | 1.917782 / 1.541195 (0.376587) | 2.030268 / 1.468490 (0.561778) | 0.483974 / 4.584777 (-4.100803) | 3.542147 / 3.745712 (-0.203566) | 3.305999 / 5.269862 (-1.963863) | 2.052287 / 4.565676 (-2.513390) | 0.057246 / 0.424275 (-0.367029) | 0.007631 / 0.007607 (0.000024) | 0.488189 / 0.226044 (0.262144) | 4.884784 / 2.268929 (2.615856) | 2.576304 / 55.444624 (-52.868320) | 2.241249 / 6.876477 (-4.635228) | 2.490512 / 2.142072 (0.348440) | 0.584495 / 4.805227 (-4.220733) | 0.134741 / 6.500664 (-6.365923) | 0.061639 / 0.075469 (-0.013830) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.317717 / 1.841788 (-0.524071) | 20.098594 / 8.074308 (12.024286) | 14.641051 / 10.191392 (4.449659) | 0.165291 / 0.680424 (-0.515133) | 0.019179 / 0.534201 (-0.515022) | 0.399506 / 0.579283 (-0.179777) | 0.407662 / 0.434364 (-0.026701) | 0.457965 / 0.540337 (-0.082372) | 0.626401 / 1.386936 (-0.760536) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007076 / 0.011353 (-0.004277) | 0.004125 / 0.011008 (-0.006884) | 0.064861 / 0.038508 (0.026353) | 0.082390 / 0.023109 (0.059281) | 0.423227 / 0.275898 (0.147329) | 0.452229 / 0.323480 (0.128750) | 0.005594 / 0.007986 (-0.002392) | 0.003465 / 0.004328 (-0.000863) | 0.064661 / 0.004250 (0.060411) | 0.057945 / 0.037052 (0.020892) | 0.424572 / 0.258489 (0.166083) | 0.465349 / 0.293841 (0.171509) | 0.032687 / 0.128546 (-0.095859) | 0.008573 / 0.075646 (-0.067074) | 0.073020 / 0.419271 (-0.346251) | 0.048423 / 0.043533 (0.004891) | 0.413425 / 0.255139 (0.158286) | 0.433778 / 0.283200 (0.150578) | 0.023942 / 0.141683 (-0.117741) | 1.495190 / 1.452155 (0.043036) | 1.586526 / 1.492716 (0.093810) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271805 / 0.018006 (0.253799) | 0.454922 / 0.000490 (0.454432) | 0.015386 / 0.000200 (0.015186) | 0.000129 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033804 / 0.037411 (-0.003607) | 0.099317 / 0.014526 (0.084791) | 0.107207 / 0.176557 (-0.069349) | 0.160926 / 0.737135 (-0.576210) | 0.108669 / 0.296338 (-0.187670) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430776 / 0.215209 (0.215567) | 4.297622 / 2.077655 (2.219967) | 2.285918 / 1.504120 (0.781798) | 2.109608 / 1.541195 (0.568413) | 2.208326 / 1.468490 (0.739836) | 0.490016 / 4.584777 (-4.094761) | 3.570609 / 3.745712 (-0.175103) | 3.406335 / 5.269862 (-1.863526) | 2.070664 / 4.565676 (-2.495012) | 0.058089 / 0.424275 (-0.366186) | 0.007425 / 0.007607 (-0.000182) | 0.506972 / 0.226044 (0.280927) | 5.078643 / 2.268929 (2.809714) | 2.858973 / 55.444624 (-52.585651) | 2.457344 / 6.876477 (-4.419132) | 2.687727 / 2.142072 (0.545654) | 0.592134 / 4.805227 (-4.213093) | 0.133966 / 6.500664 (-6.366698) | 0.061800 / 0.075469 (-0.013669) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.337167 / 1.841788 (-0.504620) | 20.743951 / 8.074308 (12.669643) | 15.402686 / 10.191392 (5.211294) | 0.164548 / 0.680424 (-0.515876) | 0.020244 / 0.534201 (-0.513957) | 0.399044 / 0.579283 (-0.180239) | 0.414036 / 0.434364 (-0.020328) | 0.474141 / 0.540337 (-0.066197) | 0.654455 / 1.386936 (-0.732482) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4de930c45a81a6dff1805bf45f59170e9f953eeb \"CML watermark\")\n" ]
2023-09-05T15:10:47Z
2023-09-06T10:34:00Z
2023-09-06T10:25:00Z
CONTRIBUTOR
null
null
null
Don't ignore results of pattern resolving if `self.data_files` is not None. Otherwise lines 854 and 1037 make no sense.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6215/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6215/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6215.diff", "html_url": "https://github.com/huggingface/datasets/pull/6215", "merged_at": "2023-09-06T10:25:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/6215.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6215" }
https://api.github.com/repos/huggingface/datasets/issues/4942
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4942/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4942/comments
https://api.github.com/repos/huggingface/datasets/issues/4942/events
https://github.com/huggingface/datasets/issues/4942
1,363,869,421
I_kwDODunzps5RSv7t
4,942
Trec Dataset has incorrect labels
{ "avatar_url": "https://avatars.githubusercontent.com/u/6539145?v=4", "events_url": "https://api.github.com/users/wmpauli/events{/privacy}", "followers_url": "https://api.github.com/users/wmpauli/followers", "following_url": "https://api.github.com/users/wmpauli/following{/other_user}", "gists_url": "https://api.github.com/users/wmpauli/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wmpauli", "id": 6539145, "login": "wmpauli", "node_id": "MDQ6VXNlcjY1MzkxNDU=", "organizations_url": "https://api.github.com/users/wmpauli/orgs", "received_events_url": "https://api.github.com/users/wmpauli/received_events", "repos_url": "https://api.github.com/users/wmpauli/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wmpauli/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wmpauli/subscriptions", "type": "User", "url": "https://api.github.com/users/wmpauli", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @wmpauli. \r\n\r\nIndeed we recently fixed this issue:\r\n- #4801 \r\n\r\nThe fix will be accessible after our next library release. In the meantime, you can have it by passing `revision=\"main\"` to `load_dataset`." ]
2022-09-06T22:13:40Z
2022-09-08T11:12:03Z
2022-09-08T11:12:03Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Both coarse and fine labels seem to be out of line. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = "trec" raw_datasets = load_dataset(dataset) df = pd.DataFrame(raw_datasets["test"]) df.head() ``` ## Expected results text (string) | coarse_label (class label) | fine_label (class label) -- | -- | -- How far is it from Denver to Aspen ? | 5 (NUM) | 40 (NUM:dist) What county is Modesto , California in ? | 4 (LOC) | 32 (LOC:city) Who was Galileo ? | 3 (HUM) | 31 (HUM:desc) What is an atom ? | 2 (DESC) | 24 (DESC:def) When did Hawaii become a state ? | 5 (NUM) | 39 (NUM:date) ## Actual results index | label-coarse |label-fine | text -- |-- | -- | -- 0 | 4 | 40 | How far is it from Denver to Aspen ? 1 | 5 | 21 | What county is Modesto , California in ? 2 | 3 | 12 | Who was Galileo ? 3 | 0 | 7 | What is an atom ? 4 | 4 | 8 | When did Hawaii become a state ? ## Environment info - `datasets` version: 2.4.0 - Platform: Linux-5.4.0-1086-azure-x86_64-with-glibc2.27 - Python version: 3.9.13 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4942/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4942/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5663
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5663/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5663/comments
https://api.github.com/repos/huggingface/datasets/issues/5663/events
https://github.com/huggingface/datasets/issues/5663
1,637,173,248
I_kwDODunzps5hlUgA
5,663
CI is broken: ModuleNotFoundError: jax requires jaxlib to be installed
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2023-03-23T09:39:43Z
2023-03-23T10:09:55Z
2023-03-23T10:09:55Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
CI test_py310 is broken: see https://github.com/huggingface/datasets/actions/runs/4498945505/jobs/7916194236?pr=5662 ``` FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_in_memory - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_on_disk - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_audio - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_device - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_image - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_jnp_array_kwargs - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. FAILED tests/features/test_features.py::CastToPythonObjectsTest::test_cast_to_python_objects_jax - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions. ===== 8 failed, 2147 passed, 10 skipped, 37 warnings in 228.69s (0:03:48) ====== ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5663/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5663/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6374
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6374/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6374/comments
https://api.github.com/repos/huggingface/datasets/issues/6374/events
https://github.com/huggingface/datasets/issues/6374
1,973,857,428
I_kwDODunzps51pqyU
6,374
CI is broken: TypeError: Couldn't cast array
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2023-11-02T09:37:06Z
2023-11-02T10:11:20Z
2023-11-02T10:11:20Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
See: https://github.com/huggingface/datasets/actions/runs/6730567226/job/18293518039 ``` FAILED tests/test_table.py::test_cast_sliced_fixed_size_array_to_features - TypeError: Couldn't cast array of type fixed_size_list<item: int32>[3] to Sequence(feature=Value(dtype='int64', id=None), length=3, id=None) ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6374/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6374/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5688
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5688/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5688/comments
https://api.github.com/repos/huggingface/datasets/issues/5688/events
https://github.com/huggingface/datasets/issues/5688
1,648,463,504
I_kwDODunzps5iQY6Q
5,688
Wikipedia download_and_prepare for GCS
{ "avatar_url": "https://avatars.githubusercontent.com/u/25522531?v=4", "events_url": "https://api.github.com/users/adrianfagerland/events{/privacy}", "followers_url": "https://api.github.com/users/adrianfagerland/followers", "following_url": "https://api.github.com/users/adrianfagerland/following{/other_user}", "gists_url": "https://api.github.com/users/adrianfagerland/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/adrianfagerland", "id": 25522531, "login": "adrianfagerland", "node_id": "MDQ6VXNlcjI1NTIyNTMx", "organizations_url": "https://api.github.com/users/adrianfagerland/orgs", "received_events_url": "https://api.github.com/users/adrianfagerland/received_events", "repos_url": "https://api.github.com/users/adrianfagerland/repos", "site_admin": false, "starred_url": "https://api.github.com/users/adrianfagerland/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/adrianfagerland/subscriptions", "type": "User", "url": "https://api.github.com/users/adrianfagerland", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Hi @adrianfagerland, thanks for reporting.\r\n\r\nPlease note that \"wikipedia\" is a special dataset, with an Apache Beam builder: https://beam.apache.org/\r\nYou can find more info about Beam datasets in our docs: https://huggingface.co/docs/datasets/beam\r\n\r\nIt was implemented to be run in parallel processing, using one of the distributed back-ends supported by Apache Beam: https://beam.apache.org/get-started/beam-overview/#apache-beam-pipeline-runners\r\n\r\nThat is, you are trying to process the source wikipedia data on your machine (not distributed) when passing `beam_runner=\"DirectRunner\"`.\r\n\r\nAs documented in the wikipedia dataset page (https://huggingface.co/datasets/wikipedia):\r\n\r\n Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:\r\n \r\n from datasets import load_dataset\r\n \r\n load_dataset(\"wikipedia\", \"20220301.en\")\r\n\r\n The list of pre-processed subsets is:\r\n - \"20220301.de\"\r\n - \"20220301.en\"\r\n - \"20220301.fr\"\r\n - \"20220301.frr\"\r\n - \"20220301.it\"\r\n - \"20220301.simple\"\r\n\r\nTo download the available processed data (in Arrow format):\r\n```python\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(your_path)\r\n```", "When running this using :\r\n```\r\nimport datasets\r\nfrom apache_beam.options.pipeline_options import PipelineOptions\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbeam_options = PipelineOptions(\r\n region=\"europe-west4\",\r\n project=\"tdt4310\",\r\n temp_location=output_dir+\"tmp/\")\r\n\r\n\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\", beam_runner=\"dataflow\", beam_options=beam_options)\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\nI now get this error:\r\n```\r\nraise FileNotFoundError(f\"Couldn't find file at {url}\")\r\nFileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json\r\nDownloading data files: 0%| | 0/1 [00:00<?, ?it/s]\r\n```\r\n\r\nI get the same error for this:\r\n```\r\nimport datasets\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\n\r\n\r\n\r\n", "`wikipedia` is no longer a Beam dataset, so the above code should work now.\r\n\r\nPS: You can use [these files](https://huggingface.co/datasets/wikipedia/tree/main/data/20220301.en) (or a newer dump at https://huggingface.co/datasets/wikimedia/wikipedia/tree/main/20231101.en) instead of generating the Parquet version yourself" ]
2023-03-30T23:43:22Z
2024-03-15T15:59:18Z
2024-03-15T15:59:18Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am unable to download the wikipedia dataset onto GCS. When I run the script provided the memory firstly gets eaten up, then it crashes. I tried running this on a VM with 128GB RAM and all I got was a two empty files: _data_builder.lock_, _data.incomplete/beam-temp-wikipedia-train-1ab2039acf3611ed87a9893475de0093_ I have troubleshot this for two straight days now, but I am just unable to get the dataset into storage. ### Steps to reproduce the bug Run this and insert a path: ``` import datasets builder = datasets.load_dataset_builder( "wikipedia", language="en", date="20230320", beam_runner="DirectRunner") builder.download_and_prepare({path}, file_format="parquet") ``` This is where the problem of it eating RAM occurs. I have also tried several versions of this, based on the docs: ``` import gcsfs import datasets storage_options = {"project": "tdt4310", "token": "cloud"} fs = gcsfs.GCSFileSystem(**storage_options) output_dir = "gcs://wikipediadata/" builder = datasets.load_dataset_builder( "wikipedia", date="20230320", language="en", beam_runner="DirectRunner") builder.download_and_prepare( output_dir, storage_options=storage_options, file_format="parquet") ``` The error message that is received here is: > ValueError: Unable to get filesystem from specified path, please use the correct path or ensure the required dependency is installed, e.g., pip install apache-beam[gcp]. Path specified: gcs://wikipediadata/wikipedia-train [while running 'train/Save to parquet/Write/WriteImpl/InitializeWrite'] I have ran `pip install apache-beam[gcp]` ### Expected behavior The wikipedia data loaded into GCS Everything worked when testing with a smaller demo dataset found somewhere in the docs ### Environment info Newest published version of datasets. Python 3.9. Also tested with Python 3.7. 128GB RAM Google Cloud VM instance.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5688/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5688/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5830
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5830/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5830/comments
https://api.github.com/repos/huggingface/datasets/issues/5830/events
https://github.com/huggingface/datasets/pull/5830
1,701,451,399
PR_kwDODunzps5QEFEi
5,830
Debug windows #2
{ "avatar_url": "https://avatars.githubusercontent.com/u/6477701?v=4", "events_url": "https://api.github.com/users/HyukjinKwon/events{/privacy}", "followers_url": "https://api.github.com/users/HyukjinKwon/followers", "following_url": "https://api.github.com/users/HyukjinKwon/following{/other_user}", "gists_url": "https://api.github.com/users/HyukjinKwon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HyukjinKwon", "id": 6477701, "login": "HyukjinKwon", "node_id": "MDQ6VXNlcjY0Nzc3MDE=", "organizations_url": "https://api.github.com/users/HyukjinKwon/orgs", "received_events_url": "https://api.github.com/users/HyukjinKwon/received_events", "repos_url": "https://api.github.com/users/HyukjinKwon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HyukjinKwon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HyukjinKwon/subscriptions", "type": "User", "url": "https://api.github.com/users/HyukjinKwon", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2023-05-09T06:40:34Z
2023-05-09T06:40:47Z
2023-05-09T06:40:47Z
NONE
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/6477701?v=4", "events_url": "https://api.github.com/users/HyukjinKwon/events{/privacy}", "followers_url": "https://api.github.com/users/HyukjinKwon/followers", "following_url": "https://api.github.com/users/HyukjinKwon/following{/other_user}", "gists_url": "https://api.github.com/users/HyukjinKwon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HyukjinKwon", "id": 6477701, "login": "HyukjinKwon", "node_id": "MDQ6VXNlcjY0Nzc3MDE=", "organizations_url": "https://api.github.com/users/HyukjinKwon/orgs", "received_events_url": "https://api.github.com/users/HyukjinKwon/received_events", "repos_url": "https://api.github.com/users/HyukjinKwon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HyukjinKwon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HyukjinKwon/subscriptions", "type": "User", "url": "https://api.github.com/users/HyukjinKwon", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5830/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5830/timeline
null
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/5830.diff", "html_url": "https://github.com/huggingface/datasets/pull/5830", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5830.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5830" }
https://api.github.com/repos/huggingface/datasets/issues/5082
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5082/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5082/comments
https://api.github.com/repos/huggingface/datasets/issues/5082/events
https://github.com/huggingface/datasets/pull/5082
1,399,379,777
PR_kwDODunzps5ATJv-
5,082
adding keep in memory
{ "avatar_url": "https://avatars.githubusercontent.com/u/66799406?v=4", "events_url": "https://api.github.com/users/Mustapha-AJEGHRIR/events{/privacy}", "followers_url": "https://api.github.com/users/Mustapha-AJEGHRIR/followers", "following_url": "https://api.github.com/users/Mustapha-AJEGHRIR/following{/other_user}", "gists_url": "https://api.github.com/users/Mustapha-AJEGHRIR/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mustapha-AJEGHRIR", "id": 66799406, "login": "Mustapha-AJEGHRIR", "node_id": "MDQ6VXNlcjY2Nzk5NDA2", "organizations_url": "https://api.github.com/users/Mustapha-AJEGHRIR/orgs", "received_events_url": "https://api.github.com/users/Mustapha-AJEGHRIR/received_events", "repos_url": "https://api.github.com/users/Mustapha-AJEGHRIR/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mustapha-AJEGHRIR/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mustapha-AJEGHRIR/subscriptions", "type": "User", "url": "https://api.github.com/users/Mustapha-AJEGHRIR", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hi @mariosasko , I have added a test for the `keep_in_memory` version. I have also removed the `Compatible with temp_seed` part in the scope of `dset_shuffled`, please verify if that makes sense." ]
2022-10-06T11:10:46Z
2022-10-07T14:35:34Z
2022-10-07T14:32:54Z
CONTRIBUTOR
null
null
null
Fixing #514 . Hello @mariosasko 👋, I have implemented what you have recommanded to fix the keep in memory problem for shuffle on the issue #514 .
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5082/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5082/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5082.diff", "html_url": "https://github.com/huggingface/datasets/pull/5082", "merged_at": "2022-10-07T14:32:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/5082.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5082" }
https://api.github.com/repos/huggingface/datasets/issues/6999
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6999/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6999/comments
https://api.github.com/repos/huggingface/datasets/issues/6999/events
https://github.com/huggingface/datasets/pull/6999
2,372,124,589
PR_kwDODunzps5zd-ak
6,999
Remove tasks
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
{ "closed_at": null, "closed_issues": 5, "created_at": "2023-02-13T16:22:42Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }, "description": "Next major release", "due_on": null, "html_url": "https://github.com/huggingface/datasets/milestone/10", "id": 9038583, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "node_id": "MI_kwDODunzps4Aier3", "number": 10, "open_issues": 3, "state": "open", "title": "3.0", "updated_at": "2024-08-21T09:35:06Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/10" }
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6999). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005330 / 0.011353 (-0.006023) | 0.003946 / 0.011008 (-0.007062) | 0.063530 / 0.038508 (0.025022) | 0.030529 / 0.023109 (0.007419) | 0.239364 / 0.275898 (-0.036534) | 0.261683 / 0.323480 (-0.061797) | 0.003197 / 0.007986 (-0.004789) | 0.003485 / 0.004328 (-0.000844) | 0.049575 / 0.004250 (0.045325) | 0.046164 / 0.037052 (0.009112) | 0.246129 / 0.258489 (-0.012360) | 0.281365 / 0.293841 (-0.012476) | 0.029480 / 0.128546 (-0.099066) | 0.012450 / 0.075646 (-0.063196) | 0.203696 / 0.419271 (-0.215575) | 0.036539 / 0.043533 (-0.006994) | 0.241664 / 0.255139 (-0.013475) | 0.260930 / 0.283200 (-0.022270) | 0.019931 / 0.141683 (-0.121752) | 1.221075 / 1.452155 (-0.231080) | 1.246315 / 1.492716 (-0.246402) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095061 / 0.018006 (0.077055) | 0.304773 / 0.000490 (0.304283) | 0.000208 / 0.000200 (0.000008) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019032 / 0.037411 (-0.018380) | 0.062521 / 0.014526 (0.047995) | 0.075668 / 0.176557 (-0.100889) | 0.121634 / 0.737135 (-0.615501) | 0.075456 / 0.296338 (-0.220882) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291721 / 0.215209 (0.076512) | 2.845445 / 2.077655 (0.767790) | 1.450971 / 1.504120 (-0.053149) | 1.334586 / 1.541195 (-0.206609) | 1.358095 / 1.468490 (-0.110396) | 0.729624 / 4.584777 (-3.855153) | 2.411504 / 3.745712 (-1.334208) | 2.858871 / 5.269862 (-2.410991) | 1.893074 / 4.565676 (-2.672603) | 0.079068 / 0.424275 (-0.345207) | 0.005476 / 0.007607 (-0.002131) | 0.329816 / 0.226044 (0.103771) | 3.305361 / 2.268929 (1.036432) | 1.799924 / 55.444624 (-53.644700) | 1.512130 / 6.876477 (-5.364347) | 1.635195 / 2.142072 (-0.506877) | 0.801486 / 4.805227 (-4.003741) | 0.134677 / 6.500664 (-6.365987) | 0.042266 / 0.075469 (-0.033203) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969835 / 1.841788 (-0.871952) | 11.421833 / 8.074308 (3.347524) | 9.799120 / 10.191392 (-0.392272) | 0.144888 / 0.680424 (-0.535536) | 0.014191 / 0.534201 (-0.520010) | 0.301037 / 0.579283 (-0.278246) | 0.263329 / 0.434364 (-0.171034) | 0.403013 / 0.540337 (-0.137324) | 0.463805 / 1.386936 (-0.923131) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005913 / 0.011353 (-0.005440) | 0.003890 / 0.011008 (-0.007118) | 0.049995 / 0.038508 (0.011487) | 0.032497 / 0.023109 (0.009387) | 0.269926 / 0.275898 (-0.005972) | 0.295567 / 0.323480 (-0.027913) | 0.004365 / 0.007986 (-0.003620) | 0.002818 / 0.004328 (-0.001510) | 0.049055 / 0.004250 (0.044805) | 0.040683 / 0.037052 (0.003630) | 0.283043 / 0.258489 (0.024554) | 0.321072 / 0.293841 (0.027232) | 0.032760 / 0.128546 (-0.095787) | 0.012370 / 0.075646 (-0.063277) | 0.061574 / 0.419271 (-0.357698) | 0.033714 / 0.043533 (-0.009819) | 0.276287 / 0.255139 (0.021148) | 0.290078 / 0.283200 (0.006878) | 0.017250 / 0.141683 (-0.124432) | 1.165291 / 1.452155 (-0.286863) | 1.213687 / 1.492716 (-0.279029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096122 / 0.018006 (0.078115) | 0.311954 / 0.000490 (0.311464) | 0.000213 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022142 / 0.037411 (-0.015270) | 0.076470 / 0.014526 (0.061945) | 0.088340 / 0.176557 (-0.088216) | 0.128594 / 0.737135 (-0.608542) | 0.089780 / 0.296338 (-0.206558) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298129 / 0.215209 (0.082920) | 2.943735 / 2.077655 (0.866080) | 1.574351 / 1.504120 (0.070231) | 1.446688 / 1.541195 (-0.094506) | 1.477714 / 1.468490 (0.009223) | 0.722195 / 4.584777 (-3.862582) | 0.967675 / 3.745712 (-2.778037) | 2.803346 / 5.269862 (-2.466515) | 1.895882 / 4.565676 (-2.669794) | 0.079193 / 0.424275 (-0.345082) | 0.005250 / 0.007607 (-0.002357) | 0.350193 / 0.226044 (0.124149) | 3.514562 / 2.268929 (1.245634) | 1.962743 / 55.444624 (-53.481881) | 1.677308 / 6.876477 (-5.199169) | 1.811473 / 2.142072 (-0.330600) | 0.796234 / 4.805227 (-4.008993) | 0.131810 / 6.500664 (-6.368854) | 0.041301 / 0.075469 (-0.034168) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.030700 / 1.841788 (-0.811088) | 12.108809 / 8.074308 (4.034501) | 10.426112 / 10.191392 (0.234720) | 0.139829 / 0.680424 (-0.540595) | 0.015133 / 0.534201 (-0.519068) | 0.307782 / 0.579283 (-0.271501) | 0.130554 / 0.434364 (-0.303810) | 0.342728 / 0.540337 (-0.197610) | 0.435426 / 1.386936 (-0.951510) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9ddea80a0bca8dcf4ed5ca58dbeda3e309cf5a84 \"CML watermark\")\n" ]
2024-06-25T09:06:16Z
2024-08-21T09:07:07Z
2024-08-21T09:01:18Z
MEMBER
null
null
null
Remove tasks, as part of the 3.0 release.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6999/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6999/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6999.diff", "html_url": "https://github.com/huggingface/datasets/pull/6999", "merged_at": "2024-08-21T09:01:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/6999.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6999" }
https://api.github.com/repos/huggingface/datasets/issues/5346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5346/comments
https://api.github.com/repos/huggingface/datasets/issues/5346/events
https://github.com/huggingface/datasets/issues/5346
1,486,884,983
I_kwDODunzps5YoBB3
5,346
[Quick poll] Give your opinion on the future of the Hugging Face Open Source ecosystem!
{ "avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4", "events_url": "https://api.github.com/users/LysandreJik/events{/privacy}", "followers_url": "https://api.github.com/users/LysandreJik/followers", "following_url": "https://api.github.com/users/LysandreJik/following{/other_user}", "gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LysandreJik", "id": 30755778, "login": "LysandreJik", "node_id": "MDQ6VXNlcjMwNzU1Nzc4", "organizations_url": "https://api.github.com/users/LysandreJik/orgs", "received_events_url": "https://api.github.com/users/LysandreJik/received_events", "repos_url": "https://api.github.com/users/LysandreJik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions", "type": "User", "url": "https://api.github.com/users/LysandreJik", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "As the survey is finished, can we close this issue, @LysandreJik ?", "Yes! I'll post a public summary on the forums shortly.", "Is the summary available? I would be interested in reading your findings." ]
2022-12-09T14:48:02Z
2023-06-02T20:24:44Z
2023-01-25T19:35:40Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Thanks to all of you, Datasets is just about to pass 15k stars! Since the last survey, a lot has happened: the [diffusers](https://github.com/huggingface/diffusers), [evaluate](https://github.com/huggingface/evaluate) and [skops](https://github.com/skops-dev/skops) libraries were born. `timm` joined the Hugging Face ecosystem. There were 25 new releases of `transformers`, 21 new releases of `datasets`, 13 new releases of `accelerate`. If you have a couple of minutes and want to participate in shaping the future of the ecosystem, please share your thoughts: [**hf.co/oss-survey**](https://docs.google.com/forms/d/e/1FAIpQLSf4xFQKtpjr6I_l7OfNofqiR8s-WG6tcNbkchDJJf5gYD72zQ/viewform?usp=sf_link) (please reply in the above feedback form rather than to this thread) Thank you all on behalf of the HuggingFace team! 🤗
{ "avatar_url": "https://avatars.githubusercontent.com/u/30755778?v=4", "events_url": "https://api.github.com/users/LysandreJik/events{/privacy}", "followers_url": "https://api.github.com/users/LysandreJik/followers", "following_url": "https://api.github.com/users/LysandreJik/following{/other_user}", "gists_url": "https://api.github.com/users/LysandreJik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LysandreJik", "id": 30755778, "login": "LysandreJik", "node_id": "MDQ6VXNlcjMwNzU1Nzc4", "organizations_url": "https://api.github.com/users/LysandreJik/orgs", "received_events_url": "https://api.github.com/users/LysandreJik/received_events", "repos_url": "https://api.github.com/users/LysandreJik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LysandreJik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LysandreJik/subscriptions", "type": "User", "url": "https://api.github.com/users/LysandreJik", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 3, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/5346/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5346/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7339
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7339/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7339/comments
https://api.github.com/repos/huggingface/datasets/issues/7339/events
https://github.com/huggingface/datasets/pull/7339
2,745,460,060
PR_kwDODunzps6FhaTl
7,339
Update CONTRIBUTING.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7339). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-12-17T16:45:25Z
2024-12-17T16:51:36Z
2024-12-17T16:46:30Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7339/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7339/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7339.diff", "html_url": "https://github.com/huggingface/datasets/pull/7339", "merged_at": "2024-12-17T16:46:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/7339.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7339" }
https://api.github.com/repos/huggingface/datasets/issues/6933
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6933/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6933/comments
https://api.github.com/repos/huggingface/datasets/issues/6933/events
https://github.com/huggingface/datasets/pull/6933
2,325,300,800
PR_kwDODunzps5w_cW4
6,933
update ci user
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6933). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004937 / 0.011353 (-0.006416) | 0.003706 / 0.011008 (-0.007302) | 0.062627 / 0.038508 (0.024119) | 0.031372 / 0.023109 (0.008263) | 0.246616 / 0.275898 (-0.029282) | 0.272196 / 0.323480 (-0.051284) | 0.004129 / 0.007986 (-0.003856) | 0.002766 / 0.004328 (-0.001562) | 0.049975 / 0.004250 (0.045725) | 0.045098 / 0.037052 (0.008046) | 0.261802 / 0.258489 (0.003313) | 0.290088 / 0.293841 (-0.003753) | 0.027082 / 0.128546 (-0.101465) | 0.010442 / 0.075646 (-0.065205) | 0.201795 / 0.419271 (-0.217477) | 0.037081 / 0.043533 (-0.006452) | 0.249500 / 0.255139 (-0.005639) | 0.268800 / 0.283200 (-0.014399) | 0.017556 / 0.141683 (-0.124127) | 1.137201 / 1.452155 (-0.314953) | 1.186993 / 1.492716 (-0.305723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097426 / 0.018006 (0.079419) | 0.303653 / 0.000490 (0.303163) | 0.000235 / 0.000200 (0.000035) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020206 / 0.037411 (-0.017206) | 0.063673 / 0.014526 (0.049147) | 0.076173 / 0.176557 (-0.100383) | 0.122459 / 0.737135 (-0.614676) | 0.076958 / 0.296338 (-0.219380) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282146 / 0.215209 (0.066937) | 2.785682 / 2.077655 (0.708027) | 1.468847 / 1.504120 (-0.035273) | 1.346731 / 1.541195 (-0.194464) | 1.378459 / 1.468490 (-0.090031) | 0.564961 / 4.584777 (-4.019816) | 2.400095 / 3.745712 (-1.345617) | 2.658285 / 5.269862 (-2.611577) | 1.747873 / 4.565676 (-2.817803) | 0.063763 / 0.424275 (-0.360512) | 0.004969 / 0.007607 (-0.002638) | 0.337764 / 0.226044 (0.111720) | 3.309568 / 2.268929 (1.040639) | 1.812516 / 55.444624 (-53.632109) | 1.521519 / 6.876477 (-5.354957) | 1.690091 / 2.142072 (-0.451982) | 0.640922 / 4.805227 (-4.164305) | 0.119291 / 6.500664 (-6.381373) | 0.042195 / 0.075469 (-0.033274) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965327 / 1.841788 (-0.876461) | 11.538832 / 8.074308 (3.464523) | 9.594644 / 10.191392 (-0.596748) | 0.144687 / 0.680424 (-0.535737) | 0.014049 / 0.534201 (-0.520152) | 0.296873 / 0.579283 (-0.282410) | 0.269281 / 0.434364 (-0.165083) | 0.325091 / 0.540337 (-0.215246) | 0.420917 / 1.386936 (-0.966019) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005239 / 0.011353 (-0.006114) | 0.003168 / 0.011008 (-0.007840) | 0.049301 / 0.038508 (0.010793) | 0.032248 / 0.023109 (0.009139) | 0.266463 / 0.275898 (-0.009435) | 0.293311 / 0.323480 (-0.030168) | 0.004185 / 0.007986 (-0.003800) | 0.002681 / 0.004328 (-0.001647) | 0.048644 / 0.004250 (0.044393) | 0.040366 / 0.037052 (0.003314) | 0.280345 / 0.258489 (0.021856) | 0.312745 / 0.293841 (0.018904) | 0.029616 / 0.128546 (-0.098930) | 0.010001 / 0.075646 (-0.065646) | 0.057365 / 0.419271 (-0.361906) | 0.033189 / 0.043533 (-0.010344) | 0.267601 / 0.255139 (0.012462) | 0.285647 / 0.283200 (0.002448) | 0.017119 / 0.141683 (-0.124564) | 1.139776 / 1.452155 (-0.312378) | 1.172451 / 1.492716 (-0.320266) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095462 / 0.018006 (0.077455) | 0.303009 / 0.000490 (0.302519) | 0.000227 / 0.000200 (0.000027) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023026 / 0.037411 (-0.014385) | 0.077905 / 0.014526 (0.063380) | 0.087275 / 0.176557 (-0.089282) | 0.127355 / 0.737135 (-0.609780) | 0.088940 / 0.296338 (-0.207399) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298267 / 0.215209 (0.083058) | 2.894679 / 2.077655 (0.817024) | 1.568663 / 1.504120 (0.064543) | 1.438342 / 1.541195 (-0.102853) | 1.456110 / 1.468490 (-0.012380) | 0.556337 / 4.584777 (-4.028440) | 0.969795 / 3.745712 (-2.775917) | 2.667348 / 5.269862 (-2.602513) | 1.767169 / 4.565676 (-2.798507) | 0.060969 / 0.424275 (-0.363306) | 0.005009 / 0.007607 (-0.002598) | 0.343299 / 0.226044 (0.117255) | 3.396529 / 2.268929 (1.127601) | 1.889816 / 55.444624 (-53.554808) | 1.635077 / 6.876477 (-5.241400) | 1.795238 / 2.142072 (-0.346835) | 0.631876 / 4.805227 (-4.173352) | 0.115483 / 6.500664 (-6.385181) | 0.041772 / 0.075469 (-0.033697) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008423 / 1.841788 (-0.833364) | 12.432488 / 8.074308 (4.358180) | 10.418002 / 10.191392 (0.226610) | 0.142395 / 0.680424 (-0.538029) | 0.015718 / 0.534201 (-0.518483) | 0.281917 / 0.579283 (-0.297366) | 0.132619 / 0.434364 (-0.301745) | 0.318500 / 0.540337 (-0.221838) | 0.410798 / 1.386936 (-0.976138) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3d6cd158d2e3bb9030fea7c5a9580b9d34d721ac \"CML watermark\")\n" ]
2024-05-30T10:23:02Z
2024-05-30T10:30:54Z
2024-05-30T10:23:12Z
MEMBER
null
null
null
token is ok to be public since it's only for the hub-ci
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6933/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6933/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6933.diff", "html_url": "https://github.com/huggingface/datasets/pull/6933", "merged_at": "2024-05-30T10:23:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/6933.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6933" }
https://api.github.com/repos/huggingface/datasets/issues/5042
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5042/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5042/comments
https://api.github.com/repos/huggingface/datasets/issues/5042/events
https://github.com/huggingface/datasets/pull/5042
1,390,762,877
PR_kwDODunzps4_2eqa
5,042
Update swiss judgment prediction
{ "avatar_url": "https://avatars.githubusercontent.com/u/3775944?v=4", "events_url": "https://api.github.com/users/JoelNiklaus/events{/privacy}", "followers_url": "https://api.github.com/users/JoelNiklaus/followers", "following_url": "https://api.github.com/users/JoelNiklaus/following{/other_user}", "gists_url": "https://api.github.com/users/JoelNiklaus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JoelNiklaus", "id": 3775944, "login": "JoelNiklaus", "node_id": "MDQ6VXNlcjM3NzU5NDQ=", "organizations_url": "https://api.github.com/users/JoelNiklaus/orgs", "received_events_url": "https://api.github.com/users/JoelNiklaus/received_events", "repos_url": "https://api.github.com/users/JoelNiklaus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JoelNiklaus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JoelNiklaus/subscriptions", "type": "User", "url": "https://api.github.com/users/JoelNiklaus", "user_view_type": "public" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-29T12:10:02Z
2022-09-30T07:14:00Z
2022-09-29T14:32:02Z
CONTRIBUTOR
null
null
null
I forgot to add the new citation.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5042/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5042/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5042.diff", "html_url": "https://github.com/huggingface/datasets/pull/5042", "merged_at": "2022-09-29T14:32:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/5042.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5042" }
https://api.github.com/repos/huggingface/datasets/issues/5873
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5873/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5873/comments
https://api.github.com/repos/huggingface/datasets/issues/5873/events
https://github.com/huggingface/datasets/issues/5873
1,713,269,724
I_kwDODunzps5mHmvc
5,873
Allow setting the environment variable for the lock file path
{ "avatar_url": "https://avatars.githubusercontent.com/u/83260933?v=4", "events_url": "https://api.github.com/users/xin3he/events{/privacy}", "followers_url": "https://api.github.com/users/xin3he/followers", "following_url": "https://api.github.com/users/xin3he/following{/other_user}", "gists_url": "https://api.github.com/users/xin3he/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xin3he", "id": 83260933, "login": "xin3he", "node_id": "MDQ6VXNlcjgzMjYwOTMz", "organizations_url": "https://api.github.com/users/xin3he/orgs", "received_events_url": "https://api.github.com/users/xin3he/received_events", "repos_url": "https://api.github.com/users/xin3he/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xin3he/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xin3he/subscriptions", "type": "User", "url": "https://api.github.com/users/xin3he", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2023-05-17T07:10:02Z
2023-05-17T07:11:05Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add an environment variable to replace the default lock file path. ### Motivation Usually, dataset path is a read-only path while the lock file needs to be modified each time. It would be convenient if the path can be reset individually. ### Your contribution ```/src/datasets/utils/filelock.py class UnixFileLock(BaseFileLock): def __init__(self, lock_file, timeout=-1, max_filename_length=None): #------------------- if os.getenv('DS_TMP_PATH'): file_name = str(lock_file).split('/')[-1] dataset_tmp_path = os.getenv('DS_TMP_PATH') lock_file = os.path.join(dataset_tmp_path, file_name) #------------------- max_filename_length = os.statvfs(os.path.dirname(lock_file)).f_namemax super().__init__(lock_file, timeout=timeout, max_filename_length=max_filename_length) ``` A simple demo is as upper. Thanks.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5873/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5873/timeline
null
null
null
null