url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
list
state
string
locked
bool
assignee
dict
assignees
list
milestone
dict
comments
list
created_at
timestamp[ns, tz=UTC]
updated_at
timestamp[ns, tz=UTC]
closed_at
timestamp[ns, tz=UTC]
author_association
string
type
float64
active_lock_reason
float64
sub_issues_summary
dict
body
string
closed_by
dict
reactions
dict
timeline_url
string
performed_via_github_app
float64
state_reason
string
draft
float64
pull_request
dict
https://api.github.com/repos/huggingface/datasets/issues/6379
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6379/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6379/comments
https://api.github.com/repos/huggingface/datasets/issues/6379/events
https://github.com/huggingface/datasets/pull/6379
1,974,638,850
PR_kwDODunzps5edDZL
6,379
Avoid redundant warning when encoding NumPy array as `Image`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008649 / 0.011353 (-0.002704) | 0.005754 / 0.011008 (-0.005254) | 0.101992 / 0.038508 (0.063484) | 0.084932 / 0.023109 (0.061823) | 0.393928 / 0.275898 (0.118030) | 0.414059 / 0.323480 (0.090579) | 0.006564 / 0.007986 (-0.001422) | 0.004746 / 0.004328 (0.000418) | 0.078624 / 0.004250 (0.074373) | 0.060465 / 0.037052 (0.023412) | 0.420767 / 0.258489 (0.162278) | 0.497797 / 0.293841 (0.203956) | 0.047031 / 0.128546 (-0.081516) | 0.014316 / 0.075646 (-0.061330) | 0.340347 / 0.419271 (-0.078925) | 0.067126 / 0.043533 (0.023593) | 0.390806 / 0.255139 (0.135667) | 0.413711 / 0.283200 (0.130512) | 0.037838 / 0.141683 (-0.103845) | 1.713547 / 1.452155 (0.261393) | 1.825591 / 1.492716 (0.332874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316357 / 0.018006 (0.298350) | 0.594279 / 0.000490 (0.593789) | 0.013659 / 0.000200 (0.013459) | 0.000547 / 0.000054 (0.000492) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031310 / 0.037411 (-0.006101) | 0.090410 / 0.014526 (0.075884) | 0.114620 / 0.176557 (-0.061936) | 0.183036 / 0.737135 (-0.554099) | 0.112700 / 0.296338 (-0.183638) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582424 / 0.215209 (0.367215) | 5.670424 / 2.077655 (3.592769) | 2.444326 / 1.504120 (0.940206) | 2.108555 / 1.541195 (0.567360) | 2.091594 / 1.468490 (0.623104) | 0.839067 / 4.584777 (-3.745710) | 5.280942 / 3.745712 (1.535230) | 4.611059 / 5.269862 (-0.658803) | 2.911145 / 4.565676 (-1.654531) | 0.091929 / 0.424275 (-0.332346) | 0.008774 / 0.007607 (0.001167) | 0.657948 / 0.226044 (0.431904) | 6.816300 / 2.268929 (4.547371) | 3.232260 / 55.444624 (-52.212364) | 2.479626 / 6.876477 (-4.396851) | 2.497886 / 2.142072 (0.355813) | 0.959160 / 4.805227 (-3.846068) | 0.222306 / 6.500664 (-6.278358) | 0.072962 / 0.075469 (-0.002507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.580415 / 1.841788 (-0.261372) | 23.689597 / 8.074308 (15.615289) | 20.430709 / 10.191392 (10.239317) | 0.237891 / 0.680424 (-0.442533) | 0.028194 / 0.534201 (-0.506007) | 0.464915 / 0.579283 (-0.114368) | 0.611512 / 0.434364 (0.177148) | 0.556564 / 0.540337 (0.016227) | 0.811075 / 1.386936 (-0.575861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008703 / 0.011353 (-0.002649) | 0.005030 / 0.011008 (-0.005978) | 0.079251 / 0.038508 (0.040743) | 0.079054 / 0.023109 (0.055945) | 0.440220 / 0.275898 (0.164322) | 0.479824 / 0.323480 (0.156344) | 0.006312 / 0.007986 (-0.001673) | 0.004506 / 0.004328 (0.000177) | 0.078454 / 0.004250 (0.074203) | 0.061041 / 0.037052 (0.023989) | 0.490104 / 0.258489 (0.231615) | 0.480925 / 0.293841 (0.187084) | 0.049601 / 0.128546 (-0.078945) | 0.013114 / 0.075646 (-0.062532) | 0.092576 / 0.419271 (-0.326696) | 0.059516 / 0.043533 (0.015983) | 0.433728 / 0.255139 (0.178589) | 0.490039 / 0.283200 (0.206839) | 0.035359 / 0.141683 (-0.106324) | 1.823618 / 1.452155 (0.371463) | 1.980894 / 1.492716 (0.488178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284679 / 0.018006 (0.266673) | 0.606623 / 0.000490 (0.606133) | 0.007531 / 0.000200 (0.007331) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033261 / 0.037411 (-0.004150) | 0.102908 / 0.014526 (0.088382) | 0.123912 / 0.176557 (-0.052644) | 0.169893 / 0.737135 (-0.567242) | 0.115366 / 0.296338 (-0.180973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598239 / 0.215209 (0.383030) | 6.003464 / 2.077655 (3.925809) | 2.828483 / 1.504120 (1.324363) | 2.485996 / 1.541195 (0.944802) | 2.434986 / 1.468490 (0.966496) | 0.832718 / 4.584777 (-3.752058) | 5.327407 / 3.745712 (1.581694) | 4.732271 / 5.269862 (-0.537590) | 3.047555 / 4.565676 (-1.518121) | 0.103576 / 0.424275 (-0.320699) | 0.009795 / 0.007607 (0.002188) | 0.755443 / 0.226044 (0.529399) | 7.465857 / 2.268929 (5.196928) | 3.564923 / 55.444624 (-51.879701) | 2.740483 / 6.876477 (-4.135994) | 3.044993 / 2.142072 (0.902920) | 1.012925 / 4.805227 (-3.792302) | 0.207498 / 6.500664 (-6.293167) | 0.073361 / 0.075469 (-0.002108) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.704988 / 1.841788 (-0.136800) | 24.669992 / 8.074308 (16.595684) | 21.103096 / 10.191392 (10.911704) | 0.253759 / 0.680424 (-0.426665) | 0.040109 / 0.534201 (-0.494092) | 0.465646 / 0.579283 (-0.113637) | 0.619696 / 0.434364 (0.185332) | 0.552228 / 0.540337 (0.011890) | 0.794907 / 1.386936 (-0.592029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#85bba8991f6a2d9ed9fd4769d945eeaf318d3aa6 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006347 / 0.011353 (-0.005006) | 0.003725 / 0.011008 (-0.007283) | 0.080233 / 0.038508 (0.041725) | 0.061013 / 0.023109 (0.037904) | 0.390046 / 0.275898 (0.114148) | 0.420526 / 0.323480 (0.097046) | 0.003579 / 0.007986 (-0.004407) | 0.002837 / 0.004328 (-0.001491) | 0.062929 / 0.004250 (0.058678) | 0.048781 / 0.037052 (0.011729) | 0.400722 / 0.258489 (0.142233) | 0.435022 / 0.293841 (0.141182) | 0.027560 / 0.128546 (-0.100986) | 0.007981 / 0.075646 (-0.067666) | 0.262838 / 0.419271 (-0.156433) | 0.045480 / 0.043533 (0.001947) | 0.394443 / 0.255139 (0.139304) | 0.413828 / 0.283200 (0.130628) | 0.023375 / 0.141683 (-0.118307) | 1.412865 / 1.452155 (-0.039290) | 1.495761 / 1.492716 (0.003044) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224876 / 0.018006 (0.206870) | 0.424234 / 0.000490 (0.423745) | 0.007502 / 0.000200 (0.007302) | 0.000220 / 0.000054 (0.000166) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024246 / 0.037411 (-0.013165) | 0.073982 / 0.014526 (0.059456) | 0.082704 / 0.176557 (-0.093852) | 0.143137 / 0.737135 (-0.593998) | 0.083398 / 0.296338 (-0.212941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400220 / 0.215209 (0.185010) | 3.973037 / 2.077655 (1.895382) | 2.025903 / 1.504120 (0.521783) | 1.912888 / 1.541195 (0.371693) | 1.999578 / 1.468490 (0.531088) | 0.499378 / 4.584777 (-4.085399) | 3.025715 / 3.745712 (-0.719997) | 2.992338 / 5.269862 (-2.277524) | 1.851155 / 4.565676 (-2.714522) | 0.057528 / 0.424275 (-0.366747) | 0.006802 / 0.007607 (-0.000805) | 0.469516 / 0.226044 (0.243471) | 4.675630 / 2.268929 (2.406702) | 2.472166 / 55.444624 (-52.972458) | 2.238052 / 6.876477 (-4.638424) | 2.288255 / 2.142072 (0.146183) | 0.584906 / 4.805227 (-4.220321) | 0.125902 / 6.500664 (-6.374762) | 0.060681 / 0.075469 (-0.014788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236383 / 1.841788 (-0.605404) | 17.554238 / 8.074308 (9.479930) | 13.749298 / 10.191392 (3.557906) | 0.144715 / 0.680424 (-0.535708) | 0.017449 / 0.534201 (-0.516752) | 0.334831 / 0.579283 (-0.244452) | 0.362660 / 0.434364 (-0.071704) | 0.385295 / 0.540337 (-0.155043) | 0.541173 / 1.386936 (-0.845763) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003660 / 0.011008 (-0.007348) | 0.062373 / 0.038508 (0.023865) | 0.063404 / 0.023109 (0.040295) | 0.354149 / 0.275898 (0.078251) | 0.410324 / 0.323480 (0.086844) | 0.004826 / 0.007986 (-0.003160) | 0.002881 / 0.004328 (-0.001448) | 0.061631 / 0.004250 (0.057381) | 0.048052 / 0.037052 (0.010999) | 0.352905 / 0.258489 (0.094416) | 0.400096 / 0.293841 (0.106255) | 0.028472 / 0.128546 (-0.100075) | 0.008076 / 0.075646 (-0.067571) | 0.067910 / 0.419271 (-0.351362) | 0.040671 / 0.043533 (-0.002862) | 0.352131 / 0.255139 (0.096992) | 0.402140 / 0.283200 (0.118940) | 0.020065 / 0.141683 (-0.121618) | 1.456938 / 1.452155 (0.004783) | 1.506484 / 1.492716 (0.013767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222295 / 0.018006 (0.204288) | 0.416672 / 0.000490 (0.416183) | 0.003015 / 0.000200 (0.002815) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026428 / 0.037411 (-0.010983) | 0.080072 / 0.014526 (0.065547) | 0.089992 / 0.176557 (-0.086564) | 0.141739 / 0.737135 (-0.595397) | 0.092281 / 0.296338 (-0.204058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417758 / 0.215209 (0.202549) | 4.175673 / 2.077655 (2.098018) | 2.262369 / 1.504120 (0.758249) | 2.100440 / 1.541195 (0.559246) | 2.075827 / 1.468490 (0.607337) | 0.505673 / 4.584777 (-4.079104) | 3.129020 / 3.745712 (-0.616692) | 2.843255 / 5.269862 (-2.426607) | 1.853288 / 4.565676 (-2.712389) | 0.058337 / 0.424275 (-0.365938) | 0.006461 / 0.007607 (-0.001147) | 0.491797 / 0.226044 (0.265753) | 4.933327 / 2.268929 (2.664399) | 2.675374 / 55.444624 (-52.769250) | 2.358103 / 6.876477 (-4.518374) | 2.540436 / 2.142072 (0.398363) | 0.591550 / 4.805227 (-4.213677) | 0.121572 / 6.500664 (-6.379092) | 0.057311 / 0.075469 (-0.018158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365368 / 1.841788 (-0.476419) | 17.763413 / 8.074308 (9.689105) | 14.368754 / 10.191392 (4.177362) | 0.132979 / 0.680424 (-0.547445) | 0.017957 / 0.534201 (-0.516244) | 0.334035 / 0.579283 (-0.245248) | 0.385349 / 0.434364 (-0.049015) | 0.392636 / 0.540337 (-0.147702) | 0.537957 / 1.386936 (-0.848979) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#92503c94839b31125b4d5288d0a49d81b9b9b3cc \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008053 / 0.011353 (-0.003300) | 0.004966 / 0.011008 (-0.006043) | 0.102219 / 0.038508 (0.063711) | 0.099319 / 0.023109 (0.076210) | 0.418458 / 0.275898 (0.142559) | 0.459344 / 0.323480 (0.135864) | 0.004756 / 0.007986 (-0.003229) | 0.003940 / 0.004328 (-0.000388) | 0.076824 / 0.004250 (0.072573) | 0.068090 / 0.037052 (0.031038) | 0.428689 / 0.258489 (0.170200) | 0.476153 / 0.293841 (0.182312) | 0.036927 / 0.128546 (-0.091619) | 0.010232 / 0.075646 (-0.065414) | 0.345126 / 0.419271 (-0.074145) | 0.063182 / 0.043533 (0.019649) | 0.416633 / 0.255139 (0.161494) | 0.437418 / 0.283200 (0.154218) | 0.028192 / 0.141683 (-0.113491) | 1.768869 / 1.452155 (0.316715) | 1.847022 / 1.492716 (0.354306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269997 / 0.018006 (0.251991) | 0.544246 / 0.000490 (0.543756) | 0.012940 / 0.000200 (0.012740) | 0.000754 / 0.000054 (0.000699) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035570 / 0.037411 (-0.001842) | 0.104318 / 0.014526 (0.089792) | 0.115263 / 0.176557 (-0.061294) | 0.184693 / 0.737135 (-0.552442) | 0.116023 / 0.296338 (-0.180315) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472361 / 0.215209 (0.257152) | 4.714327 / 2.077655 (2.636673) | 2.405434 / 1.504120 (0.901314) | 2.197871 / 1.541195 (0.656677) | 2.312901 / 1.468490 (0.844411) | 0.569736 / 4.584777 (-4.015041) | 4.600008 / 3.745712 (0.854296) | 4.127967 / 5.269862 (-1.141895) | 2.462232 / 4.565676 (-2.103445) | 0.067759 / 0.424275 (-0.356516) | 0.009277 / 0.007607 (0.001670) | 0.569658 / 0.226044 (0.343614) | 5.694050 / 2.268929 (3.425121) | 3.041495 / 55.444624 (-52.403129) | 2.688418 / 6.876477 (-4.188059) | 2.762175 / 2.142072 (0.620102) | 0.683250 / 4.805227 (-4.121977) | 0.158772 / 6.500664 (-6.341892) | 0.073364 / 0.075469 (-0.002105) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.627241 / 1.841788 (-0.214547) | 23.054465 / 8.074308 (14.980157) | 17.122451 / 10.191392 (6.931059) | 0.170272 / 0.680424 (-0.510152) | 0.021678 / 0.534201 (-0.512523) | 0.467301 / 0.579283 (-0.111982) | 0.509480 / 0.434364 (0.075116) | 0.555077 / 0.540337 (0.014740) | 0.816199 / 1.386936 (-0.570737) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.004724 / 0.011008 (-0.006284) | 0.077519 / 0.038508 (0.039011) | 0.103237 / 0.023109 (0.080127) | 0.447470 / 0.275898 (0.171572) | 0.484778 / 0.323480 (0.161298) | 0.006475 / 0.007986 (-0.001511) | 0.003946 / 0.004328 (-0.000383) | 0.075596 / 0.004250 (0.071346) | 0.069265 / 0.037052 (0.032213) | 0.454185 / 0.258489 (0.195696) | 0.491039 / 0.293841 (0.197198) | 0.038611 / 0.128546 (-0.089935) | 0.009889 / 0.075646 (-0.065758) | 0.084012 / 0.419271 (-0.335260) | 0.057265 / 0.043533 (0.013732) | 0.448622 / 0.255139 (0.193483) | 0.470961 / 0.283200 (0.187762) | 0.029220 / 0.141683 (-0.112463) | 1.773347 / 1.452155 (0.321192) | 1.872669 / 1.492716 (0.379953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272429 / 0.018006 (0.254423) | 0.569907 / 0.000490 (0.569418) | 0.013359 / 0.000200 (0.013159) | 0.000187 / 0.000054 (0.000133) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038784 / 0.037411 (0.001373) | 0.114958 / 0.014526 (0.100432) | 0.132745 / 0.176557 (-0.043811) | 0.186283 / 0.737135 (-0.550852) | 0.126652 / 0.296338 (-0.169686) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482753 / 0.215209 (0.267544) | 4.827287 / 2.077655 (2.749633) | 2.539959 / 1.504120 (1.035839) | 2.348483 / 1.541195 (0.807288) | 2.421739 / 1.468490 (0.953249) | 0.586064 / 4.584777 (-3.998713) | 4.579865 / 3.745712 (0.834152) | 3.950617 / 5.269862 (-1.319244) | 2.528447 / 4.565676 (-2.037229) | 0.070280 / 0.424275 (-0.353995) | 0.008801 / 0.007607 (0.001194) | 0.568857 / 0.226044 (0.342812) | 5.692739 / 2.268929 (3.423810) | 3.192045 / 55.444624 (-52.252579) | 2.768092 / 6.876477 (-4.108384) | 3.002934 / 2.142072 (0.860862) | 0.701887 / 4.805227 (-4.103340) | 0.155563 / 6.500664 (-6.345102) | 0.069397 / 0.075469 (-0.006072) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607991 / 1.841788 (-0.233796) | 24.658060 / 8.074308 (16.583752) | 17.616229 / 10.191392 (7.424837) | 0.209730 / 0.680424 (-0.470693) | 0.024052 / 0.534201 (-0.510149) | 0.476648 / 0.579283 (-0.102635) | 0.534452 / 0.434364 (0.100089) | 0.567702 / 0.540337 (0.027365) | 0.772933 / 1.386936 (-0.614003) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004684 / 0.011353 (-0.006669) | 0.002944 / 0.011008 (-0.008064) | 0.063065 / 0.038508 (0.024557) | 0.051627 / 0.023109 (0.028518) | 0.243485 / 0.275898 (-0.032413) | 0.275144 / 0.323480 (-0.048336) | 0.002934 / 0.007986 (-0.005052) | 0.002395 / 0.004328 (-0.001934) | 0.048579 / 0.004250 (0.044328) | 0.038940 / 0.037052 (0.001887) | 0.250244 / 0.258489 (-0.008245) | 0.287404 / 0.293841 (-0.006437) | 0.022958 / 0.128546 (-0.105588) | 0.007189 / 0.075646 (-0.068458) | 0.202483 / 0.419271 (-0.216788) | 0.035477 / 0.043533 (-0.008056) | 0.243793 / 0.255139 (-0.011346) | 0.265990 / 0.283200 (-0.017209) | 0.019675 / 0.141683 (-0.122008) | 1.119127 / 1.452155 (-0.333028) | 1.183230 / 1.492716 (-0.309486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097090 / 0.018006 (0.079084) | 0.305815 / 0.000490 (0.305325) | 0.000228 / 0.000200 (0.000028) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019233 / 0.037411 (-0.018178) | 0.061743 / 0.014526 (0.047217) | 0.077033 / 0.176557 (-0.099524) | 0.119786 / 0.737135 (-0.617349) | 0.074740 / 0.296338 (-0.221598) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284361 / 0.215209 (0.069152) | 2.761501 / 2.077655 (0.683846) | 1.464980 / 1.504120 (-0.039140) | 1.348026 / 1.541195 (-0.193169) | 1.362690 / 1.468490 (-0.105800) | 0.392022 / 4.584777 (-4.192755) | 2.401330 / 3.745712 (-1.344382) | 2.618999 / 5.269862 (-2.650863) | 1.599526 / 4.565676 (-2.966150) | 0.045621 / 0.424275 (-0.378654) | 0.005153 / 0.007607 (-0.002454) | 0.337279 / 0.226044 (0.111234) | 3.330135 / 2.268929 (1.061206) | 1.803544 / 55.444624 (-53.641081) | 1.515545 / 6.876477 (-5.360932) | 1.561745 / 2.142072 (-0.580327) | 0.468735 / 4.805227 (-4.336492) | 0.098882 / 6.500664 (-6.401782) | 0.042923 / 0.075469 (-0.032546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961106 / 1.841788 (-0.880682) | 12.030489 / 8.074308 (3.956181) | 10.824166 / 10.191392 (0.632774) | 0.132135 / 0.680424 (-0.548289) | 0.015320 / 0.534201 (-0.518881) | 0.269691 / 0.579283 (-0.309592) | 0.270700 / 0.434364 (-0.163664) | 0.308317 / 0.540337 (-0.232020) | 0.397871 / 1.386936 (-0.989065) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004859 / 0.011353 (-0.006494) | 0.003400 / 0.011008 (-0.007609) | 0.048095 / 0.038508 (0.009587) | 0.054885 / 0.023109 (0.031776) | 0.276976 / 0.275898 (0.001078) | 0.302298 / 0.323480 (-0.021182) | 0.004084 / 0.007986 (-0.003902) | 0.002647 / 0.004328 (-0.001681) | 0.048570 / 0.004250 (0.044319) | 0.040683 / 0.037052 (0.003631) | 0.279828 / 0.258489 (0.021339) | 0.306037 / 0.293841 (0.012196) | 0.024263 / 0.128546 (-0.104283) | 0.007336 / 0.075646 (-0.068310) | 0.053768 / 0.419271 (-0.365503) | 0.032284 / 0.043533 (-0.011248) | 0.276706 / 0.255139 (0.021567) | 0.294706 / 0.283200 (0.011506) | 0.018092 / 0.141683 (-0.123591) | 1.153430 / 1.452155 (-0.298725) | 1.208783 / 1.492716 (-0.283933) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096946 / 0.018006 (0.078939) | 0.308118 / 0.000490 (0.307628) | 0.000234 / 0.000200 (0.000034) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021834 / 0.037411 (-0.015577) | 0.070934 / 0.014526 (0.056408) | 0.080310 / 0.176557 (-0.096247) | 0.123299 / 0.737135 (-0.613836) | 0.081591 / 0.296338 (-0.214748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302242 / 0.215209 (0.087033) | 2.934477 / 2.077655 (0.856822) | 1.623768 / 1.504120 (0.119648) | 1.493868 / 1.541195 (-0.047326) | 1.516553 / 1.468490 (0.048063) | 0.410319 / 4.584777 (-4.174458) | 2.471346 / 3.745712 (-1.274366) | 2.667371 / 5.269862 (-2.602491) | 1.625390 / 4.565676 (-2.940286) | 0.046465 / 0.424275 (-0.377810) | 0.004867 / 0.007607 (-0.002740) | 0.355516 / 0.226044 (0.129471) | 3.442294 / 2.268929 (1.173365) | 1.973859 / 55.444624 (-53.470765) | 1.682089 / 6.876477 (-5.194388) | 1.865253 / 2.142072 (-0.276819) | 0.475750 / 4.805227 (-4.329477) | 0.098298 / 6.500664 (-6.402366) | 0.041025 / 0.075469 (-0.034445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969864 / 1.841788 (-0.871924) | 12.437806 / 8.074308 (4.363498) | 10.461262 / 10.191392 (0.269870) | 0.131051 / 0.680424 (-0.549373) | 0.016232 / 0.534201 (-0.517969) | 0.273968 / 0.579283 (-0.305315) | 0.285369 / 0.434364 (-0.148995) | 0.309046 / 0.540337 (-0.231291) | 0.398776 / 1.386936 (-0.988160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n" ]
2023-11-02T16:37:58Z
2023-11-06T17:53:27Z
2023-11-02T17:08:07Z
COLLABORATOR
null
null
null
Avoid a redundant warning in `encode_np_array` by removing the identity check as NumPy `dtype`s can be equal without having identical `id`s. Additionally, fix "unreachable" checks in `encode_np_array`.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6379/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6379/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6379.diff", "html_url": "https://github.com/huggingface/datasets/pull/6379", "merged_at": "2023-11-02T17:08:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/6379.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6379" }
https://api.github.com/repos/huggingface/datasets/issues/4933
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4933/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4933/comments
https://api.github.com/repos/huggingface/datasets/issues/4933/events
https://github.com/huggingface/datasets/issues/4933
1,363,013,023
I_kwDODunzps5RPe2f
4,933
Dataset/DatasetDict.filter() cannot have `batched=True` due to `mask` (numpy array?) being non-iterable.
{ "avatar_url": "https://avatars.githubusercontent.com/u/4812544?v=4", "events_url": "https://api.github.com/users/tianjianjiang/events{/privacy}", "followers_url": "https://api.github.com/users/tianjianjiang/followers", "following_url": "https://api.github.com/users/tianjianjiang/following{/other_user}", "gists_url": "https://api.github.com/users/tianjianjiang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tianjianjiang", "id": 4812544, "login": "tianjianjiang", "node_id": "MDQ6VXNlcjQ4MTI1NDQ=", "organizations_url": "https://api.github.com/users/tianjianjiang/orgs", "received_events_url": "https://api.github.com/users/tianjianjiang/received_events", "repos_url": "https://api.github.com/users/tianjianjiang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tianjianjiang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tianjianjiang/subscriptions", "type": "User", "url": "https://api.github.com/users/tianjianjiang", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi ! When `batched=True`, you filter function must take a batch as input, and return a list of booleans.\r\n\r\nIn your case, something like\r\n```python\r\nfrom datasets import load_dataset\r\n\r\n\r\nds_mc4_ja = load_dataset(\"mc4\", \"ja\") # This will take 6+ hours... perhaps test it with a toy dataset instead?\r\nds_mc4_ja_2020 = ds_mc4_ja.filter(\r\n lambda batch: [timestamp[:4] == \"2020\" for timestamp in batch[\"timestamp\"]],\r\n batched=True,\r\n)\r\n```\r\n\r\nLet me know if it helps !", "> Hi ! When `batched=True`, you filter function must take a batch as input, and return a list of booleans.\r\n> [...]\r\n> Let me know if it helps !\r\n\r\nHi @lhoestq,\r\n\r\nAh, my bad, I totally forgot that part...\r\nSorry for the trouble and thank you for the kind help!" ]
2022-09-06T09:47:48Z
2022-09-06T11:44:27Z
2022-09-06T11:44:27Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug `Dataset/DatasetDict.filter()` cannot have `batched=True` due to `mask` (numpy array?) being non-iterable. ## Steps to reproduce the bug (In a python 3.7.12 env, I've tried 2.4.0 and 2.3.2 with both `pyarraw==9.0.0` and `pyarrow==8.0.0`.) ```python from datasets import load_dataset ds_mc4_ja = load_dataset("mc4", "ja") # This will take 6+ hours... perhaps test it with a toy dataset instead? ds_mc4_ja_2020 = ds_mc4_ja.filter( lambda example: example["timestamp"][:4] == "2020", batched=True, ) ``` ## Expected results No error ## Actual results ```python --------------------------------------------------------------------------- RemoteTraceback Traceback (most recent call last) RemoteTraceback: """ Traceback (most recent call last): File "/opt/conda/lib/python3.7/site-packages/multiprocess/pool.py", line 121, in worker result = (True, func(*args, **kwds)) File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 524, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py", line 480, in wrapper out = func(self, *args, **kwargs) File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2779, in _map_single offset=offset, File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2655, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 2347, in decorated result = f(decorated_item, *args, **kwargs) File "/opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py", line 4946, in get_indices_from_mask_function indices_array = [i for i, to_keep in zip(indices, mask) if to_keep] TypeError: zip argument #2 must support iteration """ The above exception was the direct cause of the following exception: TypeError Traceback (most recent call last) /tmp/ipykernel_51348/2345782281.py in <module> 7 batched=True, 8 # batch_size=10_000, ----> 9 num_proc=111, 10 ) 11 # ds_mc4_ja_clean_2020 = ds_mc4_ja.filter( /opt/conda/lib/python3.7/site-packages/datasets/dataset_dict.py in filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, fn_kwargs, num_proc, desc) 878 desc=desc, 879 ) --> 880 for k, dataset in self.items() 881 } 882 ) /opt/conda/lib/python3.7/site-packages/datasets/dataset_dict.py in <dictcomp>(.0) 878 desc=desc, 879 ) --> 880 for k, dataset in self.items() 881 } 882 ) /opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 522 } 523 # apply actual function --> 524 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 525 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 526 # re-apply format to the output /opt/conda/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 478 # Call actual function 479 --> 480 out = func(self, *args, **kwargs) 481 482 # Update fingerprint of in-place transforms + update in-place history of transforms /opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py in filter(self, function, with_indices, input_columns, batched, batch_size, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 2920 new_fingerprint=new_fingerprint, 2921 input_columns=input_columns, -> 2922 desc=desc, 2923 ) 2924 new_dataset = copy.deepcopy(self) /opt/conda/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, with_rank, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc) 2498 2499 for index, async_result in results.items(): -> 2500 transformed_shards[index] = async_result.get() 2501 2502 assert ( /opt/conda/lib/python3.7/site-packages/multiprocess/pool.py in get(self, timeout) 655 return self._value 656 else: --> 657 raise self._value 658 659 def _set(self, i, obj): TypeError: zip argument #2 must support iteration ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.4.0 - Platform: Linux-4.19.0-21-cloud-amd64-x86_64-with-debian-10.12 - Python version: 3.7.12 - PyArrow version: 9.0.0 - Pandas version: 1.3.5 (I've tried 2.4.0 and 2.3.2 with both `pyarraw==9.0.0` and `pyarrow==8.0.0`.)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4812544?v=4", "events_url": "https://api.github.com/users/tianjianjiang/events{/privacy}", "followers_url": "https://api.github.com/users/tianjianjiang/followers", "following_url": "https://api.github.com/users/tianjianjiang/following{/other_user}", "gists_url": "https://api.github.com/users/tianjianjiang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tianjianjiang", "id": 4812544, "login": "tianjianjiang", "node_id": "MDQ6VXNlcjQ4MTI1NDQ=", "organizations_url": "https://api.github.com/users/tianjianjiang/orgs", "received_events_url": "https://api.github.com/users/tianjianjiang/received_events", "repos_url": "https://api.github.com/users/tianjianjiang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tianjianjiang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tianjianjiang/subscriptions", "type": "User", "url": "https://api.github.com/users/tianjianjiang", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4933/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4933/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7392/comments
https://api.github.com/repos/huggingface/datasets/issues/7392/events
https://github.com/huggingface/datasets/issues/7392
2,846,095,043
I_kwDODunzps6po_bD
7,392
push_to_hub payload too large error when using large ClassLabel feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "See also <https://discuss.huggingface.co/t/datasetdict-push-to-hub-failing-with-payload-to-large/140083/8>\n" ]
2025-02-11T17:51:34Z
2025-02-11T18:01:31Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When using `datasets.DatasetDict.push_to_hub` an `HfHubHTTPError: 413 Client Error: Payload Too Large for url` is raised if the dataset contains a large `ClassLabel` feature. Even if the total size of the dataset is small. ### Steps to reproduce the bug ``` python import random import sys import datasets random.seed(42) def random_str(sz): return "".join(chr(random.randint(ord("a"), ord("z"))) for _ in range(sz)) data = datasets.DatasetDict( { str(i): datasets.Dataset.from_dict( { "label": [list(range(3)) for _ in range(10)], "abstract": [random_str(10_000) for _ in range(10)], }, ) for i in range(3) } ) features = data["1"].features.copy() features["label"] = datasets.Sequence( datasets.ClassLabel(names=[str(i) for i in range(50_000)]) ) data = data.map(lambda examples: {}, features=features) feat_size = sys.getsizeof(data["1"].features["label"].feature.names) print(f"Size of ClassLabel names: {feat_size}") # Size of ClassLabel names: 444376 data.push_to_hub("dconnell/pubtator3_test") ``` Note that this succeeds if `ClassLabel` has fewer names or if `ClassLabel` is replaced with `Value("int64")` ### Expected behavior Should push the dataset to hub. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 - Python version: 3.12.8 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7392/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5033
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5033/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5033/comments
https://api.github.com/repos/huggingface/datasets/issues/5033/events
https://github.com/huggingface/datasets/pull/5033
1,388,842,236
PR_kwDODunzps4_wGSE
5,033
Remove redundant code from some dataset module factories
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-28T07:06:26Z
2022-09-28T16:57:51Z
2022-09-28T16:55:12Z
MEMBER
null
null
null
This PR removes some redundant code introduced by mistake after a refactoring in: - #4576
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5033/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5033/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5033.diff", "html_url": "https://github.com/huggingface/datasets/pull/5033", "merged_at": "2022-09-28T16:55:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/5033.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5033" }
https://api.github.com/repos/huggingface/datasets/issues/5571
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5571/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5571/comments
https://api.github.com/repos/huggingface/datasets/issues/5571/events
https://github.com/huggingface/datasets/issues/5571
1,597,198,953
I_kwDODunzps5fM1Jp
5,571
load_dataset fails for JSON in windows
{ "avatar_url": "https://avatars.githubusercontent.com/u/11876897?v=4", "events_url": "https://api.github.com/users/abinashsahu/events{/privacy}", "followers_url": "https://api.github.com/users/abinashsahu/followers", "following_url": "https://api.github.com/users/abinashsahu/following{/other_user}", "gists_url": "https://api.github.com/users/abinashsahu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/abinashsahu", "id": 11876897, "login": "abinashsahu", "node_id": "MDQ6VXNlcjExODc2ODk3", "organizations_url": "https://api.github.com/users/abinashsahu/orgs", "received_events_url": "https://api.github.com/users/abinashsahu/received_events", "repos_url": "https://api.github.com/users/abinashsahu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/abinashsahu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/abinashsahu/subscriptions", "type": "User", "url": "https://api.github.com/users/abinashsahu", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! \r\n\r\nYou need to pass an input json file explicitly as `data_files` to `load_dataset` to avoid this error:\r\n```python\r\n ds = load_dataset(\"json\", data_files=args.input_json)\r\n```\r\n\r\n", "Thanks it worked!" ]
2023-02-23T16:50:11Z
2023-02-24T13:21:47Z
2023-02-24T13:21:47Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Steps: 1. Created a dataset in a Linux VM and created a small sample using dataset.to_json() method. 2. Downloaded the JSON file to my local Windows machine for working and saved in say - r"C:\Users\name\file.json" 3. I am reading the file in my local PyCharm - the location of python file is different than the location of the JSON. 4. When I read using load_dataset("json",args.input_json), it throws and error from builder.py. raise InvalidConfigName( f"Bad characters from black list '{invalid_windows_characters}' found in '{self.name}'. " f"They could create issues when creating a directory for this config on Windows filesystem." 6. When I bring the data to the current directory, it works fine. ### Steps to reproduce the bug Steps: 1. Created a dataset in a Linux VM and created a small sample using dataset.to_json() method. 2. Downloaded the JSON file to my local Windows machine for working and saved in say - r"C:\Users\name\file.json" 3. I am reading the file in my local PyCharm - the location of python file is different than the location of the JSON. 4. When I read using load_dataset("json",args.input_json), it throws and error from builder.py. raise InvalidConfigName( f"Bad characters from black list '{invalid_windows_characters}' found in '{self.name}'. " f"They could create issues when creating a directory for this config on Windows filesystem." 6. When I bring the data to the current directory, it works fine. ### Expected behavior Should be able to read from a path different than current directory in Windows machine. ### Environment info datasets version: 2.3.1 python version: 3.8 Windows OS
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5571/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5571/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5515
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5515/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5515/comments
https://api.github.com/repos/huggingface/datasets/issues/5515/events
https://github.com/huggingface/datasets/pull/5515
1,577,590,611
PR_kwDODunzps5Jmj5X
5,515
Unify `load_from_cache_file` type and logic
{ "avatar_url": "https://avatars.githubusercontent.com/u/22773355?v=4", "events_url": "https://api.github.com/users/HallerPatrick/events{/privacy}", "followers_url": "https://api.github.com/users/HallerPatrick/followers", "following_url": "https://api.github.com/users/HallerPatrick/following{/other_user}", "gists_url": "https://api.github.com/users/HallerPatrick/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HallerPatrick", "id": 22773355, "login": "HallerPatrick", "node_id": "MDQ6VXNlcjIyNzczMzU1", "organizations_url": "https://api.github.com/users/HallerPatrick/orgs", "received_events_url": "https://api.github.com/users/HallerPatrick/received_events", "repos_url": "https://api.github.com/users/HallerPatrick/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HallerPatrick/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HallerPatrick/subscriptions", "type": "User", "url": "https://api.github.com/users/HallerPatrick", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "The commit also includes the changes to the `DatasetDict` methods or am I missing something?", "Oh, indeed. Feel free to mark the PR as \"Ready for review\" then.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010149 / 0.011353 (-0.001204) | 0.005606 / 0.011008 (-0.005402) | 0.103455 / 0.038508 (0.064947) | 0.042934 / 0.023109 (0.019825) | 0.308365 / 0.275898 (0.032467) | 0.394188 / 0.323480 (0.070708) | 0.008760 / 0.007986 (0.000774) | 0.004567 / 0.004328 (0.000239) | 0.077959 / 0.004250 (0.073708) | 0.050115 / 0.037052 (0.013063) | 0.318009 / 0.258489 (0.059520) | 0.358578 / 0.293841 (0.064737) | 0.039231 / 0.128546 (-0.089315) | 0.012381 / 0.075646 (-0.063265) | 0.340046 / 0.419271 (-0.079226) | 0.048366 / 0.043533 (0.004834) | 0.307643 / 0.255139 (0.052504) | 0.342886 / 0.283200 (0.059687) | 0.109628 / 0.141683 (-0.032055) | 1.457297 / 1.452155 (0.005142) | 1.518067 / 1.492716 (0.025351) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295590 / 0.018006 (0.277584) | 0.531515 / 0.000490 (0.531026) | 0.005677 / 0.000200 (0.005477) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030901 / 0.037411 (-0.006511) | 0.118312 / 0.014526 (0.103786) | 0.123146 / 0.176557 (-0.053410) | 0.163608 / 0.737135 (-0.573527) | 0.128604 / 0.296338 (-0.167734) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404143 / 0.215209 (0.188934) | 4.000118 / 2.077655 (1.922464) | 1.804502 / 1.504120 (0.300382) | 1.597287 / 1.541195 (0.056093) | 1.738512 / 1.468490 (0.270022) | 0.704658 / 4.584777 (-3.880119) | 3.830101 / 3.745712 (0.084389) | 2.186598 / 5.269862 (-3.083263) | 1.367873 / 4.565676 (-3.197804) | 0.085550 / 0.424275 (-0.338725) | 0.012226 / 0.007607 (0.004619) | 0.505760 / 0.226044 (0.279716) | 5.054583 / 2.268929 (2.785655) | 2.284942 / 55.444624 (-53.159682) | 1.961413 / 6.876477 (-4.915064) | 2.059449 / 2.142072 (-0.082623) | 0.845009 / 4.805227 (-3.960218) | 0.167204 / 6.500664 (-6.333460) | 0.065998 / 0.075469 (-0.009471) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221861 / 1.841788 (-0.619927) | 15.925213 / 8.074308 (7.850905) | 15.359308 / 10.191392 (5.167916) | 0.171776 / 0.680424 (-0.508648) | 0.029234 / 0.534201 (-0.504967) | 0.446349 / 0.579283 (-0.132934) | 0.447873 / 0.434364 (0.013509) | 0.527400 / 0.540337 (-0.012937) | 0.610208 / 1.386936 (-0.776728) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008030 / 0.011353 (-0.003323) | 0.005686 / 0.011008 (-0.005322) | 0.076204 / 0.038508 (0.037696) | 0.037131 / 0.023109 (0.014022) | 0.341461 / 0.275898 (0.065563) | 0.378734 / 0.323480 (0.055255) | 0.006580 / 0.007986 (-0.001406) | 0.004379 / 0.004328 (0.000050) | 0.073983 / 0.004250 (0.069732) | 0.055895 / 0.037052 (0.018842) | 0.342667 / 0.258489 (0.084178) | 0.401464 / 0.293841 (0.107623) | 0.037710 / 0.128546 (-0.090837) | 0.012604 / 0.075646 (-0.063042) | 0.087563 / 0.419271 (-0.331709) | 0.050887 / 0.043533 (0.007354) | 0.333491 / 0.255139 (0.078352) | 0.357437 / 0.283200 (0.074237) | 0.109566 / 0.141683 (-0.032117) | 1.423372 / 1.452155 (-0.028783) | 1.569423 / 1.492716 (0.076706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.340986 / 0.018006 (0.322980) | 0.530885 / 0.000490 (0.530395) | 0.004172 / 0.000200 (0.003972) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030424 / 0.037411 (-0.006987) | 0.121191 / 0.014526 (0.106666) | 0.129066 / 0.176557 (-0.047491) | 0.166938 / 0.737135 (-0.570198) | 0.132000 / 0.296338 (-0.164338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418718 / 0.215209 (0.203509) | 4.163973 / 2.077655 (2.086318) | 1.982665 / 1.504120 (0.478545) | 1.798866 / 1.541195 (0.257671) | 1.918867 / 1.468490 (0.450377) | 0.724634 / 4.584777 (-3.860143) | 3.864549 / 3.745712 (0.118837) | 3.697768 / 5.269862 (-1.572093) | 1.983942 / 4.565676 (-2.581735) | 0.086818 / 0.424275 (-0.337457) | 0.012336 / 0.007607 (0.004728) | 0.522314 / 0.226044 (0.296269) | 5.216813 / 2.268929 (2.947884) | 2.516187 / 55.444624 (-52.928437) | 2.172057 / 6.876477 (-4.704420) | 2.342773 / 2.142072 (0.200701) | 0.851805 / 4.805227 (-3.953422) | 0.170139 / 6.500664 (-6.330525) | 0.068494 / 0.075469 (-0.006975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.307370 / 1.841788 (-0.534418) | 16.737937 / 8.074308 (8.663629) | 14.483384 / 10.191392 (4.291992) | 0.172418 / 0.680424 (-0.508006) | 0.018241 / 0.534201 (-0.515960) | 0.432049 / 0.579283 (-0.147234) | 0.447590 / 0.434364 (0.013227) | 0.550332 / 0.540337 (0.009994) | 0.646756 / 1.386936 (-0.740180) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#819bc6e9f88459f363e6fb6948e9cbe5c231500d \"CML watermark\")\n" ]
2023-02-09T10:04:46Z
2023-02-14T15:38:13Z
2023-02-14T14:26:42Z
CONTRIBUTOR
null
null
null
* Updating type annotations for #`load_from_cache_file` * Added logic for cache checking if needed * Updated documentation following the wording of `Dataset.map`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5515/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5515/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5515.diff", "html_url": "https://github.com/huggingface/datasets/pull/5515", "merged_at": "2023-02-14T14:26:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/5515.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5515" }
https://api.github.com/repos/huggingface/datasets/issues/6308
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6308/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6308/comments
https://api.github.com/repos/huggingface/datasets/issues/6308/events
https://github.com/huggingface/datasets/issues/6308
1,946,810,625
I_kwDODunzps50CfkB
6,308
module 'resource' has no attribute 'error'
{ "avatar_url": "https://avatars.githubusercontent.com/u/48009681?v=4", "events_url": "https://api.github.com/users/NeoWang9999/events{/privacy}", "followers_url": "https://api.github.com/users/NeoWang9999/followers", "following_url": "https://api.github.com/users/NeoWang9999/following{/other_user}", "gists_url": "https://api.github.com/users/NeoWang9999/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NeoWang9999", "id": 48009681, "login": "NeoWang9999", "node_id": "MDQ6VXNlcjQ4MDA5Njgx", "organizations_url": "https://api.github.com/users/NeoWang9999/orgs", "received_events_url": "https://api.github.com/users/NeoWang9999/received_events", "repos_url": "https://api.github.com/users/NeoWang9999/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NeoWang9999/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeoWang9999/subscriptions", "type": "User", "url": "https://api.github.com/users/NeoWang9999", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "This (Windows) issue was fixed in `fsspec` in https://github.com/fsspec/filesystem_spec/pull/1275. So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.", "> This (Windows) issue was fixed in `fsspec` in [fsspec/filesystem_spec#1275](https://github.com/fsspec/filesystem_spec/pull/1275). So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.\r\n\r\nafter I run `pip install -U fsspec`\r\n\r\nit occurs a new error:\r\n```\r\nERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflict\r\ns.\r\ndatasets 2.14.5 requires fsspec[http]<2023.9.0,>=2023.1.0, but you have fsspec 2023.9.2 which is incompatible.\r\n\r\n```", "The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).", "> The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).\r\n\r\nthanks for reply!" ]
2023-10-17T08:08:54Z
2023-10-25T17:09:22Z
2023-10-25T17:09:22Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug just run import: `from datasets import load_dataset` and then: ``` File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\__init__.py", line 22, in <module> from .arrow_dataset import Dataset File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_dataset.py", line 66, in <module> from .arrow_reader import ArrowReader File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_reader.py", line 30, in <module> from .download.download_config import DownloadConfig File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\__init__.py", line 10, in <module> from .streaming_download_manager import StreamingDownloadManager File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\streaming_download_manager.py", line 21, in <module> from ..filesystems import COMPRESSION_FILESYSTEMS File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\filesystems\__init__.py", line 8, in <module> import fsspec.asyn File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\fsspec\asyn.py", line 157, in <module> ResourceEror = resource.error AttributeError: module 'resource' has no attribute 'error' Process finished with exit code 1 ``` and the error codes are: ``` try: import resource except ImportError: resource = None ResourceError = OSError else: ResourceEror = resource.error ``` 1. miss spelling : "ResourceEror " should be "ResourceErorr" 2. module 'resource' has no attribute 'error' ### Steps to reproduce the bug only one step: `from datasets import load_dataset` ### Expected behavior slove error: module 'resource' has no attribute 'error' ### Environment info python=3.10 datasets==2.14.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6308/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6308/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5260/comments
https://api.github.com/repos/huggingface/datasets/issues/5260/events
https://github.com/huggingface/datasets/issues/5260
1,453,921,697
I_kwDODunzps5WqRWh
5,260
consumer-finance-complaints dataset not loading
{ "avatar_url": "https://avatars.githubusercontent.com/u/8098496?v=4", "events_url": "https://api.github.com/users/adiprasad/events{/privacy}", "followers_url": "https://api.github.com/users/adiprasad/followers", "following_url": "https://api.github.com/users/adiprasad/following{/other_user}", "gists_url": "https://api.github.com/users/adiprasad/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/adiprasad", "id": 8098496, "login": "adiprasad", "node_id": "MDQ6VXNlcjgwOTg0OTY=", "organizations_url": "https://api.github.com/users/adiprasad/orgs", "received_events_url": "https://api.github.com/users/adiprasad/received_events", "repos_url": "https://api.github.com/users/adiprasad/repos", "site_admin": false, "starred_url": "https://api.github.com/users/adiprasad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/adiprasad/subscriptions", "type": "User", "url": "https://api.github.com/users/adiprasad", "user_view_type": "public" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @adiprasad.\r\n\r\nWe are having a look at it.", "I have opened an issue in that dataset Community tab on the Hub: https://huggingface.co/datasets/consumer-finance-complaints/discussions/1\r\n\r\nPlease note that in the meantime, you can load the dataset by passing `ignore_verifications=True`:\r\n```python\r\n>>> ds = load_dataset(\"consumer-finance-complaints\", ignore_verifications=True)\r\n>>> ds\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['Date Received', 'Product', 'Sub Product', 'Issue', 'Sub Issue', 'Complaint Text', 'Company Public Response', 'Company', 'State', 'Zip Code', 'Tags', 'Consumer Consent Provided', 'Submitted via', 'Date Sent To Company', 'Company Response To Consumer', 'Timely Response', 'Consumer Disputed', 'Complaint ID'],\r\n num_rows: 3079747\r\n })\r\n})\r\n```", "PR fixing this issue: https://huggingface.co/datasets/consumer-finance-complaints/discussions/2" ]
2022-11-17T20:10:26Z
2022-11-18T10:16:53Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Error during dataset loading ### Steps to reproduce the bug ``` >>> import datasets >>> cf_raw = datasets.load_dataset("consumer-finance-complaints") Downloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 8.42k/8.42k [00:00<00:00, 3.33MB/s] Downloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.60k/5.60k [00:00<00:00, 2.90MB/s] Downloading readme: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 16.6k/16.6k [00:00<00:00, 510kB/s] Downloading and preparing dataset consumer-finance-complaints/default to /root/.cache/huggingface/datasets/consumer-finance-complaints/default/0.0.0/30e483d37fb4b25bb98cad1bfd2dc48f6ed6d1f3371eb4568c625a61d1a79b69... Downloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 511M/511M [00:04<00:00, 103MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/builder.py", line 931, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/skunk-pod-storage-lee-2emartie-40ibm-2ecom-pvc/anaconda3/envs/datasets/lib/python3.8/site-packages/datasets/utils/info_utils.py", line 74, in verify_splits raise NonMatchingSplitsSizesError(str(bad_splits)) datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=1605177353, num_examples=2455765, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=2043641693, num_examples=3079747, shard_lengths=[721000, 656000, 788000, 846000, 68747], dataset_name='consumer-finance-complaints')}] ``` ### Expected behavior dataset should load ### Environment info >>> datasets.__version__ '2.7.0' Python 3.8.10 "Ubuntu 20.04.4 LTS"
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5260/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5260/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6730
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6730/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6730/comments
https://api.github.com/repos/huggingface/datasets/issues/6730/events
https://github.com/huggingface/datasets/pull/6730
2,181,881,499
PR_kwDODunzps5pZDsB
6,730
Deprecate Pandas builder
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6730). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005301 / 0.011353 (-0.006052) | 0.003701 / 0.011008 (-0.007307) | 0.065830 / 0.038508 (0.027322) | 0.029791 / 0.023109 (0.006682) | 0.251676 / 0.275898 (-0.024222) | 0.283824 / 0.323480 (-0.039655) | 0.003083 / 0.007986 (-0.004903) | 0.004144 / 0.004328 (-0.000185) | 0.053670 / 0.004250 (0.049419) | 0.042020 / 0.037052 (0.004968) | 0.266389 / 0.258489 (0.007899) | 0.296740 / 0.293841 (0.002900) | 0.028320 / 0.128546 (-0.100226) | 0.010604 / 0.075646 (-0.065042) | 0.219881 / 0.419271 (-0.199390) | 0.036216 / 0.043533 (-0.007317) | 0.255718 / 0.255139 (0.000579) | 0.275808 / 0.283200 (-0.007392) | 0.018407 / 0.141683 (-0.123276) | 1.140007 / 1.452155 (-0.312148) | 1.174005 / 1.492716 (-0.318711) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091230 / 0.018006 (0.073224) | 0.300704 / 0.000490 (0.300215) | 0.000207 / 0.000200 (0.000007) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018950 / 0.037411 (-0.018461) | 0.062177 / 0.014526 (0.047651) | 0.073968 / 0.176557 (-0.102589) | 0.122161 / 0.737135 (-0.614974) | 0.075001 / 0.296338 (-0.221338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285675 / 0.215209 (0.070466) | 2.794176 / 2.077655 (0.716522) | 1.478666 / 1.504120 (-0.025454) | 1.361843 / 1.541195 (-0.179351) | 1.383847 / 1.468490 (-0.084643) | 0.568610 / 4.584777 (-4.016167) | 2.402351 / 3.745712 (-1.343361) | 2.860772 / 5.269862 (-2.409089) | 1.768588 / 4.565676 (-2.797089) | 0.063257 / 0.424275 (-0.361018) | 0.004998 / 0.007607 (-0.002609) | 0.340897 / 0.226044 (0.114853) | 3.340238 / 2.268929 (1.071310) | 1.836434 / 55.444624 (-53.608190) | 1.556844 / 6.876477 (-5.319633) | 1.610685 / 2.142072 (-0.531388) | 0.644941 / 4.805227 (-4.160286) | 0.117593 / 6.500664 (-6.383072) | 0.042803 / 0.075469 (-0.032666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979181 / 1.841788 (-0.862607) | 11.901365 / 8.074308 (3.827057) | 9.587943 / 10.191392 (-0.603449) | 0.139648 / 0.680424 (-0.540776) | 0.013904 / 0.534201 (-0.520297) | 0.291249 / 0.579283 (-0.288034) | 0.260737 / 0.434364 (-0.173627) | 0.326000 / 0.540337 (-0.214338) | 0.433459 / 1.386936 (-0.953477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005503 / 0.011353 (-0.005850) | 0.003738 / 0.011008 (-0.007270) | 0.049137 / 0.038508 (0.010629) | 0.031484 / 0.023109 (0.008374) | 0.265783 / 0.275898 (-0.010115) | 0.295125 / 0.323480 (-0.028354) | 0.004074 / 0.007986 (-0.003911) | 0.002707 / 0.004328 (-0.001622) | 0.048340 / 0.004250 (0.044089) | 0.045453 / 0.037052 (0.008401) | 0.276500 / 0.258489 (0.018011) | 0.312002 / 0.293841 (0.018162) | 0.029139 / 0.128546 (-0.099408) | 0.010445 / 0.075646 (-0.065201) | 0.057486 / 0.419271 (-0.361785) | 0.052386 / 0.043533 (0.008853) | 0.267099 / 0.255139 (0.011960) | 0.283193 / 0.283200 (-0.000007) | 0.018368 / 0.141683 (-0.123315) | 1.136207 / 1.452155 (-0.315948) | 1.178418 / 1.492716 (-0.314298) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089270 / 0.018006 (0.071264) | 0.301087 / 0.000490 (0.300598) | 0.000208 / 0.000200 (0.000008) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021991 / 0.037411 (-0.015421) | 0.075357 / 0.014526 (0.060831) | 0.087781 / 0.176557 (-0.088775) | 0.126923 / 0.737135 (-0.610212) | 0.088491 / 0.296338 (-0.207847) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293653 / 0.215209 (0.078444) | 2.872156 / 2.077655 (0.794501) | 1.559229 / 1.504120 (0.055109) | 1.441201 / 1.541195 (-0.099993) | 1.472642 / 1.468490 (0.004152) | 0.588463 / 4.584777 (-3.996314) | 2.447685 / 3.745712 (-1.298028) | 2.755752 / 5.269862 (-2.514110) | 1.796591 / 4.565676 (-2.769086) | 0.068024 / 0.424275 (-0.356252) | 0.005148 / 0.007607 (-0.002459) | 0.343572 / 0.226044 (0.117528) | 3.347856 / 2.268929 (1.078927) | 1.945977 / 55.444624 (-53.498647) | 1.648953 / 6.876477 (-5.227524) | 1.804468 / 2.142072 (-0.337604) | 0.651034 / 4.805227 (-4.154193) | 0.118130 / 6.500664 (-6.382534) | 0.041019 / 0.075469 (-0.034450) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020461 / 1.841788 (-0.821327) | 12.514237 / 8.074308 (4.439929) | 10.696276 / 10.191392 (0.504884) | 0.154549 / 0.680424 (-0.525874) | 0.015964 / 0.534201 (-0.518237) | 0.290392 / 0.579283 (-0.288891) | 0.276074 / 0.434364 (-0.158290) | 0.326253 / 0.540337 (-0.214085) | 0.440383 / 1.386936 (-0.946553) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#29ffc270da34de70cf8e28b2ebeadba1c06d8730 \"CML watermark\")\n" ]
2024-03-12T15:12:13Z
2024-03-12T17:42:33Z
2024-03-12T17:36:24Z
COLLABORATOR
null
null
null
The Pandas packaged builder is undocumented and relies on `pickle` to read the data, making it **unsafe**. Moreover, I haven't seen a single instance of this builder being used (not even using the GH/Hub search), so we should deprecate it.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6730/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6730/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6730.diff", "html_url": "https://github.com/huggingface/datasets/pull/6730", "merged_at": "2024-03-12T17:36:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6730.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6730" }
https://api.github.com/repos/huggingface/datasets/issues/5344
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5344/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5344/comments
https://api.github.com/repos/huggingface/datasets/issues/5344/events
https://github.com/huggingface/datasets/pull/5344
1,485,628,319
PR_kwDODunzps5E2BPN
5,344
Clean up Dataset and DatasetDict
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-09T00:02:08Z
2022-12-13T00:56:07Z
2022-12-13T00:53:02Z
MEMBER
null
null
null
This PR cleans up the docstrings for the other half of the methods in `Dataset` and finishes `DatasetDict`.
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5344/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5344/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5344.diff", "html_url": "https://github.com/huggingface/datasets/pull/5344", "merged_at": "2022-12-13T00:53:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/5344.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5344" }
https://api.github.com/repos/huggingface/datasets/issues/4664
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4664/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4664/comments
https://api.github.com/repos/huggingface/datasets/issues/4664/events
https://github.com/huggingface/datasets/pull/4664
1,299,571,212
PR_kwDODunzps47IvfG
4,664
Add stanford dog dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8711912?v=4", "events_url": "https://api.github.com/users/khushmeeet/events{/privacy}", "followers_url": "https://api.github.com/users/khushmeeet/followers", "following_url": "https://api.github.com/users/khushmeeet/following{/other_user}", "gists_url": "https://api.github.com/users/khushmeeet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/khushmeeet", "id": 8711912, "login": "khushmeeet", "node_id": "MDQ6VXNlcjg3MTE5MTI=", "organizations_url": "https://api.github.com/users/khushmeeet/orgs", "received_events_url": "https://api.github.com/users/khushmeeet/received_events", "repos_url": "https://api.github.com/users/khushmeeet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/khushmeeet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/khushmeeet/subscriptions", "type": "User", "url": "https://api.github.com/users/khushmeeet", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hi @khushmeeet, thanks for your contribution.\r\n\r\nBut wouldn't it be better to add this dataset to the Hub? \r\n- https://huggingface.co/docs/datasets/share\r\n- https://huggingface.co/docs/datasets/dataset_script", "Hi @albertvillanova \r\n\r\nDataset is added to Hub - https://huggingface.co/datasets/dgrnd4/stanford_dog_dataset", "Great, so I guess we can close this issue, as the dataset is already available on the Hub.", "OK I read the discussion on:\r\n- #4504\r\n\r\nCurrently, priority is adding datasets to the Hub, not here on GitHub.\r\n\r\nIf you would like to contribute the loading script and all the metadata you generated (README + JSON files), you could:\r\n- Either make a PR to the existing dataset on the Hub\r\n- Create a new dataset on the Hub:\r\n - Either under your personal namespace\r\n - or even more professionally, under the namespace `stanfordSVL` (Stanford Vision and Learning Lab: https://svl.stanford.edu/)\r\n\r\nYou can use the Community tab to ping us if you need help or have any questions." ]
2022-07-09T04:46:07Z
2022-07-15T13:30:32Z
2022-07-15T13:15:42Z
CONTRIBUTOR
null
null
null
This PR is for adding dataset, related to issue #4504. We are adding Stanford dog breed dataset. It is a multi class image classification dataset. Details can be found here - http://vision.stanford.edu/aditya86/ImageNetDogs/ Tests on dummy data is failing currently, which I am looking into.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4664/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4664/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4664.diff", "html_url": "https://github.com/huggingface/datasets/pull/4664", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4664.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4664" }
https://api.github.com/repos/huggingface/datasets/issues/5814
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5814/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5814/comments
https://api.github.com/repos/huggingface/datasets/issues/5814/events
https://github.com/huggingface/datasets/pull/5814
1,693,216,778
PR_kwDODunzps5PoOQ9
5,814
Repro windows crash
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5814). All of your documentation changes will be reflected on that endpoint." ]
2023-05-02T23:30:18Z
2024-01-08T18:30:45Z
2024-01-08T18:30:45Z
CONTRIBUTOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5814/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5814/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5814.diff", "html_url": "https://github.com/huggingface/datasets/pull/5814", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5814.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5814" }
https://api.github.com/repos/huggingface/datasets/issues/5519
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5519/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5519/comments
https://api.github.com/repos/huggingface/datasets/issues/5519/events
https://github.com/huggingface/datasets/pull/5519
1,578,341,785
PR_kwDODunzps5JpGPl
5,519
Lint code with `ruff`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009729 / 0.011353 (-0.001624) | 0.005342 / 0.011008 (-0.005666) | 0.100194 / 0.038508 (0.061686) | 0.036391 / 0.023109 (0.013282) | 0.294163 / 0.275898 (0.018264) | 0.364117 / 0.323480 (0.040637) | 0.008231 / 0.007986 (0.000246) | 0.005954 / 0.004328 (0.001626) | 0.076484 / 0.004250 (0.072234) | 0.045028 / 0.037052 (0.007976) | 0.308163 / 0.258489 (0.049674) | 0.339473 / 0.293841 (0.045632) | 0.039268 / 0.128546 (-0.089279) | 0.012357 / 0.075646 (-0.063289) | 0.334176 / 0.419271 (-0.085096) | 0.049502 / 0.043533 (0.005969) | 0.294134 / 0.255139 (0.038995) | 0.319370 / 0.283200 (0.036170) | 0.113040 / 0.141683 (-0.028643) | 1.450750 / 1.452155 (-0.001405) | 1.490265 / 1.492716 (-0.002452) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252860 / 0.018006 (0.234854) | 0.554299 / 0.000490 (0.553810) | 0.002105 / 0.000200 (0.001905) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026557 / 0.037411 (-0.010854) | 0.104464 / 0.014526 (0.089938) | 0.116724 / 0.176557 (-0.059833) | 0.154736 / 0.737135 (-0.582399) | 0.122017 / 0.296338 (-0.174322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398170 / 0.215209 (0.182961) | 3.979309 / 2.077655 (1.901654) | 1.773051 / 1.504120 (0.268931) | 1.587247 / 1.541195 (0.046053) | 1.620446 / 1.468490 (0.151956) | 0.692152 / 4.584777 (-3.892625) | 3.724821 / 3.745712 (-0.020891) | 2.133122 / 5.269862 (-3.136739) | 1.455612 / 4.565676 (-3.110065) | 0.084721 / 0.424275 (-0.339554) | 0.012461 / 0.007607 (0.004854) | 0.498909 / 0.226044 (0.272865) | 4.983837 / 2.268929 (2.714908) | 2.258489 / 55.444624 (-53.186135) | 1.891690 / 6.876477 (-4.984786) | 1.976944 / 2.142072 (-0.165128) | 0.836950 / 4.805227 (-3.968277) | 0.165401 / 6.500664 (-6.335263) | 0.061623 / 0.075469 (-0.013846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.205945 / 1.841788 (-0.635842) | 15.101603 / 8.074308 (7.027295) | 14.393739 / 10.191392 (4.202347) | 0.176313 / 0.680424 (-0.504110) | 0.029102 / 0.534201 (-0.505099) | 0.439785 / 0.579283 (-0.139498) | 0.437360 / 0.434364 (0.002996) | 0.539668 / 0.540337 (-0.000669) | 0.641452 / 1.386936 (-0.745484) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007184 / 0.011353 (-0.004169) | 0.005215 / 0.011008 (-0.005793) | 0.074617 / 0.038508 (0.036109) | 0.033209 / 0.023109 (0.010100) | 0.334304 / 0.275898 (0.058406) | 0.370270 / 0.323480 (0.046790) | 0.005851 / 0.007986 (-0.002135) | 0.004106 / 0.004328 (-0.000222) | 0.075487 / 0.004250 (0.071237) | 0.051133 / 0.037052 (0.014080) | 0.335401 / 0.258489 (0.076912) | 0.391457 / 0.293841 (0.097616) | 0.036525 / 0.128546 (-0.092021) | 0.012423 / 0.075646 (-0.063223) | 0.086446 / 0.419271 (-0.332825) | 0.050707 / 0.043533 (0.007174) | 0.336186 / 0.255139 (0.081047) | 0.353273 / 0.283200 (0.070074) | 0.105625 / 0.141683 (-0.036057) | 1.486118 / 1.452155 (0.033963) | 1.584931 / 1.492716 (0.092214) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237589 / 0.018006 (0.219583) | 0.552030 / 0.000490 (0.551540) | 0.002863 / 0.000200 (0.002663) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028078 / 0.037411 (-0.009333) | 0.112516 / 0.014526 (0.097990) | 0.121119 / 0.176557 (-0.055438) | 0.158874 / 0.737135 (-0.578262) | 0.129501 / 0.296338 (-0.166837) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419479 / 0.215209 (0.204270) | 4.192216 / 2.077655 (2.114561) | 1.990513 / 1.504120 (0.486393) | 1.792892 / 1.541195 (0.251697) | 1.853904 / 1.468490 (0.385413) | 0.712702 / 4.584777 (-3.872074) | 3.820682 / 3.745712 (0.074970) | 2.143695 / 5.269862 (-3.126166) | 1.369621 / 4.565676 (-3.196055) | 0.087451 / 0.424275 (-0.336824) | 0.012622 / 0.007607 (0.005014) | 0.521056 / 0.226044 (0.295011) | 5.204873 / 2.268929 (2.935944) | 2.481169 / 55.444624 (-52.963455) | 2.112134 / 6.876477 (-4.764342) | 2.200681 / 2.142072 (0.058609) | 0.860323 / 4.805227 (-3.944904) | 0.171452 / 6.500664 (-6.329212) | 0.065235 / 0.075469 (-0.010234) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.241047 / 1.841788 (-0.600741) | 14.977890 / 8.074308 (6.903582) | 13.584265 / 10.191392 (3.392873) | 0.180050 / 0.680424 (-0.500374) | 0.018247 / 0.534201 (-0.515954) | 0.429585 / 0.579283 (-0.149698) | 0.429448 / 0.434364 (-0.004916) | 0.542663 / 0.540337 (0.002326) | 0.649525 / 1.386936 (-0.737411) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#26cf1d2548eb313a06565d36bd400436e350bc86 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011289 / 0.011353 (-0.000064) | 0.005841 / 0.011008 (-0.005167) | 0.120994 / 0.038508 (0.082486) | 0.043627 / 0.023109 (0.020517) | 0.353254 / 0.275898 (0.077356) | 0.394685 / 0.323480 (0.071205) | 0.009520 / 0.007986 (0.001535) | 0.004770 / 0.004328 (0.000442) | 0.088857 / 0.004250 (0.084607) | 0.048426 / 0.037052 (0.011373) | 0.353815 / 0.258489 (0.095326) | 0.404109 / 0.293841 (0.110268) | 0.060079 / 0.128546 (-0.068467) | 0.013840 / 0.075646 (-0.061806) | 0.403133 / 0.419271 (-0.016139) | 0.072227 / 0.043533 (0.028694) | 0.354585 / 0.255139 (0.099446) | 0.377937 / 0.283200 (0.094737) | 0.139080 / 0.141683 (-0.002602) | 1.733266 / 1.452155 (0.281112) | 1.828402 / 1.492716 (0.335686) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215095 / 0.018006 (0.197088) | 0.486669 / 0.000490 (0.486179) | 0.001425 / 0.000200 (0.001225) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032832 / 0.037411 (-0.004579) | 0.136335 / 0.014526 (0.121809) | 0.141827 / 0.176557 (-0.034730) | 0.185917 / 0.737135 (-0.551218) | 0.149046 / 0.296338 (-0.147293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474587 / 0.215209 (0.259378) | 4.753686 / 2.077655 (2.676031) | 2.152147 / 1.504120 (0.648027) | 1.941762 / 1.541195 (0.400567) | 2.077493 / 1.468490 (0.609003) | 0.822432 / 4.584777 (-3.762345) | 4.860151 / 3.745712 (1.114439) | 2.527292 / 5.269862 (-2.742569) | 1.580442 / 4.565676 (-2.985234) | 0.102104 / 0.424275 (-0.322171) | 0.015060 / 0.007607 (0.007453) | 0.598780 / 0.226044 (0.372736) | 5.998318 / 2.268929 (3.729390) | 2.754115 / 55.444624 (-52.690509) | 2.317509 / 6.876477 (-4.558967) | 2.409942 / 2.142072 (0.267870) | 1.008830 / 4.805227 (-3.796397) | 0.196203 / 6.500664 (-6.304461) | 0.075378 / 0.075469 (-0.000091) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430676 / 1.841788 (-0.411112) | 19.597628 / 8.074308 (11.523320) | 17.364673 / 10.191392 (7.173281) | 0.216621 / 0.680424 (-0.463803) | 0.039505 / 0.534201 (-0.494696) | 0.529027 / 0.579283 (-0.050256) | 0.572014 / 0.434364 (0.137650) | 0.702898 / 0.540337 (0.162560) | 0.785748 / 1.386936 (-0.601188) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009150 / 0.011353 (-0.002203) | 0.006088 / 0.011008 (-0.004920) | 0.090629 / 0.038508 (0.052121) | 0.044284 / 0.023109 (0.021174) | 0.411363 / 0.275898 (0.135465) | 0.445499 / 0.323480 (0.122020) | 0.007129 / 0.007986 (-0.000856) | 0.004843 / 0.004328 (0.000515) | 0.087919 / 0.004250 (0.083668) | 0.060329 / 0.037052 (0.023277) | 0.405802 / 0.258489 (0.147313) | 0.468301 / 0.293841 (0.174460) | 0.044271 / 0.128546 (-0.084275) | 0.014895 / 0.075646 (-0.060751) | 0.103728 / 0.419271 (-0.315544) | 0.084190 / 0.043533 (0.040657) | 0.407210 / 0.255139 (0.152071) | 0.432585 / 0.283200 (0.149386) | 0.137132 / 0.141683 (-0.004550) | 1.720261 / 1.452155 (0.268107) | 1.858575 / 1.492716 (0.365858) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.331395 / 0.018006 (0.313389) | 0.494757 / 0.000490 (0.494267) | 0.043426 / 0.000200 (0.043226) | 0.000470 / 0.000054 (0.000415) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035288 / 0.037411 (-0.002123) | 0.140856 / 0.014526 (0.126330) | 0.146597 / 0.176557 (-0.029959) | 0.192775 / 0.737135 (-0.544360) | 0.155307 / 0.296338 (-0.141032) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504000 / 0.215209 (0.288791) | 5.011081 / 2.077655 (2.933427) | 2.380420 / 1.504120 (0.876300) | 2.154819 / 1.541195 (0.613624) | 2.293883 / 1.468490 (0.825393) | 0.864429 / 4.584777 (-3.720348) | 5.134475 / 3.745712 (1.388763) | 4.984024 / 5.269862 (-0.285837) | 2.333754 / 4.565676 (-2.231923) | 0.105854 / 0.424275 (-0.318422) | 0.015833 / 0.007607 (0.008226) | 0.633614 / 0.226044 (0.407569) | 6.330974 / 2.268929 (4.062046) | 3.020498 / 55.444624 (-52.424126) | 2.578234 / 6.876477 (-4.298243) | 2.654429 / 2.142072 (0.512357) | 1.022041 / 4.805227 (-3.783186) | 0.205085 / 6.500664 (-6.295579) | 0.081122 / 0.075469 (0.005653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.538929 / 1.841788 (-0.302859) | 19.907799 / 8.074308 (11.833490) | 17.174568 / 10.191392 (6.983176) | 0.228165 / 0.680424 (-0.452258) | 0.024688 / 0.534201 (-0.509513) | 0.508958 / 0.579283 (-0.070326) | 0.544469 / 0.434364 (0.110105) | 0.590805 / 0.540337 (0.050468) | 0.705947 / 1.386936 (-0.680989) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2573861afb170fd575dbe67270294a4e88ab4be6 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008377 / 0.011353 (-0.002975) | 0.004445 / 0.011008 (-0.006563) | 0.100671 / 0.038508 (0.062163) | 0.029216 / 0.023109 (0.006107) | 0.300311 / 0.275898 (0.024413) | 0.356907 / 0.323480 (0.033427) | 0.006921 / 0.007986 (-0.001065) | 0.003384 / 0.004328 (-0.000944) | 0.078529 / 0.004250 (0.074278) | 0.034689 / 0.037052 (-0.002364) | 0.304647 / 0.258489 (0.046158) | 0.343584 / 0.293841 (0.049743) | 0.032700 / 0.128546 (-0.095846) | 0.011403 / 0.075646 (-0.064244) | 0.321540 / 0.419271 (-0.097732) | 0.040770 / 0.043533 (-0.002762) | 0.306900 / 0.255139 (0.051761) | 0.322482 / 0.283200 (0.039282) | 0.085396 / 0.141683 (-0.056287) | 1.450735 / 1.452155 (-0.001419) | 1.491829 / 1.492716 (-0.000888) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.009439 / 0.018006 (-0.008567) | 0.406805 / 0.000490 (0.406315) | 0.002993 / 0.000200 (0.002793) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025034 / 0.037411 (-0.012378) | 0.100567 / 0.014526 (0.086042) | 0.107267 / 0.176557 (-0.069290) | 0.149945 / 0.737135 (-0.587190) | 0.111150 / 0.296338 (-0.185189) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418387 / 0.215209 (0.203178) | 4.177979 / 2.077655 (2.100324) | 1.886650 / 1.504120 (0.382530) | 1.685692 / 1.541195 (0.144497) | 1.728270 / 1.468490 (0.259780) | 0.700904 / 4.584777 (-3.883873) | 3.379998 / 3.745712 (-0.365714) | 1.874779 / 5.269862 (-3.395083) | 1.170366 / 4.565676 (-3.395310) | 0.083190 / 0.424275 (-0.341085) | 0.012506 / 0.007607 (0.004899) | 0.528633 / 0.226044 (0.302589) | 5.301793 / 2.268929 (3.032865) | 2.334050 / 55.444624 (-53.110574) | 1.986988 / 6.876477 (-4.889488) | 2.020508 / 2.142072 (-0.121565) | 0.817227 / 4.805227 (-3.988000) | 0.150284 / 6.500664 (-6.350380) | 0.065489 / 0.075469 (-0.009980) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224216 / 1.841788 (-0.617572) | 13.729808 / 8.074308 (5.655500) | 14.283402 / 10.191392 (4.092010) | 0.159434 / 0.680424 (-0.520990) | 0.028471 / 0.534201 (-0.505730) | 0.395102 / 0.579283 (-0.184181) | 0.402733 / 0.434364 (-0.031631) | 0.470852 / 0.540337 (-0.069485) | 0.568530 / 1.386936 (-0.818406) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006750 / 0.011353 (-0.004603) | 0.004479 / 0.011008 (-0.006529) | 0.074926 / 0.038508 (0.036418) | 0.027619 / 0.023109 (0.004510) | 0.342070 / 0.275898 (0.066172) | 0.372452 / 0.323480 (0.048972) | 0.005094 / 0.007986 (-0.002892) | 0.003494 / 0.004328 (-0.000834) | 0.074963 / 0.004250 (0.070713) | 0.038457 / 0.037052 (0.001405) | 0.340587 / 0.258489 (0.082098) | 0.381212 / 0.293841 (0.087371) | 0.031597 / 0.128546 (-0.096950) | 0.011631 / 0.075646 (-0.064015) | 0.084646 / 0.419271 (-0.334626) | 0.042072 / 0.043533 (-0.001461) | 0.340977 / 0.255139 (0.085838) | 0.366502 / 0.283200 (0.083302) | 0.091181 / 0.141683 (-0.050502) | 1.435119 / 1.452155 (-0.017035) | 1.520426 / 1.492716 (0.027710) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211320 / 0.018006 (0.193313) | 0.466154 / 0.000490 (0.465664) | 0.002901 / 0.000200 (0.002701) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025122 / 0.037411 (-0.012289) | 0.098929 / 0.014526 (0.084403) | 0.106551 / 0.176557 (-0.070005) | 0.142820 / 0.737135 (-0.594316) | 0.110701 / 0.296338 (-0.185637) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445187 / 0.215209 (0.229978) | 4.457524 / 2.077655 (2.379870) | 2.088323 / 1.504120 (0.584203) | 1.888076 / 1.541195 (0.346881) | 1.923340 / 1.468490 (0.454850) | 0.723354 / 4.584777 (-3.861423) | 3.428479 / 3.745712 (-0.317233) | 1.914580 / 5.269862 (-3.355281) | 1.191810 / 4.565676 (-3.373866) | 0.087008 / 0.424275 (-0.337267) | 0.013431 / 0.007607 (0.005824) | 0.545089 / 0.226044 (0.319044) | 5.465887 / 2.268929 (3.196958) | 2.527431 / 55.444624 (-52.917194) | 2.240622 / 6.876477 (-4.635854) | 2.232472 / 2.142072 (0.090399) | 0.815968 / 4.805227 (-3.989259) | 0.152842 / 6.500664 (-6.347822) | 0.067152 / 0.075469 (-0.008317) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.328360 / 1.841788 (-0.513427) | 14.163349 / 8.074308 (6.089040) | 13.814255 / 10.191392 (3.622863) | 0.131684 / 0.680424 (-0.548740) | 0.016980 / 0.534201 (-0.517221) | 0.396045 / 0.579283 (-0.183238) | 0.395078 / 0.434364 (-0.039286) | 0.471728 / 0.540337 (-0.068609) | 0.567830 / 1.386936 (-0.819106) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#82331b032891671c334afe30c5f3cc21245b2d72 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012630 / 0.011353 (0.001277) | 0.007038 / 0.011008 (-0.003970) | 0.158816 / 0.038508 (0.120308) | 0.044142 / 0.023109 (0.021032) | 0.389393 / 0.275898 (0.113495) | 0.479745 / 0.323480 (0.156265) | 0.009335 / 0.007986 (0.001349) | 0.005434 / 0.004328 (0.001105) | 0.107747 / 0.004250 (0.103497) | 0.048382 / 0.037052 (0.011330) | 0.398144 / 0.258489 (0.139655) | 0.446373 / 0.293841 (0.152532) | 0.066285 / 0.128546 (-0.062261) | 0.021174 / 0.075646 (-0.054472) | 0.449176 / 0.419271 (0.029905) | 0.063044 / 0.043533 (0.019511) | 0.390523 / 0.255139 (0.135384) | 0.451435 / 0.283200 (0.168236) | 0.116369 / 0.141683 (-0.025314) | 1.881269 / 1.452155 (0.429114) | 1.944527 / 1.492716 (0.451811) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227989 / 0.018006 (0.209983) | 0.538514 / 0.000490 (0.538024) | 0.009404 / 0.000200 (0.009204) | 0.000510 / 0.000054 (0.000455) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029826 / 0.037411 (-0.007585) | 0.129623 / 0.014526 (0.115098) | 0.142067 / 0.176557 (-0.034489) | 0.218586 / 0.737135 (-0.518549) | 0.160524 / 0.296338 (-0.135814) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.667195 / 0.215209 (0.451986) | 6.694192 / 2.077655 (4.616537) | 2.542493 / 1.504120 (1.038373) | 2.124042 / 1.541195 (0.582847) | 2.024854 / 1.468490 (0.556364) | 1.306222 / 4.584777 (-3.278555) | 5.631557 / 3.745712 (1.885845) | 3.405978 / 5.269862 (-1.863884) | 2.471399 / 4.565676 (-2.094278) | 0.165187 / 0.424275 (-0.259088) | 0.014880 / 0.007607 (0.007273) | 0.842718 / 0.226044 (0.616673) | 8.584358 / 2.268929 (6.315430) | 3.377228 / 55.444624 (-52.067396) | 2.667265 / 6.876477 (-4.209212) | 2.699462 / 2.142072 (0.557389) | 1.623115 / 4.805227 (-3.182112) | 0.253929 / 6.500664 (-6.246735) | 0.077189 / 0.075469 (0.001720) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.778962 / 1.841788 (-0.062825) | 18.997636 / 8.074308 (10.923328) | 24.255222 / 10.191392 (14.063830) | 0.304754 / 0.680424 (-0.375670) | 0.049656 / 0.534201 (-0.484545) | 0.590871 / 0.579283 (0.011588) | 0.649292 / 0.434364 (0.214928) | 0.751281 / 0.540337 (0.210943) | 0.872193 / 1.386936 (-0.514743) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010660 / 0.011353 (-0.000693) | 0.006492 / 0.011008 (-0.004516) | 0.112190 / 0.038508 (0.073682) | 0.045391 / 0.023109 (0.022281) | 0.439852 / 0.275898 (0.163954) | 0.486489 / 0.323480 (0.163009) | 0.007155 / 0.007986 (-0.000830) | 0.006323 / 0.004328 (0.001995) | 0.099775 / 0.004250 (0.095525) | 0.055762 / 0.037052 (0.018709) | 0.439457 / 0.258489 (0.180968) | 0.505322 / 0.293841 (0.211481) | 0.057019 / 0.128546 (-0.071527) | 0.031382 / 0.075646 (-0.044264) | 0.121211 / 0.419271 (-0.298061) | 0.066091 / 0.043533 (0.022558) | 0.499760 / 0.255139 (0.244622) | 0.508312 / 0.283200 (0.225113) | 0.146975 / 0.141683 (0.005292) | 1.916347 / 1.452155 (0.464193) | 2.065860 / 1.492716 (0.573144) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247176 / 0.018006 (0.229170) | 0.565141 / 0.000490 (0.564652) | 0.004841 / 0.000200 (0.004641) | 0.000141 / 0.000054 (0.000087) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036378 / 0.037411 (-0.001033) | 0.143470 / 0.014526 (0.128944) | 0.148096 / 0.176557 (-0.028461) | 0.225877 / 0.737135 (-0.511258) | 0.147072 / 0.296338 (-0.149266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.723119 / 0.215209 (0.507910) | 6.824981 / 2.077655 (4.747326) | 2.883840 / 1.504120 (1.379720) | 2.468707 / 1.541195 (0.927513) | 2.525549 / 1.468490 (1.057059) | 1.426640 / 4.584777 (-3.158137) | 5.816045 / 3.745712 (2.070333) | 5.727037 / 5.269862 (0.457175) | 2.650307 / 4.565676 (-1.915369) | 0.160306 / 0.424275 (-0.263970) | 0.015371 / 0.007607 (0.007764) | 0.835778 / 0.226044 (0.609733) | 8.622836 / 2.268929 (6.353907) | 3.616338 / 55.444624 (-51.828287) | 2.974243 / 6.876477 (-3.902234) | 2.884557 / 2.142072 (0.742485) | 1.734874 / 4.805227 (-3.070353) | 0.277474 / 6.500664 (-6.223190) | 0.094189 / 0.075469 (0.018720) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.785728 / 1.841788 (-0.056059) | 19.376490 / 8.074308 (11.302182) | 24.560403 / 10.191392 (14.369011) | 0.250686 / 0.680424 (-0.429738) | 0.034333 / 0.534201 (-0.499868) | 0.557331 / 0.579283 (-0.021952) | 0.641007 / 0.434364 (0.206643) | 0.657138 / 0.540337 (0.116800) | 0.759023 / 1.386936 (-0.627913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#06ae3f678651bfbb3ca7dd3274ee2f38e0e0237e \"CML watermark\")\n", "I am editing the title and description of this PR:\r\n- It should be \"Lint code\" instead of \"Format code\": formatting was still done with `black`\r\n- This PR uses `ruff` instead of `isort` and `flake8` (not `black`): note that `black` was still used for formatting" ]
2023-02-09T17:50:21Z
2024-06-01T15:35:02Z
2023-02-14T16:18:38Z
COLLABORATOR
null
null
null
EDIT: Use `ruff` for linting instead of `isort` and `flake8` ~~`black`~~ to be consistent with [`transformers`](https://github.com/huggingface/transformers/pull/21480) and [`hfh`](https://github.com/huggingface/huggingface_hub/pull/1323). TODO: - [x] ~Merge the community contributors' PR to avoid having to run `make style` on their PR branches~ (we have some new PRs, but fixing those shouldn't be too big of a problem)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5519/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5519/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5519.diff", "html_url": "https://github.com/huggingface/datasets/pull/5519", "merged_at": "2023-02-14T16:18:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/5519.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5519" }
https://api.github.com/repos/huggingface/datasets/issues/7359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7359/comments
https://api.github.com/repos/huggingface/datasets/issues/7359/events
https://github.com/huggingface/datasets/issues/7359
2,771,137,842
I_kwDODunzps6lLDUy
7,359
There are multiple 'mteb/arguana' configurations in the cache: default, corpus, queries with HF_HUB_OFFLINE=1
{ "avatar_url": "https://avatars.githubusercontent.com/u/723146?v=4", "events_url": "https://api.github.com/users/Bhavya6187/events{/privacy}", "followers_url": "https://api.github.com/users/Bhavya6187/followers", "following_url": "https://api.github.com/users/Bhavya6187/following{/other_user}", "gists_url": "https://api.github.com/users/Bhavya6187/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Bhavya6187", "id": 723146, "login": "Bhavya6187", "node_id": "MDQ6VXNlcjcyMzE0Ng==", "organizations_url": "https://api.github.com/users/Bhavya6187/orgs", "received_events_url": "https://api.github.com/users/Bhavya6187/received_events", "repos_url": "https://api.github.com/users/Bhavya6187/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Bhavya6187/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bhavya6187/subscriptions", "type": "User", "url": "https://api.github.com/users/Bhavya6187", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Related to https://github.com/embeddings-benchmark/mteb/issues/1714" ]
2025-01-06T17:42:49Z
2025-01-06T17:43:31Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hey folks, I am trying to run this code - ```python from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") ``` with HF_HUB_OFFLINE=1 But I get the following error - ```python Using the latest cached version of the dataset since mteb/arguana couldn't be found on the Hugging Face Hub (offline mode is enabled). --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 1 ----> 1 ds = load_dataset("mteb/arguana") File ~/env/lib/python3.10/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File ~/env/lib/python3.10/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:124, in Cache.__init__(self, cache_dir, dataset_name, config_name, version, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 122 config_kwargs["data_dir"] = data_dir 123 if hash == "auto" and version == "auto": --> 124 config_name, version, hash = _find_hash_in_cache( 125 dataset_name=repo_id or dataset_name, 126 config_name=config_name, 127 cache_dir=cache_dir, 128 config_kwargs=config_kwargs, 129 custom_features=features, 130 ) 131 elif hash == "auto" or version == "auto": 132 raise NotImplementedError("Pass both hash='auto' and version='auto' instead") File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:84, in _find_hash_in_cache(dataset_name, config_name, cache_dir, config_kwargs, custom_features) 72 other_configs = [ 73 Path(_cached_directory_path).parts[-3] 74 for _cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", version, hash)) (...) 81 ) 82 ] 83 if not config_id and len(other_configs) > 1: ---> 84 raise ValueError( 85 f"There are multiple '{dataset_name}' configurations in the cache: {', '.join(other_configs)}" 86 f"\nPlease specify which configuration to reload from the cache, e.g." 87 f"\n\tload_dataset('{dataset_name}', '{other_configs[0]}')" 88 ) 89 config_name = cached_directory_path.parts[-3] 90 warning_msg = ( 91 f"Found the latest cached dataset configuration '{config_name}' at {cached_directory_path} " 92 f"(last modified on {time.ctime(_get_modification_time(cached_directory_path))})." 93 ) ValueError: There are multiple 'mteb/arguana' configurations in the cache: queries, corpus, default Please specify which configuration to reload from the cache, e.g. load_dataset('mteb/arguana', 'queries') ``` It works when I run the same code with HF_HUB_OFFLINE=0, but after the data is downloaded, I turn off the HF hub cache with HF_HUB_OFFLINE=1, and then this error appears. Are there some files I am missing with hub disabled? ### Steps to reproduce the bug from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") with HF_HUB_OFFLINE=1 (after already running it with HF_HUB_OFFLINE=0 and populating the datasets cache) ### Expected behavior Dataset loaded successfully as it does with HF_HUB_OFFLINE=1 ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.148.2-2.cm2-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.27.0 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7359/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5427/comments
https://api.github.com/repos/huggingface/datasets/issues/5427/events
https://github.com/huggingface/datasets/issues/5427
1,535,162,889
I_kwDODunzps5bgLoJ
5,427
Unable to download dataset id_clickbait
{ "avatar_url": "https://avatars.githubusercontent.com/u/45941585?v=4", "events_url": "https://api.github.com/users/ilos-vigil/events{/privacy}", "followers_url": "https://api.github.com/users/ilos-vigil/followers", "following_url": "https://api.github.com/users/ilos-vigil/following{/other_user}", "gists_url": "https://api.github.com/users/ilos-vigil/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ilos-vigil", "id": 45941585, "login": "ilos-vigil", "node_id": "MDQ6VXNlcjQ1OTQxNTg1", "organizations_url": "https://api.github.com/users/ilos-vigil/orgs", "received_events_url": "https://api.github.com/users/ilos-vigil/received_events", "repos_url": "https://api.github.com/users/ilos-vigil/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ilos-vigil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ilos-vigil/subscriptions", "type": "User", "url": "https://api.github.com/users/ilos-vigil", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @ilos-vigil.\r\n\r\nWe have transferred this issue to the corresponding dataset on the Hugging Face Hub: https://huggingface.co/datasets/id_clickbait/discussions/1 " ]
2023-01-16T16:05:36Z
2023-01-18T09:51:28Z
2023-01-18T09:25:19Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I tried to download dataset `id_clickbait`, but receive this error message. ``` FileNotFoundError: Couldn't find file at https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/k42j7x2kpn-1.zip ``` When i open the link using browser, i got this XML data. ```xml <?xml version="1.0" encoding="UTF-8"?> <Error><Code>NoSuchBucket</Code><Message>The specified bucket does not exist</Message><BucketName>md-datasets-cache-zipfiles-prod</BucketName><RequestId>NVRM6VEEQD69SD00</RequestId><HostId>W/SPDxLGvlCGi0OD6d7mSDvfOAUqLAfvs9nTX50BkJrjMny+X9Jnqp/Li2lG9eTUuT4MUkAA2jjTfCrCiUmu7A==</HostId></Error> ``` ### Steps to reproduce the bug Code snippet: ``` from datasets import load_dataset load_dataset('id_clickbait', 'annotated') load_dataset('id_clickbait', 'raw') ``` Link to Kaggle notebook: https://www.kaggle.com/code/ilosvigil/bug-check-on-id-clickbait-dataset ### Expected behavior Successfully download and load `id_newspaper` dataset. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5427/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5856
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5856/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5856/comments
https://api.github.com/repos/huggingface/datasets/issues/5856/events
https://github.com/huggingface/datasets/issues/5856
1,709,218,242
I_kwDODunzps5l4JnC
5,856
Error loading natural_questions
{ "avatar_url": "https://avatars.githubusercontent.com/u/19185508?v=4", "events_url": "https://api.github.com/users/Crownor/events{/privacy}", "followers_url": "https://api.github.com/users/Crownor/followers", "following_url": "https://api.github.com/users/Crownor/following{/other_user}", "gists_url": "https://api.github.com/users/Crownor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Crownor", "id": 19185508, "login": "Crownor", "node_id": "MDQ6VXNlcjE5MTg1NTA4", "organizations_url": "https://api.github.com/users/Crownor/orgs", "received_events_url": "https://api.github.com/users/Crownor/received_events", "repos_url": "https://api.github.com/users/Crownor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Crownor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Crownor/subscriptions", "type": "User", "url": "https://api.github.com/users/Crownor", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! You can avoid this error by using the preprocessed version:\r\n```python\r\nimport datasets\r\nds = datasets.load_dataset('natural_questions')\r\n```\r\n\r\nPS: Once we finish https://github.com/huggingface/datasets/pull/5364, this error will no longer be a problem.", "> Hi! You can avoid this error by using the preprocessed version:\r\n> \r\n> ```python\r\n> import datasets\r\n> ds = datasets.load_dataset('natural_questions')\r\n> ```\r\n> \r\n> PS: Once we finish #5364, this error will no longer be a problem.\r\n\r\nThanks, wish #5364 finish early" ]
2023-05-15T02:46:04Z
2023-06-05T09:11:19Z
2023-06-05T09:11:18Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When try to load natural_questions through datasets == 2.12.0 with python == 3.8.9: ```python import datasets datasets.load_dataset('natural_questions',beam_runner='DirectRunner') ``` It failed with following info: `pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs` ### Steps to reproduce the bug In python console: ```python import datasets datasets.load_dataset('natural_questions',beam_runner='DirectRunner') ``` Then the trace is: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/nlp/.cache/pypoetry/virtualenvs/drg-W3LF4Ol9-py3.8/lib/python3.8/site-packages/datasets/load.py", line 1797, in load_dataset builder_instance.download_and_prepare( File "/home/nlp/.cache/pypoetry/virtualenvs/drg-W3LF4Ol9-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 890, in download_and_prepare self._download_and_prepare( File "/home/nlp/.cache/pypoetry/virtualenvs/drg-W3LF4Ol9-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 2019, in _download_and_prepare num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter)) File "/home/nlp/.cache/pypoetry/virtualenvs/drg-W3LF4Ol9-py3.8/lib/python3.8/site-packages/datasets/arrow_writer.py", line 694, in finalize shard_num_bytes, _ = parquet_to_arrow(source, destination) File "/home/nlp/.cache/pypoetry/virtualenvs/drg-W3LF4Ol9-py3.8/lib/python3.8/site-packages/datasets/arrow_writer.py", line 737, in parquet_to_arrow for record_batch in parquet_file.iter_batches(): File "pyarrow/_parquet.pyx", line 1323, in iter_batches File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs ``` ### Expected behavior load natural_question questions ### Environment info ``` - `datasets` version: 2.12.0 - Platform: Linux-3.10.0-1160.42.2.el7.x86_64-x86_64-with-glibc2.2.5 - Python version: 3.8.9 - Huggingface_hub version: 0.14.1 - PyArrow version: 11.0.0 - Pandas version: 2.0.1 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/19185508?v=4", "events_url": "https://api.github.com/users/Crownor/events{/privacy}", "followers_url": "https://api.github.com/users/Crownor/followers", "following_url": "https://api.github.com/users/Crownor/following{/other_user}", "gists_url": "https://api.github.com/users/Crownor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Crownor", "id": 19185508, "login": "Crownor", "node_id": "MDQ6VXNlcjE5MTg1NTA4", "organizations_url": "https://api.github.com/users/Crownor/orgs", "received_events_url": "https://api.github.com/users/Crownor/received_events", "repos_url": "https://api.github.com/users/Crownor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Crownor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Crownor/subscriptions", "type": "User", "url": "https://api.github.com/users/Crownor", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5856/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5856/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5163
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5163/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5163/comments
https://api.github.com/repos/huggingface/datasets/issues/5163/events
https://github.com/huggingface/datasets/pull/5163
1,422,540,337
PR_kwDODunzps5BgQxp
5,163
Reduce default max `writer_batch_size`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-25T14:14:52Z
2022-10-27T12:19:27Z
2022-10-27T12:16:47Z
COLLABORATOR
null
null
null
Reduce the default writer_batch_size from 10k to 1k examples. Additionally, align the default values of `batch_size` and `writer_batch_size` in `Dataset.cast` with the values from the corresponding docstring.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5163/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5163/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5163.diff", "html_url": "https://github.com/huggingface/datasets/pull/5163", "merged_at": "2022-10-27T12:16:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/5163.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5163" }
https://api.github.com/repos/huggingface/datasets/issues/5473
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5473/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5473/comments
https://api.github.com/repos/huggingface/datasets/issues/5473/events
https://github.com/huggingface/datasets/pull/5473
1,558,668,197
PR_kwDODunzps5Inm9h
5,473
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008959 / 0.011353 (-0.002394) | 0.004549 / 0.011008 (-0.006460) | 0.102012 / 0.038508 (0.063504) | 0.030122 / 0.023109 (0.007013) | 0.303731 / 0.275898 (0.027833) | 0.344418 / 0.323480 (0.020938) | 0.007199 / 0.007986 (-0.000787) | 0.003415 / 0.004328 (-0.000913) | 0.079784 / 0.004250 (0.075534) | 0.034894 / 0.037052 (-0.002158) | 0.304739 / 0.258489 (0.046250) | 0.359457 / 0.293841 (0.065616) | 0.034194 / 0.128546 (-0.094352) | 0.011348 / 0.075646 (-0.064298) | 0.324340 / 0.419271 (-0.094931) | 0.041071 / 0.043533 (-0.002461) | 0.304437 / 0.255139 (0.049298) | 0.335517 / 0.283200 (0.052317) | 0.087787 / 0.141683 (-0.053895) | 1.467293 / 1.452155 (0.015138) | 1.543529 / 1.492716 (0.050813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187654 / 0.018006 (0.169648) | 0.426558 / 0.000490 (0.426068) | 0.003585 / 0.000200 (0.003385) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023410 / 0.037411 (-0.014001) | 0.097065 / 0.014526 (0.082539) | 0.105358 / 0.176557 (-0.071198) | 0.140941 / 0.737135 (-0.596195) | 0.109484 / 0.296338 (-0.186855) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420334 / 0.215209 (0.205125) | 4.223235 / 2.077655 (2.145581) | 1.866213 / 1.504120 (0.362093) | 1.673829 / 1.541195 (0.132634) | 1.757828 / 1.468490 (0.289337) | 0.702203 / 4.584777 (-3.882574) | 3.426192 / 3.745712 (-0.319521) | 1.950392 / 5.269862 (-3.319470) | 1.286139 / 4.565676 (-3.279538) | 0.082858 / 0.424275 (-0.341417) | 0.012587 / 0.007607 (0.004980) | 0.531920 / 0.226044 (0.305876) | 5.344425 / 2.268929 (3.075497) | 2.337875 / 55.444624 (-53.106749) | 1.967713 / 6.876477 (-4.908764) | 2.022075 / 2.142072 (-0.119997) | 0.829267 / 4.805227 (-3.975961) | 0.151712 / 6.500664 (-6.348952) | 0.066617 / 0.075469 (-0.008852) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251867 / 1.841788 (-0.589921) | 13.861756 / 8.074308 (5.787448) | 14.236309 / 10.191392 (4.044917) | 0.138215 / 0.680424 (-0.542209) | 0.028600 / 0.534201 (-0.505601) | 0.395890 / 0.579283 (-0.183393) | 0.403971 / 0.434364 (-0.030393) | 0.479033 / 0.540337 (-0.061305) | 0.564019 / 1.386936 (-0.822917) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006845 / 0.011353 (-0.004508) | 0.004544 / 0.011008 (-0.006464) | 0.098719 / 0.038508 (0.060211) | 0.029082 / 0.023109 (0.005973) | 0.426011 / 0.275898 (0.150113) | 0.447185 / 0.323480 (0.123705) | 0.005203 / 0.007986 (-0.002783) | 0.004790 / 0.004328 (0.000462) | 0.076446 / 0.004250 (0.072196) | 0.040649 / 0.037052 (0.003596) | 0.414810 / 0.258489 (0.156321) | 0.452082 / 0.293841 (0.158241) | 0.031842 / 0.128546 (-0.096704) | 0.011575 / 0.075646 (-0.064071) | 0.320710 / 0.419271 (-0.098561) | 0.044994 / 0.043533 (0.001461) | 0.415645 / 0.255139 (0.160506) | 0.435235 / 0.283200 (0.152035) | 0.091756 / 0.141683 (-0.049927) | 1.493900 / 1.452155 (0.041746) | 1.592353 / 1.492716 (0.099637) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264710 / 0.018006 (0.246703) | 0.410553 / 0.000490 (0.410064) | 0.024497 / 0.000200 (0.024297) | 0.000232 / 0.000054 (0.000178) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024452 / 0.037411 (-0.012959) | 0.102673 / 0.014526 (0.088147) | 0.107787 / 0.176557 (-0.068770) | 0.147368 / 0.737135 (-0.589767) | 0.112127 / 0.296338 (-0.184211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471294 / 0.215209 (0.256085) | 4.711638 / 2.077655 (2.633983) | 2.436819 / 1.504120 (0.932699) | 2.238540 / 1.541195 (0.697345) | 2.334134 / 1.468490 (0.865644) | 0.697668 / 4.584777 (-3.887108) | 3.414332 / 3.745712 (-0.331380) | 2.783248 / 5.269862 (-2.486614) | 1.529599 / 4.565676 (-3.036078) | 0.082626 / 0.424275 (-0.341649) | 0.012385 / 0.007607 (0.004778) | 0.580486 / 0.226044 (0.354441) | 5.837914 / 2.268929 (3.568986) | 2.915129 / 55.444624 (-52.529495) | 2.606254 / 6.876477 (-4.270223) | 2.659031 / 2.142072 (0.516958) | 0.810431 / 4.805227 (-3.994796) | 0.151666 / 6.500664 (-6.348998) | 0.066873 / 0.075469 (-0.008596) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259933 / 1.841788 (-0.581855) | 14.052388 / 8.074308 (5.978080) | 13.356141 / 10.191392 (3.164749) | 0.138416 / 0.680424 (-0.542008) | 0.016582 / 0.534201 (-0.517619) | 0.378110 / 0.579283 (-0.201173) | 0.385089 / 0.434364 (-0.049275) | 0.465299 / 0.540337 (-0.075038) | 0.559780 / 1.386936 (-0.827156) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d2859fd4d4beca33f21539a6e1df9a7f012cbd10 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011945 / 0.011353 (0.000592) | 0.006128 / 0.011008 (-0.004880) | 0.128926 / 0.038508 (0.090418) | 0.037708 / 0.023109 (0.014599) | 0.373449 / 0.275898 (0.097551) | 0.423567 / 0.323480 (0.100088) | 0.009848 / 0.007986 (0.001863) | 0.006097 / 0.004328 (0.001769) | 0.098275 / 0.004250 (0.094024) | 0.043199 / 0.037052 (0.006147) | 0.376848 / 0.258489 (0.118359) | 0.441819 / 0.293841 (0.147978) | 0.055094 / 0.128546 (-0.073453) | 0.019704 / 0.075646 (-0.055942) | 0.422746 / 0.419271 (0.003474) | 0.061764 / 0.043533 (0.018231) | 0.381056 / 0.255139 (0.125917) | 0.419343 / 0.283200 (0.136144) | 0.116720 / 0.141683 (-0.024963) | 1.763913 / 1.452155 (0.311759) | 1.872306 / 1.492716 (0.379589) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198651 / 0.018006 (0.180645) | 0.560565 / 0.000490 (0.560075) | 0.004269 / 0.000200 (0.004069) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027307 / 0.037411 (-0.010104) | 0.128276 / 0.014526 (0.113750) | 0.129015 / 0.176557 (-0.047542) | 0.167269 / 0.737135 (-0.569866) | 0.143955 / 0.296338 (-0.152384) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.564954 / 0.215209 (0.349745) | 5.810570 / 2.077655 (3.732916) | 2.456382 / 1.504120 (0.952262) | 2.115809 / 1.541195 (0.574614) | 2.097363 / 1.468490 (0.628873) | 1.189712 / 4.584777 (-3.395065) | 5.318287 / 3.745712 (1.572575) | 2.965763 / 5.269862 (-2.304099) | 2.177958 / 4.565676 (-2.387719) | 0.144135 / 0.424275 (-0.280140) | 0.014348 / 0.007607 (0.006741) | 0.781715 / 0.226044 (0.555670) | 7.688349 / 2.268929 (5.419421) | 3.189260 / 55.444624 (-52.255365) | 2.552340 / 6.876477 (-4.324137) | 2.559312 / 2.142072 (0.417240) | 1.490755 / 4.805227 (-3.314473) | 0.257908 / 6.500664 (-6.242756) | 0.082016 / 0.075469 (0.006547) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565735 / 1.841788 (-0.276053) | 17.660338 / 8.074308 (9.586030) | 19.493573 / 10.191392 (9.302181) | 0.241310 / 0.680424 (-0.439114) | 0.043485 / 0.534201 (-0.490716) | 0.557397 / 0.579283 (-0.021886) | 0.624385 / 0.434364 (0.190021) | 0.634601 / 0.540337 (0.094264) | 0.743140 / 1.386936 (-0.643796) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010134 / 0.011353 (-0.001219) | 0.005858 / 0.011008 (-0.005150) | 0.128741 / 0.038508 (0.090232) | 0.036769 / 0.023109 (0.013660) | 0.470894 / 0.275898 (0.194996) | 0.524302 / 0.323480 (0.200822) | 0.006830 / 0.007986 (-0.001156) | 0.006166 / 0.004328 (0.001838) | 0.094875 / 0.004250 (0.090625) | 0.051201 / 0.037052 (0.014148) | 0.493992 / 0.258489 (0.235503) | 0.510540 / 0.293841 (0.216699) | 0.056354 / 0.128546 (-0.072192) | 0.020512 / 0.075646 (-0.055134) | 0.417809 / 0.419271 (-0.001463) | 0.061941 / 0.043533 (0.018408) | 0.498883 / 0.255139 (0.243744) | 0.480762 / 0.283200 (0.197563) | 0.110753 / 0.141683 (-0.030930) | 1.914096 / 1.452155 (0.461941) | 1.941338 / 1.492716 (0.448622) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237955 / 0.018006 (0.219949) | 0.518136 / 0.000490 (0.517647) | 0.000475 / 0.000200 (0.000275) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032947 / 0.037411 (-0.004465) | 0.127857 / 0.014526 (0.113331) | 0.133911 / 0.176557 (-0.042646) | 0.188406 / 0.737135 (-0.548729) | 0.143939 / 0.296338 (-0.152400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.787553 / 0.215209 (0.572344) | 6.976572 / 2.077655 (4.898918) | 2.897964 / 1.504120 (1.393844) | 2.545906 / 1.541195 (1.004711) | 2.622111 / 1.468490 (1.153620) | 1.278283 / 4.584777 (-3.306494) | 5.650447 / 3.745712 (1.904734) | 4.955835 / 5.269862 (-0.314027) | 2.767946 / 4.565676 (-1.797731) | 0.149385 / 0.424275 (-0.274890) | 0.014340 / 0.007607 (0.006733) | 0.861774 / 0.226044 (0.635730) | 8.660985 / 2.268929 (6.392057) | 3.685611 / 55.444624 (-51.759014) | 2.963087 / 6.876477 (-3.913390) | 3.020746 / 2.142072 (0.878673) | 1.538908 / 4.805227 (-3.266319) | 0.285875 / 6.500664 (-6.214789) | 0.080337 / 0.075469 (0.004867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.575155 / 1.841788 (-0.266633) | 17.548946 / 8.074308 (9.474638) | 19.954104 / 10.191392 (9.762712) | 0.242025 / 0.680424 (-0.438398) | 0.025586 / 0.534201 (-0.508615) | 0.515676 / 0.579283 (-0.063607) | 0.607035 / 0.434364 (0.172671) | 0.633597 / 0.540337 (0.093259) | 0.744577 / 1.386936 (-0.642359) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6529cada7879496bf18dd686e4d281de81d6203c \"CML watermark\")\n" ]
2023-01-26T19:34:44Z
2023-01-26T19:47:34Z
2023-01-26T19:38:30Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5473/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5473/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5473.diff", "html_url": "https://github.com/huggingface/datasets/pull/5473", "merged_at": "2023-01-26T19:38:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/5473.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5473" }
https://api.github.com/repos/huggingface/datasets/issues/5733
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5733/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5733/comments
https://api.github.com/repos/huggingface/datasets/issues/5733/events
https://github.com/huggingface/datasets/pull/5733
1,662,039,191
PR_kwDODunzps5OAA04
5,733
Unpin fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006240 / 0.011353 (-0.005113) | 0.004392 / 0.011008 (-0.006616) | 0.097276 / 0.038508 (0.058768) | 0.027262 / 0.023109 (0.004153) | 0.303203 / 0.275898 (0.027305) | 0.331878 / 0.323480 (0.008398) | 0.004706 / 0.007986 (-0.003279) | 0.004428 / 0.004328 (0.000100) | 0.074666 / 0.004250 (0.070416) | 0.036154 / 0.037052 (-0.000899) | 0.302997 / 0.258489 (0.044508) | 0.340350 / 0.293841 (0.046509) | 0.031011 / 0.128546 (-0.097535) | 0.011616 / 0.075646 (-0.064031) | 0.323671 / 0.419271 (-0.095601) | 0.042062 / 0.043533 (-0.001471) | 0.311381 / 0.255139 (0.056242) | 0.324697 / 0.283200 (0.041498) | 0.084248 / 0.141683 (-0.057435) | 1.471651 / 1.452155 (0.019496) | 1.533414 / 1.492716 (0.040697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193555 / 0.018006 (0.175549) | 0.393452 / 0.000490 (0.392962) | 0.002348 / 0.000200 (0.002148) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022523 / 0.037411 (-0.014889) | 0.096552 / 0.014526 (0.082026) | 0.101746 / 0.176557 (-0.074810) | 0.163145 / 0.737135 (-0.573990) | 0.106417 / 0.296338 (-0.189921) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448589 / 0.215209 (0.233380) | 4.467803 / 2.077655 (2.390148) | 2.178745 / 1.504120 (0.674625) | 1.983339 / 1.541195 (0.442145) | 2.056554 / 1.468490 (0.588064) | 0.697571 / 4.584777 (-3.887206) | 3.363967 / 3.745712 (-0.381745) | 1.872526 / 5.269862 (-3.397336) | 1.258245 / 4.565676 (-3.307432) | 0.082954 / 0.424275 (-0.341321) | 0.012306 / 0.007607 (0.004699) | 0.545096 / 0.226044 (0.319052) | 5.468706 / 2.268929 (3.199777) | 2.645333 / 55.444624 (-52.799292) | 2.287659 / 6.876477 (-4.588818) | 2.346768 / 2.142072 (0.204696) | 0.803730 / 4.805227 (-4.001497) | 0.151037 / 6.500664 (-6.349627) | 0.066404 / 0.075469 (-0.009065) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.192982 / 1.841788 (-0.648806) | 13.631225 / 8.074308 (5.556917) | 13.830053 / 10.191392 (3.638661) | 0.141901 / 0.680424 (-0.538523) | 0.016500 / 0.534201 (-0.517701) | 0.373268 / 0.579283 (-0.206015) | 0.380123 / 0.434364 (-0.054241) | 0.430786 / 0.540337 (-0.109551) | 0.512669 / 1.386936 (-0.874267) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006161 / 0.011353 (-0.005192) | 0.004399 / 0.011008 (-0.006609) | 0.076210 / 0.038508 (0.037702) | 0.026791 / 0.023109 (0.003681) | 0.341523 / 0.275898 (0.065625) | 0.370400 / 0.323480 (0.046920) | 0.004495 / 0.007986 (-0.003491) | 0.003204 / 0.004328 (-0.001125) | 0.075444 / 0.004250 (0.071194) | 0.035914 / 0.037052 (-0.001138) | 0.343806 / 0.258489 (0.085317) | 0.384320 / 0.293841 (0.090479) | 0.031438 / 0.128546 (-0.097109) | 0.011253 / 0.075646 (-0.064393) | 0.085364 / 0.419271 (-0.333908) | 0.041407 / 0.043533 (-0.002126) | 0.338831 / 0.255139 (0.083692) | 0.364357 / 0.283200 (0.081158) | 0.087417 / 0.141683 (-0.054266) | 1.520624 / 1.452155 (0.068470) | 1.572432 / 1.492716 (0.079716) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232403 / 0.018006 (0.214396) | 0.388187 / 0.000490 (0.387698) | 0.001158 / 0.000200 (0.000958) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024596 / 0.037411 (-0.012816) | 0.101203 / 0.014526 (0.086677) | 0.105243 / 0.176557 (-0.071314) | 0.158215 / 0.737135 (-0.578920) | 0.110277 / 0.296338 (-0.186061) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435661 / 0.215209 (0.220452) | 4.350151 / 2.077655 (2.272496) | 2.072372 / 1.504120 (0.568252) | 1.870675 / 1.541195 (0.329480) | 1.910883 / 1.468490 (0.442393) | 0.697384 / 4.584777 (-3.887393) | 3.399377 / 3.745712 (-0.346335) | 2.685008 / 5.269862 (-2.584854) | 1.476843 / 4.565676 (-3.088834) | 0.083177 / 0.424275 (-0.341098) | 0.012413 / 0.007607 (0.004806) | 0.542543 / 0.226044 (0.316498) | 5.431422 / 2.268929 (3.162494) | 2.506419 / 55.444624 (-52.938206) | 2.166342 / 6.876477 (-4.710135) | 2.164421 / 2.142072 (0.022348) | 0.800609 / 4.805227 (-4.004618) | 0.150527 / 6.500664 (-6.350137) | 0.065780 / 0.075469 (-0.009689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293409 / 1.841788 (-0.548379) | 13.814898 / 8.074308 (5.740590) | 13.940416 / 10.191392 (3.749024) | 0.149377 / 0.680424 (-0.531047) | 0.016462 / 0.534201 (-0.517739) | 0.393748 / 0.579283 (-0.185535) | 0.384327 / 0.434364 (-0.050037) | 0.489900 / 0.540337 (-0.050437) | 0.574608 / 1.386936 (-0.812328) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2607935c4e45c70c44fcb698db0363ca7ba83d4 \"CML watermark\")\n" ]
2023-04-11T08:52:12Z
2023-04-11T11:11:45Z
2023-04-11T11:04:51Z
MEMBER
null
null
null
In `fsspec--2023.4.0` default value for clobber when registering an implementation was changed from True to False. See: - https://github.com/fsspec/filesystem_spec/pull/1237 This PR recovers previous behavior by passing clobber True when registering mock implementations. This PR also removes the temporary pin introduced by: - #5731 Fix #5734.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5733/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5733/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5733.diff", "html_url": "https://github.com/huggingface/datasets/pull/5733", "merged_at": "2023-04-11T11:04:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/5733.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5733" }
https://api.github.com/repos/huggingface/datasets/issues/7306
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7306/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7306/comments
https://api.github.com/repos/huggingface/datasets/issues/7306/events
https://github.com/huggingface/datasets/issues/7306
2,719,807,464
I_kwDODunzps6iHPfo
7,306
Creating new dataset from list loses information. (Audio Information Lost - either Datatype or Values).
{ "avatar_url": "https://avatars.githubusercontent.com/u/9797804?v=4", "events_url": "https://api.github.com/users/ai-nikolai/events{/privacy}", "followers_url": "https://api.github.com/users/ai-nikolai/followers", "following_url": "https://api.github.com/users/ai-nikolai/following{/other_user}", "gists_url": "https://api.github.com/users/ai-nikolai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ai-nikolai", "id": 9797804, "login": "ai-nikolai", "node_id": "MDQ6VXNlcjk3OTc4MDQ=", "organizations_url": "https://api.github.com/users/ai-nikolai/orgs", "received_events_url": "https://api.github.com/users/ai-nikolai/received_events", "repos_url": "https://api.github.com/users/ai-nikolai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ai-nikolai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ai-nikolai/subscriptions", "type": "User", "url": "https://api.github.com/users/ai-nikolai", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-12-05T09:07:53Z
2024-12-05T09:09:38Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When creating a dataset from a list of datapoints, information is lost of the individual items. Specifically, when creating a dataset from a list of datapoints (from another dataset). Either the datatype is lost or the values are lost. See examples below. -> What is the best way to create a dataset from a list of datapoints? --- e.g.: **When running this code:** ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` **We get the following**: --- 1. `datapoint`: (the original datapoint) ``` 'audio': {'path': 'it_test_0/common_voice_it_23606167.mp3', 'array': array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 2.21619011e-05, 2.72628222e-05, 0.00000000e+00]), 'sampling_rate': 48000} ``` Original Dataset Features: ``` >>> commonvoice_data.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None) ``` - Here we see column "audio", has the proper values (both `path` & and `array`) and has the correct datatype (Audio). ---- 2. new_data[0]: ``` # Cannot be printed (as it prints the entire array). ``` New Dataset 1 Features: ``` >>> new_data.features 'audio': {'array': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'path': Value(dtype='string', id=None), 'sampling_rate': Value(dtype='int64', id=None)} ``` - Here we see that the column "audio", has the correct values, but is not the Audio datatype anymore. --- 3. new_data2[0]: ``` 'audio': {'path': None, 'array': array([0., 0., 0., ..., 0., 0., 0.]), 'sampling_rate': 48000}, ``` New Dataset 2 Features: ``` >>> new_data2.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None), ``` - Here we see that the column "audio", has the correct datatype, but all the array & path values were lost! ### Steps to reproduce the bug ## Run: ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` ### Expected behavior ## Expected: ```datapoint == new_data[0]``` AND ```datapoint == new_data2[0]``` ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7306/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7306/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7519
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7519/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7519/comments
https://api.github.com/repos/huggingface/datasets/issues/7519/events
https://github.com/huggingface/datasets/pull/7519
2,996,458,961
PR_kwDODunzps6Sq76Z
7,519
pdf docs fixes
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7519). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-04-15T13:35:56Z
2025-04-15T13:38:31Z
2025-04-15T13:36:03Z
MEMBER
null
null
null
close https://github.com/huggingface/datasets/issues/7494
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7519/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7519/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7519.diff", "html_url": "https://github.com/huggingface/datasets/pull/7519", "merged_at": "2025-04-15T13:36:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/7519.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7519" }
https://api.github.com/repos/huggingface/datasets/issues/7137
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7137/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7137/comments
https://api.github.com/repos/huggingface/datasets/issues/7137/events
https://github.com/huggingface/datasets/issues/7137
2,506,851,048
I_kwDODunzps6Va4Lo
7,137
[BUG] dataset_info sequence unexpected behavior in README.md YAML
{ "avatar_url": "https://avatars.githubusercontent.com/u/13214530?v=4", "events_url": "https://api.github.com/users/ain-soph/events{/privacy}", "followers_url": "https://api.github.com/users/ain-soph/followers", "following_url": "https://api.github.com/users/ain-soph/following{/other_user}", "gists_url": "https://api.github.com/users/ain-soph/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ain-soph", "id": 13214530, "login": "ain-soph", "node_id": "MDQ6VXNlcjEzMjE0NTMw", "organizations_url": "https://api.github.com/users/ain-soph/orgs", "received_events_url": "https://api.github.com/users/ain-soph/received_events", "repos_url": "https://api.github.com/users/ain-soph/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ain-soph/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ain-soph/subscriptions", "type": "User", "url": "https://api.github.com/users/ain-soph", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The non-sequence case works well (`dict[str, str]` instead of `list[dict[str, str]]`), which makes me believe it shall be a bug for `sequence` and my proposed behavior shall be expected.\r\n```\r\ndataset_info:\r\n- config_name: default\r\n features:\r\n - name: answers\r\n dtype:\r\n - name: text\r\n dtype: string\r\n - name: label\r\n dtype: string\r\n\r\n\r\n# data\r\n{\"answers\": {\"text\": \"ADDRESS\", \"label\": \"abc\"}}\r\n```" ]
2024-09-05T06:06:06Z
2024-09-09T15:55:50Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When working on `dataset_info` yaml, I find my data column with format `list[dict[str, str]]` cannot be coded correctly. My data looks like ``` {"answers":[{"text": "ADDRESS", "label": "abc"}]} ``` My `dataset_info` in README.md is: ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` **Error log**: ``` pyarrow.lib.ArrowNotImplementedError: Unsupported cast from list<item: struct<text: string, label: string>> to struct using function cast_struct ``` ## Potential Reason After some analysis, it turns out that my yaml config is requiring `dict[str, list[str]]` instead of `list[dict[str, str]]`. It would work if I change my data to ``` {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` These following 2 different `dataset_info` are actually equivalent. ``` dataset_info: - config_name: default features: - name: answers dtype: - name: text sequence: string - name: label sequence: string dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` ### Steps to reproduce the bug ``` # README.md --- dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string configs: - config_name: default default: true data_files: - split: train path: - "test.jsonl" --- # test.jsonl # expected but not working {"answers":[{"text": "ADDRESS", "label": "abc"}]} # unexpected but working {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` ### Expected behavior ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` Should work on following data format: ``` {"answers":[{"text":"ADDRESS", "label": "abc"}]} ``` ### Environment info - `datasets` version: 2.21.0 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.4 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7137/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7137/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5097
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5097/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5097/comments
https://api.github.com/repos/huggingface/datasets/issues/5097/events
https://github.com/huggingface/datasets/issues/5097
1,403,679,353
I_kwDODunzps5TqnJ5
5,097
Fatal error with pyarrow/libarrow.so
{ "avatar_url": "https://avatars.githubusercontent.com/u/11340846?v=4", "events_url": "https://api.github.com/users/catalys1/events{/privacy}", "followers_url": "https://api.github.com/users/catalys1/followers", "following_url": "https://api.github.com/users/catalys1/following{/other_user}", "gists_url": "https://api.github.com/users/catalys1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/catalys1", "id": 11340846, "login": "catalys1", "node_id": "MDQ6VXNlcjExMzQwODQ2", "organizations_url": "https://api.github.com/users/catalys1/orgs", "received_events_url": "https://api.github.com/users/catalys1/received_events", "repos_url": "https://api.github.com/users/catalys1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/catalys1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/catalys1/subscriptions", "type": "User", "url": "https://api.github.com/users/catalys1", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Thanks for reporting, @catalys1.\r\n\r\nThis seems a duplicate of:\r\n- #3310 \r\n\r\nThe source of the problem is in PyArrow:\r\n- [ARROW-15141: [C++] Fatal error condition occurred in aws_thread_launch](https://issues.apache.org/jira/browse/ARROW-15141)\r\n- [ARROW-17501: [C++] Fatal error condition occurred in aws_thread_launch](https://issues.apache.org/jira/browse/ARROW-17501)\r\n\r\nThe bug in their dependency is still unresolved:\r\n- https://github.com/aws/aws-sdk-cpp/issues/1809\r\n\r\nApparently, the `aws-sdk-cpp` PyArrow dependency needs to be pinned at version `1.8.186` if using conda. Have you updated it after installing PyArrow?\r\n```shell\r\nconda list aws-sdk-cpp\r\n```\r\n\r\nMaybe you should try to downgrade it to that version:\r\n```shell\r\nconda install -c conda-forge aws-sdk-cpp=1.8.186\r\n```" ]
2022-10-10T20:29:04Z
2022-10-11T06:56:01Z
2022-10-11T06:56:00Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug When using datasets, at the very end of my jobs the program crashes (see trace below). It doesn't seem to affect anything, as it appears to happen as the program is closing down. Just importing `datasets` is enough to cause the error. ## Steps to reproduce the bug This is sufficient to reproduce the problem: ```bash python -c "import datasets" ``` ## Expected results Program should run to completion without an error. ## Actual results ```bash Fatal error condition occurred in /opt/vcpkg/buildtrees/aws-c-io/src/9e6648842a-364b708815.clean/source/event_loop.c:72: aws_thread_launch(&cleanup_thread, s_event_loop_destroy_async_thread_fn, el_group, &thread_options) == AWS_OP_SUCCESS Exiting Application ################################################################################ Stack trace: ################################################################################ /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x200af06) [0x150dff547f06] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x20028e5) [0x150dff53f8e5] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x1f27e09) [0x150dff464e09] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x150dff548a3d] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x1f25948) [0x150dff462948] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x200ba3d) [0x150dff548a3d] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x1ee0b46) [0x150dff41db46] /u/user/miniconda3/envs/env/lib/python3.10/site-packages/pyarrow/libarrow.so.900(+0x194546a) [0x150dfee8246a] /lib64/libc.so.6(+0x39b0c) [0x150e15eadb0c] /lib64/libc.so.6(on_exit+0) [0x150e15eadc40] /u/user/miniconda3/envs/env/bin/python(+0x28db18) [0x560ae370eb18] /u/user/miniconda3/envs/env/bin/python(+0x28db4b) [0x560ae370eb4b] /u/user/miniconda3/envs/env/bin/python(+0x28db90) [0x560ae370eb90] /u/user/miniconda3/envs/env/bin/python(_PyRun_SimpleFileObject+0x1e6) [0x560ae37123e6] /u/user/miniconda3/envs/env/bin/python(_PyRun_AnyFileObject+0x44) [0x560ae37124c4] /u/user/miniconda3/envs/env/bin/python(Py_RunMain+0x35d) [0x560ae37135bd] /u/user/miniconda3/envs/env/bin/python(Py_BytesMain+0x39) [0x560ae37137d9] /lib64/libc.so.6(__libc_start_main+0xf3) [0x150e15e97493] /u/user/miniconda3/envs/env/bin/python(+0x2125d4) [0x560ae36935d4] Aborted (core dumped) ``` ## Environment info - `datasets` version: 2.5.1 - Platform: Linux-4.18.0-348.23.1.el8_5.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.4 - PyArrow version: 9.0.0 - Pandas version: 1.4.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5097/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5097/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5777
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5777/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5777/comments
https://api.github.com/repos/huggingface/datasets/issues/5777/events
https://github.com/huggingface/datasets/issues/5777
1,677,655,969
I_kwDODunzps5j_v-h
5,777
datasets.load_dataset("code_search_net", "python") : NotADirectoryError: [Errno 20] Not a directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4", "events_url": "https://api.github.com/users/ghost/events{/privacy}", "followers_url": "https://api.github.com/users/ghost/followers", "following_url": "https://api.github.com/users/ghost/following{/other_user}", "gists_url": "https://api.github.com/users/ghost/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ghost", "id": 10137, "login": "ghost", "node_id": "MDQ6VXNlcjEwMTM3", "organizations_url": "https://api.github.com/users/ghost/orgs", "received_events_url": "https://api.github.com/users/ghost/received_events", "repos_url": "https://api.github.com/users/ghost/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghost/subscriptions", "type": "User", "url": "https://api.github.com/users/ghost", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Note:\r\nI listed the datasets and grepped around to find what appears to be an alternative source for this:\r\n\r\nraw_datasets = load_dataset(\"espejelomar/code_search_net_python_10000_examples\", \"python\")", "Thanks for reporting, @jason-brian-anderson.\r\n\r\nYes, this is a known issue: the [CodeSearchNet](https://github.com/github/CodeSearchNet) repo has been archived (Apr 11, 2023) and their source data files are no longer accessible in their S3: e.g. https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2/python.zip gives 403 Forbidden error. See:\r\n- https://huggingface.co/datasets/code_search_net/discussions/3\r\n\r\nWe have contacted one of the authors of the dataset to find a solution. I'll keep you informed.\r\n\r\nCC: @hamelsmu", "cc: @julianeagu", "This issue is fixed because we are hosting the CodeSearchNet data files in the Hugging Face Hub. See: https://huggingface.co/datasets/code_search_net/discussions/7", "I learned that @mallamanis has uploaded the dataset [here as well](https://zenodo.org/record/7908468) ", "Thanks @hamelsmu for the Zenodo link. I am adding it to the dataset card on the Hugging Face Hub, so that the community knows about this \"official\" source data. I guess this link is not well known, because some community members already hosted an \"unofficial\" version of the data on Zenodo as well: https://zenodo.org/record/7857872\r\n\r\n" ]
2023-04-21T02:08:07Z
2023-06-05T05:49:52Z
2023-05-11T11:51:56Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug While checking out the [tokenizer tutorial](https://huggingface.co/course/chapter6/2?fw=pt), i noticed getting an error while initially downloading the python dataset used in the examples. The [collab with the error is here](https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter6/section2.ipynb#scrollTo=hGb69Yo3eV8S) ``` from datasets import load_dataset import os os.environ["HF_DATASETS_CACHE"] = "/workspace" # This can take a few minutes to load, so grab a coffee or tea while you wait! raw_datasets = load_dataset("code_search_net", "python") ``` yeilds: ``` ile /opt/conda/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py:524, in xlistdir(path, use_auth_token) 522 main_hop, *rest_hops = _as_str(path).split("::") 523 if is_local_path(main_hop): --> 524 return os.listdir(path) 525 else: 526 # globbing inside a zip in a private repo requires authentication 527 if not rest_hops and (main_hop.startswith("http://") or main_hop.startswith("https://")): NotADirectoryError: [Errno 20] Not a directory: '/workspace/downloads/25ceeb4c25ab737d688bd56ea92bfbb1f199fe572470456cf2d675479f342ac7/python/final/jsonl/train' ``` I was able to reproduce this erro both in the collab and on my own pytorch/pytorch container pulled from the dockerhub official pytorch image, so i think it may be a server side thing. ### Steps to reproduce the bug Steps to reproduce the issue: 1. run `raw_datasets = load_dataset("code_search_net", "python")` ### Expected behavior expect the code to not exception during dataset pull. ### Environment info i tried both the default HF_DATASETS_CACHE on Collab, and on my local container. i then pointed to the HF_DATASETS_CACHE to a large capacity local storage and the problem was consisten across all 3 scenarios.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5777/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5777/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5420/comments
https://api.github.com/repos/huggingface/datasets/issues/5420/events
https://github.com/huggingface/datasets/pull/5420
1,532,265,742
PR_kwDODunzps5HVAhL
5,420
ci: 🎡 remove two obsolete issue templates
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008450 / 0.011353 (-0.002902) | 0.004478 / 0.011008 (-0.006530) | 0.100440 / 0.038508 (0.061931) | 0.029568 / 0.023109 (0.006459) | 0.296705 / 0.275898 (0.020807) | 0.354565 / 0.323480 (0.031085) | 0.006887 / 0.007986 (-0.001098) | 0.003415 / 0.004328 (-0.000914) | 0.078876 / 0.004250 (0.074626) | 0.034927 / 0.037052 (-0.002125) | 0.307695 / 0.258489 (0.049206) | 0.340917 / 0.293841 (0.047076) | 0.033630 / 0.128546 (-0.094916) | 0.011626 / 0.075646 (-0.064020) | 0.322644 / 0.419271 (-0.096627) | 0.040254 / 0.043533 (-0.003279) | 0.297419 / 0.255139 (0.042280) | 0.321584 / 0.283200 (0.038384) | 0.086202 / 0.141683 (-0.055481) | 1.465579 / 1.452155 (0.013425) | 1.521456 / 1.492716 (0.028740) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200890 / 0.018006 (0.182884) | 0.410300 / 0.000490 (0.409811) | 0.001647 / 0.000200 (0.001447) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022569 / 0.037411 (-0.014843) | 0.096062 / 0.014526 (0.081536) | 0.102474 / 0.176557 (-0.074082) | 0.138596 / 0.737135 (-0.598539) | 0.106262 / 0.296338 (-0.190077) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415976 / 0.215209 (0.200766) | 4.144322 / 2.077655 (2.066667) | 1.871783 / 1.504120 (0.367663) | 1.669478 / 1.541195 (0.128283) | 1.718214 / 1.468490 (0.249724) | 0.687870 / 4.584777 (-3.896907) | 3.362084 / 3.745712 (-0.383628) | 1.844127 / 5.269862 (-3.425735) | 1.149611 / 4.565676 (-3.416066) | 0.081410 / 0.424275 (-0.342865) | 0.012278 / 0.007607 (0.004671) | 0.518245 / 0.226044 (0.292200) | 5.185164 / 2.268929 (2.916236) | 2.299029 / 55.444624 (-53.145595) | 1.960021 / 6.876477 (-4.916456) | 2.009751 / 2.142072 (-0.132322) | 0.803759 / 4.805227 (-4.001468) | 0.147340 / 6.500664 (-6.353324) | 0.063896 / 0.075469 (-0.011573) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254142 / 1.841788 (-0.587646) | 13.799683 / 8.074308 (5.725375) | 13.940387 / 10.191392 (3.748995) | 0.151246 / 0.680424 (-0.529178) | 0.028709 / 0.534201 (-0.505491) | 0.391600 / 0.579283 (-0.187683) | 0.405750 / 0.434364 (-0.028614) | 0.455479 / 0.540337 (-0.084858) | 0.541022 / 1.386936 (-0.845914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006462 / 0.011353 (-0.004891) | 0.004462 / 0.011008 (-0.006547) | 0.096588 / 0.038508 (0.058080) | 0.026931 / 0.023109 (0.003822) | 0.344595 / 0.275898 (0.068697) | 0.378743 / 0.323480 (0.055264) | 0.005672 / 0.007986 (-0.002314) | 0.003345 / 0.004328 (-0.000984) | 0.074363 / 0.004250 (0.070112) | 0.037300 / 0.037052 (0.000248) | 0.346895 / 0.258489 (0.088406) | 0.388585 / 0.293841 (0.094744) | 0.031459 / 0.128546 (-0.097088) | 0.011522 / 0.075646 (-0.064124) | 0.318507 / 0.419271 (-0.100764) | 0.041145 / 0.043533 (-0.002388) | 0.343866 / 0.255139 (0.088727) | 0.366490 / 0.283200 (0.083291) | 0.086793 / 0.141683 (-0.054890) | 1.483859 / 1.452155 (0.031704) | 1.574006 / 1.492716 (0.081290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220436 / 0.018006 (0.202430) | 0.402988 / 0.000490 (0.402498) | 0.000435 / 0.000200 (0.000235) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024573 / 0.037411 (-0.012838) | 0.099190 / 0.014526 (0.084664) | 0.106796 / 0.176557 (-0.069761) | 0.142387 / 0.737135 (-0.594748) | 0.109991 / 0.296338 (-0.186347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473452 / 0.215209 (0.258243) | 4.749554 / 2.077655 (2.671899) | 2.433482 / 1.504120 (0.929362) | 2.224276 / 1.541195 (0.683082) | 2.261579 / 1.468490 (0.793088) | 0.699876 / 4.584777 (-3.884901) | 3.378366 / 3.745712 (-0.367346) | 1.835062 / 5.269862 (-3.434799) | 1.161249 / 4.565676 (-3.404427) | 0.082967 / 0.424275 (-0.341308) | 0.012745 / 0.007607 (0.005138) | 0.580006 / 0.226044 (0.353962) | 5.789868 / 2.268929 (3.520939) | 2.909496 / 55.444624 (-52.535128) | 2.539196 / 6.876477 (-4.337280) | 2.617737 / 2.142072 (0.475665) | 0.810320 / 4.805227 (-3.994907) | 0.152501 / 6.500664 (-6.348163) | 0.067201 / 0.075469 (-0.008268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257844 / 1.841788 (-0.583943) | 13.865295 / 8.074308 (5.790987) | 14.169073 / 10.191392 (3.977680) | 0.135655 / 0.680424 (-0.544769) | 0.016597 / 0.534201 (-0.517604) | 0.374915 / 0.579283 (-0.204368) | 0.382771 / 0.434364 (-0.051593) | 0.431934 / 0.540337 (-0.108403) | 0.524617 / 1.386936 (-0.862319) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008748 / 0.011353 (-0.002605) | 0.004489 / 0.011008 (-0.006519) | 0.100923 / 0.038508 (0.062415) | 0.031436 / 0.023109 (0.008326) | 0.306508 / 0.275898 (0.030610) | 0.365110 / 0.323480 (0.041630) | 0.007161 / 0.007986 (-0.000824) | 0.005489 / 0.004328 (0.001160) | 0.078909 / 0.004250 (0.074658) | 0.036097 / 0.037052 (-0.000955) | 0.307907 / 0.258489 (0.049418) | 0.370277 / 0.293841 (0.076436) | 0.034184 / 0.128546 (-0.094362) | 0.011613 / 0.075646 (-0.064033) | 0.322896 / 0.419271 (-0.096375) | 0.041829 / 0.043533 (-0.001704) | 0.299669 / 0.255139 (0.044530) | 0.322217 / 0.283200 (0.039017) | 0.087751 / 0.141683 (-0.053932) | 1.476277 / 1.452155 (0.024122) | 1.548196 / 1.492716 (0.055480) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183002 / 0.018006 (0.164995) | 0.415627 / 0.000490 (0.415138) | 0.003272 / 0.000200 (0.003072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024881 / 0.037411 (-0.012531) | 0.103424 / 0.014526 (0.088898) | 0.106446 / 0.176557 (-0.070110) | 0.142806 / 0.737135 (-0.594330) | 0.110938 / 0.296338 (-0.185401) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421669 / 0.215209 (0.206460) | 4.207457 / 2.077655 (2.129802) | 1.882176 / 1.504120 (0.378056) | 1.677609 / 1.541195 (0.136415) | 1.734065 / 1.468490 (0.265575) | 0.695915 / 4.584777 (-3.888862) | 3.416731 / 3.745712 (-0.328981) | 1.872575 / 5.269862 (-3.397286) | 1.163612 / 4.565676 (-3.402064) | 0.082710 / 0.424275 (-0.341565) | 0.012659 / 0.007607 (0.005052) | 0.528785 / 0.226044 (0.302741) | 5.305328 / 2.268929 (3.036399) | 2.299850 / 55.444624 (-53.144774) | 1.968137 / 6.876477 (-4.908339) | 2.028326 / 2.142072 (-0.113746) | 0.813157 / 4.805227 (-3.992070) | 0.149997 / 6.500664 (-6.350668) | 0.066739 / 0.075469 (-0.008730) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206332 / 1.841788 (-0.635456) | 13.795510 / 8.074308 (5.721202) | 14.367695 / 10.191392 (4.176303) | 0.138106 / 0.680424 (-0.542318) | 0.028760 / 0.534201 (-0.505441) | 0.394822 / 0.579283 (-0.184461) | 0.403291 / 0.434364 (-0.031073) | 0.463273 / 0.540337 (-0.077065) | 0.540881 / 1.386936 (-0.846055) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006830 / 0.011353 (-0.004523) | 0.004606 / 0.011008 (-0.006402) | 0.097763 / 0.038508 (0.059255) | 0.027832 / 0.023109 (0.004723) | 0.422970 / 0.275898 (0.147072) | 0.460313 / 0.323480 (0.136833) | 0.005110 / 0.007986 (-0.002876) | 0.003428 / 0.004328 (-0.000901) | 0.075047 / 0.004250 (0.070797) | 0.038374 / 0.037052 (0.001322) | 0.422762 / 0.258489 (0.164273) | 0.469886 / 0.293841 (0.176045) | 0.032391 / 0.128546 (-0.096155) | 0.011804 / 0.075646 (-0.063843) | 0.320439 / 0.419271 (-0.098832) | 0.041939 / 0.043533 (-0.001594) | 0.422521 / 0.255139 (0.167382) | 0.446420 / 0.283200 (0.163220) | 0.090715 / 0.141683 (-0.050968) | 1.484578 / 1.452155 (0.032423) | 1.556154 / 1.492716 (0.063438) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260735 / 0.018006 (0.242728) | 0.415586 / 0.000490 (0.415096) | 0.026960 / 0.000200 (0.026760) | 0.000296 / 0.000054 (0.000241) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024926 / 0.037411 (-0.012486) | 0.099651 / 0.014526 (0.085125) | 0.107810 / 0.176557 (-0.068747) | 0.148685 / 0.737135 (-0.588451) | 0.112725 / 0.296338 (-0.183614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472669 / 0.215209 (0.257460) | 4.718827 / 2.077655 (2.641172) | 2.475583 / 1.504120 (0.971463) | 2.260862 / 1.541195 (0.719667) | 2.307820 / 1.468490 (0.839330) | 0.699464 / 4.584777 (-3.885313) | 3.376282 / 3.745712 (-0.369431) | 1.872650 / 5.269862 (-3.397211) | 1.176399 / 4.565676 (-3.389277) | 0.082854 / 0.424275 (-0.341421) | 0.012845 / 0.007607 (0.005237) | 0.582088 / 0.226044 (0.356044) | 5.861609 / 2.268929 (3.592681) | 2.930728 / 55.444624 (-52.513896) | 2.624310 / 6.876477 (-4.252167) | 2.762130 / 2.142072 (0.620058) | 0.811902 / 4.805227 (-3.993325) | 0.152516 / 6.500664 (-6.348149) | 0.067670 / 0.075469 (-0.007799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289790 / 1.841788 (-0.551997) | 14.267607 / 8.074308 (6.193299) | 14.120655 / 10.191392 (3.929263) | 0.128442 / 0.680424 (-0.551982) | 0.017079 / 0.534201 (-0.517121) | 0.381807 / 0.579283 (-0.197476) | 0.400546 / 0.434364 (-0.033818) | 0.447629 / 0.540337 (-0.092709) | 0.532006 / 1.386936 (-0.854930) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-13T12:58:43Z
2023-01-13T13:36:00Z
2023-01-13T13:29:01Z
COLLABORATOR
null
null
null
add-dataset is not needed anymore since the "canonical" datasets are on the Hub. And dataset-viewer is managed within the datasets-server project. See https://github.com/huggingface/datasets/issues/new/choose <img width="1245" alt="Capture d’écran 2023-01-13 à 13 59 58" src="https://user-images.githubusercontent.com/1676121/212325813-2d4c30e2-343e-4aa2-8cce-b2b77f45628e.png">
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5420/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5420.diff", "html_url": "https://github.com/huggingface/datasets/pull/5420", "merged_at": "2023-01-13T13:29:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/5420.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5420" }
https://api.github.com/repos/huggingface/datasets/issues/6142
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6142/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6142/comments
https://api.github.com/repos/huggingface/datasets/issues/6142/events
https://github.com/huggingface/datasets/issues/6142
1,846,205,216
I_kwDODunzps5uCtsg
6,142
the-stack-dedup fails to generate
{ "avatar_url": "https://avatars.githubusercontent.com/u/45830328?v=4", "events_url": "https://api.github.com/users/michaelroyzen/events{/privacy}", "followers_url": "https://api.github.com/users/michaelroyzen/followers", "following_url": "https://api.github.com/users/michaelroyzen/following{/other_user}", "gists_url": "https://api.github.com/users/michaelroyzen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/michaelroyzen", "id": 45830328, "login": "michaelroyzen", "node_id": "MDQ6VXNlcjQ1ODMwMzI4", "organizations_url": "https://api.github.com/users/michaelroyzen/orgs", "received_events_url": "https://api.github.com/users/michaelroyzen/received_events", "repos_url": "https://api.github.com/users/michaelroyzen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/michaelroyzen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/michaelroyzen/subscriptions", "type": "User", "url": "https://api.github.com/users/michaelroyzen", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "@severo ", "It seems that some parquet files have additional columns.\r\n\r\nI ran a scan and found that two files have the additional `__id__` column:\r\n\r\n1. `hf://datasets/bigcode/the-stack-dedup/data/numpy/data-00000-of-00001.parquet`\r\n2. `hf://datasets/bigcode/the-stack-dedup/data/omgrofl/data-00000-of-00001.parquet`\r\n\r\nWe should open a PR to fix those two files", "I opened https://huggingface.co/datasets/bigcode/the-stack-dedup/discussions/31", "The files have been fixed ! I'm closing this one but feel free to re-open if you still have the issue" ]
2023-08-11T05:10:49Z
2023-08-17T09:26:13Z
2023-08-17T09:26:13Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I'm getting an error generating the-stack-dedup with datasets 2.13.1, and with 2.14.4 nothing happens. ### Steps to reproduce the bug My code: ``` import os import datasets as ds MY_CACHE_DIR = "/home/ubuntu/the-stack-dedup-local" MY_TOKEN="my-token" the_stack_ds = ds.load_dataset("bigcode/the-stack-dedup", split="train", download_mode="reuse_cache_if_exists", cache_dir=MY_CACHE_DIR, use_auth_token=MY_TOKEN, num_proc=64) ``` The exception: ``` Generating train split: 233248251 examples [54:31, 57280.00 examples/s] multiprocess.pool.RemoteTraceback: """ Traceback (most recent call last): File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/build er.py", line 1879, in _prepare_split_single for _, table in generator: File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/packa ged_modules/parquet/parquet.py", line 82, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/packa ged_modules/parquet/parquet.py", line 61, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/table .py", line 2324, in table_cast return cast_table_to_schema(table, schema) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/table .py", line 2282, in cast_table_to_schema raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nb ecause column names don't match") ValueError: Couldn't cast hexsha: string size: int64 ext: string lang: string max_stars_repo_path: string max_stars_repo_name: string max_stars_repo_head_hexsha: string max_stars_repo_licenses: list<item: string> child 0, item: string max_stars_count: int64 max_stars_repo_stars_event_min_datetime: string max_stars_repo_stars_event_max_datetime: string max_issues_repo_path: string max_issues_repo_name: string max_issues_repo_head_hexsha: string max_issues_repo_licenses: list<item: string> child 0, item: string max_issues_count: int64 max_issues_repo_issues_event_min_datetime: string max_issues_repo_issues_event_max_datetime: string max_forks_repo_path: string max_forks_repo_name: string max_forks_repo_head_hexsha: string max_forks_repo_licenses: list<item: string> child 0, item: string max_forks_count: int64 max_forks_repo_forks_event_min_datetime: string max_forks_repo_forks_event_max_datetime: string content: string avg_line_length: double max_line_length: int64 alphanum_fraction: double __id__: int64 -- schema metadata -- huggingface: '{"info": {"features": {"hexsha": {"dtype": "string", "_type' + 1979 to {'hexsha': Value(dtype='string', id=None), 'size': Value(dtype='int64', id=None), 'ext': Value(dtype='string', id=None), 'lang': Value(dtype='string', id=None), 'max_stars_repo_path': Value(dtype='string', id=None), 'max_stars_repo_name': Value(dtype='string', id=None), 'max_stars_repo_head_hexsha': Value(dtype='string', id=None), 'max_stars_repo_licenses': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'max_stars_count': Value(dtype='int64', id=None), 'max_stars_repo_stars_event_min_datetime': Value(dtype='string', id=None), 'max_stars_repo_stars_event_max_datetime': Value(dtype='string', id=None), 'max_issues_repo_path': Value(dtype='string', id=None), 'max_issues_repo_name': Value(dtype='string', id=None), 'max_issues_repo_head_hexsha': Value(dtype='string', id=None), 'max_issues_repo_licenses': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'max_issues_count': Value(dtype='int64', id=None), 'max_issues_repo_issues_event_min_datetime': Value(dtype='string', id=None), 'max_issues_repo_issues_event_max_datetime': Value(dtype='string', id=None), 'max_forks_repo_path': Value(dtype='string', id=None), 'max_forks_repo_name': Value(dtype='string', id=None), 'max_forks_repo_head_hexsha': Value(dtype='string', id=None), 'max_forks_repo_licenses': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'max_forks_count': Value(dtype='int64', id=None), 'max_forks_repo_forks_event_min_datetime': Value(dtype='string', id=None), 'max_forks_repo_forks_event_max_datetime': Value(dtype='string', id=None), 'content': Value(dtype='string', id=None), 'avg_line_length': Value(dtype='float64', id=None), 'max_line_length': Value(dtype='int64', id=None), 'alphanum_fraction': Value(dtype='float64', id=None)} because column names don't match The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/ubuntu/.local/lib/python3.10/site-packages/multiprocess/p ool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/utils /py_utils.py", line 1328, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/build er.py", line 1912, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating th e dataset") from e datasets.builder.DatasetGenerationError: An error occurred while genera ting the dataset """ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/ubuntu/download_the_stack.py", line 7, in <module> the_stack_ds = ds.load_dataset("bigcode/the-stack-dedup", split="tr ain", download_mode="reuse_cache_if_exists", cache_dir=MY_CACHE_DIR, us e_auth_token=MY_TOKEN, num_proc=64) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/load. py", line 1809, in load_dataset builder_instance.download_and_prepare( File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/build er.py", line 909, in download_and_prepare self._download_and_prepare( File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/build er.py", line 1004, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/build er.py", line 1796, in _prepare_split for job_id, done, content in iflatmap_unordered( File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/utils /py_utils.py", line 1354, in iflatmap_unordered [async_result.get(timeout=0.05) for async_result in async_results] File "/home/ubuntu/.local/lib/python3.10/site-packages/datasets/utils /py_utils.py", line 1354, in <listcomp> [async_result.get(timeout=0.05) for async_result in async_results] File "/home/ubuntu/.local/lib/python3.10/site-packages/multiprocess/p ool.py", line 774, in get raise self._value datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior The dataset downloads properly. @lhoestq @loub ### Environment info Datasets 2.13.1, large VM with 2TB RAM, Ubuntu 20.04
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6142/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6142/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6059
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6059/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6059/comments
https://api.github.com/repos/huggingface/datasets/issues/6059/events
https://github.com/huggingface/datasets/issues/6059
1,816,537,176
I_kwDODunzps5sRihY
6,059
Provide ability to load label mappings from file
{ "avatar_url": "https://avatars.githubusercontent.com/u/5028974?v=4", "events_url": "https://api.github.com/users/david-waterworth/events{/privacy}", "followers_url": "https://api.github.com/users/david-waterworth/followers", "following_url": "https://api.github.com/users/david-waterworth/following{/other_user}", "gists_url": "https://api.github.com/users/david-waterworth/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/david-waterworth", "id": 5028974, "login": "david-waterworth", "node_id": "MDQ6VXNlcjUwMjg5NzQ=", "organizations_url": "https://api.github.com/users/david-waterworth/orgs", "received_events_url": "https://api.github.com/users/david-waterworth/received_events", "repos_url": "https://api.github.com/users/david-waterworth/repos", "site_admin": false, "starred_url": "https://api.github.com/users/david-waterworth/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/david-waterworth/subscriptions", "type": "User", "url": "https://api.github.com/users/david-waterworth", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I would like this also as I have been working with a dataset with hierarchical classes. In fact, I encountered this very issue when trying to define the dataset with a script. I couldn't find a work around and reverted to hard coding the class names in the readme yaml.\r\n\r\n@david-waterworth do you envision also being able to define the hierarchical structure of the classes?", "@danielduckworth yes I did need to do that (but I ended up ditching datasets as it looks like this is a \"wont fix\"). ", "@david-waterworth Hmm, that's a shame. What are you using now? Also, I’m curious to know about the work you’re doing that involves hierarchical classes, if you don’t mind sharing." ]
2023-07-22T02:04:19Z
2024-04-16T08:07:55Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request My task is classification of a dataset containing a large label set that includes a hierarchy. Even ignoring the hierarchy I'm not able to find an example using `datasets` where the label names aren't hard-coded. This works find for classification of a handful of labels but ideally there would be a way of loading the name/id mappings required for `datasets.features.ClassLabel` from a file. It is possible to pass a file to ClassLabel but I cannot see an easy way of using this with `GeneratorBasedBuilder` since `self._info` is called before the `dl_manager` is constructed so even if my dataset contains say `label_mappings.json` there's no way of loading it in order to construct the `datasets.DatasetInfo` I can see other uses to accessing the `download_manager` from `self._info` - i.e. if the files contain a schema (i.e. `arrow` or `parquet` files) the `datasets.DatasetInfo` could be inferred. The workaround that was suggested in the forum is to generate a `.py` file from the `label_mappings.json` and import it. ``` class TestDatasetBuilder(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["label_1", "label_2"]), } ), task_templates=[TextClassification(text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] def _generate_examples(self, filepath): """Generate AG News examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.DictReader(csv_file) for id_, row in enumerate(csv_reader): yield id_, row ``` ### Motivation Allow `datasets.DatasetInfo` to be generated based on the contents of the dataset. ### Your contribution I'm willing to work on a PR with guidence.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6059/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6059/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6635
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6635/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6635/comments
https://api.github.com/repos/huggingface/datasets/issues/6635/events
https://github.com/huggingface/datasets/pull/6635
2,110,659,519
PR_kwDODunzps5lmeNO
6,635
Fix missing info when loading some datasets from Parquet export
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6635). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005577 / 0.011353 (-0.005776) | 0.004452 / 0.011008 (-0.006556) | 0.067849 / 0.038508 (0.029341) | 0.032328 / 0.023109 (0.009219) | 0.256924 / 0.275898 (-0.018974) | 0.273410 / 0.323480 (-0.050070) | 0.004359 / 0.007986 (-0.003626) | 0.003484 / 0.004328 (-0.000845) | 0.053880 / 0.004250 (0.049630) | 0.058142 / 0.037052 (0.021089) | 0.268863 / 0.258489 (0.010374) | 0.307977 / 0.293841 (0.014136) | 0.028840 / 0.128546 (-0.099707) | 0.011808 / 0.075646 (-0.063839) | 0.216277 / 0.419271 (-0.202995) | 0.039245 / 0.043533 (-0.004288) | 0.250420 / 0.255139 (-0.004719) | 0.273642 / 0.283200 (-0.009557) | 0.019340 / 0.141683 (-0.122342) | 1.176734 / 1.452155 (-0.275421) | 1.250643 / 1.492716 (-0.242074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.181210 / 0.018006 (0.163204) | 1.070750 / 0.000490 (1.070261) | 0.000315 / 0.000200 (0.000115) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022905 / 0.037411 (-0.014507) | 0.064549 / 0.014526 (0.050023) | 0.077113 / 0.176557 (-0.099443) | 0.131976 / 0.737135 (-0.605159) | 0.081266 / 0.296338 (-0.215072) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291363 / 0.215209 (0.076154) | 2.851691 / 2.077655 (0.774036) | 1.592815 / 1.504120 (0.088695) | 1.494550 / 1.541195 (-0.046645) | 1.516464 / 1.468490 (0.047974) | 0.583244 / 4.584777 (-4.001532) | 2.504907 / 3.745712 (-1.240805) | 3.183490 / 5.269862 (-2.086371) | 1.932854 / 4.565676 (-2.632823) | 0.067564 / 0.424275 (-0.356711) | 0.006587 / 0.007607 (-0.001020) | 0.346368 / 0.226044 (0.120324) | 3.428256 / 2.268929 (1.159327) | 1.994176 / 55.444624 (-53.450448) | 1.688116 / 6.876477 (-5.188360) | 1.767653 / 2.142072 (-0.374420) | 0.673867 / 4.805227 (-4.131360) | 0.125582 / 6.500664 (-6.375082) | 0.047198 / 0.075469 (-0.028271) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002895 / 1.841788 (-0.838893) | 16.332893 / 8.074308 (8.258585) | 10.781993 / 10.191392 (0.590601) | 0.153919 / 0.680424 (-0.526505) | 0.015528 / 0.534201 (-0.518673) | 0.306182 / 0.579283 (-0.273101) | 0.296380 / 0.434364 (-0.137984) | 0.341432 / 0.540337 (-0.198905) | 0.455900 / 1.386936 (-0.931036) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006442 / 0.011353 (-0.004911) | 0.004433 / 0.011008 (-0.006576) | 0.053327 / 0.038508 (0.014819) | 0.035966 / 0.023109 (0.012856) | 0.280913 / 0.275898 (0.005015) | 0.308419 / 0.323480 (-0.015061) | 0.005842 / 0.007986 (-0.002144) | 0.003789 / 0.004328 (-0.000539) | 0.053983 / 0.004250 (0.049732) | 0.069052 / 0.037052 (0.032000) | 0.299225 / 0.258489 (0.040736) | 0.336470 / 0.293841 (0.042629) | 0.068170 / 0.128546 (-0.060377) | 0.012259 / 0.075646 (-0.063388) | 0.064166 / 0.419271 (-0.355106) | 0.037291 / 0.043533 (-0.006241) | 0.281318 / 0.255139 (0.026179) | 0.297093 / 0.283200 (0.013893) | 0.021358 / 0.141683 (-0.120324) | 1.189584 / 1.452155 (-0.262571) | 1.256985 / 1.492716 (-0.235731) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216726 / 0.018006 (0.198720) | 2.496957 / 0.000490 (2.496467) | 0.000336 / 0.000200 (0.000136) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026604 / 0.037411 (-0.010807) | 0.080398 / 0.014526 (0.065873) | 0.094475 / 0.176557 (-0.082082) | 0.136263 / 0.737135 (-0.600873) | 0.097898 / 0.296338 (-0.198440) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295171 / 0.215209 (0.079962) | 2.947530 / 2.077655 (0.869875) | 1.607531 / 1.504120 (0.103411) | 1.485045 / 1.541195 (-0.056150) | 1.524899 / 1.468490 (0.056409) | 0.572934 / 4.584777 (-4.011843) | 2.544320 / 3.745712 (-1.201393) | 3.292630 / 5.269862 (-1.977232) | 1.927138 / 4.565676 (-2.638539) | 0.068560 / 0.424275 (-0.355715) | 0.005982 / 0.007607 (-0.001625) | 0.345833 / 0.226044 (0.119789) | 3.424253 / 2.268929 (1.155324) | 2.195017 / 55.444624 (-53.249608) | 1.712037 / 6.876477 (-5.164440) | 1.763899 / 2.142072 (-0.378174) | 0.653776 / 4.805227 (-4.151451) | 0.123056 / 6.500664 (-6.377609) | 0.044572 / 0.075469 (-0.030897) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.033400 / 1.841788 (-0.808388) | 15.409887 / 8.074308 (7.335579) | 11.220990 / 10.191392 (1.029597) | 0.153603 / 0.680424 (-0.526821) | 0.016866 / 0.534201 (-0.517335) | 0.311945 / 0.579283 (-0.267338) | 0.307048 / 0.434364 (-0.127316) | 0.350422 / 0.540337 (-0.189915) | 0.447308 / 1.386936 (-0.939628) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#14d9afbb7ae1b787c450261ca0ff374551993031 \"CML watermark\")\n" ]
2024-01-31T17:55:21Z
2024-02-07T16:48:55Z
2024-02-07T16:41:04Z
MEMBER
null
null
null
Fix getting the info for script-based datasets with Parquet export with a single config not named "default". E.g. ```python from datasets import load_dataset_builder b = load_dataset_builder("bookcorpus") print(b.info.features) # should print {'text': Value(dtype='string', id=None)} ``` I fixed this by setting the default config name when there is only one config.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6635/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6635/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6635.diff", "html_url": "https://github.com/huggingface/datasets/pull/6635", "merged_at": "2024-02-07T16:41:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/6635.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6635" }
https://api.github.com/repos/huggingface/datasets/issues/6594
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6594/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6594/comments
https://api.github.com/repos/huggingface/datasets/issues/6594/events
https://github.com/huggingface/datasets/issues/6594
2,082,748,275
I_kwDODunzps58JDdz
6,594
IterableDataset sharding logic needs improvement
{ "avatar_url": "https://avatars.githubusercontent.com/u/5702664?v=4", "events_url": "https://api.github.com/users/rwightman/events{/privacy}", "followers_url": "https://api.github.com/users/rwightman/followers", "following_url": "https://api.github.com/users/rwightman/following{/other_user}", "gists_url": "https://api.github.com/users/rwightman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rwightman", "id": 5702664, "login": "rwightman", "node_id": "MDQ6VXNlcjU3MDI2NjQ=", "organizations_url": "https://api.github.com/users/rwightman/orgs", "received_events_url": "https://api.github.com/users/rwightman/received_events", "repos_url": "https://api.github.com/users/rwightman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rwightman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwightman/subscriptions", "type": "User", "url": "https://api.github.com/users/rwightman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I do not know is it the same probelm as mine. I think the num_workers should a value of process number for one dataloader mapped to one card, or the total number of processes for all multiple cards. \r\nbut when I set the num_workers larger then the count of training split files, it will report num_workers > n_shards and kill all workers over. as a result, only n_shards workers left, where `n_shard = total files count / total cards ` \r\nIs that means the num_workers should be the process number on one card? ok, I changed the num_workers lower, to view it as the number of loader process for one card, but this time, the data loading is still very slow, it seems that only num_workers dataloader process are working, not the num_workers * n_cards as I thought. \r\nSo how to set a good parameter to make good dataloading? " ]
2024-01-15T22:22:36Z
2024-10-15T06:27:13Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The sharding of IterableDatasets with respect to distributed and dataloader worker processes appears problematic with significant performance traps and inconsistencies wrt to distributed train processes vs worker processes. Splitting across num_workers (per train process loader processes) and world_size (distributed training processes) appears inconsistent. * worker split: https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/iterable_dataset.py#L1266-L1283 * distributed split: https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/iterable_dataset.py#L1335-L1356 In the case of the distributed split, there is a modulus check that flips between two very different behaviours, why is this different than splitting across the data loader workers? For IterableDatasets the DataLoaders worker processes are independent, so whether it's workers within one train process or across a distributed world the shards should be distributed the same, across `world_size * num_worker` independent workers in either case... Further, the fallback case when the `n_shards % world_size == 0` check fails is a rather extreme change. I argue it is not desirable to do that implicitly, it should be an explicit case for specific scenarios (ie reliable validation). A train scenario would likely be much better handled with improved wrapping / stopping behaviour to eg also fix #6437. Changing from stepping shards to stepping samples means that every single process reads ALL of the shards. This was never an intended default for sharded training, shards gain their performance advantage in large scale distributed training by explicitly avoiding the need to have every process overlapping in the data they read, by default, only the data allocated to each process via their assigned shards should be read in each pass of the dataset. Using a large scale CLIP example, some of the larger datasets have 10-20k shards across 100+TB of data. Training with 1000 GPUs we are switching between reading 100 terabytes per epoch to 100 petabytes if say change 20k % 1000 and drop one gpu-node to 20k % 992. The 'step over samples' case might be worth the overhead in specific validation scenarios where gaurantees of at least/most once samples seen are more important and do not make up a significant portion of train time or are done in smaller world sizes outside of train. ### Steps to reproduce the bug N/A ### Expected behavior We have an iterable dataset with N shards, to split across workers * shuffle shards (same seed across all train processes) * step shard iterator across distributed processes * step shard iterator across dataloader worker processes * shuffle samples in every worker via shuffle buffer (different seed in each worker, but ideally controllable (based on base seed + worker id + epoch). * end up with (possibly uneven) number of shards per worker but each shard only ever accessed by 1 worker per pass (epoch) ### Environment info N/A
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6594/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6594/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6787
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6787/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6787/comments
https://api.github.com/repos/huggingface/datasets/issues/6787/events
https://github.com/huggingface/datasets/issues/6787
2,229,103,264
I_kwDODunzps6E3Wqg
6,787
TimeoutError in map
{ "avatar_url": "https://avatars.githubusercontent.com/u/48146603?v=4", "events_url": "https://api.github.com/users/Jiaxin-Wen/events{/privacy}", "followers_url": "https://api.github.com/users/Jiaxin-Wen/followers", "following_url": "https://api.github.com/users/Jiaxin-Wen/following{/other_user}", "gists_url": "https://api.github.com/users/Jiaxin-Wen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jiaxin-Wen", "id": 48146603, "login": "Jiaxin-Wen", "node_id": "MDQ6VXNlcjQ4MTQ2NjAz", "organizations_url": "https://api.github.com/users/Jiaxin-Wen/orgs", "received_events_url": "https://api.github.com/users/Jiaxin-Wen/received_events", "repos_url": "https://api.github.com/users/Jiaxin-Wen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jiaxin-Wen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiaxin-Wen/subscriptions", "type": "User", "url": "https://api.github.com/users/Jiaxin-Wen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "From my current understanding, this timeout is only used when we need to get the results.\r\n\r\nOne of:\r\n1. All tasks are done\r\n2. One worker died\r\n\r\nYour function should work fine and it's definitely a bug if it doesn't.", "When one of the `map`'s worker processes crashes, the linked code re-raises an error from the crash and returns it to the caller.\r\n\r\nIf your question is how to limit the time of long-running tasks/worker processes, such functionality doesn't exist in `datasets` (yet), which means you need to implement it yourself.\r\n\r\nE.g., you can implement it using the built-in `signal` module like this:\r\n```python\r\nimport time\r\nimport signal\r\nfrom contextlib import contextmanager\r\n\r\nfrom datasets import Dataset\r\n\r\n\r\n@contextmanager\r\ndef max_exec_time(t):\r\n def raise_timeout_handler(signum, frame):\r\n raise TimeoutError\r\n \r\n orig_handler = signal.getsignal(signal.SIGALRM)\r\n signal.signal(signal.SIGALRM, raise_timeout_handler)\r\n try:\r\n signal.alarm(t)\r\n yield\r\n finally:\r\n signal.alarm(0)\r\n signal.signal(signal.SIGALRM, orig_handler)\r\n\r\n\r\ndef worker(example, rank):\r\n try:\r\n with max_exec_time(20): # 20 sec execution limit\r\n if rank % 2 == 0:\r\n time.sleep(50) # simulate a long-running task\r\n example[\"a\"] = 100\r\n except TimeoutError:\r\n example[\"a\"] = None # Or return empty batches here in the \"batched\" mode\r\n return example\r\n\r\ndata = Dataset.from_list([{\"a\": 1}, {\"a\": 2}])\r\ndata = data.map(worker, num_proc=2, with_rank=True)\r\nprint(data[0])\r\n```", "> From my current understanding, this timeout is only used when we need to get the results.\r\n> \r\n> One of:\r\n> \r\n> 1. All tasks are done\r\n> 2. One worker died\r\n> \r\n> Your function should work fine and it's definitely a bug if it doesn't.\r\n\r\nthanks for responding! can you reproduce the stuck with the above example code?", "> When one of the `map`'s worker processes crashes, the linked code re-raises an error from the crash and returns it to the caller.\r\n> \r\n> If your question is how to limit the time of long-running tasks/worker processes, such functionality doesn't exist in `datasets` (yet), which means you need to implement it yourself.\r\n> \r\n> E.g., you can implement it using the built-in `signal` module like this:\r\n> \r\n> ```python\r\n> import time\r\n> import signal\r\n> from contextlib import contextmanager\r\n> \r\n> from datasets import Dataset\r\n> \r\n> \r\n> @contextmanager\r\n> def max_exec_time(t):\r\n> def raise_timeout_handler(signum, frame):\r\n> raise TimeoutError\r\n> \r\n> orig_handler = signal.getsignal(signal.SIGALRM)\r\n> signal.signal(signal.SIGALRM, raise_timeout_handler)\r\n> try:\r\n> signal.alarm(t)\r\n> yield\r\n> finally:\r\n> signal.alarm(0)\r\n> signal.signal(signal.SIGALRM, orig_handler)\r\n> \r\n> \r\n> def worker(example, rank):\r\n> try:\r\n> with max_exec_time(20): # 20 sec execution limit\r\n> if rank % 2 == 0:\r\n> time.sleep(50) # simulate a long-running task\r\n> example[\"a\"] = 100\r\n> except TimeoutError:\r\n> example[\"a\"] = None # Or return empty batches here in the \"batched\" mode\r\n> return example\r\n> \r\n> data = Dataset.from_list([{\"a\": 1}, {\"a\": 2}])\r\n> data = data.map(worker, num_proc=2, with_rank=True)\r\n> print(data[0])\r\n> ```\r\n\r\nthanks for responding! However, I don't think we should use `signal` in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\nhttps://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L664", "> thanks for responding! However, I don't think we should use signal in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\n\r\nThe above code has `try/except` to catch the error from the handler. Or do you get an error other than `TimeoutError`?", "> > thanks for responding! However, I don't think we should use signal in the context of multiprocessing since sometimes it will crash one process and raise the following error\r\n> \r\n> The above code has `try/except` to catch the error from the handler. Or do you get an error other than `TimeoutError`?\r\n\r\nyup, it will raise the RuntimeError: https://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L667C19-L670C22\r\n\r\n```\r\n raise RuntimeError(\r\n \"One of the subprocesses has abruptly died during map operation.\"\r\n \"To debug the error, disable multiprocessing.\"\r\n )\r\n```", "What @mariosasko proposed it's very useful for debugging. Thank you!" ]
2024-04-06T06:25:39Z
2024-08-14T02:09:57Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ```python from datasets import Dataset def worker(example): while True: continue example['a'] = 100 return example data = Dataset.from_list([{"a": 1}, {"a": 2}]) data = data.map(worker) print(data[0]) ``` I'm implementing a worker function whose runtime will depend on specific examples (e.g., while most examples take 0.01s in worker, several examples may take 50s). Therefore, I would like to know how the current implementation will handle those subprocesses that require a long (e.g., >= 5min) or even infinite time. I notice that the current implementation set a timeout of 0.05 second https://github.com/huggingface/datasets/blob/c3ddb1ef00334a6f973679a51e783905fbc9ef0b/src/datasets/utils/py_utils.py#L674 However, this example code still gets stuck. ### Steps to reproduce the bug run the example above ### Expected behavior I want to set a default worker to handle these timeout cases, instead of getting stuck ### Environment info main branch version
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6787/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6787/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6864
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6864/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6864/comments
https://api.github.com/repos/huggingface/datasets/issues/6864/events
https://github.com/huggingface/datasets/issues/6864
2,276,986,981
I_kwDODunzps6HuBBl
6,864
Dataset 'rewardsignal/reddit_writing_prompts' doesn't exist on the Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/5783246?v=4", "events_url": "https://api.github.com/users/vinodrajendran001/events{/privacy}", "followers_url": "https://api.github.com/users/vinodrajendran001/followers", "following_url": "https://api.github.com/users/vinodrajendran001/following{/other_user}", "gists_url": "https://api.github.com/users/vinodrajendran001/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vinodrajendran001", "id": 5783246, "login": "vinodrajendran001", "node_id": "MDQ6VXNlcjU3ODMyNDY=", "organizations_url": "https://api.github.com/users/vinodrajendran001/orgs", "received_events_url": "https://api.github.com/users/vinodrajendran001/received_events", "repos_url": "https://api.github.com/users/vinodrajendran001/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vinodrajendran001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinodrajendran001/subscriptions", "type": "User", "url": "https://api.github.com/users/vinodrajendran001", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Hi @vinodrajendran001, thanks for reporting.\r\n\r\nIndeed the dataset no longer exists on the Hub. The URL https://huggingface.co/datasets/rewardsignal/reddit_writing_prompts gives 404 Not Found error." ]
2024-05-03T06:03:30Z
2024-05-06T06:36:42Z
2024-05-06T06:36:41Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The dataset `rewardsignal/reddit_writing_prompts` is missing in Huggingface Hub. ### Steps to reproduce the bug ``` from datasets import load_dataset prompt_response_dataset = load_dataset("rewardsignal/reddit_writing_prompts", data_files="prompt_responses_full.csv", split='train[:80%]') ``` ### Expected behavior DatasetNotFoundError: Dataset 'rewardsignal/reddit_writing_prompts' doesn't exist on the Hub or cannot be accessed ### Environment info Nothing to do with versions
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6864/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6864/timeline
null
not_planned
null
null
https://api.github.com/repos/huggingface/datasets/issues/4931
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4931/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4931/comments
https://api.github.com/repos/huggingface/datasets/issues/4931/events
https://github.com/huggingface/datasets/pull/4931
1,362,298,764
PR_kwDODunzps4-Y3L6
4,931
Fix missing tags in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-05T17:03:04Z
2022-09-22T12:40:15Z
2022-09-06T05:39:29Z
MEMBER
null
null
null
Fix missing tags in dataset cards: - coqa - hyperpartisan_news_detection - opinosis - scientific_papers - scifact - search_qa - wiki_qa - wiki_split - wikisql This PR partially fixes the missing tags in dataset cards. Subsequent PRs will follow to complete this task. Related to: - #4833 - #4891 - #4896 - #4908 - #4921
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4931/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4931/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4931.diff", "html_url": "https://github.com/huggingface/datasets/pull/4931", "merged_at": "2022-09-06T05:39:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/4931.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4931" }
https://api.github.com/repos/huggingface/datasets/issues/6419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6419/comments
https://api.github.com/repos/huggingface/datasets/issues/6419/events
https://github.com/huggingface/datasets/pull/6419
1,994,257,873
PR_kwDODunzps5ffc7d
6,419
Release: 2.14.7
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004943 / 0.011353 (-0.006410) | 0.002900 / 0.011008 (-0.008109) | 0.061495 / 0.038508 (0.022987) | 0.053575 / 0.023109 (0.030466) | 0.249318 / 0.275898 (-0.026580) | 0.271773 / 0.323480 (-0.051706) | 0.003074 / 0.007986 (-0.004911) | 0.003738 / 0.004328 (-0.000590) | 0.047624 / 0.004250 (0.043373) | 0.045141 / 0.037052 (0.008089) | 0.255467 / 0.258489 (-0.003022) | 0.286577 / 0.293841 (-0.007264) | 0.023113 / 0.128546 (-0.105433) | 0.007189 / 0.075646 (-0.068458) | 0.204441 / 0.419271 (-0.214830) | 0.036829 / 0.043533 (-0.006704) | 0.252474 / 0.255139 (-0.002665) | 0.270960 / 0.283200 (-0.012239) | 0.019666 / 0.141683 (-0.122017) | 1.095139 / 1.452155 (-0.357015) | 1.158659 / 1.492716 (-0.334057) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091046 / 0.018006 (0.073040) | 0.298346 / 0.000490 (0.297856) | 0.000215 / 0.000200 (0.000015) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018702 / 0.037411 (-0.018709) | 0.062213 / 0.014526 (0.047687) | 0.073364 / 0.176557 (-0.103193) | 0.119841 / 0.737135 (-0.617294) | 0.074070 / 0.296338 (-0.222268) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282388 / 0.215209 (0.067179) | 2.792029 / 2.077655 (0.714375) | 1.471483 / 1.504120 (-0.032637) | 1.386236 / 1.541195 (-0.154959) | 1.377489 / 1.468490 (-0.091001) | 0.410335 / 4.584777 (-4.174442) | 2.424866 / 3.745712 (-1.320846) | 2.610609 / 5.269862 (-2.659253) | 1.574636 / 4.565676 (-2.991041) | 0.046716 / 0.424275 (-0.377559) | 0.004768 / 0.007607 (-0.002839) | 0.339831 / 0.226044 (0.113787) | 3.297579 / 2.268929 (1.028651) | 1.851410 / 55.444624 (-53.593214) | 1.550048 / 6.876477 (-5.326428) | 1.576647 / 2.142072 (-0.565425) | 0.482538 / 4.805227 (-4.322689) | 0.101381 / 6.500664 (-6.399283) | 0.042066 / 0.075469 (-0.033403) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972664 / 1.841788 (-0.869123) | 11.580700 / 8.074308 (3.506392) | 10.586747 / 10.191392 (0.395355) | 0.127844 / 0.680424 (-0.552580) | 0.014270 / 0.534201 (-0.519931) | 0.269678 / 0.579283 (-0.309605) | 0.264022 / 0.434364 (-0.170342) | 0.309395 / 0.540337 (-0.230942) | 0.429228 / 1.386936 (-0.957708) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004815 / 0.011353 (-0.006538) | 0.002890 / 0.011008 (-0.008119) | 0.048039 / 0.038508 (0.009531) | 0.053029 / 0.023109 (0.029920) | 0.271346 / 0.275898 (-0.004552) | 0.294488 / 0.323480 (-0.028992) | 0.003983 / 0.007986 (-0.004003) | 0.002439 / 0.004328 (-0.001889) | 0.048250 / 0.004250 (0.044000) | 0.038855 / 0.037052 (0.001803) | 0.284723 / 0.258489 (0.026234) | 0.303604 / 0.293841 (0.009763) | 0.024384 / 0.128546 (-0.104163) | 0.007021 / 0.075646 (-0.068625) | 0.053850 / 0.419271 (-0.365422) | 0.032177 / 0.043533 (-0.011356) | 0.270039 / 0.255139 (0.014900) | 0.289669 / 0.283200 (0.006469) | 0.018840 / 0.141683 (-0.122842) | 1.122191 / 1.452155 (-0.329963) | 1.187083 / 1.492716 (-0.305634) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090609 / 0.018006 (0.072603) | 0.298915 / 0.000490 (0.298425) | 0.000216 / 0.000200 (0.000016) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020919 / 0.037411 (-0.016492) | 0.070474 / 0.014526 (0.055948) | 0.082421 / 0.176557 (-0.094135) | 0.126967 / 0.737135 (-0.610168) | 0.083447 / 0.296338 (-0.212892) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300153 / 0.215209 (0.084944) | 2.958992 / 2.077655 (0.881337) | 1.631228 / 1.504120 (0.127108) | 1.497991 / 1.541195 (-0.043204) | 1.536963 / 1.468490 (0.068473) | 0.403047 / 4.584777 (-4.181730) | 2.448782 / 3.745712 (-1.296930) | 2.571954 / 5.269862 (-2.697908) | 1.556346 / 4.565676 (-3.009331) | 0.045992 / 0.424275 (-0.378283) | 0.004785 / 0.007607 (-0.002822) | 0.357448 / 0.226044 (0.131404) | 3.558808 / 2.268929 (1.289880) | 1.992624 / 55.444624 (-53.452001) | 1.695027 / 6.876477 (-5.181450) | 1.695183 / 2.142072 (-0.446889) | 0.477001 / 4.805227 (-4.328226) | 0.097485 / 6.500664 (-6.403179) | 0.040530 / 0.075469 (-0.034939) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976342 / 1.841788 (-0.865445) | 12.141698 / 8.074308 (4.067390) | 10.881101 / 10.191392 (0.689709) | 0.142443 / 0.680424 (-0.537981) | 0.015583 / 0.534201 (-0.518618) | 0.269727 / 0.579283 (-0.309556) | 0.275890 / 0.434364 (-0.158474) | 0.306351 / 0.540337 (-0.233987) | 0.412003 / 1.386936 (-0.974933) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7c744261000fd684f54c54de8ac4f15a726092d7 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004946 / 0.011353 (-0.006407) | 0.002863 / 0.011008 (-0.008146) | 0.061888 / 0.038508 (0.023380) | 0.050664 / 0.023109 (0.027554) | 0.242635 / 0.275898 (-0.033263) | 0.271741 / 0.323480 (-0.051739) | 0.003023 / 0.007986 (-0.004963) | 0.003088 / 0.004328 (-0.001241) | 0.049286 / 0.004250 (0.045036) | 0.044699 / 0.037052 (0.007647) | 0.249581 / 0.258489 (-0.008908) | 0.285633 / 0.293841 (-0.008208) | 0.023048 / 0.128546 (-0.105499) | 0.007235 / 0.075646 (-0.068412) | 0.202989 / 0.419271 (-0.216282) | 0.036357 / 0.043533 (-0.007175) | 0.245980 / 0.255139 (-0.009159) | 0.277486 / 0.283200 (-0.005713) | 0.019215 / 0.141683 (-0.122468) | 1.096456 / 1.452155 (-0.355699) | 1.152196 / 1.492716 (-0.340520) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092026 / 0.018006 (0.074020) | 0.303038 / 0.000490 (0.302549) | 0.000209 / 0.000200 (0.000009) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018670 / 0.037411 (-0.018741) | 0.061972 / 0.014526 (0.047446) | 0.072963 / 0.176557 (-0.103594) | 0.119984 / 0.737135 (-0.617151) | 0.074074 / 0.296338 (-0.222265) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282444 / 0.215209 (0.067235) | 2.754571 / 2.077655 (0.676916) | 1.482635 / 1.504120 (-0.021485) | 1.352039 / 1.541195 (-0.189155) | 1.359333 / 1.468490 (-0.109157) | 0.399690 / 4.584777 (-4.185087) | 2.364844 / 3.745712 (-1.380868) | 2.603942 / 5.269862 (-2.665919) | 1.569512 / 4.565676 (-2.996164) | 0.046074 / 0.424275 (-0.378201) | 0.004745 / 0.007607 (-0.002862) | 0.339066 / 0.226044 (0.113022) | 3.363456 / 2.268929 (1.094527) | 1.822213 / 55.444624 (-53.622411) | 1.536622 / 6.876477 (-5.339854) | 1.574772 / 2.142072 (-0.567300) | 0.474418 / 4.805227 (-4.330809) | 0.099572 / 6.500664 (-6.401092) | 0.041824 / 0.075469 (-0.033645) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.956300 / 1.841788 (-0.885487) | 11.648886 / 8.074308 (3.574578) | 10.645700 / 10.191392 (0.454308) | 0.138924 / 0.680424 (-0.541499) | 0.013936 / 0.534201 (-0.520265) | 0.270319 / 0.579283 (-0.308964) | 0.269735 / 0.434364 (-0.164629) | 0.309699 / 0.540337 (-0.230639) | 0.429139 / 1.386936 (-0.957797) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004838 / 0.011353 (-0.006515) | 0.002937 / 0.011008 (-0.008072) | 0.048094 / 0.038508 (0.009586) | 0.053131 / 0.023109 (0.030022) | 0.271893 / 0.275898 (-0.004005) | 0.291025 / 0.323480 (-0.032454) | 0.004058 / 0.007986 (-0.003928) | 0.002410 / 0.004328 (-0.001919) | 0.047939 / 0.004250 (0.043689) | 0.038996 / 0.037052 (0.001944) | 0.274983 / 0.258489 (0.016494) | 0.306175 / 0.293841 (0.012334) | 0.024388 / 0.128546 (-0.104159) | 0.007242 / 0.075646 (-0.068404) | 0.054011 / 0.419271 (-0.365261) | 0.032750 / 0.043533 (-0.010783) | 0.271147 / 0.255139 (0.016008) | 0.288163 / 0.283200 (0.004963) | 0.018383 / 0.141683 (-0.123299) | 1.116134 / 1.452155 (-0.336021) | 1.185964 / 1.492716 (-0.306752) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093289 / 0.018006 (0.075283) | 0.303058 / 0.000490 (0.302568) | 0.000241 / 0.000200 (0.000041) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021422 / 0.037411 (-0.015990) | 0.069974 / 0.014526 (0.055449) | 0.081164 / 0.176557 (-0.095392) | 0.119991 / 0.737135 (-0.617144) | 0.082154 / 0.296338 (-0.214184) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292298 / 0.215209 (0.077089) | 2.851475 / 2.077655 (0.773821) | 1.558283 / 1.504120 (0.054163) | 1.432431 / 1.541195 (-0.108764) | 1.479282 / 1.468490 (0.010792) | 0.413124 / 4.584777 (-4.171653) | 2.473005 / 3.745712 (-1.272707) | 2.548779 / 5.269862 (-2.721082) | 1.520776 / 4.565676 (-3.044900) | 0.046476 / 0.424275 (-0.377799) | 0.004814 / 0.007607 (-0.002794) | 0.347036 / 0.226044 (0.120992) | 3.424928 / 2.268929 (1.155999) | 1.963274 / 55.444624 (-53.481351) | 1.653794 / 6.876477 (-5.222683) | 1.643874 / 2.142072 (-0.498198) | 0.469086 / 4.805227 (-4.336141) | 0.097417 / 6.500664 (-6.403247) | 0.040468 / 0.075469 (-0.035002) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972783 / 1.841788 (-0.869005) | 12.122994 / 8.074308 (4.048686) | 10.876396 / 10.191392 (0.685004) | 0.130573 / 0.680424 (-0.549850) | 0.016693 / 0.534201 (-0.517508) | 0.270952 / 0.579283 (-0.308331) | 0.273834 / 0.434364 (-0.160530) | 0.305049 / 0.540337 (-0.235289) | 0.408776 / 1.386936 (-0.978160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e4216e5d57ea07e6b1ed73a3ec2cf845c6e59f70 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004606 / 0.011353 (-0.006747) | 0.002433 / 0.011008 (-0.008576) | 0.061985 / 0.038508 (0.023477) | 0.048853 / 0.023109 (0.025744) | 0.244506 / 0.275898 (-0.031392) | 0.270159 / 0.323480 (-0.053321) | 0.003962 / 0.007986 (-0.004024) | 0.002376 / 0.004328 (-0.001952) | 0.048067 / 0.004250 (0.043817) | 0.041864 / 0.037052 (0.004812) | 0.249743 / 0.258489 (-0.008746) | 0.287723 / 0.293841 (-0.006117) | 0.022954 / 0.128546 (-0.105593) | 0.006845 / 0.075646 (-0.068801) | 0.206313 / 0.419271 (-0.212959) | 0.035780 / 0.043533 (-0.007753) | 0.244286 / 0.255139 (-0.010853) | 0.270026 / 0.283200 (-0.013173) | 0.018177 / 0.141683 (-0.123506) | 1.083998 / 1.452155 (-0.368157) | 1.156086 / 1.492716 (-0.336630) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093754 / 0.018006 (0.075748) | 0.302157 / 0.000490 (0.301667) | 0.000215 / 0.000200 (0.000015) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018745 / 0.037411 (-0.018666) | 0.061707 / 0.014526 (0.047181) | 0.074356 / 0.176557 (-0.102200) | 0.121643 / 0.737135 (-0.615492) | 0.075885 / 0.296338 (-0.220454) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289156 / 0.215209 (0.073947) | 2.881327 / 2.077655 (0.803672) | 1.483568 / 1.504120 (-0.020552) | 1.355933 / 1.541195 (-0.185262) | 1.389693 / 1.468490 (-0.078797) | 0.402834 / 4.584777 (-4.181943) | 2.390634 / 3.745712 (-1.355078) | 2.596761 / 5.269862 (-2.673101) | 1.527602 / 4.565676 (-3.038074) | 0.046434 / 0.424275 (-0.377841) | 0.004783 / 0.007607 (-0.002824) | 0.341017 / 0.226044 (0.114972) | 3.429023 / 2.268929 (1.160095) | 1.832988 / 55.444624 (-53.611637) | 1.526510 / 6.876477 (-5.349967) | 1.539382 / 2.142072 (-0.602690) | 0.475734 / 4.805227 (-4.329493) | 0.098710 / 6.500664 (-6.401954) | 0.041136 / 0.075469 (-0.034333) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.922023 / 1.841788 (-0.919765) | 11.428215 / 8.074308 (3.353907) | 10.356668 / 10.191392 (0.165276) | 0.139575 / 0.680424 (-0.540848) | 0.014541 / 0.534201 (-0.519660) | 0.271359 / 0.579283 (-0.307924) | 0.266701 / 0.434364 (-0.167663) | 0.309449 / 0.540337 (-0.230888) | 0.422047 / 1.386936 (-0.964889) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004892 / 0.011353 (-0.006461) | 0.002792 / 0.011008 (-0.008216) | 0.048027 / 0.038508 (0.009519) | 0.059256 / 0.023109 (0.036147) | 0.270150 / 0.275898 (-0.005748) | 0.294530 / 0.323480 (-0.028950) | 0.004162 / 0.007986 (-0.003823) | 0.002470 / 0.004328 (-0.001858) | 0.047993 / 0.004250 (0.043743) | 0.040380 / 0.037052 (0.003328) | 0.275247 / 0.258489 (0.016758) | 0.305684 / 0.293841 (0.011843) | 0.025072 / 0.128546 (-0.103474) | 0.007183 / 0.075646 (-0.068463) | 0.054875 / 0.419271 (-0.364397) | 0.033053 / 0.043533 (-0.010480) | 0.271281 / 0.255139 (0.016142) | 0.288057 / 0.283200 (0.004858) | 0.018692 / 0.141683 (-0.122991) | 1.125224 / 1.452155 (-0.326930) | 1.171083 / 1.492716 (-0.321633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.103102 / 0.018006 (0.085096) | 0.309099 / 0.000490 (0.308609) | 0.000232 / 0.000200 (0.000032) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021532 / 0.037411 (-0.015879) | 0.069927 / 0.014526 (0.055401) | 0.080920 / 0.176557 (-0.095637) | 0.122214 / 0.737135 (-0.614921) | 0.082268 / 0.296338 (-0.214071) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298121 / 0.215209 (0.082912) | 2.933000 / 2.077655 (0.855345) | 1.608782 / 1.504120 (0.104662) | 1.554083 / 1.541195 (0.012889) | 1.552700 / 1.468490 (0.084209) | 0.400576 / 4.584777 (-4.184201) | 2.412914 / 3.745712 (-1.332798) | 2.545706 / 5.269862 (-2.724155) | 1.548797 / 4.565676 (-3.016879) | 0.045553 / 0.424275 (-0.378722) | 0.004751 / 0.007607 (-0.002857) | 0.343002 / 0.226044 (0.116958) | 3.402866 / 2.268929 (1.133937) | 1.969910 / 55.444624 (-53.474715) | 1.686639 / 6.876477 (-5.189838) | 1.768474 / 2.142072 (-0.373599) | 0.471299 / 4.805227 (-4.333928) | 0.097696 / 6.500664 (-6.402968) | 0.041693 / 0.075469 (-0.033776) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971380 / 1.841788 (-0.870408) | 12.686033 / 8.074308 (4.611725) | 11.370946 / 10.191392 (1.179554) | 0.138377 / 0.680424 (-0.542047) | 0.015623 / 0.534201 (-0.518578) | 0.270935 / 0.579283 (-0.308348) | 0.276235 / 0.434364 (-0.158129) | 0.310196 / 0.540337 (-0.230141) | 0.416908 / 1.386936 (-0.970028) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf02cff8d70180a9e89328961ded9e3d8510fd22 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004581 / 0.011353 (-0.006772) | 0.002468 / 0.011008 (-0.008541) | 0.061420 / 0.038508 (0.022912) | 0.047685 / 0.023109 (0.024575) | 0.237756 / 0.275898 (-0.038142) | 0.267548 / 0.323480 (-0.055932) | 0.003899 / 0.007986 (-0.004086) | 0.002338 / 0.004328 (-0.001990) | 0.048794 / 0.004250 (0.044543) | 0.042485 / 0.037052 (0.005433) | 0.250165 / 0.258489 (-0.008324) | 0.278791 / 0.293841 (-0.015050) | 0.022371 / 0.128546 (-0.106175) | 0.006923 / 0.075646 (-0.068723) | 0.201401 / 0.419271 (-0.217870) | 0.035867 / 0.043533 (-0.007665) | 0.244628 / 0.255139 (-0.010511) | 0.271137 / 0.283200 (-0.012063) | 0.017257 / 0.141683 (-0.124426) | 1.097261 / 1.452155 (-0.354894) | 1.163314 / 1.492716 (-0.329402) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089060 / 0.018006 (0.071054) | 0.297489 / 0.000490 (0.296999) | 0.000207 / 0.000200 (0.000007) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018583 / 0.037411 (-0.018828) | 0.061974 / 0.014526 (0.047449) | 0.073300 / 0.176557 (-0.103256) | 0.118871 / 0.737135 (-0.618264) | 0.075513 / 0.296338 (-0.220826) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285544 / 0.215209 (0.070335) | 2.799871 / 2.077655 (0.722216) | 1.479871 / 1.504120 (-0.024249) | 1.351128 / 1.541195 (-0.190067) | 1.377540 / 1.468490 (-0.090950) | 0.393056 / 4.584777 (-4.191721) | 2.341791 / 3.745712 (-1.403921) | 2.546854 / 5.269862 (-2.723007) | 1.547368 / 4.565676 (-3.018309) | 0.046056 / 0.424275 (-0.378219) | 0.004765 / 0.007607 (-0.002842) | 0.336384 / 0.226044 (0.110339) | 3.283277 / 2.268929 (1.014348) | 1.784535 / 55.444624 (-53.660089) | 1.557809 / 6.876477 (-5.318667) | 1.581728 / 2.142072 (-0.560344) | 0.470527 / 4.805227 (-4.334700) | 0.098383 / 6.500664 (-6.402281) | 0.041563 / 0.075469 (-0.033906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.946924 / 1.841788 (-0.894863) | 11.202775 / 8.074308 (3.128467) | 10.249760 / 10.191392 (0.058368) | 0.142337 / 0.680424 (-0.538087) | 0.013784 / 0.534201 (-0.520417) | 0.267237 / 0.579283 (-0.312046) | 0.264142 / 0.434364 (-0.170222) | 0.306343 / 0.540337 (-0.233994) | 0.423681 / 1.386936 (-0.963255) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004786 / 0.011353 (-0.006567) | 0.002398 / 0.011008 (-0.008610) | 0.047325 / 0.038508 (0.008817) | 0.050753 / 0.023109 (0.027644) | 0.271132 / 0.275898 (-0.004766) | 0.290854 / 0.323480 (-0.032626) | 0.003953 / 0.007986 (-0.004033) | 0.002238 / 0.004328 (-0.002090) | 0.047463 / 0.004250 (0.043213) | 0.038504 / 0.037052 (0.001451) | 0.273182 / 0.258489 (0.014693) | 0.303449 / 0.293841 (0.009608) | 0.024069 / 0.128546 (-0.104477) | 0.006712 / 0.075646 (-0.068934) | 0.053032 / 0.419271 (-0.366239) | 0.032221 / 0.043533 (-0.011312) | 0.271770 / 0.255139 (0.016631) | 0.287876 / 0.283200 (0.004677) | 0.018040 / 0.141683 (-0.123643) | 1.138749 / 1.452155 (-0.313405) | 1.192048 / 1.492716 (-0.300668) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089132 / 0.018006 (0.071126) | 0.298636 / 0.000490 (0.298146) | 0.000220 / 0.000200 (0.000020) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020808 / 0.037411 (-0.016603) | 0.069506 / 0.014526 (0.054980) | 0.079412 / 0.176557 (-0.097145) | 0.118188 / 0.737135 (-0.618947) | 0.083044 / 0.296338 (-0.213294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293502 / 0.215209 (0.078293) | 2.863692 / 2.077655 (0.786037) | 1.590877 / 1.504120 (0.086757) | 1.483634 / 1.541195 (-0.057561) | 1.502113 / 1.468490 (0.033623) | 0.402170 / 4.584777 (-4.182607) | 2.414188 / 3.745712 (-1.331524) | 2.500146 / 5.269862 (-2.769716) | 1.506977 / 4.565676 (-3.058699) | 0.045849 / 0.424275 (-0.378426) | 0.004755 / 0.007607 (-0.002852) | 0.343073 / 0.226044 (0.117029) | 3.354985 / 2.268929 (1.086056) | 1.952594 / 55.444624 (-53.492030) | 1.664084 / 6.876477 (-5.212392) | 1.664203 / 2.142072 (-0.477869) | 0.475858 / 4.805227 (-4.329370) | 0.097539 / 6.500664 (-6.403125) | 0.040201 / 0.075469 (-0.035268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980051 / 1.841788 (-0.861736) | 11.615291 / 8.074308 (3.540983) | 10.492092 / 10.191392 (0.300700) | 0.130450 / 0.680424 (-0.549974) | 0.015883 / 0.534201 (-0.518318) | 0.267575 / 0.579283 (-0.311708) | 0.276981 / 0.434364 (-0.157383) | 0.310221 / 0.540337 (-0.230116) | 0.417143 / 1.386936 (-0.969793) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf02cff8d70180a9e89328961ded9e3d8510fd22 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004721 / 0.011353 (-0.006632) | 0.002931 / 0.011008 (-0.008077) | 0.061948 / 0.038508 (0.023440) | 0.051066 / 0.023109 (0.027957) | 0.245431 / 0.275898 (-0.030467) | 0.295627 / 0.323480 (-0.027852) | 0.003997 / 0.007986 (-0.003988) | 0.002408 / 0.004328 (-0.001920) | 0.048292 / 0.004250 (0.044041) | 0.044716 / 0.037052 (0.007664) | 0.255119 / 0.258489 (-0.003371) | 0.287384 / 0.293841 (-0.006457) | 0.022835 / 0.128546 (-0.105711) | 0.007162 / 0.075646 (-0.068484) | 0.201352 / 0.419271 (-0.217920) | 0.036626 / 0.043533 (-0.006906) | 0.249590 / 0.255139 (-0.005549) | 0.270822 / 0.283200 (-0.012378) | 0.018152 / 0.141683 (-0.123531) | 1.097046 / 1.452155 (-0.355109) | 1.160461 / 1.492716 (-0.332255) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091712 / 0.018006 (0.073705) | 0.299121 / 0.000490 (0.298631) | 0.000244 / 0.000200 (0.000044) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018998 / 0.037411 (-0.018413) | 0.062811 / 0.014526 (0.048285) | 0.076348 / 0.176557 (-0.100209) | 0.123898 / 0.737135 (-0.613238) | 0.076249 / 0.296338 (-0.220090) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282780 / 0.215209 (0.067571) | 2.739028 / 2.077655 (0.661373) | 1.472564 / 1.504120 (-0.031556) | 1.347343 / 1.541195 (-0.193852) | 1.387130 / 1.468490 (-0.081360) | 0.403348 / 4.584777 (-4.181429) | 2.369924 / 3.745712 (-1.375788) | 2.612875 / 5.269862 (-2.656987) | 1.588079 / 4.565676 (-2.977598) | 0.045233 / 0.424275 (-0.379042) | 0.004767 / 0.007607 (-0.002840) | 0.336614 / 0.226044 (0.110570) | 3.300485 / 2.268929 (1.031556) | 1.834365 / 55.444624 (-53.610259) | 1.559799 / 6.876477 (-5.316677) | 1.601265 / 2.142072 (-0.540808) | 0.468158 / 4.805227 (-4.337069) | 0.099811 / 6.500664 (-6.400853) | 0.042688 / 0.075469 (-0.032782) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.934097 / 1.841788 (-0.907691) | 11.687713 / 8.074308 (3.613405) | 10.412723 / 10.191392 (0.221331) | 0.139276 / 0.680424 (-0.541148) | 0.014042 / 0.534201 (-0.520159) | 0.270306 / 0.579283 (-0.308978) | 0.266609 / 0.434364 (-0.167755) | 0.314179 / 0.540337 (-0.226158) | 0.437744 / 1.386936 (-0.949192) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004893 / 0.011353 (-0.006460) | 0.002952 / 0.011008 (-0.008056) | 0.050441 / 0.038508 (0.011933) | 0.051838 / 0.023109 (0.028729) | 0.271163 / 0.275898 (-0.004735) | 0.293031 / 0.323480 (-0.030449) | 0.003976 / 0.007986 (-0.004010) | 0.002396 / 0.004328 (-0.001933) | 0.048103 / 0.004250 (0.043852) | 0.038732 / 0.037052 (0.001680) | 0.274276 / 0.258489 (0.015787) | 0.305112 / 0.293841 (0.011271) | 0.024112 / 0.128546 (-0.104434) | 0.007203 / 0.075646 (-0.068443) | 0.053502 / 0.419271 (-0.365770) | 0.032360 / 0.043533 (-0.011173) | 0.270154 / 0.255139 (0.015015) | 0.286689 / 0.283200 (0.003489) | 0.018285 / 0.141683 (-0.123397) | 1.141421 / 1.452155 (-0.310734) | 1.244062 / 1.492716 (-0.248654) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090960 / 0.018006 (0.072954) | 0.286134 / 0.000490 (0.285644) | 0.000207 / 0.000200 (0.000007) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020789 / 0.037411 (-0.016622) | 0.070850 / 0.014526 (0.056324) | 0.080750 / 0.176557 (-0.095807) | 0.120046 / 0.737135 (-0.617089) | 0.083630 / 0.296338 (-0.212708) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290654 / 0.215209 (0.075445) | 2.846669 / 2.077655 (0.769014) | 1.561752 / 1.504120 (0.057632) | 1.442968 / 1.541195 (-0.098227) | 1.503551 / 1.468490 (0.035061) | 0.399731 / 4.584777 (-4.185046) | 2.430099 / 3.745712 (-1.315613) | 2.556169 / 5.269862 (-2.713692) | 1.545591 / 4.565676 (-3.020085) | 0.045967 / 0.424275 (-0.378309) | 0.004851 / 0.007607 (-0.002756) | 0.340167 / 0.226044 (0.114122) | 3.392738 / 2.268929 (1.123809) | 1.943577 / 55.444624 (-53.501047) | 1.650057 / 6.876477 (-5.226420) | 1.686872 / 2.142072 (-0.455201) | 0.470305 / 4.805227 (-4.334923) | 0.097296 / 6.500664 (-6.403368) | 0.041399 / 0.075469 (-0.034070) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985660 / 1.841788 (-0.856128) | 12.300826 / 8.074308 (4.226518) | 10.972591 / 10.191392 (0.781199) | 0.131512 / 0.680424 (-0.548912) | 0.015742 / 0.534201 (-0.518459) | 0.270630 / 0.579283 (-0.308653) | 0.276039 / 0.434364 (-0.158325) | 0.302288 / 0.540337 (-0.238050) | 0.409415 / 1.386936 (-0.977521) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf02cff8d70180a9e89328961ded9e3d8510fd22 \"CML watermark\")\n" ]
2023-11-15T08:07:37Z
2023-11-15T17:35:30Z
2023-11-15T08:12:59Z
MEMBER
null
null
null
Release 2.14.7.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6419/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6419/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6419.diff", "html_url": "https://github.com/huggingface/datasets/pull/6419", "merged_at": "2023-11-15T08:12:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/6419.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6419" }
https://api.github.com/repos/huggingface/datasets/issues/7011
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7011/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7011/comments
https://api.github.com/repos/huggingface/datasets/issues/7011/events
https://github.com/huggingface/datasets/pull/7011
2,379,785,262
PR_kwDODunzps5z27Fs
7,011
Re-enable raising error from huggingface-hub FutureWarning in CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7011). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005589 / 0.011353 (-0.005764) | 0.003855 / 0.011008 (-0.007153) | 0.063445 / 0.038508 (0.024937) | 0.030815 / 0.023109 (0.007706) | 0.244052 / 0.275898 (-0.031846) | 0.269916 / 0.323480 (-0.053563) | 0.003130 / 0.007986 (-0.004856) | 0.003349 / 0.004328 (-0.000980) | 0.049338 / 0.004250 (0.045088) | 0.045314 / 0.037052 (0.008261) | 0.250646 / 0.258489 (-0.007844) | 0.295828 / 0.293841 (0.001987) | 0.029808 / 0.128546 (-0.098738) | 0.012299 / 0.075646 (-0.063347) | 0.204946 / 0.419271 (-0.214325) | 0.036387 / 0.043533 (-0.007146) | 0.244316 / 0.255139 (-0.010823) | 0.269308 / 0.283200 (-0.013892) | 0.019226 / 0.141683 (-0.122457) | 1.138739 / 1.452155 (-0.313416) | 1.155265 / 1.492716 (-0.337451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094085 / 0.018006 (0.076078) | 0.299764 / 0.000490 (0.299275) | 0.000205 / 0.000200 (0.000005) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018361 / 0.037411 (-0.019050) | 0.062665 / 0.014526 (0.048139) | 0.075888 / 0.176557 (-0.100668) | 0.120915 / 0.737135 (-0.616221) | 0.075465 / 0.296338 (-0.220873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279698 / 0.215209 (0.064489) | 2.784544 / 2.077655 (0.706889) | 1.498441 / 1.504120 (-0.005679) | 1.379789 / 1.541195 (-0.161406) | 1.388480 / 1.468490 (-0.080011) | 0.724249 / 4.584777 (-3.860528) | 2.343139 / 3.745712 (-1.402573) | 2.816179 / 5.269862 (-2.453683) | 1.908737 / 4.565676 (-2.656940) | 0.077686 / 0.424275 (-0.346589) | 0.005444 / 0.007607 (-0.002163) | 0.344084 / 0.226044 (0.118039) | 3.367548 / 2.268929 (1.098619) | 1.849200 / 55.444624 (-53.595424) | 1.556390 / 6.876477 (-5.320087) | 1.672902 / 2.142072 (-0.469170) | 0.795457 / 4.805227 (-4.009770) | 0.133521 / 6.500664 (-6.367143) | 0.042883 / 0.075469 (-0.032586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959094 / 1.841788 (-0.882694) | 11.399783 / 8.074308 (3.325475) | 9.075784 / 10.191392 (-1.115608) | 0.142897 / 0.680424 (-0.537527) | 0.014765 / 0.534201 (-0.519436) | 0.302259 / 0.579283 (-0.277024) | 0.261148 / 0.434364 (-0.173216) | 0.340302 / 0.540337 (-0.200035) | 0.459203 / 1.386936 (-0.927733) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005821 / 0.011353 (-0.005532) | 0.003964 / 0.011008 (-0.007044) | 0.049904 / 0.038508 (0.011396) | 0.031061 / 0.023109 (0.007952) | 0.270002 / 0.275898 (-0.005896) | 0.289489 / 0.323480 (-0.033991) | 0.004477 / 0.007986 (-0.003509) | 0.002800 / 0.004328 (-0.001528) | 0.048029 / 0.004250 (0.043779) | 0.040486 / 0.037052 (0.003434) | 0.278442 / 0.258489 (0.019953) | 0.312606 / 0.293841 (0.018765) | 0.032920 / 0.128546 (-0.095626) | 0.012572 / 0.075646 (-0.063075) | 0.060589 / 0.419271 (-0.358682) | 0.034147 / 0.043533 (-0.009386) | 0.275282 / 0.255139 (0.020143) | 0.314073 / 0.283200 (0.030873) | 0.017555 / 0.141683 (-0.124128) | 1.149974 / 1.452155 (-0.302181) | 1.183715 / 1.492716 (-0.309002) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095616 / 0.018006 (0.077610) | 0.302101 / 0.000490 (0.301611) | 0.000201 / 0.000200 (0.000001) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022245 / 0.037411 (-0.015166) | 0.076890 / 0.014526 (0.062364) | 0.088471 / 0.176557 (-0.088085) | 0.128364 / 0.737135 (-0.608771) | 0.089907 / 0.296338 (-0.206431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302662 / 0.215209 (0.087453) | 2.979054 / 2.077655 (0.901399) | 1.576534 / 1.504120 (0.072414) | 1.443784 / 1.541195 (-0.097410) | 1.476000 / 1.468490 (0.007510) | 0.740580 / 4.584777 (-3.844197) | 0.953349 / 3.745712 (-2.792363) | 2.925619 / 5.269862 (-2.344243) | 1.904701 / 4.565676 (-2.660975) | 0.078404 / 0.424275 (-0.345872) | 0.005179 / 0.007607 (-0.002429) | 0.357217 / 0.226044 (0.131173) | 3.494812 / 2.268929 (1.225884) | 1.927345 / 55.444624 (-53.517280) | 1.627162 / 6.876477 (-5.249315) | 1.676748 / 2.142072 (-0.465324) | 0.798826 / 4.805227 (-4.006401) | 0.133617 / 6.500664 (-6.367047) | 0.041229 / 0.075469 (-0.034240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.017046 / 1.841788 (-0.824742) | 12.045942 / 8.074308 (3.971634) | 10.430383 / 10.191392 (0.238991) | 0.144497 / 0.680424 (-0.535926) | 0.015809 / 0.534201 (-0.518392) | 0.304701 / 0.579283 (-0.274582) | 0.126496 / 0.434364 (-0.307868) | 0.340308 / 0.540337 (-0.200030) | 0.434917 / 1.386936 (-0.952019) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#054e57a8468af9fff5b75c08d2d6adf3e05fa763 \"CML watermark\")\n" ]
2024-06-28T07:28:32Z
2024-06-28T12:25:25Z
2024-06-28T12:19:28Z
MEMBER
null
null
null
Re-enable raising error from huggingface-hub FutureWarning in tests, once that the fix in transformers - https://github.com/huggingface/transformers/pull/31007 was just released yesterday in transformers-4.42.0: https://github.com/huggingface/transformers/releases/tag/v4.42.0 Fix #7010.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7011/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7011/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7011.diff", "html_url": "https://github.com/huggingface/datasets/pull/7011", "merged_at": "2024-06-28T12:19:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/7011.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7011" }
https://api.github.com/repos/huggingface/datasets/issues/5023
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5023/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5023/comments
https://api.github.com/repos/huggingface/datasets/issues/5023/events
https://github.com/huggingface/datasets/issues/5023
1,385,881,112
I_kwDODunzps5Smt4Y
5,023
Text strings are split into lists of characters in xcsr dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2022-09-26T11:11:50Z
2022-09-28T07:54:20Z
2022-09-28T07:54:20Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Text strings are split into lists of characters. Example for "X-CSQA-en": ``` {'id': 'd3845adc08414fda', 'lang': 'en', 'question': {'stem': ['T', 'h', 'e', ' ', 'd', 'e', 'n', 't', 'a', 'l', ' ', 'o', 'f', 'f', 'i', 'c', 'e', ' ', 'h', 'a', 'n', 'd', 'l', 'e', 'd', ' ', 'a', ' ', 'l', 'o', 't', ' ', 'o', 'f', ' ', 'p', 'a', 't', 'i', 'e', 'n', 't', 's', ' ', 'w', 'h', 'o', ' ', 'e', 'x', 'p', 'e', 'r', 'i', 'e', 'n', 'c', 'e', 'd', ' ', 't', 'r', 'a', 'u', 'm', 'a', 't', 'i', 'c', ' ', 'm', 'o', 'u', 't', 'h', ' ', 'i', 'n', 'j', 'u', 'r', 'y', ',', ' ', 'w', 'h', 'e', 'r', 'e', ' ', 'w', 'e', 'r', 'e', ' ', 't', 'h', 'e', 's', 'e', ' ', 'p', 'a', 't', 'i', 'e', 'n', 't', 's', ' ', 'c', 'o', 'm', 'i', 'n', 'g', ' ', 'f', 'r', 'o', 'm', '?'], 'choices': [{'label': ['A'], 'text': ['t', 'o', 'w', 'n']}, {'label': ['B'], 'text': ['m', 'i', 'c', 'h', 'i', 'g', 'a', 'n']}, {'label': ['C'], 'text': ['h', 'o', 's', 'p', 'i', 't', 'a', 'l']}, {'label': ['D'], 'text': ['s', 'c', 'h', 'o', 'o', 'l', 's']}, {'label': ['E'], 'text': ['o', 'f', 'f', 'i', 'c', 'e', ' ', 'b', 'u', 'i', 'l', 'd', 'i', 'n', 'g']}]}, 'answerKey': 'C'} ## Steps to reproduce the bug ```python ds = load_dataset("datasets/xcsr", "X-CSQA-en", split="validation", streaming=True) item = next(iter(ds)) item ``` ## Expected results ``` {'id': 'd3845adc08414fda', 'lang': 'en', 'question': {'stem': 'The dental office handled a lot of patients who experienced traumatic mouth injury, where were these patients coming from?', 'choices': {'label': ['A', 'B', 'C', 'D', 'E'], 'text': ['town', 'michigan', 'hospital', 'schools', 'office building']}}, 'answerKey': 'C'} ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5023/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5023/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4828
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4828/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4828/comments
https://api.github.com/repos/huggingface/datasets/issues/4828/events
https://github.com/huggingface/datasets/pull/4828
1,336,040,168
PR_kwDODunzps49B_vb
4,828
Support PIL Image objects in `add_item`/`add_column`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4828). All of your documentation changes will be reflected on that endpoint.", "Hey @mariosasko could we please merge this? I'm still getting the original error at #4796 .", "Are you planning to continue working on this?" ]
2022-08-11T14:25:45Z
2023-09-24T10:15:33Z
null
COLLABORATOR
null
null
null
Fix #4796 PS: We should also improve the type inference in `OptimizedTypeSequence` to make it possible to also infer the complex types (only `Image` currently) in nested arrays (e.g. `[[pil_image], [pil_image, pil_image]]` or `[{"img": pil_image}`]), but I plan to address this in a separate PR.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4828/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4828/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4828.diff", "html_url": "https://github.com/huggingface/datasets/pull/4828", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4828.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4828" }
https://api.github.com/repos/huggingface/datasets/issues/6466
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6466/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6466/comments
https://api.github.com/repos/huggingface/datasets/issues/6466/events
https://github.com/huggingface/datasets/issues/6466
2,022,601,176
I_kwDODunzps54jnHY
6,466
Can't align optional features of struct
{ "avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4", "events_url": "https://api.github.com/users/Dref360/events{/privacy}", "followers_url": "https://api.github.com/users/Dref360/followers", "following_url": "https://api.github.com/users/Dref360/following{/other_user}", "gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Dref360", "id": 8976546, "login": "Dref360", "node_id": "MDQ6VXNlcjg5NzY1NDY=", "organizations_url": "https://api.github.com/users/Dref360/orgs", "received_events_url": "https://api.github.com/users/Dref360/received_events", "repos_url": "https://api.github.com/users/Dref360/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dref360/subscriptions", "type": "User", "url": "https://api.github.com/users/Dref360", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Friendly bump, I would be happy to work on this issue once I get the go-ahead from the dev team. ", "Thanks for the PR!\r\n\r\nI'm struggling with this as well and would love to see this PR merged. My case is slightly different, with keys completely missing rather than being `None`:\r\n\r\n```\r\nds = Dataset.from_dict({'speaker': [{'name': 'Ben'}]})\r\nds2 = Dataset.from_dict({'speaker': [{'name': 'Fred', 'email': 'abc@aol.com'}]})\r\nprint(concatenate_datasets([ds, ds2]).features)\r\nprint(concatenate_datasets([ds, ds2]).to_dict())\r\n```\r\n\r\nI would expect this to work as well because other Dataset functions already handle this situation well. For example, this works just as expected:\r\n\r\n```\r\nds = Dataset.from_dict({'n': [1,2]})\r\nds_mapped = ds.map(lambda x: {\r\n 'speaker': {'name': 'Ben'} if x['n'] == 1 else {'name': 'Fred', 'email': 'abc@aol.com'}\r\n})\r\nprint(ds_mapped)\r\n```", "@vova-cyberhaven can you check with the new release if it fixes your issue? " ]
2023-12-03T15:57:07Z
2024-02-15T15:19:33Z
2024-02-08T14:38:34Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hello! I'm currently experiencing an issue where I can't concatenate datasets if an inner field of a Feature is Optional. I have a column named `speaker`, and this holds some information about a speaker. ```python @dataclass class Speaker: name: str email: Optional[str] ``` If I have two datasets, one happens to have `email` always None, then I get `The features can't be aligned because the key email of features` ### Steps to reproduce the bug You can run the following script: ```python ds = Dataset.from_dict({'speaker': [{'name': 'Ben', 'email': None}]}) ds2 = Dataset.from_dict({'speaker': [{'name': 'Fred', 'email': 'abc@aol.com'}]}) concatenate_datasets([ds, ds2]) >>>The features can't be aligned because the key speaker of features {'speaker': {'email': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None)}} has unexpected type - {'email': Value(dtype='string', id=None), 'name': Value(dtype='string', id=None)} (expected either {'email': Value(dtype='null', id=None), 'name': Value(dtype='string', id=None)} or Value("null"). ``` ### Expected behavior I think this should work; if two top-level columns were in the same situation it would properly cast to `string`. ```python ds = Dataset.from_dict({'email': [None, None]}) ds2 = Dataset.from_dict({'email': ['abc@aol.com', 'one@yahoo.com']}) concatenate_datasets([ds, ds2]) >>> # Works! ``` ### Environment info - `datasets` version: 2.15.1.dev0 - Platform: Linux-5.15.0-89-generic-x86_64-with-glibc2.35 - Python version: 3.9.13 - `huggingface_hub` version: 0.19.4 - PyArrow version: 9.0.0 - Pandas version: 1.4.4 - `fsspec` version: 2023.6.0 I would be happy to fix this issue.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6466/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6466/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5066
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5066/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5066/comments
https://api.github.com/repos/huggingface/datasets/issues/5066/events
https://github.com/huggingface/datasets/pull/5066
1,396,086,745
PR_kwDODunzps5AIDWj
5,066
Support streaming gzip.open
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-04T11:20:05Z
2022-10-06T15:13:51Z
2022-10-06T15:11:29Z
MEMBER
null
null
null
This PR implements support for streaming out-of-the-box dataset scripts containing `gzip.open`. This has been a recurring issue. See, e.g.: - #5060 - #3191
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5066/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5066/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5066.diff", "html_url": "https://github.com/huggingface/datasets/pull/5066", "merged_at": "2022-10-06T15:11:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5066.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5066" }
https://api.github.com/repos/huggingface/datasets/issues/6903
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6903/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6903/comments
https://api.github.com/repos/huggingface/datasets/issues/6903/events
https://github.com/huggingface/datasets/issues/6903
2,300,436,053
I_kwDODunzps6JHd5V
6,903
Add the option of saving in parquet instead of arrow
{ "avatar_url": "https://avatars.githubusercontent.com/u/18707623?v=4", "events_url": "https://api.github.com/users/arita37/events{/privacy}", "followers_url": "https://api.github.com/users/arita37/followers", "following_url": "https://api.github.com/users/arita37/following{/other_user}", "gists_url": "https://api.github.com/users/arita37/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/arita37", "id": 18707623, "login": "arita37", "node_id": "MDQ6VXNlcjE4NzA3NjIz", "organizations_url": "https://api.github.com/users/arita37/orgs", "received_events_url": "https://api.github.com/users/arita37/received_events", "repos_url": "https://api.github.com/users/arita37/repos", "site_admin": false, "starred_url": "https://api.github.com/users/arita37/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arita37/subscriptions", "type": "User", "url": "https://api.github.com/users/arita37", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I think [`Dataset.to_parquet`](https://huggingface.co/docs/datasets/v1.10.2/package_reference/main_classes.html#datasets.Dataset.to_parquet) is what you're looking for.\r\n\r\nLet me know if I'm wrong ", "No, it does not save the metadata json.\r\n\r\nWe have to recode all meta json load/save\r\nwith another custome functions.\r\n\r\nsave_to_disk\r\nand load should have option with\r\n“Parquet” instead of “arrow”\r\n\r\nsince “arrow” is never user for production \r\n(only parquet).\r\n\r\nThanks !\r\n\r\n> On May 17, 2024, at 5:38, Frédéric Branchaud-Charron ***@***.***> wrote:\r\n> \r\n> \r\n> I think Dataset.to_parquet is what you're looking for.\r\n> \r\n> Let me know if I'm wrong\r\n> \r\n> —\r\n> Reply to this email directly, view it on GitHub, or unsubscribe.\r\n> You are receiving this because you authored the thread.\r\n", "You can use `to_parquet` and `ds.info.write_to_directory()` to save the dataset info", "Ok,\r\n\r\nWhat about loading ?\r\n\r\nShould we do in 2 steps ?\r\n\r\n\r\n\r\n> On Jun 14, 2024, at 1:09, Quentin Lhoest ***@***.***> wrote:\r\n> \r\n> \r\n> You can use to_parquet and ds.info.write_to_directory() to save the dataset info\r\n> \r\n> —\r\n> Reply to this email directly, view it on GitHub, or unsubscribe.\r\n> You are receiving this because you authored the thread.\r\n", "Yes, and there is DatasetInfo.from_directory(). to reload the info", "Isn’t easier to combine both\r\ninto load_dataset and save_dataset\r\nwith parquet options.\r\n\r\n2) another question,\r\nHow can we download large dataset into disk directly without loading all in memory (!)\r\n\r\n\r\n\r\n\r\n> On Jun 14, 2024, at 19:54, Quentin Lhoest ***@***.***> wrote:\r\n> \r\n> \r\n> Yes, and there is DatasetInfo.from_directory(). to reload the info\r\n> \r\n> —\r\n> Reply to this email directly, view it on GitHub, or unsubscribe.\r\n> You are receiving this because you authored the thread.\r\n", "`load_dataset` doesn't load the dataset in memory, it progressively writes to disk in Arrow format and then memory maps the Arrow files. This allows to load datasets bigger than memory and without filling your RAM", "Sure.\r\nHow memory map is managed ?\r\nManaged by the OS ?\r\n\r\nWhy the need of save_dataset() ?\r\n\r\n\r\n\r\n> On Jun 15, 2024, at 0:06, Quentin Lhoest ***@***.***> wrote:\r\n> \r\n> \r\n> load_dataset doesn't load the dataset in memory, it progressively writes to disk in Arrow format and then memory maps the Arrow files. This allows to load datasets bigger than memory and without filling your RAM\r\n> \r\n> —\r\n> Reply to this email directly, view it on GitHub, or unsubscribe.\r\n> You are receiving this because you authored the thread.\r\n", "can `to_parquet` do auto sharding ?", "Not at the moment, but you can shard yourself using\n\n```python\nnum_shards = 32\nfor index in range(num_shards):\n shard = ds.shard(index=index, num_shards=num_shards)\n shard.to_parquet(\"data-{index:05d}.parquet\")\n```", "Thanks! That's good!", "@lhoestq \n\nRelated to this, I'm doing processing on a very large dataset and I save it in shards, when I load the parquet shards it takes time but doesn't load it all in memory and reindexes it as one dataset which is what I want, so I can store in the cloud and its ready for lazy loading in inference.\ndataset = datasets.load_dataset(\n \"parquet\",\n data_files=f\"dataset_parquet/*.parquet\",\n keep_in_memory=False,\n storage_options=storage_options,\n ) \n\nBut if I call save_to_disk it rematerializes the whole dataset in RAM (blowing up memory usage and causing OOM)? Is there a way to save a very large dataset so it doesn't need to be reindexed like above. I feel this should be possible as once it's loaded it's cached and I can see cached arrow (but it cant be transported).", "`save_to_disk` iterates on chunks from the data to write them to disk shard by shard, it doesn't load the dataset in memory.\n\nMaybe try to lower the `max_shard_size` ?", "Ok, is it a bug with my particular dataset. \nI do max_shard_size=\"500Mb\" but still the RAM usage starts increasing to the full dataset even though the .arrow chunks are 500mb.\nThis also happens at the end of my map function (which maps to a much larger number of rows), during tqdm the % until 100 the RAM is constant then rematerialize.\nI know it must be possible as if i do \ndataset = datasets.load_dataset(\n\"parquet\",\ndata_files=f\"dataset_parquet/*.parquet\",\nkeep_in_memory=False,\nstorage_options=storage_options,\n)\nit takes a long time but the second time it is fast, and no RAM increase, but I know I cant transfer the cached folder for a production inference server.", "For `map()` it works a similar way: it writes batch by batch. You can lower the `writer_batch_size=` in `map()` (default is 1000)\nFeel free to open a new issue to discuss RAM usage in `save_to_disk()` and `map()`, ideally if you can provide a minimal code that reproduces your issue", "OK, could it be because I'm loading the initial dataset from GCS?\n\nI understand how it should work i.e. not balloon from 800mb to 15gb when call .save_to_disk or at end of map. Its loading the full dataset/rematerializing, and not respecting the shard_size or writer_batch_size. When i use shard_size 100mb, the shards are indeed 100mg, just peak memory is the full dataset.\n\nOk I'd have to create a very large public dataset to recreate it. " ]
2024-05-16T13:35:51Z
2025-04-03T12:59:14Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request In dataset.save_to_disk('/path/to/save/dataset'), add the option to save in parquet format dataset.save_to_disk('/path/to/save/dataset', format="parquet"), because arrow is not used for Production Big data.... (only parquet) ### Motivation because arrow is not used for Production Big data.... (only parquet) ### Your contribution I can do the testing !
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6903/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6903/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7147
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7147/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7147/comments
https://api.github.com/repos/huggingface/datasets/issues/7147/events
https://github.com/huggingface/datasets/issues/7147
2,523,129,465
I_kwDODunzps6WY-Z5
7,147
IterableDataset strange deadlock
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Yes `interleave_datasets` seems to have an issue with shuffling, could you open a new issue on this ?\r\n\r\nThen regarding the deadlock, it has to do with interleave_dataset with probabilities=[1, 0] with workers that may contain an empty dataset in first position (it can be empty since you distribute 1024 shard to 8 workers, so some workers may not have an example that satisfies your condition `if shard < 25`). It creates an infinite loop, trying to get samples from empty datasets with probability 1.", "Opened https://github.com/huggingface/datasets/issues/7156\r\n\r\nCan the deadlock be fixed somehow? The point of IterableDataset is so we don't need to preload the entire dataset, which loses some meaning if we need to see how many examples are in the dataset in order to set shards correctly.", "~~And it is kinda strange that `Commenting out the final shuffle avoids the issue` since if the infinite loop is inside interleave_datasets you'd expect that to happen regardless of the additional shuffle call?~~\r\n\r\nEdit: oh I guess without the shuffle it's guaranteed every worker gets something, but the shuffle makes it so some workers could have nothing\r\n\r\n~~Edit2: maybe the shuffle can be changed so initially it gives one example to each worker, and only starts the random shuffle after that~~ wait it's not about the workers not getting any shards, it's about a worker getting shards but all of the shards it gets are empty shards\r\n\r\nEdit3: If it's trying to get samples from empty datasets, it should be getting back a StopIteration -- and \"all_exhausted\" should mean it eventually discovers all its datasets are empty, and then it should just raise a StopIteration itself. So it seems like there is a reasonable behavior result for this?", "well the second dataset passed to interleave_datasets is never exhausted, since it's never sampled. But we could also state that the stream of examples from the second dataset is empty if it has probability 0, so I opened https://github.com/huggingface/datasets/pull/7157 to fix the infinite loop issue by ignoring datasets with probability 0, let me know what you think !", "Thanks for taking a look!\r\n\r\nI think you're right that this is ultimately an issue that the user opts into by specifying a dataset with probability 0, because the user is basically saying \"I want to force this `interleave_datasets` call to run forever\" and yet one of the workers can end up having only empty shards to mix...\r\n\r\nThat said it's probably not a good idea to randomly change the behavior of `interleave_datasets` with probability 0, I can't be the only one that uses it to repeat many different datasets (since there is no `datasets.repeat()` function). https://xkcd.com/1172/\r\n\r\nI think just the knowledge that filtering out probability 0 datasets fixes the deadlock is good enough for me. I can filter it out on my side and add a restart loop around the dataloader instead.\r\n\r\nThanks again for investigating.", "Ok I see ! We can also add .repeat() as well" ]
2024-09-12T18:59:33Z
2024-09-23T09:32:27Z
2024-09-21T17:37:34Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ``` import datasets import torch.utils.data num_shards = 1024 def gen(shards): for shard in shards: if shard < 25: yield {"shard": shard} def main(): dataset = datasets.IterableDataset.from_generator( gen, gen_kwargs={"shards": list(range(num_shards))}, ) dataset = dataset.shuffle(buffer_size=1) dataset = datasets.interleave_datasets( [dataset, dataset], probabilities=[1, 0], stopping_strategy="all_exhausted" ) dataset = dataset.shuffle(buffer_size=1) dataloader = torch.utils.data.DataLoader( dataset, batch_size=8, num_workers=8, ) for i, batch in enumerate(dataloader): print(batch) if i >= 10: break print() if __name__ == "__main__": for _ in range(100): main() ``` ### Steps to reproduce the bug Running the script above, at some point it will freeze. - Changing `num_shards` from 1024 to 25 avoids the issue - Commenting out the final shuffle avoids the issue - Commenting out the interleave_datasets call avoids the issue As an aside, if you comment out just the final shuffle, the output from interleave_datasets is not shuffled at all even though there's the shuffle before it. So something about that shuffle config is not being propagated to interleave_datasets. ### Expected behavior The script should not freeze. ### Environment info - `datasets` version: 3.0.0 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.5 - `huggingface_hub` version: 0.24.7 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1 I observed this with 2.21.0 initially, then tried upgrading to 3.0.0 and could still repro.
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7147/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7147/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6639
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6639/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6639/comments
https://api.github.com/repos/huggingface/datasets/issues/6639/events
https://github.com/huggingface/datasets/pull/6639
2,114,620,200
PR_kwDODunzps5l0KPG
6,639
Run download_and_prepare if missing splits
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6639). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-02-02T10:36:49Z
2024-02-06T16:54:22Z
null
MEMBER
null
null
null
A first step towards https://github.com/huggingface/datasets/issues/6529
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6639/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6639/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6639.diff", "html_url": "https://github.com/huggingface/datasets/pull/6639", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6639.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6639" }
https://api.github.com/repos/huggingface/datasets/issues/4808
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4808/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4808/comments
https://api.github.com/repos/huggingface/datasets/issues/4808/events
https://github.com/huggingface/datasets/issues/4808
1,332,840,217
I_kwDODunzps5PcYcZ
4,808
Add more information to the dataset card of mlqa dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7940237?v=4", "events_url": "https://api.github.com/users/el2e10/events{/privacy}", "followers_url": "https://api.github.com/users/el2e10/followers", "following_url": "https://api.github.com/users/el2e10/following{/other_user}", "gists_url": "https://api.github.com/users/el2e10/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el2e10", "id": 7940237, "login": "el2e10", "node_id": "MDQ6VXNlcjc5NDAyMzc=", "organizations_url": "https://api.github.com/users/el2e10/orgs", "received_events_url": "https://api.github.com/users/el2e10/received_events", "repos_url": "https://api.github.com/users/el2e10/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el2e10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el2e10/subscriptions", "type": "User", "url": "https://api.github.com/users/el2e10", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/7940237?v=4", "events_url": "https://api.github.com/users/el2e10/events{/privacy}", "followers_url": "https://api.github.com/users/el2e10/followers", "following_url": "https://api.github.com/users/el2e10/following{/other_user}", "gists_url": "https://api.github.com/users/el2e10/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el2e10", "id": 7940237, "login": "el2e10", "node_id": "MDQ6VXNlcjc5NDAyMzc=", "organizations_url": "https://api.github.com/users/el2e10/orgs", "received_events_url": "https://api.github.com/users/el2e10/received_events", "repos_url": "https://api.github.com/users/el2e10/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el2e10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el2e10/subscriptions", "type": "User", "url": "https://api.github.com/users/el2e10", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/7940237?v=4", "events_url": "https://api.github.com/users/el2e10/events{/privacy}", "followers_url": "https://api.github.com/users/el2e10/followers", "following_url": "https://api.github.com/users/el2e10/following{/other_user}", "gists_url": "https://api.github.com/users/el2e10/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el2e10", "id": 7940237, "login": "el2e10", "node_id": "MDQ6VXNlcjc5NDAyMzc=", "organizations_url": "https://api.github.com/users/el2e10/orgs", "received_events_url": "https://api.github.com/users/el2e10/received_events", "repos_url": "https://api.github.com/users/el2e10/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el2e10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el2e10/subscriptions", "type": "User", "url": "https://api.github.com/users/el2e10", "user_view_type": "public" } ]
null
[ "#self-assign", "Fixed by:\r\n- #4809" ]
2022-08-09T07:35:42Z
2022-08-09T13:33:23Z
2022-08-09T13:33:23Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4808/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4808/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6038
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6038/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6038/comments
https://api.github.com/repos/huggingface/datasets/issues/6038/events
https://github.com/huggingface/datasets/issues/6038
1,805,960,244
I_kwDODunzps5rpMQ0
6,038
File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare if str(split_generator.split_info.name).lower() == "all": AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'?
{ "avatar_url": "https://avatars.githubusercontent.com/u/53547009?v=4", "events_url": "https://api.github.com/users/BaiMeiyingxue/events{/privacy}", "followers_url": "https://api.github.com/users/BaiMeiyingxue/followers", "following_url": "https://api.github.com/users/BaiMeiyingxue/following{/other_user}", "gists_url": "https://api.github.com/users/BaiMeiyingxue/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BaiMeiyingxue", "id": 53547009, "login": "BaiMeiyingxue", "node_id": "MDQ6VXNlcjUzNTQ3MDA5", "organizations_url": "https://api.github.com/users/BaiMeiyingxue/orgs", "received_events_url": "https://api.github.com/users/BaiMeiyingxue/received_events", "repos_url": "https://api.github.com/users/BaiMeiyingxue/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BaiMeiyingxue/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BaiMeiyingxue/subscriptions", "type": "User", "url": "https://api.github.com/users/BaiMeiyingxue", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Instead of writing the loading script, you can use the built-in loader to [load JSON files](https://huggingface.co/docs/datasets/loading#json):\r\n```python\r\nfrom datasets import load_dataset\r\nds = load_dataset(\"json\", data_files={\"train\": os.path.join(data_dir[\"train\"]), \"dev\": os.path.join(data_dir[\"dev\"])})\r\n```" ]
2023-07-15T07:58:08Z
2023-07-24T11:54:15Z
2023-07-24T11:54:15Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Hi, I use the code below to load local file ``` def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive # urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(_URLs) print(data_dir) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir["train"]), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir["dev"]), "split": "dev", }, ), ] ``` and error occured ``` Traceback (most recent call last): File "/home/zhizhou/data1/zhanghao/huggingface/FineTuning_Transformer/load_local_dataset.py", line 2, in <module> dataset = load_dataset("./QA_script.py",data_files='/home/zhizhou/.cache/huggingface/datasets/conversatiom_corps/part_file.json') File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/load.py", line 1809, in load_dataset builder_instance.download_and_prepare( File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 909, in download_and_prepare self._download_and_prepare( File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 1670, in _download_and_prepare super()._download_and_prepare( File "/home/zhizhou/anaconda3/envs/pytorch/lib/python3.10/site-packages/datasets/builder.py", line 992, in _download_and_prepare if str(split_generator.split_info.name).lower() == "all": AttributeError: 'str' object has no attribute 'split_info'. Did you mean: 'splitlines'? ``` Could you help me?
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6038/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6038/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7443/comments
https://api.github.com/repos/huggingface/datasets/issues/7443/events
https://github.com/huggingface/datasets/issues/7443
2,908,585,656
I_kwDODunzps6tXX64
7,443
index error when num_shards > len(dataset)
{ "avatar_url": "https://avatars.githubusercontent.com/u/17934496?v=4", "events_url": "https://api.github.com/users/eminorhan/events{/privacy}", "followers_url": "https://api.github.com/users/eminorhan/followers", "following_url": "https://api.github.com/users/eminorhan/following{/other_user}", "gists_url": "https://api.github.com/users/eminorhan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eminorhan", "id": 17934496, "login": "eminorhan", "node_id": "MDQ6VXNlcjE3OTM0NDk2", "organizations_url": "https://api.github.com/users/eminorhan/orgs", "received_events_url": "https://api.github.com/users/eminorhan/received_events", "repos_url": "https://api.github.com/users/eminorhan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eminorhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eminorhan/subscriptions", "type": "User", "url": "https://api.github.com/users/eminorhan", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Actually, looking at the code a bit more carefully, maybe an even better solution is to explicitly set `num_shards=len(self)` somewhere inside both `push_to_hub()` and `save_to_disk()` when these functions are invoked with `num_shards > len(dataset)`." ]
2025-03-10T22:40:59Z
2025-03-10T23:43:08Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7443/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7443/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6399/comments
https://api.github.com/repos/huggingface/datasets/issues/6399/events
https://github.com/huggingface/datasets/issues/6399
1,988,368,503
I_kwDODunzps52hBh3
6,399
TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array
{ "avatar_url": "https://avatars.githubusercontent.com/u/76236359?v=4", "events_url": "https://api.github.com/users/y-hwang/events{/privacy}", "followers_url": "https://api.github.com/users/y-hwang/followers", "following_url": "https://api.github.com/users/y-hwang/following{/other_user}", "gists_url": "https://api.github.com/users/y-hwang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/y-hwang", "id": 76236359, "login": "y-hwang", "node_id": "MDQ6VXNlcjc2MjM2MzU5", "organizations_url": "https://api.github.com/users/y-hwang/orgs", "received_events_url": "https://api.github.com/users/y-hwang/received_events", "repos_url": "https://api.github.com/users/y-hwang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/y-hwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/y-hwang/subscriptions", "type": "User", "url": "https://api.github.com/users/y-hwang", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Seconding encountering this issue." ]
2023-11-10T20:48:46Z
2024-06-22T00:13:48Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi, I am preprocessing a large custom dataset with numpy arrays. I am running into this TypeError during writing in a dataset.map() function. I've tried decreasing writer batch size, but this error persists. This error does not occur for smaller datasets. Thank you! ### Steps to reproduce the bug Traceback (most recent call last): File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1354, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3493, in _map_single writer.write_batch(batch) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 555, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 243, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 184, in __arrow_array__ out = numpy_to_pyarrow_listarray(data) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/features/features.py", line 1394, in numpy_to_pyarrow_listarray values = pa.ListArray.from_arrays(offsets, values) File "pyarrow/array.pxi", line 2004, in pyarrow.lib.ListArray.from_arrays TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array ### Expected behavior Type should not be a ChunkedArray ### Environment info datasets v2.14.5 arrow v1.2.3 pyarrow v12.0.1
null
{ "+1": 5, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/6399/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6399/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5087
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5087/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5087/comments
https://api.github.com/repos/huggingface/datasets/issues/5087/events
https://github.com/huggingface/datasets/pull/5087
1,400,487,967
PR_kwDODunzps5AW-N9
5,087
Fix filter with empty indices
{ "avatar_url": "https://avatars.githubusercontent.com/u/23029765?v=4", "events_url": "https://api.github.com/users/Mouhanedg56/events{/privacy}", "followers_url": "https://api.github.com/users/Mouhanedg56/followers", "following_url": "https://api.github.com/users/Mouhanedg56/following{/other_user}", "gists_url": "https://api.github.com/users/Mouhanedg56/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mouhanedg56", "id": 23029765, "login": "Mouhanedg56", "node_id": "MDQ6VXNlcjIzMDI5NzY1", "organizations_url": "https://api.github.com/users/Mouhanedg56/orgs", "received_events_url": "https://api.github.com/users/Mouhanedg56/received_events", "repos_url": "https://api.github.com/users/Mouhanedg56/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mouhanedg56/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mouhanedg56/subscriptions", "type": "User", "url": "https://api.github.com/users/Mouhanedg56", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-07T01:07:00Z
2022-10-07T18:43:03Z
2022-10-07T18:40:26Z
CONTRIBUTOR
null
null
null
Fix #5085
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5087/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5087/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5087.diff", "html_url": "https://github.com/huggingface/datasets/pull/5087", "merged_at": "2022-10-07T18:40:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5087.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5087" }
https://api.github.com/repos/huggingface/datasets/issues/6295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6295/comments
https://api.github.com/repos/huggingface/datasets/issues/6295/events
https://github.com/huggingface/datasets/pull/6295
1,937,362,102
PR_kwDODunzps5cfiW8
6,295
Fix parquet columns argument in streaming mode
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008112 / 0.011353 (-0.003241) | 0.004762 / 0.011008 (-0.006247) | 0.101349 / 0.038508 (0.062841) | 0.092361 / 0.023109 (0.069252) | 0.418429 / 0.275898 (0.142531) | 0.427332 / 0.323480 (0.103852) | 0.006112 / 0.007986 (-0.001874) | 0.003920 / 0.004328 (-0.000408) | 0.076813 / 0.004250 (0.072563) | 0.064361 / 0.037052 (0.027309) | 0.420526 / 0.258489 (0.162037) | 0.441576 / 0.293841 (0.147735) | 0.044760 / 0.128546 (-0.083787) | 0.010054 / 0.075646 (-0.065592) | 0.346063 / 0.419271 (-0.073209) | 0.077453 / 0.043533 (0.033920) | 0.412871 / 0.255139 (0.157732) | 0.408307 / 0.283200 (0.125107) | 0.033398 / 0.141683 (-0.108285) | 1.755825 / 1.452155 (0.303671) | 1.852347 / 1.492716 (0.359630) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274201 / 0.018006 (0.256194) | 0.536375 / 0.000490 (0.535885) | 0.008076 / 0.000200 (0.007876) | 0.000159 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033567 / 0.037411 (-0.003845) | 0.102378 / 0.014526 (0.087852) | 0.114176 / 0.176557 (-0.062381) | 0.180576 / 0.737135 (-0.556560) | 0.114801 / 0.296338 (-0.181538) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450300 / 0.215209 (0.235091) | 4.490940 / 2.077655 (2.413285) | 2.172412 / 1.504120 (0.668292) | 1.978746 / 1.541195 (0.437551) | 2.065602 / 1.468490 (0.597112) | 0.571260 / 4.584777 (-4.013517) | 4.185485 / 3.745712 (0.439773) | 3.885594 / 5.269862 (-1.384268) | 2.532942 / 4.565676 (-2.032735) | 0.067612 / 0.424275 (-0.356663) | 0.008694 / 0.007607 (0.001087) | 0.533375 / 0.226044 (0.307331) | 5.321261 / 2.268929 (3.052333) | 2.697788 / 55.444624 (-52.746836) | 2.331328 / 6.876477 (-4.545149) | 2.585168 / 2.142072 (0.443096) | 0.681760 / 4.805227 (-4.123467) | 0.157687 / 6.500664 (-6.342977) | 0.071014 / 0.075469 (-0.004455) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.525689 / 1.841788 (-0.316098) | 23.162280 / 8.074308 (15.087972) | 16.644941 / 10.191392 (6.453548) | 0.182588 / 0.680424 (-0.497836) | 0.021653 / 0.534201 (-0.512548) | 0.466556 / 0.579283 (-0.112727) | 0.511902 / 0.434364 (0.077538) | 0.553707 / 0.540337 (0.013370) | 0.777830 / 1.386936 (-0.609106) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004645 / 0.011008 (-0.006363) | 0.079096 / 0.038508 (0.040587) | 0.088200 / 0.023109 (0.065090) | 0.508882 / 0.275898 (0.232984) | 0.545986 / 0.323480 (0.222506) | 0.006233 / 0.007986 (-0.001752) | 0.004016 / 0.004328 (-0.000312) | 0.078103 / 0.004250 (0.073853) | 0.066354 / 0.037052 (0.029302) | 0.504132 / 0.258489 (0.245643) | 0.543714 / 0.293841 (0.249873) | 0.038140 / 0.128546 (-0.090407) | 0.011201 / 0.075646 (-0.064446) | 0.085713 / 0.419271 (-0.333559) | 0.057169 / 0.043533 (0.013637) | 0.488161 / 0.255139 (0.233022) | 0.516231 / 0.283200 (0.233031) | 0.027868 / 0.141683 (-0.113814) | 1.794084 / 1.452155 (0.341930) | 1.884993 / 1.492716 (0.392276) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263108 / 0.018006 (0.245102) | 0.495761 / 0.000490 (0.495272) | 0.007056 / 0.000200 (0.006856) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039089 / 0.037411 (0.001678) | 0.113332 / 0.014526 (0.098806) | 0.130137 / 0.176557 (-0.046419) | 0.189330 / 0.737135 (-0.547805) | 0.125860 / 0.296338 (-0.170479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.530496 / 0.215209 (0.315287) | 5.349235 / 2.077655 (3.271581) | 2.975886 / 1.504120 (1.471766) | 2.786368 / 1.541195 (1.245173) | 2.920448 / 1.468490 (1.451958) | 0.575677 / 4.584777 (-4.009100) | 4.215535 / 3.745712 (0.469823) | 3.879984 / 5.269862 (-1.389878) | 2.420193 / 4.565676 (-2.145484) | 0.068506 / 0.424275 (-0.355769) | 0.008785 / 0.007607 (0.001178) | 0.611471 / 0.226044 (0.385427) | 6.118399 / 2.268929 (3.849471) | 3.509376 / 55.444624 (-51.935248) | 3.149219 / 6.876477 (-3.727257) | 3.413861 / 2.142072 (1.271788) | 0.697586 / 4.805227 (-4.107641) | 0.157767 / 6.500664 (-6.342897) | 0.071539 / 0.075469 (-0.003930) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625196 / 1.841788 (-0.216591) | 24.347319 / 8.074308 (16.273011) | 17.365789 / 10.191392 (7.174397) | 0.217590 / 0.680424 (-0.462834) | 0.023885 / 0.534201 (-0.510316) | 0.477226 / 0.579283 (-0.102057) | 0.529319 / 0.434364 (0.094955) | 0.622299 / 0.540337 (0.081962) | 0.835295 / 1.386936 (-0.551641) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3de42c8fae86c602fc71ac6d166e5c77f4149446 \"CML watermark\")\n", "CI errors are unrelated or due to flaky tests", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006288 / 0.011353 (-0.005065) | 0.003836 / 0.011008 (-0.007172) | 0.080958 / 0.038508 (0.042450) | 0.065934 / 0.023109 (0.042825) | 0.312597 / 0.275898 (0.036699) | 0.351216 / 0.323480 (0.027736) | 0.004864 / 0.007986 (-0.003121) | 0.002961 / 0.004328 (-0.001368) | 0.063142 / 0.004250 (0.058892) | 0.049822 / 0.037052 (0.012770) | 0.320305 / 0.258489 (0.061816) | 0.363151 / 0.293841 (0.069310) | 0.027561 / 0.128546 (-0.100985) | 0.008176 / 0.075646 (-0.067470) | 0.261290 / 0.419271 (-0.157982) | 0.045517 / 0.043533 (0.001984) | 0.309218 / 0.255139 (0.054079) | 0.340140 / 0.283200 (0.056940) | 0.021000 / 0.141683 (-0.120683) | 1.448699 / 1.452155 (-0.003456) | 1.523904 / 1.492716 (0.031188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224294 / 0.018006 (0.206288) | 0.434928 / 0.000490 (0.434439) | 0.007541 / 0.000200 (0.007341) | 0.000286 / 0.000054 (0.000232) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025257 / 0.037411 (-0.012154) | 0.077364 / 0.014526 (0.062838) | 0.085825 / 0.176557 (-0.090732) | 0.148121 / 0.737135 (-0.589014) | 0.086838 / 0.296338 (-0.209500) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396900 / 0.215209 (0.181691) | 3.953381 / 2.077655 (1.875727) | 1.933561 / 1.504120 (0.429441) | 1.760549 / 1.541195 (0.219354) | 1.824014 / 1.468490 (0.355523) | 0.495385 / 4.584777 (-4.089392) | 3.005558 / 3.745712 (-0.740154) | 2.931022 / 5.269862 (-2.338840) | 1.905113 / 4.565676 (-2.660563) | 0.057232 / 0.424275 (-0.367043) | 0.006472 / 0.007607 (-0.001135) | 0.464261 / 0.226044 (0.238216) | 4.629388 / 2.268929 (2.360459) | 2.342004 / 55.444624 (-53.102620) | 1.977295 / 6.876477 (-4.899181) | 2.167151 / 2.142072 (0.025079) | 0.582483 / 4.805227 (-4.222744) | 0.129444 / 6.500664 (-6.371220) | 0.061057 / 0.075469 (-0.014412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259444 / 1.841788 (-0.582344) | 18.189338 / 8.074308 (10.115030) | 14.313174 / 10.191392 (4.121782) | 0.146209 / 0.680424 (-0.534215) | 0.017115 / 0.534201 (-0.517086) | 0.336643 / 0.579283 (-0.242640) | 0.370824 / 0.434364 (-0.063540) | 0.387032 / 0.540337 (-0.153306) | 0.546688 / 1.386936 (-0.840248) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006371 / 0.011353 (-0.004982) | 0.003693 / 0.011008 (-0.007315) | 0.062499 / 0.038508 (0.023991) | 0.066367 / 0.023109 (0.043257) | 0.451481 / 0.275898 (0.175583) | 0.482495 / 0.323480 (0.159015) | 0.005676 / 0.007986 (-0.002310) | 0.002940 / 0.004328 (-0.001389) | 0.063011 / 0.004250 (0.058760) | 0.051500 / 0.037052 (0.014447) | 0.455482 / 0.258489 (0.196993) | 0.488888 / 0.293841 (0.195047) | 0.028714 / 0.128546 (-0.099832) | 0.008178 / 0.075646 (-0.067468) | 0.067218 / 0.419271 (-0.352053) | 0.041323 / 0.043533 (-0.002210) | 0.454007 / 0.255139 (0.198868) | 0.476241 / 0.283200 (0.193041) | 0.021530 / 0.141683 (-0.120153) | 1.457859 / 1.452155 (0.005705) | 1.506437 / 1.492716 (0.013721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228280 / 0.018006 (0.210274) | 0.427574 / 0.000490 (0.427084) | 0.003793 / 0.000200 (0.003593) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028420 / 0.037411 (-0.008992) | 0.087935 / 0.014526 (0.073409) | 0.092761 / 0.176557 (-0.083796) | 0.148084 / 0.737135 (-0.589051) | 0.095301 / 0.296338 (-0.201037) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.462457 / 0.215209 (0.247248) | 4.618016 / 2.077655 (2.540361) | 2.540531 / 1.504120 (1.036412) | 2.384696 / 1.541195 (0.843501) | 2.493108 / 1.468490 (1.024618) | 0.511689 / 4.584777 (-4.073088) | 3.173701 / 3.745712 (-0.572011) | 2.917046 / 5.269862 (-2.352816) | 1.916294 / 4.565676 (-2.649382) | 0.058969 / 0.424275 (-0.365306) | 0.006461 / 0.007607 (-0.001147) | 0.540997 / 0.226044 (0.314952) | 5.406596 / 2.268929 (3.137667) | 3.071189 / 55.444624 (-52.373435) | 2.701982 / 6.876477 (-4.174494) | 2.860194 / 2.142072 (0.718121) | 0.602684 / 4.805227 (-4.202543) | 0.127384 / 6.500664 (-6.373280) | 0.061718 / 0.075469 (-0.013751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340587 / 1.841788 (-0.501201) | 18.543831 / 8.074308 (10.469523) | 14.847319 / 10.191392 (4.655927) | 0.146523 / 0.680424 (-0.533901) | 0.018172 / 0.534201 (-0.516029) | 0.333276 / 0.579283 (-0.246007) | 0.375874 / 0.434364 (-0.058490) | 0.396766 / 0.540337 (-0.143572) | 0.572562 / 1.386936 (-0.814374) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2d9fcc0840f9d94f63635e9b40a1a7f11b34ea2 \"CML watermark\")\n" ]
2023-10-11T10:01:01Z
2023-10-11T16:30:24Z
2023-10-11T16:21:36Z
MEMBER
null
null
null
It was failing when there's a DatasetInfo with non-None info.features from the YAML (therefore containing columns that should be ignored) Fix https://github.com/huggingface/datasets/issues/6293
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6295/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6295/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6295.diff", "html_url": "https://github.com/huggingface/datasets/pull/6295", "merged_at": "2023-10-11T16:21:36Z", "patch_url": "https://github.com/huggingface/datasets/pull/6295.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6295" }
https://api.github.com/repos/huggingface/datasets/issues/7042
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7042/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7042/comments
https://api.github.com/repos/huggingface/datasets/issues/7042/events
https://github.com/huggingface/datasets/pull/7042
2,404,605,836
PR_kwDODunzps51K8CM
7,042
Improved the tutorial by adding a link for loading datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/41874659?v=4", "events_url": "https://api.github.com/users/AmboThom/events{/privacy}", "followers_url": "https://api.github.com/users/AmboThom/followers", "following_url": "https://api.github.com/users/AmboThom/following{/other_user}", "gists_url": "https://api.github.com/users/AmboThom/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AmboThom", "id": 41874659, "login": "AmboThom", "node_id": "MDQ6VXNlcjQxODc0NjU5", "organizations_url": "https://api.github.com/users/AmboThom/orgs", "received_events_url": "https://api.github.com/users/AmboThom/received_events", "repos_url": "https://api.github.com/users/AmboThom/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AmboThom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmboThom/subscriptions", "type": "User", "url": "https://api.github.com/users/AmboThom", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005135 / 0.011353 (-0.006218) | 0.003389 / 0.011008 (-0.007619) | 0.063053 / 0.038508 (0.024545) | 0.031597 / 0.023109 (0.008487) | 0.237519 / 0.275898 (-0.038379) | 0.263101 / 0.323480 (-0.060379) | 0.003109 / 0.007986 (-0.004877) | 0.002699 / 0.004328 (-0.001630) | 0.048611 / 0.004250 (0.044361) | 0.042937 / 0.037052 (0.005884) | 0.253760 / 0.258489 (-0.004729) | 0.275444 / 0.293841 (-0.018397) | 0.028952 / 0.128546 (-0.099594) | 0.011837 / 0.075646 (-0.063809) | 0.207620 / 0.419271 (-0.211651) | 0.035727 / 0.043533 (-0.007806) | 0.241770 / 0.255139 (-0.013369) | 0.270509 / 0.283200 (-0.012691) | 0.020709 / 0.141683 (-0.120974) | 1.135722 / 1.452155 (-0.316432) | 1.200355 / 1.492716 (-0.292361) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092555 / 0.018006 (0.074549) | 0.284719 / 0.000490 (0.284229) | 0.000210 / 0.000200 (0.000010) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018431 / 0.037411 (-0.018980) | 0.063618 / 0.014526 (0.049092) | 0.075371 / 0.176557 (-0.101185) | 0.120982 / 0.737135 (-0.616153) | 0.075718 / 0.296338 (-0.220620) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279439 / 0.215209 (0.064230) | 2.722274 / 2.077655 (0.644619) | 1.442314 / 1.504120 (-0.061806) | 1.323166 / 1.541195 (-0.218029) | 1.339642 / 1.468490 (-0.128848) | 0.723451 / 4.584777 (-3.861326) | 2.334879 / 3.745712 (-1.410833) | 2.938745 / 5.269862 (-2.331116) | 1.867278 / 4.565676 (-2.698398) | 0.078704 / 0.424275 (-0.345571) | 0.005128 / 0.007607 (-0.002479) | 0.338634 / 0.226044 (0.112589) | 3.266239 / 2.268929 (0.997311) | 1.815276 / 55.444624 (-53.629349) | 1.487158 / 6.876477 (-5.389319) | 1.547550 / 2.142072 (-0.594522) | 0.804458 / 4.805227 (-4.000769) | 0.139186 / 6.500664 (-6.361479) | 0.042935 / 0.075469 (-0.032534) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978223 / 1.841788 (-0.863564) | 11.350997 / 8.074308 (3.276689) | 10.082980 / 10.191392 (-0.108412) | 0.145067 / 0.680424 (-0.535357) | 0.014132 / 0.534201 (-0.520069) | 0.302162 / 0.579283 (-0.277121) | 0.264603 / 0.434364 (-0.169761) | 0.338466 / 0.540337 (-0.201871) | 0.427891 / 1.386936 (-0.959045) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006078 / 0.011353 (-0.005275) | 0.004030 / 0.011008 (-0.006978) | 0.051646 / 0.038508 (0.013138) | 0.031263 / 0.023109 (0.008154) | 0.279437 / 0.275898 (0.003539) | 0.304489 / 0.323480 (-0.018991) | 0.004553 / 0.007986 (-0.003433) | 0.002869 / 0.004328 (-0.001459) | 0.050638 / 0.004250 (0.046387) | 0.041091 / 0.037052 (0.004038) | 0.290681 / 0.258489 (0.032192) | 0.332059 / 0.293841 (0.038218) | 0.033353 / 0.128546 (-0.095193) | 0.012506 / 0.075646 (-0.063141) | 0.061788 / 0.419271 (-0.357484) | 0.034150 / 0.043533 (-0.009382) | 0.278258 / 0.255139 (0.023119) | 0.298084 / 0.283200 (0.014885) | 0.019106 / 0.141683 (-0.122577) | 1.164475 / 1.452155 (-0.287679) | 1.204804 / 1.492716 (-0.287912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100053 / 0.018006 (0.082047) | 0.301255 / 0.000490 (0.300765) | 0.000220 / 0.000200 (0.000020) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023536 / 0.037411 (-0.013876) | 0.078513 / 0.014526 (0.063987) | 0.090281 / 0.176557 (-0.086276) | 0.129607 / 0.737135 (-0.607528) | 0.090742 / 0.296338 (-0.205596) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304082 / 0.215209 (0.088873) | 2.909401 / 2.077655 (0.831747) | 1.587210 / 1.504120 (0.083090) | 1.458713 / 1.541195 (-0.082482) | 1.472579 / 1.468490 (0.004089) | 0.716542 / 4.584777 (-3.868235) | 0.947557 / 3.745712 (-2.798155) | 2.908044 / 5.269862 (-2.361817) | 1.886382 / 4.565676 (-2.679294) | 0.078105 / 0.424275 (-0.346170) | 0.005802 / 0.007607 (-0.001805) | 0.357883 / 0.226044 (0.131839) | 3.490958 / 2.268929 (1.222029) | 1.946574 / 55.444624 (-53.498050) | 1.645167 / 6.876477 (-5.231310) | 1.649242 / 2.142072 (-0.492830) | 0.796864 / 4.805227 (-4.008363) | 0.134206 / 6.500664 (-6.366458) | 0.041439 / 0.075469 (-0.034030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.012311 / 1.841788 (-0.829477) | 12.396967 / 8.074308 (4.322659) | 10.382494 / 10.191392 (0.191102) | 0.157395 / 0.680424 (-0.523029) | 0.015154 / 0.534201 (-0.519047) | 0.302209 / 0.579283 (-0.277074) | 0.127430 / 0.434364 (-0.306934) | 0.348933 / 0.540337 (-0.191404) | 0.442930 / 1.386936 (-0.944006) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69d9f455c3c51625e6c9ffcade122313e9098f3c \"CML watermark\")\n" ]
2024-07-12T03:49:54Z
2024-08-15T10:07:44Z
2024-08-15T10:01:59Z
CONTRIBUTOR
null
null
null
Improved the tutorial by letting readers know about loading datasets with common files and including a link. I left the local files section alone because the methods were already listed with code snippets.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7042/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7042/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7042.diff", "html_url": "https://github.com/huggingface/datasets/pull/7042", "merged_at": "2024-08-15T10:01:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/7042.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7042" }
https://api.github.com/repos/huggingface/datasets/issues/7528
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7528/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7528/comments
https://api.github.com/repos/huggingface/datasets/issues/7528/events
https://github.com/huggingface/datasets/issues/7528
3,006,433,485
I_kwDODunzps6zMojN
7,528
Data Studio Error: Convert JSONL incorrectly
{ "avatar_url": "https://avatars.githubusercontent.com/u/144962041?v=4", "events_url": "https://api.github.com/users/zxccade/events{/privacy}", "followers_url": "https://api.github.com/users/zxccade/followers", "following_url": "https://api.github.com/users/zxccade/following{/other_user}", "gists_url": "https://api.github.com/users/zxccade/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zxccade", "id": 144962041, "login": "zxccade", "node_id": "U_kgDOCKPx-Q", "organizations_url": "https://api.github.com/users/zxccade/orgs", "received_events_url": "https://api.github.com/users/zxccade/received_events", "repos_url": "https://api.github.com/users/zxccade/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zxccade/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zxccade/subscriptions", "type": "User", "url": "https://api.github.com/users/zxccade", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-19T13:21:44Z
2025-04-19T13:21:44Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi there, I uploaded a dataset here https://huggingface.co/datasets/V-STaR-Bench/V-STaR, but I found that Data Studio incorrectly convert the "bboxes" value for the whole dataset. Therefore, anyone who downloaded the dataset via the API would get the wrong "bboxes" value in the data file. Could you help me address the issue? Many thanks, ### Steps to reproduce the bug The JSONL file of [V_STaR_test_release.jsonl](https://huggingface.co/datasets/V-STaR-Bench/V-STaR/blob/main/V_STaR_test_release.jsonl) has the correct values of every "bboxes" for each sample. But in the Data Studio, we can see that the values of "bboxes" have changed, and load the dataset via API will also get the wrong values. ### Expected behavior Fix the bug to correctly download my dataset. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-427.22.1.el9_4.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2023.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7528/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7528/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6564/comments
https://api.github.com/repos/huggingface/datasets/issues/6564/events
https://github.com/huggingface/datasets/issues/6564
2,068,893,194
I_kwDODunzps57UM4K
6,564
`Dataset.filter` missing `with_rank` parameter
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting! I've opened a PR with a fix", "@mariosasko thank you very much :)" ]
2024-01-06T23:48:13Z
2024-01-29T16:36:55Z
2024-01-29T16:36:54Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The issue shall be open: https://github.com/huggingface/datasets/issues/6435 When i try to pass `with_rank` to `Dataset.filter()`, i get this: `Dataset.filter() got an unexpected keyword argument 'with_rank'` ### Steps to reproduce the bug Run notebook: https://colab.research.google.com/drive/1WUNKph8BdP0on5ve3gQnh_PE0cFLQqTn?usp=sharing ### Expected behavior Should work? ### Environment info NVIDIA RTX 4090
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6564/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6564/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5113
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5113/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5113/comments
https://api.github.com/repos/huggingface/datasets/issues/5113/events
https://github.com/huggingface/datasets/pull/5113
1,409,207,607
PR_kwDODunzps5Az0Ei
5,113
Fix filter indices when batched
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I think a patch release will be necessary.", "I'm also fixing https://github.com/huggingface/datasets/issues/5111 which will lalso require a patch release" ]
2022-10-14T11:30:03Z
2022-10-24T06:21:09Z
2022-10-14T12:11:44Z
MEMBER
null
null
null
This PR fixes a bug introduced by: - #5030 Fix #5112.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5113/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5113/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5113.diff", "html_url": "https://github.com/huggingface/datasets/pull/5113", "merged_at": "2022-10-14T12:11:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/5113.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5113" }
https://api.github.com/repos/huggingface/datasets/issues/4549
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4549/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4549/comments
https://api.github.com/repos/huggingface/datasets/issues/4549/events
https://github.com/huggingface/datasets/issues/4549
1,282,312,975
I_kwDODunzps5MbosP
4,549
FileNotFoundError when passing a data_file inside a directory starting with double underscores
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" } ]
null
[ "I have consistently experienced this bug on GitHub actions when bumping to `2.3.2`", "We're working on a fix ;)" ]
2022-06-23T12:19:24Z
2022-06-30T14:38:18Z
2022-06-30T14:38:18Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Bug experienced in the `accelerate` CI: https://github.com/huggingface/accelerate/runs/7016055148?check_suite_focus=true This is related to https://github.com/huggingface/datasets/pull/4505 and the changes from https://github.com/huggingface/datasets/pull/4412
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/4549/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4549/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6088
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6088/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6088/comments
https://api.github.com/repos/huggingface/datasets/issues/6088/events
https://github.com/huggingface/datasets/issues/6088
1,825,665,235
I_kwDODunzps5s0XDT
6,088
Loading local data files initiates web requests
{ "avatar_url": "https://avatars.githubusercontent.com/u/23375707?v=4", "events_url": "https://api.github.com/users/lytning98/events{/privacy}", "followers_url": "https://api.github.com/users/lytning98/followers", "following_url": "https://api.github.com/users/lytning98/following{/other_user}", "gists_url": "https://api.github.com/users/lytning98/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lytning98", "id": 23375707, "login": "lytning98", "node_id": "MDQ6VXNlcjIzMzc1NzA3", "organizations_url": "https://api.github.com/users/lytning98/orgs", "received_events_url": "https://api.github.com/users/lytning98/received_events", "repos_url": "https://api.github.com/users/lytning98/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lytning98/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lytning98/subscriptions", "type": "User", "url": "https://api.github.com/users/lytning98", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2023-07-28T04:06:26Z
2023-07-28T05:02:22Z
2023-07-28T05:02:22Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
As documented in the [official docs](https://huggingface.co/docs/datasets/v2.14.0/en/package_reference/loading_methods#datasets.load_dataset.example-2), I tried to load datasets from local files by ```python # Load a JSON file from datasets import load_dataset ds = load_dataset('json', data_files='path/to/local/my_dataset.json') ``` But this failed on a web request because I'm executing the script on a machine without Internet access. Stacktrace shows ``` in PackagedDatasetModuleFactory.__init__(self, name, data_dir, data_files, download_config, download_mode) 940 self.download_config = download_config 941 self.download_mode = download_mode --> 942 increase_load_count(name, resource_type="dataset") ``` I've read from the source code that this can be fixed by setting environment variable to run in offline mode. I'm just wondering that is this an expected behaviour that even loading a LOCAL JSON file requires Internet access by default? And what's the point of requesting to `increase_load_count` on some server when loading just LOCAL data files?
{ "avatar_url": "https://avatars.githubusercontent.com/u/23375707?v=4", "events_url": "https://api.github.com/users/lytning98/events{/privacy}", "followers_url": "https://api.github.com/users/lytning98/followers", "following_url": "https://api.github.com/users/lytning98/following{/other_user}", "gists_url": "https://api.github.com/users/lytning98/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lytning98", "id": 23375707, "login": "lytning98", "node_id": "MDQ6VXNlcjIzMzc1NzA3", "organizations_url": "https://api.github.com/users/lytning98/orgs", "received_events_url": "https://api.github.com/users/lytning98/received_events", "repos_url": "https://api.github.com/users/lytning98/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lytning98/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lytning98/subscriptions", "type": "User", "url": "https://api.github.com/users/lytning98", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6088/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6088/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7454
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7454/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7454/comments
https://api.github.com/repos/huggingface/datasets/issues/7454/events
https://github.com/huggingface/datasets/pull/7454
2,920,760,793
PR_kwDODunzps6Os6bx
7,454
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7454). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-14T16:48:19Z
2025-03-14T16:50:31Z
2025-03-14T16:48:28Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7454/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7454/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7454.diff", "html_url": "https://github.com/huggingface/datasets/pull/7454", "merged_at": "2025-03-14T16:48:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/7454.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7454" }
https://api.github.com/repos/huggingface/datasets/issues/4770
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4770/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4770/comments
https://api.github.com/repos/huggingface/datasets/issues/4770/events
https://github.com/huggingface/datasets/pull/4770
1,322,147,855
PR_kwDODunzps48UEBT
4,770
fix typo
{ "avatar_url": "https://avatars.githubusercontent.com/u/48146603?v=4", "events_url": "https://api.github.com/users/Jiaxin-Wen/events{/privacy}", "followers_url": "https://api.github.com/users/Jiaxin-Wen/followers", "following_url": "https://api.github.com/users/Jiaxin-Wen/following{/other_user}", "gists_url": "https://api.github.com/users/Jiaxin-Wen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jiaxin-Wen", "id": 48146603, "login": "Jiaxin-Wen", "node_id": "MDQ6VXNlcjQ4MTQ2NjAz", "organizations_url": "https://api.github.com/users/Jiaxin-Wen/orgs", "received_events_url": "https://api.github.com/users/Jiaxin-Wen/received_events", "repos_url": "https://api.github.com/users/Jiaxin-Wen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jiaxin-Wen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiaxin-Wen/subscriptions", "type": "User", "url": "https://api.github.com/users/Jiaxin-Wen", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "good catch thanks ! Can you check if the same typo is also present in `add_elasticsearch_index` ? It has a very similar signature", "> good catch thanks ! Can you check if the same typo is also present in `add_elasticsearch_index` ? It has a very similar signature\r\n\r\nfixed" ]
2022-07-29T11:46:12Z
2022-07-29T16:02:07Z
2022-07-29T16:02:07Z
CONTRIBUTOR
null
null
null
By defaul -> By default
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4770/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4770/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4770.diff", "html_url": "https://github.com/huggingface/datasets/pull/4770", "merged_at": "2022-07-29T16:02:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/4770.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4770" }
https://api.github.com/repos/huggingface/datasets/issues/5902
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5902/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5902/comments
https://api.github.com/repos/huggingface/datasets/issues/5902/events
https://github.com/huggingface/datasets/pull/5902
1,727,342,194
PR_kwDODunzps5RbPS9
5,902
Fix `Overview.ipynb` & detach Jupyter Notebooks from `datasets` repository
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Random fact: previous run was showing that the Hub was hosting 13336 datasets, while the most recent run shows 36662 👀🎉", "_The documentation is not available anymore as the PR was closed or merged._", "Thanks! \r\n\r\nHowever, I think we should stop linking this notebook and use the notebook version of the Quickstart doc page instead of it for easier maintenance (we would have the \"Open in Colab\" button in the Quickstart doc as Transformers [does](https://huggingface.co/docs/transformers/quicktour)). \r\n\r\n@stevhliu should be able to help with this. If I'm not mistaken, this can be done by adding the `[[open in colab]]` marker to the doc page.\r\n\r\nAlso, if some useful info from the Overview notebook is not in the docs, feel free to add it so we don't lose it 🙂.", "Cool, makes sense @mariosasko, then I'll check both notebooks and see whether there's something in `Overview.ipynb` worth including in the `docs/source/quickstart.mdx` and remove `Overview.ipynb` and update references in favour of `docs/source/quickstart.mdx`\r\n\r\nAre you OK if I do that @stevhliu @mariosasko? Thanks 🤗 ", "For the moment I've just updated the `quickstart.mdx` to be more similar to [quicktour.mdx](https://github.com/huggingface/transformers/blob/main/docs/source/en/quicktour.mdx), but regarding the `Overview.ipynb` notebook I was planning to create a PR in https://github.com/huggingface/notebooks to add it there, does that make sense @stevhliu? And then to create a `README.md` in this repository in `notebooks/` as `transformers` does to point to the related notebooks hosted in https://github.com/huggingface/notebooks, WDYT? 🤗 ", "Hi @stevhliu thanks for the feedback! Already applied your suggestions, I'll also add the pointers to both audio and image datasets in the \"What's next\" section.\r\n\r\nBesides that, let me know if I can help with the notebook being hosted in `huggingface/notebooks` instead, and I'll happily do so!", "Thanks a lot for the detailed feedback @mariosasko, I'll apply the changes today!", "> Besides that, let me know if I can help with the notebook being hosted in `huggingface/notebooks` instead, and I'll happily do so!\r\n\r\nAwesome! If you're up for it, I think you can go ahead and open a PR with the changes I've outlined [here](https://github.com/huggingface/datasets/pull/5902#pullrequestreview-1475236887) to add the notebook building workflow. ", "Hi @stevhliu @mariosasko, sorry for the delay I had a busy week, I'll tackle this either today or tomorrow to ideally close it before the weekend, thanks again for the help and guidance 😄 ", "Hi guys @stevhliu @mariosasko sorry for the delay! I've resolved all the comments and applied your reviews 👍🏻 Let me know if this works and we can finally close this PR, thanks for the help in the meantime!", "> Thanks for iterating on this and wrapping it up! 🤗\r\n\r\nNo need to! Always a pleasure to collaborate with you guys 🤗 ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009814 / 0.011353 (-0.001539) | 0.004632 / 0.011008 (-0.006376) | 0.103059 / 0.038508 (0.064551) | 0.090277 / 0.023109 (0.067167) | 0.389344 / 0.275898 (0.113446) | 0.464536 / 0.323480 (0.141056) | 0.008196 / 0.007986 (0.000210) | 0.003872 / 0.004328 (-0.000457) | 0.081912 / 0.004250 (0.077662) | 0.073197 / 0.037052 (0.036145) | 0.407545 / 0.258489 (0.149056) | 0.458035 / 0.293841 (0.164194) | 0.037485 / 0.128546 (-0.091061) | 0.010141 / 0.075646 (-0.065505) | 0.365998 / 0.419271 (-0.053273) | 0.065218 / 0.043533 (0.021685) | 0.414091 / 0.255139 (0.158952) | 0.435617 / 0.283200 (0.152417) | 0.028850 / 0.141683 (-0.112833) | 1.883510 / 1.452155 (0.431355) | 1.979986 / 1.492716 (0.487269) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236623 / 0.018006 (0.218616) | 0.467128 / 0.000490 (0.466638) | 0.008273 / 0.000200 (0.008074) | 0.000699 / 0.000054 (0.000645) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033061 / 0.037411 (-0.004350) | 0.101381 / 0.014526 (0.086856) | 0.110862 / 0.176557 (-0.065695) | 0.180982 / 0.737135 (-0.556154) | 0.113791 / 0.296338 (-0.182548) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450805 / 0.215209 (0.235596) | 4.478374 / 2.077655 (2.400719) | 2.190814 / 1.504120 (0.686694) | 1.976726 / 1.541195 (0.435532) | 2.078527 / 1.468490 (0.610037) | 0.569150 / 4.584777 (-4.015627) | 4.557790 / 3.745712 (0.812078) | 3.794964 / 5.269862 (-1.474898) | 2.555689 / 4.565676 (-2.009987) | 0.067380 / 0.424275 (-0.356896) | 0.008741 / 0.007607 (0.001134) | 0.536913 / 0.226044 (0.310868) | 5.364588 / 2.268929 (3.095659) | 2.725602 / 55.444624 (-52.719022) | 2.332012 / 6.876477 (-4.544465) | 2.560550 / 2.142072 (0.418477) | 0.672490 / 4.805227 (-4.132738) | 0.153629 / 6.500664 (-6.347035) | 0.070583 / 0.075469 (-0.004886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620083 / 1.841788 (-0.221704) | 23.094248 / 8.074308 (15.019939) | 17.797625 / 10.191392 (7.606233) | 0.167993 / 0.680424 (-0.512430) | 0.021151 / 0.534201 (-0.513050) | 0.470216 / 0.579283 (-0.109067) | 0.515492 / 0.434364 (0.081128) | 0.666359 / 0.540337 (0.126021) | 0.772928 / 1.386936 (-0.614008) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007853 / 0.011353 (-0.003500) | 0.004627 / 0.011008 (-0.006381) | 0.079803 / 0.038508 (0.041295) | 0.091562 / 0.023109 (0.068453) | 0.488537 / 0.275898 (0.212639) | 0.579207 / 0.323480 (0.255728) | 0.006579 / 0.007986 (-0.001406) | 0.003946 / 0.004328 (-0.000382) | 0.080224 / 0.004250 (0.075973) | 0.074499 / 0.037052 (0.037446) | 0.488292 / 0.258489 (0.229803) | 0.569246 / 0.293841 (0.275405) | 0.039994 / 0.128546 (-0.088553) | 0.012867 / 0.075646 (-0.062780) | 0.092563 / 0.419271 (-0.326709) | 0.061656 / 0.043533 (0.018124) | 0.488271 / 0.255139 (0.233132) | 0.550651 / 0.283200 (0.267451) | 0.032078 / 0.141683 (-0.109605) | 1.874440 / 1.452155 (0.422286) | 1.973480 / 1.492716 (0.480763) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238789 / 0.018006 (0.220782) | 0.460237 / 0.000490 (0.459748) | 0.000500 / 0.000200 (0.000300) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034961 / 0.037411 (-0.002450) | 0.102696 / 0.014526 (0.088170) | 0.117772 / 0.176557 (-0.058784) | 0.183865 / 0.737135 (-0.553270) | 0.119216 / 0.296338 (-0.177122) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528894 / 0.215209 (0.313685) | 5.303954 / 2.077655 (3.226300) | 2.897505 / 1.504120 (1.393385) | 2.475898 / 1.541195 (0.934703) | 2.553479 / 1.468490 (1.084988) | 0.625847 / 4.584777 (-3.958930) | 4.656595 / 3.745712 (0.910882) | 3.745170 / 5.269862 (-1.524691) | 2.470922 / 4.565676 (-2.094755) | 0.066908 / 0.424275 (-0.357367) | 0.009172 / 0.007607 (0.001565) | 0.572695 / 0.226044 (0.346650) | 5.753428 / 2.268929 (3.484499) | 3.033226 / 55.444624 (-52.411398) | 2.677280 / 6.876477 (-4.199197) | 2.908857 / 2.142072 (0.766785) | 0.681595 / 4.805227 (-4.123632) | 0.154602 / 6.500664 (-6.346062) | 0.072608 / 0.075469 (-0.002861) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.738550 / 1.841788 (-0.103237) | 25.090637 / 8.074308 (17.016329) | 18.371478 / 10.191392 (8.180086) | 0.207357 / 0.680424 (-0.473067) | 0.023396 / 0.534201 (-0.510805) | 0.505663 / 0.579283 (-0.073620) | 0.503137 / 0.434364 (0.068773) | 0.598015 / 0.540337 (0.057678) | 0.714122 / 1.386936 (-0.672814) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#971e33ec81b1013654e845b1c2e33cb43cda5558 \"CML watermark\")\n", "Just as a heads up @mariosasko, the `quickstart.ipynb` Jupyter Notebook has been built at https://github.com/huggingface/notebooks/blob/main/datasets_doc/en/quickstart.ipynb, while the URLs in here point to https://github.com/huggingface/notebooks/blob/main/datasets_doc/quickstart.ipynb instead, should we update that?" ]
2023-05-26T10:25:01Z
2023-07-25T13:50:06Z
2023-07-25T13:38:33Z
MEMBER
null
null
null
## What's in this PR? This PR solves #5887 since there was a mismatch between the tokenizer and the model used, since the tokenizer was `bert-base-cased` while the model was `distilbert-base-case` both for the PyTorch and TensorFlow alternatives. Since DistilBERT doesn't use/need the `token_type_ids`, the `**batch` was failing, as the batch contained `input_ids`, `attention_mask`, `token_type_ids`, `start_positions` and `end_positions`, and `token_type_ids` was not required. Besides that, at the end `seqeval` was being used to evaluate the model predictions, and just `evaluate` was being installed, so I've also included the `seqeval` installation. Finally, I've re-run everything in Google Colab, and every cell was successfully executed! ## What was done on top of the original PR? Based on the comments from @mariosasko and @stevhliu, I've updated the contents of this PR to also review the `quickstart.mdx` and update what was needed, besides that, we may eventually move the `Overview.ipynb` dataset to `huggingface/notebooks` following @stevhliu suggestions.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5902/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5902/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5902.diff", "html_url": "https://github.com/huggingface/datasets/pull/5902", "merged_at": "2023-07-25T13:38:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/5902.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5902" }
https://api.github.com/repos/huggingface/datasets/issues/6951
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6951/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6951/comments
https://api.github.com/repos/huggingface/datasets/issues/6951/events
https://github.com/huggingface/datasets/issues/6951
2,333,231,042
I_kwDODunzps6LEkfC
6,951
load_dataset() should load all subsets, if no specific subset is specified
{ "avatar_url": "https://avatars.githubusercontent.com/u/5577741?v=4", "events_url": "https://api.github.com/users/windmaple/events{/privacy}", "followers_url": "https://api.github.com/users/windmaple/followers", "following_url": "https://api.github.com/users/windmaple/following{/other_user}", "gists_url": "https://api.github.com/users/windmaple/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/windmaple", "id": 5577741, "login": "windmaple", "node_id": "MDQ6VXNlcjU1Nzc3NDE=", "organizations_url": "https://api.github.com/users/windmaple/orgs", "received_events_url": "https://api.github.com/users/windmaple/received_events", "repos_url": "https://api.github.com/users/windmaple/repos", "site_admin": false, "starred_url": "https://api.github.com/users/windmaple/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/windmaple/subscriptions", "type": "User", "url": "https://api.github.com/users/windmaple", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "@xianbaoqian ", "Feel free to open a PR in `m-a-p/COIG-CQIA` to define a default subset. Currently there is no default.\r\n\r\nYou can find some documentation at https://huggingface.co/docs/hub/datasets-manual-configuration#multiple-configurations", "@lhoestq \r\n\r\nWhilst having a default subset readily available (e.g. `all`) by the dataset author is an ideal solution, it is not always the reality.\r\n\r\nWithout the ability to fork the dataset, this can be problematic.\r\n\r\nAs far as I know, it is not possible at all to specify multiple subsets in a generalized programmatic way without hard coding subset names for a specific dataset.\r\n\r\nEven the ability to fetch subset names and loop over them would be sufficient.", "Please note that each subset can have different feature columns, thus making it impossible to load them all into a unique Dataset instance.\r\n\r\nThat is why subsets were created: to support different but related datasets to coexist in a single dataset repository.\r\n\r\nIf you would like to programmatically get the list of subset names, you can use `datasets.get_dataset_config_names`: https://huggingface.co/docs/datasets/v2.20.0/en/load_hub#configurations", "found a better method in another link that can not only obtain the subset but also get the corresponding split\r\nhttps://huggingface.co/docs/dataset-viewer/splits" ]
2024-06-04T11:02:33Z
2024-11-26T08:32:18Z
2024-07-01T11:33:10Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Currently load_dataset() is forcing users to specify a subset. Example `from datasets import load_dataset dataset = load_dataset("m-a-p/COIG-CQIA")` ```--------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-10-c0cb49385da6>](https://localhost:8080/#) in <cell line: 2>() 1 from datasets import load_dataset ----> 2 dataset = load_dataset("m-a-p/COIG-CQIA") 3 frames [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _create_builder_config(self, config_name, custom_features, **config_kwargs) 582 if not config_kwargs: 583 example_of_usage = f"load_dataset('{self.dataset_name}', '{self.BUILDER_CONFIGS[0].name}')" --> 584 raise ValueError( 585 "Config name is missing." 586 f"\nPlease pick one among the available configs: {list(self.builder_configs.keys())}" ValueError: Config name is missing. Please pick one among the available configs: ['chinese_traditional', 'coig_pc', 'exam', 'finance', 'douban', 'human_value', 'logi_qa', 'ruozhiba', 'segmentfault', 'wiki', 'wikihow', 'xhs', 'zhihu'] Example of usage: `load_dataset('coig-cqia', 'chinese_traditional')` ``` This means a dataset cannot contain all the subsets at the same time. I guess one workaround is to manually specify the subset files like in [here](https://huggingface.co/datasets/m-a-p/COIG-CQIA/discussions/1#658698b44bb41498f75c5622), which is clumsy. ### Motivation Ideally, if not subset is specified, the API should just try to load all subsets. This makes it much easier to handle datasets w/ subsets. ### Your contribution Not sure since I'm not familiar w/ the lib src.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6951/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6951/timeline
null
not_planned
null
null
https://api.github.com/repos/huggingface/datasets/issues/7342
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7342/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7342/comments
https://api.github.com/repos/huggingface/datasets/issues/7342/events
https://github.com/huggingface/datasets/pull/7342
2,749,572,310
PR_kwDODunzps6FvgcK
7,342
Update LICENSE
{ "avatar_url": "https://avatars.githubusercontent.com/u/97572401?v=4", "events_url": "https://api.github.com/users/eliebak/events{/privacy}", "followers_url": "https://api.github.com/users/eliebak/followers", "following_url": "https://api.github.com/users/eliebak/following{/other_user}", "gists_url": "https://api.github.com/users/eliebak/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eliebak", "id": 97572401, "login": "eliebak", "node_id": "U_kgDOBdDWMQ", "organizations_url": "https://api.github.com/users/eliebak/orgs", "received_events_url": "https://api.github.com/users/eliebak/received_events", "repos_url": "https://api.github.com/users/eliebak/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eliebak/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eliebak/subscriptions", "type": "User", "url": "https://api.github.com/users/eliebak", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7342). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-12-19T08:17:50Z
2024-12-19T08:44:08Z
2024-12-19T08:44:08Z
NONE
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/97572401?v=4", "events_url": "https://api.github.com/users/eliebak/events{/privacy}", "followers_url": "https://api.github.com/users/eliebak/followers", "following_url": "https://api.github.com/users/eliebak/following{/other_user}", "gists_url": "https://api.github.com/users/eliebak/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eliebak", "id": 97572401, "login": "eliebak", "node_id": "U_kgDOBdDWMQ", "organizations_url": "https://api.github.com/users/eliebak/orgs", "received_events_url": "https://api.github.com/users/eliebak/received_events", "repos_url": "https://api.github.com/users/eliebak/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eliebak/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eliebak/subscriptions", "type": "User", "url": "https://api.github.com/users/eliebak", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7342/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7342/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7342.diff", "html_url": "https://github.com/huggingface/datasets/pull/7342", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7342.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7342" }
https://api.github.com/repos/huggingface/datasets/issues/5157
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5157/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5157/comments
https://api.github.com/repos/huggingface/datasets/issues/5157/events
https://github.com/huggingface/datasets/issues/5157
1,421,703,577
I_kwDODunzps5UvXmZ
5,157
Consistent caching between python and jupyter
{ "avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4", "events_url": "https://api.github.com/users/gpucce/events{/privacy}", "followers_url": "https://api.github.com/users/gpucce/followers", "following_url": "https://api.github.com/users/gpucce/following{/other_user}", "gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gpucce", "id": 32967787, "login": "gpucce", "node_id": "MDQ6VXNlcjMyOTY3Nzg3", "organizations_url": "https://api.github.com/users/gpucce/orgs", "received_events_url": "https://api.github.com/users/gpucce/received_events", "repos_url": "https://api.github.com/users/gpucce/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gpucce/subscriptions", "type": "User", "url": "https://api.github.com/users/gpucce", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4", "events_url": "https://api.github.com/users/gpucce/events{/privacy}", "followers_url": "https://api.github.com/users/gpucce/followers", "following_url": "https://api.github.com/users/gpucce/following{/other_user}", "gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gpucce", "id": 32967787, "login": "gpucce", "node_id": "MDQ6VXNlcjMyOTY3Nzg3", "organizations_url": "https://api.github.com/users/gpucce/orgs", "received_events_url": "https://api.github.com/users/gpucce/received_events", "repos_url": "https://api.github.com/users/gpucce/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gpucce/subscriptions", "type": "User", "url": "https://api.github.com/users/gpucce", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/32967787?v=4", "events_url": "https://api.github.com/users/gpucce/events{/privacy}", "followers_url": "https://api.github.com/users/gpucce/followers", "following_url": "https://api.github.com/users/gpucce/following{/other_user}", "gists_url": "https://api.github.com/users/gpucce/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gpucce", "id": 32967787, "login": "gpucce", "node_id": "MDQ6VXNlcjMyOTY3Nzg3", "organizations_url": "https://api.github.com/users/gpucce/orgs", "received_events_url": "https://api.github.com/users/gpucce/received_events", "repos_url": "https://api.github.com/users/gpucce/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gpucce/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gpucce/subscriptions", "type": "User", "url": "https://api.github.com/users/gpucce", "user_view_type": "public" } ]
null
[ "Hi ! Maybe it's possible to have a consistent hash for a function defined in `__main__` and a function define in a notebook.\r\n\r\nHowever for functions imported from another location, pickle uses the location to identify the code, so in that case we can't do much I believe.\r\n\r\nWould it be ok for you if we only try to do this for functions in `__main__` / jupyter ?\r\n\r\nIf you'd like to contribute, you can read this part of the code and let me know if you have questions:\r\n\r\nhttps://github.com/huggingface/datasets/blob/7feeb5648a63b6135a8259dedc3b1e19185ee4c7/src/datasets/utils/py_utils.py#L617-L643\r\n\r\nI think the key here would be to also ignore the \"co_filename\" of functions defined in `__main__`", "Seems like a good solution, I will start a PR and see if I understood the changes needed. Thanks!" ]
2022-10-25T01:34:33Z
2022-11-02T15:43:22Z
2022-11-02T15:43:22Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request I hope this is not my mistake, currently if I use `load_dataset` from a python session on a custom dataset to do the preprocessing, it will be saved in the cache and in other python sessions it will be loaded from the cache, however calling the same from a jupyter notebook does not work, meaning the preprocessing starts from scratch. If adjusting the hashes is impossible, is there a way to manually set dataset fingerprint to "force" this behaviour? ### Motivation If this is not already the case and I am doing something wrong, it would be useful to have the two fingerprints consistent so one can create the dataset once and then try small things on jupyter without preprocessing everything again. ### Your contribution I am happy to try a PR if you give me some pointers where the changes should happen
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5157/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5157/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5669
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5669/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5669/comments
https://api.github.com/repos/huggingface/datasets/issues/5669/events
https://github.com/huggingface/datasets/issues/5669
1,638,070,046
I_kwDODunzps5hovce
5,669
Almost identical datasets, huge performance difference
{ "avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4", "events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}", "followers_url": "https://api.github.com/users/eli-osherovich/followers", "following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}", "gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eli-osherovich", "id": 2437102, "login": "eli-osherovich", "node_id": "MDQ6VXNlcjI0MzcxMDI=", "organizations_url": "https://api.github.com/users/eli-osherovich/orgs", "received_events_url": "https://api.github.com/users/eli-osherovich/received_events", "repos_url": "https://api.github.com/users/eli-osherovich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions", "type": "User", "url": "https://api.github.com/users/eli-osherovich", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Do I miss something here?", "Hi! \r\n\r\nThe first dataset stores images as bytes (the \"image\" column type is `datasets.Image()`) and decodes them as `PIL.Image` objects and the second dataset stores them as variable-length lists (the \"image\" column type is `datasets.Sequence(...)`)), so I guess going from `arrow bytes -> NumPy -> decoding as PIL.Image -> PyTorch` is faster than going from `arrow list -> NumPy -> PyTorch`. \r\n\r\nTo store image bytes in the second example, you can do the following:\r\n\r\n```python\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"])\r\n return example\r\n\r\nfeatures = dataset.features.copy()\r\ndel features[\"image\"]\r\nfeatures[\"image2\"] = datasets.Image()\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"], features=features)\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```", "Thanks, @mariosasko. I could not understand why a (decoded) sequence should be MUCH slower than an encoded image (that must be decoded every time). At any rate, I tried you suggestion. It made the `map` step to run extremely slow (consumes all the 16GB of memory and starts swapping)\r\n\r\nI tried also the easiest (as I see it) scenario, where images are kept as bytes, but it made things even worse: not only it was extremely slow, but also crashes\r\n\r\n```python\r\n\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"]).tobytes()\r\n return example\r\n\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"])\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n\r\n\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nOutput exceeds the size limit. Open the full output data in a text editor\r\n---------------------------------------------------------------------------\r\nRuntimeError Traceback (most recent call last)\r\nFile ~/virtenvs/py310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1133, in _MultiProcessingDataLoaderIter._try_get_data(self, timeout)\r\n 1132 try:\r\n-> 1133 data = self._data_queue.get(timeout=timeout)\r\n 1134 return (True, data)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/queues.py:113, in Queue.get(self, block, timeout)\r\n 112 timeout = deadline - time.monotonic()\r\n--> 113 if not self._poll(timeout):\r\n 114 raise Empty\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:257, in _ConnectionBase.poll(self, timeout)\r\n 256 self._check_readable()\r\n--> 257 return self._poll(timeout)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:424, in Connection._poll(self, timeout)\r\n 423 def _poll(self, timeout):\r\n--> 424 r = wait([self], timeout)\r\n 425 return bool(r)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:931, in wait(object_list, timeout)\r\n 930 while True:\r\n--> 931 ready = selector.select(timeout)\r\n 932 if ready:\r\n...\r\n-> 1146 raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e\r\n 1147 if isinstance(e, queue.Empty):\r\n 1148 return (False, None)\r\n\r\nRuntimeError: DataLoader worker (pid(s) 195393) exited unexpectedly\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\n```\r\n", "Correction: the `beans` dataset stores the image file paths, not the bytes.\r\n\r\nFor your use case, I think it makes more sense to use `with_tranform` than `map` and lazily decode images with `cv2.imread` when indexing an example/batch:\r\n```python\r\nimport cv2\r\n\r\ndef transform(batch):\r\n batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\r\n return batch\r\n\r\ndataset = dataset.with_transform(transform)\r\n```\r\n", "This is incorrect.\n\nDid you try to run it? dataset[0] returns a tensor of numbers. dataset2[0]\nreturns the same tensor, but after a few long seconds. Looping over a\nthousand of images cannot take 15 minutes.\n\nOn Fri, 24 Mar 2023 at 19:28 Mario Šaško ***@***.***> wrote:\n\n> Correction: the beans dataset stores the image file paths, not the bytes.\n>\n> For your use case, I think it makes more sense to use with_tranform than\n> map and lazily decode images with cv2.imread when accessing an\n> example/batch:\n>\n> import cv2\n> def transform(batch):\n> batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\n> return batch\n> dataset = dataset.with_transform(transform)\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5669#issuecomment-1483084347>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AASS73SHRWXIQX6SCYCJ7ITW5XDUDANCNFSM6AAAAAAWFSHWEM>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n", "I updated the transform with the NumPy -> PyTorch conversion.\r\n\r\nI'm sharing the entire code:\r\n```python\r\nimport cv2\r\nimport numpy as np\r\nimport datasets\r\nimport torch\r\nfrom datasets import load_dataset\r\nfrom torch.utils.data import DataLoader\r\n\r\ndataset = load_dataset(\"beans\", split=\"train\")\r\n\r\ndef transform(batch):\r\n # # Pillow decodes as RGB\r\n # batch[\"image\"] = torch.stack([torch.from_numpy(cv2.cvtColor(cv2.imread(image_file_path), cv2.COLOR_BGR2RGB)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"image\"] = torch.stack([torch.from_numpy(cv2.imread(image_file_path)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"labels\"] = torch.tensor(batch[\"labels\"])\r\n return batch\r\n\r\ndataset2 = dataset.cast_column(\"image\", datasets.Image(decode=False)).with_transform(transform)\r\n\r\nfor x in DataLoader(dataset2, batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```\r\n\r\nThis code is ≈ 10% faster on my machine than the default decoding with Pillow and `.with_format(\"torch\")`.", "Thanks, @mariosasko \r\nMy question remain unanswered though. Why is the `map`ed dataset so slow? My understanding is that a dataset of numpy arrays should be must faster than a dataset that has to decode images into numpy arrays every time one accesses an item. " ]
2023-03-23T18:20:20Z
2023-04-09T18:56:23Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am struggling to understand (huge) performance difference between two datasets that are almost identical. ### Steps to reproduce the bug # Fast (normal) dataset speed: ```python import cv2 from datasets import load_dataset from torch.utils.data import DataLoader dataset = load_dataset("beans", split="train") for x in DataLoader(dataset.with_format("torch"), batch_size=16, shuffle=True, num_workers=8): pass ``` The above pass over the dataset takes about 1.5 seconds on my computer. However, if I re-create (almost) the same dataset, the sweep takes HUGE amount of time: 15 minutes. Steps to reproduce: ```python def transform(example): example["image2"] = cv2.imread(example["image_file_path"]) return example dataset2 = dataset.map(transform, remove_columns=["image"]) for x in DataLoader(dataset2.with_format("torch"), batch_size=16, shuffle=True, num_workers=8): pass ``` ### Expected behavior Same timings ### Environment info python==3.10.9 datasets==2.10.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5669/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5669/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5146
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5146/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5146/comments
https://api.github.com/repos/huggingface/datasets/issues/5146/events
https://github.com/huggingface/datasets/pull/5146
1,418,331,282
PR_kwDODunzps5BSUWW
5,146
Delete duplicate issue template file
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-21T13:18:46Z
2022-10-21T13:52:30Z
2022-10-21T13:50:04Z
MEMBER
null
null
null
A conflict between two PRs: - #5116 - #5136 was not properly resolved, resulting in a duplicate issue template. This PR removes the duplicate template.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5146/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5146/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5146.diff", "html_url": "https://github.com/huggingface/datasets/pull/5146", "merged_at": "2022-10-21T13:50:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/5146.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5146" }
https://api.github.com/repos/huggingface/datasets/issues/5705
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5705/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5705/comments
https://api.github.com/repos/huggingface/datasets/issues/5705/events
https://github.com/huggingface/datasets/issues/5705
1,653,500,383
I_kwDODunzps5ijmnf
5,705
Getting next item from IterableDataset took forever.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16588434?v=4", "events_url": "https://api.github.com/users/HongtaoYang/events{/privacy}", "followers_url": "https://api.github.com/users/HongtaoYang/followers", "following_url": "https://api.github.com/users/HongtaoYang/following{/other_user}", "gists_url": "https://api.github.com/users/HongtaoYang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HongtaoYang", "id": 16588434, "login": "HongtaoYang", "node_id": "MDQ6VXNlcjE2NTg4NDM0", "organizations_url": "https://api.github.com/users/HongtaoYang/orgs", "received_events_url": "https://api.github.com/users/HongtaoYang/received_events", "repos_url": "https://api.github.com/users/HongtaoYang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HongtaoYang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HongtaoYang/subscriptions", "type": "User", "url": "https://api.github.com/users/HongtaoYang", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! It can take some time to iterate over Parquet files as big as yours, convert the samples to Python, and find the first one that matches a filter predicate before yielding it...", "Thanks @mariosasko, I figured it was the filter operation. I'm closing this issue because it is not a bug, it is the expected beheaviour." ]
2023-04-04T09:16:17Z
2023-04-05T23:35:41Z
2023-04-05T23:35:41Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have a large dataset, about 500GB. The format of the dataset is parquet. I then load the dataset and try to get the first item ```python def get_one_item(): dataset = load_dataset("path/to/datafiles", split="train", cache_dir=".", streaming=True) dataset = dataset.filter(lambda example: example['text'].startswith('Ar')) print(next(iter(dataset))) ``` However, this function never finish. I waited ~10mins, the function was still running so I killed the process. I'm now using `line_profiler` to profile how long it would take to return one item. I'll be patient and wait for as long as it needs. I suspect the filter operation is the reason why it took so long. Can I get some possible reasons behind this? ### Steps to reproduce the bug Unfortunately without my data files, there is no way to reproduce this bug. ### Expected behavior With `IteralbeDataset`, I expect the first item to be returned instantly. ### Environment info - datasets version: 2.11.0 - python: 3.7.12
{ "avatar_url": "https://avatars.githubusercontent.com/u/16588434?v=4", "events_url": "https://api.github.com/users/HongtaoYang/events{/privacy}", "followers_url": "https://api.github.com/users/HongtaoYang/followers", "following_url": "https://api.github.com/users/HongtaoYang/following{/other_user}", "gists_url": "https://api.github.com/users/HongtaoYang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HongtaoYang", "id": 16588434, "login": "HongtaoYang", "node_id": "MDQ6VXNlcjE2NTg4NDM0", "organizations_url": "https://api.github.com/users/HongtaoYang/orgs", "received_events_url": "https://api.github.com/users/HongtaoYang/received_events", "repos_url": "https://api.github.com/users/HongtaoYang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HongtaoYang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HongtaoYang/subscriptions", "type": "User", "url": "https://api.github.com/users/HongtaoYang", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5705/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5705/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5757
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5757/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5757/comments
https://api.github.com/repos/huggingface/datasets/issues/5757/events
https://github.com/huggingface/datasets/issues/5757
1,669,910,503
I_kwDODunzps5jiM_n
5,757
Tilde (~) is not supported
{ "avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4", "events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}", "followers_url": "https://api.github.com/users/eli-osherovich/followers", "following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}", "gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eli-osherovich", "id": 2437102, "login": "eli-osherovich", "node_id": "MDQ6VXNlcjI0MzcxMDI=", "organizations_url": "https://api.github.com/users/eli-osherovich/orgs", "received_events_url": "https://api.github.com/users/eli-osherovich/received_events", "repos_url": "https://api.github.com/users/eli-osherovich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions", "type": "User", "url": "https://api.github.com/users/eli-osherovich", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2023-04-16T11:48:10Z
2023-04-20T15:30:51Z
2023-04-20T15:30:51Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug It seems that `~` is not recognized correctly in local paths. Whenever I try to use it I get an exception ### Steps to reproduce the bug ```python load_dataset("imagefolder", data_dir="~/data/my_dataset") ``` Will generate the following error: ``` EmptyDatasetError: The directory at /path/to/cwd/~/data/datasets/clementine_tagged_per_cam doesn't contain any data files ``` ### Expected behavior Load the dataset. ### Environment info datasets==2.11.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5757/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5757/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6067
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6067/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6067/comments
https://api.github.com/repos/huggingface/datasets/issues/6067/events
https://github.com/huggingface/datasets/pull/6067
1,819,919,025
PR_kwDODunzps5WT7EQ
6,067
fix tqdm lock
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006578 / 0.011353 (-0.004775) | 0.003953 / 0.011008 (-0.007055) | 0.084417 / 0.038508 (0.045908) | 0.076729 / 0.023109 (0.053620) | 0.315369 / 0.275898 (0.039471) | 0.347012 / 0.323480 (0.023533) | 0.005299 / 0.007986 (-0.002686) | 0.003321 / 0.004328 (-0.001007) | 0.063954 / 0.004250 (0.059704) | 0.055810 / 0.037052 (0.018758) | 0.317651 / 0.258489 (0.059162) | 0.352603 / 0.293841 (0.058762) | 0.031355 / 0.128546 (-0.097192) | 0.008493 / 0.075646 (-0.067153) | 0.287295 / 0.419271 (-0.131977) | 0.052716 / 0.043533 (0.009183) | 0.316410 / 0.255139 (0.061271) | 0.328893 / 0.283200 (0.045693) | 0.024005 / 0.141683 (-0.117678) | 1.520333 / 1.452155 (0.068178) | 1.601268 / 1.492716 (0.108552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205144 / 0.018006 (0.187138) | 0.459160 / 0.000490 (0.458670) | 0.000321 / 0.000200 (0.000121) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027503 / 0.037411 (-0.009908) | 0.081476 / 0.014526 (0.066950) | 0.096759 / 0.176557 (-0.079798) | 0.157888 / 0.737135 (-0.579247) | 0.094592 / 0.296338 (-0.201746) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384762 / 0.215209 (0.169553) | 3.843503 / 2.077655 (1.765849) | 1.921685 / 1.504120 (0.417565) | 1.752441 / 1.541195 (0.211246) | 1.822105 / 1.468490 (0.353615) | 0.480243 / 4.584777 (-4.104534) | 3.577220 / 3.745712 (-0.168492) | 5.047560 / 5.269862 (-0.222302) | 2.988008 / 4.565676 (-1.577669) | 0.056430 / 0.424275 (-0.367845) | 0.007180 / 0.007607 (-0.000427) | 0.458113 / 0.226044 (0.232069) | 4.584096 / 2.268929 (2.315168) | 2.395307 / 55.444624 (-53.049317) | 2.080530 / 6.876477 (-4.795947) | 2.239000 / 2.142072 (0.096927) | 0.575822 / 4.805227 (-4.229405) | 0.133303 / 6.500664 (-6.367361) | 0.059449 / 0.075469 (-0.016020) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256496 / 1.841788 (-0.585291) | 19.651614 / 8.074308 (11.577306) | 14.232480 / 10.191392 (4.041088) | 0.146461 / 0.680424 (-0.533963) | 0.018632 / 0.534201 (-0.515569) | 0.399844 / 0.579283 (-0.179439) | 0.411225 / 0.434364 (-0.023139) | 0.458203 / 0.540337 (-0.082135) | 0.669916 / 1.386936 (-0.717020) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004890) | 0.003898 / 0.011008 (-0.007110) | 0.064037 / 0.038508 (0.025529) | 0.071982 / 0.023109 (0.048873) | 0.361936 / 0.275898 (0.086038) | 0.393165 / 0.323480 (0.069685) | 0.005207 / 0.007986 (-0.002779) | 0.003231 / 0.004328 (-0.001098) | 0.064318 / 0.004250 (0.060068) | 0.055776 / 0.037052 (0.018724) | 0.383087 / 0.258489 (0.124598) | 0.402428 / 0.293841 (0.108587) | 0.031587 / 0.128546 (-0.096959) | 0.008527 / 0.075646 (-0.067119) | 0.070495 / 0.419271 (-0.348777) | 0.048806 / 0.043533 (0.005273) | 0.369932 / 0.255139 (0.114793) | 0.385268 / 0.283200 (0.102068) | 0.023183 / 0.141683 (-0.118500) | 1.491175 / 1.452155 (0.039020) | 1.534191 / 1.492716 (0.041475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224526 / 0.018006 (0.206520) | 0.445460 / 0.000490 (0.444970) | 0.003612 / 0.000200 (0.003412) | 0.000089 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029829 / 0.037411 (-0.007583) | 0.087951 / 0.014526 (0.073425) | 0.100069 / 0.176557 (-0.076487) | 0.154944 / 0.737135 (-0.582192) | 0.101271 / 0.296338 (-0.195067) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412385 / 0.215209 (0.197175) | 4.108038 / 2.077655 (2.030384) | 2.163578 / 1.504120 (0.659459) | 2.031934 / 1.541195 (0.490740) | 2.155857 / 1.468490 (0.687367) | 0.481132 / 4.584777 (-4.103645) | 3.620868 / 3.745712 (-0.124844) | 5.222175 / 5.269862 (-0.047687) | 3.115637 / 4.565676 (-1.450039) | 0.056480 / 0.424275 (-0.367795) | 0.007761 / 0.007607 (0.000154) | 0.483553 / 0.226044 (0.257509) | 4.830087 / 2.268929 (2.561159) | 2.629919 / 55.444624 (-52.814705) | 2.327551 / 6.876477 (-4.548926) | 2.539934 / 2.142072 (0.397861) | 0.587963 / 4.805227 (-4.217265) | 0.131085 / 6.500664 (-6.369579) | 0.060807 / 0.075469 (-0.014662) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350003 / 1.841788 (-0.491785) | 19.491713 / 8.074308 (11.417405) | 14.030429 / 10.191392 (3.839037) | 0.174762 / 0.680424 (-0.505662) | 0.018523 / 0.534201 (-0.515678) | 0.394946 / 0.579283 (-0.184337) | 0.407652 / 0.434364 (-0.026712) | 0.465806 / 0.540337 (-0.074531) | 0.605417 / 1.386936 (-0.781519) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cc85979df3a39657079fdf0844c7e64547507f1a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006235 / 0.011353 (-0.005118) | 0.003675 / 0.011008 (-0.007333) | 0.080680 / 0.038508 (0.042171) | 0.064378 / 0.023109 (0.041268) | 0.394312 / 0.275898 (0.118414) | 0.428143 / 0.323480 (0.104663) | 0.004794 / 0.007986 (-0.003191) | 0.002899 / 0.004328 (-0.001429) | 0.062592 / 0.004250 (0.058342) | 0.050957 / 0.037052 (0.013904) | 0.396831 / 0.258489 (0.138342) | 0.438280 / 0.293841 (0.144439) | 0.027743 / 0.128546 (-0.100804) | 0.008068 / 0.075646 (-0.067578) | 0.262541 / 0.419271 (-0.156730) | 0.060837 / 0.043533 (0.017304) | 0.397941 / 0.255139 (0.142802) | 0.417012 / 0.283200 (0.133813) | 0.030153 / 0.141683 (-0.111530) | 1.477115 / 1.452155 (0.024960) | 1.516642 / 1.492716 (0.023926) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178032 / 0.018006 (0.160026) | 0.445775 / 0.000490 (0.445286) | 0.004275 / 0.000200 (0.004075) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025025 / 0.037411 (-0.012386) | 0.074113 / 0.014526 (0.059587) | 0.083814 / 0.176557 (-0.092743) | 0.148860 / 0.737135 (-0.588275) | 0.085408 / 0.296338 (-0.210931) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393714 / 0.215209 (0.178505) | 3.936589 / 2.077655 (1.858934) | 1.910501 / 1.504120 (0.406381) | 1.729670 / 1.541195 (0.188475) | 1.777647 / 1.468490 (0.309156) | 0.499532 / 4.584777 (-4.085245) | 3.002385 / 3.745712 (-0.743327) | 2.906916 / 5.269862 (-2.362945) | 1.883321 / 4.565676 (-2.682356) | 0.057546 / 0.424275 (-0.366730) | 0.006492 / 0.007607 (-0.001115) | 0.463605 / 0.226044 (0.237560) | 4.620215 / 2.268929 (2.351287) | 2.399021 / 55.444624 (-53.045603) | 2.182962 / 6.876477 (-4.693514) | 2.357344 / 2.142072 (0.215272) | 0.583946 / 4.805227 (-4.221282) | 0.124644 / 6.500664 (-6.376021) | 0.060831 / 0.075469 (-0.014638) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276412 / 1.841788 (-0.565375) | 18.462522 / 8.074308 (10.388214) | 13.877375 / 10.191392 (3.685983) | 0.150584 / 0.680424 (-0.529840) | 0.016675 / 0.534201 (-0.517526) | 0.331711 / 0.579283 (-0.247573) | 0.366659 / 0.434364 (-0.067705) | 0.396400 / 0.540337 (-0.143938) | 0.555418 / 1.386936 (-0.831518) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005995 / 0.011353 (-0.005358) | 0.003610 / 0.011008 (-0.007399) | 0.061802 / 0.038508 (0.023294) | 0.059265 / 0.023109 (0.036156) | 0.392628 / 0.275898 (0.116730) | 0.413143 / 0.323480 (0.089663) | 0.004687 / 0.007986 (-0.003299) | 0.002843 / 0.004328 (-0.001486) | 0.061932 / 0.004250 (0.057682) | 0.049466 / 0.037052 (0.012413) | 0.402718 / 0.258489 (0.144229) | 0.415039 / 0.293841 (0.121198) | 0.027352 / 0.128546 (-0.101194) | 0.007965 / 0.075646 (-0.067682) | 0.067456 / 0.419271 (-0.351815) | 0.042336 / 0.043533 (-0.001196) | 0.405543 / 0.255139 (0.150404) | 0.403209 / 0.283200 (0.120010) | 0.021459 / 0.141683 (-0.120224) | 1.442861 / 1.452155 (-0.009293) | 1.491213 / 1.492716 (-0.001503) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248225 / 0.018006 (0.230219) | 0.434174 / 0.000490 (0.433684) | 0.001973 / 0.000200 (0.001773) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025475 / 0.037411 (-0.011936) | 0.077865 / 0.014526 (0.063339) | 0.086980 / 0.176557 (-0.089577) | 0.143682 / 0.737135 (-0.593453) | 0.088634 / 0.296338 (-0.207705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417591 / 0.215209 (0.202382) | 4.168700 / 2.077655 (2.091045) | 2.335743 / 1.504120 (0.831623) | 2.208174 / 1.541195 (0.666980) | 2.256658 / 1.468490 (0.788168) | 0.503164 / 4.584777 (-4.081613) | 3.026667 / 3.745712 (-0.719045) | 4.496675 / 5.269862 (-0.773187) | 2.741049 / 4.565676 (-1.824628) | 0.057781 / 0.424275 (-0.366494) | 0.006810 / 0.007607 (-0.000797) | 0.490803 / 0.226044 (0.264759) | 4.914369 / 2.268929 (2.645441) | 2.594250 / 55.444624 (-52.850375) | 2.274552 / 6.876477 (-4.601925) | 2.397529 / 2.142072 (0.255456) | 0.593008 / 4.805227 (-4.212220) | 0.126194 / 6.500664 (-6.374470) | 0.062261 / 0.075469 (-0.013208) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.357561 / 1.841788 (-0.484227) | 18.622995 / 8.074308 (10.548687) | 14.142569 / 10.191392 (3.951177) | 0.146527 / 0.680424 (-0.533897) | 0.016863 / 0.534201 (-0.517338) | 0.336219 / 0.579283 (-0.243064) | 0.348650 / 0.434364 (-0.085714) | 0.385958 / 0.540337 (-0.154380) | 0.517958 / 1.386936 (-0.868978) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f3da7a5a7d0d0415476ecebb0458e7c60df24445 \"CML watermark\")\n" ]
2023-07-25T09:32:16Z
2023-07-25T10:02:43Z
2023-07-25T09:54:12Z
MEMBER
null
null
null
close https://github.com/huggingface/datasets/issues/6066
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6067/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6067/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6067.diff", "html_url": "https://github.com/huggingface/datasets/pull/6067", "merged_at": "2023-07-25T09:54:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/6067.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6067" }
https://api.github.com/repos/huggingface/datasets/issues/4725
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4725/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4725/comments
https://api.github.com/repos/huggingface/datasets/issues/4725/events
https://github.com/huggingface/datasets/issues/4725
1,311,907,096
I_kwDODunzps5OMh0Y
4,725
the_pile datasets URL broken.
{ "avatar_url": "https://avatars.githubusercontent.com/u/12433427?v=4", "events_url": "https://api.github.com/users/TrentBrick/events{/privacy}", "followers_url": "https://api.github.com/users/TrentBrick/followers", "following_url": "https://api.github.com/users/TrentBrick/following{/other_user}", "gists_url": "https://api.github.com/users/TrentBrick/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TrentBrick", "id": 12433427, "login": "TrentBrick", "node_id": "MDQ6VXNlcjEyNDMzNDI3", "organizations_url": "https://api.github.com/users/TrentBrick/orgs", "received_events_url": "https://api.github.com/users/TrentBrick/received_events", "repos_url": "https://api.github.com/users/TrentBrick/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TrentBrick/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TrentBrick/subscriptions", "type": "User", "url": "https://api.github.com/users/TrentBrick", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Thanks for reporting, @TrentBrick. We are addressing the change with their data host server.\r\n\r\nOn the meantime, if you would like to work with your fixed local copy of the_pile script, you should use:\r\n```python\r\nload_dataset(\"path/to/your/local/the_pile/the_pile.py\",...\r\n```\r\ninstead of just `load_dataset(\"the_pile\",...`.\r\n\r\nThe latter downloads a copy of `the_pile.py` from our GitHub, caches it locally (inside `~/.cache/huggingface/modules`) and uses that.", "@TrentBrick, I have checked the URLs and both hosts work, the original (https://the-eye.eu/) and the mirror (https://mystic.the-eye.eu/). See e.g.:\r\n- https://mystic.the-eye.eu/public/AI/pile/\r\n- https://mystic.the-eye.eu/public/AI/pile_preliminary_components/\r\n\r\nPlease, let me know if you still find any issue loading this dataset by using current server URLs.", "Great this is working now. Re the download from GitHub... I'm sure thought went into doing this but could it be made more clear maybe here? https://huggingface.co/docs/datasets/installation for example under installing from source? I spent over an hour questioning my sanity as I kept trying to edit this file, uninstall and reinstall the repo, git reset to previous versions of the file etc.", "Thanks for the quick reply and help too\r\n", "Thanks @TrentBrick for the suggestion about improving our docs: we should definitely do this if you find they are not clear enough.\r\n\r\nCurrently, our docs explain how to load a dataset from a local loading script here: [Load > Local loading script](https://huggingface.co/docs/datasets/loading#local-loading-script)\r\n\r\nI've opened an issue here:\r\n- #4732\r\n\r\nFeel free to comment on it any additional explanation/suggestion/requirement related to this problem." ]
2022-07-20T20:57:30Z
2022-07-22T06:09:46Z
2022-07-21T07:38:19Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
https://github.com/huggingface/datasets/pull/3627 changed the Eleuther AI Pile dataset URL from https://the-eye.eu/ to https://mystic.the-eye.eu/ but the latter is now broken and the former works again. Note that when I git clone the repo and use `pip install -e .` and then edit the URL back the codebase doesn't seem to use this edit so the mystic URL is also cached somewhere else that I can't find?
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4725/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4725/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6099
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6099/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6099/comments
https://api.github.com/repos/huggingface/datasets/issues/6099/events
https://github.com/huggingface/datasets/issues/6099
1,827,893,576
I_kwDODunzps5s83FI
6,099
How do i get "amazon_us_reviews
{ "avatar_url": "https://avatars.githubusercontent.com/u/57810189?v=4", "events_url": "https://api.github.com/users/IqraBaluch/events{/privacy}", "followers_url": "https://api.github.com/users/IqraBaluch/followers", "following_url": "https://api.github.com/users/IqraBaluch/following{/other_user}", "gists_url": "https://api.github.com/users/IqraBaluch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/IqraBaluch", "id": 57810189, "login": "IqraBaluch", "node_id": "MDQ6VXNlcjU3ODEwMTg5", "organizations_url": "https://api.github.com/users/IqraBaluch/orgs", "received_events_url": "https://api.github.com/users/IqraBaluch/received_events", "repos_url": "https://api.github.com/users/IqraBaluch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/IqraBaluch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/IqraBaluch/subscriptions", "type": "User", "url": "https://api.github.com/users/IqraBaluch", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Seems like the problem isn't with the library, but the dataset itself hosted on AWS S3.\r\n\r\nIts [homepage](https://s3.amazonaws.com/amazon-reviews-pds/readme.html) returns an `AccessDenied` XML response, which is the same thing you get if you try to log the `record` that triggers the exception\r\n\r\n```python\r\ntry:\r\n example = self.info.features.encode_example(record) if self.info.features is not None else record\r\nexcept Exception as e:\r\n print(record)\r\n```\r\n\r\n⬇️\r\n\r\n```\r\n{'<?xml version=\"1.0\" encoding=\"UTF-8\"?>': '<Error><Code>AccessDenied</Code><Message>Access Denied</Message><RequestId>N2HFJ82ZV8SZW9BV</RequestId><HostId>Zw2DQ0V2GdRmvH5qWEpumK4uj5+W8YPcilQbN9fLBr3VqQOcKPHOhUZLG3LcM9X5fkOetxp48Os=</HostId></Error>'}\r\n```", "I'm getting same errors when loading this dataset", "I have figured it out. there was an option of **parquet formated files** i downloaded some from there. ", "this dataset is unfortunately no longer public", "Thanks for reporting, @IqraBaluch.\r\n\r\nWe contacted the authors and unfortunately they reported that Amazon has decided to stop distributing this dataset.", "If anyone still needs this dataset, you could find it on kaggle here : https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset", "Thanks @Maryam-Mostafa ", "@albertvillanova don't tell 'em, we have figured it out. XD", "I noticed that some book data is missing, we can only get Books_v1_02 data. \r\nIs there any way we can get the Books_v1_00 and Books_v1_01? \r\nReally appreciate !!!", "@albertvillanova will this dataset be retired given the data are no longer hosted on S3? What is done in cases such as these?" ]
2023-07-30T11:02:17Z
2023-08-21T05:08:08Z
2023-08-10T05:02:35Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request I have been trying to load 'amazon_us_dataset" but unable to do so. `amazon_us_reviews = load_dataset('amazon_us_reviews')` `print(amazon_us_reviews)` > [ValueError: Config name is missing. Please pick one among the available configs: ['Wireless_v1_00', 'Watches_v1_00', 'Video_Games_v1_00', 'Video_DVD_v1_00', 'Video_v1_00', 'Toys_v1_00', 'Tools_v1_00', 'Sports_v1_00', 'Software_v1_00', 'Shoes_v1_00', 'Pet_Products_v1_00', 'Personal_Care_Appliances_v1_00', 'PC_v1_00', 'Outdoors_v1_00', 'Office_Products_v1_00', 'Musical_Instruments_v1_00', 'Music_v1_00', 'Mobile_Electronics_v1_00', 'Mobile_Apps_v1_00', 'Major_Appliances_v1_00', 'Luggage_v1_00', 'Lawn_and_Garden_v1_00', 'Kitchen_v1_00', 'Jewelry_v1_00', 'Home_Improvement_v1_00', 'Home_Entertainment_v1_00', 'Home_v1_00', 'Health_Personal_Care_v1_00', 'Grocery_v1_00', 'Gift_Card_v1_00', 'Furniture_v1_00', 'Electronics_v1_00', 'Digital_Video_Games_v1_00', 'Digital_Video_Download_v1_00', 'Digital_Software_v1_00', 'Digital_Music_Purchase_v1_00', 'Digital_Ebook_Purchase_v1_00', 'Camera_v1_00', 'Books_v1_00', 'Beauty_v1_00', 'Baby_v1_00', 'Automotive_v1_00', 'Apparel_v1_00', 'Digital_Ebook_Purchase_v1_01', 'Books_v1_01', 'Books_v1_02'] Example of usage: `load_dataset('amazon_us_reviews', 'Wireless_v1_00')`] __________________________________________________________________________ `amazon_us_reviews = load_dataset('amazon_us_reviews', 'Watches_v1_00') print(amazon_us_reviews)` **ERROR** `Generating` train split: 0% 0/960872 [00:00<?, ? examples/s] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1692 ) -> 1693 example = self.info.features.encode_example(record) if self.info.features is not None else record 1694 writer.write(example, key) 11 frames KeyError: 'marketplace' The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) /usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1710 if isinstance(e, SchemaInferenceError) and e.__context__ is not None: 1711 e = e.__context__ -> 1712 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1713 1714 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ### Motivation The dataset I'm using https://huggingface.co/datasets/amazon_us_reviews ### Your contribution What is the best way to load this data
{ "avatar_url": "https://avatars.githubusercontent.com/u/57810189?v=4", "events_url": "https://api.github.com/users/IqraBaluch/events{/privacy}", "followers_url": "https://api.github.com/users/IqraBaluch/followers", "following_url": "https://api.github.com/users/IqraBaluch/following{/other_user}", "gists_url": "https://api.github.com/users/IqraBaluch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/IqraBaluch", "id": 57810189, "login": "IqraBaluch", "node_id": "MDQ6VXNlcjU3ODEwMTg5", "organizations_url": "https://api.github.com/users/IqraBaluch/orgs", "received_events_url": "https://api.github.com/users/IqraBaluch/received_events", "repos_url": "https://api.github.com/users/IqraBaluch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/IqraBaluch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/IqraBaluch/subscriptions", "type": "User", "url": "https://api.github.com/users/IqraBaluch", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6099/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6099/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7407
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7407/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7407/comments
https://api.github.com/repos/huggingface/datasets/issues/7407/events
https://github.com/huggingface/datasets/pull/7407
2,856,517,442
PR_kwDODunzps6LY7y5
7,407
Update use_with_pandas.mdx: to_pandas() correction in last section
{ "avatar_url": "https://avatars.githubusercontent.com/u/7552335?v=4", "events_url": "https://api.github.com/users/ibarrien/events{/privacy}", "followers_url": "https://api.github.com/users/ibarrien/followers", "following_url": "https://api.github.com/users/ibarrien/following{/other_user}", "gists_url": "https://api.github.com/users/ibarrien/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ibarrien", "id": 7552335, "login": "ibarrien", "node_id": "MDQ6VXNlcjc1NTIzMzU=", "organizations_url": "https://api.github.com/users/ibarrien/orgs", "received_events_url": "https://api.github.com/users/ibarrien/received_events", "repos_url": "https://api.github.com/users/ibarrien/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ibarrien/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ibarrien/subscriptions", "type": "User", "url": "https://api.github.com/users/ibarrien", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-02-17T01:53:31Z
2025-02-20T17:28:04Z
2025-02-20T17:28:04Z
CONTRIBUTOR
null
null
null
last section ``to_pandas()"
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7407/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7407/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7407.diff", "html_url": "https://github.com/huggingface/datasets/pull/7407", "merged_at": "2025-02-20T17:28:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/7407.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7407" }
https://api.github.com/repos/huggingface/datasets/issues/6465
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6465/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6465/comments
https://api.github.com/repos/huggingface/datasets/issues/6465/events
https://github.com/huggingface/datasets/issues/6465
2,022,212,468
I_kwDODunzps54iIN0
6,465
`load_dataset` uses out-of-date cache instead of re-downloading a changed dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/3391297?v=4", "events_url": "https://api.github.com/users/mnoukhov/events{/privacy}", "followers_url": "https://api.github.com/users/mnoukhov/followers", "following_url": "https://api.github.com/users/mnoukhov/following{/other_user}", "gists_url": "https://api.github.com/users/mnoukhov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mnoukhov", "id": 3391297, "login": "mnoukhov", "node_id": "MDQ6VXNlcjMzOTEyOTc=", "organizations_url": "https://api.github.com/users/mnoukhov/orgs", "received_events_url": "https://api.github.com/users/mnoukhov/received_events", "repos_url": "https://api.github.com/users/mnoukhov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mnoukhov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mnoukhov/subscriptions", "type": "User", "url": "https://api.github.com/users/mnoukhov", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi, thanks for reporting! https://github.com/huggingface/datasets/pull/6459 will fix this.", "I meet a similar problem as using loading scripts. I have to set download_mode='force_redownload' to load the latest script." ]
2023-12-02T21:35:17Z
2024-08-20T08:32:11Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When a dataset is updated on the hub, using `load_dataset` will load the locally cached dataset instead of re-downloading the updated dataset ### Steps to reproduce the bug Here is a minimal example script to 1. create an initial dataset and upload 2. download it so it is stored in cache 3. change the dataset and re-upload 4. redownload ```python import time from datasets import Dataset, DatasetDict, DownloadMode, load_dataset username = "YOUR_USERNAME_HERE" initial = Dataset.from_dict({"foo": [1, 2, 3]}) print(f"Intial {initial['foo']}") initial_ds = DatasetDict({"train": initial}) initial_ds.push_to_hub("test") time.sleep(1) download = load_dataset(f"{username}/test", split="train") changed = download.map(lambda x: {"foo": x["foo"] + 1}) print(f"Changed {changed['foo']}") changed.push_to_hub("test") time.sleep(1) download_again = load_dataset(f"{username}/test", split="train") print(f"Download Changed {download_again['foo']}") # >>> gives the out-dated [1,2,3] when it should be changed [2,3,4] ``` The redownloaded dataset should be the changed dataset but it is actually the cached, initial dataset. Force-redownloading gives the correct dataset ```python download_again_force = load_dataset(f"{username}/test", split="train", download_mode=DownloadMode.FORCE_REDOWNLOAD) print(f"Force Download Changed {download_again_force['foo']}") # >>> [2,3,4] ``` ### Expected behavior I assumed there should be some sort of hashing that should check for changes in the dataset and re-download if the hashes don't match ### Environment info - `datasets` version: 2.15.0 │ - Platform: Linux-5.15.0-1028-nvidia-x86_64-with-glibc2.17 │ - Python version: 3.8.17 │ - `huggingface_hub` version: 0.19.4 │ - PyArrow version: 13.0.0 │ - Pandas version: 2.0.3 │ - `fsspec` version: 2023.6.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6465/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6465/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6278
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6278/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6278/comments
https://api.github.com/repos/huggingface/datasets/issues/6278/events
https://github.com/huggingface/datasets/pull/6278
1,927,957,877
PR_kwDODunzps5b_iKb
6,278
No data files duplicates
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009624 / 0.011353 (-0.001729) | 0.005121 / 0.011008 (-0.005887) | 0.105560 / 0.038508 (0.067052) | 0.090749 / 0.023109 (0.067640) | 0.430274 / 0.275898 (0.154376) | 0.443399 / 0.323480 (0.119919) | 0.006575 / 0.007986 (-0.001411) | 0.004396 / 0.004328 (0.000068) | 0.080900 / 0.004250 (0.076649) | 0.064921 / 0.037052 (0.027868) | 0.410092 / 0.258489 (0.151603) | 0.470058 / 0.293841 (0.176217) | 0.054160 / 0.128546 (-0.074386) | 0.014367 / 0.075646 (-0.061279) | 0.384844 / 0.419271 (-0.034428) | 0.072818 / 0.043533 (0.029285) | 0.429341 / 0.255139 (0.174202) | 0.430968 / 0.283200 (0.147769) | 0.038437 / 0.141683 (-0.103246) | 1.814456 / 1.452155 (0.362301) | 1.832122 / 1.492716 (0.339406) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329266 / 0.018006 (0.311260) | 0.596848 / 0.000490 (0.596358) | 0.018291 / 0.000200 (0.018091) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030505 / 0.037411 (-0.006907) | 0.097394 / 0.014526 (0.082869) | 0.127144 / 0.176557 (-0.049412) | 0.190251 / 0.737135 (-0.546884) | 0.116543 / 0.296338 (-0.179795) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.592124 / 0.215209 (0.376915) | 5.979801 / 2.077655 (3.902146) | 2.837753 / 1.504120 (1.333633) | 2.492942 / 1.541195 (0.951747) | 2.548083 / 1.468490 (1.079593) | 0.870446 / 4.584777 (-3.714330) | 5.493718 / 3.745712 (1.748006) | 4.945135 / 5.269862 (-0.324727) | 3.133994 / 4.565676 (-1.431683) | 0.097742 / 0.424275 (-0.326533) | 0.008750 / 0.007607 (0.001143) | 0.723304 / 0.226044 (0.497260) | 7.353766 / 2.268929 (5.084838) | 3.504808 / 55.444624 (-51.939816) | 2.872490 / 6.876477 (-4.003987) | 3.186628 / 2.142072 (1.044556) | 1.035470 / 4.805227 (-3.769758) | 0.211980 / 6.500664 (-6.288684) | 0.080356 / 0.075469 (0.004887) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623389 / 1.841788 (-0.218399) | 23.492350 / 8.074308 (15.418042) | 21.053525 / 10.191392 (10.862133) | 0.225668 / 0.680424 (-0.454756) | 0.028311 / 0.534201 (-0.505890) | 0.472672 / 0.579283 (-0.106611) | 0.581536 / 0.434364 (0.147172) | 0.525180 / 0.540337 (-0.015158) | 0.790420 / 1.386936 (-0.596516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009091 / 0.011353 (-0.002262) | 0.004978 / 0.011008 (-0.006030) | 0.077633 / 0.038508 (0.039125) | 0.103189 / 0.023109 (0.080080) | 0.500194 / 0.275898 (0.224296) | 0.524310 / 0.323480 (0.200831) | 0.006656 / 0.007986 (-0.001329) | 0.004586 / 0.004328 (0.000257) | 0.075535 / 0.004250 (0.071284) | 0.065100 / 0.037052 (0.028048) | 0.513776 / 0.258489 (0.255287) | 0.528483 / 0.293841 (0.234642) | 0.049877 / 0.128546 (-0.078669) | 0.012494 / 0.075646 (-0.063152) | 0.090225 / 0.419271 (-0.329046) | 0.054648 / 0.043533 (0.011116) | 0.510369 / 0.255139 (0.255230) | 0.540042 / 0.283200 (0.256842) | 0.035966 / 0.141683 (-0.105717) | 1.825965 / 1.452155 (0.373810) | 1.965647 / 1.492716 (0.472931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.295921 / 0.018006 (0.277914) | 0.605751 / 0.000490 (0.605262) | 0.007243 / 0.000200 (0.007043) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.093613 / 0.014526 (0.079087) | 0.120010 / 0.176557 (-0.056546) | 0.176168 / 0.737135 (-0.560967) | 0.113978 / 0.296338 (-0.182360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.682904 / 0.215209 (0.467695) | 6.674640 / 2.077655 (4.596986) | 3.360660 / 1.504120 (1.856540) | 3.227246 / 1.541195 (1.686051) | 3.188852 / 1.468490 (1.720362) | 0.862293 / 4.584777 (-3.722484) | 5.518455 / 3.745712 (1.772743) | 4.881904 / 5.269862 (-0.387957) | 3.066964 / 4.565676 (-1.498712) | 0.099284 / 0.424275 (-0.324991) | 0.008644 / 0.007607 (0.001037) | 0.789231 / 0.226044 (0.563186) | 7.872017 / 2.268929 (5.603089) | 4.037105 / 55.444624 (-51.407519) | 3.318921 / 6.876477 (-3.557555) | 3.621953 / 2.142072 (1.479881) | 1.012049 / 4.805227 (-3.793178) | 0.204541 / 6.500664 (-6.296123) | 0.074509 / 0.075469 (-0.000960) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748215 / 1.841788 (-0.093573) | 24.274974 / 8.074308 (16.200665) | 20.582389 / 10.191392 (10.390997) | 0.251001 / 0.680424 (-0.429423) | 0.032390 / 0.534201 (-0.501811) | 0.479211 / 0.579283 (-0.100072) | 0.607482 / 0.434364 (0.173118) | 0.587867 / 0.540337 (0.047530) | 0.822399 / 1.386936 (-0.564537) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2b6b2fd90ba47f19e9ab125f6f7656903dd065f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009715 / 0.011353 (-0.001638) | 0.005449 / 0.011008 (-0.005559) | 0.108556 / 0.038508 (0.070048) | 0.080512 / 0.023109 (0.057403) | 0.450736 / 0.275898 (0.174838) | 0.487771 / 0.323480 (0.164291) | 0.005155 / 0.007986 (-0.002830) | 0.004213 / 0.004328 (-0.000115) | 0.087247 / 0.004250 (0.082997) | 0.063962 / 0.037052 (0.026909) | 0.454153 / 0.258489 (0.195664) | 0.499917 / 0.293841 (0.206076) | 0.052605 / 0.128546 (-0.075942) | 0.013019 / 0.075646 (-0.062627) | 0.379716 / 0.419271 (-0.039555) | 0.073241 / 0.043533 (0.029708) | 0.473488 / 0.255139 (0.218349) | 0.482944 / 0.283200 (0.199745) | 0.041541 / 0.141683 (-0.100142) | 1.829415 / 1.452155 (0.377261) | 1.953280 / 1.492716 (0.460564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313725 / 0.018006 (0.295719) | 0.591336 / 0.000490 (0.590847) | 0.021224 / 0.000200 (0.021025) | 0.000969 / 0.000054 (0.000914) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005537) | 0.099786 / 0.014526 (0.085260) | 0.116987 / 0.176557 (-0.059569) | 0.205538 / 0.737135 (-0.531597) | 0.118716 / 0.296338 (-0.177622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.617145 / 0.215209 (0.401936) | 6.079144 / 2.077655 (4.001489) | 2.567233 / 1.504120 (1.063113) | 2.265301 / 1.541195 (0.724107) | 2.314001 / 1.468490 (0.845511) | 0.871561 / 4.584777 (-3.713216) | 5.477049 / 3.745712 (1.731337) | 4.720552 / 5.269862 (-0.549309) | 3.107515 / 4.565676 (-1.458162) | 0.100438 / 0.424275 (-0.323838) | 0.008586 / 0.007607 (0.000979) | 0.716913 / 0.226044 (0.490869) | 7.108417 / 2.268929 (4.839489) | 3.391336 / 55.444624 (-52.053288) | 2.734052 / 6.876477 (-4.142425) | 2.857226 / 2.142072 (0.715153) | 1.024121 / 4.805227 (-3.781106) | 0.216735 / 6.500664 (-6.283929) | 0.081605 / 0.075469 (0.006136) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.678176 / 1.841788 (-0.163611) | 23.606037 / 8.074308 (15.531729) | 21.485331 / 10.191392 (11.293939) | 0.218312 / 0.680424 (-0.462112) | 0.027061 / 0.534201 (-0.507140) | 0.481188 / 0.579283 (-0.098096) | 0.620592 / 0.434364 (0.186228) | 0.574778 / 0.540337 (0.034441) | 0.831529 / 1.386936 (-0.555407) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011666 / 0.011353 (0.000313) | 0.005187 / 0.011008 (-0.005821) | 0.080692 / 0.038508 (0.042184) | 0.079159 / 0.023109 (0.056049) | 0.530823 / 0.275898 (0.254925) | 0.577807 / 0.323480 (0.254327) | 0.006246 / 0.007986 (-0.001740) | 0.004355 / 0.004328 (0.000026) | 0.080702 / 0.004250 (0.076452) | 0.062279 / 0.037052 (0.025226) | 0.553712 / 0.258489 (0.295223) | 0.579112 / 0.293841 (0.285271) | 0.056374 / 0.128546 (-0.072172) | 0.014681 / 0.075646 (-0.060966) | 0.097110 / 0.419271 (-0.322161) | 0.061040 / 0.043533 (0.017507) | 0.524718 / 0.255139 (0.269579) | 0.568586 / 0.283200 (0.285386) | 0.035774 / 0.141683 (-0.105909) | 1.864590 / 1.452155 (0.412435) | 1.953715 / 1.492716 (0.460998) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271315 / 0.018006 (0.253309) | 0.571343 / 0.000490 (0.570854) | 0.015812 / 0.000200 (0.015612) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038582 / 0.037411 (0.001170) | 0.117523 / 0.014526 (0.102997) | 0.128864 / 0.176557 (-0.047693) | 0.191164 / 0.737135 (-0.545971) | 0.133161 / 0.296338 (-0.163178) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679305 / 0.215209 (0.464096) | 6.814451 / 2.077655 (4.736796) | 3.377431 / 1.504120 (1.873311) | 3.011008 / 1.541195 (1.469813) | 3.093200 / 1.468490 (1.624710) | 0.905827 / 4.584777 (-3.678950) | 5.456094 / 3.745712 (1.710382) | 4.848511 / 5.269862 (-0.421351) | 3.064230 / 4.565676 (-1.501447) | 0.107478 / 0.424275 (-0.316798) | 0.009234 / 0.007607 (0.001627) | 0.833944 / 0.226044 (0.607899) | 8.286100 / 2.268929 (6.017171) | 4.241455 / 55.444624 (-51.203169) | 3.405460 / 6.876477 (-3.471017) | 3.660618 / 2.142072 (1.518546) | 1.046310 / 4.805227 (-3.758917) | 0.210891 / 6.500664 (-6.289773) | 0.079413 / 0.075469 (0.003944) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.825448 / 1.841788 (-0.016340) | 24.639059 / 8.074308 (16.564750) | 21.970417 / 10.191392 (11.779025) | 0.247708 / 0.680424 (-0.432715) | 0.033810 / 0.534201 (-0.500391) | 0.495517 / 0.579283 (-0.083766) | 0.601820 / 0.434364 (0.167456) | 0.585618 / 0.540337 (0.045280) | 0.858722 / 1.386936 (-0.528214) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0477e20dccb77b68f0add77fd5c9b4cb05473235 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006137 / 0.011353 (-0.005216) | 0.003685 / 0.011008 (-0.007324) | 0.079985 / 0.038508 (0.041476) | 0.060937 / 0.023109 (0.037828) | 0.390583 / 0.275898 (0.114685) | 0.425307 / 0.323480 (0.101827) | 0.003433 / 0.007986 (-0.004552) | 0.002868 / 0.004328 (-0.001461) | 0.062572 / 0.004250 (0.058322) | 0.048642 / 0.037052 (0.011590) | 0.401096 / 0.258489 (0.142607) | 0.436988 / 0.293841 (0.143147) | 0.027645 / 0.128546 (-0.100901) | 0.007973 / 0.075646 (-0.067673) | 0.261997 / 0.419271 (-0.157275) | 0.045393 / 0.043533 (0.001860) | 0.394266 / 0.255139 (0.139127) | 0.414448 / 0.283200 (0.131248) | 0.022551 / 0.141683 (-0.119131) | 1.438458 / 1.452155 (-0.013697) | 1.501568 / 1.492716 (0.008852) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224335 / 0.018006 (0.206329) | 0.421918 / 0.000490 (0.421428) | 0.006883 / 0.000200 (0.006683) | 0.000210 / 0.000054 (0.000155) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023505 / 0.037411 (-0.013906) | 0.072438 / 0.014526 (0.057912) | 0.083576 / 0.176557 (-0.092981) | 0.142906 / 0.737135 (-0.594229) | 0.083910 / 0.296338 (-0.212428) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396004 / 0.215209 (0.180795) | 3.969852 / 2.077655 (1.892197) | 1.966000 / 1.504120 (0.461880) | 1.786453 / 1.541195 (0.245258) | 1.866082 / 1.468490 (0.397592) | 0.502633 / 4.584777 (-4.082144) | 3.114331 / 3.745712 (-0.631382) | 2.940003 / 5.269862 (-2.329859) | 1.901844 / 4.565676 (-2.663832) | 0.058109 / 0.424275 (-0.366166) | 0.006502 / 0.007607 (-0.001105) | 0.463465 / 0.226044 (0.237420) | 4.641531 / 2.268929 (2.372603) | 2.315759 / 55.444624 (-53.128865) | 2.253088 / 6.876477 (-4.623389) | 2.151399 / 2.142072 (0.009326) | 0.592225 / 4.805227 (-4.213002) | 0.125072 / 6.500664 (-6.375592) | 0.059966 / 0.075469 (-0.015503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231392 / 1.841788 (-0.610396) | 17.533893 / 8.074308 (9.459585) | 13.710478 / 10.191392 (3.519086) | 0.147389 / 0.680424 (-0.533035) | 0.017932 / 0.534201 (-0.516269) | 0.334144 / 0.579283 (-0.245139) | 0.368817 / 0.434364 (-0.065547) | 0.383790 / 0.540337 (-0.156547) | 0.540262 / 1.386936 (-0.846674) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006066 / 0.011353 (-0.005287) | 0.003804 / 0.011008 (-0.007205) | 0.062474 / 0.038508 (0.023966) | 0.060547 / 0.023109 (0.037437) | 0.448643 / 0.275898 (0.172745) | 0.487005 / 0.323480 (0.163525) | 0.004884 / 0.007986 (-0.003102) | 0.002911 / 0.004328 (-0.001418) | 0.062950 / 0.004250 (0.058700) | 0.049672 / 0.037052 (0.012620) | 0.477491 / 0.258489 (0.219002) | 0.488234 / 0.293841 (0.194393) | 0.028711 / 0.128546 (-0.099835) | 0.008101 / 0.075646 (-0.067545) | 0.068333 / 0.419271 (-0.350939) | 0.040959 / 0.043533 (-0.002574) | 0.450716 / 0.255139 (0.195577) | 0.471089 / 0.283200 (0.187890) | 0.020710 / 0.141683 (-0.120973) | 1.474850 / 1.452155 (0.022695) | 1.540115 / 1.492716 (0.047399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229811 / 0.018006 (0.211805) | 0.419526 / 0.000490 (0.419036) | 0.003818 / 0.000200 (0.003618) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026045 / 0.037411 (-0.011366) | 0.080325 / 0.014526 (0.065799) | 0.091549 / 0.176557 (-0.085007) | 0.145253 / 0.737135 (-0.591882) | 0.091849 / 0.296338 (-0.204489) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463047 / 0.215209 (0.247838) | 4.598727 / 2.077655 (2.521072) | 2.558996 / 1.504120 (1.054877) | 2.405896 / 1.541195 (0.864701) | 2.447291 / 1.468490 (0.978801) | 0.510393 / 4.584777 (-4.074384) | 3.173344 / 3.745712 (-0.572368) | 2.901201 / 5.269862 (-2.368661) | 1.896440 / 4.565676 (-2.669236) | 0.058374 / 0.424275 (-0.365901) | 0.006449 / 0.007607 (-0.001158) | 0.539653 / 0.226044 (0.313608) | 5.408217 / 2.268929 (3.139289) | 3.042453 / 55.444624 (-52.402172) | 2.656724 / 6.876477 (-4.219753) | 2.838165 / 2.142072 (0.696092) | 0.598663 / 4.805227 (-4.206565) | 0.126211 / 6.500664 (-6.374453) | 0.062830 / 0.075469 (-0.012639) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.392412 / 1.841788 (-0.449376) | 18.195170 / 8.074308 (10.120862) | 14.788251 / 10.191392 (4.596859) | 0.132579 / 0.680424 (-0.547845) | 0.017867 / 0.534201 (-0.516334) | 0.340020 / 0.579283 (-0.239263) | 0.386719 / 0.434364 (-0.047645) | 0.398863 / 0.540337 (-0.141475) | 0.579320 / 1.386936 (-0.807617) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a2569fdfcf387f8885974a35fafa409fbc6dd059 \"CML watermark\")\n", "closing in favor of https://github.com/huggingface/datasets/pull/6282" ]
2023-10-05T10:31:58Z
2024-01-11T06:32:49Z
2023-10-05T14:43:17Z
MEMBER
null
null
null
I added a new DataFilesSet class to disallow duplicate data files. I also deprecated DataFilesList. EDIT: actually I might just add drop_duplicates=True to `.from_patterns` close https://github.com/huggingface/datasets/issues/6259 close https://github.com/huggingface/datasets/issues/6272 TODO: - [ ] tests - [ ] preserve data files order
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6278/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6278/timeline
null
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/6278.diff", "html_url": "https://github.com/huggingface/datasets/pull/6278", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6278.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6278" }
https://api.github.com/repos/huggingface/datasets/issues/6781
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6781/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6781/comments
https://api.github.com/repos/huggingface/datasets/issues/6781/events
https://github.com/huggingface/datasets/pull/6781
2,228,026,497
PR_kwDODunzps5r2DMe
6,781
Remove get_inferred_type from ArrowWriter write_batch
{ "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Modexus", "id": 37351874, "login": "Modexus", "node_id": "MDQ6VXNlcjM3MzUxODc0", "organizations_url": "https://api.github.com/users/Modexus/orgs", "received_events_url": "https://api.github.com/users/Modexus/received_events", "repos_url": "https://api.github.com/users/Modexus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "type": "User", "url": "https://api.github.com/users/Modexus", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6781). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Close in favor of #6786." ]
2024-04-05T13:21:05Z
2024-04-09T07:49:11Z
2024-04-09T07:49:11Z
CONTRIBUTOR
null
null
null
Inferring the type seems to be unnecessary given that the pyarrow array has already been created. Because pyarrow array creation is sometimes extremely slow this doubles the time write_batch takes.
{ "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Modexus", "id": 37351874, "login": "Modexus", "node_id": "MDQ6VXNlcjM3MzUxODc0", "organizations_url": "https://api.github.com/users/Modexus/orgs", "received_events_url": "https://api.github.com/users/Modexus/received_events", "repos_url": "https://api.github.com/users/Modexus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "type": "User", "url": "https://api.github.com/users/Modexus", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6781/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6781/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6781.diff", "html_url": "https://github.com/huggingface/datasets/pull/6781", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6781.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6781" }
https://api.github.com/repos/huggingface/datasets/issues/6304
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6304/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6304/comments
https://api.github.com/repos/huggingface/datasets/issues/6304/events
https://github.com/huggingface/datasets/pull/6304
1,945,913,521
PR_kwDODunzps5c7-4q
6,304
Update README.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4", "events_url": "https://api.github.com/users/smty2018/events{/privacy}", "followers_url": "https://api.github.com/users/smty2018/followers", "following_url": "https://api.github.com/users/smty2018/following{/other_user}", "gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/smty2018", "id": 74114936, "login": "smty2018", "node_id": "MDQ6VXNlcjc0MTE0OTM2", "organizations_url": "https://api.github.com/users/smty2018/orgs", "received_events_url": "https://api.github.com/users/smty2018/received_events", "repos_url": "https://api.github.com/users/smty2018/repos", "site_admin": false, "starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/smty2018/subscriptions", "type": "User", "url": "https://api.github.com/users/smty2018", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006678 / 0.011353 (-0.004675) | 0.004013 / 0.011008 (-0.006995) | 0.083372 / 0.038508 (0.044864) | 0.070339 / 0.023109 (0.047230) | 0.339026 / 0.275898 (0.063128) | 0.370945 / 0.323480 (0.047465) | 0.004050 / 0.007986 (-0.003935) | 0.003283 / 0.004328 (-0.001046) | 0.064956 / 0.004250 (0.060705) | 0.055427 / 0.037052 (0.018374) | 0.341787 / 0.258489 (0.083297) | 0.385030 / 0.293841 (0.091189) | 0.031791 / 0.128546 (-0.096755) | 0.008511 / 0.075646 (-0.067135) | 0.286538 / 0.419271 (-0.132734) | 0.052893 / 0.043533 (0.009360) | 0.338522 / 0.255139 (0.083383) | 0.371821 / 0.283200 (0.088622) | 0.023731 / 0.141683 (-0.117951) | 1.485857 / 1.452155 (0.033702) | 1.515218 / 1.492716 (0.022502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232798 / 0.018006 (0.214792) | 0.446783 / 0.000490 (0.446293) | 0.007395 / 0.000200 (0.007195) | 0.000385 / 0.000054 (0.000330) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028866 / 0.037411 (-0.008545) | 0.081653 / 0.014526 (0.067127) | 0.094457 / 0.176557 (-0.082099) | 0.151761 / 0.737135 (-0.585375) | 0.095579 / 0.296338 (-0.200760) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379926 / 0.215209 (0.164717) | 3.801839 / 2.077655 (1.724184) | 1.830302 / 1.504120 (0.326182) | 1.686912 / 1.541195 (0.145717) | 1.803418 / 1.468490 (0.334928) | 0.484431 / 4.584777 (-4.100346) | 3.592748 / 3.745712 (-0.152964) | 3.402578 / 5.269862 (-1.867284) | 2.043434 / 4.565676 (-2.522242) | 0.057274 / 0.424275 (-0.367001) | 0.007211 / 0.007607 (-0.000396) | 0.462611 / 0.226044 (0.236567) | 4.610703 / 2.268929 (2.341775) | 2.397668 / 55.444624 (-53.046956) | 2.149983 / 6.876477 (-4.726494) | 2.199100 / 2.142072 (0.057028) | 0.575883 / 4.805227 (-4.229344) | 0.133421 / 6.500664 (-6.367243) | 0.061168 / 0.075469 (-0.014301) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246792 / 1.841788 (-0.594995) | 18.974385 / 8.074308 (10.900077) | 14.268859 / 10.191392 (4.077467) | 0.166340 / 0.680424 (-0.514084) | 0.018227 / 0.534201 (-0.515974) | 0.389646 / 0.579283 (-0.189637) | 0.418780 / 0.434364 (-0.015584) | 0.458063 / 0.540337 (-0.082275) | 0.635156 / 1.386936 (-0.751780) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006613 / 0.011353 (-0.004740) | 0.003977 / 0.011008 (-0.007031) | 0.064609 / 0.038508 (0.026101) | 0.070418 / 0.023109 (0.047308) | 0.395814 / 0.275898 (0.119916) | 0.424803 / 0.323480 (0.101323) | 0.005342 / 0.007986 (-0.002644) | 0.003252 / 0.004328 (-0.001076) | 0.065177 / 0.004250 (0.060927) | 0.055299 / 0.037052 (0.018247) | 0.403983 / 0.258489 (0.145494) | 0.438522 / 0.293841 (0.144681) | 0.032336 / 0.128546 (-0.096210) | 0.008524 / 0.075646 (-0.067122) | 0.071645 / 0.419271 (-0.347627) | 0.048137 / 0.043533 (0.004604) | 0.395170 / 0.255139 (0.140031) | 0.421727 / 0.283200 (0.138528) | 0.023028 / 0.141683 (-0.118655) | 1.500739 / 1.452155 (0.048584) | 1.568887 / 1.492716 (0.076170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227542 / 0.018006 (0.209536) | 0.447882 / 0.000490 (0.447393) | 0.005416 / 0.000200 (0.005216) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.091994 / 0.014526 (0.077468) | 0.105957 / 0.176557 (-0.070600) | 0.158728 / 0.737135 (-0.578407) | 0.104734 / 0.296338 (-0.191605) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436275 / 0.215209 (0.221066) | 4.344864 / 2.077655 (2.267209) | 2.304949 / 1.504120 (0.800829) | 2.123963 / 1.541195 (0.582768) | 2.189099 / 1.468490 (0.720609) | 0.492662 / 4.584777 (-4.092115) | 3.633662 / 3.745712 (-0.112051) | 3.251338 / 5.269862 (-2.018524) | 2.061378 / 4.565676 (-2.504299) | 0.058100 / 0.424275 (-0.366175) | 0.007311 / 0.007607 (-0.000297) | 0.516227 / 0.226044 (0.290183) | 5.184228 / 2.268929 (2.915300) | 2.780343 / 55.444624 (-52.664281) | 2.423428 / 6.876477 (-4.453048) | 2.617371 / 2.142072 (0.475298) | 0.590455 / 4.805227 (-4.214772) | 0.131728 / 6.500664 (-6.368936) | 0.059994 / 0.075469 (-0.015475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354920 / 1.841788 (-0.486868) | 19.427822 / 8.074308 (11.353514) | 15.289037 / 10.191392 (5.097645) | 0.170437 / 0.680424 (-0.509987) | 0.020242 / 0.534201 (-0.513959) | 0.394921 / 0.579283 (-0.184362) | 0.426447 / 0.434364 (-0.007917) | 0.468321 / 0.540337 (-0.072017) | 0.671052 / 1.386936 (-0.715884) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bade7af74437347a760830466eb74f7a8ce0d799 \"CML watermark\")\n" ]
2023-10-16T19:10:39Z
2023-10-17T15:13:37Z
2023-10-17T15:04:52Z
CONTRIBUTOR
null
null
null
Fixed typos in ReadMe and added punctuation marks Tensorflow --> TensorFlow
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6304/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6304/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6304.diff", "html_url": "https://github.com/huggingface/datasets/pull/6304", "merged_at": "2023-10-17T15:04:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/6304.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6304" }
https://api.github.com/repos/huggingface/datasets/issues/7319
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7319/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7319/comments
https://api.github.com/repos/huggingface/datasets/issues/7319/events
https://github.com/huggingface/datasets/pull/7319
2,730,679,980
PR_kwDODunzps6EvHBp
7,319
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7319). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-12-10T17:01:34Z
2024-12-10T17:04:04Z
2024-12-10T17:01:45Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7319/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7319/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7319.diff", "html_url": "https://github.com/huggingface/datasets/pull/7319", "merged_at": "2024-12-10T17:01:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/7319.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7319" }
https://api.github.com/repos/huggingface/datasets/issues/6839
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6839/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6839/comments
https://api.github.com/repos/huggingface/datasets/issues/6839/events
https://github.com/huggingface/datasets/pull/6839
2,263,761,062
PR_kwDODunzps5tvC1c
6,839
Remove token arg from CLI examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6839). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005311 / 0.011353 (-0.006042) | 0.003691 / 0.011008 (-0.007317) | 0.063714 / 0.038508 (0.025206) | 0.030875 / 0.023109 (0.007766) | 0.251210 / 0.275898 (-0.024688) | 0.280539 / 0.323480 (-0.042941) | 0.004262 / 0.007986 (-0.003724) | 0.002723 / 0.004328 (-0.001606) | 0.049487 / 0.004250 (0.045237) | 0.045655 / 0.037052 (0.008603) | 0.264399 / 0.258489 (0.005910) | 0.306613 / 0.293841 (0.012772) | 0.028513 / 0.128546 (-0.100033) | 0.010726 / 0.075646 (-0.064921) | 0.210601 / 0.419271 (-0.208670) | 0.036918 / 0.043533 (-0.006614) | 0.257872 / 0.255139 (0.002733) | 0.278951 / 0.283200 (-0.004249) | 0.017900 / 0.141683 (-0.123783) | 1.096749 / 1.452155 (-0.355406) | 1.152603 / 1.492716 (-0.340113) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095193 / 0.018006 (0.077187) | 0.303919 / 0.000490 (0.303429) | 0.000226 / 0.000200 (0.000026) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018558 / 0.037411 (-0.018853) | 0.061106 / 0.014526 (0.046580) | 0.076233 / 0.176557 (-0.100323) | 0.122402 / 0.737135 (-0.614734) | 0.075579 / 0.296338 (-0.220760) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283586 / 0.215209 (0.068377) | 2.766179 / 2.077655 (0.688524) | 1.481069 / 1.504120 (-0.023051) | 1.355004 / 1.541195 (-0.186191) | 1.392940 / 1.468490 (-0.075550) | 0.578878 / 4.584777 (-4.005899) | 2.432890 / 3.745712 (-1.312822) | 2.837912 / 5.269862 (-2.431949) | 1.762803 / 4.565676 (-2.802873) | 0.063339 / 0.424275 (-0.360937) | 0.005392 / 0.007607 (-0.002215) | 0.340271 / 0.226044 (0.114227) | 3.388371 / 2.268929 (1.119443) | 1.862622 / 55.444624 (-53.582002) | 1.543209 / 6.876477 (-5.333268) | 1.569858 / 2.142072 (-0.572215) | 0.651487 / 4.805227 (-4.153740) | 0.119048 / 6.500664 (-6.381616) | 0.042309 / 0.075469 (-0.033160) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.991161 / 1.841788 (-0.850627) | 11.778857 / 8.074308 (3.704549) | 9.586019 / 10.191392 (-0.605373) | 0.148093 / 0.680424 (-0.532331) | 0.014301 / 0.534201 (-0.519900) | 0.287983 / 0.579283 (-0.291301) | 0.266070 / 0.434364 (-0.168293) | 0.328261 / 0.540337 (-0.212076) | 0.417908 / 1.386936 (-0.969028) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005252 / 0.011353 (-0.006100) | 0.003740 / 0.011008 (-0.007268) | 0.049622 / 0.038508 (0.011114) | 0.030040 / 0.023109 (0.006931) | 0.262224 / 0.275898 (-0.013674) | 0.312216 / 0.323480 (-0.011264) | 0.004213 / 0.007986 (-0.003773) | 0.002737 / 0.004328 (-0.001592) | 0.049159 / 0.004250 (0.044908) | 0.041060 / 0.037052 (0.004008) | 0.275826 / 0.258489 (0.017337) | 0.301879 / 0.293841 (0.008038) | 0.029364 / 0.128546 (-0.099182) | 0.010453 / 0.075646 (-0.065193) | 0.058095 / 0.419271 (-0.361176) | 0.032898 / 0.043533 (-0.010635) | 0.263876 / 0.255139 (0.008737) | 0.281686 / 0.283200 (-0.001514) | 0.018711 / 0.141683 (-0.122971) | 1.126056 / 1.452155 (-0.326098) | 1.185125 / 1.492716 (-0.307591) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094153 / 0.018006 (0.076147) | 0.300719 / 0.000490 (0.300229) | 0.000207 / 0.000200 (0.000007) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022610 / 0.037411 (-0.014801) | 0.075502 / 0.014526 (0.060977) | 0.088858 / 0.176557 (-0.087699) | 0.129421 / 0.737135 (-0.607714) | 0.089331 / 0.296338 (-0.207007) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291595 / 0.215209 (0.076386) | 2.864377 / 2.077655 (0.786722) | 1.543387 / 1.504120 (0.039267) | 1.404273 / 1.541195 (-0.136922) | 1.421964 / 1.468490 (-0.046526) | 0.579275 / 4.584777 (-4.005502) | 0.979212 / 3.745712 (-2.766500) | 2.822043 / 5.269862 (-2.447818) | 1.745015 / 4.565676 (-2.820661) | 0.064626 / 0.424275 (-0.359649) | 0.005006 / 0.007607 (-0.002601) | 0.345509 / 0.226044 (0.119464) | 3.410369 / 2.268929 (1.141440) | 1.875930 / 55.444624 (-53.568694) | 1.600841 / 6.876477 (-5.275636) | 1.611818 / 2.142072 (-0.530254) | 0.662277 / 4.805227 (-4.142950) | 0.117861 / 6.500664 (-6.382803) | 0.041061 / 0.075469 (-0.034408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007834 / 1.841788 (-0.833954) | 12.345653 / 8.074308 (4.271345) | 9.775237 / 10.191392 (-0.416155) | 0.135166 / 0.680424 (-0.545258) | 0.016799 / 0.534201 (-0.517402) | 0.289235 / 0.579283 (-0.290048) | 0.126196 / 0.434364 (-0.308168) | 0.382905 / 0.540337 (-0.157432) | 0.435248 / 1.386936 (-0.951688) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#22bf5388748611a9255d8e17218d36d2f799f182 \"CML watermark\")\n" ]
2024-04-25T14:36:58Z
2024-04-26T17:03:51Z
2024-04-26T16:57:40Z
MEMBER
null
null
null
Remove token arg from CLI examples. Fix #6838. CC: @Wauplin
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6839/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6839/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6839.diff", "html_url": "https://github.com/huggingface/datasets/pull/6839", "merged_at": "2024-04-26T16:57:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/6839.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6839" }
https://api.github.com/repos/huggingface/datasets/issues/6106
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6106/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6106/comments
https://api.github.com/repos/huggingface/datasets/issues/6106/events
https://github.com/huggingface/datasets/issues/6106
1,829,131,223
I_kwDODunzps5tBlPX
6,106
load local json_file as dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/39040787?v=4", "events_url": "https://api.github.com/users/CiaoHe/events{/privacy}", "followers_url": "https://api.github.com/users/CiaoHe/followers", "following_url": "https://api.github.com/users/CiaoHe/following{/other_user}", "gists_url": "https://api.github.com/users/CiaoHe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/CiaoHe", "id": 39040787, "login": "CiaoHe", "node_id": "MDQ6VXNlcjM5MDQwNzg3", "organizations_url": "https://api.github.com/users/CiaoHe/orgs", "received_events_url": "https://api.github.com/users/CiaoHe/received_events", "repos_url": "https://api.github.com/users/CiaoHe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/CiaoHe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CiaoHe/subscriptions", "type": "User", "url": "https://api.github.com/users/CiaoHe", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! We use PyArrow to read JSON files, and PyArrow doesn't allow different value types in the same column. #5776 should address this.\r\n\r\nIn the meantime, you can combine `Dataset.from_generator` with the above code to cast the values to the same type. ", "Thanks for your help!" ]
2023-07-31T12:53:49Z
2023-08-18T01:46:35Z
2023-08-18T01:46:35Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I tried to load local json file as dataset but failed to parsing json file because some columns are 'float' type. ### Steps to reproduce the bug 1. load json file with certain columns are 'float' type. For example `data = load_data("json", data_files=JSON_PATH)` 2. Then, the error will be triggered like `ArrowInvalid: Could not convert '-0.2253' with type str: tried to convert to double ### Expected behavior Should allow some columns are 'float' type, at least it should convert those columns to str type. I tried to avoid the error by naively convert the float item to str: ```python # if col type is not str, we need to convert it to str mapping = {} for col in keys: if isinstance(dataset[0][col], str): mapping[col] = [row.get(col) for row in dataset] else: mapping[col] = [str(row.get(col)) for row in dataset] ``` ### Environment info - `datasets` version: 2.14.2 - Platform: Linux-5.4.0-52-generic-x86_64-with-glibc2.31 - Python version: 3.9.16 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/39040787?v=4", "events_url": "https://api.github.com/users/CiaoHe/events{/privacy}", "followers_url": "https://api.github.com/users/CiaoHe/followers", "following_url": "https://api.github.com/users/CiaoHe/following{/other_user}", "gists_url": "https://api.github.com/users/CiaoHe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/CiaoHe", "id": 39040787, "login": "CiaoHe", "node_id": "MDQ6VXNlcjM5MDQwNzg3", "organizations_url": "https://api.github.com/users/CiaoHe/orgs", "received_events_url": "https://api.github.com/users/CiaoHe/received_events", "repos_url": "https://api.github.com/users/CiaoHe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/CiaoHe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CiaoHe/subscriptions", "type": "User", "url": "https://api.github.com/users/CiaoHe", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6106/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6106/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6911
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6911/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6911/comments
https://api.github.com/repos/huggingface/datasets/issues/6911/events
https://github.com/huggingface/datasets/pull/6911
2,308,152,711
PR_kwDODunzps5wE2ah
6,911
Remove dead code for non-dict data_files from packaged modules
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6911). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005136 / 0.011353 (-0.006217) | 0.003136 / 0.011008 (-0.007872) | 0.063752 / 0.038508 (0.025244) | 0.031060 / 0.023109 (0.007950) | 0.249848 / 0.275898 (-0.026050) | 0.275918 / 0.323480 (-0.047561) | 0.004047 / 0.007986 (-0.003938) | 0.002696 / 0.004328 (-0.001632) | 0.049884 / 0.004250 (0.045634) | 0.044646 / 0.037052 (0.007593) | 0.264769 / 0.258489 (0.006280) | 0.299874 / 0.293841 (0.006033) | 0.027530 / 0.128546 (-0.101016) | 0.010026 / 0.075646 (-0.065620) | 0.204007 / 0.419271 (-0.215265) | 0.035982 / 0.043533 (-0.007550) | 0.253560 / 0.255139 (-0.001579) | 0.276206 / 0.283200 (-0.006993) | 0.017770 / 0.141683 (-0.123913) | 1.156008 / 1.452155 (-0.296146) | 1.197265 / 1.492716 (-0.295451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092960 / 0.018006 (0.074954) | 0.302876 / 0.000490 (0.302386) | 0.000214 / 0.000200 (0.000014) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019060 / 0.037411 (-0.018351) | 0.062262 / 0.014526 (0.047737) | 0.073836 / 0.176557 (-0.102721) | 0.122327 / 0.737135 (-0.614809) | 0.076050 / 0.296338 (-0.220289) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282489 / 0.215209 (0.067280) | 2.745084 / 2.077655 (0.667429) | 1.453044 / 1.504120 (-0.051076) | 1.339065 / 1.541195 (-0.202130) | 1.341395 / 1.468490 (-0.127095) | 0.586497 / 4.584777 (-3.998280) | 2.342198 / 3.745712 (-1.403514) | 2.684984 / 5.269862 (-2.584878) | 1.703738 / 4.565676 (-2.861939) | 0.062489 / 0.424275 (-0.361786) | 0.004906 / 0.007607 (-0.002701) | 0.332325 / 0.226044 (0.106280) | 3.255381 / 2.268929 (0.986452) | 1.797045 / 55.444624 (-53.647579) | 1.515197 / 6.876477 (-5.361280) | 1.508317 / 2.142072 (-0.633756) | 0.635973 / 4.805227 (-4.169254) | 0.117292 / 6.500664 (-6.383372) | 0.041456 / 0.075469 (-0.034013) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.973934 / 1.841788 (-0.867853) | 11.288665 / 8.074308 (3.214356) | 9.269404 / 10.191392 (-0.921988) | 0.143190 / 0.680424 (-0.537234) | 0.014366 / 0.534201 (-0.519835) | 0.285936 / 0.579283 (-0.293347) | 0.261632 / 0.434364 (-0.172732) | 0.327191 / 0.540337 (-0.213146) | 0.418900 / 1.386936 (-0.968036) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005131 / 0.011353 (-0.006222) | 0.003181 / 0.011008 (-0.007827) | 0.049697 / 0.038508 (0.011189) | 0.032754 / 0.023109 (0.009645) | 0.263954 / 0.275898 (-0.011944) | 0.285110 / 0.323480 (-0.038370) | 0.004133 / 0.007986 (-0.003852) | 0.002713 / 0.004328 (-0.001615) | 0.051684 / 0.004250 (0.047433) | 0.040607 / 0.037052 (0.003554) | 0.277919 / 0.258489 (0.019429) | 0.304773 / 0.293841 (0.010932) | 0.029530 / 0.128546 (-0.099016) | 0.010176 / 0.075646 (-0.065470) | 0.058501 / 0.419271 (-0.360771) | 0.033436 / 0.043533 (-0.010097) | 0.269899 / 0.255139 (0.014760) | 0.284490 / 0.283200 (0.001290) | 0.017092 / 0.141683 (-0.124591) | 1.132399 / 1.452155 (-0.319756) | 1.167290 / 1.492716 (-0.325427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094460 / 0.018006 (0.076454) | 0.301462 / 0.000490 (0.300972) | 0.000202 / 0.000200 (0.000002) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022767 / 0.037411 (-0.014645) | 0.075993 / 0.014526 (0.061467) | 0.087729 / 0.176557 (-0.088827) | 0.127599 / 0.737135 (-0.609536) | 0.088873 / 0.296338 (-0.207465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286420 / 0.215209 (0.071211) | 2.811376 / 2.077655 (0.733722) | 1.558645 / 1.504120 (0.054525) | 1.426371 / 1.541195 (-0.114824) | 1.422347 / 1.468490 (-0.046143) | 0.567181 / 4.584777 (-4.017596) | 0.936731 / 3.745712 (-2.808982) | 2.643566 / 5.269862 (-2.626296) | 1.727843 / 4.565676 (-2.837834) | 0.062748 / 0.424275 (-0.361527) | 0.005033 / 0.007607 (-0.002574) | 0.339708 / 0.226044 (0.113663) | 3.354119 / 2.268929 (1.085190) | 1.877594 / 55.444624 (-53.567030) | 1.589202 / 6.876477 (-5.287274) | 1.707780 / 2.142072 (-0.434292) | 0.644520 / 4.805227 (-4.160708) | 0.115226 / 6.500664 (-6.385438) | 0.040004 / 0.075469 (-0.035465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002774 / 1.841788 (-0.839014) | 11.812647 / 8.074308 (3.738339) | 10.384198 / 10.191392 (0.192806) | 0.131120 / 0.680424 (-0.549304) | 0.014862 / 0.534201 (-0.519339) | 0.282873 / 0.579283 (-0.296410) | 0.120415 / 0.434364 (-0.313949) | 0.321995 / 0.540337 (-0.218343) | 0.441987 / 1.386936 (-0.944949) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b12a2c5016499cc1d110798c6815f0245f61010e \"CML watermark\")\n" ]
2024-05-21T12:10:24Z
2024-05-23T08:05:58Z
2024-05-23T07:59:57Z
MEMBER
null
null
null
Remove dead code for non-dict data_files from packaged modules. Since the merge of this PR: - #2986 the builders' variable self.config.data_files is always a dict, which makes the condition on (str, list, tuple) dead code.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6911/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6911/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6911.diff", "html_url": "https://github.com/huggingface/datasets/pull/6911", "merged_at": "2024-05-23T07:59:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/6911.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6911" }
https://api.github.com/repos/huggingface/datasets/issues/4974
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4974/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4974/comments
https://api.github.com/repos/huggingface/datasets/issues/4974/events
https://github.com/huggingface/datasets/pull/4974
1,371,682,020
PR_kwDODunzps4-4Iri
4,974
[GH->HF] Part 2: Remove all dataset scripts from github
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "So this means metrics will be deleted from this repo in favor of the \"evaluate\" library? Maybe you guys could just redirect metrics to that library.", "We are deprecating the metrics in `datasets` indeed and suggest users to switch to `evaluate` (via a warning message)\r\n\r\nWe'll keep the current metrics as they are for now, but they'll be completely removed at one point", "I guess this is ready to merge ?\r\n\r\nIt should break nothing except one rare case:\r\n\r\nIf someone is using an old version of `datasets` to try to load a recent dataset. Indeed in that case it fetches the `main` branch on github to see if it exists. But since we're removing all the datasets, forward fetching won't work anymore.\r\n\r\ne.g. if someone uses \"imagenet-1k\" with a version of `datasets` that didn't have it at that time. I checked on kibana and one single user would be affected with 4k downloads/months. It should still work for them though thanks to the `datasets` cache\r\n\r\nBut if they delete their cache, the workaround is... 🥁 update `datasets` 😅", "Let's merge this on monday if we can, to make sure contributors who wanted to merge their dataset PRs here could do it", "Alright, merging !" ]
2022-09-13T16:01:12Z
2022-10-03T17:09:39Z
2022-10-03T17:07:32Z
MEMBER
null
null
null
Now that all the datasets live on the Hub we can remove the /datasets directory that contains all the dataset scripts of this repository - [x] Needs https://github.com/huggingface/datasets/pull/4973 to be merged first - [x] and PR to be enabled on the Hub for non-namespaced datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4974/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4974/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4974.diff", "html_url": "https://github.com/huggingface/datasets/pull/4974", "merged_at": "2022-10-03T17:07:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/4974.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4974" }
https://api.github.com/repos/huggingface/datasets/issues/6743
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6743/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6743/comments
https://api.github.com/repos/huggingface/datasets/issues/6743/events
https://github.com/huggingface/datasets/pull/6743
2,195,481,697
PR_kwDODunzps5qHeMZ
6,743
Allow null values in dict columns
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6743). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005013 / 0.011353 (-0.006340) | 0.003228 / 0.011008 (-0.007780) | 0.062763 / 0.038508 (0.024255) | 0.028937 / 0.023109 (0.005828) | 0.240777 / 0.275898 (-0.035121) | 0.266972 / 0.323480 (-0.056508) | 0.003073 / 0.007986 (-0.004913) | 0.002769 / 0.004328 (-0.001560) | 0.049265 / 0.004250 (0.045015) | 0.042061 / 0.037052 (0.005009) | 0.261714 / 0.258489 (0.003225) | 0.284896 / 0.293841 (-0.008944) | 0.027717 / 0.128546 (-0.100829) | 0.010430 / 0.075646 (-0.065216) | 0.209022 / 0.419271 (-0.210249) | 0.035941 / 0.043533 (-0.007591) | 0.246849 / 0.255139 (-0.008290) | 0.263205 / 0.283200 (-0.019994) | 0.019489 / 0.141683 (-0.122193) | 1.102595 / 1.452155 (-0.349559) | 1.170493 / 1.492716 (-0.322223) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093611 / 0.018006 (0.075604) | 0.302041 / 0.000490 (0.301551) | 0.000223 / 0.000200 (0.000023) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018720 / 0.037411 (-0.018692) | 0.062199 / 0.014526 (0.047673) | 0.074888 / 0.176557 (-0.101669) | 0.120184 / 0.737135 (-0.616951) | 0.076756 / 0.296338 (-0.219583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287484 / 0.215209 (0.072275) | 2.787777 / 2.077655 (0.710123) | 1.488957 / 1.504120 (-0.015163) | 1.362678 / 1.541195 (-0.178517) | 1.364571 / 1.468490 (-0.103919) | 0.563139 / 4.584777 (-4.021638) | 2.422224 / 3.745712 (-1.323488) | 2.798011 / 5.269862 (-2.471850) | 1.751159 / 4.565676 (-2.814517) | 0.062740 / 0.424275 (-0.361536) | 0.004918 / 0.007607 (-0.002689) | 0.338285 / 0.226044 (0.112240) | 3.316012 / 2.268929 (1.047083) | 1.845975 / 55.444624 (-53.598650) | 1.553187 / 6.876477 (-5.323290) | 1.564582 / 2.142072 (-0.577490) | 0.645987 / 4.805227 (-4.159240) | 0.118216 / 6.500664 (-6.382448) | 0.041243 / 0.075469 (-0.034226) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.970265 / 1.841788 (-0.871522) | 11.783152 / 8.074308 (3.708844) | 9.516584 / 10.191392 (-0.674808) | 0.148086 / 0.680424 (-0.532338) | 0.013689 / 0.534201 (-0.520512) | 0.289657 / 0.579283 (-0.289626) | 0.265966 / 0.434364 (-0.168398) | 0.328483 / 0.540337 (-0.211854) | 0.433544 / 1.386936 (-0.953392) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005235 / 0.011353 (-0.006118) | 0.003515 / 0.011008 (-0.007493) | 0.049484 / 0.038508 (0.010976) | 0.029264 / 0.023109 (0.006154) | 0.278518 / 0.275898 (0.002620) | 0.298948 / 0.323480 (-0.024532) | 0.004308 / 0.007986 (-0.003678) | 0.002751 / 0.004328 (-0.001577) | 0.048952 / 0.004250 (0.044701) | 0.045379 / 0.037052 (0.008327) | 0.292633 / 0.258489 (0.034144) | 0.319405 / 0.293841 (0.025564) | 0.030201 / 0.128546 (-0.098345) | 0.010657 / 0.075646 (-0.064990) | 0.057842 / 0.419271 (-0.361430) | 0.053359 / 0.043533 (0.009826) | 0.281136 / 0.255139 (0.025997) | 0.295388 / 0.283200 (0.012188) | 0.018786 / 0.141683 (-0.122897) | 1.187181 / 1.452155 (-0.264974) | 1.198394 / 1.492716 (-0.294323) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093861 / 0.018006 (0.075855) | 0.304019 / 0.000490 (0.303529) | 0.000220 / 0.000200 (0.000020) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021582 / 0.037411 (-0.015829) | 0.075381 / 0.014526 (0.060855) | 0.087886 / 0.176557 (-0.088671) | 0.125078 / 0.737135 (-0.612057) | 0.089339 / 0.296338 (-0.206999) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295797 / 0.215209 (0.080588) | 2.912021 / 2.077655 (0.834367) | 1.592191 / 1.504120 (0.088071) | 1.471270 / 1.541195 (-0.069925) | 1.475535 / 1.468490 (0.007045) | 0.564114 / 4.584777 (-4.020663) | 2.442882 / 3.745712 (-1.302830) | 2.679433 / 5.269862 (-2.590428) | 1.752097 / 4.565676 (-2.813579) | 0.062748 / 0.424275 (-0.361527) | 0.005068 / 0.007607 (-0.002539) | 0.345554 / 0.226044 (0.119509) | 3.456929 / 2.268929 (1.188000) | 1.962781 / 55.444624 (-53.481844) | 1.688313 / 6.876477 (-5.188164) | 1.817392 / 2.142072 (-0.324681) | 0.639588 / 4.805227 (-4.165639) | 0.116148 / 6.500664 (-6.384516) | 0.040851 / 0.075469 (-0.034618) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.009852 / 1.841788 (-0.831936) | 12.031749 / 8.074308 (3.957440) | 10.305107 / 10.191392 (0.113715) | 0.132960 / 0.680424 (-0.547464) | 0.014779 / 0.534201 (-0.519422) | 0.288903 / 0.579283 (-0.290381) | 0.275417 / 0.434364 (-0.158947) | 0.322628 / 0.540337 (-0.217709) | 0.445060 / 1.386936 (-0.941876) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f234fce40d5ffc96fac5198d8cc89817970d87ee \"CML watermark\")\n", "notify https://huggingface.co/datasets/chaoyi-wu/PMC-Inline/discussions/1 once it's merged in dataset-viewer" ]
2024-03-19T16:54:22Z
2024-04-08T13:08:42Z
2024-03-19T20:05:19Z
COLLABORATOR
null
null
null
Fix #6738
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6743/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6743/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6743.diff", "html_url": "https://github.com/huggingface/datasets/pull/6743", "merged_at": "2024-03-19T20:05:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/6743.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6743" }
https://api.github.com/repos/huggingface/datasets/issues/4849
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4849/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4849/comments
https://api.github.com/repos/huggingface/datasets/issues/4849/events
https://github.com/huggingface/datasets/pull/4849
1,338,273,900
PR_kwDODunzps49JN8d
4,849
1.18.x
{ "avatar_url": "https://avatars.githubusercontent.com/u/49282718?v=4", "events_url": "https://api.github.com/users/Mr-Robot-001/events{/privacy}", "followers_url": "https://api.github.com/users/Mr-Robot-001/followers", "following_url": "https://api.github.com/users/Mr-Robot-001/following{/other_user}", "gists_url": "https://api.github.com/users/Mr-Robot-001/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mr-Robot-001", "id": 49282718, "login": "Mr-Robot-001", "node_id": "MDQ6VXNlcjQ5MjgyNzE4", "organizations_url": "https://api.github.com/users/Mr-Robot-001/orgs", "received_events_url": "https://api.github.com/users/Mr-Robot-001/received_events", "repos_url": "https://api.github.com/users/Mr-Robot-001/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mr-Robot-001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mr-Robot-001/subscriptions", "type": "User", "url": "https://api.github.com/users/Mr-Robot-001", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2022-08-14T15:09:19Z
2022-08-14T15:10:02Z
2022-08-14T15:10:02Z
NONE
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/49282718?v=4", "events_url": "https://api.github.com/users/Mr-Robot-001/events{/privacy}", "followers_url": "https://api.github.com/users/Mr-Robot-001/followers", "following_url": "https://api.github.com/users/Mr-Robot-001/following{/other_user}", "gists_url": "https://api.github.com/users/Mr-Robot-001/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mr-Robot-001", "id": 49282718, "login": "Mr-Robot-001", "node_id": "MDQ6VXNlcjQ5MjgyNzE4", "organizations_url": "https://api.github.com/users/Mr-Robot-001/orgs", "received_events_url": "https://api.github.com/users/Mr-Robot-001/received_events", "repos_url": "https://api.github.com/users/Mr-Robot-001/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mr-Robot-001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mr-Robot-001/subscriptions", "type": "User", "url": "https://api.github.com/users/Mr-Robot-001", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4849/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4849/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4849.diff", "html_url": "https://github.com/huggingface/datasets/pull/4849", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4849.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4849" }
https://api.github.com/repos/huggingface/datasets/issues/6798
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6798/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6798/comments
https://api.github.com/repos/huggingface/datasets/issues/6798/events
https://github.com/huggingface/datasets/issues/6798
2,235,768,891
I_kwDODunzps6FQyA7
6,798
`DatasetBuilder._split_generators` incomplete type annotation
{ "avatar_url": "https://avatars.githubusercontent.com/u/33965649?v=4", "events_url": "https://api.github.com/users/JonasLoos/events{/privacy}", "followers_url": "https://api.github.com/users/JonasLoos/followers", "following_url": "https://api.github.com/users/JonasLoos/following{/other_user}", "gists_url": "https://api.github.com/users/JonasLoos/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JonasLoos", "id": 33965649, "login": "JonasLoos", "node_id": "MDQ6VXNlcjMzOTY1NjQ5", "organizations_url": "https://api.github.com/users/JonasLoos/orgs", "received_events_url": "https://api.github.com/users/JonasLoos/received_events", "repos_url": "https://api.github.com/users/JonasLoos/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JonasLoos/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JonasLoos/subscriptions", "type": "User", "url": "https://api.github.com/users/JonasLoos", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Good catch! Feel free to open a PR with the suggested fix :).", "There is also the [`MockDownloadManager`](https://github.com/JonasLoos/datasets/blob/main/src/datasets/download/mock_download_manager.py#L33), which seems like it might get passed here too. However, to me, it doesn't really seem relevant to the users of the datasets library, so I would just ignore it. What do you think, @mariosasko?", "The API (`dummy_data` CLI command ) that uses the `MockDownloadManager` has been deprecated, so ignoring it sounds good!" ]
2024-04-10T14:38:50Z
2024-04-11T15:34:59Z
2024-04-11T15:34:59Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The [`DatasetBuilder._split_generators`](https://github.com/huggingface/datasets/blob/0f27d7b77c73412cfc50b24354bfd7a3e838202f/src/datasets/builder.py#L1449) function has currently the following signature: ```python class DatasetBuilder: def _split_generators(self, dl_manager: DownloadManager): ... ``` However, the `dl_manager` argument can also be of type [`StreamingDownloadManager`](https://github.com/huggingface/datasets/blob/0f27d7b77c73412cfc50b24354bfd7a3e838202f/src/datasets/download/streaming_download_manager.py#L962), which has different functionality. For example, the `download` function doesn't download, but rather just returns the given url(s). I suggest changing the function signature to: ```python class DatasetBuilder: def _split_generators(self, dl_manager: Union[DownloadManager, StreamingDownloadManager]): ... ``` and also adjust the docstring accordingly. I would like to create a Pull Request to fix this, and have the following questions: * Are there also other options than `DownloadManager`, and `StreamingDownloadManager`? * Should this also be changed in other functions? ### Steps to reproduce the bug Minimal example to print the different class names: ```python import tempfile from datasets import load_dataset example = b''' from datasets import GeneratorBasedBuilder, DatasetInfo, Features, Value, SplitGenerator class Test(GeneratorBasedBuilder): def _info(self): return DatasetInfo(features=Features({"x": Value("int64")})) def _split_generators(self, dl_manager): print(type(dl_manager)) return [SplitGenerator('test')] def _generate_examples(self): yield 0, {'x': 42} ''' with tempfile.NamedTemporaryFile(suffix='.py') as f: f.write(example) f.flush() load_dataset(f.name, streaming=False) load_dataset(f.name, streaming=True) ``` ### Expected behavior complete type annotations ### Environment info /
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6798/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6798/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4831
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4831/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4831/comments
https://api.github.com/repos/huggingface/datasets/issues/4831/events
https://github.com/huggingface/datasets/pull/4831
1,336,199,643
PR_kwDODunzps49Cibf
4,831
Add oversampling strategies to interleave datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/52246514?v=4", "events_url": "https://api.github.com/users/ylacombe/events{/privacy}", "followers_url": "https://api.github.com/users/ylacombe/followers", "following_url": "https://api.github.com/users/ylacombe/following{/other_user}", "gists_url": "https://api.github.com/users/ylacombe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ylacombe", "id": 52246514, "login": "ylacombe", "node_id": "MDQ6VXNlcjUyMjQ2NTE0", "organizations_url": "https://api.github.com/users/ylacombe/orgs", "received_events_url": "https://api.github.com/users/ylacombe/received_events", "repos_url": "https://api.github.com/users/ylacombe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ylacombe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ylacombe/subscriptions", "type": "User", "url": "https://api.github.com/users/ylacombe", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4831). All of your documentation changes will be reflected on that endpoint.", "Hi @lhoestq, \r\nThanks for your review! I've added the requested mention in the documentation and corrected the Error type in `interleave_datasets`. \r\nI've also added test cases in `test_arrow_dataset.py`, which was useful since it allow me to detect an error in the case of an oversampling strategy with no sampling probabilities. \r\nCould you double check this part ? I've commented the code to explain the approach.\r\nThanks!\r\n", "@ylacombe Thanks for your effort!\r\n\r\n> Final note: I've been using that code for a research project involving a large-scale multilingual dataset. One should be careful when using oversampling to avoid exploding the size of the dataset. For example, if a very large data set has a low probability of being sampled, the final dataset may be several times the size of that large data set.\r\n\r\nMay I ask why is that, and how to solve it? In some scenarios, such as domain adaptation with limited resources, it is normal to have a big generic dataset and a small in-domain dataset.\r\n\r\nHere is an example with data sizes 8:2 and oversampling ratios 0.2:0.8\r\n\r\n```python\r\nfrom datasets import Dataset, interleave_datasets\r\n\r\nd1 = Dataset.from_dict({\"a\": [1, 2, 3, 4, 5, 6, 7, 8]})\r\nd2 = Dataset.from_dict({\"a\": [9, 10]})\r\n\r\nnew_d = interleave_datasets([d1, d2], probabilities=[0.2, 0.8], seed=42, stopping_strategy=\"all_exhausted\")\r\nprint(len(new_d))\r\nprint(new_d[\"a\"])\r\n```\r\n\r\n> 37\r\n> [9, 10, 9, 10, 1, 9, 10, 9, 2, 10, 9, 10, 9, 10, 9, 10, 9, 3, 10, 9, 10, 9, 10, 9, 10, 4, 9, 5, 6, 10, 9, 10, 9, 10, 9, 7, 8]\r\n\r\nThe ratios sampled from the two original datasets to the output dataset are correct. However, the length of the output dataset is 37, which is too big. I think it should be only large enough to make the smaller dataset similar in size to the bigger dataset. Any solution for this? Many thanks!\r\n\r\n", "Hi @ymoslem, it's a great question and yes, it's normal to have two different-sized datasets to interleave!\r\n\r\nMy recommendation here would be to either use probabilities more biased towards the large model (e.g `[0.8, 0.2]`) so that the big dataset is exhausted more quickly, or to not use probabilities altogether - in that case, `new_d` length will be 16 (`nb_datasets*len(largest_dataset)`).\r\n\r\nLet me know if I need to be clearer!\r\n ", "@ylacombe Many thanks for your prompt response! As we needed to implement certain oversampling experiments, we ended up using Pandas.\r\n\r\nConsidering each dataset a class with a distinct \"label\":\r\n```python\r\nimport pandas as pd\r\n\r\ndef oversample(df):\r\n classes = df.label.value_counts().to_dict()\r\n most = max(classes.values())\r\n classes_list = []\r\n for key in classes:\r\n classes_list.append(df[df['label'] == key])\r\n classes_sample = []\r\n for i in range(1,len(classes_list)):\r\n classes_sample.append(classes_list[i].sample(most, replace=True))\r\n df_maybe = pd.concat(classes_sample)\r\n final_df = pd.concat([df_maybe,classes_list[0]], axis=0)\r\n final_df = final_df.reset_index(drop=True)\r\n return final_df\r\n```\r\n[Reference](https://medium.com/analytics-vidhya/undersampling-and-oversampling-an-old-and-a-new-approach-4f984a0e8392)" ]
2022-08-11T16:24:51Z
2023-07-11T15:57:48Z
2022-08-24T16:46:07Z
CONTRIBUTOR
null
null
null
Hello everyone, Here is a proposal to improve `interleave_datasets` function. Following Issue #3064, and @lhoestq [comment](https://github.com/huggingface/datasets/issues/3064#issuecomment-1022333385), I propose here a code that performs oversampling when interleaving a `Dataset` list. I have myself encountered this problem while trying to implement training on a multilingual dataset following a training strategy similar to that of [XLSUM paper](https://arxiv.org/pdf/2106.13822.pdf), a multilingual abstract summary dataset where the multilingual training dataset is created by sampling from the languages following a smoothing strategy. The main idea is to sample languages that have a low number of samples more frequently than other languages. As in Issue #3064, the current default strategy is a undersampling strategy, which stops as soon as a dataset runs out of samples. The new `all_exhausted` strategy stops building the new dataset as soon as all samples in each dataset have been added at least once. How does it work in practice: - if ``probabilities`` is `None` and the strategy is `all_exhausted`, it simply performs a round robin interleaving that stops when the longest dataset is out of samples. Here the new dataset length will be $maxLengthDataset*nbDataset$. - if ``probabilities`` is not `None` and the strategy is `all_exhausted`, it keeps trace of the datasets which were out of samples but continues to add them to the new dataset, and stops as soons as every dataset runs out of samples at least once. - In the other cases, it is supposed to keep the same behaviour as before. Except that this time, when probabilities are precised, it really stops AS SOON AS a dataset is out of samples. More on the last sentence: The previous example of `interleave_datasets` was: >>> from datasets import Dataset, interleave_datasets >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22]}) >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12] With my implementation, `dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42)` gives: >>> dataset["a"] [10, 0, 11, 1, 2] because `d1` is already out of samples just after `2` is added. Example of the results of applying the different strategies: >>> from datasets import Dataset, interleave_datasets >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22]}) >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted") >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12, 10, 0, 1, 2, 21, 0, 11, 1, 2, 0, 1, 12, 2, 10, 0, 22] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2] >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> d1 = Dataset.from_dict({"a": [0, 1, 2]}) >>> d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) >>> d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]}) >>> dataset = interleave_datasets([d1, d2, d3]) >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22] >>> dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") >>> dataset["a"] [0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42) >>> dataset["a"] [10, 0, 11, 1, 2] >>> dataset = interleave_datasets([d1, d2, d3], probabilities=[0.7, 0.2, 0.1], seed=42, stopping_strategy="all_exhausted") >>> dataset["a"] [10, 0, 11, 1, 2, 20, 12, 13, ..., 0, 1, 2, 0, 24] **Final note:** I've been using that code for a research project involving a large-scale multilingual dataset. One should be careful when using oversampling to avoid to avoid exploding the size of the dataset. For example, if a very large data set has a low probability of being sampled, the final dataset may be several times the size of that large data set.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4831/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4831/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4831.diff", "html_url": "https://github.com/huggingface/datasets/pull/4831", "merged_at": "2022-08-24T16:46:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/4831.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4831" }
https://api.github.com/repos/huggingface/datasets/issues/6287
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6287/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6287/comments
https://api.github.com/repos/huggingface/datasets/issues/6287/events
https://github.com/huggingface/datasets/issues/6287
1,932,758,192
I_kwDODunzps5zM4yw
6,287
map() not recognizing "text"
{ "avatar_url": "https://avatars.githubusercontent.com/u/5688359?v=4", "events_url": "https://api.github.com/users/EngineerKhan/events{/privacy}", "followers_url": "https://api.github.com/users/EngineerKhan/followers", "following_url": "https://api.github.com/users/EngineerKhan/following{/other_user}", "gists_url": "https://api.github.com/users/EngineerKhan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/EngineerKhan", "id": 5688359, "login": "EngineerKhan", "node_id": "MDQ6VXNlcjU2ODgzNTk=", "organizations_url": "https://api.github.com/users/EngineerKhan/orgs", "received_events_url": "https://api.github.com/users/EngineerKhan/received_events", "repos_url": "https://api.github.com/users/EngineerKhan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/EngineerKhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/EngineerKhan/subscriptions", "type": "User", "url": "https://api.github.com/users/EngineerKhan", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "There is no \"text\" column in the `amazon_reviews_multi`, hence the `KeyError`. You can get the column names by running `dataset.column_names`." ]
2023-10-09T10:27:30Z
2023-10-11T20:28:45Z
2023-10-11T20:28:45Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The [map() documentation](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/main_classes#datasets.Dataset.map) reads: ` ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)` I have been trying to reproduce it in my code as: `tokenizedDataset = dataset.map(lambda x: tokenizer(x['text']), batched=True)` But it doesn't work as it throws the error: > KeyError: 'text' Can you please guide me on how to fix it? ### Steps to reproduce the bug 1. `from datasets import load_dataset dataset = load_dataset("amazon_reviews_multi")` 2. Then this code: `from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")` 3. The line I quoted above (which I have been trying) ### Expected behavior As mentioned in the documentation, it should run without any error and map the tokenization on the whole dataset. ### Environment info Python 3.10.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6287/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6287/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6130
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6130/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6130/comments
https://api.github.com/repos/huggingface/datasets/issues/6130/events
https://github.com/huggingface/datasets/issues/6130
1,843,158,846
I_kwDODunzps5t3F8-
6,130
default config name doesn't work when config kwargs are specified.
{ "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/npuichigo", "id": 11533479, "login": "npuichigo", "node_id": "MDQ6VXNlcjExNTMzNDc5", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "repos_url": "https://api.github.com/users/npuichigo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "type": "User", "url": "https://api.github.com/users/npuichigo", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "@lhoestq ", "What should be the behavior in this case ? Should it override the default config with the added parameter ?", "I know why it should be treated as a new config if overriding parameters are passed. But in some case, I just pass in some common fields like `data_dir`.\r\n\r\nFor example, I want to extend the FolderBasedBuilder as a multi-config version, the `data_dir` or `data_files` are always passed by user and should not be considered as overriding the default config. In current state, I cannot leverage the feature of default config since passing `data_dir` will disable the default config.", "Thinking more about it I think the current behavior is the right one.\r\n\r\nProvided parameters should be passed to instantiate a new BuilderConfig.\r\n\r\nWhat's the error you're getting ?", "For example, this works to use default config with name '_all_':\r\n```python\r\ndatasets.load_dataset(\"indonesian-nlp/librivox-indonesia\", split=\"train\")\r\n```\r\nwhile this failed to use default config\r\n```python\r\ndatasets.load_dataset(\"indonesian-nlp/librivox-indonesia\", split=\"train\", data_dir='.')\r\n```\r\nAfter manually specifying it, it works again.\r\n```python\r\ndatasets.load_dataset(\"indonesian-nlp/librivox-indonesia\", \"_all_\", split=\"train\", data_dir='.')\r\n```", "@lhoestq ", "It should work if you explicitly ask for the config you want to override\r\n\r\n```python\r\nload_dataset('/dataset/with/multiple/config', 'name_of_the_default_config', some_field_in_config='some')\r\n```\r\n\r\nAlternatively you can have a BuilderConfig class that when instantiated returns a config with the right default values. In this case this code would instantiate this config with the default values except for the parameter to override:\r\n\r\n```python\r\nload_dataset('/dataset/with/multiple/config', some_field_in_config='some')\r\n```", "@lhoestq Yes. But it doesn't work for me.\r\n\r\nHere's my dataset for example.\r\n```\r\nlass MyDatasetConfig(datasets.BuilderConfig):\r\n def __init__(self, name: str, version: str, **kwargs):\r\n self.option1 = kwargs.pop(\"option1\", False)\r\n self.option2 = kwargs.pop(\"option2\", 5)\r\n\r\n super().__init__(\r\n name=name,\r\n version=datasets.Version(version),\r\n **kwargs)\r\n\r\n\r\nclass MyDataset(datasets.GeneratorBasedBuilder):\r\n DEFAULT_CONFIG_NAME = \"v1\"\r\n\r\n BUILDER_CONFIGS = [\r\n UnifiedTtsDatasetConfig(\r\n name=\"v1\",\r\n version=\"1.0.0\",\r\n description=\"Initial version of the dataset\"\r\n ),\r\n ]\r\n\r\n def _info(self) -> DatasetInfo:\r\n _ = self.option1\r\n ....\r\n```\r\n\r\nHere it's okay to use `load_dataset('my_dataset.py')` for loading the default config `v1`.\r\n\r\nBut if I want to override the default values in config with `load_dataset('my_dataset.py', option2=3)`, it failed to find my default config `v1.\r\n\r\nUnless I use `load_dataset('my_dataset.py', 'v1', option2=3)`\r\n\r\nSo according to your advice, how can I modify my dataset to be able to override default config without manually specifying it.", "What's the error ? It should try to instantiate `MyDatasetConfig` with `option2=3`", "@lhoestq The error is\r\n```\r\ndef _info(self) -> DatasetInfo:\r\n _ = self.option1 <-\r\n ....\r\nAttributeError: 'BuilderConfig' object has no attribute 'option1'\r\n```\r\nwhich seems to find another unknown config.\r\n\r\nYou can try this line `datasets.load_dataset(\"indonesian-nlp/librivox-indonesia\", split=\"train\", data_dir='.')`, it's a multi-config dataset on HF hub and the error is the same.\r\n\r\nMy insights:\r\nhttps://github.com/huggingface/datasets/blob/12cfc1196e62847e2e8239fbd727a02cbc86ddec/src/datasets/builder.py#L518\r\nif `config_kwargs` is provided here, the if branch is skipped.", "I see, you just have to set this class attribute to your builder class :)\r\n\r\n```python\r\nBUILDER_CONFIG_CLASS = MyDatasetConfig\r\n```", "So what does this attribute do? In most cases it's not used and the [documents for multi-config dataset](https://huggingface.co/docs/datasets/main/en/image_dataset#multiple-configurations) never mentioned that.", "It tells which builder config class to instantiate if additional config parameters are passed to load_dataset", "@lhoestq maybe we can enhance the document to say something about the common attributes of `DatasetBuilder`", "Ah indeed it's missing in the docs, thanks for reporting. I'm opening a PR" ]
2023-08-09T12:43:15Z
2023-11-22T11:50:49Z
2023-11-22T11:50:48Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug https://github.com/huggingface/datasets/blob/12cfc1196e62847e2e8239fbd727a02cbc86ddec/src/datasets/builder.py#L518-L522 If `config_name` is `None`, `DEFAULT_CONFIG_NAME` should be select. But once users pass `config_kwargs` to their customized `BuilderConfig`, the logic is ignored, and dataset cannot select the default config from multiple configs. ### Steps to reproduce the bug ```python import datasets datasets.load_dataset('/dataset/with/multiple/config'') # Ok datasets.load_dataset('/dataset/with/multiple/config', some_field_in_config='some') # Err ``` ### Expected behavior Default config behavior should be consistent. ### Environment info - `datasets` version: 2.14.3 - Platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.17 - Python version: 3.8.15 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/npuichigo", "id": 11533479, "login": "npuichigo", "node_id": "MDQ6VXNlcjExNTMzNDc5", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "repos_url": "https://api.github.com/users/npuichigo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "type": "User", "url": "https://api.github.com/users/npuichigo", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6130/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6130/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5536
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5536/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5536/comments
https://api.github.com/repos/huggingface/datasets/issues/5536/events
https://github.com/huggingface/datasets/issues/5536
1,586,930,643
I_kwDODunzps5elqPT
5,536
Failure to hash function when using .map()
{ "avatar_url": "https://avatars.githubusercontent.com/u/6916056?v=4", "events_url": "https://api.github.com/users/venzen/events{/privacy}", "followers_url": "https://api.github.com/users/venzen/followers", "following_url": "https://api.github.com/users/venzen/following{/other_user}", "gists_url": "https://api.github.com/users/venzen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/venzen", "id": 6916056, "login": "venzen", "node_id": "MDQ6VXNlcjY5MTYwNTY=", "organizations_url": "https://api.github.com/users/venzen/orgs", "received_events_url": "https://api.github.com/users/venzen/received_events", "repos_url": "https://api.github.com/users/venzen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/venzen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venzen/subscriptions", "type": "User", "url": "https://api.github.com/users/venzen", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! `enc` is not hashable:\r\n```python\r\nimport tiktoken\r\nfrom datasets.fingerprint import Hasher\r\n\r\nenc = tiktoken.get_encoding(\"gpt2\")\r\nHasher.hash(enc)\r\n# raises TypeError: cannot pickle 'builtins.CoreBPE' object\r\n```\r\nIt happens because it's not picklable, and because of that it's not possible to cache the result of `map`, hence the warning message.\r\n\r\nYou can find more details about caching here: https://huggingface.co/docs/datasets/about_cache\r\n\r\nYou can also provide your own unique hash in `map` if you want, with the `new_fingerprint` argument.\r\nOr disable caching using\r\n```python\r\nimport datasets\r\ndatasets.disable_caching()\r\n```", "@lhoestq Thank you for the explanation and advice. Will relay all of this to the repo where this (non)issue arose. \r\n\r\nGreat job with huggingface! ", "We made tiktoken tokenizers hashable in #5552, which is included in today's release `datasets==2.10.0`", "Just a heads up that when I'm trying to use TikToken along with the a given Dataset `.map()` method, I am still met with the following error :\r\n\r\n```\r\n File \"/opt/conda/lib/python3.8/site-packages/dill/_dill.py\", line 388, in save\r\n StockPickler.save(self, obj, save_persistent_id)\r\n File \"/opt/conda/lib/python3.8/pickle.py\", line 578, in save\r\n rv = reduce(self.proto)\r\nTypeError: cannot pickle 'builtins.CoreBPE' object\r\n```\r\n\r\nMy current environment is running datasets v2.10.0.", "cc @mariosasko ", "@lhoestq @edhenry I am also seeing this, do you have any suggested solution?", "With which `datasets` version ? Can you try to udpate ?", "@lhoestq @edhenry I am on datasets version `'2.12.0'. I see the same `TypeError: cannot pickle 'builtins.CoreBPE' object` that others are seeing.", "I am able to reproduce this on datasets 2.14.2. The `datasets.disable_caching()` doesn't work around it.\r\n\r\n@lhoestq - you might want to reopen this issue. Because of this issue folks won't be able run Karpathy's NanoGPT :(.", "update: temporarily solved the problem by setting\r\n```\r\n--preprocess_num_workers 1\r\n```\r\n\r\n-------------\r\nI have met the same problem, here is my env:\r\n```\r\ndatasets 2.14.4\r\ntransformers 4.31.0\r\ntiktoken 0.4.0\r\ntorch 1.13.1\r\n```", "@mengban I cannot reproduce the issue even with these versions installed. It would help if you could provide info about your system and the `pip list` output.", "@mariosasko Please take a look at this\r\n```python\r\nfrom typing import Any\r\nfrom datasets import Dataset\r\nimport tiktoken\r\n\r\ndataset = Dataset.from_list([{\"n\": str(i)} for i in range(20)])\r\nenc = tiktoken.get_encoding(\"gpt2\")\r\n\r\n\r\nclass A:\r\n tokenizer = enc #tiktoken.get_encoding(\"gpt2\")\r\n\r\n def __call__(self, example) -> Any:\r\n ids = self.tokenizer.encode(example[\"n\"])\r\n example[\"len\"] = len(ids)\r\n return example\r\n\r\na = A()\r\n\r\ndef process(example):\r\n ids = a.tokenizer.encode(example[\"n\"])\r\n example[\"len\"] = len(ids)\r\n return example\r\n\r\n# success\r\ntokenized = dataset.map(process, desc=\"tiktoken\", num_proc=2)\r\n\r\n# raise TypeError: cannot pickle 'builtins.CoreBPE' object\r\ntokenized = dataset.map(a, desc=\"tiktoken\", num_proc=2)\r\n```\r\n\r\npip list\r\n```\r\ndatasets 2.14.4\r\ntiktoken 0.4.0\r\n```", "Thanks @maxwellzh! Our `Hasher` works with this snippet, but the problem is running multiprocessing with a non-serializable `tiktoken.Encoding` object.\r\n\r\nInserting the following code before the `map` should fix this:\r\n```python\r\nimport copyreg\r\n\r\ndef pickle_Encoding(enc):\r\n return (functools.partial(tiktoken.core.Encoding, enc.name, pat_str=enc._pat_str, mergeable_ranks=enc._mergeable_ranks, special_tokens=enc._special_tokens), ())\r\n\r\ncopyreg.pickle(tiktoken.core.Encoding, pickle_Encoding)\r\n```\r\n\r\nBut the best fix would be implementing `__reduce__` for `tiktoken.Encoding` or `tiktoken.CoreBPE`. If I find time, I'll try to fix this in the `tiktoken` repo.", "I think the right way to fix this would be to have new tokenizer instance for each process. This applies to many other tokenizers that don't support multi-process or have bugs. To do this, first define tokenizer factory class like this:\r\n\r\n```\r\n class TikTokenFactory:\r\n def __init__(self):\r\n self._enc = None\r\n self.eot_token = None\r\n\r\n def encode_ordinary(self, text):\r\n if self._enc is None:\r\n self._enc = tiktoken.get_encoding(\"gpt2\")\r\n self.eot_token = self._enc.eot_token\r\n return self._enc.encode_ordinary(text)\r\n```\r\n\r\nNow use this in `.map()` like this:\r\n\r\n```\r\n # tokenize the dataset\r\n tokenized = dataset.map(\r\n partial(process, TikTokenFactory()),\r\n remove_columns=['text'],\r\n desc=\"tokenizing the splits\",\r\n num_proc=max(1, cpu_count()//2),\r\n )\r\n```\r\n\r\nA full working example is here: https://github.com/sytelus/nanoGPT/blob/refactor/nanogpt_common/hf_data_prepare.py" ]
2023-02-16T03:12:07Z
2023-09-08T21:06:01Z
2023-02-16T14:56:41Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug _Parameter 'function'=<function process at 0x7f1ec4388af0> of the transform datasets.arrow_dataset.Dataset.\_map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed._ This issue with `.map()` happens for me consistently, as also described in closed issue #4506 Dataset indices can be individually serialized using dill and pickle without any errors. I'm using tiktoken to encode in the function passed to map(). Similarly, indices can be individually encoded without error. ### Steps to reproduce the bug ```py from datasets import load_dataset import tiktoken dataset = load_dataset("stas/openwebtext-10k") enc = tiktoken.get_encoding("gpt2") tokenized = dataset.map( process, remove_columns=['text'], desc="tokenizing the OWT splits", ) def process(example): ids = enc.encode(example['text']) ids.append(enc.eot_token) out = {'ids': ids, 'len': len(ids)} return out ``` ### Expected behavior Should encode simple text objects. ### Environment info Python versions tried: both 3.8 and 3.10.10 `PYTHONUTF8=1` as env variable Datasets tried: - stas/openwebtext-10k - rotten_tomatoes - local text file OS: Ubuntu Linux 20.04 Package versions: - torch 1.13.1 - dill 0.3.4 (if using 0.3.6 - same issue) - datasets 2.9.0 - tiktoken 0.2.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/6916056?v=4", "events_url": "https://api.github.com/users/venzen/events{/privacy}", "followers_url": "https://api.github.com/users/venzen/followers", "following_url": "https://api.github.com/users/venzen/following{/other_user}", "gists_url": "https://api.github.com/users/venzen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/venzen", "id": 6916056, "login": "venzen", "node_id": "MDQ6VXNlcjY5MTYwNTY=", "organizations_url": "https://api.github.com/users/venzen/orgs", "received_events_url": "https://api.github.com/users/venzen/received_events", "repos_url": "https://api.github.com/users/venzen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/venzen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/venzen/subscriptions", "type": "User", "url": "https://api.github.com/users/venzen", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5536/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5536/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5307
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5307/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5307/comments
https://api.github.com/repos/huggingface/datasets/issues/5307/events
https://github.com/huggingface/datasets/pull/5307
1,466,477,427
PR_kwDODunzps5Dzj8r
5,307
Use correct dataset type in `from_generator` docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-11-28T13:59:10Z
2022-11-28T15:30:37Z
2022-11-28T15:27:26Z
COLLABORATOR
null
null
null
Use the correct dataset type in the `from_generator` docs (example with sharding).
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5307/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5307/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5307.diff", "html_url": "https://github.com/huggingface/datasets/pull/5307", "merged_at": "2022-11-28T15:27:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/5307.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5307" }
https://api.github.com/repos/huggingface/datasets/issues/4787
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4787/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4787/comments
https://api.github.com/repos/huggingface/datasets/issues/4787/events
https://github.com/huggingface/datasets/issues/4787
1,328,243,911
I_kwDODunzps5PK2TH
4,787
NonMatchingChecksumError in mbpp dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2022-08-04T08:15:51Z
2022-08-04T17:21:01Z
2022-08-04T17:21:01Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug As reported on the Hub [Fix Checksum Mismatch](https://huggingface.co/datasets/mbpp/discussions/1), there is a `NonMatchingChecksumError` when loading mbpp dataset ## Steps to reproduce the bug ```python ds = load_dataset("mbpp", "full") ``` ## Expected results Loading of the dataset without any exception raised. ## Actual results ``` NonMatchingChecksumError Traceback (most recent call last) <ipython-input-1-a3fbdd3ed82e> in <module> ----> 1 ds = load_dataset("mbpp", "full") .../huggingface/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1791 1792 # Download and prepare data -> 1793 builder_instance.download_and_prepare( 1794 download_config=download_config, 1795 download_mode=download_mode, .../huggingface/datasets/src/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 702 logger.warning("HF google storage unreachable. Downloading and preparing it from source") 703 if not downloaded_from_gcs: --> 704 self._download_and_prepare( 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 706 ) .../huggingface/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 1225 1226 def _download_and_prepare(self, dl_manager, verify_infos): -> 1227 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) 1228 1229 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: .../huggingface/datasets/src/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 773 # Checksums verification 774 if verify_infos and dl_manager.record_checksums: --> 775 verify_checksums( 776 self.info.download_checksums, dl_manager.get_recorded_sizes_checksums(), "dataset source files" 777 ) .../huggingface/datasets/src/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 38 if len(bad_urls) > 0: 39 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 40 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 41 logger.info("All the checksums matched successfully" + for_verification_name) 42 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://raw.githubusercontent.com/google-research/google-research/master/mbpp/mbpp.jsonl'] ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4787/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4787/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4990
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4990/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4990/comments
https://api.github.com/repos/huggingface/datasets/issues/4990/events
https://github.com/huggingface/datasets/issues/4990
1,378,120,806
I_kwDODunzps5SJHRm
4,990
"no-token" is passed to `huggingface_hub` when token is `None`
{ "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Wauplin", "id": 11801849, "login": "Wauplin", "node_id": "MDQ6VXNlcjExODAxODQ5", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "repos_url": "https://api.github.com/users/Wauplin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "type": "User", "url": "https://api.github.com/users/Wauplin", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Hi @Wauplin, thanks for raising this potential issue.\r\n\r\nThe choice of passing `\"no-token\"` instead of `None` was made in this PR:\r\n- #4536 \r\n\r\nAccording to the PR description, the reason why it is passed is to avoid that `HfApi.dataset_info` uses the local token when no token should be used.", "Hi @albertvillanova , thanks for finding the original issue :+1: \r\n\r\nAs of next release of `huggingface_hub`, the `token` argument will be deprecated in favor of the `use_auth_token` argument in `dataset_info` method. This change as been done by @SBrandeis in https://github.com/huggingface/huggingface_hub/pull/928. `use_auth_token` is a bit different and allow the case \"don't sent the cached token by default\".\r\n\r\nIf you want to strictly avoid sending the cached token from `datasets`, you can use:\r\n```py\r\n# token=token if token else \"no-token\", <- will fail because token is not valid\r\n\r\nuse_auth_token=token if token else False, # using the new `use_auth_token` parameter\r\n```\r\n\r\nAnd as a note, I am currently updating the \"don't send the cached token by default\"-rule to \"don't send the cached token on public repos by default but use it in private ones\" in https://github.com/huggingface/huggingface_hub/pull/1064. This will not change the fact that `use_auth_token=False` doesn't send the token at all.\r\n", "What is current strategy in term of updating `huggingface_hub` version in `datasets` ? I don't want to break stuff in the next release so let's find a proper solution :) ", "As soon as `token` is deprecated and hfh has a new release, we'll update `datasets` to use the new argument instead. Does it sound good to you ?", "Perfect :ok_hand: ", "Hi @Wauplin, thanks for the warning about the deprecation of `token` in favor of `use_auth_token`.\r\n\r\nIndeed, in datasets we use internally `use_auth_token`, which in this case was transformed to `token` to call `HfApi.dataset_info`:\r\nhttps://github.com/huggingface/datasets/blob/1a9385d7cc8a3241b44015145ef56a230fdadc51/src/datasets/load.py#L747\r\n\r\nTherefore, for the new hfh release, the fix will be trivial: we will pass directly `use_auth_token`.\r\n\r\nAs discussed during our meeting yesterday, due to the fact that at datasets we support multiple hfh versions, I think we should handle passing `token` or `use_auth_token` depending on the hfh version." ]
2022-09-19T15:14:40Z
2022-09-30T09:16:00Z
2022-09-30T09:16:00Z
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug In the 2 lines listed below, a token is passed to `huggingface_hub` to get information from a dataset. If no token is provided, a "no-token" string is passed. What is the purpose of it ? If no real, I would prefer if the `None` value could be sent directly to be handle by `huggingface_hub`. I feel that here it is working because we assume the token will never be validated. https://github.com/huggingface/datasets/blob/5b23f58535f14cc4dd7649485bce1ccc836e7bca/src/datasets/load.py#L753 https://github.com/huggingface/datasets/blob/5b23f58535f14cc4dd7649485bce1ccc836e7bca/src/datasets/load.py#L1121 ## Expected results Pass `token=None` to `huggingface_hub`. ## Actual results `token="no-token"` is passed. ## Environment info `huggingface_hub v0.10.0dev`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4990/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4990/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7292
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7292/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7292/comments
https://api.github.com/repos/huggingface/datasets/issues/7292/events
https://github.com/huggingface/datasets/issues/7292
2,664,250,855
I_kwDODunzps6ezT3n
7,292
DataFilesNotFoundError for datasets `OpenMol/PubChemSFT`
{ "avatar_url": "https://avatars.githubusercontent.com/u/17878022?v=4", "events_url": "https://api.github.com/users/xnuohz/events{/privacy}", "followers_url": "https://api.github.com/users/xnuohz/followers", "following_url": "https://api.github.com/users/xnuohz/following{/other_user}", "gists_url": "https://api.github.com/users/xnuohz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xnuohz", "id": 17878022, "login": "xnuohz", "node_id": "MDQ6VXNlcjE3ODc4MDIy", "organizations_url": "https://api.github.com/users/xnuohz/orgs", "received_events_url": "https://api.github.com/users/xnuohz/received_events", "repos_url": "https://api.github.com/users/xnuohz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xnuohz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xnuohz/subscriptions", "type": "User", "url": "https://api.github.com/users/xnuohz", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! If the dataset owner uses `push_to_hub()` instead of `save_to_disk()` and upload the local files it will fix the issue.\r\nRight now `datasets` sees the train/test/valid pickle files but they are not supported file formats.", "Alternatively you can load the arrow file instead:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('OpenMol/PubChemSFT', data_files='stage1/*.arrow')\r\n```", "Thanks! I'll have a try." ]
2024-11-16T11:54:31Z
2024-11-19T00:53:00Z
2024-11-19T00:52:59Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/OpenMol/PubChemSFT ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset('OpenMol/PubChemSFT') ``` ### Expected behavior ``` --------------------------------------------------------------------------- DataFilesNotFoundError Traceback (most recent call last) Cell In[7], [line 2](vscode-notebook-cell:?execution_count=7&line=2) [1](vscode-notebook-cell:?execution_count=7&line=1) from datasets import load_dataset ----> [2](vscode-notebook-cell:?execution_count=7&line=2) dataset = load_dataset('OpenMol/PubChemSFT') File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) [2582](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2582) verification_mode = VerificationMode( [2583](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2583) (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS [2584](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2584) ) [2586](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2586) # Create a dataset builder -> [2587](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587) builder_instance = load_dataset_builder( [2588](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2588) path=path, [2589](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2589) name=name, [2590](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2590) data_dir=data_dir, [2591](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2591) data_files=data_files, [2592](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2592) cache_dir=cache_dir, [2593](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2593) features=features, [2594](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2594) download_config=download_config, [2595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2595) download_mode=download_mode, [2596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2596) revision=revision, [2597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2597) token=token, [2598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2598) storage_options=storage_options, [2599](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2599) trust_remote_code=trust_remote_code, [2600](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2600) _require_default_config_name=name is None, [2601](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2601) **config_kwargs, [2602](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2602) ) [2604](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2604) # Return iterable dataset in case of streaming [2605](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2605) if streaming: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) [2257](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2257) download_config = download_config.copy() if download_config else DownloadConfig() [2258](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2258) download_config.storage_options.update(storage_options) -> [2259](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259) dataset_module = dataset_module_factory( [2260](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2260) path, [2261](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2261) revision=revision, [2262](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2262) download_config=download_config, [2263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2263) download_mode=download_mode, [2264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2264) data_dir=data_dir, [2265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2265) data_files=data_files, [2266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2266) cache_dir=cache_dir, [2267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2267) trust_remote_code=trust_remote_code, [2268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2268) _require_default_config_name=_require_default_config_name, [2269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2269) _require_custom_configs=bool(config_kwargs), [2270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2270) ) [2271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2271) # Get dataset builder class from the processing script [2272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2272) builder_kwargs = dataset_module.builder_kwargs File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1902](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1902) raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None [1903](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1903) if isinstance(e1, (DataFilesNotFoundError, DatasetNotFoundError, EmptyDatasetError)): -> [1904](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904) raise e1 from None [1905](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1905) if isinstance(e1, FileNotFoundError): [1906](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1906) raise FileNotFoundError( [1907](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1907) f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " [1908](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1908) f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" [1909](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1909) ) from None File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1876](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1876) return HubDatasetModuleFactoryWithScript( [1877](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1877) path, [1878](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1878) revision=revision, (...) [1882](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1882) trust_remote_code=trust_remote_code, [1883](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1883) ).get_module() [1884](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1884) else: -> [1885](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885) return HubDatasetModuleFactoryWithoutScript( [1886](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1886) path, [1887](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1887) revision=revision, [1888](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1888) data_dir=data_dir, [1889](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1889) data_files=data_files, [1890](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1890) download_config=download_config, [1891](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1891) download_mode=download_mode, [1892](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1892) ).get_module() [1893](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1893) except Exception as e1: [1894](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1894) # All the attempts failed, before raising the error we should check if the module is already cached [1895](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1895) try: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270, in HubDatasetModuleFactoryWithoutScript.get_module(self) [1263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1263) patterns = get_data_patterns(base_path, download_config=self.download_config) [1264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1264) data_files = DataFilesDict.from_patterns( [1265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1265) patterns, [1266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1266) base_path=base_path, [1267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1267) allowed_extensions=ALL_ALLOWED_EXTENSIONS, [1268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1268) download_config=self.download_config, [1269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1269) ) -> [1270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270) module_name, default_builder_kwargs = infer_module_for_data_files( [1271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1271) data_files=data_files, [1272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1272) path=self.name, [1273](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1273) download_config=self.download_config, [1274](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1274) ) [1275](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1275) data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name]) [1276](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1276) # Collect metadata files if the module supports them File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597, in infer_module_for_data_files(data_files, path, download_config) [595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:595) raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") [596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:596) if not module_name: --> [597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597) raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) [598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:598) return module_name, default_builder_kwargs DataFilesNotFoundError: No (supported) data files found in OpenMol/PubChemSFT ``` ### Environment info ``` - `datasets` version: 3.1.0 - Platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.31 - Python version: 3.9.18 - `huggingface_hub` version: 0.25.2 - PyArrow version: 18.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2023.9.2 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/17878022?v=4", "events_url": "https://api.github.com/users/xnuohz/events{/privacy}", "followers_url": "https://api.github.com/users/xnuohz/followers", "following_url": "https://api.github.com/users/xnuohz/following{/other_user}", "gists_url": "https://api.github.com/users/xnuohz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xnuohz", "id": 17878022, "login": "xnuohz", "node_id": "MDQ6VXNlcjE3ODc4MDIy", "organizations_url": "https://api.github.com/users/xnuohz/orgs", "received_events_url": "https://api.github.com/users/xnuohz/received_events", "repos_url": "https://api.github.com/users/xnuohz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xnuohz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xnuohz/subscriptions", "type": "User", "url": "https://api.github.com/users/xnuohz", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7292/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7292/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6185
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6185/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6185/comments
https://api.github.com/repos/huggingface/datasets/issues/6185/events
https://github.com/huggingface/datasets/issues/6185
1,868,077,748
I_kwDODunzps5vWJq0
6,185
Error in saving the PIL image into *.arrow files using datasets.arrow_writer
{ "avatar_url": "https://avatars.githubusercontent.com/u/14247682?v=4", "events_url": "https://api.github.com/users/HaozheZhao/events{/privacy}", "followers_url": "https://api.github.com/users/HaozheZhao/followers", "following_url": "https://api.github.com/users/HaozheZhao/following{/other_user}", "gists_url": "https://api.github.com/users/HaozheZhao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HaozheZhao", "id": 14247682, "login": "HaozheZhao", "node_id": "MDQ6VXNlcjE0MjQ3Njgy", "organizations_url": "https://api.github.com/users/HaozheZhao/orgs", "received_events_url": "https://api.github.com/users/HaozheZhao/received_events", "repos_url": "https://api.github.com/users/HaozheZhao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HaozheZhao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HaozheZhao/subscriptions", "type": "User", "url": "https://api.github.com/users/HaozheZhao", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You can cast the `input_image` column to the `Image` type to fix the issue:\r\n```python\r\nds.cast_column(\"input_image\", datasets.Image())\r\n```" ]
2023-08-26T12:15:57Z
2023-08-29T14:49:58Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am using the ArrowWriter from datasets.arrow_writer to save a json-style file as arrow files. Within the dictionary, it contains a feature called "image" which is a list of PIL.Image objects. I am saving the json using the following script: ``` def save_to_arrow(path,temp): with ArrowWriter(path=path,writer_batch_size=20) as writer: writer.write_batch(temp) writer.finalize() ``` However, when I attempt to restore the dataset and use the ```Dataset.from_file(path)``` function to load the arrow file, there seems to be an issue with the PIL.Image object in the dataset. The list of PIL.Images appears as follows rather than a normal PIL.Image object: ![1693051705440](https://github.com/huggingface/datasets/assets/14247682/03b204c2-d0fa-4d19-beff-6f4d7b83c848) ### Steps to reproduce the bug 1. Storing the data json into arrow files: ``` def save_to_arrow(path,temp): with ArrowWriter(path=path,writer_batch_size=20) as writer: writer.write_batch(temp) writer.finalize() save_to_arrow( path, json_file ) ``` 2. try to load the arrow file into the Dataset object using the ```Dataset.from_file(path)``` ### Expected behavior Except to saving the contained "image" feature as a list PIL.Image objects as the arrow file. And I can restore the dataset from the file. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.17 - Python version: 3.8.17 - Huggingface_hub version: 0.16.4 - PyArrow version: 12.0.1 - Pandas version: 1.4.4
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6185/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6185/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7476
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7476/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7476/comments
https://api.github.com/repos/huggingface/datasets/issues/7476/events
https://github.com/huggingface/datasets/pull/7476
2,946,997,924
PR_kwDODunzps6QEbmO
7,476
Priotitize json
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7476). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-25T15:44:31Z
2025-03-25T15:47:00Z
2025-03-25T15:45:00Z
MEMBER
null
null
null
`datasets` should load the JSON data in https://huggingface.co/datasets/facebook/natural_reasoning, not the PDF
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7476/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7476/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7476.diff", "html_url": "https://github.com/huggingface/datasets/pull/7476", "merged_at": "2025-03-25T15:45:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/7476.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7476" }
https://api.github.com/repos/huggingface/datasets/issues/5836
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5836/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5836/comments
https://api.github.com/repos/huggingface/datasets/issues/5836/events
https://github.com/huggingface/datasets/pull/5836
1,702,773,316
PR_kwDODunzps5QIgzu
5,836
[docs] Custom decoding transforms
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5836). All of your documentation changes will be reflected on that endpoint.", "The error seems unrelated to the changes, so feel free to merge.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006562 / 0.011353 (-0.004791) | 0.004568 / 0.011008 (-0.006440) | 0.098151 / 0.038508 (0.059643) | 0.028117 / 0.023109 (0.005008) | 0.305442 / 0.275898 (0.029544) | 0.338288 / 0.323480 (0.014808) | 0.005012 / 0.007986 (-0.002973) | 0.003415 / 0.004328 (-0.000913) | 0.075022 / 0.004250 (0.070771) | 0.036869 / 0.037052 (-0.000183) | 0.301427 / 0.258489 (0.042937) | 0.348485 / 0.293841 (0.054644) | 0.030761 / 0.128546 (-0.097785) | 0.011461 / 0.075646 (-0.064185) | 0.321987 / 0.419271 (-0.097285) | 0.042885 / 0.043533 (-0.000648) | 0.300691 / 0.255139 (0.045552) | 0.333208 / 0.283200 (0.050008) | 0.090203 / 0.141683 (-0.051480) | 1.459744 / 1.452155 (0.007590) | 1.522960 / 1.492716 (0.030243) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213219 / 0.018006 (0.195213) | 0.408118 / 0.000490 (0.407629) | 0.003716 / 0.000200 (0.003516) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023060 / 0.037411 (-0.014351) | 0.097423 / 0.014526 (0.082897) | 0.103988 / 0.176557 (-0.072568) | 0.162793 / 0.737135 (-0.574343) | 0.108282 / 0.296338 (-0.188056) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431628 / 0.215209 (0.216419) | 4.300881 / 2.077655 (2.223226) | 2.058853 / 1.504120 (0.554733) | 1.897910 / 1.541195 (0.356715) | 1.991723 / 1.468490 (0.523233) | 0.699686 / 4.584777 (-3.885091) | 3.395004 / 3.745712 (-0.350708) | 1.841613 / 5.269862 (-3.428248) | 1.152347 / 4.565676 (-3.413330) | 0.082517 / 0.424275 (-0.341758) | 0.012323 / 0.007607 (0.004715) | 0.535812 / 0.226044 (0.309767) | 5.374103 / 2.268929 (3.105174) | 2.429662 / 55.444624 (-53.014962) | 2.097199 / 6.876477 (-4.779277) | 2.172625 / 2.142072 (0.030552) | 0.810156 / 4.805227 (-3.995071) | 0.151629 / 6.500664 (-6.349035) | 0.066528 / 0.075469 (-0.008941) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220667 / 1.841788 (-0.621121) | 13.696976 / 8.074308 (5.622668) | 14.042916 / 10.191392 (3.851524) | 0.129626 / 0.680424 (-0.550798) | 0.016593 / 0.534201 (-0.517607) | 0.383747 / 0.579283 (-0.195536) | 0.386872 / 0.434364 (-0.047492) | 0.456524 / 0.540337 (-0.083813) | 0.545033 / 1.386936 (-0.841903) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006361 / 0.011353 (-0.004992) | 0.004516 / 0.011008 (-0.006493) | 0.077155 / 0.038508 (0.038647) | 0.027239 / 0.023109 (0.004130) | 0.359892 / 0.275898 (0.083994) | 0.391994 / 0.323480 (0.068514) | 0.004950 / 0.007986 (-0.003036) | 0.003379 / 0.004328 (-0.000949) | 0.077057 / 0.004250 (0.072806) | 0.039562 / 0.037052 (0.002509) | 0.364244 / 0.258489 (0.105755) | 0.416033 / 0.293841 (0.122192) | 0.031049 / 0.128546 (-0.097497) | 0.011479 / 0.075646 (-0.064167) | 0.086479 / 0.419271 (-0.332793) | 0.039381 / 0.043533 (-0.004151) | 0.372143 / 0.255139 (0.117004) | 0.388569 / 0.283200 (0.105369) | 0.090954 / 0.141683 (-0.050728) | 1.540957 / 1.452155 (0.088802) | 1.596841 / 1.492716 (0.104125) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221130 / 0.018006 (0.203123) | 0.403728 / 0.000490 (0.403238) | 0.003172 / 0.000200 (0.002972) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024963 / 0.037411 (-0.012449) | 0.101065 / 0.014526 (0.086539) | 0.110846 / 0.176557 (-0.065710) | 0.158578 / 0.737135 (-0.578557) | 0.112235 / 0.296338 (-0.184104) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457320 / 0.215209 (0.242111) | 4.548094 / 2.077655 (2.470439) | 2.175376 / 1.504120 (0.671256) | 1.964755 / 1.541195 (0.423561) | 2.008128 / 1.468490 (0.539638) | 0.702448 / 4.584777 (-3.882329) | 3.437595 / 3.745712 (-0.308117) | 3.009871 / 5.269862 (-2.259990) | 1.558181 / 4.565676 (-3.007496) | 0.082568 / 0.424275 (-0.341707) | 0.012371 / 0.007607 (0.004764) | 0.550688 / 0.226044 (0.324644) | 5.534210 / 2.268929 (3.265282) | 2.649605 / 55.444624 (-52.795020) | 2.317293 / 6.876477 (-4.559184) | 2.351525 / 2.142072 (0.209453) | 0.808971 / 4.805227 (-3.996256) | 0.152737 / 6.500664 (-6.347927) | 0.068416 / 0.075469 (-0.007053) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340219 / 1.841788 (-0.501569) | 13.903388 / 8.074308 (5.829080) | 13.063477 / 10.191392 (2.872085) | 0.130216 / 0.680424 (-0.550208) | 0.016522 / 0.534201 (-0.517679) | 0.398946 / 0.579283 (-0.180337) | 0.382450 / 0.434364 (-0.051914) | 0.491007 / 0.540337 (-0.049330) | 0.577747 / 1.386936 (-0.809189) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#15c37ed142e4fbcb8c00ae62d4c71c84ce41959a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007812 / 0.011353 (-0.003541) | 0.005563 / 0.011008 (-0.005446) | 0.099372 / 0.038508 (0.060864) | 0.035629 / 0.023109 (0.012520) | 0.301457 / 0.275898 (0.025559) | 0.339136 / 0.323480 (0.015656) | 0.006152 / 0.007986 (-0.001834) | 0.005843 / 0.004328 (0.001515) | 0.075280 / 0.004250 (0.071030) | 0.052789 / 0.037052 (0.015736) | 0.301805 / 0.258489 (0.043316) | 0.347918 / 0.293841 (0.054078) | 0.036182 / 0.128546 (-0.092364) | 0.012655 / 0.075646 (-0.062991) | 0.334428 / 0.419271 (-0.084844) | 0.062746 / 0.043533 (0.019213) | 0.296932 / 0.255139 (0.041793) | 0.314115 / 0.283200 (0.030916) | 0.121291 / 0.141683 (-0.020392) | 1.453252 / 1.452155 (0.001097) | 1.564714 / 1.492716 (0.071997) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243810 / 0.018006 (0.225804) | 0.547129 / 0.000490 (0.546640) | 0.004666 / 0.000200 (0.004466) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028214 / 0.037411 (-0.009197) | 0.108878 / 0.014526 (0.094352) | 0.122313 / 0.176557 (-0.054243) | 0.182412 / 0.737135 (-0.554723) | 0.127014 / 0.296338 (-0.169324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423946 / 0.215209 (0.208737) | 4.207112 / 2.077655 (2.129457) | 2.048658 / 1.504120 (0.544538) | 1.843593 / 1.541195 (0.302398) | 1.952426 / 1.468490 (0.483936) | 0.712098 / 4.584777 (-3.872679) | 3.824971 / 3.745712 (0.079258) | 3.507141 / 5.269862 (-1.762721) | 1.868866 / 4.565676 (-2.696810) | 0.087895 / 0.424275 (-0.336380) | 0.012783 / 0.007607 (0.005176) | 0.524087 / 0.226044 (0.298042) | 5.246498 / 2.268929 (2.977570) | 2.495944 / 55.444624 (-52.948680) | 2.126779 / 6.876477 (-4.749698) | 2.315545 / 2.142072 (0.173472) | 0.859546 / 4.805227 (-3.945681) | 0.173457 / 6.500664 (-6.327208) | 0.067483 / 0.075469 (-0.007986) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.173851 / 1.841788 (-0.667937) | 15.091913 / 8.074308 (7.017605) | 14.640035 / 10.191392 (4.448643) | 0.168498 / 0.680424 (-0.511926) | 0.017513 / 0.534201 (-0.516688) | 0.425770 / 0.579283 (-0.153513) | 0.434248 / 0.434364 (-0.000116) | 0.504204 / 0.540337 (-0.036134) | 0.616885 / 1.386936 (-0.770051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007775 / 0.011353 (-0.003578) | 0.005153 / 0.011008 (-0.005855) | 0.075461 / 0.038508 (0.036953) | 0.034994 / 0.023109 (0.011885) | 0.372389 / 0.275898 (0.096491) | 0.397911 / 0.323480 (0.074431) | 0.006572 / 0.007986 (-0.001413) | 0.005549 / 0.004328 (0.001220) | 0.075101 / 0.004250 (0.070851) | 0.054014 / 0.037052 (0.016962) | 0.368964 / 0.258489 (0.110475) | 0.425353 / 0.293841 (0.131512) | 0.035546 / 0.128546 (-0.093001) | 0.012707 / 0.075646 (-0.062939) | 0.087418 / 0.419271 (-0.331853) | 0.046425 / 0.043533 (0.002893) | 0.363982 / 0.255139 (0.108843) | 0.376421 / 0.283200 (0.093221) | 0.105369 / 0.141683 (-0.036314) | 1.494408 / 1.452155 (0.042253) | 1.596783 / 1.492716 (0.104067) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258780 / 0.018006 (0.240773) | 0.533373 / 0.000490 (0.532883) | 0.000432 / 0.000200 (0.000232) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030687 / 0.037411 (-0.006725) | 0.110231 / 0.014526 (0.095705) | 0.123738 / 0.176557 (-0.052819) | 0.171999 / 0.737135 (-0.565137) | 0.127673 / 0.296338 (-0.168665) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448058 / 0.215209 (0.232849) | 4.459381 / 2.077655 (2.381726) | 2.234020 / 1.504120 (0.729900) | 2.038616 / 1.541195 (0.497421) | 2.123795 / 1.468490 (0.655305) | 0.702664 / 4.584777 (-3.882113) | 3.837133 / 3.745712 (0.091420) | 2.138574 / 5.269862 (-3.131287) | 1.375955 / 4.565676 (-3.189722) | 0.086996 / 0.424275 (-0.337280) | 0.012461 / 0.007607 (0.004854) | 0.557978 / 0.226044 (0.331934) | 5.648613 / 2.268929 (3.379685) | 2.777829 / 55.444624 (-52.666796) | 2.392424 / 6.876477 (-4.484052) | 2.482823 / 2.142072 (0.340750) | 0.851891 / 4.805227 (-3.953336) | 0.171335 / 6.500664 (-6.329329) | 0.065041 / 0.075469 (-0.010428) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.319697 / 1.841788 (-0.522091) | 15.748688 / 8.074308 (7.674380) | 13.397042 / 10.191392 (3.205650) | 0.166424 / 0.680424 (-0.514000) | 0.017755 / 0.534201 (-0.516446) | 0.424989 / 0.579283 (-0.154294) | 0.424705 / 0.434364 (-0.009659) | 0.494190 / 0.540337 (-0.046147) | 0.588315 / 1.386936 (-0.798622) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#15c37ed142e4fbcb8c00ae62d4c71c84ce41959a \"CML watermark\")\n" ]
2023-05-09T21:21:41Z
2023-05-15T07:36:12Z
2023-05-10T20:23:03Z
MEMBER
null
null
null
Adds custom decoding transform solution to the docs to fix #5782.
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5836/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5836/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5836.diff", "html_url": "https://github.com/huggingface/datasets/pull/5836", "merged_at": "2023-05-10T20:23:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/5836.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5836" }
https://api.github.com/repos/huggingface/datasets/issues/4556
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4556/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4556/comments
https://api.github.com/repos/huggingface/datasets/issues/4556/events
https://github.com/huggingface/datasets/issues/4556
1,283,462,881
I_kwDODunzps5MgBbh
4,556
Dataset Viewer issue for conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4", "events_url": "https://api.github.com/users/lewtun/events{/privacy}", "followers_url": "https://api.github.com/users/lewtun/followers", "following_url": "https://api.github.com/users/lewtun/following{/other_user}", "gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lewtun", "id": 26859204, "login": "lewtun", "node_id": "MDQ6VXNlcjI2ODU5MjA0", "organizations_url": "https://api.github.com/users/lewtun/orgs", "received_events_url": "https://api.github.com/users/lewtun/received_events", "repos_url": "https://api.github.com/users/lewtun/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lewtun/subscriptions", "type": "User", "url": "https://api.github.com/users/lewtun", "user_view_type": "public" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" } ]
null
[ "Fixed, thanks." ]
2022-06-24T08:55:18Z
2022-06-24T09:50:39Z
2022-06-24T09:50:39Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Link https://huggingface.co/datasets/conll2003/viewer/conll2003/test ### Description Seems like a cache problem with this config / split: ``` Server error Status code: 400 Exception: FileNotFoundError Message: [Errno 2] No such file or directory: '/cache/modules/datasets_modules/datasets/conll2003/__init__.py' ``` ### Owner No
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4556/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4556/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5204
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5204/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5204/comments
https://api.github.com/repos/huggingface/datasets/issues/5204/events
https://github.com/huggingface/datasets/issues/5204
1,437,221,259
I_kwDODunzps5VqkGL
5,204
`push_to_hub` not propagating `token` through `DownloadConfig`
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" } ]
null
[ "#self-assign", "@lhoestq can you close this issue as part of the recent #5205 merge? Thanks 🤗 ", "Thank you :)" ]
2022-11-05T23:32:20Z
2022-11-08T10:12:09Z
2022-11-08T10:12:08Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When trying to upload a new 🤗 Dataset to the Hub via Python, and providing the `token` as a parameter to the `Dataset.push_to_hub` function, it just works for the first time, assuming that the dataset didn't exist before. But when trying to run `Dataset.push_to_hub` again over the same dataset, instead of updating it, it throws a `ConnectionError` when trying to retrieve the `README.md` that may contain some metadata about the dataset, so as to also update it, but since the `token` is not propagated, the `DownloadConfig` provided to the `datasets.utils.file_utils.get_from_cache` function doesn't contain the `use_auth_token` value set to `token`, it's just using the default one which is None/False. So on, when uploading a dataset via Python with `push_to_hub` with the `token` as a parameter with the HuggingFace API Token as value, it can just be uploaded when the dataset is new, otherwise it fails with to `ConnectionError` due to the `token` not being propagated as `use_auth_token`. ### Steps to reproduce the bug Let's create a new dataset in our HF account via Python as: ```python from datasets import Dataset data = {"a": [1, 2, 3], "b": [4, 5, 6]} ds = Dataset.from_dict(data) ds.push_to_hub(repo_id=<HF_USERNAME>/<HF_DATASET>, private=private, token=<HF_TOKEN_HERE>) ``` When we create the `Dataset` for the first time it works and there are no issues, but when trying to actually upload a new version of the same dataset (same name under the same username), we encounter the following issue: ```python from datasets import Dataset data = {"a": [1, 2, 3], "b": [4, 5, 6]} ds = Dataset.from_dict(data) ds.push_to_hub(repo_id=<HF_USERNAME>/<HF_DATASET>, private=private, token=<HF_TOKEN_HERE>) >>> ConnectionError: Couldn't reach https://huggingface.co/datasets/alvarobartt/demo/resolve/main/README.md (ConnectionError('Unauthorized for URL https://huggingface.co/datasets/<HF_USERNAME>/<HF_DATASET>/resolve/main/README.md. Please use the parameter `use_auth_token=True` after logging in with `huggingface-cli login`')) ``` ### Expected behavior Ideally, the `token` parameter provided to `push_to_hub` should be propagated and used to download the `README.md` when trying to update a `Dataset`, instead of throwing that exception, so that the authentication can be done directly through code without running `huggingface-cli login`as mentioned at https://huggingface.co/docs/datasets/upload_dataset#upload-with-python. ### Environment info - `datasets` version: 2.6.1 - Platform: macOS-13.0-arm64-arm-64bit - Python version: 3.10.8 - PyArrow version: 10.0.0 - Pandas version: 1.5.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5204/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5204/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5542
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5542/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5542/comments
https://api.github.com/repos/huggingface/datasets/issues/5542/events
https://github.com/huggingface/datasets/pull/5542
1,588,633,724
PR_kwDODunzps5KLjMl
5,542
Avoid saving sparse ChunkedArrays in pyarrow tables
{ "avatar_url": "https://avatars.githubusercontent.com/u/6591505?v=4", "events_url": "https://api.github.com/users/marioga/events{/privacy}", "followers_url": "https://api.github.com/users/marioga/followers", "following_url": "https://api.github.com/users/marioga/following{/other_user}", "gists_url": "https://api.github.com/users/marioga/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marioga", "id": 6591505, "login": "marioga", "node_id": "MDQ6VXNlcjY1OTE1MDU=", "organizations_url": "https://api.github.com/users/marioga/orgs", "received_events_url": "https://api.github.com/users/marioga/received_events", "repos_url": "https://api.github.com/users/marioga/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marioga/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marioga/subscriptions", "type": "User", "url": "https://api.github.com/users/marioga", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008452 / 0.011353 (-0.002901) | 0.004500 / 0.011008 (-0.006508) | 0.100103 / 0.038508 (0.061595) | 0.029395 / 0.023109 (0.006286) | 0.297740 / 0.275898 (0.021842) | 0.359132 / 0.323480 (0.035652) | 0.007045 / 0.007986 (-0.000941) | 0.003415 / 0.004328 (-0.000913) | 0.076389 / 0.004250 (0.072138) | 0.036612 / 0.037052 (-0.000440) | 0.308773 / 0.258489 (0.050284) | 0.345701 / 0.293841 (0.051860) | 0.033230 / 0.128546 (-0.095317) | 0.011463 / 0.075646 (-0.064183) | 0.322382 / 0.419271 (-0.096890) | 0.041194 / 0.043533 (-0.002339) | 0.300685 / 0.255139 (0.045546) | 0.323076 / 0.283200 (0.039876) | 0.087330 / 0.141683 (-0.054353) | 1.508661 / 1.452155 (0.056506) | 1.531776 / 1.492716 (0.039059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188391 / 0.018006 (0.170385) | 0.400102 / 0.000490 (0.399612) | 0.002006 / 0.000200 (0.001806) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023232 / 0.037411 (-0.014179) | 0.097313 / 0.014526 (0.082787) | 0.106244 / 0.176557 (-0.070313) | 0.141180 / 0.737135 (-0.595955) | 0.107871 / 0.296338 (-0.188468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418610 / 0.215209 (0.203400) | 4.162243 / 2.077655 (2.084588) | 1.884300 / 1.504120 (0.380180) | 1.694197 / 1.541195 (0.153002) | 1.727740 / 1.468490 (0.259250) | 0.692129 / 4.584777 (-3.892648) | 3.364230 / 3.745712 (-0.381482) | 1.871507 / 5.269862 (-3.398355) | 1.261520 / 4.565676 (-3.304156) | 0.083258 / 0.424275 (-0.341017) | 0.012479 / 0.007607 (0.004872) | 0.528802 / 0.226044 (0.302757) | 5.281029 / 2.268929 (3.012100) | 2.402222 / 55.444624 (-53.042403) | 2.064954 / 6.876477 (-4.811522) | 2.027044 / 2.142072 (-0.115029) | 0.813124 / 4.805227 (-3.992103) | 0.149397 / 6.500664 (-6.351267) | 0.065032 / 0.075469 (-0.010437) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239192 / 1.841788 (-0.602595) | 13.529913 / 8.074308 (5.455605) | 14.253251 / 10.191392 (4.061859) | 0.165145 / 0.680424 (-0.515278) | 0.028367 / 0.534201 (-0.505834) | 0.395121 / 0.579283 (-0.184162) | 0.405372 / 0.434364 (-0.028992) | 0.472201 / 0.540337 (-0.068137) | 0.560620 / 1.386936 (-0.826316) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006368 / 0.011353 (-0.004985) | 0.004542 / 0.011008 (-0.006466) | 0.076361 / 0.038508 (0.037853) | 0.026893 / 0.023109 (0.003784) | 0.341210 / 0.275898 (0.065312) | 0.378377 / 0.323480 (0.054898) | 0.004833 / 0.007986 (-0.003153) | 0.003358 / 0.004328 (-0.000970) | 0.075516 / 0.004250 (0.071265) | 0.038841 / 0.037052 (0.001788) | 0.342230 / 0.258489 (0.083741) | 0.384317 / 0.293841 (0.090476) | 0.031874 / 0.128546 (-0.096672) | 0.011651 / 0.075646 (-0.063995) | 0.085816 / 0.419271 (-0.333455) | 0.042389 / 0.043533 (-0.001144) | 0.340678 / 0.255139 (0.085539) | 0.367441 / 0.283200 (0.084241) | 0.089748 / 0.141683 (-0.051935) | 1.487358 / 1.452155 (0.035203) | 1.615049 / 1.492716 (0.122333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220933 / 0.018006 (0.202926) | 0.397162 / 0.000490 (0.396673) | 0.002336 / 0.000200 (0.002136) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025004 / 0.037411 (-0.012407) | 0.100877 / 0.014526 (0.086351) | 0.110624 / 0.176557 (-0.065932) | 0.152042 / 0.737135 (-0.585094) | 0.112951 / 0.296338 (-0.183388) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441071 / 0.215209 (0.225862) | 4.419471 / 2.077655 (2.341817) | 2.082976 / 1.504120 (0.578856) | 1.884023 / 1.541195 (0.342828) | 1.950590 / 1.468490 (0.482100) | 0.706104 / 4.584777 (-3.878673) | 3.329825 / 3.745712 (-0.415887) | 1.868850 / 5.269862 (-3.401011) | 1.178785 / 4.565676 (-3.386892) | 0.083910 / 0.424275 (-0.340365) | 0.012296 / 0.007607 (0.004689) | 0.542998 / 0.226044 (0.316953) | 5.429944 / 2.268929 (3.161015) | 2.502285 / 55.444624 (-52.942339) | 2.150507 / 6.876477 (-4.725970) | 2.170492 / 2.142072 (0.028420) | 0.813410 / 4.805227 (-3.991817) | 0.152310 / 6.500664 (-6.348354) | 0.066999 / 0.075469 (-0.008470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290839 / 1.841788 (-0.550949) | 14.089491 / 8.074308 (6.015183) | 13.704922 / 10.191392 (3.513530) | 0.130089 / 0.680424 (-0.550335) | 0.017000 / 0.534201 (-0.517201) | 0.381173 / 0.579283 (-0.198110) | 0.389271 / 0.434364 (-0.045093) | 0.461700 / 0.540337 (-0.078637) | 0.556428 / 1.386936 (-0.830508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cfa9be08f17519ff3deeae63cb998f4be7616e0 \"CML watermark\")\n" ]
2023-02-17T01:52:38Z
2023-02-17T19:20:49Z
2023-02-17T11:12:32Z
CONTRIBUTOR
null
null
null
Fixes https://github.com/huggingface/datasets/issues/5541
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5542/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5542/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5542.diff", "html_url": "https://github.com/huggingface/datasets/pull/5542", "merged_at": "2023-02-17T11:12:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/5542.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5542" }
https://api.github.com/repos/huggingface/datasets/issues/6446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6446/comments
https://api.github.com/repos/huggingface/datasets/issues/6446/events
https://github.com/huggingface/datasets/issues/6446
2,007,092,708
I_kwDODunzps53oc3k
6,446
Speech Commands v2 dataset doesn't match AST-v2 config
{ "avatar_url": "https://avatars.githubusercontent.com/u/18024303?v=4", "events_url": "https://api.github.com/users/vymao/events{/privacy}", "followers_url": "https://api.github.com/users/vymao/followers", "following_url": "https://api.github.com/users/vymao/following{/other_user}", "gists_url": "https://api.github.com/users/vymao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vymao", "id": 18024303, "login": "vymao", "node_id": "MDQ6VXNlcjE4MDI0MzAz", "organizations_url": "https://api.github.com/users/vymao/orgs", "received_events_url": "https://api.github.com/users/vymao/received_events", "repos_url": "https://api.github.com/users/vymao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vymao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vymao/subscriptions", "type": "User", "url": "https://api.github.com/users/vymao", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can use `.align_labels_with_mapping` on the dataset to align the labels with the model config.\r\n\r\nRegarding the number of labels, only the special `_silence_` label corresponding to noise is missing, which is consistent with the model paper (reports training on 35 labels). You can run a `.filter` to drop it.\r\n\r\nPS: You should create a discussion on a model/dataset repo (on the Hub) for these kinds of questions", "Thanks, will keep that in mind. But I tried running `dataset_aligned = dataset.align_labels_with_mapping(model.config.id2label, 'label')`, and received this error: \r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/Users/victor/anaconda3/envs/transformers-v2/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 5928, in align_labels_with_mapping\r\n label2id = {k.lower(): v for k, v in label2id.items()}\r\n File \"/Users/victor/anaconda3/envs/transformers-v2/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 5928, in <dictcomp>\r\n label2id = {k.lower(): v for k, v in label2id.items()}\r\nAttributeError: 'int' object has no attribute 'lower'\r\n```\r\nMy guess is that the dataset `label` column is purely an int ID, and I'm not sure there's a way to identify which class label the ID belongs to in the dataset easily.", "Replacing `model.config.id2label` with `model.config.label2id` should fix the issue.\r\n\r\nSo, the full code to align the labels with the model config is as follows:\r\n```python\r\nfrom datasets import load_dataset\r\nfrom transformers import AutoFeatureExtractor, AutoModelForAudioClassification\r\n\r\n# extractor = AutoFeatureExtractor.from_pretrained(\"MIT/ast-finetuned-speech-commands-v2\")\r\nmodel = AutoModelForAudioClassification.from_pretrained(\"MIT/ast-finetuned-speech-commands-v2\")\r\n\r\nds = load_dataset(\"speech_commands\", \"v0.02\")\r\nds = ds.filter(lambda label: label != ds[\"train\"].features[\"label\"].str2int(\"_silence_\"), input_columns=\"label\")\r\nds = ds.align_labels_with_mapping(model.config.label2id, \"label\")\r\n```" ]
2023-11-22T20:46:36Z
2023-11-28T14:46:08Z
2023-11-28T14:46:08Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug [According](https://huggingface.co/MIT/ast-finetuned-speech-commands-v2) to `MIT/ast-finetuned-speech-commands-v2`, the model was trained on the Speech Commands v2 dataset. However, while the model config says the model should have 35 class labels, the dataset itself has 36 class labels. Moreover, the class labels themselves don't match between the model config and the dataset. It is difficult to reproduce the data used to fine tune `MIT/ast-finetuned-speech-commands-v2`. ### Steps to reproduce the bug ``` >>> model = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-speech-commands-v2") >>> model.config.id2label {0: 'backward', 1: 'follow', 2: 'five', 3: 'bed', 4: 'zero', 5: 'on', 6: 'learn', 7: 'two', 8: 'house', 9: 'tree', 10: 'dog', 11: 'stop', 12: 'seven', 13: 'eight', 14: 'down', 15: 'six', 16: 'forward', 17: 'cat', 18: 'right', 19: 'visual', 20: 'four', 21: 'wow', 22: 'no', 23: 'nine', 24: 'off', 25: 'three', 26: 'left', 27: 'marvin', 28: 'yes', 29: 'up', 30: 'sheila', 31: 'happy', 32: 'bird', 33: 'go', 34: 'one'} >>> dataset = load_dataset("speech_commands", "v0.02", split="test") >>> torch.unique(torch.Tensor(dataset['label'])) tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35.]) ``` If you try to explore the [dataset itself](https://huggingface.co/datasets/speech_commands/viewer/v0.02/test), you can see that the id to label does not match what is provided by `model.config.id2label`. ### Expected behavior The labels should match completely and there should be the same number of label classes between the model config and the dataset itself. ### Environment info datasets = 2.14.6, transformers = 4.33.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6446/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6446/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6569
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6569/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6569/comments
https://api.github.com/repos/huggingface/datasets/issues/6569/events
https://github.com/huggingface/datasets/issues/6569
2,070,251,122
I_kwDODunzps57ZYZy
6,569
WebDataset ignores features defined in YAML or passed to load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[]
2024-01-08T11:24:21Z
2024-01-11T16:11:06Z
2024-01-11T16:11:05Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
we should not override if the features exist already https://github.com/huggingface/datasets/blob/d26abadce0b884db32382b92422d8a6aa997d40a/src/datasets/packaged_modules/webdataset/webdataset.py#L78-L85
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6569/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6569/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6654
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6654/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6654/comments
https://api.github.com/repos/huggingface/datasets/issues/6654/events
https://github.com/huggingface/datasets/issues/6654
2,126,939,358
I_kwDODunzps5-xoTe
6,654
Batched dataset map throws exception that cannot cast fixed length array to Sequence
{ "avatar_url": "https://avatars.githubusercontent.com/u/1029671?v=4", "events_url": "https://api.github.com/users/keesjandevries/events{/privacy}", "followers_url": "https://api.github.com/users/keesjandevries/followers", "following_url": "https://api.github.com/users/keesjandevries/following{/other_user}", "gists_url": "https://api.github.com/users/keesjandevries/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/keesjandevries", "id": 1029671, "login": "keesjandevries", "node_id": "MDQ6VXNlcjEwMjk2NzE=", "organizations_url": "https://api.github.com/users/keesjandevries/orgs", "received_events_url": "https://api.github.com/users/keesjandevries/received_events", "repos_url": "https://api.github.com/users/keesjandevries/repos", "site_admin": false, "starred_url": "https://api.github.com/users/keesjandevries/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/keesjandevries/subscriptions", "type": "User", "url": "https://api.github.com/users/keesjandevries", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! This issue has been fixed by https://github.com/huggingface/datasets/pull/6283\r\n\r\nCan you try again with the new release 2.17.0 ?\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\n", "Amazing! It's indeed fixed now. Thanks!" ]
2024-02-09T11:23:19Z
2024-02-12T08:26:53Z
2024-02-12T08:26:53Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I encountered a TypeError when batch processing a dataset with Sequence features in datasets package version 2.16.1. The error arises from a mismatch in handling fixed-size list arrays during the map function execution. Debugging pinpoints the issue to an if-statement in datasets/table.py, line 2093, failing to correctly process sequence lengths. ### Steps to reproduce the bug Create virtual environment and activate ``` virtualenv venv source venv/bin/activate ``` Then install the datasets package (I'm using the latest version) ``` pip install datasets==2.16.1 ``` Then run ```python # bug.py from datasets import Dataset from datasets.features import Features, Sequence, Value data = { "num": [[1, 2], [3, 4]], } features = Features({'num': Sequence(feature=Value(dtype='int32'), length=2)}) dataset = Dataset.from_dict(data, features=features) dataset.map(lambda x: x, batched=True, batch_size=1) ``` ### Expected behavior I get the following stack trace ``` Map: 50%|█████ | 1/2 [00:00<00:00, 423.92 examples/s] Traceback (most recent call last): File "/PATH/TO/BUG_PORT/bug.py", line 9, in <module> dataset.map(lambda x: x, batched=True, batch_size=1) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3093, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3489, in _map_single writer.write_batch(batch) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 551, in write_batch array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/PATH/TO/BUG_PORT/venv/lib/python3.9/site-packages/datasets/table.py", line 2111, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") TypeError: Couldn't cast array of type fixed_size_list<item: int32>[2] to Sequence(feature=Value(dtype='int32', id=None), length=2, id=None) ``` After some debugging, I found that the if-statement that is actually failing is line 2093 in `datasets/table.py` ```python # datasets/table.py ... 2093 if feature.length * len(array) == len(array_values): 2094 return pa.FixedSizeListArray.from_arrays(_c(array_values, feature.feature), feature.length) ... ``` ### Environment info Platform: MacOS Datasets version: datasets==2.16.1 Python version: 3.9.6
{ "avatar_url": "https://avatars.githubusercontent.com/u/1029671?v=4", "events_url": "https://api.github.com/users/keesjandevries/events{/privacy}", "followers_url": "https://api.github.com/users/keesjandevries/followers", "following_url": "https://api.github.com/users/keesjandevries/following{/other_user}", "gists_url": "https://api.github.com/users/keesjandevries/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/keesjandevries", "id": 1029671, "login": "keesjandevries", "node_id": "MDQ6VXNlcjEwMjk2NzE=", "organizations_url": "https://api.github.com/users/keesjandevries/orgs", "received_events_url": "https://api.github.com/users/keesjandevries/received_events", "repos_url": "https://api.github.com/users/keesjandevries/repos", "site_admin": false, "starred_url": "https://api.github.com/users/keesjandevries/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/keesjandevries/subscriptions", "type": "User", "url": "https://api.github.com/users/keesjandevries", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6654/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6654/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6726
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6726/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6726/comments
https://api.github.com/repos/huggingface/datasets/issues/6726/events
https://github.com/huggingface/datasets/issues/6726
2,177,097,232
I_kwDODunzps6Bw94Q
6,726
Profiling for HF Filesystem shows there are easy performance gains to be made
{ "avatar_url": "https://avatars.githubusercontent.com/u/159512661?v=4", "events_url": "https://api.github.com/users/awgr/events{/privacy}", "followers_url": "https://api.github.com/users/awgr/followers", "following_url": "https://api.github.com/users/awgr/following{/other_user}", "gists_url": "https://api.github.com/users/awgr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/awgr", "id": 159512661, "login": "awgr", "node_id": "U_kgDOCYH4VQ", "organizations_url": "https://api.github.com/users/awgr/orgs", "received_events_url": "https://api.github.com/users/awgr/received_events", "repos_url": "https://api.github.com/users/awgr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/awgr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/awgr/subscriptions", "type": "User", "url": "https://api.github.com/users/awgr", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "FWIW I debugged this while waiting for it to go", "Oh I forgot to mention you can also cache resolve_pattern, and that seemed to also substantially improves things, if you want to load a dataset twice for whatever reason." ]
2024-03-09T07:08:45Z
2024-03-09T07:11:08Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug # Let's make it faster First, an evidence... ![image](https://github.com/huggingface/datasets/assets/159512661/a703a82c-43a0-426c-9d99-24c563d70965) Figure 1: CProfile for loading 3 files from cerebras/SlimPajama-627B train split, and 3 files from test split using streaming=True. X axis is 1106 seconds long. See? It's pretty slow. What is resolve pattern doing? ``` resolve_pattern called with **/train/** and hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543 resolve_pattern took 20.815081119537354 seconds ``` Makes sense. How to improve it? ## Bigger project, biggest payoff Databricks (and consequently, spark) store a compressed manifest file of the files contained in the remote filesystem. Then, you download one tiny file, decompress it, and all the operations are local instead of this shenanigans. It seems pretty straightforward to make dataset uploads compute a manifest and upload it alongside their data. This would make resolution time so fast that nobody would ever think about it again. It also means you either need to have the uploader compute it _every time_, or have a hook that computes it. ## Smaller project, immediate payoff: Be diligent in avoiding deepcopy Revise the _ls_tree method to avoid deepcopy: ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... for path_info in tree: if isinstance(path_info, RepoFile): cache_path_info = { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: cache_path_info = { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(cache_path_info) return copy.deepcopy(out) # copy to not let users modify the dircache ``` Observe this deepcopy at the end. It is making a copy of a very simple data structure. We do not need to copy. We can simply generate the data structure twice instead. It will be much faster. ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... def make_cache_path_info(path_info): if isinstance(path_info, RepoFile): return { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: return { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } for path_info in tree: cache_path_info = make_cache_path_info(path_info) out_cache_path_info = make_cache_path_info(path_info) # copy to not let users modify the dircache parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(out_cache_path_info) return out ``` Note there is no longer a deepcopy in this method. We have replaced it with generating the output twice. This is substantially faster. For me, the entire resolution went from 1100s to 360s. ## Medium project, medium payoff After the above change, we have this profile: ![image](https://github.com/huggingface/datasets/assets/159512661/db7b83da-2dfc-4c2e-abab-0ede9477876c) Figure 2: x-axis is 355 seconds. Note that globbing and _ls_tree deep copy is gone. No surprise there. It's much faster now, but we still spend ~187seconds in get_fs_token_paths. Well get_fs_token_paths is part of fsspec. We don't need to fix that because we can trust their developers to write high performance code. Probably the caller has misconfigured something. Let's take a look at the storage_options being provided to the filesystem that is constructed during this call. Ah yes, streaming_download_manager::_prepare_single_hop_path_and_storage_options. We know streaming download manager is not compatible with async right now, but we really need this specific part of the code to be async. We're spending so much time checking isDir on the remote filesystem, it's a huge waste. We can make the call easily 20-30x faster by using async, removing this performance bottleneck almost entirely (and reducing the total time of this part of the code to <30s. There is no reason to block async isDir calls for streaming. I'm not going to mess w/ this one myself; I didn't write the streaming impl, and I don't know how it works, but I know the isDir check can be async. ### Steps to reproduce the bug ``` with cProfile.Profile() as pr: pr.enable() # Begin Data if not os.path.exists(data_cache_dir): os.makedirs(data_cache_dir, exist_ok=True) training_dataset = load_dataset(training_dataset_name, split=training_split, cache_dir=data_cache_dir, streaming=True).take(training_slice) eval_dataset = load_dataset(eval_dataset_name, split=eval_split, cache_dir=data_cache_dir, streaming=True).take(eval_slice) # End Data pr.disable() pr.create_stats() if not os.path.exists(profiling_path): os.makedirs(profiling_path, exist_ok=True) pr.dump_stats(os.path.join(profiling_path, "cprofile.prof")) ``` run this code for "cerebras/SlimPajama-627B" and whatever other params ### Expected behavior Something better. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6726/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6726/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7215
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7215/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7215/comments
https://api.github.com/repos/huggingface/datasets/issues/7215/events
https://github.com/huggingface/datasets/issues/7215
2,579,942,939
I_kwDODunzps6Zxs4b
7,215
Iterable dataset map with explicit features causes slowdown for Sequence features
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-10-10T22:08:20Z
2024-10-10T22:10:32Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When performing map, it's nice to be able to pass the new feature type, and indeed required by interleave and concatenate datasets. However, this can cause a major slowdown for certain types of array features due to the features being re-encoded. This is separate to the slowdown reported in #7206 ### Steps to reproduce the bug ``` from datasets import Dataset, Features, Array3D, Sequence, Value import numpy as np import time features=Features(**{"array0": Sequence(feature=Value("float32"), length=-1), "array1": Sequence(feature=Value("float32"), length=-1)}) dataset = Dataset.from_dict({f"array{i}": [np.zeros((x,), dtype=np.float32) for x in [5000,10000]*25] for i in range(2)}, features=features) ``` ``` ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy").map(lambda x: x) t0 = time.time() for ex in ds: pass t1 = time.time() ``` ~1.5 s on main ``` ds = dataset.to_iterable_dataset() ds = ds.with_format("numpy").map(lambda x: x, features=features) t0 = time.time() for ex in ds: pass t1 = time.time() ``` ~ 3 s on main ### Expected behavior I'm not 100% sure whether passing new feature types to formatted outputs of map should be supported or not, but assuming it should, then there should be a cost-free way to specify the new feature type - knowing feature type is required by interleave_datasets and concatenate_datasets for example ### Environment info 3.0.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7215/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7215/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4994
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4994/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4994/comments
https://api.github.com/repos/huggingface/datasets/issues/4994/events
https://github.com/huggingface/datasets/issues/4994
1,379,084,015
I_kwDODunzps5SMybv
4,994
delete the hardcoded license list in `datasets`
{ "avatar_url": "https://avatars.githubusercontent.com/u/326577?v=4", "events_url": "https://api.github.com/users/julien-c/events{/privacy}", "followers_url": "https://api.github.com/users/julien-c/followers", "following_url": "https://api.github.com/users/julien-c/following{/other_user}", "gists_url": "https://api.github.com/users/julien-c/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/julien-c", "id": 326577, "login": "julien-c", "node_id": "MDQ6VXNlcjMyNjU3Nw==", "organizations_url": "https://api.github.com/users/julien-c/orgs", "received_events_url": "https://api.github.com/users/julien-c/received_events", "repos_url": "https://api.github.com/users/julien-c/repos", "site_admin": false, "starred_url": "https://api.github.com/users/julien-c/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/julien-c/subscriptions", "type": "User", "url": "https://api.github.com/users/julien-c", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2022-09-20T09:14:41Z
2022-09-22T11:45:47Z
2022-09-22T11:45:47Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
> Feel free to delete the license list in `datasets` [...] > > Also FYI in #4926 I also removed all the validation steps anyway (language, license, types etc.) _Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/4930#issuecomment-1238401662_ > [...], in my opinion we can just delete this file from `datasets`, the validation is happening hub-side anyways now? _Originally posted by @julien-c in https://github.com/huggingface/datasets/issues/4930#issuecomment-1238390659_
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/4994/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4994/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4701
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4701/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4701/comments
https://api.github.com/repos/huggingface/datasets/issues/4701/events
https://github.com/huggingface/datasets/pull/4701
1,307,689,625
PR_kwDODunzps47jeE9
4,701
Added more information in the README about contributors of the Arabic Speech Corpus
{ "avatar_url": "https://avatars.githubusercontent.com/u/2845798?v=4", "events_url": "https://api.github.com/users/nawarhalabi/events{/privacy}", "followers_url": "https://api.github.com/users/nawarhalabi/followers", "following_url": "https://api.github.com/users/nawarhalabi/following{/other_user}", "gists_url": "https://api.github.com/users/nawarhalabi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nawarhalabi", "id": 2845798, "login": "nawarhalabi", "node_id": "MDQ6VXNlcjI4NDU3OTg=", "organizations_url": "https://api.github.com/users/nawarhalabi/orgs", "received_events_url": "https://api.github.com/users/nawarhalabi/received_events", "repos_url": "https://api.github.com/users/nawarhalabi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nawarhalabi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nawarhalabi/subscriptions", "type": "User", "url": "https://api.github.com/users/nawarhalabi", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2022-07-18T09:48:03Z
2022-07-28T10:33:05Z
2022-07-28T10:33:05Z
CONTRIBUTOR
null
null
null
Added more information in the README about contributors and encouraged reading the thesis for more infos
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4701/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4701/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4701.diff", "html_url": "https://github.com/huggingface/datasets/pull/4701", "merged_at": "2022-07-28T10:33:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/4701.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4701" }