url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
list
state
string
locked
bool
assignee
dict
assignees
list
milestone
dict
comments
list
created_at
timestamp[ns, tz=UTC]
updated_at
timestamp[ns, tz=UTC]
closed_at
timestamp[ns, tz=UTC]
author_association
string
type
float64
active_lock_reason
float64
sub_issues_summary
dict
body
string
closed_by
dict
reactions
dict
timeline_url
string
performed_via_github_app
float64
state_reason
string
draft
float64
pull_request
dict
https://api.github.com/repos/huggingface/datasets/issues/5004
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5004/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5004/comments
https://api.github.com/repos/huggingface/datasets/issues/5004/events
https://github.com/huggingface/datasets/pull/5004
1,380,860,606
PR_kwDODunzps4_WQck
5,004
Remove license tag file and validation
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-21T12:35:14Z
2022-09-22T11:47:41Z
2022-09-22T11:45:46Z
MEMBER
null
null
null
As requested, we are removing the validation of the licenses from `datasets` because this is done on the Hub. Fix #4994. Related to: - #4926, which is removing all the validation from `datasets`
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5004/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5004/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5004.diff", "html_url": "https://github.com/huggingface/datasets/pull/5004", "merged_at": "2022-09-22T11:45:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/5004.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5004" }
https://api.github.com/repos/huggingface/datasets/issues/6475
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6475/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6475/comments
https://api.github.com/repos/huggingface/datasets/issues/6475/events
https://github.com/huggingface/datasets/issues/6475
2,027,373,734
I_kwDODunzps5410Sm
6,475
laion2B-en failed to load on Windows with PrefetchVirtualMemory failed
{ "avatar_url": "https://avatars.githubusercontent.com/u/2229300?v=4", "events_url": "https://api.github.com/users/doctorpangloss/events{/privacy}", "followers_url": "https://api.github.com/users/doctorpangloss/followers", "following_url": "https://api.github.com/users/doctorpangloss/following{/other_user}", "gists_url": "https://api.github.com/users/doctorpangloss/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/doctorpangloss", "id": 2229300, "login": "doctorpangloss", "node_id": "MDQ6VXNlcjIyMjkzMDA=", "organizations_url": "https://api.github.com/users/doctorpangloss/orgs", "received_events_url": "https://api.github.com/users/doctorpangloss/received_events", "repos_url": "https://api.github.com/users/doctorpangloss/repos", "site_admin": false, "starred_url": "https://api.github.com/users/doctorpangloss/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/doctorpangloss/subscriptions", "type": "User", "url": "https://api.github.com/users/doctorpangloss", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "~~You will see this error if the cache dir filepath contains relative `..` paths. Use `os.path.realpath(_CACHE_DIR)` before passing it to the `load_dataset` function.~~", "This is a real issue and not related to paths.", "Based on the StackOverflow answer, this causes the error to go away:\r\n```diff\r\ndiff --git a/table.py b/table.py\r\n--- a/table.py\t\r\n+++ b/table.py\t(date 1701824849806)\r\n@@ -47,7 +47,7 @@\r\n \r\n \r\n def _memory_mapped_record_batch_reader_from_file(filename: str) -> pa.RecordBatchStreamReader:\r\n- memory_mapped_stream = pa.memory_map(filename)\r\n+ memory_mapped_stream = pa.memory_map(filename, \"r+\")\r\n return pa.ipc.open_stream(memory_mapped_stream)\r\n```\r\nBut now loading the dataset goes very, very slowly, which is unexpected.", "I don't really comprehend what it is that `datasets` gave me when it downloaded the laion2B-en dataset, because nothing can seemingly read these 1024 .arrow files it is retrieving. Not `polars`, not `pyarrow`, it's not an `ipc` file, it's not a `parquet` file...", "Hi! \r\n\r\nInstead of generating one (potentially large) Arrow file, we shard the generated data into 500 MB shards because memory-mapping large Arrow files can be problematic on some systems. Maybe deleting the dataset's cache and increasing the shard size (controlled with the `datasets.config.MAX_SHARD_SIZE` variable; e.g. to \"4GB\") can fix the issue for you.\r\n\r\n> I don't really comprehend what it is that `datasets` gave me when it downloaded the laion2B-en dataset, because nothing can seemingly read these 1024 .arrow files it is retrieving. Not `polars`, not `pyarrow`, it's not an `ipc` file, it's not a `parquet` file...\r\n\r\nOur `.arrow` files are in the [Arrow streaming format](https://arrow.apache.org/docs/python/ipc.html#using-streams). To load them as a `polars` DataFrame, do the following:\r\n```python\r\ndf = pl.from_arrow(Dataset.from_from(path_to_arrow_file).data.table)\r\n```\r\n\r\nWe plan to switch to the IPC version eventually.\r\n", "Hmm, I have a feeling this works fine on Linux, and is a real bug for however `datasets` is doing the sharding on Windows. I will follow up, but I think this is a real bug." ]
2023-12-06T00:07:34Z
2023-12-06T23:26:23Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have downloaded laion2B-en, and I'm receiving the following error trying to load it: ``` Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 128/128 [00:00<00:00, 1173.79it/s] Traceback (most recent call last): File "D:\Art-Workspace\src\artworkspace\tokeneval\compute_frequencies.py", line 31, in <module> count = compute_frequencies() ^^^^^^^^^^^^^^^^^^^^^ File "D:\Art-Workspace\src\artworkspace\tokeneval\compute_frequencies.py", line 17, in compute_frequencies laion2b_dataset = load_dataset("laion/laion2B-en", split="train", cache_dir=_CACHE_DIR, keep_in_memory=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\load.py", line 2165, in load_dataset ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\builder.py", line 1187, in as_dataset datasets = map_nested( ^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\utils\py_utils.py", line 456, in map_nested return function(data_struct) ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\builder.py", line 1217, in _build_single_dataset ds = self._as_dataset( ^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\builder.py", line 1291, in _as_dataset dataset_kwargs = ArrowReader(cache_dir, self.info).read( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\arrow_reader.py", line 244, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\arrow_reader.py", line 265, in read_files pa_table = self._read_files(files, in_memory=in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\arrow_reader.py", line 200, in _read_files pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\arrow_reader.py", line 336, in _get_table_from_filename table = ArrowReader.read_table(filename, in_memory=in_memory) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\arrow_reader.py", line 357, in read_table return table_cls.from_file(filename) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\table.py", line 1059, in from_file table = _memory_mapped_arrow_table_from_file(filename) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\bberman\Documents\Art-Workspace\venv\Lib\site-packages\datasets\table.py", line 66, in _memory_mapped_arrow_table_from_file pa_table = opened_stream.read_all() ^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow\ipc.pxi", line 757, in pyarrow.lib.RecordBatchReader.read_all File "pyarrow\error.pxi", line 91, in pyarrow.lib.check_status OSError: [WinError 8] PrefetchVirtualMemory failed. Detail: [Windows error 8] Not enough memory resources are available to process this command. ``` This error is probably a red herring: https://stackoverflow.com/questions/50263929/numpy-memmap-returns-not-enough-memory-while-there-are-plenty-available In other words, the issue is related to asking for a memory mapping of length N > M the length of the file on Windows. This gracefully succeeds on Linux. I have 1024 arrow files in my cache instead of 128 like in the repository for it. Probably related. I don't know why `datasets` reorganized/rewrote the dataset in my cache to be 1024 slices instead of the original 128. ### Steps to reproduce the bug ``` # as a huggingface developer, you may already have laion2B-en somewhere _CACHE_DIR = "." from datasets import load_dataset load_dataset("laion/laion2B-en", split="train", cache_dir=_CACHE_DIR, keep_in_memory=False) ``` ### Expected behavior This should correctly load as a memory mapped Arrow dataset. ### Environment info - `datasets` version: 2.15.0 - Platform: Windows-10-10.0.20348-SP0 (this is windows 2022) - Python version: 3.11.4 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.2 - `fsspec` version: 2023.10.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/2229300?v=4", "events_url": "https://api.github.com/users/doctorpangloss/events{/privacy}", "followers_url": "https://api.github.com/users/doctorpangloss/followers", "following_url": "https://api.github.com/users/doctorpangloss/following{/other_user}", "gists_url": "https://api.github.com/users/doctorpangloss/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/doctorpangloss", "id": 2229300, "login": "doctorpangloss", "node_id": "MDQ6VXNlcjIyMjkzMDA=", "organizations_url": "https://api.github.com/users/doctorpangloss/orgs", "received_events_url": "https://api.github.com/users/doctorpangloss/received_events", "repos_url": "https://api.github.com/users/doctorpangloss/repos", "site_admin": false, "starred_url": "https://api.github.com/users/doctorpangloss/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/doctorpangloss/subscriptions", "type": "User", "url": "https://api.github.com/users/doctorpangloss", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6475/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6475/timeline
null
reopened
null
null
https://api.github.com/repos/huggingface/datasets/issues/6760
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6760/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6760/comments
https://api.github.com/repos/huggingface/datasets/issues/6760/events
https://github.com/huggingface/datasets/issues/6760
2,212,288,122
I_kwDODunzps6D3NZ6
6,760
Load codeparrot/apps raising UnicodeDecodeError in datasets-2.18.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/17897916?v=4", "events_url": "https://api.github.com/users/yucc-leon/events{/privacy}", "followers_url": "https://api.github.com/users/yucc-leon/followers", "following_url": "https://api.github.com/users/yucc-leon/following{/other_user}", "gists_url": "https://api.github.com/users/yucc-leon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yucc-leon", "id": 17897916, "login": "yucc-leon", "node_id": "MDQ6VXNlcjE3ODk3OTE2", "organizations_url": "https://api.github.com/users/yucc-leon/orgs", "received_events_url": "https://api.github.com/users/yucc-leon/received_events", "repos_url": "https://api.github.com/users/yucc-leon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yucc-leon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yucc-leon/subscriptions", "type": "User", "url": "https://api.github.com/users/yucc-leon", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The same error with mteb datasets.", "Unfortunately, I'm unable to reproduce this error locally or on Colab.", "Here is the requirements.txt from a clean virtual environment (managed by conda) where I only install `datasets` by \r\n`pip install datasets`. \r\nThe pip list:\r\n```\r\naiohttp==3.9.3\r\naiosignal==1.3.1\r\nattrs==23.2.0\r\ncertifi==2024.2.2\r\ncharset-normalizer==3.3.2\r\ndatasets==2.18.0\r\ndill==0.3.8\r\nfilelock==3.13.3\r\nfrozenlist==1.4.1\r\nfsspec==2024.2.0\r\nhuggingface-hub==0.22.2\r\nidna==3.6\r\nmultidict==6.0.5\r\nmultiprocess==0.70.16\r\nnumpy==1.26.4\r\npackaging==24.0\r\npandas==2.2.1\r\npyarrow==15.0.2\r\npyarrow-hotfix==0.6\r\npython-dateutil==2.9.0.post0\r\npytz==2024.1\r\nPyYAML==6.0.1\r\nrequests==2.31.0\r\nsix==1.16.0\r\ntqdm==4.66.2\r\ntyping_extensions==4.11.0\r\ntzdata==2024.1\r\nurllib3==2.2.1\r\nxxhash==3.4.1\r\nyarl==1.9.4\r\n```\r\nAnd the error can be reproduced.\r\n\r\nDowngrading to datasets==2.14.6 changes some packages' versions:\r\n\r\n```\r\nSuccessfully installed datasets-2.14.6 dill-0.3.7 fsspec-2023.10.0 multiprocess-0.70.15\r\n```\r\nand the dataset can be downloaded and loaded. \r\n\r\nThen I upgrade the version to 2.18.0 again; now the dataset can be loaded with such a line:\r\n```Using the latest cached version of the module from /home/xxx/.cache/huggingface/modules/datasets_modules/datasets/codeparrot--apps/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5 (last modified on Sun Apr 7 09:06:43 2024) since it couldn't be found locally at codeparrot/apps, or remotely on the Hugging Face Hub. ```\r\n\r\nSo the latest version works wrong when requesting the dataset info. \r\n\r\n**But if you cannot reproduce this, I may ignore some detailed information: I use `HF_ENDPOINT=https://hf-mirror.com` for some reason (if not use this I cannot connect to huggingface resources) and the error occurs when requesting the dataset's info card.** \r\nMaybe the error is caused by this environment variable.\r\nI'll open an issue in the author's repo now.", "> Here is the requirements.txt from a clean virtual environment (managed by conda) where I only install `datasets` by `pip install datasets`. The pip list:\r\n> \r\n> ```\r\n> aiohttp==3.9.3\r\n> aiosignal==1.3.1\r\n> attrs==23.2.0\r\n> certifi==2024.2.2\r\n> charset-normalizer==3.3.2\r\n> datasets==2.18.0\r\n> dill==0.3.8\r\n> filelock==3.13.3\r\n> frozenlist==1.4.1\r\n> fsspec==2024.2.0\r\n> huggingface-hub==0.22.2\r\n> idna==3.6\r\n> multidict==6.0.5\r\n> multiprocess==0.70.16\r\n> numpy==1.26.4\r\n> packaging==24.0\r\n> pandas==2.2.1\r\n> pyarrow==15.0.2\r\n> pyarrow-hotfix==0.6\r\n> python-dateutil==2.9.0.post0\r\n> pytz==2024.1\r\n> PyYAML==6.0.1\r\n> requests==2.31.0\r\n> six==1.16.0\r\n> tqdm==4.66.2\r\n> typing_extensions==4.11.0\r\n> tzdata==2024.1\r\n> urllib3==2.2.1\r\n> xxhash==3.4.1\r\n> yarl==1.9.4\r\n> ```\r\n> \r\n> And the error can be reproduced.\r\n> \r\n> Downgrading to datasets==2.14.6 changes some packages' versions:\r\n> \r\n> ```\r\n> Successfully installed datasets-2.14.6 dill-0.3.7 fsspec-2023.10.0 multiprocess-0.70.15\r\n> ```\r\n> \r\n> and the dataset can be downloaded and loaded.\r\n> \r\n> Then I upgrade the version to 2.18.0 again; now the dataset can be loaded with such a line: `Using the latest cached version of the module from /home/xxx/.cache/huggingface/modules/datasets_modules/datasets/codeparrot--apps/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5 (last modified on Sun Apr 7 09:06:43 2024) since it couldn't be found locally at codeparrot/apps, or remotely on the Hugging Face Hub. `\r\n> \r\n> So the latest version works wrong when requesting the dataset info.\r\n> \r\n> **But if you cannot reproduce this, I may ignore some detailed information: I use `HF_ENDPOINT=https://hf-mirror.com` for some reason (if not use this I cannot connect to huggingface resources) and the error occurs when requesting the dataset's info card.** Maybe the error is caused by this environment variable. I'll open an issue in the author's repo now.\r\n\r\nThis is useful and my same error is settled!!!" ]
2024-03-28T03:44:26Z
2024-06-19T07:06:40Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug This happens with datasets-2.18.0; I downgraded the version to 2.14.6 fixing this temporarily. ``` Traceback (most recent call last): File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 2228, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 1879, in dataset_module_factory raise e1 from None File "/home/xxx/miniconda3/envs/py310/lib/python3.10/site-packages/datasets/load.py", line 1831, in dataset_module_factory can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read() File "/home/xxx/miniconda3/envs/py310/lib/python3.10/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte ``` ### Steps to reproduce the bug 1. Using Python3.10/3.11 2. Install datasets-2.18.0 3. test with ``` from datasets import load_dataset dataset = load_dataset("codeparrot/apps") ``` ### Expected behavior Normally it should manage to download and load the dataset without such error. ### Environment info Ubuntu, Python3.10/3.11
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6760/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6760/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6260/comments
https://api.github.com/repos/huggingface/datasets/issues/6260/events
https://github.com/huggingface/datasets/issues/6260
1,912,593,466
I_kwDODunzps5x_9w6
6,260
REUSE_DATASET_IF_EXISTS don't work
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi! Unfortunately, the current behavior is to delete the downloaded data when this error happens. So, I've opened a PR that removes the problematic import to avoid losing data due to `apache_beam` not being installed (we host the preprocessed version of `natual_questions` on the HF GCS, so requiring `apache_beam` in that case doesn't make sense)", "Thanks for your reply. I met another question that I set `export HF_DATASETS_CACHE=/data/lxy/.cache` , but each time I run load_datasets, the datasets module still looking for NQ in the wrong default cache dir '/home/lxy/.cache' 。How to avoid this incorrect behavior. I am sure HF_DATASETS_CACHE was set correctly since I use echo & to check it.\r\n![image](https://github.com/huggingface/datasets/assets/88258534/e7029f27-b9f9-496c-8948-6234ef695646)\r\nby the way I delete the file in '/home/lxy/.cache' since I found there has some kb size file seems useless.", "You need to set this variable before the `datasets` import. Then, you can use `import datasets; datasets.config.HF_DATASETS_CACHE` to verify the cache location." ]
2023-09-26T03:02:16Z
2023-09-28T18:23:36Z
2023-09-28T18:23:36Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I use the following code to download natural_question dataset. Even though I have completely download it, the next time I run this code, the new download procedure will start and cover the original /data/lxy/NQ config=datasets.DownloadConfig(resume_download=True,max_retries=100,cache_dir=r'/data/lxy/NQ',download_desc='NQ') data=datasets.load_dataset('natural_questions',cache_dir=r'/data/lxy/NQ',download_config=config,download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) --- Since I don't have apache_beam installed, it throw a exception. After I pip install apache_beam ,the download restart.. ![image](https://github.com/huggingface/datasets/assets/88258534/f28ce7fe-29ea-4348-b87f-e69182a8bd41) ### Steps to reproduce the bug run this two line code config=datasets.DownloadConfig(resume_download=True,max_retries=100,cache_dir=r'/data/lxy/NQ',download_desc='NQ') data=datasets.load_dataset('natural_questions',cache_dir=r'/data/lxy/NQ',download_config=config,download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS) ### Expected behavior Download behavior can be correctly follow DownloadMode ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-3.10.0-1160.88.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.9.17 - Huggingface_hub version: 0.16.4 - PyArrow version: 11.0.0 - Pandas version: 2.0.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6260/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6260/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5471/comments
https://api.github.com/repos/huggingface/datasets/issues/5471/events
https://github.com/huggingface/datasets/pull/5471
1,558,557,545
PR_kwDODunzps5InPA7
5,471
Add num_test_batches option
{ "avatar_url": "https://avatars.githubusercontent.com/u/22614925?v=4", "events_url": "https://api.github.com/users/amyeroberts/events{/privacy}", "followers_url": "https://api.github.com/users/amyeroberts/followers", "following_url": "https://api.github.com/users/amyeroberts/following{/other_user}", "gists_url": "https://api.github.com/users/amyeroberts/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amyeroberts", "id": 22614925, "login": "amyeroberts", "node_id": "MDQ6VXNlcjIyNjE0OTI1", "organizations_url": "https://api.github.com/users/amyeroberts/orgs", "received_events_url": "https://api.github.com/users/amyeroberts/received_events", "repos_url": "https://api.github.com/users/amyeroberts/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amyeroberts/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amyeroberts/subscriptions", "type": "User", "url": "https://api.github.com/users/amyeroberts", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "I thought this issue was resolved in my parallel `to_tf_dataset` PR! I changed the default `num_test_batches` in `_get_output_signature` to 20 and used a test batch size of 1 to maximize variance to detect shorter samples. I think it's still okay to have this PR, though - but I'd use the new value of 20 as the default!", "@Rocketknight1 You're right - I didn't have the most recent changes to the default values. Updated now to 20! I still think it would be good to have it configurable from the `to_tf_dataset` call so the user has the option to either make it more robust if many samples are needed, or faster if only one is needed. That, and I selfishly want it for faster tests. ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010441 / 0.011353 (-0.000912) | 0.005605 / 0.011008 (-0.005404) | 0.115712 / 0.038508 (0.077204) | 0.040907 / 0.023109 (0.017797) | 0.357673 / 0.275898 (0.081775) | 0.415427 / 0.323480 (0.091947) | 0.008827 / 0.007986 (0.000842) | 0.006069 / 0.004328 (0.001740) | 0.088985 / 0.004250 (0.084735) | 0.048461 / 0.037052 (0.011409) | 0.362065 / 0.258489 (0.103576) | 0.393643 / 0.293841 (0.099802) | 0.043844 / 0.128546 (-0.084703) | 0.013757 / 0.075646 (-0.061889) | 0.390993 / 0.419271 (-0.028278) | 0.053612 / 0.043533 (0.010079) | 0.348688 / 0.255139 (0.093549) | 0.377818 / 0.283200 (0.094619) | 0.115762 / 0.141683 (-0.025920) | 1.751826 / 1.452155 (0.299672) | 1.773326 / 1.492716 (0.280609) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220668 / 0.018006 (0.202662) | 0.536830 / 0.000490 (0.536340) | 0.000467 / 0.000200 (0.000267) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031500 / 0.037411 (-0.005911) | 0.125796 / 0.014526 (0.111270) | 0.137539 / 0.176557 (-0.039017) | 0.184651 / 0.737135 (-0.552484) | 0.145707 / 0.296338 (-0.150632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465876 / 0.215209 (0.250667) | 4.637711 / 2.077655 (2.560056) | 2.132335 / 1.504120 (0.628215) | 1.862593 / 1.541195 (0.321398) | 1.961701 / 1.468490 (0.493211) | 0.800551 / 4.584777 (-3.784226) | 4.453321 / 3.745712 (0.707608) | 4.291030 / 5.269862 (-0.978832) | 2.256685 / 4.565676 (-2.308991) | 0.097787 / 0.424275 (-0.326488) | 0.014116 / 0.007607 (0.006509) | 0.593395 / 0.226044 (0.367351) | 5.885774 / 2.268929 (3.616845) | 2.666224 / 55.444624 (-52.778400) | 2.276673 / 6.876477 (-4.599803) | 2.358190 / 2.142072 (0.216117) | 0.981398 / 4.805227 (-3.823829) | 0.196997 / 6.500664 (-6.303668) | 0.077020 / 0.075469 (0.001550) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365646 / 1.841788 (-0.476142) | 17.418157 / 8.074308 (9.343849) | 15.838749 / 10.191392 (5.647357) | 0.172749 / 0.680424 (-0.507675) | 0.033711 / 0.534201 (-0.500490) | 0.513306 / 0.579283 (-0.065978) | 0.503201 / 0.434364 (0.068837) | 0.608954 / 0.540337 (0.068616) | 0.734697 / 1.386936 (-0.652239) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008749 / 0.011353 (-0.002604) | 0.005738 / 0.011008 (-0.005270) | 0.084946 / 0.038508 (0.046438) | 0.040386 / 0.023109 (0.017277) | 0.398698 / 0.275898 (0.122800) | 0.435843 / 0.323480 (0.112363) | 0.006812 / 0.007986 (-0.001174) | 0.004567 / 0.004328 (0.000239) | 0.085857 / 0.004250 (0.081607) | 0.054791 / 0.037052 (0.017738) | 0.400381 / 0.258489 (0.141892) | 0.460313 / 0.293841 (0.166472) | 0.042299 / 0.128546 (-0.086247) | 0.014128 / 0.075646 (-0.061519) | 0.100497 / 0.419271 (-0.318775) | 0.058356 / 0.043533 (0.014823) | 0.399774 / 0.255139 (0.144635) | 0.428210 / 0.283200 (0.145011) | 0.122084 / 0.141683 (-0.019598) | 1.683519 / 1.452155 (0.231365) | 1.798024 / 1.492716 (0.305307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255058 / 0.018006 (0.237051) | 0.488831 / 0.000490 (0.488342) | 0.008349 / 0.000200 (0.008149) | 0.000183 / 0.000054 (0.000129) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034870 / 0.037411 (-0.002541) | 0.131818 / 0.014526 (0.117292) | 0.143607 / 0.176557 (-0.032949) | 0.197413 / 0.737135 (-0.539722) | 0.148970 / 0.296338 (-0.147368) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.492831 / 0.215209 (0.277622) | 4.963085 / 2.077655 (2.885430) | 2.367803 / 1.504120 (0.863683) | 2.145535 / 1.541195 (0.604340) | 2.289452 / 1.468490 (0.820962) | 0.812691 / 4.584777 (-3.772086) | 4.554068 / 3.745712 (0.808356) | 2.377126 / 5.269862 (-2.892735) | 1.537243 / 4.565676 (-3.028433) | 0.099742 / 0.424275 (-0.324534) | 0.014757 / 0.007607 (0.007149) | 0.628714 / 0.226044 (0.402670) | 6.240197 / 2.268929 (3.971268) | 2.961929 / 55.444624 (-52.482696) | 2.533436 / 6.876477 (-4.343040) | 2.642619 / 2.142072 (0.500547) | 0.976002 / 4.805227 (-3.829225) | 0.197912 / 6.500664 (-6.302752) | 0.078767 / 0.075469 (0.003297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.522863 / 1.841788 (-0.318925) | 18.210504 / 8.074308 (10.136196) | 15.664172 / 10.191392 (5.472780) | 0.178510 / 0.680424 (-0.501914) | 0.020852 / 0.534201 (-0.513349) | 0.501757 / 0.579283 (-0.077526) | 0.496542 / 0.434364 (0.062178) | 0.624958 / 0.540337 (0.084620) | 0.746960 / 1.386936 (-0.639976) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#da7f09ed65411c5941de45c372a8aa8d5e55b431 \"CML watermark\")\n" ]
2023-01-26T18:09:40Z
2023-01-27T18:16:45Z
2023-01-27T18:08:36Z
CONTRIBUTOR
null
null
null
`to_tf_dataset` calls can be very costly because of the number of test batches drawn during `_get_output_signature`. The test batches are draw in order to estimate the shapes when creating the tensorflow dataset. This is necessary when the shapes can be irregular, but not in cases when the tensor shapes are the same across all samples. This PR adds an option to change the number of batches drawn, so the user can speed this conversion up. Running the following, and modifying `num_test_batches` ``` import time from datasets import load_dataset from transformers import DefaultDataCollator data_collator = DefaultDataCollator() dataset = load_dataset("beans") dataset = dataset["train"].with_format("np") start = time.time() dataset = dataset.to_tf_dataset( columns=["image"], label_cols=["label"], batch_size=8, collate_fn=data_collator, num_test_batches=NUM_TEST_BATCHES, ) end = time.time() print(end - start) ``` NUM_TEST_BATCHES=200: 0.8197s NUM_TEST_BATCHES=50: 0.3070s NUM_TEST_BATCHES=2: 0.1417s NUM_TEST_BATCHES=1: 0.1352s
{ "avatar_url": "https://avatars.githubusercontent.com/u/22614925?v=4", "events_url": "https://api.github.com/users/amyeroberts/events{/privacy}", "followers_url": "https://api.github.com/users/amyeroberts/followers", "following_url": "https://api.github.com/users/amyeroberts/following{/other_user}", "gists_url": "https://api.github.com/users/amyeroberts/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amyeroberts", "id": 22614925, "login": "amyeroberts", "node_id": "MDQ6VXNlcjIyNjE0OTI1", "organizations_url": "https://api.github.com/users/amyeroberts/orgs", "received_events_url": "https://api.github.com/users/amyeroberts/received_events", "repos_url": "https://api.github.com/users/amyeroberts/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amyeroberts/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amyeroberts/subscriptions", "type": "User", "url": "https://api.github.com/users/amyeroberts", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5471/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5471.diff", "html_url": "https://github.com/huggingface/datasets/pull/5471", "merged_at": "2023-01-27T18:08:36Z", "patch_url": "https://github.com/huggingface/datasets/pull/5471.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5471" }
https://api.github.com/repos/huggingface/datasets/issues/6833
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6833/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6833/comments
https://api.github.com/repos/huggingface/datasets/issues/6833/events
https://github.com/huggingface/datasets/issues/6833
2,259,731,274
I_kwDODunzps6GsMNK
6,833
Super slow iteration with trivial custom transform
{ "avatar_url": "https://avatars.githubusercontent.com/u/2780075?v=4", "events_url": "https://api.github.com/users/xslittlegrass/events{/privacy}", "followers_url": "https://api.github.com/users/xslittlegrass/followers", "following_url": "https://api.github.com/users/xslittlegrass/following{/other_user}", "gists_url": "https://api.github.com/users/xslittlegrass/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xslittlegrass", "id": 2780075, "login": "xslittlegrass", "node_id": "MDQ6VXNlcjI3ODAwNzU=", "organizations_url": "https://api.github.com/users/xslittlegrass/orgs", "received_events_url": "https://api.github.com/users/xslittlegrass/received_events", "repos_url": "https://api.github.com/users/xslittlegrass/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xslittlegrass/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xslittlegrass/subscriptions", "type": "User", "url": "https://api.github.com/users/xslittlegrass", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Similar issue in text process \r\n\r\n```python\r\n\r\ntokenizer=AutoTokenizer.from_pretrained(model_dir[args.model])\r\ntrain_dataset=datasets.load_from_disk(dataset_dir[args.dataset],keep_in_memory=True)['train']\r\ntrain_dataset=train_dataset.map(partial(dname2func[args.dataset],tokenizer=tokenizer),batched=True,num_proc =50,remove_columns=train_dataset.features.keys(),desc='tokenize',keep_in_memory=True)\r\n\r\n```\r\nAfter this train_dataset will be like\r\n```python\r\nDataset({\r\n features: ['input_ids', 'labels'],\r\n num_rows: 51760\r\n})\r\n```\r\nIn which input_ids and labels are both List[int]\r\nHowever, per iter on dataset cost 7.412479639053345s β€¦β€¦οΌŸ\r\n```python\r\nfor j in tqdm(range(len(train_dataset)),desc='first stage'):\r\n input_id,label=train_dataset['input_ids'][j],train_dataset['labels'][j]\r\n\r\n``` ", "The transform currently replaces the numpy formatting.\r\n\r\nSo you're back to copying data to long python lists which is super slow.\r\n\r\nIt would be cool for the transform to not remove the formatting in this case, but this requires a few changes in the lib", "This also (somewhat surprisingly) affects iterable datasets, making map very challenging to use for data with large arrays, unless there is some workaround?", "For iterable datasets you should be able to do this without slow downs\r\n```python\r\nds = ds.with_format(\"arrow\").map(...)\r\n```\r\n\r\nI haven't tried with \"numpy\" though, maybe there is a step that does Arrow -> List -> NumPy instead of Arrow -> NumPy directly. If it's the case it would be cool to avoid that", "Thanks! this works for me\r\n\r\nHowever, it raises an error if batched=False and map batch_size isn't explicitly set to 1 due to map's default batch_size affecting the batch size of the RebatchedArrowExamplesIterable - is this a bug?", "Thanks for the fix @alex-hh !", "opened a new issue for the numpy slowdown #7206 " ]
2024-04-23T20:40:59Z
2024-10-08T15:41:18Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Dataset is 10X slower when applying trivial transforms: ``` import time import numpy as np from datasets import Dataset, Features, Array2D a = np.zeros((800, 800)) a = np.stack([a] * 1000) features = Features({"a": Array2D(shape=(800, 800), dtype="uint8")}) ds1 = Dataset.from_dict({"a": a}, features=features).with_format('numpy') def transform(batch): return batch ds2 = ds1.with_transform(transform) %time sum(1 for _ in ds1) %time sum(1 for _ in ds2) ``` ``` CPU times: user 472 ms, sys: 319 ms, total: 791 ms Wall time: 794 ms CPU times: user 9.32 s, sys: 443 ms, total: 9.76 s Wall time: 9.78 s ``` In my real code I'm using set_transform to apply some post-processing on-the-fly for the 2d array, but it significantly slows down the dataset even if the transform itself is trivial. Related issue: https://github.com/huggingface/datasets/issues/5841 ### Steps to reproduce the bug Use code in the description to reproduce. ### Expected behavior Trivial custom transform in the example should not slowdown the dataset iteration. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.0-79-generic-x86_64-with-glibc2.35 - Python version: 3.11.4 - `huggingface_hub` version: 0.20.2 - PyArrow version: 15.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2023.12.2
null
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/6833/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6833/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6965
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6965/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6965/comments
https://api.github.com/repos/huggingface/datasets/issues/6965/events
https://github.com/huggingface/datasets/pull/6965
2,348,653,895
PR_kwDODunzps5yOyNG
6,965
Improve skip take shuffling and distributed
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6965). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005879 / 0.011353 (-0.005474) | 0.004144 / 0.011008 (-0.006865) | 0.063327 / 0.038508 (0.024819) | 0.032577 / 0.023109 (0.009468) | 0.242936 / 0.275898 (-0.032962) | 0.269882 / 0.323480 (-0.053598) | 0.003339 / 0.007986 (-0.004647) | 0.002901 / 0.004328 (-0.001428) | 0.049163 / 0.004250 (0.044912) | 0.047072 / 0.037052 (0.010019) | 0.261120 / 0.258489 (0.002631) | 0.287857 / 0.293841 (-0.005984) | 0.029688 / 0.128546 (-0.098858) | 0.012702 / 0.075646 (-0.062944) | 0.204040 / 0.419271 (-0.215231) | 0.036012 / 0.043533 (-0.007521) | 0.244210 / 0.255139 (-0.010929) | 0.267600 / 0.283200 (-0.015599) | 0.019627 / 0.141683 (-0.122056) | 1.103770 / 1.452155 (-0.348385) | 1.197710 / 1.492716 (-0.295006) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101683 / 0.018006 (0.083677) | 0.311825 / 0.000490 (0.311335) | 0.000236 / 0.000200 (0.000036) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019642 / 0.037411 (-0.017769) | 0.061618 / 0.014526 (0.047092) | 0.075237 / 0.176557 (-0.101320) | 0.122250 / 0.737135 (-0.614886) | 0.076087 / 0.296338 (-0.220251) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285120 / 0.215209 (0.069911) | 2.811527 / 2.077655 (0.733872) | 1.457961 / 1.504120 (-0.046159) | 1.333819 / 1.541195 (-0.207376) | 1.387863 / 1.468490 (-0.080627) | 0.730828 / 4.584777 (-3.853949) | 2.417224 / 3.745712 (-1.328488) | 2.994842 / 5.269862 (-2.275020) | 1.922079 / 4.565676 (-2.643598) | 0.087486 / 0.424275 (-0.336789) | 0.005211 / 0.007607 (-0.002396) | 0.335585 / 0.226044 (0.109541) | 3.297664 / 2.268929 (1.028735) | 1.809391 / 55.444624 (-53.635233) | 1.501646 / 6.876477 (-5.374831) | 1.567573 / 2.142072 (-0.574500) | 0.800816 / 4.805227 (-4.004411) | 0.134204 / 6.500664 (-6.366460) | 0.043156 / 0.075469 (-0.032313) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982955 / 1.841788 (-0.858833) | 12.256850 / 8.074308 (4.182542) | 9.821500 / 10.191392 (-0.369892) | 0.143739 / 0.680424 (-0.536685) | 0.014425 / 0.534201 (-0.519776) | 0.302718 / 0.579283 (-0.276565) | 0.267746 / 0.434364 (-0.166618) | 0.340036 / 0.540337 (-0.200301) | 0.436211 / 1.386936 (-0.950725) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006136 / 0.011353 (-0.005217) | 0.004125 / 0.011008 (-0.006883) | 0.050341 / 0.038508 (0.011833) | 0.034547 / 0.023109 (0.011438) | 0.270237 / 0.275898 (-0.005661) | 0.294503 / 0.323480 (-0.028977) | 0.004528 / 0.007986 (-0.003458) | 0.003103 / 0.004328 (-0.001225) | 0.048817 / 0.004250 (0.044566) | 0.041301 / 0.037052 (0.004249) | 0.279461 / 0.258489 (0.020972) | 0.319376 / 0.293841 (0.025535) | 0.032733 / 0.128546 (-0.095813) | 0.012426 / 0.075646 (-0.063221) | 0.060543 / 0.419271 (-0.358729) | 0.034015 / 0.043533 (-0.009518) | 0.267387 / 0.255139 (0.012248) | 0.288590 / 0.283200 (0.005390) | 0.019697 / 0.141683 (-0.121986) | 1.145994 / 1.452155 (-0.306161) | 1.198122 / 1.492716 (-0.294595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099091 / 0.018006 (0.081085) | 0.313767 / 0.000490 (0.313277) | 0.000220 / 0.000200 (0.000020) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023219 / 0.037411 (-0.014192) | 0.083609 / 0.014526 (0.069084) | 0.089529 / 0.176557 (-0.087028) | 0.131025 / 0.737135 (-0.606110) | 0.091947 / 0.296338 (-0.204391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283711 / 0.215209 (0.068502) | 2.811702 / 2.077655 (0.734047) | 1.577720 / 1.504120 (0.073600) | 1.415700 / 1.541195 (-0.125495) | 1.436097 / 1.468490 (-0.032393) | 0.732090 / 4.584777 (-3.852687) | 0.990552 / 3.745712 (-2.755160) | 2.887319 / 5.269862 (-2.382543) | 1.923707 / 4.565676 (-2.641969) | 0.079361 / 0.424275 (-0.344915) | 0.005520 / 0.007607 (-0.002087) | 0.336684 / 0.226044 (0.110639) | 3.325342 / 2.268929 (1.056413) | 1.911853 / 55.444624 (-53.532771) | 1.621450 / 6.876477 (-5.255027) | 1.807964 / 2.142072 (-0.334109) | 0.813958 / 4.805227 (-3.991269) | 0.137564 / 6.500664 (-6.363100) | 0.043151 / 0.075469 (-0.032318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002775 / 1.841788 (-0.839013) | 12.526367 / 8.074308 (4.452058) | 10.426992 / 10.191392 (0.235600) | 0.134902 / 0.680424 (-0.545522) | 0.016726 / 0.534201 (-0.517475) | 0.303549 / 0.579283 (-0.275734) | 0.129334 / 0.434364 (-0.305030) | 0.339254 / 0.540337 (-0.201084) | 0.456845 / 1.386936 (-0.930091) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5464b32ce03739431235c13f314732201abcfac \"CML watermark\")\n" ]
2024-06-12T12:30:27Z
2024-06-24T15:22:21Z
2024-06-24T15:16:16Z
MEMBER
null
null
null
set the right behavior of skip/take depending on whether it's called after or before shuffle/split_by_node
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6965/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6965/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6965.diff", "html_url": "https://github.com/huggingface/datasets/pull/6965", "merged_at": "2024-06-24T15:16:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/6965.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6965" }
https://api.github.com/repos/huggingface/datasets/issues/6070
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6070/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6070/comments
https://api.github.com/repos/huggingface/datasets/issues/6070/events
https://github.com/huggingface/datasets/pull/6070
1,820,836,330
PR_kwDODunzps5WXDLc
6,070
Fix Quickstart notebook link
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008473 / 0.011353 (-0.002880) | 0.004734 / 0.011008 (-0.006274) | 0.103895 / 0.038508 (0.065387) | 0.071838 / 0.023109 (0.048729) | 0.379949 / 0.275898 (0.104051) | 0.397375 / 0.323480 (0.073895) | 0.006695 / 0.007986 (-0.001290) | 0.004536 / 0.004328 (0.000207) | 0.076151 / 0.004250 (0.071901) | 0.058690 / 0.037052 (0.021638) | 0.379937 / 0.258489 (0.121448) | 0.411833 / 0.293841 (0.117992) | 0.046805 / 0.128546 (-0.081741) | 0.013689 / 0.075646 (-0.061958) | 0.327896 / 0.419271 (-0.091375) | 0.063873 / 0.043533 (0.020340) | 0.378451 / 0.255139 (0.123312) | 0.398725 / 0.283200 (0.115525) | 0.034961 / 0.141683 (-0.106722) | 1.604999 / 1.452155 (0.152845) | 1.748370 / 1.492716 (0.255654) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224634 / 0.018006 (0.206628) | 0.548468 / 0.000490 (0.547979) | 0.005049 / 0.000200 (0.004849) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028144 / 0.037411 (-0.009267) | 0.092184 / 0.014526 (0.077659) | 0.102987 / 0.176557 (-0.073570) | 0.176987 / 0.737135 (-0.560149) | 0.103093 / 0.296338 (-0.193246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578410 / 0.215209 (0.363201) | 5.664781 / 2.077655 (3.587126) | 2.487763 / 1.504120 (0.983643) | 2.254213 / 1.541195 (0.713018) | 2.239693 / 1.468490 (0.771202) | 0.810380 / 4.584777 (-3.774397) | 5.036540 / 3.745712 (1.290828) | 7.064695 / 5.269862 (1.794834) | 4.215101 / 4.565676 (-0.350575) | 0.089792 / 0.424275 (-0.334483) | 0.008487 / 0.007607 (0.000879) | 0.692292 / 0.226044 (0.466248) | 6.780226 / 2.268929 (4.511297) | 3.245510 / 55.444624 (-52.199114) | 2.575984 / 6.876477 (-4.300493) | 2.747546 / 2.142072 (0.605473) | 0.956604 / 4.805227 (-3.848623) | 0.198937 / 6.500664 (-6.301727) | 0.070849 / 0.075469 (-0.004620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.536469 / 1.841788 (-0.305319) | 21.750583 / 8.074308 (13.676275) | 20.559532 / 10.191392 (10.368140) | 0.241244 / 0.680424 (-0.439180) | 0.030078 / 0.534201 (-0.504123) | 0.462204 / 0.579283 (-0.117079) | 0.600103 / 0.434364 (0.165739) | 0.535074 / 0.540337 (-0.005264) | 0.764427 / 1.386936 (-0.622509) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009712 / 0.011353 (-0.001641) | 0.005036 / 0.011008 (-0.005972) | 0.073683 / 0.038508 (0.035175) | 0.078684 / 0.023109 (0.055574) | 0.445096 / 0.275898 (0.169198) | 0.496233 / 0.323480 (0.172754) | 0.006231 / 0.007986 (-0.001755) | 0.004720 / 0.004328 (0.000392) | 0.076444 / 0.004250 (0.072194) | 0.060932 / 0.037052 (0.023880) | 0.505727 / 0.258489 (0.247238) | 0.498702 / 0.293841 (0.204861) | 0.047115 / 0.128546 (-0.081431) | 0.014028 / 0.075646 (-0.061618) | 0.099292 / 0.419271 (-0.319980) | 0.061571 / 0.043533 (0.018038) | 0.468435 / 0.255139 (0.213296) | 0.481747 / 0.283200 (0.198547) | 0.033962 / 0.141683 (-0.107721) | 1.665397 / 1.452155 (0.213242) | 1.830488 / 1.492716 (0.337772) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268217 / 0.018006 (0.250211) | 0.555123 / 0.000490 (0.554633) | 0.000451 / 0.000200 (0.000251) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034262 / 0.037411 (-0.003150) | 0.107807 / 0.014526 (0.093281) | 0.115631 / 0.176557 (-0.060926) | 0.175914 / 0.737135 (-0.561221) | 0.118775 / 0.296338 (-0.177564) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583260 / 0.215209 (0.368051) | 5.934976 / 2.077655 (3.857321) | 2.752304 / 1.504120 (1.248184) | 2.382746 / 1.541195 (0.841551) | 2.389402 / 1.468490 (0.920912) | 0.794213 / 4.584777 (-3.790564) | 5.215269 / 3.745712 (1.469557) | 7.083595 / 5.269862 (1.813733) | 3.776136 / 4.565676 (-0.789540) | 0.091141 / 0.424275 (-0.333135) | 0.008803 / 0.007607 (0.001196) | 0.726510 / 0.226044 (0.500465) | 6.926860 / 2.268929 (4.657931) | 3.475612 / 55.444624 (-51.969012) | 2.730237 / 6.876477 (-4.146240) | 2.879145 / 2.142072 (0.737073) | 0.959956 / 4.805227 (-3.845271) | 0.189812 / 6.500664 (-6.310852) | 0.071624 / 0.075469 (-0.003845) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748184 / 1.841788 (-0.093603) | 23.764520 / 8.074308 (15.690212) | 19.502461 / 10.191392 (9.311069) | 0.233987 / 0.680424 (-0.446437) | 0.028116 / 0.534201 (-0.506085) | 0.478838 / 0.579283 (-0.100445) | 0.560952 / 0.434364 (0.126588) | 0.529902 / 0.540337 (-0.010435) | 0.735095 / 1.386936 (-0.651841) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dda3e389212f44117a40b44bb0cdf358cfd9f71e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004131 / 0.011008 (-0.006878) | 0.085619 / 0.038508 (0.047111) | 0.076973 / 0.023109 (0.053864) | 0.315175 / 0.275898 (0.039277) | 0.354703 / 0.323480 (0.031223) | 0.005409 / 0.007986 (-0.002577) | 0.003438 / 0.004328 (-0.000891) | 0.064773 / 0.004250 (0.060523) | 0.056117 / 0.037052 (0.019064) | 0.313825 / 0.258489 (0.055336) | 0.354654 / 0.293841 (0.060813) | 0.031384 / 0.128546 (-0.097163) | 0.008537 / 0.075646 (-0.067109) | 0.288528 / 0.419271 (-0.130744) | 0.053036 / 0.043533 (0.009504) | 0.312213 / 0.255139 (0.057074) | 0.335952 / 0.283200 (0.052752) | 0.023165 / 0.141683 (-0.118518) | 1.497559 / 1.452155 (0.045404) | 1.561949 / 1.492716 (0.069233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212558 / 0.018006 (0.194552) | 0.456555 / 0.000490 (0.456065) | 0.000334 / 0.000200 (0.000134) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028571 / 0.037411 (-0.008840) | 0.085154 / 0.014526 (0.070628) | 0.095961 / 0.176557 (-0.080596) | 0.153041 / 0.737135 (-0.584094) | 0.099234 / 0.296338 (-0.197105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.381796 / 0.215209 (0.166587) | 3.806948 / 2.077655 (1.729294) | 1.829597 / 1.504120 (0.325477) | 1.659065 / 1.541195 (0.117870) | 1.738524 / 1.468490 (0.270034) | 0.483379 / 4.584777 (-4.101398) | 3.540648 / 3.745712 (-0.205064) | 3.269188 / 5.269862 (-2.000673) | 2.042113 / 4.565676 (-2.523564) | 0.056905 / 0.424275 (-0.367370) | 0.007235 / 0.007607 (-0.000373) | 0.460581 / 0.226044 (0.234537) | 4.597451 / 2.268929 (2.328522) | 2.334284 / 55.444624 (-53.110340) | 1.960026 / 6.876477 (-4.916450) | 2.172118 / 2.142072 (0.030045) | 0.576758 / 4.805227 (-4.228470) | 0.131196 / 6.500664 (-6.369468) | 0.060053 / 0.075469 (-0.015417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289466 / 1.841788 (-0.552322) | 19.713059 / 8.074308 (11.638750) | 14.292390 / 10.191392 (4.100998) | 0.146199 / 0.680424 (-0.534225) | 0.018123 / 0.534201 (-0.516078) | 0.392492 / 0.579283 (-0.186791) | 0.416544 / 0.434364 (-0.017820) | 0.457166 / 0.540337 (-0.083171) | 0.645490 / 1.386936 (-0.741446) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006508 / 0.011353 (-0.004845) | 0.004010 / 0.011008 (-0.006998) | 0.065201 / 0.038508 (0.026693) | 0.076322 / 0.023109 (0.053213) | 0.364198 / 0.275898 (0.088300) | 0.398251 / 0.323480 (0.074771) | 0.005328 / 0.007986 (-0.002658) | 0.003298 / 0.004328 (-0.001031) | 0.064378 / 0.004250 (0.060128) | 0.056053 / 0.037052 (0.019000) | 0.365431 / 0.258489 (0.106942) | 0.402777 / 0.293841 (0.108936) | 0.031014 / 0.128546 (-0.097532) | 0.008507 / 0.075646 (-0.067140) | 0.071471 / 0.419271 (-0.347801) | 0.048300 / 0.043533 (0.004768) | 0.359700 / 0.255139 (0.104561) | 0.382244 / 0.283200 (0.099044) | 0.023783 / 0.141683 (-0.117900) | 1.517518 / 1.452155 (0.065363) | 1.569732 / 1.492716 (0.077015) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257447 / 0.018006 (0.239440) | 0.452598 / 0.000490 (0.452109) | 0.015187 / 0.000200 (0.014987) | 0.000164 / 0.000054 (0.000109) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030958 / 0.037411 (-0.006454) | 0.090066 / 0.014526 (0.075540) | 0.101120 / 0.176557 (-0.075437) | 0.154295 / 0.737135 (-0.582840) | 0.103582 / 0.296338 (-0.192756) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415945 / 0.215209 (0.200736) | 4.146464 / 2.077655 (2.068809) | 2.121414 / 1.504120 (0.617294) | 1.956885 / 1.541195 (0.415690) | 2.047955 / 1.468490 (0.579465) | 0.486334 / 4.584777 (-4.098443) | 3.506263 / 3.745712 (-0.239449) | 4.942274 / 5.269862 (-0.327587) | 2.907836 / 4.565676 (-1.657841) | 0.057344 / 0.424275 (-0.366931) | 0.007813 / 0.007607 (0.000206) | 0.497888 / 0.226044 (0.271844) | 4.978017 / 2.268929 (2.709089) | 2.600447 / 55.444624 (-52.844177) | 2.335050 / 6.876477 (-4.541427) | 2.480373 / 2.142072 (0.338301) | 0.597954 / 4.805227 (-4.207274) | 0.134794 / 6.500664 (-6.365870) | 0.062605 / 0.075469 (-0.012864) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.344390 / 1.841788 (-0.497398) | 20.020067 / 8.074308 (11.945759) | 14.344626 / 10.191392 (4.153234) | 0.172101 / 0.680424 (-0.508322) | 0.018549 / 0.534201 (-0.515652) | 0.393589 / 0.579283 (-0.185694) | 0.438401 / 0.434364 (0.004037) | 0.463800 / 0.540337 (-0.076537) | 0.618269 / 1.386936 (-0.768667) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0177910b32712f28d147879395e511207e39958 \"CML watermark\")\n" ]
2023-07-25T17:48:37Z
2023-07-25T18:19:01Z
2023-07-25T18:10:16Z
COLLABORATOR
null
null
null
Reported in https://github.com/huggingface/datasets/pull/5902#issuecomment-1649885621 (cc @alvarobartt)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6070/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6070/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6070.diff", "html_url": "https://github.com/huggingface/datasets/pull/6070", "merged_at": "2023-07-25T18:10:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/6070.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6070" }
https://api.github.com/repos/huggingface/datasets/issues/7454
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7454/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7454/comments
https://api.github.com/repos/huggingface/datasets/issues/7454/events
https://github.com/huggingface/datasets/pull/7454
2,920,760,793
PR_kwDODunzps6Os6bx
7,454
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7454). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-03-14T16:48:19Z
2025-03-14T16:50:31Z
2025-03-14T16:48:28Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7454/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7454/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7454.diff", "html_url": "https://github.com/huggingface/datasets/pull/7454", "merged_at": "2025-03-14T16:48:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/7454.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7454" }
https://api.github.com/repos/huggingface/datasets/issues/6829
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6829/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6829/comments
https://api.github.com/repos/huggingface/datasets/issues/6829/events
https://github.com/huggingface/datasets/issues/6829
2,258,424,577
I_kwDODunzps6GnNMB
6,829
Load and save from/to disk no longer accept pathlib.Path
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[]
2024-04-23T09:44:45Z
2024-04-23T09:44:46Z
null
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Reported by @vttrifonov at https://github.com/huggingface/datasets/pull/6704#issuecomment-2071168296: > This change is breaking in > https://github.com/huggingface/datasets/blob/f96e74d5c633cd5435dd526adb4a74631eb05c43/src/datasets/arrow_dataset.py#L1515 > when the input is `pathlib.Path`. The issue is that `url_to_fs` expects a `str` and cannot deal with `Path`. `get_fs_token_paths` converts to `str` so it is not a problem This change was introduced in: - #6704
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6829/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6829/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7497
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7497/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7497/comments
https://api.github.com/repos/huggingface/datasets/issues/7497/events
https://github.com/huggingface/datasets/issues/7497
2,968,553,693
I_kwDODunzps6w8Ijd
7,497
How to convert videos to images?
{ "avatar_url": "https://avatars.githubusercontent.com/u/171649931?v=4", "events_url": "https://api.github.com/users/tongvibe/events{/privacy}", "followers_url": "https://api.github.com/users/tongvibe/followers", "following_url": "https://api.github.com/users/tongvibe/following{/other_user}", "gists_url": "https://api.github.com/users/tongvibe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tongvibe", "id": 171649931, "login": "tongvibe", "node_id": "U_kgDOCjsriw", "organizations_url": "https://api.github.com/users/tongvibe/orgs", "received_events_url": "https://api.github.com/users/tongvibe/received_events", "repos_url": "https://api.github.com/users/tongvibe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tongvibe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tongvibe/subscriptions", "type": "User", "url": "https://api.github.com/users/tongvibe", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! there is some documentation here on how to read video frames: https://huggingface.co/docs/datasets/video_load" ]
2025-04-03T07:08:39Z
2025-04-15T12:35:15Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Does someone know how to return the images from videos? ### Motivation I am trying to use openpi(https://github.com/Physical-Intelligence/openpi) to finetune my Lerobot dataset(V2.0 and V2.1). I find that although the codedaset is v2.0, they are different. It seems like Lerobot V2.0 has two version, one is data include images infos and another one is separate to data and videos. Does someone know how to return the images from videos?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7497/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7497/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5041
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5041/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5041/comments
https://api.github.com/repos/huggingface/datasets/issues/5041/events
https://github.com/huggingface/datasets/pull/5041
1,390,722,230
PR_kwDODunzps4_2WES
5,041
Support streaming hendrycks_test dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-29T11:37:58Z
2022-09-30T07:13:38Z
2022-09-29T12:07:29Z
MEMBER
null
null
null
This PR: - supports streaming - fixes the description section of the dataset card
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5041/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5041/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5041.diff", "html_url": "https://github.com/huggingface/datasets/pull/5041", "merged_at": "2022-09-29T12:07:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5041.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5041" }
https://api.github.com/repos/huggingface/datasets/issues/5159
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5159/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5159/comments
https://api.github.com/repos/huggingface/datasets/issues/5159/events
https://github.com/huggingface/datasets/pull/5159
1,422,172,080
PR_kwDODunzps5BfBN9
5,159
fsspec lock reset in multiprocessing
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-25T09:41:59Z
2022-11-03T20:51:15Z
2022-11-03T20:48:53Z
MEMBER
null
null
null
`fsspec` added a clean way of resetting its lock - instead of doing it manually
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5159/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5159/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5159.diff", "html_url": "https://github.com/huggingface/datasets/pull/5159", "merged_at": "2022-11-03T20:48:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/5159.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5159" }
https://api.github.com/repos/huggingface/datasets/issues/4696
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4696/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4696/comments
https://api.github.com/repos/huggingface/datasets/issues/4696/events
https://github.com/huggingface/datasets/issues/4696
1,307,183,099
I_kwDODunzps5N6gf7
4,696
Cannot load LinCE dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/167943?v=4", "events_url": "https://api.github.com/users/finiteautomata/events{/privacy}", "followers_url": "https://api.github.com/users/finiteautomata/followers", "following_url": "https://api.github.com/users/finiteautomata/following{/other_user}", "gists_url": "https://api.github.com/users/finiteautomata/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/finiteautomata", "id": 167943, "login": "finiteautomata", "node_id": "MDQ6VXNlcjE2Nzk0Mw==", "organizations_url": "https://api.github.com/users/finiteautomata/orgs", "received_events_url": "https://api.github.com/users/finiteautomata/received_events", "repos_url": "https://api.github.com/users/finiteautomata/repos", "site_admin": false, "starred_url": "https://api.github.com/users/finiteautomata/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/finiteautomata/subscriptions", "type": "User", "url": "https://api.github.com/users/finiteautomata", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Hi @finiteautomata, thanks for reporting.\r\n\r\nUnfortunately, I'm not able to reproduce your issue:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n ...: dataset = load_dataset(\"lince\", \"ner_spaeng\")\r\nDownloading builder script: 20.8kB [00:00, 9.09MB/s] \r\nDownloading metadata: 31.2kB [00:00, 13.5MB/s] \r\nDownloading and preparing dataset lince/ner_spaeng (download: 2.93 MiB, generated: 18.45 MiB, post-processed: Unknown size, total: 21.38 MiB) to .../.cache/huggingface/datasets/lince/ner_spaeng/1.0.0/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589...\r\nDownloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.08M/3.08M [00:01<00:00, 2.73MB/s]\r\nDataset lince downloaded and prepared to .../.cache/huggingface/datasets/lince/ner_spaeng/1.0.0/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589. Subsequent calls will reuse this data.\r\n100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 630.66it/s]\r\n\r\nIn [2]: dataset\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 33611\r\n })\r\n validation: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 10085\r\n })\r\n test: Dataset({\r\n features: ['idx', 'words', 'lid', 'ner'],\r\n num_rows: 23527\r\n })\r\n})\r\n``` \r\n\r\nPlease note that for this dataset, the original data files are not hosted on the Hugging Face Hub, but on https://ritual.uh.edu\r\nAnd sometimes, the server might be temporarily unavailable, as your error message said (trying to connect to the server timed out):\r\n```\r\nConnectionError: Couldn't reach https://ritual.uh.edu/lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (ConnectTimeout(MaxRetryError(\"HTTPSConnectionPool(host='ritual.uh.edu', port=443): Max retries exceeded with url: /lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7feb1c45a690>, 'Connection to ritual.uh.edu timed out. (connect timeout=100)'))\")))\r\n```\r\nIn these cases you could:\r\n- either contact the owners of the data server where the data is hosted to inform them about the issue in their server\r\n- or re-try after waiting some time: usually these issues are just temporary", "Great, thanks for checking out!" ]
2022-07-17T19:01:54Z
2022-07-18T09:20:40Z
2022-07-18T07:24:22Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Cannot load LinCE dataset due to a connection error ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("lince", "ner_spaeng") ``` A notebook with this code and corresponding error can be found at https://colab.research.google.com/drive/1pgX3bNB9amuUwAVfPFm-XuMV5fEg-cD2 ## Expected results It should load the dataset ## Actual results ```python --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) <ipython-input-2-fc551ddcebef> in <module>() 1 from datasets import load_dataset 2 ----> 3 dataset = load_dataset("lince", "ner_spaeng") 10 frames /usr/local/lib/python3.7/dist-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs) 1682 ignore_verifications=ignore_verifications, 1683 try_from_hf_gcs=try_from_hf_gcs, -> 1684 use_auth_token=use_auth_token, 1685 ) 1686 /usr/local/lib/python3.7/dist-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 703 if not downloaded_from_gcs: 704 self._download_and_prepare( --> 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 706 ) 707 # Sync info /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 1219 1220 def _download_and_prepare(self, dl_manager, verify_infos): -> 1221 super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) 1222 1223 def _get_examples_iterable_for_split(self, split_generator: SplitGenerator) -> ExamplesIterable: /usr/local/lib/python3.7/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 769 split_dict = SplitDict(dataset_name=self.name) 770 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 771 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 772 773 # Checksums verification /root/.cache/huggingface/modules/datasets_modules/datasets/lince/10d41747f55f0849fa84ac579ea1acfa7df49aa2015b60426bc459c111b3d589/lince.py in _split_generators(self, dl_manager) 481 def _split_generators(self, dl_manager): 482 """Returns SplitGenerators.""" --> 483 lince_dir = dl_manager.download_and_extract(f"{_LINCE_URL}/{self.config.name}.zip") 484 data_dir = os.path.join(lince_dir, self.config.data_dir) 485 return [ /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in download_and_extract(self, url_or_urls) 429 extracted_path(s): `str`, extracted paths of given URL(s). 430 """ --> 431 return self.extract(self.download(url_or_urls)) 432 433 def get_recorded_sizes_checksums(self): /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in download(self, url_or_urls) 313 num_proc=download_config.num_proc, 314 disable_tqdm=not is_progress_bar_enabled(), --> 315 desc="Downloading data files", 316 ) 317 duration = datetime.now() - start_time /usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, types, disable_tqdm, desc) 346 # Singleton 347 if not isinstance(data_struct, dict) and not isinstance(data_struct, types): --> 348 return function(data_struct) 349 350 disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled() /usr/local/lib/python3.7/dist-packages/datasets/download/download_manager.py in _download(self, url_or_filename, download_config) 333 # append the relative path to the base_path 334 url_or_filename = url_or_path_join(self._base_path, url_or_filename) --> 335 return cached_path(url_or_filename, download_config=download_config) 336 337 def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]): /usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in cached_path(url_or_filename, download_config, **download_kwargs) 195 use_auth_token=download_config.use_auth_token, 196 ignore_url_params=download_config.ignore_url_params, --> 197 download_desc=download_config.download_desc, 198 ) 199 elif os.path.exists(url_or_filename): /usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token, ignore_url_params, download_desc) 531 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") 532 if head_error is not None: --> 533 raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") 534 elif response is not None: 535 raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") ConnectionError: Couldn't reach https://ritual.uh.edu/lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (ConnectTimeout(MaxRetryError("HTTPSConnectionPool(host='ritual.uh.edu', port=443): Max retries exceeded with url: /lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9/ner_spaeng.zip (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7feb1c45a690>, 'Connection to ritual.uh.edu timed out. (connect timeout=100)'))"))) ``` ## Environment info - `datasets` version: 2.3.2 - Platform: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - PyArrow version: 6.0.1 - Pandas version: 1.3.5
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4696/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4696/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5464
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5464/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5464/comments
https://api.github.com/repos/huggingface/datasets/issues/5464/events
https://github.com/huggingface/datasets/issues/5464
1,557,462,104
I_kwDODunzps5c1PxY
5,464
NonMatchingChecksumError for hendrycks_test
{ "avatar_url": "https://avatars.githubusercontent.com/u/8027676?v=4", "events_url": "https://api.github.com/users/sarahwie/events{/privacy}", "followers_url": "https://api.github.com/users/sarahwie/followers", "following_url": "https://api.github.com/users/sarahwie/following{/other_user}", "gists_url": "https://api.github.com/users/sarahwie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sarahwie", "id": 8027676, "login": "sarahwie", "node_id": "MDQ6VXNlcjgwMjc2NzY=", "organizations_url": "https://api.github.com/users/sarahwie/orgs", "received_events_url": "https://api.github.com/users/sarahwie/received_events", "repos_url": "https://api.github.com/users/sarahwie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sarahwie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sarahwie/subscriptions", "type": "User", "url": "https://api.github.com/users/sarahwie", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting, @sarahwie.\r\n\r\nPlease note this issue was already fixed in `datasets` 2.6.0 version:\r\n- #5040\r\n\r\nIf you update your `datasets` version, you will be able to load the dataset:\r\n```\r\npip install -U datasets\r\n```", "Oops, missed that I needed to upgrade. Thanks!" ]
2023-01-26T00:43:23Z
2023-01-27T05:44:31Z
2023-01-26T07:41:58Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The checksum of the file has likely changed on the remote host. ### Steps to reproduce the bug `dataset = nlp.load_dataset("hendrycks_test", "anatomy")` ### Expected behavior no error thrown ### Environment info - `datasets` version: 2.2.1 - Platform: macOS-13.1-arm64-arm-64bit - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.5.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5464/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5464/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4675
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4675/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4675/comments
https://api.github.com/repos/huggingface/datasets/issues/4675/events
https://github.com/huggingface/datasets/issues/4675
1,302,193,649
I_kwDODunzps5NneXx
4,675
Unable to use dataset with PyTorch dataloader
{ "avatar_url": "https://avatars.githubusercontent.com/u/25421460?v=4", "events_url": "https://api.github.com/users/BlueskyFR/events{/privacy}", "followers_url": "https://api.github.com/users/BlueskyFR/followers", "following_url": "https://api.github.com/users/BlueskyFR/following{/other_user}", "gists_url": "https://api.github.com/users/BlueskyFR/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BlueskyFR", "id": 25421460, "login": "BlueskyFR", "node_id": "MDQ6VXNlcjI1NDIxNDYw", "organizations_url": "https://api.github.com/users/BlueskyFR/orgs", "received_events_url": "https://api.github.com/users/BlueskyFR/received_events", "repos_url": "https://api.github.com/users/BlueskyFR/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BlueskyFR/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BlueskyFR/subscriptions", "type": "User", "url": "https://api.github.com/users/BlueskyFR", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi! `para_crawl` has a single column of type `Translation`, which stores translation dictionaries. These dictionaries can be stored in a NumPy array but not in a PyTorch tensor since PyTorch only supports numeric types. In `datasets`, the conversion to `torch` works as follows: \r\n1. convert PyArrow table to NumPy arrays \r\n2. convert NumPy arrays to Torch tensors. \r\n\r\nThe 2nd step is problematic for your case as `datasets` attempts to convert the array of dictionaries to a PyTorch tensor. One way to fix this is to use the [preprocessing logic](https://github.com/huggingface/transformers/blob/8581a798c0a48fca07b29ce2ca2ef55adcae8c7e/examples/pytorch/translation/run_translation.py#L440-L458) from the Transformers translation script. And on our side, I think we can replace a NumPy array of dicts with a dict of NumPy array if the feature type is `Translation`/`TranslationVariableLanguages` (one array for each language) to get the official PyTorch error message for strings in such case." ]
2022-07-12T15:04:04Z
2022-07-14T14:17:46Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug When using `.with_format("torch")`, an arrow table is returned and I am unable to use it by passing it to a PyTorch DataLoader: please see the code below. ## Steps to reproduce the bug ```python from datasets import load_dataset from torch.utils.data import DataLoader ds = load_dataset( "para_crawl", name="enfr", cache_dir="/tmp/test/", split="train", keep_in_memory=True, ) dataloader = DataLoader(ds.with_format("torch"), num_workers=32) print(next(iter(dataloader))) ``` Is there something I am doing wrong? The documentation does not say much about the behavior of `.with_format()` so I feel like I am a bit stuck here :-/ Thanks in advance for your help! ## Expected results The code should run with no error ## Actual results ``` AttributeError: 'str' object has no attribute 'dtype' ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.3.2 - Platform: Linux-4.18.0-348.el8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.4 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4675/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4675/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7401/comments
https://api.github.com/repos/huggingface/datasets/issues/7401/events
https://github.com/huggingface/datasets/pull/7401
2,853,260,869
PR_kwDODunzps6LOMSo
7,401
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7401). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-02-14T10:17:03Z
2025-02-14T10:19:20Z
2025-02-14T10:17:13Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7401/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7401/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7401.diff", "html_url": "https://github.com/huggingface/datasets/pull/7401", "merged_at": "2025-02-14T10:17:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/7401.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7401" }
https://api.github.com/repos/huggingface/datasets/issues/5192
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5192/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5192/comments
https://api.github.com/repos/huggingface/datasets/issues/5192/events
https://github.com/huggingface/datasets/pull/5192
1,433,199,790
PR_kwDODunzps5CD2BQ
5,192
Drop labels in Image and Audio folders if files are on different levels in directory or if there is only one label
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" } ]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "> Nit: maybe we can use the count_path_segments function from this file for counting (updated with your logic to make it faster).\r\n\r\n@mariosasko just to make sure I understood you correctly - are you okay with this change? (actually `os.path.normpath` is redundant here as paths from `data_files` should be already normalized but just in case)\r\nhttps://github.com/huggingface/datasets/pull/5192/files#diff-1f09f7a178211f7539b1499b64b69793bd53b30c8b7b34cfcc5835e25d31929fR33\r\nIf you are, we can merge.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5192). All of your documentation changes will be reflected on that endpoint.", "awesome ! :D" ]
2022-11-02T14:01:41Z
2022-11-15T16:32:53Z
2022-11-15T16:31:07Z
CONTRIBUTOR
null
null
null
Will close https://github.com/huggingface/datasets/issues/5153 Drop labels by default (`drop_labels=None`) when: * there are files on different levels of directory hierarchy by checking their path depth * all files are in the same directory (=only one label was inferred) First one fixes cases like this: ``` repo image3.jpg image4.jpg data image1.jpg image2.jpg ``` Second one fixes cases like this: ``` repo image1.jpg image2.jpg image3.jpg ``` This is mostly to fix the viewer for people who just drop images in the Hub interface into the root dir. I added tests for both of the cases on local and remote files. **I also changed data files for old test on drop_labels** (`test_generate_examples_drop_labels`). The files I provide to `test_generate_examples_drop_labels` now has "canonical" classification structure (two dirs) in order not to change the logic of the test (=not to check these two cases addressed in the PR).
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5192/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5192/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5192.diff", "html_url": "https://github.com/huggingface/datasets/pull/5192", "merged_at": "2022-11-15T16:31:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/5192.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5192" }
https://api.github.com/repos/huggingface/datasets/issues/4681
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4681/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4681/comments
https://api.github.com/repos/huggingface/datasets/issues/4681/events
https://github.com/huggingface/datasets/issues/4681
1,304,617,484
I_kwDODunzps5NwuIM
4,681
IndexError when loading ImageFolder
{ "avatar_url": "https://avatars.githubusercontent.com/u/2843485?v=4", "events_url": "https://api.github.com/users/johko/events{/privacy}", "followers_url": "https://api.github.com/users/johko/followers", "following_url": "https://api.github.com/users/johko/following{/other_user}", "gists_url": "https://api.github.com/users/johko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/johko", "id": 2843485, "login": "johko", "node_id": "MDQ6VXNlcjI4NDM0ODU=", "organizations_url": "https://api.github.com/users/johko/orgs", "received_events_url": "https://api.github.com/users/johko/received_events", "repos_url": "https://api.github.com/users/johko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/johko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johko/subscriptions", "type": "User", "url": "https://api.github.com/users/johko", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" } ]
null
[ "Hi, thanks for reporting! If there are no examples in ImageFolder, the `label` column is of type `ClassLabel(names=[])`, which leads to an error in [this line](https://github.com/huggingface/datasets/blob/c15b391942764152f6060b59921b09cacc5f22a6/src/datasets/arrow_writer.py#L387) as `asdict(info)` calls `Features({..., \"label\": {'num_classes': 0, 'names': [], 'id': None, '_type': 'ClassLabel'}})`, which then calls `require_decoding` [here](https://github.com/huggingface/datasets/blob/c15b391942764152f6060b59921b09cacc5f22a6/src/datasets/features/features.py#L1516) on the dict value it does not expect.\r\n\r\nI see two ways to fix this:\r\n* custom `asdict` where `dict_factory` is also applied on the `dict` object itself besides dataclasses (the built-in implementation calls `type(dict_obj)` - this means we also need to fix `Features.to_dict` btw) \r\n* implement `DatasetInfo.to_dict` (though adding `to_dict` to a data class is a bit weird IMO)\r\n\r\n@lhoestq Which one of these approaches do you like more?\r\n", "Small pref for the first option, it feels weird to know that `Features()` can be called with a dictionary of types defined as dictionaries instead of type instances." ]
2022-07-14T10:57:55Z
2022-07-25T12:37:54Z
2022-07-25T12:37:54Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug Loading an image dataset with `imagefolder` throws `IndexError: list index out of range` when the given folder contains a non-image file (like a csv). ## Steps to reproduce the bug Put a csv file in a folder with images and load it: ```python import datasets datasets.load_dataset("imagefolder", data_dir=path/to/folder) ``` ## Expected results I would expect a better error message, like `Unsupported file` or even the dataset loader just ignoring every file that is not an image in that case. ## Actual results Here is the whole traceback: ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.3.2 - Platform: Linux-5.11.0-051100-generic-x86_64-with-glibc2.27 - Python version: 3.9.9 - PyArrow version: 8.0.0 - Pandas version: 1.4.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4681/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4681/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7493/comments
https://api.github.com/repos/huggingface/datasets/issues/7493/events
https://github.com/huggingface/datasets/issues/7493
2,964,025,179
I_kwDODunzps6wq29b
7,493
push_to_hub does not upload videos
{ "avatar_url": "https://avatars.githubusercontent.com/u/9339403?v=4", "events_url": "https://api.github.com/users/DominikVincent/events{/privacy}", "followers_url": "https://api.github.com/users/DominikVincent/followers", "following_url": "https://api.github.com/users/DominikVincent/following{/other_user}", "gists_url": "https://api.github.com/users/DominikVincent/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DominikVincent", "id": 9339403, "login": "DominikVincent", "node_id": "MDQ6VXNlcjkzMzk0MDM=", "organizations_url": "https://api.github.com/users/DominikVincent/orgs", "received_events_url": "https://api.github.com/users/DominikVincent/received_events", "repos_url": "https://api.github.com/users/DominikVincent/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DominikVincent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DominikVincent/subscriptions", "type": "User", "url": "https://api.github.com/users/DominikVincent", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the `Video` type is still experimental, and in particular `push_to_hub` doesn't upload videos at the moment (only the paths).\n\nThere is an open question to either upload the videos inside the Parquet files, or rather have them as separate files (which is great to enable remote seeking/streaming)" ]
2025-04-01T17:00:20Z
2025-04-15T12:34:23Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hello, I would like to upload a video dataset (some .mp4 files and some segments within them), i.e. rows correspond to subsequences from videos. Videos might be referenced by several rows. I created a dataset locally and it references the videos and the video readers can read them correctly. I use push_to_hub() to upload the dataset to the hub. Expectation: A user uses `load_dataset` and can load the videos. However, the videos seem to be just referenced via paths on the computer and not uploaded to the hub. Therefore a target user cannot load the videos in the dataset. ### Steps to reproduce the bug 1. create a video dataset with paths e.g. { ["videos"]: [path1, path2, ...]} 2. dataset.push_to_hub 3. on a different computer (or same pc if relative paths are used in a different folder): ``` dataset = load_dataset("siplab/egosim", split="train") video = dataset[0]["video_head"] ``` 3. will fail ### Expected behavior Expectation: A user uses `load_dataset` and can load the videos. ### Environment info datasets 3.1.0 Python 3.8.18
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7493/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7493/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7393
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7393/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7393/comments
https://api.github.com/repos/huggingface/datasets/issues/7393/events
https://github.com/huggingface/datasets/pull/7393
2,846,446,674
PR_kwDODunzps6K3DiZ
7,393
Optimized sequence encoding for scalars
{ "avatar_url": "https://avatars.githubusercontent.com/u/38319063?v=4", "events_url": "https://api.github.com/users/lukasgd/events{/privacy}", "followers_url": "https://api.github.com/users/lukasgd/followers", "following_url": "https://api.github.com/users/lukasgd/following{/other_user}", "gists_url": "https://api.github.com/users/lukasgd/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lukasgd", "id": 38319063, "login": "lukasgd", "node_id": "MDQ6VXNlcjM4MzE5MDYz", "organizations_url": "https://api.github.com/users/lukasgd/orgs", "received_events_url": "https://api.github.com/users/lukasgd/received_events", "repos_url": "https://api.github.com/users/lukasgd/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lukasgd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lukasgd/subscriptions", "type": "User", "url": "https://api.github.com/users/lukasgd", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7393). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-02-11T20:30:44Z
2025-02-13T17:11:33Z
2025-02-13T17:11:32Z
CONTRIBUTOR
null
null
null
The change in https://github.com/huggingface/datasets/pull/3197 introduced redundant list-comprehensions when `obj` is a long sequence of scalars. This becomes a noticeable overhead when loading data from an `IterableDataset` in the function `_apply_feature_types_on_example` and can be eliminated by adding a check for scalars in `encode_nested_example` proposed here. In the following code example ``` import time from datasets.features import Sequence, Value from datasets.features.features import encode_nested_example schema = Sequence(Value("int32")) obj = list(range(100000)) start = time.perf_counter() result = encode_nested_example(schema, obj) stop = time.perf_counter() print(f"Time spent is {stop-start} sec") ``` `encode_nested_example` becomes 492x faster (from 0.0769 to 0.0002 sec), respectively 322x (from 0.00814 to 0.00003 sec) for a list of length 10000, on a GH200 system, making it unnoticeable when loading data with tokenization. Another change is made to avoid creating arrays from scalars and afterwards re-extracting them during casting to python (`obj == obj.__array__()[()]` in that case), which avoids a regression in the array write benchmarks.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7393/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7393/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7393.diff", "html_url": "https://github.com/huggingface/datasets/pull/7393", "merged_at": "2025-02-13T17:11:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/7393.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7393" }
https://api.github.com/repos/huggingface/datasets/issues/4732
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4732/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4732/comments
https://api.github.com/repos/huggingface/datasets/issues/4732/events
https://github.com/huggingface/datasets/issues/4732
1,314,371,566
I_kwDODunzps5OV7fu
4,732
Document better that loading a dataset passing its name does not use the local script
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
null
[]
null
[ "Thanks for the feedback!\r\n\r\nI think since this issue is closely related to loading, I can add a clearer explanation under [Load > local loading script](https://huggingface.co/docs/datasets/main/en/loading#local-loading-script).", "That makes sense but I think having a line about it under https://huggingface.co/docs/datasets/installation#source the \"source\" header here would be useful. My mental model of `pip install -e .` does not include the fact that the source files aren't actually being used. ", "Thanks for sharing your perspective. I think the `load_dataset` function is the only one that pulls from GitHub, and since this use-case is very specific, I don't think we need to include such a broad clarification in the Installation section.\r\n\r\nFeel free to check out the linked PR and let me know if it needs any additional explanation 😊" ]
2022-07-22T06:07:31Z
2022-08-23T16:32:23Z
2022-08-23T16:32:23Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
As reported by @TrentBrick here https://github.com/huggingface/datasets/issues/4725#issuecomment-1191858596, it could be more clear that loading a dataset by passing its name does not use the (modified) local script of it. What he did: - he installed `datasets` from source - he modified locally `datasets/the_pile/the_pile.py` loading script - he tried to load it but using `load_dataset("the_pile")` instead of `load_dataset("datasets/the_pile")` - as explained here https://github.com/huggingface/datasets/issues/4725#issuecomment-1191040245: - the former does not use the local script, but instead it downloads a copy of `the_pile.py` from our GitHub, caches it locally (inside `~/.cache/huggingface/modules`) and uses that. He suggests adding a more clear explanation about this. He suggests adding it maybe in [Installation > source](https://huggingface.co/docs/datasets/installation)) CC: @stevhliu
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4732/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4732/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5917
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5917/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5917/comments
https://api.github.com/repos/huggingface/datasets/issues/5917/events
https://github.com/huggingface/datasets/pull/5917
1,733,661,588
PR_kwDODunzps5RwoRU
5,917
Refactor extensions
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008358 / 0.011353 (-0.002995) | 0.005673 / 0.011008 (-0.005335) | 0.124034 / 0.038508 (0.085526) | 0.037550 / 0.023109 (0.014441) | 0.331301 / 0.275898 (0.055403) | 0.383542 / 0.323480 (0.060062) | 0.006940 / 0.007986 (-0.001046) | 0.005959 / 0.004328 (0.001631) | 0.084670 / 0.004250 (0.080419) | 0.054214 / 0.037052 (0.017162) | 0.359897 / 0.258489 (0.101408) | 0.383260 / 0.293841 (0.089419) | 0.047642 / 0.128546 (-0.080904) | 0.013902 / 0.075646 (-0.061744) | 0.380232 / 0.419271 (-0.039040) | 0.077790 / 0.043533 (0.034257) | 0.376648 / 0.255139 (0.121509) | 0.387536 / 0.283200 (0.104336) | 0.104644 / 0.141683 (-0.037038) | 1.618560 / 1.452155 (0.166406) | 1.742569 / 1.492716 (0.249853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257218 / 0.018006 (0.239212) | 0.636801 / 0.000490 (0.636311) | 0.000634 / 0.000200 (0.000434) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037874 / 0.037411 (0.000462) | 0.107454 / 0.014526 (0.092928) | 0.117855 / 0.176557 (-0.058702) | 0.204067 / 0.737135 (-0.533068) | 0.134029 / 0.296338 (-0.162310) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583657 / 0.215209 (0.368447) | 5.761289 / 2.077655 (3.683635) | 2.280201 / 1.504120 (0.776081) | 2.033442 / 1.541195 (0.492247) | 2.035343 / 1.468490 (0.566853) | 0.868122 / 4.584777 (-3.716655) | 5.352591 / 3.745712 (1.606879) | 2.432814 / 5.269862 (-2.837047) | 1.560765 / 4.565676 (-3.004911) | 0.098793 / 0.424275 (-0.325482) | 0.017327 / 0.007607 (0.009720) | 0.734676 / 0.226044 (0.508631) | 7.070318 / 2.268929 (4.801390) | 2.972701 / 55.444624 (-52.471924) | 2.442189 / 6.876477 (-4.434288) | 2.604379 / 2.142072 (0.462307) | 1.028853 / 4.805227 (-3.776374) | 0.210390 / 6.500664 (-6.290274) | 0.069329 / 0.075469 (-0.006140) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.469586 / 1.841788 (-0.372202) | 16.570305 / 8.074308 (8.495997) | 19.187845 / 10.191392 (8.996453) | 0.219162 / 0.680424 (-0.461262) | 0.026356 / 0.534201 (-0.507845) | 0.447370 / 0.579283 (-0.131913) | 0.555893 / 0.434364 (0.121529) | 0.574958 / 0.540337 (0.034621) | 0.639166 / 1.386936 (-0.747770) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008166 / 0.011353 (-0.003187) | 0.005577 / 0.011008 (-0.005431) | 0.103578 / 0.038508 (0.065070) | 0.040563 / 0.023109 (0.017454) | 0.441996 / 0.275898 (0.166098) | 0.483594 / 0.323480 (0.160114) | 0.007329 / 0.007986 (-0.000657) | 0.004546 / 0.004328 (0.000218) | 0.090471 / 0.004250 (0.086220) | 0.052740 / 0.037052 (0.015688) | 0.442197 / 0.258489 (0.183708) | 0.524310 / 0.293841 (0.230469) | 0.042487 / 0.128546 (-0.086060) | 0.012917 / 0.075646 (-0.062730) | 0.103992 / 0.419271 (-0.315280) | 0.060570 / 0.043533 (0.017037) | 0.441956 / 0.255139 (0.186817) | 0.477084 / 0.283200 (0.193885) | 0.103815 / 0.141683 (-0.037868) | 1.696963 / 1.452155 (0.244809) | 1.747849 / 1.492716 (0.255132) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292465 / 0.018006 (0.274458) | 0.571518 / 0.000490 (0.571028) | 0.000476 / 0.000200 (0.000276) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028697 / 0.037411 (-0.008714) | 0.111671 / 0.014526 (0.097145) | 0.138826 / 0.176557 (-0.037731) | 0.189697 / 0.737135 (-0.547439) | 0.125454 / 0.296338 (-0.170884) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.619273 / 0.215209 (0.404064) | 6.138669 / 2.077655 (4.061015) | 2.558622 / 1.504120 (1.054502) | 2.201550 / 1.541195 (0.660356) | 2.279034 / 1.468490 (0.810544) | 0.850752 / 4.584777 (-3.734025) | 5.438185 / 3.745712 (1.692473) | 2.529343 / 5.269862 (-2.740518) | 1.572178 / 4.565676 (-2.993499) | 0.100768 / 0.424275 (-0.323507) | 0.013902 / 0.007607 (0.006295) | 0.726660 / 0.226044 (0.500616) | 7.794918 / 2.268929 (5.525990) | 3.311695 / 55.444624 (-52.132930) | 2.729167 / 6.876477 (-4.147310) | 2.630984 / 2.142072 (0.488911) | 1.018534 / 4.805227 (-3.786693) | 0.194602 / 6.500664 (-6.306062) | 0.070876 / 0.075469 (-0.004593) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.573005 / 1.841788 (-0.268783) | 17.042710 / 8.074308 (8.968401) | 19.615320 / 10.191392 (9.423928) | 0.229405 / 0.680424 (-0.451019) | 0.027560 / 0.534201 (-0.506641) | 0.447984 / 0.579283 (-0.131299) | 0.598392 / 0.434364 (0.164028) | 0.571769 / 0.540337 (0.031431) | 0.653025 / 1.386936 (-0.733911) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9dca2ff89a8589595313e9535d16597ce10e3700 \"CML watermark\")\n" ]
2023-05-31T08:33:02Z
2023-05-31T13:34:35Z
2023-05-31T13:25:57Z
MEMBER
null
null
null
Related to: - #5850
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5917/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5917/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5917.diff", "html_url": "https://github.com/huggingface/datasets/pull/5917", "merged_at": "2023-05-31T13:25:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/5917.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5917" }
https://api.github.com/repos/huggingface/datasets/issues/5450
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5450/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5450/comments
https://api.github.com/repos/huggingface/datasets/issues/5450/events
https://github.com/huggingface/datasets/issues/5450
1,551,109,365
I_kwDODunzps5cdAz1
5,450
to_tf_dataset with a TF collator causes bizarrely persistent slowdown
{ "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rocketknight1", "id": 12866554, "login": "Rocketknight1", "node_id": "MDQ6VXNlcjEyODY2NTU0", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "type": "User", "url": "https://api.github.com/users/Rocketknight1", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "wtf", "Couldn't find what's causing this, this will need more investigation", "A possible hint: The function it seems to be spending a lot of time in (when iterating over the original dataset) is `_get_mp` in the PIL JPEG decoder: \r\n![image](https://user-images.githubusercontent.com/12866554/214057267-c889f05e-efaf-4036-b805-c5381fa62f4a.png)\r\n", "If \"mp\" is multiprocessing, this might suggest some kind of negative interaction between the JPEG decoder and TF's handling of processes/threads. Note that we haven't merged the parallel `to_tf_dataset` PR yet, so it's not caused by that PR!", "Update: MP isn't multiprocessing at all, it's an internal PIL method for loading metadata from JPEG files. No idea why that would be a bottleneck, but I'll see if a Python profiler can't figure out where the time is actually being spent.", "After further profiling, the slowdown is in the C methods for JPEG decoding that are included as part of PIL. Because Python profilers can't inspect inside that, I don't have any further information on which lines exactly are responsible for the slowdown or why.\r\n\r\nIn the meantime, I'm going to suggest switching from `return_tensors=\"tf\"` to `return_tensors=\"np\"` in most of our `transformers` code - this generally works better for pre-processing. Two relevant PRs are [here](https://github.com/huggingface/transformers/pull/21266) and [here](https://github.com/huggingface/notebooks/pull/308).", "Closing this issue as we've done what we can with this one! " ]
2023-01-20T16:08:37Z
2023-02-13T14:13:34Z
2023-02-13T14:13:34Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug This will make more sense if you take a look at [a Colab notebook that reproduces this issue.](https://colab.research.google.com/drive/1rxyeciQFWJTI0WrZ5aojp4Ls1ut18fNH?usp=sharing) Briefly, there are several datasets that, when you iterate over them with `to_tf_dataset` **and** a data collator that returns `tf` tensors, become very slow. We haven't been able to figure this one out - it can be intermittent, and we have no idea what could possibly cause it. The weirdest thing is that **the slowdown affects other attempts to access the underlying dataset**. If you try to iterate over the `tf.data.Dataset`, then interrupt execution, and then try to iterate over the original dataset, the original dataset is now also very slow! This is true even if the dataset format is not set to `tf` - the iteration is slow even though it's not calling TF at all! There is a simple workaround for this - we can simply get our data collators to return `np` tensors. When we do this, the bug is never triggered and everything is fine. In general, `np` is preferred for this kind of preprocessing work anyway, when the preprocessing is not going to be compiled into a pure `tf.data` pipeline! However, the issue is fascinating, and the TF team were wondering if anyone in datasets (cc @lhoestq @mariosasko) might have an idea of what could cause this. ### Steps to reproduce the bug Run the attached Colab. ### Expected behavior The slowdown should go away, or at least not persist after we stop iterating over the `tf.data.Dataset` ### Environment info The issue occurs on multiple versions of Python and TF, both on local machines and on Colab. All testing was done using the latest versions of `transformers` and `datasets` from `main`
{ "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rocketknight1", "id": 12866554, "login": "Rocketknight1", "node_id": "MDQ6VXNlcjEyODY2NTU0", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "type": "User", "url": "https://api.github.com/users/Rocketknight1", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 1, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5450/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5450/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5430/comments
https://api.github.com/repos/huggingface/datasets/issues/5430/events
https://github.com/huggingface/datasets/issues/5430
1,535,856,503
I_kwDODunzps5bi093
5,430
Support Apache Beam >= 2.44.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[ "Some of the shard files now have 0 number of rows.\r\n\r\nWe have opened an issue in the Apache Beam repo:\r\n- https://github.com/apache/beam/issues/25041" ]
2023-01-17T06:42:12Z
2024-02-06T19:24:21Z
2024-02-06T19:24:21Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Once we find out the root cause of: - #5426 we should revert the temporary pin on apache-beam introduced by: - #5429
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5430/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5430/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5161
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5161/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5161/comments
https://api.github.com/repos/huggingface/datasets/issues/5161/events
https://github.com/huggingface/datasets/issues/5161
1,422,371,748
I_kwDODunzps5Ux6uk
5,161
Dataset can’t cache model’s outputs
{ "avatar_url": "https://avatars.githubusercontent.com/u/37979232?v=4", "events_url": "https://api.github.com/users/jongjyh/events{/privacy}", "followers_url": "https://api.github.com/users/jongjyh/followers", "following_url": "https://api.github.com/users/jongjyh/following{/other_user}", "gists_url": "https://api.github.com/users/jongjyh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jongjyh", "id": 37979232, "login": "jongjyh", "node_id": "MDQ6VXNlcjM3OTc5MjMy", "organizations_url": "https://api.github.com/users/jongjyh/orgs", "received_events_url": "https://api.github.com/users/jongjyh/received_events", "repos_url": "https://api.github.com/users/jongjyh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jongjyh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jongjyh/subscriptions", "type": "User", "url": "https://api.github.com/users/jongjyh", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Addressed in https://github.com/huggingface/datasets/pull/5191 (torch.Tensor objects now produce deterministic hashes)" ]
2022-10-25T12:19:00Z
2022-11-03T16:12:52Z
2022-11-03T16:12:51Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi, I try to cache some outputs of teacher model( Knowledge Distillation ) by using map function of Dataset library, while every time I run my code, I still recompute all the sequences. I tested Bert Model like this, I got different hash every single run, so any idea to deal with this? ### Steps to reproduce the bug 1. run below code 2. get different hash ``` from transformers import BertModel from transformers import AutoTokenizer import torch token = ['hello'] model = BertModel.from_pretrained("bert-base-uncased").eval() tok = AutoTokenizer.from_pretrained("bert-base-uncased") def abcd(): with torch.no_grad(): out = model(**tok(token,return_tensors='pt'))[0] # out = tok(token) return out from datasets.fingerprint import Hasher my_func = abcd print(Hasher.hash(my_func)) print(abcd()) ``` ### Expected behavior I wanna cache all the model output ### Environment info datasets:2.5.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5161/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5161/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6769
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6769/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6769/comments
https://api.github.com/repos/huggingface/datasets/issues/6769/events
https://github.com/huggingface/datasets/issues/6769
2,218,242,015
I_kwDODunzps6EN6_f
6,769
(Willing to PR) Datasets with custom python objects
{ "avatar_url": "https://avatars.githubusercontent.com/u/5236035?v=4", "events_url": "https://api.github.com/users/fzyzcjy/events{/privacy}", "followers_url": "https://api.github.com/users/fzyzcjy/followers", "following_url": "https://api.github.com/users/fzyzcjy/following{/other_user}", "gists_url": "https://api.github.com/users/fzyzcjy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fzyzcjy", "id": 5236035, "login": "fzyzcjy", "node_id": "MDQ6VXNlcjUyMzYwMzU=", "organizations_url": "https://api.github.com/users/fzyzcjy/orgs", "received_events_url": "https://api.github.com/users/fzyzcjy/received_events", "repos_url": "https://api.github.com/users/fzyzcjy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fzyzcjy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fzyzcjy/subscriptions", "type": "User", "url": "https://api.github.com/users/fzyzcjy", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-04-01T13:18:47Z
2024-04-01T13:36:58Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Hi thanks for the library! I would like to have a huggingface Dataset, and one of its column is custom (non-serializable) Python objects. For example, a minimal code: ``` class MyClass: pass dataset = datasets.Dataset.from_list([ dict(a=MyClass(), b='hello'), ]) ``` It gives error: ``` ArrowInvalid: Could not convert <__main__.MyClass object at 0x7a852830d050> with type MyClass: did not recognize Python value type when inferring an Arrow data type ``` I guess it is because Dataset forces to convert everything into arrow format. However, is there any ways to make the scenario work? Thanks! ### Motivation (see above) ### Your contribution Yes, I am happy to PR! Cross-posted: https://discuss.huggingface.co/t/datasets-with-custom-python-objects/79050?u=fzyzcjy EDIT: possibly related https://github.com/huggingface/datasets/issues/5766
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6769/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6769/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6632
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6632/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6632/comments
https://api.github.com/repos/huggingface/datasets/issues/6632/events
https://github.com/huggingface/datasets/pull/6632
2,108,541,678
PR_kwDODunzps5lfPuk
6,632
Fix reload cache with data dir
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6632). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004913 / 0.011353 (-0.006440) | 0.003595 / 0.011008 (-0.007413) | 0.068385 / 0.038508 (0.029876) | 0.028612 / 0.023109 (0.005503) | 0.236590 / 0.275898 (-0.039308) | 0.261890 / 0.323480 (-0.061590) | 0.003027 / 0.007986 (-0.004958) | 0.002674 / 0.004328 (-0.001654) | 0.049255 / 0.004250 (0.045004) | 0.040500 / 0.037052 (0.003447) | 0.248759 / 0.258489 (-0.009730) | 0.280299 / 0.293841 (-0.013542) | 0.027300 / 0.128546 (-0.101247) | 0.010475 / 0.075646 (-0.065171) | 0.208744 / 0.419271 (-0.210527) | 0.035214 / 0.043533 (-0.008319) | 0.251922 / 0.255139 (-0.003217) | 0.263582 / 0.283200 (-0.019618) | 0.018738 / 0.141683 (-0.122945) | 1.150940 / 1.452155 (-0.301215) | 1.187240 / 1.492716 (-0.305476) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093505 / 0.018006 (0.075499) | 0.301101 / 0.000490 (0.300611) | 0.000232 / 0.000200 (0.000032) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017779 / 0.037411 (-0.019632) | 0.061412 / 0.014526 (0.046886) | 0.074353 / 0.176557 (-0.102203) | 0.118717 / 0.737135 (-0.618418) | 0.074214 / 0.296338 (-0.222125) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281722 / 0.215209 (0.066513) | 2.716867 / 2.077655 (0.639212) | 1.423379 / 1.504120 (-0.080741) | 1.315379 / 1.541195 (-0.225816) | 1.294638 / 1.468490 (-0.173852) | 0.549658 / 4.584777 (-4.035119) | 2.349889 / 3.745712 (-1.395823) | 2.722354 / 5.269862 (-2.547507) | 1.700271 / 4.565676 (-2.865406) | 0.061099 / 0.424275 (-0.363176) | 0.004931 / 0.007607 (-0.002677) | 0.339181 / 0.226044 (0.113136) | 3.242467 / 2.268929 (0.973538) | 1.777929 / 55.444624 (-53.666696) | 1.498380 / 6.876477 (-5.378097) | 1.511482 / 2.142072 (-0.630590) | 0.627076 / 4.805227 (-4.178151) | 0.115936 / 6.500664 (-6.384729) | 0.041791 / 0.075469 (-0.033678) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983132 / 1.841788 (-0.858656) | 11.431810 / 8.074308 (3.357502) | 10.298918 / 10.191392 (0.107526) | 0.139754 / 0.680424 (-0.540670) | 0.013984 / 0.534201 (-0.520217) | 0.283627 / 0.579283 (-0.295656) | 0.264970 / 0.434364 (-0.169393) | 0.323896 / 0.540337 (-0.216441) | 0.420132 / 1.386936 (-0.966804) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005323 / 0.011353 (-0.006030) | 0.003725 / 0.011008 (-0.007283) | 0.050191 / 0.038508 (0.011683) | 0.032196 / 0.023109 (0.009087) | 0.265037 / 0.275898 (-0.010861) | 0.289573 / 0.323480 (-0.033907) | 0.004345 / 0.007986 (-0.003640) | 0.002794 / 0.004328 (-0.001534) | 0.048955 / 0.004250 (0.044705) | 0.045421 / 0.037052 (0.008369) | 0.279792 / 0.258489 (0.021303) | 0.307374 / 0.293841 (0.013533) | 0.046997 / 0.128546 (-0.081549) | 0.010531 / 0.075646 (-0.065115) | 0.058921 / 0.419271 (-0.360351) | 0.033620 / 0.043533 (-0.009912) | 0.268138 / 0.255139 (0.012999) | 0.285941 / 0.283200 (0.002742) | 0.018396 / 0.141683 (-0.123287) | 1.151089 / 1.452155 (-0.301066) | 1.209351 / 1.492716 (-0.283365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092258 / 0.018006 (0.074252) | 0.300893 / 0.000490 (0.300403) | 0.000212 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022233 / 0.037411 (-0.015178) | 0.075220 / 0.014526 (0.060694) | 0.085901 / 0.176557 (-0.090656) | 0.125080 / 0.737135 (-0.612056) | 0.086978 / 0.296338 (-0.209361) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292877 / 0.215209 (0.077667) | 2.841005 / 2.077655 (0.763350) | 1.555168 / 1.504120 (0.051048) | 1.420801 / 1.541195 (-0.120394) | 1.431475 / 1.468490 (-0.037015) | 0.569803 / 4.584777 (-4.014974) | 2.451731 / 3.745712 (-1.293981) | 2.662825 / 5.269862 (-2.607036) | 1.732260 / 4.565676 (-2.833416) | 0.063030 / 0.424275 (-0.361245) | 0.004971 / 0.007607 (-0.002637) | 0.345250 / 0.226044 (0.119206) | 3.390909 / 2.268929 (1.121980) | 1.908666 / 55.444624 (-53.535959) | 1.628976 / 6.876477 (-5.247501) | 1.719270 / 2.142072 (-0.422803) | 0.653712 / 4.805227 (-4.151515) | 0.116423 / 6.500664 (-6.384241) | 0.040835 / 0.075469 (-0.034634) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005538 / 1.841788 (-0.836250) | 12.105381 / 8.074308 (4.031073) | 10.656295 / 10.191392 (0.464903) | 0.131850 / 0.680424 (-0.548574) | 0.016297 / 0.534201 (-0.517904) | 0.285566 / 0.579283 (-0.293717) | 0.276086 / 0.434364 (-0.158278) | 0.326663 / 0.540337 (-0.213675) | 0.410639 / 1.386936 (-0.976297) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1dc3f04586ee65c890b74649afc42316121af689 \"CML watermark\")\n" ]
2024-01-30T18:52:23Z
2024-02-06T17:27:35Z
2024-02-06T17:21:24Z
MEMBER
null
null
null
The cache used to only check for the latest cache directory with a given config_name, but it was wrong (e.g. `default-data_dir=data%2Ffortran-data_dir=data%2Ffortran` instead of `default-data_dir=data%2Ffortran`) I fixed this by not passing the `config_kwargs` to the parent Builder `__init__`, and passing the config_id forged from the `config_kwargs` directly close https://github.com/huggingface/datasets/issues/6609
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6632/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6632/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6632.diff", "html_url": "https://github.com/huggingface/datasets/pull/6632", "merged_at": "2024-02-06T17:21:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6632.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6632" }
https://api.github.com/repos/huggingface/datasets/issues/5650
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5650/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5650/comments
https://api.github.com/repos/huggingface/datasets/issues/5650/events
https://github.com/huggingface/datasets/issues/5650
1,630,336,919
I_kwDODunzps5hLPeX
5,650
load_dataset can't work correct with my image data
{ "avatar_url": "https://avatars.githubusercontent.com/u/41611046?v=4", "events_url": "https://api.github.com/users/WiNE-iNEFF/events{/privacy}", "followers_url": "https://api.github.com/users/WiNE-iNEFF/followers", "following_url": "https://api.github.com/users/WiNE-iNEFF/following{/other_user}", "gists_url": "https://api.github.com/users/WiNE-iNEFF/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/WiNE-iNEFF", "id": 41611046, "login": "WiNE-iNEFF", "node_id": "MDQ6VXNlcjQxNjExMDQ2", "organizations_url": "https://api.github.com/users/WiNE-iNEFF/orgs", "received_events_url": "https://api.github.com/users/WiNE-iNEFF/received_events", "repos_url": "https://api.github.com/users/WiNE-iNEFF/repos", "site_admin": false, "starred_url": "https://api.github.com/users/WiNE-iNEFF/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WiNE-iNEFF/subscriptions", "type": "User", "url": "https://api.github.com/users/WiNE-iNEFF", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Can you post a reproducible code snippet of what you tried to do?\r\n\r\n", "> Can you post a reproducible code snippet of what you tried to do?\n> \n> \n\n```python\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\n```", "hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?", "> hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?\n\nAll file have format .png converted in RGBA. \nIn main folder \"MyData\" contain 4 folder with images. In function load_dataset i use folder \"MyData\"", "@WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \r\nWhat would be the output if you omit `split` while loading? Like just\r\n```python\r\nds = load_dataset(\"MyData\")\r\nprint(ds)\r\n```\r\n\r\n", "> @WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \n> What would be the output if you omit `split` while loading? Like just\n> ```python\n> ds = load_dataset(\"MyData\")\n> print(ds)\n> ```\n> \n> \n\n```python\nDataset({\n features: ['image', 'label'],\n num_rows: 4\n})\n```", "@WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\r\n\r\nIf there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. ", "> @WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\n> \n> If there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. \n\nI checked my files and some of them do have the words train, valid and test in their names, but the number of such images is more than 500, not 4.", "@WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\r\n```\r\n Fuaimeanna2/\r\nβ”œβ”€ test\r\nβ”‚Β Β  β”œβ”€ label_0\r\nβ”‚Β Β  β”‚Β Β  β”œβ”€β”€ filename_0.jpg\r\nβ”‚Β Β  β”‚Β Β  └── filename_1.jpg\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  β”œβ”€ label_1\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  β”œβ”€ label_2\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  └─ label_3\r\nβ”‚Β Β  └── ...\r\nβ”œβ”€ train\r\nβ”‚Β Β  β”œβ”€ label_0\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  β”œβ”€ label_1\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  β”œβ”€ label_2\r\nβ”‚Β Β  β”‚Β Β  └── ...\r\nβ”‚Β Β  └─ label_3\r\nβ”‚Β Β  └── ...\r\n└── validation\r\n Β Β  β”œβ”€ label_0\r\nΒ Β  β”‚Β Β  └── ...\r\n Β Β  β”œβ”€ label_1\r\nΒ Β  β”‚Β Β  └── ...\r\n Β Β  β”œβ”€ label_2\r\nΒ Β  β”‚Β Β  └── ...\r\n └─ label_3\r\n └── ...\r\n```", "> @WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\n> ```\n> Fuaimeanna2/\n> β”œβ”€ test\n> β”‚Β Β  β”œβ”€ label_0\n> β”‚Β Β  β”‚Β Β  β”œβ”€β”€ filename_0.jpg\n> β”‚Β Β  β”‚Β Β  └── filename_1.jpg\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  β”œβ”€ label_1\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  β”œβ”€ label_2\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  └─ label_3\n> β”‚Β Β  └── ...\n> β”œβ”€ train\n> β”‚Β Β  β”œβ”€ label_0\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  β”œβ”€ label_1\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  β”œβ”€ label_2\n> β”‚Β Β  β”‚Β Β  └── ...\n> β”‚Β Β  └─ label_3\n> β”‚Β Β  └── ...\n> └── validation\n> Β Β  β”œβ”€ label_0\n> Β Β  β”‚Β Β  └── ...\n> Β Β  β”œβ”€ label_1\n> Β Β  β”‚Β Β  └── ...\n> Β Β  β”œβ”€ label_2\n> Β Β  β”‚Β Β  └── ...\n> └─ label_3\n> └── ...\n> ```\n\nI have read this documentation more than once. It just wasn't a problem before.", "Hi,\r\n\r\nYou need to use:\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n```\r\ninstead of \r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n```\r\nTo create an image dataset from your local folders.", "> Hi,\r\n> \r\n> You need to use:\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n> ```\r\n> \r\n> instead of\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n> ```\r\n> \r\n> To create an image dataset from your local folders.\r\n\r\nThank you, but even using the method that you wrote above absolutely nothing changes, especially without using data_dir on my other data everything works fine", "@WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \r\n\r\n\r\n> even using the method that you wrote above absolutely nothing changes\r\n\r\nfyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.", "Oh I didn't know that! OK but in any case, not sure why the image builder isn't working for @WiNE-iNEFF. But it's hard for us to help if we can't reproduce. I'd just check the structure of the folders, see if the splits are correctly set up, etc.", "> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI'll try to try your method over the next few days, then I'll write it turned out ", "> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI tried creating a `train` folder and put my image folders in it. As a result, all 18,000 images were loaded. ", "@WiNE-iNEFF great! So to explain what happened according to my assumptions:\r\n\r\nWhen you use a standard packaged loader (like `imagefolder`, `csv`, `jsonl`, and so on) and load your data like `load_dataset(\"my_folder_name\")` or `load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`, the library searches for patterns to divide files into splits. This is described a bit in [this doc](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names). And the order to search for patterns is the following:\r\n1. first it checks for [pattern like `data/<split_name>-xxxxx-of-xxxxx`](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#custom-split-names) (which allows to pass custom split names)\r\n2. then for directories named as splits (if you have directories named `train`, `test` etc.)\r\n3. then for [splits in filenames](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names) (like if you have files named `train-image.jpg`, `test_0.jpg`, ...)\r\n4. then if no pattern was found, it treats all files as belonging to a single `train` split\r\n\r\nThe code is [here](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L215).\r\nSo I assume that in your case, since you didn't have directories for splits (pattern 2), some files that included split keywords (pattern 3) were included and others were ignored as not matching the pattern. And when you added `train` directory, the pattern for directories (pattern 2) was triggered first and everything worked as expected. Everything worked in your previous cases probably because you didn't have split names keywords in filenames, so all the files ended up being a part of a single train split (pattern 4).\r\n\r\nAnother way to mitigate this apart from structuring your data according to the patterns is to explicitly state with files belong to which splits by passing them with `data_files` parameter:\r\n```python\r\nload_dataset(\"my_folder_name\", data_files={\"train\": \"**\"}) # to tell that all files should be included \r\n```\r\n\r\nNow I see that this order should be explained in documentation and also referenced in sections for packaged modules like `imagefolder`, thank you for pointing this out. \r\n\r\n \r\n", "@NielsRogge @polinaeterna I have a similar problem when reading my dataset. I want to use DETR for object detection, but my data is in YOLO format. With a dataset of 10k images, yolo format involves having 10k labels. As far as I read regarding [COCO format](https://auto.gluon.ai/stable/tutorials/multimodal/object_detection/data_preparation/convert_data_to_coco_format.html), there must be one JSON per split. However, as I post in the [Hugging Face forum](https://discuss.huggingface.co/t/prepare-dataset-from-yolo-format-to-coco-for-detr/34894), when it is read, the number of rows is 1, which does not make sense. \r\nThe instruction to read the train-val-test splits are: \r\n```python\r\nfrom datasets import load_dataset\r\ndata_files = {\r\n\t\"train\": './train_labels.json',\r\n\t\"validation\": './val_labels.json',\r\n\t\"test\": './test_labels.json'\r\n}\r\ndataset = load_dataset(\"json\", data_files=data_files)\r\n```\r\nAn example of the short version of the json file I read, to reproduce my error, is the following: \r\n\r\n``` json\r\n{\r\n \"info\": {},\r\n \"licenses\": [],\r\n \"images\": [\r\n {\r\n \"id\": 1,\r\n \"file_name\": \"aceca_100.mp4frame21.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 2,\r\n \"file_name\": \"aceca_100.mp4frame24.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 3,\r\n \"file_name\": \"aceca_100.mp4frame25.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null}],\r\n \"annotations\": [\r\n {\r\n \"id\": 1,\r\n \"image_id\": 1,\r\n \"category_id\": 0,\r\n \"bbox\": [0.0, 278.21896388398557, 86.94096523844935, 156.0293445072134],\r\n \"area\": 13565.341816979679,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 2,\r\n \"image_id\": 2,\r\n \"category_id\": 0,\r\n \"bbox\": [149.28851295721816, 297.6359759754418, 34.76802347007475, 98.03908698442889],\r\n \"area\": 3408.625277259324,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 3,\r\n \"image_id\": 3,\r\n \"category_id\": 0,\r\n \"bbox\": [153.3817197549372, 300.168969412891, 31.787555842913775, 89.69583163436312],\r\n \"area\": 2851.2112569539095,\r\n \"iscrowd\": 0\r\n }\r\n ],\r\n \"categories\": [\r\n {\r\n \"id\": 0, \"name\": \"person\"\r\n }\r\n ]\r\n }\r\n```\r\nIf full files required, my email is aruigui98@gmail.com", "Hi @Alberto1404, to load an object detection dataset it's recommended to make use of the metadata feature as explained [here](https://huggingface.co/docs/datasets/image_dataset#object-detection). ", "Thank you @NielsRogge! It works!!!", "You can now refer to https://huggingface.co/docs/datasets/repository_structure to learn about the `datasets`' data files inference, so I'm closing this issue." ]
2023-03-18T13:59:13Z
2023-07-24T14:13:02Z
2023-07-24T14:13:01Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
I have about 20000 images in my folder which divided into 4 folders with class names. When i use load_dataset("my_folder_name", split="train") this function create dataset in which there are only 4 images, the remaining 19000 images were not added there. What is the problem and did not understand. Tried converting images and the like but absolutely nothing worked
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5650/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5650/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4948
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4948/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4948/comments
https://api.github.com/repos/huggingface/datasets/issues/4948/events
https://github.com/huggingface/datasets/pull/4948
1,364,973,778
PR_kwDODunzps4-hwsl
4,948
Fix minor typo in error message for missing imports
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-07T17:20:51Z
2022-09-08T14:59:31Z
2022-09-08T14:57:15Z
COLLABORATOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4948/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4948/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4948.diff", "html_url": "https://github.com/huggingface/datasets/pull/4948", "merged_at": "2022-09-08T14:57:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/4948.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4948" }
https://api.github.com/repos/huggingface/datasets/issues/6302
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6302/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6302/comments
https://api.github.com/repos/huggingface/datasets/issues/6302/events
https://github.com/huggingface/datasets/issues/6302
1,942,096,078
I_kwDODunzps5zwgjO
6,302
ArrowWriter/ParquetWriter `write` method does not increase `_num_bytes` and hence datasets not sharding at `max_shard_size`
{ "avatar_url": "https://avatars.githubusercontent.com/u/2855550?v=4", "events_url": "https://api.github.com/users/Rassibassi/events{/privacy}", "followers_url": "https://api.github.com/users/Rassibassi/followers", "following_url": "https://api.github.com/users/Rassibassi/following{/other_user}", "gists_url": "https://api.github.com/users/Rassibassi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rassibassi", "id": 2855550, "login": "Rassibassi", "node_id": "MDQ6VXNlcjI4NTU1NTA=", "organizations_url": "https://api.github.com/users/Rassibassi/orgs", "received_events_url": "https://api.github.com/users/Rassibassi/received_events", "repos_url": "https://api.github.com/users/Rassibassi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rassibassi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rassibassi/subscriptions", "type": "User", "url": "https://api.github.com/users/Rassibassi", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "`writer._num_bytes` is updated every `writer_batch_size`-th call to the `write` method (default `writer_batch_size` is 1000 (examples)). You should be able to see the update by passing a smaller `writer_batch_size` to the `load_dataset_builder`.\r\n\r\nWe could improve this by supporting the string `writer_batch_size` version as we do with `max_shard_size`, and capping `writer_batch_size` to `max_shard_size` in scenarios where the default `writer_batch_size` > `max_shard_size`. ", "Thanks, reducing `writer_batch_size` solved my problem :)" ]
2023-10-13T14:43:36Z
2023-10-17T06:52:12Z
2023-10-17T06:52:11Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug An example from [1], does not work when limiting shards with `max_shard_size`. Try the following example with low `max_shard_size`, such as: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` The reason for this is that, in line [2] `writer._num_bytes > max_shard_size` is never true, because the `write` method of `ArrowWriter` [3] does not increase `self._num_bytes`. Such that respective Arrow/Parquet shards are only written to file based on the `writer_batch_size` or `config.DEFAULT_MAX_BATCH_SIZE`, but not based on `max_shard_size`. [1] https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage [2] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/builder.py#L1677 [3] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/arrow_writer.py#L459 ### Steps to reproduce the bug Get example from: https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage Call `builder.download_and_prepare` with low `max_shard_size` such as `10MB`, e.g.: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` ### Expected behavior Shards should be written based on `max_shard_size` instead of batch size. ### Environment info ``` >>> import datasets >>> datasets.__version__ '2.14.6.dev0 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/2855550?v=4", "events_url": "https://api.github.com/users/Rassibassi/events{/privacy}", "followers_url": "https://api.github.com/users/Rassibassi/followers", "following_url": "https://api.github.com/users/Rassibassi/following{/other_user}", "gists_url": "https://api.github.com/users/Rassibassi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rassibassi", "id": 2855550, "login": "Rassibassi", "node_id": "MDQ6VXNlcjI4NTU1NTA=", "organizations_url": "https://api.github.com/users/Rassibassi/orgs", "received_events_url": "https://api.github.com/users/Rassibassi/received_events", "repos_url": "https://api.github.com/users/Rassibassi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rassibassi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rassibassi/subscriptions", "type": "User", "url": "https://api.github.com/users/Rassibassi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6302/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6302/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6900
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6900/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6900/comments
https://api.github.com/repos/huggingface/datasets/issues/6900/events
https://github.com/huggingface/datasets/issues/6900
2,298,489,733
I_kwDODunzps6JACuF
6,900
[WebDataset] KeyError with user-defined `Features` when a field is missing in an example
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "@lhoestq How difficult of fix is this?", "It shouldn't be difficult, I think it's just a matter of adding the missing fields from `self.config.features` in `example` here: before it iterates on image_field_names and audio_field_names. A missing field should have a value set to None\r\n\r\nhttps://github.com/huggingface/datasets/blob/768cb35ede5a6c35fa7545aa3671f3e321c96440/src/datasets/packaged_modules/webdataset/webdataset.py#L113-L116", "@lhoestq So like this then?\r\n\r\n``` \r\ndef _generate_examples(self, tar_paths, tar_iterators):\r\n image_field_names = [\r\n field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image)\r\n ]\r\n audio_field_names = [\r\n field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio)\r\n ]\r\n\t\r\n all_field_names = list(self.config.features.keys())\r\n \r\n for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)):\r\n for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)):\r\n for field_name in all_field_names:\r\n if field_name not in example:\r\n if field_name in self.config.features:\r\n example[field_name] = self.config.features[field_name]\r\n else:\r\n example[field_name] = None\r\n \r\n # Process image and audio fields\r\n for field_name in image_field_names + audio_field_names:\r\n if example[field_name] is not None:\r\n example[field_name] = {\"path\": example[\"__key__\"] + \".\" + field_name, \"bytes\": example[field_name]}\r\n \r\n yield f\"{tar_idx}_{example_idx}\", example\r\n```\r\n\r\nOr should we avoid trying add the missing values and just set them to None?\r\n\r\n```\r\n for field_name in all_field_names:\r\n if field_name not in example:\r\n example[field_name] = None\r\n```", "Yup this is the solution !\r\n\r\n```python\r\n for field_name in all_field_names:\r\n if field_name not in example:\r\n example[field_name] = None\r\n```", "@lhoestq Awesome, thanks! I made a PR with the fixes" ]
2024-05-15T17:48:34Z
2024-06-28T09:30:13Z
2024-06-28T09:30:13Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
reported at https://huggingface.co/datasets/ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions/discussions/1 ``` File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 109, in _generate_examples example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]} ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6900/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6900/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5416
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5416/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5416/comments
https://api.github.com/repos/huggingface/datasets/issues/5416/events
https://github.com/huggingface/datasets/pull/5416
1,526,988,113
PR_kwDODunzps5HDLmR
5,416
Fix RuntimeError: Sharding is ambiguous for this dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "By the way, do we know how many datasets are impacted by this issue?\r\n\r\nMaybe we should do a patch release with this fix.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009256 / 0.011353 (-0.002097) | 0.005033 / 0.011008 (-0.005975) | 0.099346 / 0.038508 (0.060838) | 0.035204 / 0.023109 (0.012095) | 0.303017 / 0.275898 (0.027119) | 0.335632 / 0.323480 (0.012152) | 0.007953 / 0.007986 (-0.000033) | 0.005806 / 0.004328 (0.001477) | 0.076121 / 0.004250 (0.071871) | 0.041164 / 0.037052 (0.004112) | 0.305536 / 0.258489 (0.047047) | 0.348452 / 0.293841 (0.054611) | 0.037704 / 0.128546 (-0.090842) | 0.011982 / 0.075646 (-0.063664) | 0.333264 / 0.419271 (-0.086008) | 0.047738 / 0.043533 (0.004205) | 0.310126 / 0.255139 (0.054987) | 0.318719 / 0.283200 (0.035519) | 0.098933 / 0.141683 (-0.042750) | 1.421058 / 1.452155 (-0.031096) | 1.554771 / 1.492716 (0.062054) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258627 / 0.018006 (0.240620) | 0.450814 / 0.000490 (0.450324) | 0.011288 / 0.000200 (0.011088) | 0.000136 / 0.000054 (0.000081) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027004 / 0.037411 (-0.010407) | 0.109067 / 0.014526 (0.094541) | 0.120401 / 0.176557 (-0.056155) | 0.158336 / 0.737135 (-0.578799) | 0.126244 / 0.296338 (-0.170094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401847 / 0.215209 (0.186638) | 4.006003 / 2.077655 (1.928348) | 1.806342 / 1.504120 (0.302223) | 1.619751 / 1.541195 (0.078556) | 1.709660 / 1.468490 (0.241170) | 0.692444 / 4.584777 (-3.892333) | 3.853691 / 3.745712 (0.107979) | 2.143910 / 5.269862 (-3.125951) | 1.471600 / 4.565676 (-3.094076) | 0.084589 / 0.424275 (-0.339686) | 0.012276 / 0.007607 (0.004669) | 0.506529 / 0.226044 (0.280485) | 5.028361 / 2.268929 (2.759432) | 2.277660 / 55.444624 (-53.166964) | 1.930365 / 6.876477 (-4.946112) | 1.965494 / 2.142072 (-0.176579) | 0.826752 / 4.805227 (-3.978475) | 0.165050 / 6.500664 (-6.335614) | 0.062702 / 0.075469 (-0.012767) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234539 / 1.841788 (-0.607249) | 15.067401 / 8.074308 (6.993093) | 14.041920 / 10.191392 (3.850528) | 0.162590 / 0.680424 (-0.517834) | 0.028941 / 0.534201 (-0.505260) | 0.438518 / 0.579283 (-0.140765) | 0.443787 / 0.434364 (0.009423) | 0.516671 / 0.540337 (-0.023666) | 0.609036 / 1.386936 (-0.777900) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007535 / 0.011353 (-0.003818) | 0.005283 / 0.011008 (-0.005725) | 0.097116 / 0.038508 (0.058608) | 0.033357 / 0.023109 (0.010247) | 0.383398 / 0.275898 (0.107500) | 0.425516 / 0.323480 (0.102037) | 0.006039 / 0.007986 (-0.001947) | 0.004074 / 0.004328 (-0.000255) | 0.073207 / 0.004250 (0.068956) | 0.052153 / 0.037052 (0.015101) | 0.386385 / 0.258489 (0.127896) | 0.429900 / 0.293841 (0.136059) | 0.038341 / 0.128546 (-0.090205) | 0.012417 / 0.075646 (-0.063230) | 0.333859 / 0.419271 (-0.085413) | 0.051157 / 0.043533 (0.007625) | 0.395022 / 0.255139 (0.139883) | 0.402462 / 0.283200 (0.119262) | 0.105207 / 0.141683 (-0.036475) | 1.510679 / 1.452155 (0.058524) | 1.584205 / 1.492716 (0.091489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225805 / 0.018006 (0.207799) | 0.452109 / 0.000490 (0.451619) | 0.000429 / 0.000200 (0.000229) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029653 / 0.037411 (-0.007759) | 0.112609 / 0.014526 (0.098083) | 0.121828 / 0.176557 (-0.054728) | 0.159003 / 0.737135 (-0.578133) | 0.129306 / 0.296338 (-0.167033) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453001 / 0.215209 (0.237792) | 4.514882 / 2.077655 (2.437228) | 2.277494 / 1.504120 (0.773374) | 2.073870 / 1.541195 (0.532675) | 2.153346 / 1.468490 (0.684856) | 0.698363 / 4.584777 (-3.886414) | 3.921763 / 3.745712 (0.176051) | 2.123133 / 5.269862 (-3.146729) | 1.347618 / 4.565676 (-3.218058) | 0.085654 / 0.424275 (-0.338621) | 0.012059 / 0.007607 (0.004452) | 0.568183 / 0.226044 (0.342139) | 5.720047 / 2.268929 (3.451119) | 2.777973 / 55.444624 (-52.666651) | 2.453426 / 6.876477 (-4.423051) | 2.523977 / 2.142072 (0.381905) | 0.841979 / 4.805227 (-3.963248) | 0.167958 / 6.500664 (-6.332706) | 0.064929 / 0.075469 (-0.010540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235297 / 1.841788 (-0.606491) | 15.883598 / 8.074308 (7.809290) | 14.395328 / 10.191392 (4.203936) | 0.162401 / 0.680424 (-0.518022) | 0.017806 / 0.534201 (-0.516394) | 0.423853 / 0.579283 (-0.155430) | 0.423266 / 0.434364 (-0.011098) | 0.490351 / 0.540337 (-0.049986) | 0.588116 / 1.386936 (-0.798820) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010759 / 0.011353 (-0.000594) | 0.005748 / 0.011008 (-0.005260) | 0.119195 / 0.038508 (0.080687) | 0.033476 / 0.023109 (0.010367) | 0.364081 / 0.275898 (0.088183) | 0.422456 / 0.323480 (0.098976) | 0.009780 / 0.007986 (0.001795) | 0.006170 / 0.004328 (0.001841) | 0.093242 / 0.004250 (0.088991) | 0.041049 / 0.037052 (0.003997) | 0.372132 / 0.258489 (0.113643) | 0.442501 / 0.293841 (0.148660) | 0.054889 / 0.128546 (-0.073657) | 0.018302 / 0.075646 (-0.057345) | 0.378899 / 0.419271 (-0.040373) | 0.058455 / 0.043533 (0.014922) | 0.356141 / 0.255139 (0.101002) | 0.400866 / 0.283200 (0.117666) | 0.103384 / 0.141683 (-0.038299) | 1.629867 / 1.452155 (0.177713) | 1.693939 / 1.492716 (0.201222) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240484 / 0.018006 (0.222478) | 0.509137 / 0.000490 (0.508648) | 0.000450 / 0.000200 (0.000250) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025856 / 0.037411 (-0.011555) | 0.113214 / 0.014526 (0.098689) | 0.119420 / 0.176557 (-0.057136) | 0.158663 / 0.737135 (-0.578473) | 0.123542 / 0.296338 (-0.172797) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.555900 / 0.215209 (0.340691) | 5.580295 / 2.077655 (3.502640) | 2.216640 / 1.504120 (0.712520) | 1.904944 / 1.541195 (0.363749) | 1.865839 / 1.468490 (0.397349) | 1.158325 / 4.584777 (-3.426452) | 5.097420 / 3.745712 (1.351708) | 2.881775 / 5.269862 (-2.388087) | 2.068896 / 4.565676 (-2.496780) | 0.129028 / 0.424275 (-0.295247) | 0.014075 / 0.007607 (0.006468) | 0.698874 / 0.226044 (0.472830) | 7.131225 / 2.268929 (4.862296) | 2.901686 / 55.444624 (-52.542939) | 2.186146 / 6.876477 (-4.690330) | 2.251172 / 2.142072 (0.109100) | 1.342264 / 4.805227 (-3.462963) | 0.232045 / 6.500664 (-6.268619) | 0.073520 / 0.075469 (-0.001949) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.431314 / 1.841788 (-0.410474) | 16.313055 / 8.074308 (8.238747) | 18.451552 / 10.191392 (8.260160) | 0.232875 / 0.680424 (-0.447549) | 0.042170 / 0.534201 (-0.492031) | 0.495261 / 0.579283 (-0.084022) | 0.582901 / 0.434364 (0.148537) | 0.582049 / 0.540337 (0.041712) | 0.681122 / 1.386936 (-0.705814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008131 / 0.011353 (-0.003222) | 0.006162 / 0.011008 (-0.004847) | 0.113721 / 0.038508 (0.075213) | 0.030797 / 0.023109 (0.007688) | 0.413108 / 0.275898 (0.137210) | 0.449968 / 0.323480 (0.126488) | 0.006126 / 0.007986 (-0.001860) | 0.004848 / 0.004328 (0.000519) | 0.085465 / 0.004250 (0.081214) | 0.045817 / 0.037052 (0.008764) | 0.419360 / 0.258489 (0.160871) | 0.489077 / 0.293841 (0.195236) | 0.050841 / 0.128546 (-0.077705) | 0.020646 / 0.075646 (-0.055000) | 0.379838 / 0.419271 (-0.039434) | 0.068897 / 0.043533 (0.025365) | 0.422182 / 0.255139 (0.167043) | 0.435529 / 0.283200 (0.152330) | 0.115299 / 0.141683 (-0.026384) | 1.655134 / 1.452155 (0.202979) | 1.835198 / 1.492716 (0.342481) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207041 / 0.018006 (0.189034) | 0.491263 / 0.000490 (0.490773) | 0.003554 / 0.000200 (0.003354) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030830 / 0.037411 (-0.006582) | 0.127003 / 0.014526 (0.112477) | 0.142901 / 0.176557 (-0.033656) | 0.177570 / 0.737135 (-0.559565) | 0.137758 / 0.296338 (-0.158580) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632820 / 0.215209 (0.417611) | 6.215535 / 2.077655 (4.137880) | 2.615310 / 1.504120 (1.111190) | 2.261431 / 1.541195 (0.720236) | 2.220570 / 1.468490 (0.752080) | 1.215820 / 4.584777 (-3.368957) | 5.247680 / 3.745712 (1.501968) | 3.120054 / 5.269862 (-2.149807) | 1.950947 / 4.565676 (-2.614730) | 0.149980 / 0.424275 (-0.274295) | 0.015241 / 0.007607 (0.007634) | 0.879714 / 0.226044 (0.653670) | 7.941913 / 2.268929 (5.672984) | 3.512456 / 55.444624 (-51.932168) | 2.693833 / 6.876477 (-4.182644) | 2.772780 / 2.142072 (0.630708) | 1.459581 / 4.805227 (-3.345646) | 0.264820 / 6.500664 (-6.235844) | 0.076698 / 0.075469 (0.001228) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.437719 / 1.841788 (-0.404068) | 16.750309 / 8.074308 (8.676001) | 18.646776 / 10.191392 (8.455384) | 0.227858 / 0.680424 (-0.452566) | 0.024239 / 0.534201 (-0.509962) | 0.486172 / 0.579283 (-0.093111) | 0.574731 / 0.434364 (0.140367) | 0.557776 / 0.540337 (0.017439) | 0.672921 / 1.386936 (-0.714015) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n" ]
2023-01-10T08:43:19Z
2023-01-18T17:12:17Z
2023-01-18T14:09:02Z
MEMBER
null
null
null
This PR fixes the RuntimeError: Sharding is ambiguous for this dataset. The error for ambiguous sharding will be raised only if num_proc > 1. Fix #5415, fix #5414. Fix https://huggingface.co/datasets/ami/discussions/3.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5416/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5416/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5416.diff", "html_url": "https://github.com/huggingface/datasets/pull/5416", "merged_at": "2023-01-18T14:09:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/5416.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5416" }
https://api.github.com/repos/huggingface/datasets/issues/6193
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6193/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6193/comments
https://api.github.com/repos/huggingface/datasets/issues/6193/events
https://github.com/huggingface/datasets/issues/6193
1,872,285,153
I_kwDODunzps5vmM3h
6,193
Dataset loading script method does not work with .pyc file
{ "avatar_url": "https://avatars.githubusercontent.com/u/43389071?v=4", "events_url": "https://api.github.com/users/riteshkumarumassedu/events{/privacy}", "followers_url": "https://api.github.com/users/riteshkumarumassedu/followers", "following_url": "https://api.github.com/users/riteshkumarumassedu/following{/other_user}", "gists_url": "https://api.github.com/users/riteshkumarumassedu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/riteshkumarumassedu", "id": 43389071, "login": "riteshkumarumassedu", "node_id": "MDQ6VXNlcjQzMzg5MDcx", "organizations_url": "https://api.github.com/users/riteshkumarumassedu/orgs", "received_events_url": "https://api.github.com/users/riteshkumarumassedu/received_events", "repos_url": "https://api.github.com/users/riteshkumarumassedu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/riteshkumarumassedu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/riteshkumarumassedu/subscriptions", "type": "User", "url": "https://api.github.com/users/riteshkumarumassedu", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Before dynamically loading `.py` scripts with `importlib.import_module`, we also parse their contents to check imports, which is tricky to implement for binary `.pyc` files (requires parsing bytecode), so I don't think this is something we want to support (unless more users request it ofc) as this use case is a bit too specific.\r\n\r\n@lhoestq What's your opinion on this?", "> Before dynamically loading .py scripts with importlib.import_module, we also parse their contents to check imports, which is tricky to implement for binary .pyc files (requires parsing bytecode), so I don't think this is something we want to support (unless more users request it ofc) as this use case is a bit too specific.\r\n\r\nYes indeed. Though you can use a .py that imports a package that contains your .pyc code and that you previously installed", "Hi @lhoestq ,\r\nCould you share some example code related to the approach that you are suggesting? " ]
2023-08-29T19:35:06Z
2023-08-31T19:47:29Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug The huggingface dataset library specifically looks for β€˜.py’ file while loading the dataset using loading script approach and it does not work with β€˜.pyc’ file. While deploying in production, it becomes an issue when we are restricted to use only .pyc files. Is there any work around for this ? ### Steps to reproduce the bug 1. Create a dataset loading script to read the custom data. 2. compile the code to make sure that .pyc file is created 3. Delete the loading script and re-run the code. Usually, python should make use of complied .pyc files. However, in this case, the dataset library errors out with the message that it's unable to find the data loader loading script. ### Expected behavior The code should make use of .pyc file and run without any error. ### Environment info NA
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6193/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6193/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6772
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6772/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6772/comments
https://api.github.com/repos/huggingface/datasets/issues/6772/events
https://github.com/huggingface/datasets/pull/6772
2,220,851,533
PR_kwDODunzps5rdKZ2
6,772
`remove_columns`/`rename_columns` doc fixes
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6772). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005728 / 0.011353 (-0.005624) | 0.003809 / 0.011008 (-0.007199) | 0.062930 / 0.038508 (0.024422) | 0.032320 / 0.023109 (0.009211) | 0.251072 / 0.275898 (-0.024826) | 0.275397 / 0.323480 (-0.048083) | 0.003314 / 0.007986 (-0.004671) | 0.002869 / 0.004328 (-0.001460) | 0.049070 / 0.004250 (0.044819) | 0.049282 / 0.037052 (0.012229) | 0.263546 / 0.258489 (0.005057) | 0.291471 / 0.293841 (-0.002370) | 0.028462 / 0.128546 (-0.100084) | 0.010528 / 0.075646 (-0.065119) | 0.211249 / 0.419271 (-0.208023) | 0.036840 / 0.043533 (-0.006693) | 0.250038 / 0.255139 (-0.005101) | 0.268883 / 0.283200 (-0.014317) | 0.021417 / 0.141683 (-0.120266) | 1.139754 / 1.452155 (-0.312400) | 1.197319 / 1.492716 (-0.295397) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094191 / 0.018006 (0.076185) | 0.302413 / 0.000490 (0.301923) | 0.000220 / 0.000200 (0.000020) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018490 / 0.037411 (-0.018922) | 0.063361 / 0.014526 (0.048835) | 0.075854 / 0.176557 (-0.100702) | 0.121499 / 0.737135 (-0.615637) | 0.075982 / 0.296338 (-0.220356) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286030 / 0.215209 (0.070821) | 2.778487 / 2.077655 (0.700832) | 1.440963 / 1.504120 (-0.063157) | 1.326217 / 1.541195 (-0.214977) | 1.359228 / 1.468490 (-0.109262) | 0.566999 / 4.584777 (-4.017778) | 2.453344 / 3.745712 (-1.292368) | 2.841448 / 5.269862 (-2.428413) | 1.825197 / 4.565676 (-2.740479) | 0.062301 / 0.424275 (-0.361974) | 0.004948 / 0.007607 (-0.002659) | 0.334578 / 0.226044 (0.108534) | 3.302327 / 2.268929 (1.033399) | 1.799808 / 55.444624 (-53.644817) | 1.529693 / 6.876477 (-5.346783) | 1.564684 / 2.142072 (-0.577389) | 0.632891 / 4.805227 (-4.172336) | 0.116594 / 6.500664 (-6.384070) | 0.042695 / 0.075469 (-0.032774) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.999994 / 1.841788 (-0.841794) | 12.767365 / 8.074308 (4.693057) | 10.550439 / 10.191392 (0.359047) | 0.133437 / 0.680424 (-0.546986) | 0.015252 / 0.534201 (-0.518949) | 0.293285 / 0.579283 (-0.285998) | 0.274773 / 0.434364 (-0.159590) | 0.328718 / 0.540337 (-0.211619) | 0.428021 / 1.386936 (-0.958915) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005538 / 0.011353 (-0.005815) | 0.003738 / 0.011008 (-0.007271) | 0.050179 / 0.038508 (0.011671) | 0.032441 / 0.023109 (0.009332) | 0.294721 / 0.275898 (0.018823) | 0.322616 / 0.323480 (-0.000864) | 0.004255 / 0.007986 (-0.003731) | 0.002913 / 0.004328 (-0.001416) | 0.049044 / 0.004250 (0.044794) | 0.042361 / 0.037052 (0.005309) | 0.304162 / 0.258489 (0.045673) | 0.332757 / 0.293841 (0.038916) | 0.029355 / 0.128546 (-0.099191) | 0.010546 / 0.075646 (-0.065100) | 0.058213 / 0.419271 (-0.361058) | 0.032648 / 0.043533 (-0.010885) | 0.298241 / 0.255139 (0.043102) | 0.313710 / 0.283200 (0.030510) | 0.017836 / 0.141683 (-0.123847) | 1.135050 / 1.452155 (-0.317104) | 1.178277 / 1.492716 (-0.314439) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094387 / 0.018006 (0.076381) | 0.301955 / 0.000490 (0.301466) | 0.000220 / 0.000200 (0.000020) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023135 / 0.037411 (-0.014276) | 0.078109 / 0.014526 (0.063583) | 0.087519 / 0.176557 (-0.089037) | 0.127815 / 0.737135 (-0.609320) | 0.090107 / 0.296338 (-0.206231) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289149 / 0.215209 (0.073940) | 2.832354 / 2.077655 (0.754699) | 1.574003 / 1.504120 (0.069883) | 1.449190 / 1.541195 (-0.092005) | 1.465798 / 1.468490 (-0.002692) | 0.561953 / 4.584777 (-4.022824) | 2.445788 / 3.745712 (-1.299924) | 2.882453 / 5.269862 (-2.387409) | 1.813267 / 4.565676 (-2.752409) | 0.063163 / 0.424275 (-0.361112) | 0.005785 / 0.007607 (-0.001822) | 0.340125 / 0.226044 (0.114081) | 3.355370 / 2.268929 (1.086442) | 1.924226 / 55.444624 (-53.520398) | 1.643242 / 6.876477 (-5.233234) | 1.650149 / 2.142072 (-0.491924) | 0.654818 / 4.805227 (-4.150409) | 0.114968 / 6.500664 (-6.385696) | 0.042044 / 0.075469 (-0.033425) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.024867 / 1.841788 (-0.816921) | 12.656140 / 8.074308 (4.581832) | 10.927014 / 10.191392 (0.735622) | 0.155929 / 0.680424 (-0.524495) | 0.015356 / 0.534201 (-0.518845) | 0.289834 / 0.579283 (-0.289449) | 0.280889 / 0.434364 (-0.153475) | 0.331490 / 0.540337 (-0.208847) | 0.418037 / 1.386936 (-0.968899) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ad3467e9b138d1a9b87b661828a71139f4e46ece \"CML watermark\")\n" ]
2024-04-02T15:41:28Z
2024-04-02T16:28:45Z
2024-04-02T16:17:46Z
COLLABORATOR
null
null
null
Use more consistent wording in `remove_columns` to explain why it's faster than `map` and update `remove_columns`/`rename_columns` docstrings to fix in-place calls. Reported in https://github.com/huggingface/datasets/issues/6700
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6772/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6772/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6772.diff", "html_url": "https://github.com/huggingface/datasets/pull/6772", "merged_at": "2024-04-02T16:17:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/6772.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6772" }
https://api.github.com/repos/huggingface/datasets/issues/7113
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7113/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7113/comments
https://api.github.com/repos/huggingface/datasets/issues/7113/events
https://github.com/huggingface/datasets/issues/7113
2,475,029,640
I_kwDODunzps6ThfSI
7,113
Stream dataset does not iterate if the batch size is larger than the dataset size (related to drop_last_batch)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "That's expected behavior, it's also the same in `torch`:\r\n\r\n```python\r\n>>> list(DataLoader(list(range(5)), batch_size=10, drop_last=True))\r\n[]\r\n```" ]
2024-08-20T08:26:40Z
2024-08-26T04:24:11Z
2024-08-26T04:24:10Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi there, I use streaming and interleaving to combine multiple datasets saved in jsonl files. The size of dataset can vary (from 100ish to 100k-ish). I use dataset.map() and a big batch size to reduce the IO cost. It was working fine with datasets-2.16.1 but this problem shows up after I upgraded to datasets-2.19.2. With 2.21.0 the problem remains. Please see the code below to reproduce the problem. The dataset can iterate correctly if we set either streaming=False or drop_last_batch=False. I have to use drop_last_batch=True since it's for distributed training. ### Steps to reproduce the bug ```python # datasets==2.21.0 import datasets def data_prepare(examples): print(examples["sentence1"][0]) return examples batch_size = 101 # the size of the dataset is 100 # the dataset iterates correctly if we set either streaming=False or drop_last_batch=False dataset = datasets.load_dataset("mteb/biosses-sts", split="test", streaming=True) dataset = dataset.map(lambda x: data_prepare(x), drop_last_batch=True, batched=True, batch_size=batch_size) for ex in dataset: print(ex) pass ``` ### Expected behavior The dataset iterates regardless of the batch size. ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.2.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7113/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7113/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6226
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6226/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6226/comments
https://api.github.com/repos/huggingface/datasets/issues/6226/events
https://github.com/huggingface/datasets/pull/6226
1,887,462,591
PR_kwDODunzps5Z3arq
6,226
Add push_to_hub with multiple configs docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005920 / 0.011353 (-0.005433) | 0.003623 / 0.011008 (-0.007385) | 0.079283 / 0.038508 (0.040775) | 0.058325 / 0.023109 (0.035216) | 0.313733 / 0.275898 (0.037835) | 0.360790 / 0.323480 (0.037310) | 0.004653 / 0.007986 (-0.003332) | 0.002876 / 0.004328 (-0.001452) | 0.062137 / 0.004250 (0.057886) | 0.045084 / 0.037052 (0.008031) | 0.328569 / 0.258489 (0.070079) | 0.368965 / 0.293841 (0.075124) | 0.027085 / 0.128546 (-0.101461) | 0.008051 / 0.075646 (-0.067595) | 0.260222 / 0.419271 (-0.159050) | 0.045477 / 0.043533 (0.001944) | 0.315344 / 0.255139 (0.060205) | 0.348215 / 0.283200 (0.065015) | 0.021352 / 0.141683 (-0.120331) | 1.432200 / 1.452155 (-0.019955) | 1.509217 / 1.492716 (0.016501) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199843 / 0.018006 (0.181837) | 0.427925 / 0.000490 (0.427435) | 0.002903 / 0.000200 (0.002703) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023121 / 0.037411 (-0.014291) | 0.072451 / 0.014526 (0.057925) | 0.083260 / 0.176557 (-0.093296) | 0.142879 / 0.737135 (-0.594257) | 0.084053 / 0.296338 (-0.212286) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394922 / 0.215209 (0.179713) | 3.956111 / 2.077655 (1.878456) | 1.926411 / 1.504120 (0.422291) | 1.743840 / 1.541195 (0.202646) | 1.776957 / 1.468490 (0.308467) | 0.502134 / 4.584777 (-4.082643) | 3.001721 / 3.745712 (-0.743991) | 2.852496 / 5.269862 (-2.417365) | 1.862794 / 4.565676 (-2.702883) | 0.057544 / 0.424275 (-0.366731) | 0.006751 / 0.007607 (-0.000856) | 0.470619 / 0.226044 (0.244575) | 4.696674 / 2.268929 (2.427746) | 2.326545 / 55.444624 (-53.118080) | 1.980888 / 6.876477 (-4.895589) | 2.139172 / 2.142072 (-0.002901) | 0.590256 / 4.805227 (-4.214971) | 0.125815 / 6.500664 (-6.374849) | 0.061000 / 0.075469 (-0.014469) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261948 / 1.841788 (-0.579839) | 18.317473 / 8.074308 (10.243165) | 13.810883 / 10.191392 (3.619491) | 0.146180 / 0.680424 (-0.534244) | 0.016701 / 0.534201 (-0.517500) | 0.330731 / 0.579283 (-0.248552) | 0.345103 / 0.434364 (-0.089261) | 0.374449 / 0.540337 (-0.165889) | 0.522463 / 1.386936 (-0.864473) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006217 / 0.011353 (-0.005136) | 0.003678 / 0.011008 (-0.007331) | 0.062321 / 0.038508 (0.023813) | 0.059256 / 0.023109 (0.036147) | 0.444501 / 0.275898 (0.168603) | 0.475881 / 0.323480 (0.152401) | 0.004863 / 0.007986 (-0.003123) | 0.002916 / 0.004328 (-0.001412) | 0.062197 / 0.004250 (0.057946) | 0.048449 / 0.037052 (0.011396) | 0.443680 / 0.258489 (0.185191) | 0.484570 / 0.293841 (0.190729) | 0.028694 / 0.128546 (-0.099852) | 0.008096 / 0.075646 (-0.067550) | 0.068347 / 0.419271 (-0.350924) | 0.041031 / 0.043533 (-0.002502) | 0.443907 / 0.255139 (0.188768) | 0.469888 / 0.283200 (0.186689) | 0.020237 / 0.141683 (-0.121445) | 1.438484 / 1.452155 (-0.013671) | 1.512652 / 1.492716 (0.019936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243118 / 0.018006 (0.225111) | 0.416797 / 0.000490 (0.416308) | 0.010421 / 0.000200 (0.010221) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026191 / 0.037411 (-0.011220) | 0.080881 / 0.014526 (0.066355) | 0.093207 / 0.176557 (-0.083349) | 0.146708 / 0.737135 (-0.590428) | 0.091676 / 0.296338 (-0.204663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461475 / 0.215209 (0.246266) | 4.617351 / 2.077655 (2.539696) | 2.564369 / 1.504120 (1.060249) | 2.393263 / 1.541195 (0.852068) | 2.447343 / 1.468490 (0.978853) | 0.508764 / 4.584777 (-4.076013) | 3.075460 / 3.745712 (-0.670252) | 2.884683 / 5.269862 (-2.385179) | 1.866432 / 4.565676 (-2.699244) | 0.058759 / 0.424275 (-0.365516) | 0.006591 / 0.007607 (-0.001016) | 0.537718 / 0.226044 (0.311674) | 5.378709 / 2.268929 (3.109781) | 3.006751 / 55.444624 (-52.437873) | 2.666653 / 6.876477 (-4.209824) | 2.847559 / 2.142072 (0.705486) | 0.596878 / 4.805227 (-4.208350) | 0.125073 / 6.500664 (-6.375591) | 0.061345 / 0.075469 (-0.014124) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.349066 / 1.841788 (-0.492721) | 18.684735 / 8.074308 (10.610427) | 15.128142 / 10.191392 (4.936750) | 0.149254 / 0.680424 (-0.531170) | 0.017911 / 0.534201 (-0.516290) | 0.344057 / 0.579283 (-0.235226) | 0.363474 / 0.434364 (-0.070890) | 0.399425 / 0.540337 (-0.140912) | 0.549329 / 1.386936 (-0.837607) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e675a2396efb5204a4553721001f3b46aa4cc334 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005843 / 0.011353 (-0.005510) | 0.003549 / 0.011008 (-0.007460) | 0.082318 / 0.038508 (0.043810) | 0.056835 / 0.023109 (0.033726) | 0.312968 / 0.275898 (0.037070) | 0.345918 / 0.323480 (0.022438) | 0.003239 / 0.007986 (-0.004747) | 0.002762 / 0.004328 (-0.001567) | 0.062362 / 0.004250 (0.058111) | 0.045934 / 0.037052 (0.008882) | 0.317035 / 0.258489 (0.058546) | 0.358473 / 0.293841 (0.064632) | 0.027311 / 0.128546 (-0.101235) | 0.007994 / 0.075646 (-0.067652) | 0.261565 / 0.419271 (-0.157706) | 0.044942 / 0.043533 (0.001410) | 0.313092 / 0.255139 (0.057953) | 0.339021 / 0.283200 (0.055821) | 0.021555 / 0.141683 (-0.120127) | 1.421232 / 1.452155 (-0.030923) | 1.487597 / 1.492716 (-0.005119) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206432 / 0.018006 (0.188425) | 0.421932 / 0.000490 (0.421442) | 0.002825 / 0.000200 (0.002625) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022795 / 0.037411 (-0.014616) | 0.072666 / 0.014526 (0.058140) | 0.082779 / 0.176557 (-0.093778) | 0.142320 / 0.737135 (-0.594815) | 0.083343 / 0.296338 (-0.212995) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394227 / 0.215209 (0.179018) | 3.931858 / 2.077655 (1.854203) | 1.909953 / 1.504120 (0.405833) | 1.711298 / 1.541195 (0.170104) | 1.745816 / 1.468490 (0.277326) | 0.503670 / 4.584777 (-4.081107) | 3.053677 / 3.745712 (-0.692035) | 2.802597 / 5.269862 (-2.467264) | 1.825315 / 4.565676 (-2.740362) | 0.057741 / 0.424275 (-0.366534) | 0.006581 / 0.007607 (-0.001027) | 0.463597 / 0.226044 (0.237552) | 4.638821 / 2.268929 (2.369893) | 2.301266 / 55.444624 (-53.143358) | 1.967111 / 6.876477 (-4.909365) | 2.097756 / 2.142072 (-0.044317) | 0.589840 / 4.805227 (-4.215387) | 0.125538 / 6.500664 (-6.375126) | 0.061203 / 0.075469 (-0.014266) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291815 / 1.841788 (-0.549973) | 17.997040 / 8.074308 (9.922732) | 13.616252 / 10.191392 (3.424860) | 0.137349 / 0.680424 (-0.543075) | 0.016626 / 0.534201 (-0.517575) | 0.329611 / 0.579283 (-0.249672) | 0.346592 / 0.434364 (-0.087772) | 0.379521 / 0.540337 (-0.160817) | 0.528058 / 1.386936 (-0.858878) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006073 / 0.011353 (-0.005280) | 0.003594 / 0.011008 (-0.007414) | 0.062537 / 0.038508 (0.024029) | 0.057503 / 0.023109 (0.034394) | 0.449427 / 0.275898 (0.173529) | 0.482729 / 0.323480 (0.159249) | 0.004690 / 0.007986 (-0.003295) | 0.002901 / 0.004328 (-0.001428) | 0.062421 / 0.004250 (0.058171) | 0.046405 / 0.037052 (0.009353) | 0.456578 / 0.258489 (0.198089) | 0.492268 / 0.293841 (0.198427) | 0.028283 / 0.128546 (-0.100263) | 0.008028 / 0.075646 (-0.067618) | 0.067885 / 0.419271 (-0.351387) | 0.041273 / 0.043533 (-0.002260) | 0.449870 / 0.255139 (0.194731) | 0.472305 / 0.283200 (0.189106) | 0.018556 / 0.141683 (-0.123127) | 1.449016 / 1.452155 (-0.003138) | 1.490839 / 1.492716 (-0.001877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226569 / 0.018006 (0.208563) | 0.417106 / 0.000490 (0.416616) | 0.002784 / 0.000200 (0.002584) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025803 / 0.037411 (-0.011608) | 0.081084 / 0.014526 (0.066559) | 0.091851 / 0.176557 (-0.084706) | 0.143982 / 0.737135 (-0.593153) | 0.090511 / 0.296338 (-0.205827) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.463664 / 0.215209 (0.248454) | 4.634528 / 2.077655 (2.556874) | 2.574739 / 1.504120 (1.070619) | 2.412857 / 1.541195 (0.871662) | 2.442858 / 1.468490 (0.974368) | 0.511990 / 4.584777 (-4.072787) | 3.070345 / 3.745712 (-0.675367) | 2.842290 / 5.269862 (-2.427571) | 1.846727 / 4.565676 (-2.718950) | 0.058852 / 0.424275 (-0.365424) | 0.006624 / 0.007607 (-0.000983) | 0.539616 / 0.226044 (0.313571) | 5.410784 / 2.268929 (3.141856) | 3.065593 / 55.444624 (-52.379031) | 2.677930 / 6.876477 (-4.198547) | 2.817548 / 2.142072 (0.675476) | 0.602672 / 4.805227 (-4.202555) | 0.125689 / 6.500664 (-6.374975) | 0.062007 / 0.075469 (-0.013462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.335336 / 1.841788 (-0.506452) | 18.310099 / 8.074308 (10.235791) | 14.818452 / 10.191392 (4.627060) | 0.154001 / 0.680424 (-0.526423) | 0.017892 / 0.534201 (-0.516309) | 0.345989 / 0.579283 (-0.233294) | 0.352108 / 0.434364 (-0.082256) | 0.394333 / 0.540337 (-0.146004) | 0.547680 / 1.386936 (-0.839256) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d058d6e9b849acb5bc61d7df597a94253b487eb6 \"CML watermark\")\n" ]
2023-09-08T11:08:55Z
2023-09-08T12:29:21Z
2023-09-08T12:20:51Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6226/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6226/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6226.diff", "html_url": "https://github.com/huggingface/datasets/pull/6226", "merged_at": "2023-09-08T12:20:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/6226.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6226" }
https://api.github.com/repos/huggingface/datasets/issues/4796
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4796/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4796/comments
https://api.github.com/repos/huggingface/datasets/issues/4796/events
https://github.com/huggingface/datasets/issues/4796
1,329,887,810
I_kwDODunzps5PRHpC
4,796
ArrowInvalid: Could not convert <PIL.Image.Image image mode=RGB when adding image to Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4", "events_url": "https://api.github.com/users/NielsRogge/events{/privacy}", "followers_url": "https://api.github.com/users/NielsRogge/followers", "following_url": "https://api.github.com/users/NielsRogge/following{/other_user}", "gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NielsRogge", "id": 48327001, "login": "NielsRogge", "node_id": "MDQ6VXNlcjQ4MzI3MDAx", "organizations_url": "https://api.github.com/users/NielsRogge/orgs", "received_events_url": "https://api.github.com/users/NielsRogge/received_events", "repos_url": "https://api.github.com/users/NielsRogge/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions", "type": "User", "url": "https://api.github.com/users/NielsRogge", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" } ]
{ "closed_at": null, "closed_issues": 5, "created_at": "2023-02-13T16:22:42Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }, "description": "Next major release", "due_on": null, "html_url": "https://github.com/huggingface/datasets/milestone/10", "id": 9038583, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "node_id": "MI_kwDODunzps4Aier3", "number": 10, "open_issues": 3, "state": "open", "title": "3.0", "updated_at": "2024-08-21T09:35:06Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/10" }
[ "@mariosasko I'm getting a similar issue when creating a Dataset from a Pandas dataframe, like so:\r\n\r\n```\r\nfrom datasets import Dataset, Features, Image, Value\r\nimport pandas as pd\r\nimport requests\r\nimport PIL\r\n\r\n# we need to define the features ourselves\r\nfeatures = Features({\r\n 'a': Value(dtype='int32'),\r\n 'b': Image(),\r\n})\r\n\r\nurl = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\r\nimage = PIL.Image.open(requests.get(url, stream=True).raw)\r\n\r\ndf = pd.DataFrame({\"a\": [1, 2], \r\n \"b\": [image, image]})\r\n\r\ndataset = Dataset.from_pandas(df, features=features) \r\n```\r\nresults in \r\n\r\n```\r\nArrowInvalid: ('Could not convert <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7F7991A15C10> with type JpegImageFile: did not recognize Python value type when inferring an Arrow data type', 'Conversion failed for column b with type object')\r\n```\r\n\r\nWill the PR linked above also fix that?", "I would expect this to work, but it doesn't. Shouldn't be too hard to fix tho (in a subsequent PR).", "Hi @mariosasko just wanted to check in if there is a PR to follow for this. I was looking to create a demo app using this. If it's not working I can just use byte encoded images in the dataset which are not displayed. ", "Hi @darraghdog! No PR yet, but I plan to fix this before the next release.", "I was just pointed here by @mariosasko, meanwhile I found a workaround using `encode_example` like so:\r\n\r\n```\r\nfrom datasets import load_from_disk, Dataset\r\nDATASET_PATH = \"/hf/m4-master/data/cm4/cm4-10000-v0.1\"\r\nds1 = load_from_disk(DATASET_PATH)\r\nds2 = Dataset.from_dict(mapping={k: [] for k in ds1[99].keys()},\r\n features=ds1.features\r\n)\r\nfor i in range(2):\r\n # could add several representative items here\r\n row = ds1[99]\r\n row_encoded = ds2.features.encode_example(row)\r\n ds2 = ds2.add_item(row_encoded)\r\n```", "Hmm, interesting. If I create the dataset on the fly:\r\n\r\n```\r\nfrom datasets import load_from_disk, Dataset\r\nDATASET_PATH = \"/hf/m4-master/data/cm4/cm4-10000-v0.1\"\r\nds1 = load_from_disk(DATASET_PATH)\r\nds2 = Dataset.from_dict(mapping={k: [v]*2 for k, v in ds1[99].items()},\r\n features=ds1.features)\r\n```\r\n\r\nit doesn't fail with the error in the OP, as `from_dict` performs `encode_batch`.\r\n\r\nHowever if I try to use this dataset it fails now with:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/multiprocess/pool.py\", line 125, in worker\r\n result = (True, func(*args, **kwds))\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 557, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 524, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/fingerprint.py\", line 480, in wrapper\r\n out = func(self, *args, **kwargs)\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 2775, in _map_single\r\n batch = apply_function_on_filtered_inputs(\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 2655, in apply_function_on_filtered_inputs\r\n processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 2347, in decorated\r\n result = f(decorated_item, *args, **kwargs)\r\n File \"debug_leak2.py\", line 235, in split_pack_and_pad\r\n images.append(image_transform(image.convert(\"RGB\")))\r\nAttributeError: 'dict' object has no attribute 'convert'\r\n\"\"\"\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"debug_leak2.py\", line 418, in <module>\r\n train_loader, val_loader = get_dataloaders()\r\n File \"debug_leak2.py\", line 348, in get_dataloaders\r\n dataset = dataset.map(mapper, batch_size=32, batched=True, remove_columns=dataset.column_names, num_proc=4)\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 2500, in map\r\n transformed_shards[index] = async_result.get()\r\n File \"/home/stas/anaconda3/envs/py38-pt112/lib/python3.8/site-packages/multiprocess/pool.py\", line 771, in get\r\n raise self._value\r\nAttributeError: 'dict' object has no attribute 'convert'\r\n```\r\n\r\nbut if I create that same dataset one item at a time as in the previous comment's code snippet it doesn't fail.\r\n\r\nThe features of this dataset are set to:\r\n\r\n```\r\n{'texts': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), \r\n'images': Sequence(feature=Image(decode=True, id=None), length=-1, id=None)}\r\n```", "> @mariosasko I'm getting a similar issue when creating a Dataset from a Pandas dataframe, like so:\r\n> \r\n> ```\r\n> from datasets import Dataset, Features, Image, Value\r\n> import pandas as pd\r\n> import requests\r\n> import PIL\r\n> \r\n> # we need to define the features ourselves\r\n> features = Features({\r\n> 'a': Value(dtype='int32'),\r\n> 'b': Image(),\r\n> })\r\n> \r\n> url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\r\n> image = PIL.Image.open(requests.get(url, stream=True).raw)\r\n> \r\n> df = pd.DataFrame({\"a\": [1, 2], \r\n> \"b\": [image, image]})\r\n> \r\n> dataset = Dataset.from_pandas(df, features=features) \r\n> ```\r\n> \r\n> results in\r\n> \r\n> ```\r\n> ArrowInvalid: ('Could not convert <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7F7991A15C10> with type JpegImageFile: did not recognize Python value type when inferring an Arrow data type', 'Conversion failed for column b with type object')\r\n> ```\r\n> \r\n> Will the PR linked above also fix that?\r\n\r\nIt looks like the problem still exists.\r\nAny news ? Any good workaround ?\r\n\r\nThank you", "There is a workaround: \r\nCreate a loader python scrypt and upload the dataset to huggingface.\r\n\r\nHere is an example how to do that:\r\n\r\nhttps://huggingface.co/datasets/jamescalam/image-text-demo/tree/main\r\n\r\nand Here are videos with explanations:\r\n\r\nhttps://www.youtube.com/watch?v=lqK4ocAKveE and https://www.youtube.com/watch?v=ODdKC30dT8c", "cc @mariosasko gentle ping for a fix :)", "Any update on this? I'm still facing this issure. Any workaround?", "I was facing the same issue. Downgrading datasets from 2.11.0 to 2.4.0 solved the issue. ", "> Any update on this? I'm still facing this issure. Any workaround?\r\n\r\nI was able to resolve my issue with a quick workaround: \r\n\r\n```\r\nfrom collections import defaultdict\r\nfrom datasets import Dataset\r\n \r\ndata = defaultdict(list)\r\nfor idx in tqdm(range( len(dataloader)),desc=\"Captioning...\"):\r\n img = dataloader[idx]\r\n data['image'].append(img)\r\n data['text'].append(f\"{img_{idx}})\r\n \r\ndataset = Dataset.from_dict(data)\r\ndataset = dataset.filter(lambda example: example['image'] is not None)\r\ndataset = dataset.filter(lambda example: example['text'] is not None)\r\n \r\ndataset.push_to_hub(path-to-repo', private=False)\r\n```\r\n\r\nHope it helps!\r\nHappy coding", "> > Any update on this? I'm still facing this issure. Any workaround?\r\n> \r\n> I was able to resolve my issue with a quick workaround:\r\n> \r\n> ```\r\n> from collections import defaultdict\r\n> from datasets import Dataset\r\n> \r\n> data = defaultdict(list)\r\n> for idx in tqdm(range( len(dataloader)),desc=\"Captioning...\"):\r\n> img = dataloader[idx]\r\n> data['image'].append(img)\r\n> data['text'].append(f\"{img_{idx}})\r\n> \r\n> dataset = Dataset.from_dict(data)\r\n> dataset = dataset.filter(lambda example: example['image'] is not None)\r\n> dataset = dataset.filter(lambda example: example['text'] is not None)\r\n> \r\n> dataset.push_to_hub(path-to-repo', private=False)\r\n> ```\r\n> \r\n> Hope it helps! Happy coding\r\n\r\nIt works!! ", "> \r\n\r\nhow did this work, how to use this script or where to paste it?", "I had a similar issue to @NielsRogge where I was unable to create a dataset from a Pandas DataFrame containing PIL.Images.\r\n\r\nI found another workaround that works in this case which involves converting the DataFrame to a python dictionary, and then creating a dataset from said python dictionary.\r\n\r\nThis is a generic example of my workaround. The example assumes that you have your data in a Pandas DataFrame variable called \"dataframe\" plus a dictionary of your data's features in a variable called \"features\".\r\n```\r\nimport datasets\r\n\r\ndictionary = dataframe.to_dict(orient='list')\r\ndataset = datasets.Dataset.from_dict(dictionary, features=features)\r\n```", "cc @mariosasko this issue has been open for 2 years, would be great to resolve it :)", "I have the same issue, my current workaround is saving the dataframe to a csv and then loading the dataset from the csv. Would also appreciate it a fix :)", "> data = defaultdict(list)\r\n\r\nawesome, it really works~", "I found something that can be used as solution.\r\n\r\nI have the same problem when I've try to load the images from a pamdas dataset\r\n\r\nIf you have all on a pandas dataset try \r\nDataset.from_dict( your_df.reset_index(drop=True).to_dict(orient='list'), split=set_your_split)\r\n\r\nAnd this avoid the error" ]
2022-08-05T12:41:19Z
2024-11-29T16:35:17Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug When adding a Pillow image to an existing Dataset on the hub, `add_item` fails due to the Pillow image not being automatically converted into the Image feature. ## Steps to reproduce the bug ```python from datasets import load_dataset from PIL import Image dataset = load_dataset("hf-internal-testing/example-documents") # load any random Pillow image image = Image.open("/content/cord_example.png").convert("RGB") new_image = {'image': image} dataset['test'] = dataset['test'].add_item(new_image) ``` ## Expected results The image should be automatically casted to the Image feature when using `add_item`. For now, this can be fixed by using `encode_example`: ``` import datasets feature = datasets.Image(decode=False) new_image = {'image': feature.encode_example(image)} dataset['test'] = dataset['test'].add_item(new_image) ``` ## Actual results ``` ArrowInvalid: Could not convert <PIL.Image.Image image mode=RGB size=576x864 at 0x7F7CCC4589D0> with type Image: did not recognize Python value type when inferring an Arrow data type ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4796/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4796/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5124
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5124/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5124/comments
https://api.github.com/repos/huggingface/datasets/issues/5124/events
https://github.com/huggingface/datasets/pull/5124
1,411,159,725
PR_kwDODunzps5A6HeL
5,124
Install tensorflow-macos dependency conditionally
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-17T08:45:08Z
2022-10-19T09:12:17Z
2022-10-19T09:10:06Z
MEMBER
null
null
null
Fix #5118.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5124/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5124/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5124.diff", "html_url": "https://github.com/huggingface/datasets/pull/5124", "merged_at": "2022-10-19T09:10:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/5124.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5124" }
https://api.github.com/repos/huggingface/datasets/issues/6218
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6218/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6218/comments
https://api.github.com/repos/huggingface/datasets/issues/6218/events
https://github.com/huggingface/datasets/pull/6218
1,883,734,000
PR_kwDODunzps5Zqw3Y
6,218
Rename old push_to_hub configs to "default" in dataset_infos
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006529 / 0.011353 (-0.004823) | 0.004010 / 0.011008 (-0.006998) | 0.086258 / 0.038508 (0.047750) | 0.073775 / 0.023109 (0.050666) | 0.307573 / 0.275898 (0.031675) | 0.337091 / 0.323480 (0.013611) | 0.004251 / 0.007986 (-0.003735) | 0.003886 / 0.004328 (-0.000443) | 0.068238 / 0.004250 (0.063987) | 0.057000 / 0.037052 (0.019948) | 0.321751 / 0.258489 (0.063262) | 0.359227 / 0.293841 (0.065386) | 0.030841 / 0.128546 (-0.097705) | 0.008569 / 0.075646 (-0.067078) | 0.299523 / 0.419271 (-0.119748) | 0.052563 / 0.043533 (0.009030) | 0.312806 / 0.255139 (0.057667) | 0.342273 / 0.283200 (0.059074) | 0.025725 / 0.141683 (-0.115958) | 1.479263 / 1.452155 (0.027108) | 1.554975 / 1.492716 (0.062259) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316328 / 0.018006 (0.298322) | 0.598993 / 0.000490 (0.598503) | 0.004548 / 0.000200 (0.004348) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027399 / 0.037411 (-0.010013) | 0.081683 / 0.014526 (0.067157) | 0.096968 / 0.176557 (-0.079589) | 0.151559 / 0.737135 (-0.585576) | 0.096558 / 0.296338 (-0.199781) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383117 / 0.215209 (0.167908) | 3.818634 / 2.077655 (1.740979) | 1.878112 / 1.504120 (0.373992) | 1.729031 / 1.541195 (0.187836) | 1.770259 / 1.468490 (0.301769) | 0.484061 / 4.584777 (-4.100716) | 3.596998 / 3.745712 (-0.148715) | 3.246846 / 5.269862 (-2.023016) | 2.019481 / 4.565676 (-2.546195) | 0.057279 / 0.424275 (-0.366996) | 0.007455 / 0.007607 (-0.000152) | 0.465002 / 0.226044 (0.238958) | 4.644669 / 2.268929 (2.375741) | 2.346415 / 55.444624 (-53.098209) | 2.039686 / 6.876477 (-4.836791) | 2.172822 / 2.142072 (0.030750) | 0.582925 / 4.805227 (-4.222302) | 0.134246 / 6.500664 (-6.366418) | 0.060093 / 0.075469 (-0.015376) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249033 / 1.841788 (-0.592755) | 19.585949 / 8.074308 (11.511641) | 14.100681 / 10.191392 (3.909289) | 0.147138 / 0.680424 (-0.533286) | 0.018307 / 0.534201 (-0.515894) | 0.397939 / 0.579283 (-0.181344) | 0.413916 / 0.434364 (-0.020448) | 0.465688 / 0.540337 (-0.074650) | 0.642140 / 1.386936 (-0.744797) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006627 / 0.011353 (-0.004726) | 0.004173 / 0.011008 (-0.006835) | 0.063850 / 0.038508 (0.025342) | 0.074733 / 0.023109 (0.051623) | 0.398111 / 0.275898 (0.122213) | 0.426344 / 0.323480 (0.102864) | 0.006261 / 0.007986 (-0.001725) | 0.003507 / 0.004328 (-0.000822) | 0.064511 / 0.004250 (0.060260) | 0.056508 / 0.037052 (0.019456) | 0.401750 / 0.258489 (0.143261) | 0.437081 / 0.293841 (0.143240) | 0.031815 / 0.128546 (-0.096732) | 0.008703 / 0.075646 (-0.066943) | 0.071411 / 0.419271 (-0.347861) | 0.048153 / 0.043533 (0.004620) | 0.399221 / 0.255139 (0.144082) | 0.429312 / 0.283200 (0.146112) | 0.022157 / 0.141683 (-0.119526) | 1.485656 / 1.452155 (0.033502) | 1.550967 / 1.492716 (0.058250) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.330575 / 0.018006 (0.312569) | 0.525553 / 0.000490 (0.525064) | 0.004574 / 0.000200 (0.004374) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031871 / 0.037411 (-0.005541) | 0.091819 / 0.014526 (0.077293) | 0.105542 / 0.176557 (-0.071015) | 0.158210 / 0.737135 (-0.578926) | 0.107167 / 0.296338 (-0.189172) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430226 / 0.215209 (0.215017) | 4.293456 / 2.077655 (2.215801) | 2.289538 / 1.504120 (0.785418) | 2.122255 / 1.541195 (0.581060) | 2.181840 / 1.468490 (0.713350) | 0.498529 / 4.584777 (-4.086248) | 3.686636 / 3.745712 (-0.059077) | 3.287279 / 5.269862 (-1.982582) | 2.068397 / 4.565676 (-2.497280) | 0.058775 / 0.424275 (-0.365500) | 0.007583 / 0.007607 (-0.000024) | 0.507165 / 0.226044 (0.281121) | 5.072330 / 2.268929 (2.803401) | 2.796396 / 55.444624 (-52.648228) | 2.409946 / 6.876477 (-4.466531) | 2.657322 / 2.142072 (0.515250) | 0.597744 / 4.805227 (-4.207483) | 0.133803 / 6.500664 (-6.366861) | 0.060231 / 0.075469 (-0.015238) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.333130 / 1.841788 (-0.508658) | 20.545936 / 8.074308 (12.471627) | 14.875020 / 10.191392 (4.683628) | 0.168873 / 0.680424 (-0.511551) | 0.020316 / 0.534201 (-0.513885) | 0.397203 / 0.579283 (-0.182080) | 0.412412 / 0.434364 (-0.021952) | 0.479952 / 0.540337 (-0.060385) | 0.657155 / 1.386936 (-0.729781) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#13fbee4ca8742460e9baab86a89d9100a294df3e \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007885 / 0.011353 (-0.003468) | 0.005221 / 0.011008 (-0.005787) | 0.099457 / 0.038508 (0.060949) | 0.085867 / 0.023109 (0.062758) | 0.359922 / 0.275898 (0.084024) | 0.406479 / 0.323480 (0.082999) | 0.005001 / 0.007986 (-0.002985) | 0.003678 / 0.004328 (-0.000650) | 0.075647 / 0.004250 (0.071396) | 0.064318 / 0.037052 (0.027265) | 0.372180 / 0.258489 (0.113691) | 0.419206 / 0.293841 (0.125365) | 0.040438 / 0.128546 (-0.088108) | 0.010008 / 0.075646 (-0.065638) | 0.340911 / 0.419271 (-0.078360) | 0.063326 / 0.043533 (0.019793) | 0.359015 / 0.255139 (0.103876) | 0.408601 / 0.283200 (0.125402) | 0.029828 / 0.141683 (-0.111855) | 1.767822 / 1.452155 (0.315667) | 1.829079 / 1.492716 (0.336363) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234455 / 0.018006 (0.216449) | 0.507786 / 0.000490 (0.507297) | 0.004009 / 0.000200 (0.003809) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033374 / 0.037411 (-0.004038) | 0.100817 / 0.014526 (0.086291) | 0.113415 / 0.176557 (-0.063141) | 0.180368 / 0.737135 (-0.556768) | 0.115446 / 0.296338 (-0.180893) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488976 / 0.215209 (0.273767) | 4.911354 / 2.077655 (2.833699) | 2.623525 / 1.504120 (1.119405) | 2.424400 / 1.541195 (0.883206) | 2.497580 / 1.468490 (1.029089) | 0.561106 / 4.584777 (-4.023671) | 4.265649 / 3.745712 (0.519937) | 3.830267 / 5.269862 (-1.439595) | 2.404727 / 4.565676 (-2.160949) | 0.067303 / 0.424275 (-0.356972) | 0.009177 / 0.007607 (0.001570) | 0.588433 / 0.226044 (0.362388) | 5.871573 / 2.268929 (3.602645) | 3.087845 / 55.444624 (-52.356779) | 2.765381 / 6.876477 (-4.111096) | 3.007863 / 2.142072 (0.865791) | 0.687327 / 4.805227 (-4.117901) | 0.157687 / 6.500664 (-6.342977) | 0.071291 / 0.075469 (-0.004178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.510931 / 1.841788 (-0.330857) | 22.129590 / 8.074308 (14.055282) | 16.780479 / 10.191392 (6.589087) | 0.168297 / 0.680424 (-0.512127) | 0.021294 / 0.534201 (-0.512907) | 0.464535 / 0.579283 (-0.114748) | 0.480041 / 0.434364 (0.045677) | 0.549185 / 0.540337 (0.008848) | 0.739438 / 1.386936 (-0.647498) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007834 / 0.011353 (-0.003518) | 0.004576 / 0.011008 (-0.006432) | 0.073331 / 0.038508 (0.034823) | 0.084688 / 0.023109 (0.061579) | 0.486367 / 0.275898 (0.210469) | 0.523127 / 0.323480 (0.199647) | 0.006278 / 0.007986 (-0.001708) | 0.003792 / 0.004328 (-0.000537) | 0.075416 / 0.004250 (0.071166) | 0.064053 / 0.037052 (0.027001) | 0.491908 / 0.258489 (0.233419) | 0.529177 / 0.293841 (0.235336) | 0.038483 / 0.128546 (-0.090063) | 0.009560 / 0.075646 (-0.066087) | 0.083431 / 0.419271 (-0.335841) | 0.057114 / 0.043533 (0.013581) | 0.486316 / 0.255139 (0.231177) | 0.512384 / 0.283200 (0.229185) | 0.028452 / 0.141683 (-0.113231) | 1.788886 / 1.452155 (0.336731) | 1.893834 / 1.492716 (0.401118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343018 / 0.018006 (0.325011) | 0.513673 / 0.000490 (0.513183) | 0.056778 / 0.000200 (0.056578) | 0.001799 / 0.000054 (0.001745) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038530 / 0.037411 (0.001119) | 0.109286 / 0.014526 (0.094760) | 0.122812 / 0.176557 (-0.053745) | 0.187780 / 0.737135 (-0.549355) | 0.124083 / 0.296338 (-0.172255) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.509839 / 0.215209 (0.294630) | 5.085840 / 2.077655 (3.008186) | 2.746695 / 1.504120 (1.242575) | 2.542283 / 1.541195 (1.001088) | 2.650243 / 1.468490 (1.181753) | 0.592801 / 4.584777 (-3.991976) | 4.316721 / 3.745712 (0.571009) | 3.811672 / 5.269862 (-1.458189) | 2.433982 / 4.565676 (-2.131695) | 0.066861 / 0.424275 (-0.357414) | 0.008633 / 0.007607 (0.001026) | 0.590482 / 0.226044 (0.364437) | 5.923484 / 2.268929 (3.654556) | 3.282293 / 55.444624 (-52.162332) | 2.882716 / 6.876477 (-3.993761) | 3.139581 / 2.142072 (0.997509) | 0.690702 / 4.805227 (-4.114525) | 0.156781 / 6.500664 (-6.343883) | 0.071487 / 0.075469 (-0.003982) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.604557 / 1.841788 (-0.237231) | 24.000026 / 8.074308 (15.925718) | 17.548685 / 10.191392 (7.357293) | 0.174883 / 0.680424 (-0.505541) | 0.023812 / 0.534201 (-0.510389) | 0.473522 / 0.579283 (-0.105761) | 0.494683 / 0.434364 (0.060319) | 0.593352 / 0.540337 (0.053015) | 0.771852 / 1.386936 (-0.615084) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b61c96a806fa97800bc8a66607fb0c78a5d04146 \"CML watermark\")\n", "thanks! i wonder if we should also fix (change config name) all the old `dataset_infos.json` on the Hub?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006388 / 0.011353 (-0.004965) | 0.003876 / 0.011008 (-0.007132) | 0.083960 / 0.038508 (0.045452) | 0.068328 / 0.023109 (0.045219) | 0.337958 / 0.275898 (0.062060) | 0.370783 / 0.323480 (0.047303) | 0.003925 / 0.007986 (-0.004060) | 0.004221 / 0.004328 (-0.000107) | 0.064198 / 0.004250 (0.059947) | 0.052681 / 0.037052 (0.015629) | 0.348890 / 0.258489 (0.090401) | 0.389038 / 0.293841 (0.095197) | 0.031133 / 0.128546 (-0.097413) | 0.008566 / 0.075646 (-0.067080) | 0.288169 / 0.419271 (-0.131102) | 0.053290 / 0.043533 (0.009757) | 0.344654 / 0.255139 (0.089515) | 0.381287 / 0.283200 (0.098087) | 0.022350 / 0.141683 (-0.119333) | 1.459933 / 1.452155 (0.007778) | 1.543097 / 1.492716 (0.050380) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212592 / 0.018006 (0.194586) | 0.461863 / 0.000490 (0.461373) | 0.003468 / 0.000200 (0.003268) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026849 / 0.037411 (-0.010563) | 0.081059 / 0.014526 (0.066533) | 0.093986 / 0.176557 (-0.082571) | 0.150328 / 0.737135 (-0.586807) | 0.094253 / 0.296338 (-0.202085) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382198 / 0.215209 (0.166989) | 3.813878 / 2.077655 (1.736224) | 1.855686 / 1.504120 (0.351566) | 1.672995 / 1.541195 (0.131800) | 1.697705 / 1.468490 (0.229215) | 0.479920 / 4.584777 (-4.104857) | 3.608305 / 3.745712 (-0.137407) | 3.216712 / 5.269862 (-2.053149) | 1.984781 / 4.565676 (-2.580896) | 0.056801 / 0.424275 (-0.367475) | 0.007499 / 0.007607 (-0.000108) | 0.454155 / 0.226044 (0.228110) | 4.531147 / 2.268929 (2.262218) | 2.296149 / 55.444624 (-53.148475) | 1.968701 / 6.876477 (-4.907775) | 2.144286 / 2.142072 (0.002213) | 0.599254 / 4.805227 (-4.205973) | 0.138150 / 6.500664 (-6.362514) | 0.060118 / 0.075469 (-0.015351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282486 / 1.841788 (-0.559301) | 19.127792 / 8.074308 (11.053483) | 14.116521 / 10.191392 (3.925129) | 0.163792 / 0.680424 (-0.516632) | 0.018116 / 0.534201 (-0.516085) | 0.390789 / 0.579283 (-0.188494) | 0.409241 / 0.434364 (-0.025123) | 0.457824 / 0.540337 (-0.082513) | 0.624390 / 1.386936 (-0.762546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006637 / 0.011353 (-0.004716) | 0.003932 / 0.011008 (-0.007076) | 0.063456 / 0.038508 (0.024948) | 0.070062 / 0.023109 (0.046953) | 0.410570 / 0.275898 (0.134672) | 0.436700 / 0.323480 (0.113220) | 0.005324 / 0.007986 (-0.002662) | 0.003263 / 0.004328 (-0.001065) | 0.063590 / 0.004250 (0.059340) | 0.054823 / 0.037052 (0.017770) | 0.408720 / 0.258489 (0.150231) | 0.441493 / 0.293841 (0.147652) | 0.031655 / 0.128546 (-0.096891) | 0.008421 / 0.075646 (-0.067225) | 0.070657 / 0.419271 (-0.348614) | 0.047370 / 0.043533 (0.003837) | 0.408217 / 0.255139 (0.153078) | 0.422178 / 0.283200 (0.138978) | 0.022282 / 0.141683 (-0.119401) | 1.511417 / 1.452155 (0.059262) | 1.570337 / 1.492716 (0.077620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224334 / 0.018006 (0.206327) | 0.447589 / 0.000490 (0.447099) | 0.004227 / 0.000200 (0.004027) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030797 / 0.037411 (-0.006615) | 0.091276 / 0.014526 (0.076750) | 0.102665 / 0.176557 (-0.073892) | 0.155423 / 0.737135 (-0.581712) | 0.103779 / 0.296338 (-0.192560) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434509 / 0.215209 (0.219300) | 4.328910 / 2.077655 (2.251255) | 2.311424 / 1.504120 (0.807304) | 2.138380 / 1.541195 (0.597185) | 2.196293 / 1.468490 (0.727803) | 0.482123 / 4.584777 (-4.102654) | 3.597870 / 3.745712 (-0.147842) | 3.222426 / 5.269862 (-2.047435) | 1.994467 / 4.565676 (-2.571210) | 0.057517 / 0.424275 (-0.366758) | 0.007336 / 0.007607 (-0.000271) | 0.504968 / 0.226044 (0.278923) | 5.047940 / 2.268929 (2.779012) | 2.824014 / 55.444624 (-52.620610) | 2.457762 / 6.876477 (-4.418714) | 2.606970 / 2.142072 (0.464897) | 0.580758 / 4.805227 (-4.224469) | 0.132584 / 6.500664 (-6.368080) | 0.059258 / 0.075469 (-0.016211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354386 / 1.841788 (-0.487402) | 19.738147 / 8.074308 (11.663839) | 14.858001 / 10.191392 (4.666609) | 0.166074 / 0.680424 (-0.514350) | 0.020181 / 0.534201 (-0.514020) | 0.398333 / 0.579283 (-0.180950) | 0.406969 / 0.434364 (-0.027395) | 0.474515 / 0.540337 (-0.065822) | 0.649571 / 1.386936 (-0.737365) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b3ac3b3a9c5f40a29fae71504574cfdeebefe349 \"CML watermark\")\n", "I would say we should delete all `dataset_infos.json` on the Hub...", "@albertvillanova @lhoestq @mariosasko should we really stop supporting it and delete from everywhere?\r\n(bc if not, I've found a bug in updating `dataset_infos.json` with `.push_to_hub` and I'd open a PR to fix it)", "We can only delete them for the datasets without namespace and open PRs for the others, so we need to keep supporting them for now" ]
2023-09-06T10:40:05Z
2023-09-07T08:31:29Z
2023-09-06T11:23:56Z
MEMBER
null
null
null
Fix ```python from datasets import load_dataset_builder b = load_dataset_builder("lambdalabs/pokemon-blip-captions", "default") print(b.info) ``` which should return ``` DatasetInfo( features={'image': Image(decode=True, id=None), 'text': Value(dtype='string', id=None)}, dataset_name='pokemon-blip-captions', config_name='default', version=0.0.0, splits={'train': SplitInfo(name='train', num_bytes=119417410.0, num_examples=833, shard_lengths=None, dataset_name='pokemon-blip-captions')}, download_checksums=None, download_size=99672355, dataset_size=119417410.0, size_in_bytes=219089765.0, ... ) ``` instead of and empty dataset info. The dataset has a dataset_infos.json file with a deprecated config name "lambdalabs--pokemon-blip-captions". We switched those config names to "default" in 2.14, so the builder.info should take this into account.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6218/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6218/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6218.diff", "html_url": "https://github.com/huggingface/datasets/pull/6218", "merged_at": "2023-09-06T11:23:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/6218.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6218" }
https://api.github.com/repos/huggingface/datasets/issues/5752
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5752/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5752/comments
https://api.github.com/repos/huggingface/datasets/issues/5752/events
https://github.com/huggingface/datasets/issues/5752
1,668,574,209
I_kwDODunzps5jdGwB
5,752
Streaming dataset looses `.feature` method after `.add_column`
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "I believe the issue resides in this line:\r\nhttps://github.com/huggingface/datasets/blob/7c3a9b057c476c40d157bd7a5d57f49066239df0/src/datasets/iterable_dataset.py#L1415\r\n\r\nIf we pass the **new** features of the dataset to the `.map` method we can return the features after adding a column, e.g.:\r\n```python\r\nfrom datasets import load_dataset, Value\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\n# now add a new column to our streaming dataset using our hack\r\nname = \"new_column\"\r\ncolumn = [\"some random text\" for _ in range(50)]\r\n\r\nnew_features = original_dataset.features.copy()\r\nnew_features[name] = Value(dtype=\"string\", id=None) #Β I know the correct column type for this feature\r\n\r\ndef add_column_fn(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column[idx]}\r\n\r\nmodified_dataset = original_dataset.map(add_column_fn, with_indices=True, features=new_features)\r\n\r\nprint(modified_dataset.features.keys())\r\n```\r\n**Print Output:**\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column'])\r\n```\r\n", "It seems that map will also cause this issue\r\n\r\n### Steps to reproduce the bug\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\ndef test(data):\r\n return data\r\n\r\nmodified_dataset = original_dataset.map(test)\r\nprint(modified_dataset.features.keys())\r\n```\r\n\r\n### Output\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\n---------------------------------------------------------------------------\r\nAttributeError Traceback (most recent call last)\r\nCell In[5], line 10\r\n 7 return data\r\n 9 modified_dataset = original_dataset.map(test)\r\n---> 10 print(modified_dataset.features.keys())\r\n\r\nAttributeError: 'NoneType' object has no attribute 'keys'\r\n```" ]
2023-04-14T16:39:50Z
2024-01-18T10:15:20Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug After appending a new column to a streaming dataset using `.add_column`, we can no longer access the list of dataset features using the `.feature` method. ### Steps to reproduce the bug ```python from datasets import load_dataset original_dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) print(original_dataset.features.keys()) # now add a new column to our streaming dataset modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)]) print(modified_dataset.features.keys()) ``` **Print Output:** ``` dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id']) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[1], line 8 6 # now add a new column to our streaming dataset 7 modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)]) ----> 8 print(modified_dataset.features.keys()) AttributeError: 'NoneType' object has no attribute 'keys' ``` We see that we get the features for the original dataset, but not the modified one with the added column. ### Expected behavior Features should be persevered after adding a new column, i.e. calling: ```python print(modified_dataset.features.keys()) ``` Should return: ``` dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column']) ``` ### Environment info - `datasets` version: 2.10.2.dev0 - Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-glibc2.28 - Python version: 3.9.16 - Huggingface_hub version: 0.13.3 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5752/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5752/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4978
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4978/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4978/comments
https://api.github.com/repos/huggingface/datasets/issues/4978/events
https://github.com/huggingface/datasets/pull/4978
1,374,271,504
PR_kwDODunzps4_Axnh
4,978
Update IndicGLUE download links
{ "avatar_url": "https://avatars.githubusercontent.com/u/28291870?v=4", "events_url": "https://api.github.com/users/sumanthd17/events{/privacy}", "followers_url": "https://api.github.com/users/sumanthd17/followers", "following_url": "https://api.github.com/users/sumanthd17/following{/other_user}", "gists_url": "https://api.github.com/users/sumanthd17/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sumanthd17", "id": 28291870, "login": "sumanthd17", "node_id": "MDQ6VXNlcjI4MjkxODcw", "organizations_url": "https://api.github.com/users/sumanthd17/orgs", "received_events_url": "https://api.github.com/users/sumanthd17/received_events", "repos_url": "https://api.github.com/users/sumanthd17/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sumanthd17/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sumanthd17/subscriptions", "type": "User", "url": "https://api.github.com/users/sumanthd17", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-09-15T10:05:57Z
2022-09-15T22:00:20Z
2022-09-15T21:57:34Z
CONTRIBUTOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4978/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4978/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4978.diff", "html_url": "https://github.com/huggingface/datasets/pull/4978", "merged_at": "2022-09-15T21:57:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/4978.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4978" }
https://api.github.com/repos/huggingface/datasets/issues/4823
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4823/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4823/comments
https://api.github.com/repos/huggingface/datasets/issues/4823/events
https://github.com/huggingface/datasets/pull/4823
1,335,687,033
PR_kwDODunzps49A0O_
4,823
Update data URL in mkqa dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-11T09:16:13Z
2022-08-11T09:51:50Z
2022-08-11T09:37:52Z
MEMBER
null
null
null
Update data URL in mkqa dataset. Fix #4817.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4823/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4823/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4823.diff", "html_url": "https://github.com/huggingface/datasets/pull/4823", "merged_at": "2022-08-11T09:37:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/4823.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4823" }
https://api.github.com/repos/huggingface/datasets/issues/7527
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7527/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7527/comments
https://api.github.com/repos/huggingface/datasets/issues/7527/events
https://github.com/huggingface/datasets/issues/7527
3,005,242,422
I_kwDODunzps6zIFw2
7,527
Auto-merge option for `convert-to-parquet`
{ "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Alternatively, there could be an option to switch from submitting PRs to just committing changes directly to `main`." ]
2025-04-18T16:03:22Z
2025-04-18T16:05:30Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add a command-line option, e.g. `--auto-merge-pull-request` that enables automatic merging of the commits created by the `convert-to-parquet` tool. ### Motivation Large datasets may result in dozens of PRs due to the splitting mechanism. Each of these has to be manually accepted via the website. ### Your contribution Happy to look into submitting a PR if this is of interest to maintainers.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7527/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7527/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6207
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6207/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6207/comments
https://api.github.com/repos/huggingface/datasets/issues/6207/events
https://github.com/huggingface/datasets/issues/6207
1,879,555,234
I_kwDODunzps5wB7yi
6,207
No-script datasets with ZIP files do not load
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2023-09-04T05:50:27Z
2023-09-04T09:13:33Z
2023-09-04T09:13:33Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
While investigating an issue on a Hub dataset, I have discovered the no-script datasets containing ZIP files do not load. For example, that no-script dataset containing ZIP files, raises NonMatchingSplitsSizesError: ```python In [2]: ds = load_dataset("sidovic/LearningQ-qg") NonMatchingSplitsSizesError: [ { 'expected': SplitInfo(name='train', num_bytes=0, num_examples=188660, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, shard_lengths=None, dataset_name='learning_q-qg') }, { 'expected': SplitInfo(name='validation', num_bytes=0, num_examples=20630, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='validation', num_bytes=0, num_examples=0, shard_lengths=None, dataset_name='learning_q-qg') }, { 'expected': SplitInfo(name='test', num_bytes=0, num_examples=18227, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, shard_lengths=None, dataset_name='learning_q-qg') } ] ``` As another example, a no-script dataset containing just a (CSV)-ZIP file, raises a DatasetGenerationError: ``` > num_examples, num_bytes = writer.finalize() src/datasets/builder.py:1949: > raise SchemaInferenceError("Please pass `features` or at least one example when writing data") E datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data src/datasets/arrow_writer.py:598: SchemaInferenceError The above exception was the direct cause of the following exception: src/datasets/load.py:2143: in load_dataset builder_instance.download_and_prepare( src/datasets/builder.py:954: in download_and_prepare self._download_and_prepare( src/datasets/builder.py:1049: in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) src/datasets/builder.py:1813: in _prepare_split for job_id, done, content in self._prepare_split_single( > raise DatasetGenerationError("An error occurred while generating the dataset") from e E datasets.builder.DatasetGenerationError: An error occurred while generating the dataset src/datasets/builder.py:1958: DatasetGenerationError ``` After investigating, I think this bug was introduced in this PR: - #5972 Related to: - https://huggingface.co/datasets/sidovic/LearningQ-qg/discussions/1 CC: @lhoestq
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6207/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6207/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6086
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6086/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6086/comments
https://api.github.com/repos/huggingface/datasets/issues/6086/events
https://github.com/huggingface/datasets/issues/6086
1,825,009,268
I_kwDODunzps5sx250
6,086
Support `fsspec` in `Dataset.to_<format>` methods
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt", "user_view_type": "public" } ]
null
[ "Hi @mariosasko unless someone's already working on it, I guess I can tackle it!", "Hi! Sure, feel free to tackle this.", "#self-assign", "I'm assuming this should just cover `to_csv`, `to_parquet`, and `to_json`, right? As `to_list` and `to_dict` just return Python objects, `to_pandas` returns a `pandas.DataFrame` and `to_sql` just inserts into a SQL DB, is that right?", "Fixed by #6096. " ]
2023-07-27T19:08:37Z
2024-03-07T07:22:43Z
2024-03-07T07:22:42Z
COLLABORATOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Supporting this should be fairly easy. Requested on the forum [here](https://discuss.huggingface.co/t/how-can-i-convert-a-loaded-dataset-in-to-a-parquet-file-and-save-it-to-the-s3/48353).
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6086/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6086/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6739
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6739/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6739/comments
https://api.github.com/repos/huggingface/datasets/issues/6739/events
https://github.com/huggingface/datasets/pull/6739
2,192,730,134
PR_kwDODunzps5p-Bwe
6,739
Transpose images with EXIF Orientation tag
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6739). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005295 / 0.011353 (-0.006058) | 0.003402 / 0.011008 (-0.007606) | 0.062860 / 0.038508 (0.024352) | 0.029627 / 0.023109 (0.006518) | 0.238359 / 0.275898 (-0.037539) | 0.262940 / 0.323480 (-0.060540) | 0.003077 / 0.007986 (-0.004909) | 0.002676 / 0.004328 (-0.001652) | 0.048731 / 0.004250 (0.044480) | 0.043989 / 0.037052 (0.006936) | 0.255702 / 0.258489 (-0.002787) | 0.282667 / 0.293841 (-0.011174) | 0.028019 / 0.128546 (-0.100527) | 0.010195 / 0.075646 (-0.065451) | 0.205472 / 0.419271 (-0.213800) | 0.036551 / 0.043533 (-0.006982) | 0.243282 / 0.255139 (-0.011857) | 0.261925 / 0.283200 (-0.021274) | 0.020506 / 0.141683 (-0.121177) | 1.137228 / 1.452155 (-0.314927) | 1.183935 / 1.492716 (-0.308782) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100290 / 0.018006 (0.082284) | 0.316279 / 0.000490 (0.315790) | 0.000239 / 0.000200 (0.000039) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017979 / 0.037411 (-0.019432) | 0.061616 / 0.014526 (0.047090) | 0.072989 / 0.176557 (-0.103568) | 0.118667 / 0.737135 (-0.618468) | 0.074266 / 0.296338 (-0.222072) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287971 / 0.215209 (0.072762) | 2.845235 / 2.077655 (0.767581) | 1.501983 / 1.504120 (-0.002137) | 1.389824 / 1.541195 (-0.151370) | 1.415616 / 1.468490 (-0.052874) | 0.568727 / 4.584777 (-4.016050) | 2.368330 / 3.745712 (-1.377382) | 2.844329 / 5.269862 (-2.425532) | 1.809038 / 4.565676 (-2.756639) | 0.063699 / 0.424275 (-0.360576) | 0.004972 / 0.007607 (-0.002635) | 0.340092 / 0.226044 (0.114048) | 3.369146 / 2.268929 (1.100217) | 1.863423 / 55.444624 (-53.581201) | 1.608334 / 6.876477 (-5.268142) | 1.624479 / 2.142072 (-0.517594) | 0.632439 / 4.805227 (-4.172788) | 0.116862 / 6.500664 (-6.383802) | 0.042558 / 0.075469 (-0.032911) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967922 / 1.841788 (-0.873866) | 11.730612 / 8.074308 (3.656304) | 9.321333 / 10.191392 (-0.870059) | 0.142604 / 0.680424 (-0.537819) | 0.013934 / 0.534201 (-0.520267) | 0.285992 / 0.579283 (-0.293292) | 0.267639 / 0.434364 (-0.166724) | 0.324972 / 0.540337 (-0.215365) | 0.427077 / 1.386936 (-0.959859) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005806 / 0.011353 (-0.005547) | 0.003771 / 0.011008 (-0.007237) | 0.049542 / 0.038508 (0.011034) | 0.030182 / 0.023109 (0.007073) | 0.303923 / 0.275898 (0.028025) | 0.325623 / 0.323480 (0.002143) | 0.004327 / 0.007986 (-0.003659) | 0.002818 / 0.004328 (-0.001510) | 0.048237 / 0.004250 (0.043987) | 0.047490 / 0.037052 (0.010437) | 0.316556 / 0.258489 (0.058067) | 0.348352 / 0.293841 (0.054512) | 0.029444 / 0.128546 (-0.099102) | 0.010544 / 0.075646 (-0.065102) | 0.057382 / 0.419271 (-0.361890) | 0.056210 / 0.043533 (0.012677) | 0.305495 / 0.255139 (0.050356) | 0.321570 / 0.283200 (0.038370) | 0.019546 / 0.141683 (-0.122137) | 1.141732 / 1.452155 (-0.310423) | 1.223626 / 1.492716 (-0.269091) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093864 / 0.018006 (0.075858) | 0.309715 / 0.000490 (0.309226) | 0.000217 / 0.000200 (0.000017) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022047 / 0.037411 (-0.015364) | 0.074885 / 0.014526 (0.060359) | 0.088440 / 0.176557 (-0.088117) | 0.127033 / 0.737135 (-0.610103) | 0.089048 / 0.296338 (-0.207290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292624 / 0.215209 (0.077415) | 2.877592 / 2.077655 (0.799937) | 1.607036 / 1.504120 (0.102916) | 1.487819 / 1.541195 (-0.053376) | 1.517318 / 1.468490 (0.048828) | 0.553321 / 4.584777 (-4.031456) | 2.415577 / 3.745712 (-1.330135) | 2.691411 / 5.269862 (-2.578450) | 1.743395 / 4.565676 (-2.822282) | 0.062187 / 0.424275 (-0.362088) | 0.005073 / 0.007607 (-0.002534) | 0.342907 / 0.226044 (0.116863) | 3.402054 / 2.268929 (1.133126) | 1.979481 / 55.444624 (-53.465143) | 1.702885 / 6.876477 (-5.173592) | 1.868279 / 2.142072 (-0.273794) | 0.640095 / 4.805227 (-4.165132) | 0.117138 / 6.500664 (-6.383526) | 0.042197 / 0.075469 (-0.033272) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007495 / 1.841788 (-0.834292) | 12.037309 / 8.074308 (3.963001) | 10.227670 / 10.191392 (0.036278) | 0.149533 / 0.680424 (-0.530891) | 0.015282 / 0.534201 (-0.518919) | 0.287357 / 0.579283 (-0.291926) | 0.285109 / 0.434364 (-0.149255) | 0.324027 / 0.540337 (-0.216311) | 0.442482 / 1.386936 (-0.944454) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#19b40860acf3b3ba8db727fcf3b1b99ebb8d7e33 \"CML watermark\")\n" ]
2024-03-18T16:43:06Z
2024-03-19T15:35:57Z
2024-03-19T15:29:42Z
COLLABORATOR
null
null
null
Closes https://github.com/huggingface/datasets/issues/6252
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6739/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6739/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6739.diff", "html_url": "https://github.com/huggingface/datasets/pull/6739", "merged_at": "2024-03-19T15:29:41Z", "patch_url": "https://github.com/huggingface/datasets/pull/6739.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6739" }
https://api.github.com/repos/huggingface/datasets/issues/7514
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7514/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7514/comments
https://api.github.com/repos/huggingface/datasets/issues/7514/events
https://github.com/huggingface/datasets/pull/7514
2,994,714,923
PR_kwDODunzps6Sk7Et
7,514
Do not hash `generator` in `BuilderConfig.create_config_id`
{ "avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4", "events_url": "https://api.github.com/users/simonreise/events{/privacy}", "followers_url": "https://api.github.com/users/simonreise/followers", "following_url": "https://api.github.com/users/simonreise/following{/other_user}", "gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/simonreise", "id": 43753582, "login": "simonreise", "node_id": "MDQ6VXNlcjQzNzUzNTgy", "organizations_url": "https://api.github.com/users/simonreise/orgs", "received_events_url": "https://api.github.com/users/simonreise/received_events", "repos_url": "https://api.github.com/users/simonreise/repos", "site_admin": false, "starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/simonreise/subscriptions", "type": "User", "url": "https://api.github.com/users/simonreise", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-04-15T01:26:43Z
2025-04-23T11:55:55Z
2025-04-15T16:27:51Z
NONE
null
null
null
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, and hashing a `generator` can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough. Maybe we should pop generator from `config_kwargs_to_add_to_suffix` before hashing to avoid it. There is a more detailed description of the problem this PR solves in #7513
{ "avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4", "events_url": "https://api.github.com/users/simonreise/events{/privacy}", "followers_url": "https://api.github.com/users/simonreise/followers", "following_url": "https://api.github.com/users/simonreise/following{/other_user}", "gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/simonreise", "id": 43753582, "login": "simonreise", "node_id": "MDQ6VXNlcjQzNzUzNTgy", "organizations_url": "https://api.github.com/users/simonreise/orgs", "received_events_url": "https://api.github.com/users/simonreise/received_events", "repos_url": "https://api.github.com/users/simonreise/repos", "site_admin": false, "starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/simonreise/subscriptions", "type": "User", "url": "https://api.github.com/users/simonreise", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7514/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7514/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7514.diff", "html_url": "https://github.com/huggingface/datasets/pull/7514", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7514.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7514" }
https://api.github.com/repos/huggingface/datasets/issues/5067
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5067/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5067/comments
https://api.github.com/repos/huggingface/datasets/issues/5067/events
https://github.com/huggingface/datasets/pull/5067
1,396,361,768
PR_kwDODunzps5AI86d
5,067
Fix CONTRIBUTING once dataset scripts transferred to Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-10-04T14:16:05Z
2022-10-06T06:14:43Z
2022-10-06T06:12:12Z
MEMBER
null
null
null
This PR updates the `CONTRIBUTING.md` guide, once the all dataset scripts have been removed from the GitHub repo and transferred to the HF Hub: - #4974 See diff here: https://github.com/huggingface/datasets/commit/e3291ecff9e54f09fcee3f313f051a03fdc3d94b Additionally, this PR fixes the line separator that by some previous mistake was CRLF instead of LF.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5067/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5067/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5067.diff", "html_url": "https://github.com/huggingface/datasets/pull/5067", "merged_at": "2022-10-06T06:12:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/5067.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5067" }
https://api.github.com/repos/huggingface/datasets/issues/5864
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5864/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5864/comments
https://api.github.com/repos/huggingface/datasets/issues/5864/events
https://github.com/huggingface/datasets/issues/5864
1,710,450,047
I_kwDODunzps5l82V_
5,864
Slow iteration over Torch tensors
{ "avatar_url": "https://avatars.githubusercontent.com/u/51738205?v=4", "events_url": "https://api.github.com/users/crisostomi/events{/privacy}", "followers_url": "https://api.github.com/users/crisostomi/followers", "following_url": "https://api.github.com/users/crisostomi/following{/other_user}", "gists_url": "https://api.github.com/users/crisostomi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/crisostomi", "id": 51738205, "login": "crisostomi", "node_id": "MDQ6VXNlcjUxNzM4MjA1", "organizations_url": "https://api.github.com/users/crisostomi/orgs", "received_events_url": "https://api.github.com/users/crisostomi/received_events", "repos_url": "https://api.github.com/users/crisostomi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/crisostomi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/crisostomi/subscriptions", "type": "User", "url": "https://api.github.com/users/crisostomi", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I am highly interested performance of dataset so I ran your example as a curious user.\r\n```python\r\ntrain_dataset.cast_column(\"x\", Array3D(shape=img_shape, dtype=\"float32\"))\r\n```\r\nhave return values and \"x\" is a new column, it shoulde be\r\n```python\r\nds=train_dataset.cast_column(\"img\", Array3D(shape=(3,32,32), dtype=\"float32\"))\r\n```\r\nI rewrite your example as\r\n```python\r\ntrain_dataset = load_dataset(\r\n 'cifar100',\r\n split='train',\r\n use_auth_token=True,\r\n)\r\ntransform_func = torchvision.transforms.Compose([\r\n ToTensor(), \r\n Normalize(mean=[0.485, 0.456, 0.406], std= [0.229, 0.224, 0.225]),] \r\n)\r\n \r\ntrain_dataset = train_dataset.map(\r\n desc=f\"Preprocessing samples\",\r\n function=lambda x: {\"img\": transform_func(x[\"img\"])},\r\n)\r\nds=train_dataset.cast_column(\"img\", Array3D(shape=(3,32,32), dtype=\"float32\"))\r\nfor i in tqdm(ds):\r\n pass\r\n```\r\nthat require ~11s in my environment. While\r\n```python\r\nds = load_dataset(\r\n 'cifar100',\r\n split='train',\r\n use_auth_token=True,\r\n)\r\n\r\nfor i in tqdm(ds):\r\n pass\r\n```\r\nonly need ~6s. (So I guess it's still undesirable)", "perhaps related to https://github.com/huggingface/datasets/issues/6833" ]
2023-05-15T16:43:58Z
2024-10-08T10:21:48Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have a problem related to this [issue](https://github.com/huggingface/datasets/issues/5841): I get a way slower iteration when using a Torch dataloader if I use vanilla Numpy tensors or if I first apply a ToTensor transform to the input. In particular, it takes 5 seconds to iterate over the vanilla input and ~30s after the transformation. ### Steps to reproduce the bug Here is the minimum code to reproduce the problem ```python import numpy as np from datasets import Dataset, DatasetDict, load_dataset, Array3D, Image, Features from torch.utils.data import DataLoader from tqdm import tqdm import torchvision from torchvision.transforms import ToTensor, Normalize ################################# # Without transform ################################# train_dataset = load_dataset( 'cifar100', split='train', use_auth_token=True, ) train_dataset.set_format(type="numpy", columns=["img", "fine_label"]) train_loader= DataLoader( train_dataset, batch_size=100, pin_memory=False, shuffle=True, num_workers=8, ) for batch in tqdm(train_loader, desc="Loading data, no transform"): pass ################################# # With transform ################################# transform_func = torchvision.transforms.Compose([ ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std= [0.229, 0.224, 0.225]),] ) train_dataset = train_dataset.map( desc=f"Preprocessing samples", function=lambda x: {"img": transform_func(x["img"])}, ) train_dataset.set_format(type="numpy", columns=["img", "fine_label"]) train_loader= DataLoader( train_dataset, batch_size=100, pin_memory=False, shuffle=True, num_workers=8, ) for batch in tqdm(train_loader, desc="Loading data after transform"): pass ``` I have also tried converting the Image column to an Array3D ```python img_shape = train_dataset[0]["img"].shape features = train_dataset.features.copy() features["x"] = Array3D(shape=img_shape, dtype="float32") train_dataset = train_dataset.map( desc=f"Preprocessing samples", function=lambda x: {"x": np.array(x["img"], dtype=np.uint8)}, features=features, ) train_dataset.cast_column("x", Array3D(shape=img_shape, dtype="float32")) train_dataset.set_format(type="numpy", columns=["x", "fine_label"]) ``` but to no avail. Any clue? ### Expected behavior The iteration should take approximately the same time with or without the transformation, as it doesn't change the shape of the input. What may be the issue here? ### Environment info ``` - `datasets` version: 2.12.0 - Platform: Linux-5.4.0-137-generic-x86_64-with-glibc2.31 - Python version: 3.9.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 ```
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5864/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5864/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6083
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6083/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6083/comments
https://api.github.com/repos/huggingface/datasets/issues/6083/events
https://github.com/huggingface/datasets/pull/6083
1,824,832,348
PR_kwDODunzps5WkgAI
6,083
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6083). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006049 / 0.011353 (-0.005304) | 0.003698 / 0.011008 (-0.007310) | 0.080614 / 0.038508 (0.042106) | 0.060955 / 0.023109 (0.037846) | 0.337119 / 0.275898 (0.061221) | 0.369544 / 0.323480 (0.046064) | 0.004681 / 0.007986 (-0.003305) | 0.002892 / 0.004328 (-0.001436) | 0.062907 / 0.004250 (0.058657) | 0.049235 / 0.037052 (0.012183) | 0.338842 / 0.258489 (0.080353) | 0.371172 / 0.293841 (0.077331) | 0.027016 / 0.128546 (-0.101530) | 0.007940 / 0.075646 (-0.067706) | 0.260902 / 0.419271 (-0.158369) | 0.044566 / 0.043533 (0.001034) | 0.342354 / 0.255139 (0.087215) | 0.359829 / 0.283200 (0.076629) | 0.020801 / 0.141683 (-0.120881) | 1.444111 / 1.452155 (-0.008044) | 1.515595 / 1.492716 (0.022879) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183446 / 0.018006 (0.165439) | 0.437071 / 0.000490 (0.436581) | 0.003124 / 0.000200 (0.002924) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023760 / 0.037411 (-0.013651) | 0.072812 / 0.014526 (0.058286) | 0.082790 / 0.176557 (-0.093766) | 0.146330 / 0.737135 (-0.590805) | 0.084469 / 0.296338 (-0.211870) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395215 / 0.215209 (0.180006) | 3.953023 / 2.077655 (1.875369) | 1.914268 / 1.504120 (0.410148) | 1.710195 / 1.541195 (0.169001) | 1.782594 / 1.468490 (0.314104) | 0.503651 / 4.584777 (-4.081126) | 3.039656 / 3.745712 (-0.706056) | 4.364691 / 5.269862 (-0.905171) | 2.597762 / 4.565676 (-1.967915) | 0.057384 / 0.424275 (-0.366891) | 0.006419 / 0.007607 (-0.001188) | 0.467214 / 0.226044 (0.241169) | 4.661425 / 2.268929 (2.392497) | 2.341957 / 55.444624 (-53.102667) | 1.977598 / 6.876477 (-4.898878) | 2.178005 / 2.142072 (0.035933) | 0.588492 / 4.805227 (-4.216735) | 0.124972 / 6.500664 (-6.375692) | 0.060902 / 0.075469 (-0.014567) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243092 / 1.841788 (-0.598695) | 18.369971 / 8.074308 (10.295663) | 13.939700 / 10.191392 (3.748308) | 0.149275 / 0.680424 (-0.531149) | 0.016873 / 0.534201 (-0.517328) | 0.334245 / 0.579283 (-0.245038) | 0.353832 / 0.434364 (-0.080532) | 0.382720 / 0.540337 (-0.157617) | 0.534634 / 1.386936 (-0.852302) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005933 / 0.011353 (-0.005420) | 0.003695 / 0.011008 (-0.007313) | 0.063457 / 0.038508 (0.024949) | 0.062347 / 0.023109 (0.039238) | 0.412370 / 0.275898 (0.136472) | 0.450399 / 0.323480 (0.126920) | 0.004627 / 0.007986 (-0.003358) | 0.002822 / 0.004328 (-0.001507) | 0.063819 / 0.004250 (0.059569) | 0.049154 / 0.037052 (0.012101) | 0.428196 / 0.258489 (0.169707) | 0.464109 / 0.293841 (0.170268) | 0.026967 / 0.128546 (-0.101579) | 0.007876 / 0.075646 (-0.067770) | 0.068479 / 0.419271 (-0.350793) | 0.041080 / 0.043533 (-0.002453) | 0.399817 / 0.255139 (0.144678) | 0.426900 / 0.283200 (0.143701) | 0.019931 / 0.141683 (-0.121752) | 1.461642 / 1.452155 (0.009487) | 1.529314 / 1.492716 (0.036598) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230256 / 0.018006 (0.212249) | 0.423442 / 0.000490 (0.422952) | 0.002492 / 0.000200 (0.002292) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025798 / 0.037411 (-0.011613) | 0.077361 / 0.014526 (0.062836) | 0.088454 / 0.176557 (-0.088102) | 0.142137 / 0.737135 (-0.594998) | 0.088213 / 0.296338 (-0.208125) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417656 / 0.215209 (0.202447) | 4.157095 / 2.077655 (2.079440) | 2.132863 / 1.504120 (0.628743) | 1.967220 / 1.541195 (0.426025) | 2.020505 / 1.468490 (0.552015) | 0.496835 / 4.584777 (-4.087942) | 2.989251 / 3.745712 (-0.756462) | 2.849315 / 5.269862 (-2.420546) | 1.848941 / 4.565676 (-2.716736) | 0.057307 / 0.424275 (-0.366968) | 0.006825 / 0.007607 (-0.000782) | 0.489103 / 0.226044 (0.263059) | 4.904776 / 2.268929 (2.635847) | 2.593914 / 55.444624 (-52.850710) | 2.253384 / 6.876477 (-4.623093) | 2.426384 / 2.142072 (0.284312) | 0.592467 / 4.805227 (-4.212760) | 0.126122 / 6.500664 (-6.374542) | 0.063160 / 0.075469 (-0.012309) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313020 / 1.841788 (-0.528768) | 18.343984 / 8.074308 (10.269676) | 13.763060 / 10.191392 (3.571668) | 0.146312 / 0.680424 (-0.534111) | 0.016980 / 0.534201 (-0.517221) | 0.339572 / 0.579283 (-0.239711) | 0.351310 / 0.434364 (-0.083054) | 0.397616 / 0.540337 (-0.142721) | 0.536879 / 1.386936 (-0.850057) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#73bed12ecda17d1573fd3bf73ed5db24d3622f86 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009979 / 0.011353 (-0.001374) | 0.005024 / 0.011008 (-0.005984) | 0.096566 / 0.038508 (0.058058) | 0.081181 / 0.023109 (0.058072) | 0.398415 / 0.275898 (0.122517) | 0.513971 / 0.323480 (0.190491) | 0.006716 / 0.007986 (-0.001269) | 0.004350 / 0.004328 (0.000022) | 0.071418 / 0.004250 (0.067168) | 0.065002 / 0.037052 (0.027949) | 0.424791 / 0.258489 (0.166302) | 0.442369 / 0.293841 (0.148528) | 0.054540 / 0.128546 (-0.074007) | 0.014067 / 0.075646 (-0.061580) | 0.368930 / 0.419271 (-0.050341) | 0.082468 / 0.043533 (0.038935) | 0.419875 / 0.255139 (0.164736) | 0.508308 / 0.283200 (0.225108) | 0.050411 / 0.141683 (-0.091272) | 1.582271 / 1.452155 (0.130116) | 1.842033 / 1.492716 (0.349317) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290427 / 0.018006 (0.272420) | 0.594736 / 0.000490 (0.594246) | 0.007058 / 0.000200 (0.006858) | 0.000149 / 0.000054 (0.000095) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027085 / 0.037411 (-0.010326) | 0.087626 / 0.014526 (0.073101) | 0.094299 / 0.176557 (-0.082257) | 0.160169 / 0.737135 (-0.576966) | 0.101474 / 0.296338 (-0.194864) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.545845 / 0.215209 (0.330636) | 5.674389 / 2.077655 (3.596734) | 2.489065 / 1.504120 (0.984945) | 2.166674 / 1.541195 (0.625479) | 2.166925 / 1.468490 (0.698434) | 0.791244 / 4.584777 (-3.793533) | 4.944878 / 3.745712 (1.199165) | 4.121628 / 5.269862 (-1.148234) | 2.701262 / 4.565676 (-1.864415) | 0.087609 / 0.424275 (-0.336666) | 0.006945 / 0.007607 (-0.000662) | 0.668478 / 0.226044 (0.442434) | 6.552813 / 2.268929 (4.283885) | 3.164698 / 55.444624 (-52.279927) | 2.447333 / 6.876477 (-4.429144) | 2.608271 / 2.142072 (0.466198) | 0.954202 / 4.805227 (-3.851025) | 0.187730 / 6.500664 (-6.312934) | 0.063229 / 0.075469 (-0.012240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.461042 / 1.841788 (-0.380746) | 21.601409 / 8.074308 (13.527101) | 18.553604 / 10.191392 (8.362212) | 0.234571 / 0.680424 (-0.445853) | 0.027119 / 0.534201 (-0.507082) | 0.423448 / 0.579283 (-0.155835) | 0.556397 / 0.434364 (0.122033) | 0.493958 / 0.540337 (-0.046379) | 0.711345 / 1.386936 (-0.675591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008637 / 0.011353 (-0.002716) | 0.014450 / 0.011008 (0.003442) | 0.084135 / 0.038508 (0.045627) | 0.080513 / 0.023109 (0.057403) | 0.557941 / 0.275898 (0.282042) | 0.563199 / 0.323480 (0.239719) | 0.006475 / 0.007986 (-0.001510) | 0.004407 / 0.004328 (0.000078) | 0.088537 / 0.004250 (0.084287) | 0.060871 / 0.037052 (0.023819) | 0.593077 / 0.258489 (0.334588) | 0.615572 / 0.293841 (0.321732) | 0.050157 / 0.128546 (-0.078389) | 0.014313 / 0.075646 (-0.061333) | 0.091784 / 0.419271 (-0.327487) | 0.065649 / 0.043533 (0.022116) | 0.532569 / 0.255139 (0.277430) | 0.580775 / 0.283200 (0.297575) | 0.036434 / 0.141683 (-0.105249) | 2.080051 / 1.452155 (0.627896) | 1.907430 / 1.492716 (0.414713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.297763 / 0.018006 (0.279757) | 0.670408 / 0.000490 (0.669918) | 0.000467 / 0.000200 (0.000267) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030297 / 0.037411 (-0.007114) | 0.100310 / 0.014526 (0.085784) | 0.113158 / 0.176557 (-0.063398) | 0.149599 / 0.737135 (-0.587536) | 0.102620 / 0.296338 (-0.193718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616588 / 0.215209 (0.401379) | 6.572262 / 2.077655 (4.494608) | 2.830748 / 1.504120 (1.326628) | 2.478441 / 1.541195 (0.937246) | 2.573017 / 1.468490 (1.104527) | 0.844154 / 4.584777 (-3.740623) | 5.161625 / 3.745712 (1.415913) | 4.541114 / 5.269862 (-0.728748) | 2.907804 / 4.565676 (-1.657872) | 0.097044 / 0.424275 (-0.327231) | 0.008692 / 0.007607 (0.001085) | 0.806640 / 0.226044 (0.580595) | 7.620521 / 2.268929 (5.351593) | 3.587100 / 55.444624 (-51.857524) | 2.901319 / 6.876477 (-3.975157) | 3.091288 / 2.142072 (0.949215) | 1.056109 / 4.805227 (-3.749118) | 0.209860 / 6.500664 (-6.290804) | 0.079575 / 0.075469 (0.004106) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.966194 / 1.841788 (0.124407) | 28.040515 / 8.074308 (19.966207) | 25.848647 / 10.191392 (15.657255) | 0.255472 / 0.680424 (-0.424951) | 0.036154 / 0.534201 (-0.498046) | 0.515168 / 0.579283 (-0.064115) | 0.696092 / 0.434364 (0.261728) | 0.602712 / 0.540337 (0.062374) | 0.781091 / 1.386936 (-0.605845) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6f641aca7fbb1f21da48c087a5c10e76f4c6be35 \"CML watermark\")\n" ]
2023-07-27T17:10:41Z
2023-07-27T17:22:05Z
2023-07-27T17:11:01Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6083/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6083/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6083.diff", "html_url": "https://github.com/huggingface/datasets/pull/6083", "merged_at": "2023-07-27T17:11:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/6083.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6083" }
https://api.github.com/repos/huggingface/datasets/issues/7505
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7505/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7505/comments
https://api.github.com/repos/huggingface/datasets/issues/7505/events
https://github.com/huggingface/datasets/issues/7505
2,979,926,156
I_kwDODunzps6xnhCM
7,505
HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy
{ "avatar_url": "https://avatars.githubusercontent.com/u/1412262?v=4", "events_url": "https://api.github.com/users/hissain/events{/privacy}", "followers_url": "https://api.github.com/users/hissain/followers", "following_url": "https://api.github.com/users/hissain/following{/other_user}", "gists_url": "https://api.github.com/users/hissain/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hissain", "id": 1412262, "login": "hissain", "node_id": "MDQ6VXNlcjE0MTIyNjI=", "organizations_url": "https://api.github.com/users/hissain/orgs", "received_events_url": "https://api.github.com/users/hissain/received_events", "repos_url": "https://api.github.com/users/hissain/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hissain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hissain/subscriptions", "type": "User", "url": "https://api.github.com/users/hissain", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-04-08T14:08:40Z
2025-04-08T14:08:40Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
I have already logged in Huggingface using CLI with my valid token. Now trying to download the datasets using following code: from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, Trainer, TrainingArguments, DataCollatorForSeq2Seq from datasets import load_dataset, DatasetDict, Audio def load_and_preprocess_dataset(): dataset = load_dataset("mozilla-foundation/common_voice_17_0", "bn") dataset = dataset.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) dataset = dataset["train"].train_test_split(test_size=0.1) dataset = DatasetDict({ "train": dataset["train"], "test": dataset["test"] }) return dataset load_and_preprocess_dataset() I am getting following error: Downloading data: 100%  25/25 [00:01<00:00, 25.31files/s] --------------------------------------------------------------------------- HTTPError Traceback (most recent call last) File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py:409, in hf_raise_for_status(response, endpoint_name) 408 try: --> 409 response.raise_for_status() 410 except HTTPError as e: File ~/github/bangla-asr/.venv/lib/python3.11/site-packages/requests/models.py:1024, in Response.raise_for_status(self) 1023 if http_error_msg: -> 1024 raise HTTPError(http_error_msg, response=self) HTTPError: 403 Client Error: BlockSIEL for url: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab8e2b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687d8a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638866f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjdF9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOTgyNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQCOfQFf2r7y9590HoX8WBkRk The above exception was the direct cause of the following exception: HfHubHTTPError Traceback (most recent call last) Cell In[16], line 15 9 dataset = DatasetDict({ 10 "train": dataset["train"], 11 "test": dataset["test"] 12 }) 13 return dataset ---> 15 load_and_preprocess_dataset() 17 # def setup_model(): 18 # processor = WhisperProcessor.from_pretrained("openai/whisper-base") ... 475 range_header = response.request.headers.get("Range") HfHubHTTPError: 403 Forbidden: None. Cannot access content at: https://hf.co/api/s3proxy?GET=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf6568724a6928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250dc638786f22bf1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D621e731d4fd6d08afbf568379797746ab394b853b6728ff5e1122fef6e56880b%26X-Amz-SignedHeaders%3Dhost%26response-content-disposition%3Dinline%253B%2520filename%252A%253DUTF-8%2527%2527bn_validated_1.tar%253B%2520filename%253D%2522bn_validated_1.tar%2522%253B%26response-content-type%3Dapplication%252Fx-tar%26x-id%3DGetObject&HEAD=https%3A%2F%2Fhf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com%2Frepos%2Fa3%2F86%2Fa386bf65687ab76928c1ea57c383aa3faade32f5171150e25af3fc1cfc273db8%2F67f1ac9cabd539bfbff3acbc549b60647833a250d2338866f222f1b64e68806d%3FX-Amz-Algorithm%3DAWS4-HMAC-SHA256%26X-Amz-Content-Sha256%3DUNSIGNED-PAYLOAD%26X-Amz-Credential%3DAKIA2JU7TKAQLC2QXPN7%252F20250408%252Fus-east-1%252Fs3%252Faws4_request%26X-Amz-Date%3D20250408T134345Z%26X-Amz-Expires%3D3600%26X-Amz-Signature%3D15254fb79d30b0dc36b94a28138e675e0e00bb475b8a3ae774418500b095a661%26X-Amz-SignedHeaders%3Dhost&sign=eyJhbGciOiJIUzI1NiJ9.eyJyZWRpcmVjds9kb21haW4iOiJoZi1odWItbGZzLXVzLWVhc3QtMS5zMy51cy1lYXN0LTEuYW1hem9uYXdzLmNvbSIsImlhdCI6MTc0NDExOT2yNSwiZXhwIjoxNzQ0MjA2MjI1LCJpc3MiOiJodHRwczovL2h1Z2dpbmdmYWNlLmNvIn0.5sJzudFDU3SmOdOLlwmQdOfQFf2r7y9590HoX8WBkRk. Make sure your token has the correct permissions. **What's wrong with the code?** Please note that the error is happening only when I am running from my office network due to probably proxy. Which URL, I need to take a proxy exception?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7505/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7505/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5295/comments
https://api.github.com/repos/huggingface/datasets/issues/5295/events
https://github.com/huggingface/datasets/issues/5295
1,464,006,743
I_kwDODunzps5XQvhX
5,295
Extractions failed when .zip file located on read-only path (e.g., SageMaker FastFile mode)
{ "avatar_url": "https://avatars.githubusercontent.com/u/2340781?v=4", "events_url": "https://api.github.com/users/verdimrc/events{/privacy}", "followers_url": "https://api.github.com/users/verdimrc/followers", "following_url": "https://api.github.com/users/verdimrc/following{/other_user}", "gists_url": "https://api.github.com/users/verdimrc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/verdimrc", "id": 2340781, "login": "verdimrc", "node_id": "MDQ6VXNlcjIzNDA3ODE=", "organizations_url": "https://api.github.com/users/verdimrc/orgs", "received_events_url": "https://api.github.com/users/verdimrc/received_events", "repos_url": "https://api.github.com/users/verdimrc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/verdimrc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/verdimrc/subscriptions", "type": "User", "url": "https://api.github.com/users/verdimrc", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Hi ! Thanks for reporting. Indeed the lock file should be placed in a directory with write permission (e.g. in the directory where the archive is extracted).", "I opened https://github.com/huggingface/datasets/pull/5320 to fix this - it places the lock file in the cache directory instead of trying to put in next to the ZIP where it's read-only" ]
2022-11-25T03:59:43Z
2023-07-21T14:39:09Z
2023-07-21T14:39:09Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug Hi, `load_dataset()` does not work .zip files located on a read-only directory. Looks like it's because Dataset creates a lock file in the [same directory](https://github.com/huggingface/datasets/blob/df4bdd365f2abb695f113cbf8856a925bc70901b/src/datasets/utils/extract.py) as the .zip file. Encountered this when attempting `load_dataset()` on a datadir with SageMaker FastFile mode. ### Steps to reproduce the bug ```python # Showing relevant lines only. hyperparameters = { "dataset_name": "ydshieh/coco_dataset_script", "dataset_config_name": 2017, "data_dir": "/opt/ml/input/data/coco", "cache_dir": "/tmp/huggingface-cache", # Fix dataset complains out-of-space. ... } estimator = PyTorch( base_job_name="clip", source_dir="../src/sm-entrypoint", entry_point="run_clip.py", # Transformers/src/examples/pytorch/contrastive-image-text/run_clip.py framework_version="1.12", py_version="py38", hyperparameters=hyperparameters, instance_count=1, instance_type="ml.p3.16xlarge", volume_size=100, distribution={"smdistributed": {"dataparallel": {"enabled": True}}}, ) fast_file = lambda x: TrainingInput(x, input_mode='FastFile') estimator.fit( { "pre-trained": fast_file("s3://vm-sagemakerr-us-east-1/clip/pre-trained-checkpoint/"), "coco": fast_file("s3://vm-sagemakerr-us-east-1/clip/coco-zip-files/"), } ) ``` Error message: ```text ErrorMessage "OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock' """ The above exception was the direct cause of the following exception Traceback (most recent call last) File "/opt/conda/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/lib/python3.8/site-packages/mpi4py/__main__.py", line 7, in <module> main() File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 198, in main run_command_line(args) File "/opt/conda/lib/python3.8/site-packages/mpi4py/run.py", line 47, in run_command_line run_path(sys.argv[0], run_name='__main__') File "/opt/conda/lib/python3.8/runpy.py", line 265, in run_path return _run_module_code(code, init_globals, run_name, File "/opt/conda/lib/python3.8/runpy.py", line 97, in _run_module_code _run_code(code, mod_globals, init_globals, File "run_clip_smddp.py", line 594, in <module> File "run_clip_smddp.py", line 327, in main dataset = load_dataset( File "/opt/conda/lib/python3.8/site-packages/datasets/load.py", line 1741, in load_dataset builder_instance.download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 822, in download_and_prepare self._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 1555, in _download_and_prepare super()._download_and_prepare( File "/opt/conda/lib/python3.8/site-packages/datasets/builder.py", line 891, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/root/.cache/huggingface/modules/datasets_modules/datasets/ydshieh--coco_dataset_script/e033205c0266a54c10be132f9264f2a39dcf893e798f6756d224b1ff5078998f/coco_dataset_script.py", line 123, in _split_generators archive_path = dl_manager.download_and_extract(_DL_URLS) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 447, in download_and_extract return self.extract(self.download(url_or_urls)) File "/opt/conda/lib/python3.8/site-packages/datasets/download/download_manager.py", line 419, in extract extracted_paths = map_nested( File "/opt/conda/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 472, in map_nested mapped = pool.map(_single_map_nested, split_kwds) File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 364, in map return self._map_async(func, iterable, mapstar, chunksize).get() File "/opt/conda/lib/python3.8/multiprocessing/pool.py", line 771, in get raise self._value OSError: [Errno 30] Read-only file system: '/opt/ml/input/data/coco/image_info_test2017.zip.lock'" ``` ### Expected behavior `load_dataset()` to succeed, just like when .zip file is passed in SageMaker File mode. ### Environment info * datasets-2.7.1 * transformers-4.24.0 * python-3.8 * torch-1.12 * SageMaker PyTorch DLC
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5295/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5295/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6061
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6061/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6061/comments
https://api.github.com/repos/huggingface/datasets/issues/6061/events
https://github.com/huggingface/datasets/pull/6061
1,818,337,136
PR_kwDODunzps5WOi79
6,061
Dill 3.7 support
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007700 / 0.011353 (-0.003653) | 0.004680 / 0.011008 (-0.006328) | 0.098812 / 0.038508 (0.060304) | 0.085062 / 0.023109 (0.061952) | 0.371472 / 0.275898 (0.095574) | 0.412552 / 0.323480 (0.089072) | 0.004700 / 0.007986 (-0.003285) | 0.003765 / 0.004328 (-0.000564) | 0.074267 / 0.004250 (0.070017) | 0.063003 / 0.037052 (0.025951) | 0.391842 / 0.258489 (0.133353) | 0.436955 / 0.293841 (0.143114) | 0.035291 / 0.128546 (-0.093255) | 0.009309 / 0.075646 (-0.066338) | 0.313097 / 0.419271 (-0.106174) | 0.060098 / 0.043533 (0.016565) | 0.350726 / 0.255139 (0.095587) | 0.402692 / 0.283200 (0.119493) | 0.029321 / 0.141683 (-0.112361) | 1.671806 / 1.452155 (0.219651) | 1.743760 / 1.492716 (0.251044) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242281 / 0.018006 (0.224275) | 0.505054 / 0.000490 (0.504564) | 0.006595 / 0.000200 (0.006395) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032174 / 0.037411 (-0.005238) | 0.094483 / 0.014526 (0.079957) | 0.108527 / 0.176557 (-0.068030) | 0.178983 / 0.737135 (-0.558152) | 0.113766 / 0.296338 (-0.182572) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419764 / 0.215209 (0.204555) | 4.282650 / 2.077655 (2.204995) | 2.075325 / 1.504120 (0.571205) | 1.897668 / 1.541195 (0.356473) | 2.027109 / 1.468490 (0.558619) | 0.519983 / 4.584777 (-4.064794) | 4.134603 / 3.745712 (0.388891) | 6.586711 / 5.269862 (1.316849) | 3.811726 / 4.565676 (-0.753951) | 0.058628 / 0.424275 (-0.365647) | 0.007586 / 0.007607 (-0.000021) | 0.502180 / 0.226044 (0.276136) | 5.101588 / 2.268929 (2.832660) | 2.534295 / 55.444624 (-52.910330) | 2.220170 / 6.876477 (-4.656307) | 2.441110 / 2.142072 (0.299038) | 0.644775 / 4.805227 (-4.160452) | 0.144716 / 6.500664 (-6.355948) | 0.067018 / 0.075469 (-0.008451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.431279 / 1.841788 (-0.410508) | 21.947814 / 8.074308 (13.873506) | 15.548236 / 10.191392 (5.356844) | 0.174774 / 0.680424 (-0.505650) | 0.021182 / 0.534201 (-0.513019) | 0.441320 / 0.579283 (-0.137963) | 0.476685 / 0.434364 (0.042321) | 0.506277 / 0.540337 (-0.034060) | 0.809943 / 1.386936 (-0.576993) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007172 / 0.011353 (-0.004181) | 0.004358 / 0.011008 (-0.006650) | 0.068604 / 0.038508 (0.030096) | 0.083956 / 0.023109 (0.060847) | 0.402579 / 0.275898 (0.126681) | 0.444714 / 0.323480 (0.121235) | 0.005940 / 0.007986 (-0.002046) | 0.003607 / 0.004328 (-0.000722) | 0.073134 / 0.004250 (0.068883) | 0.061722 / 0.037052 (0.024669) | 0.410957 / 0.258489 (0.152468) | 0.458819 / 0.293841 (0.164978) | 0.033710 / 0.128546 (-0.094836) | 0.010230 / 0.075646 (-0.065417) | 0.084678 / 0.419271 (-0.334593) | 0.058203 / 0.043533 (0.014670) | 0.444972 / 0.255139 (0.189833) | 0.470962 / 0.283200 (0.187763) | 0.029222 / 0.141683 (-0.112461) | 1.671460 / 1.452155 (0.219306) | 1.759471 / 1.492716 (0.266754) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238894 / 0.018006 (0.220888) | 0.493605 / 0.000490 (0.493115) | 0.001979 / 0.000200 (0.001780) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036498 / 0.037411 (-0.000913) | 0.095245 / 0.014526 (0.080719) | 0.112147 / 0.176557 (-0.064409) | 0.171128 / 0.737135 (-0.566007) | 0.115295 / 0.296338 (-0.181044) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461067 / 0.215209 (0.245858) | 4.723932 / 2.077655 (2.646277) | 2.432697 / 1.504120 (0.928578) | 2.237302 / 1.541195 (0.696107) | 2.351320 / 1.468490 (0.882830) | 0.509963 / 4.584777 (-4.074813) | 4.194817 / 3.745712 (0.449105) | 6.689529 / 5.269862 (1.419667) | 3.351198 / 4.565676 (-1.214478) | 0.064563 / 0.424275 (-0.359712) | 0.008605 / 0.007607 (0.000998) | 0.575590 / 0.226044 (0.349546) | 5.644179 / 2.268929 (3.375250) | 3.021375 / 55.444624 (-52.423249) | 2.595305 / 6.876477 (-4.281172) | 2.839228 / 2.142072 (0.697156) | 0.657148 / 4.805227 (-4.148079) | 0.144831 / 6.500664 (-6.355834) | 0.067882 / 0.075469 (-0.007587) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.595580 / 1.841788 (-0.246208) | 22.431609 / 8.074308 (14.357301) | 15.700845 / 10.191392 (5.509453) | 0.164675 / 0.680424 (-0.515749) | 0.021322 / 0.534201 (-0.512879) | 0.455270 / 0.579283 (-0.124013) | 0.451547 / 0.434364 (0.017183) | 0.520955 / 0.540337 (-0.019383) | 0.687803 / 1.386936 (-0.699133) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d19574e9f44bd3b59a3e47ca7c4ea66305a8e6b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008171 / 0.011353 (-0.003182) | 0.005563 / 0.011008 (-0.005445) | 0.102265 / 0.038508 (0.063757) | 0.074755 / 0.023109 (0.051646) | 0.431317 / 0.275898 (0.155419) | 0.472179 / 0.323480 (0.148699) | 0.006153 / 0.007986 (-0.001833) | 0.003832 / 0.004328 (-0.000496) | 0.078480 / 0.004250 (0.074230) | 0.056250 / 0.037052 (0.019197) | 0.432938 / 0.258489 (0.174449) | 0.480983 / 0.293841 (0.187142) | 0.048861 / 0.128546 (-0.079685) | 0.016252 / 0.075646 (-0.059394) | 0.343508 / 0.419271 (-0.075763) | 0.065057 / 0.043533 (0.021524) | 0.468418 / 0.255139 (0.213279) | 0.463692 / 0.283200 (0.180492) | 0.032912 / 0.141683 (-0.108771) | 1.795194 / 1.452155 (0.343039) | 1.833047 / 1.492716 (0.340331) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197980 / 0.018006 (0.179974) | 0.500662 / 0.000490 (0.500172) | 0.007380 / 0.000200 (0.007181) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028323 / 0.037411 (-0.009089) | 0.089817 / 0.014526 (0.075291) | 0.102923 / 0.176557 (-0.073633) | 0.173851 / 0.737135 (-0.563284) | 0.104006 / 0.296338 (-0.192333) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.580277 / 0.215209 (0.365068) | 5.878739 / 2.077655 (3.801085) | 2.404673 / 1.504120 (0.900553) | 2.071765 / 1.541195 (0.530571) | 2.106024 / 1.468490 (0.637534) | 0.855217 / 4.584777 (-3.729560) | 4.918602 / 3.745712 (1.172890) | 5.354984 / 5.269862 (0.085122) | 3.141288 / 4.565676 (-1.424389) | 0.099553 / 0.424275 (-0.324723) | 0.008152 / 0.007607 (0.000545) | 0.709857 / 0.226044 (0.483813) | 7.144602 / 2.268929 (4.875673) | 3.137637 / 55.444624 (-52.306987) | 2.379851 / 6.876477 (-4.496626) | 2.346426 / 2.142072 (0.204353) | 1.033416 / 4.805227 (-3.771811) | 0.213120 / 6.500664 (-6.287544) | 0.076037 / 0.075469 (0.000568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.597742 / 1.841788 (-0.244046) | 21.745366 / 8.074308 (13.671058) | 20.830698 / 10.191392 (10.639306) | 0.238727 / 0.680424 (-0.441697) | 0.027923 / 0.534201 (-0.506278) | 0.466073 / 0.579283 (-0.113210) | 0.548647 / 0.434364 (0.114283) | 0.549245 / 0.540337 (0.008908) | 0.977148 / 1.386936 (-0.409788) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008252 / 0.011353 (-0.003101) | 0.004653 / 0.011008 (-0.006356) | 0.084012 / 0.038508 (0.045504) | 0.077418 / 0.023109 (0.054309) | 0.440748 / 0.275898 (0.164850) | 0.464279 / 0.323480 (0.140799) | 0.005762 / 0.007986 (-0.002224) | 0.004909 / 0.004328 (0.000581) | 0.086441 / 0.004250 (0.082190) | 0.057883 / 0.037052 (0.020831) | 0.466655 / 0.258489 (0.208166) | 0.479751 / 0.293841 (0.185910) | 0.047166 / 0.128546 (-0.081380) | 0.014480 / 0.075646 (-0.061166) | 0.092599 / 0.419271 (-0.326672) | 0.062454 / 0.043533 (0.018921) | 0.449753 / 0.255139 (0.194614) | 0.461876 / 0.283200 (0.178676) | 0.034828 / 0.141683 (-0.106855) | 1.752249 / 1.452155 (0.300095) | 1.865449 / 1.492716 (0.372732) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245028 / 0.018006 (0.227022) | 0.509564 / 0.000490 (0.509074) | 0.003930 / 0.000200 (0.003730) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034746 / 0.037411 (-0.002665) | 0.096563 / 0.014526 (0.082037) | 0.107581 / 0.176557 (-0.068975) | 0.184952 / 0.737135 (-0.552184) | 0.108747 / 0.296338 (-0.187591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613091 / 0.215209 (0.397882) | 5.994985 / 2.077655 (3.917330) | 2.711276 / 1.504120 (1.207156) | 2.415862 / 1.541195 (0.874668) | 2.391055 / 1.468490 (0.922565) | 0.868723 / 4.584777 (-3.716054) | 4.953992 / 3.745712 (1.208280) | 4.606542 / 5.269862 (-0.663319) | 2.942162 / 4.565676 (-1.623515) | 0.102737 / 0.424275 (-0.321538) | 0.008634 / 0.007607 (0.001027) | 0.722122 / 0.226044 (0.496078) | 7.245097 / 2.268929 (4.976168) | 3.428232 / 55.444624 (-52.016393) | 2.709539 / 6.876477 (-4.166938) | 2.857956 / 2.142072 (0.715884) | 1.045594 / 4.805227 (-3.759634) | 0.213344 / 6.500664 (-6.287320) | 0.073601 / 0.075469 (-0.001868) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651954 / 1.841788 (-0.189834) | 22.458646 / 8.074308 (14.384338) | 19.583203 / 10.191392 (9.391811) | 0.246932 / 0.680424 (-0.433492) | 0.025730 / 0.534201 (-0.508471) | 0.473475 / 0.579283 (-0.105808) | 0.521411 / 0.434364 (0.087047) | 0.562038 / 0.540337 (0.021700) | 0.767673 / 1.386936 (-0.619263) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3869d99628329c696f6975377f65e625dd8ef3e0 \"CML watermark\")\n", "The CI error is unrelated.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006649 / 0.011353 (-0.004703) | 0.003963 / 0.011008 (-0.007045) | 0.084564 / 0.038508 (0.046056) | 0.075668 / 0.023109 (0.052559) | 0.314233 / 0.275898 (0.038335) | 0.343320 / 0.323480 (0.019841) | 0.005405 / 0.007986 (-0.002581) | 0.003356 / 0.004328 (-0.000973) | 0.065094 / 0.004250 (0.060844) | 0.058774 / 0.037052 (0.021722) | 0.320772 / 0.258489 (0.062283) | 0.353546 / 0.293841 (0.059705) | 0.030921 / 0.128546 (-0.097625) | 0.008463 / 0.075646 (-0.067184) | 0.287490 / 0.419271 (-0.131781) | 0.053188 / 0.043533 (0.009656) | 0.324023 / 0.255139 (0.068884) | 0.337828 / 0.283200 (0.054628) | 0.024764 / 0.141683 (-0.116918) | 1.458028 / 1.452155 (0.005873) | 1.521615 / 1.492716 (0.028899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209360 / 0.018006 (0.191353) | 0.461331 / 0.000490 (0.460841) | 0.000386 / 0.000200 (0.000186) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028405 / 0.037411 (-0.009006) | 0.081074 / 0.014526 (0.066548) | 0.094868 / 0.176557 (-0.081689) | 0.151050 / 0.737135 (-0.586085) | 0.095854 / 0.296338 (-0.200484) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393957 / 0.215209 (0.178748) | 3.938649 / 2.077655 (1.860994) | 1.938190 / 1.504120 (0.434070) | 1.766458 / 1.541195 (0.225263) | 1.818028 / 1.468490 (0.349538) | 0.483926 / 4.584777 (-4.100851) | 3.641957 / 3.745712 (-0.103755) | 4.883845 / 5.269862 (-0.386016) | 2.960300 / 4.565676 (-1.605377) | 0.057227 / 0.424275 (-0.367048) | 0.007285 / 0.007607 (-0.000322) | 0.475928 / 0.226044 (0.249884) | 4.756757 / 2.268929 (2.487828) | 2.502659 / 55.444624 (-52.941966) | 2.178067 / 6.876477 (-4.698410) | 2.378298 / 2.142072 (0.236226) | 0.578639 / 4.805227 (-4.226588) | 0.132512 / 6.500664 (-6.368152) | 0.059656 / 0.075469 (-0.015813) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272673 / 1.841788 (-0.569115) | 19.266884 / 8.074308 (11.192576) | 14.272930 / 10.191392 (4.081538) | 0.165897 / 0.680424 (-0.514527) | 0.018436 / 0.534201 (-0.515765) | 0.395177 / 0.579283 (-0.184107) | 0.420134 / 0.434364 (-0.014229) | 0.460781 / 0.540337 (-0.079557) | 0.645376 / 1.386936 (-0.741560) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006504 / 0.011353 (-0.004849) | 0.003942 / 0.011008 (-0.007066) | 0.064936 / 0.038508 (0.026428) | 0.075015 / 0.023109 (0.051905) | 0.396871 / 0.275898 (0.120973) | 0.423448 / 0.323480 (0.099968) | 0.005239 / 0.007986 (-0.002747) | 0.003265 / 0.004328 (-0.001063) | 0.064910 / 0.004250 (0.060660) | 0.055006 / 0.037052 (0.017953) | 0.392818 / 0.258489 (0.134329) | 0.429735 / 0.293841 (0.135894) | 0.031847 / 0.128546 (-0.096699) | 0.008626 / 0.075646 (-0.067021) | 0.071591 / 0.419271 (-0.347681) | 0.049006 / 0.043533 (0.005473) | 0.384913 / 0.255139 (0.129774) | 0.408969 / 0.283200 (0.125769) | 0.023573 / 0.141683 (-0.118110) | 1.490271 / 1.452155 (0.038117) | 1.564620 / 1.492716 (0.071904) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225917 / 0.018006 (0.207911) | 0.450369 / 0.000490 (0.449880) | 0.000375 / 0.000200 (0.000175) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031196 / 0.037411 (-0.006215) | 0.090486 / 0.014526 (0.075960) | 0.102326 / 0.176557 (-0.074231) | 0.157483 / 0.737135 (-0.579653) | 0.103670 / 0.296338 (-0.192668) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417577 / 0.215209 (0.202368) | 4.170798 / 2.077655 (2.093143) | 2.123689 / 1.504120 (0.619569) | 1.948231 / 1.541195 (0.407037) | 2.040277 / 1.468490 (0.571787) | 0.497919 / 4.584777 (-4.086858) | 3.633270 / 3.745712 (-0.112442) | 4.851698 / 5.269862 (-0.418164) | 2.691992 / 4.565676 (-1.873684) | 0.058641 / 0.424275 (-0.365634) | 0.007719 / 0.007607 (0.000112) | 0.500652 / 0.226044 (0.274607) | 4.988657 / 2.268929 (2.719728) | 2.604488 / 55.444624 (-52.840136) | 2.329829 / 6.876477 (-4.546648) | 2.468239 / 2.142072 (0.326167) | 0.598724 / 4.805227 (-4.206503) | 0.135959 / 6.500664 (-6.364706) | 0.061088 / 0.075469 (-0.014381) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.352107 / 1.841788 (-0.489681) | 19.973976 / 8.074308 (11.899668) | 14.292812 / 10.191392 (4.101420) | 0.163855 / 0.680424 (-0.516568) | 0.018402 / 0.534201 (-0.515799) | 0.393128 / 0.579283 (-0.186155) | 0.407379 / 0.434364 (-0.026985) | 0.462324 / 0.540337 (-0.078013) | 0.607501 / 1.386936 (-0.779435) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ae126ac974cad3050f90106e5909232140786811 \"CML watermark\")\n" ]
2023-07-24T12:33:58Z
2023-07-24T14:13:20Z
2023-07-24T14:04:36Z
COLLABORATOR
null
null
null
Adds support for dill 3.7.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6061/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6061/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6061.diff", "html_url": "https://github.com/huggingface/datasets/pull/6061", "merged_at": "2023-07-24T14:04:36Z", "patch_url": "https://github.com/huggingface/datasets/pull/6061.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6061" }
https://api.github.com/repos/huggingface/datasets/issues/7527
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7527/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7527/comments
https://api.github.com/repos/huggingface/datasets/issues/7527/events
https://github.com/huggingface/datasets/issues/7527
3,005,242,422
I_kwDODunzps6zIFw2
7,527
Auto-merge option for `convert-to-parquet`
{ "avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4", "events_url": "https://api.github.com/users/klamike/events{/privacy}", "followers_url": "https://api.github.com/users/klamike/followers", "following_url": "https://api.github.com/users/klamike/following{/other_user}", "gists_url": "https://api.github.com/users/klamike/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/klamike", "id": 17013474, "login": "klamike", "node_id": "MDQ6VXNlcjE3MDEzNDc0", "organizations_url": "https://api.github.com/users/klamike/orgs", "received_events_url": "https://api.github.com/users/klamike/received_events", "repos_url": "https://api.github.com/users/klamike/repos", "site_admin": false, "starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/klamike/subscriptions", "type": "User", "url": "https://api.github.com/users/klamike", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Alternatively, there could be an option to switch from submitting PRs to just committing changes directly to `main`." ]
2025-04-18T16:03:22Z
2025-04-18T16:05:30Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request Add a command-line option, e.g. `--auto-merge-pull-request` that enables automatic merging of the commits created by the `convert-to-parquet` tool. ### Motivation Large datasets may result in dozens of PRs due to the splitting mechanism. Each of these has to be manually accepted via the website. ### Your contribution Happy to look into submitting a PR if this is of interest to maintainers.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7527/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7527/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4908
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4908/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4908/comments
https://api.github.com/repos/huggingface/datasets/issues/4908/events
https://github.com/huggingface/datasets/pull/4908
1,353,995,574
PR_kwDODunzps499FDS
4,908
Fix missing tags in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-08-29T09:41:53Z
2022-09-22T14:35:56Z
2022-08-29T16:13:07Z
MEMBER
null
null
null
Fix missing tags in dataset cards: - asnq - clue - common_gen - cosmos_qa - guardian_authorship - hindi_discourse - py_ast - x_stance This PR partially fixes the missing tags in dataset cards. Subsequent PRs will follow to complete this task. Related to: - #4833 - #4891 - #4896
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4908/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4908/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4908.diff", "html_url": "https://github.com/huggingface/datasets/pull/4908", "merged_at": "2022-08-29T16:13:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/4908.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4908" }
https://api.github.com/repos/huggingface/datasets/issues/6568
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6568/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6568/comments
https://api.github.com/repos/huggingface/datasets/issues/6568/events
https://github.com/huggingface/datasets/issues/6568
2,069,922,151
I_kwDODunzps57YIFn
6,568
keep_in_memory=True does not seem to work
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Seems like I just used the old code which did not have `keep_in_memory=True` argument, sorry.\r\n\r\nAlthough i encountered a different problem – at 97% my python process just hung for around 11 minutes with no logs (when running dataset.map without `keep_in_memory=True` over around 3 million of dataset samples)...", "Can you open a new issue and provide a bit more details ? What kind of map operations did you run ?", "Hey. I will try to find some free time to describe it.\r\n\r\n(can't do it now, cause i need to reproduce it myself to be sure about everything, which requires spinning a new Azuree VM, copying a huge dataset to drive from network disk for a long time etc...)", "@lhoestq loading dataset like this does not spawn 50 python processes:\r\n\r\n```\r\ndatasets.load_dataset(\"/preprocessed_2256k/train\", num_proc=50)\r\n```\r\n\r\nI have 64 vCPU so i hoped it could speed up the dataset loading...\r\n\r\nMy dataset onlly has images and metadata.csv with text column alongside image file path column", "now noticed\r\n```\r\n'Setting num_proc from 50 back to 1 for the train split to disable multiprocessing as it only contains one shard\r\n```\r\n\r\nAny way to work around this?", "@lhoestq thanks, [this helped](https://github.com/huggingface/datasets/blob/9d6d16117a30ba345b0236407975f701c5b288d4/src/datasets/arrow_dataset.py#L1053)\r\n\r\n" ]
2024-01-08T08:03:58Z
2024-01-13T04:53:04Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
UPD: [Fixed](https://github.com/huggingface/datasets/issues/6568#issuecomment-1880817794) . But a new issue came up :(
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6568/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6568/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6471/comments
https://api.github.com/repos/huggingface/datasets/issues/6471/events
https://github.com/huggingface/datasets/pull/6471
2,026,100,761
PR_kwDODunzps5hLEni
6,471
Remove delete doc CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6471). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005573 / 0.011353 (-0.005780) | 0.003449 / 0.011008 (-0.007559) | 0.063323 / 0.038508 (0.024815) | 0.049369 / 0.023109 (0.026260) | 0.254280 / 0.275898 (-0.021618) | 0.267721 / 0.323480 (-0.055759) | 0.002894 / 0.007986 (-0.005092) | 0.002646 / 0.004328 (-0.001683) | 0.049284 / 0.004250 (0.045033) | 0.037947 / 0.037052 (0.000895) | 0.251654 / 0.258489 (-0.006836) | 0.279729 / 0.293841 (-0.014112) | 0.028022 / 0.128546 (-0.100525) | 0.010653 / 0.075646 (-0.064993) | 0.208567 / 0.419271 (-0.210704) | 0.035863 / 0.043533 (-0.007670) | 0.248522 / 0.255139 (-0.006617) | 0.270274 / 0.283200 (-0.012925) | 0.019683 / 0.141683 (-0.122000) | 1.136342 / 1.452155 (-0.315812) | 1.206757 / 1.492716 (-0.285960) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094682 / 0.018006 (0.076676) | 0.304092 / 0.000490 (0.303602) | 0.000220 / 0.000200 (0.000020) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018606 / 0.037411 (-0.018805) | 0.060568 / 0.014526 (0.046042) | 0.074067 / 0.176557 (-0.102490) | 0.118979 / 0.737135 (-0.618156) | 0.075676 / 0.296338 (-0.220663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290452 / 0.215209 (0.075243) | 2.848868 / 2.077655 (0.771213) | 1.534932 / 1.504120 (0.030812) | 1.386717 / 1.541195 (-0.154478) | 1.416645 / 1.468490 (-0.051845) | 0.569020 / 4.584777 (-4.015757) | 2.421168 / 3.745712 (-1.324545) | 2.781358 / 5.269862 (-2.488503) | 1.758495 / 4.565676 (-2.807182) | 0.063851 / 0.424275 (-0.360424) | 0.004968 / 0.007607 (-0.002639) | 0.339198 / 0.226044 (0.113154) | 3.356392 / 2.268929 (1.087464) | 1.858145 / 55.444624 (-53.586479) | 1.589000 / 6.876477 (-5.287477) | 1.569175 / 2.142072 (-0.572897) | 0.650571 / 4.805227 (-4.154657) | 0.120288 / 6.500664 (-6.380376) | 0.042489 / 0.075469 (-0.032980) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.939963 / 1.841788 (-0.901824) | 11.493612 / 8.074308 (3.419304) | 10.353780 / 10.191392 (0.162388) | 0.141945 / 0.680424 (-0.538479) | 0.014397 / 0.534201 (-0.519804) | 0.286971 / 0.579283 (-0.292312) | 0.266787 / 0.434364 (-0.167577) | 0.330385 / 0.540337 (-0.209952) | 0.438542 / 1.386936 (-0.948394) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005360 / 0.011353 (-0.005993) | 0.003720 / 0.011008 (-0.007288) | 0.048790 / 0.038508 (0.010282) | 0.050256 / 0.023109 (0.027147) | 0.275445 / 0.275898 (-0.000453) | 0.297725 / 0.323480 (-0.025755) | 0.004077 / 0.007986 (-0.003909) | 0.002759 / 0.004328 (-0.001569) | 0.047653 / 0.004250 (0.043403) | 0.040205 / 0.037052 (0.003153) | 0.281028 / 0.258489 (0.022539) | 0.304682 / 0.293841 (0.010841) | 0.030158 / 0.128546 (-0.098388) | 0.010957 / 0.075646 (-0.064689) | 0.058193 / 0.419271 (-0.361079) | 0.033277 / 0.043533 (-0.010256) | 0.279501 / 0.255139 (0.024362) | 0.295381 / 0.283200 (0.012181) | 0.017889 / 0.141683 (-0.123794) | 1.121354 / 1.452155 (-0.330801) | 1.225702 / 1.492716 (-0.267014) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093385 / 0.018006 (0.075378) | 0.304642 / 0.000490 (0.304152) | 0.000219 / 0.000200 (0.000019) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021456 / 0.037411 (-0.015955) | 0.068536 / 0.014526 (0.054010) | 0.080867 / 0.176557 (-0.095689) | 0.119093 / 0.737135 (-0.618042) | 0.081875 / 0.296338 (-0.214464) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304434 / 0.215209 (0.089225) | 2.990303 / 2.077655 (0.912649) | 1.616959 / 1.504120 (0.112839) | 1.493256 / 1.541195 (-0.047939) | 1.542857 / 1.468490 (0.074367) | 0.575517 / 4.584777 (-4.009260) | 2.455165 / 3.745712 (-1.290547) | 2.810089 / 5.269862 (-2.459773) | 1.756502 / 4.565676 (-2.809175) | 0.064801 / 0.424275 (-0.359475) | 0.004969 / 0.007607 (-0.002638) | 0.360227 / 0.226044 (0.134183) | 3.575029 / 2.268929 (1.306100) | 1.989955 / 55.444624 (-53.454669) | 1.705306 / 6.876477 (-5.171171) | 1.688523 / 2.142072 (-0.453550) | 0.663266 / 4.805227 (-4.141962) | 0.121852 / 6.500664 (-6.378812) | 0.041853 / 0.075469 (-0.033616) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983535 / 1.841788 (-0.858252) | 11.827656 / 8.074308 (3.753348) | 10.663265 / 10.191392 (0.471873) | 0.145942 / 0.680424 (-0.534482) | 0.016004 / 0.534201 (-0.518197) | 0.288907 / 0.579283 (-0.290376) | 0.279100 / 0.434364 (-0.155264) | 0.328061 / 0.540337 (-0.212276) | 0.570253 / 1.386936 (-0.816683) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b52cbc18919869460557e15028e7f489eae8afc7 \"CML watermark\")\n" ]
2023-12-05T12:37:50Z
2023-12-05T12:44:59Z
2023-12-05T12:38:50Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6471/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6471.diff", "html_url": "https://github.com/huggingface/datasets/pull/6471", "merged_at": "2023-12-05T12:38:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/6471.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6471" }
https://api.github.com/repos/huggingface/datasets/issues/7302
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7302/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7302/comments
https://api.github.com/repos/huggingface/datasets/issues/7302/events
https://github.com/huggingface/datasets/pull/7302
2,702,626,386
PR_kwDODunzps6DfY8G
7,302
Let server decide default repo visibility
{ "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Wauplin", "id": 11801849, "login": "Wauplin", "node_id": "MDQ6VXNlcjExODAxODQ5", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "repos_url": "https://api.github.com/users/Wauplin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "type": "User", "url": "https://api.github.com/users/Wauplin", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7302). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "No need for a specific version of huggingface_hub to avoid a breaking change no (it's a server-side change)" ]
2024-11-28T16:01:13Z
2024-11-29T17:00:40Z
2024-11-29T17:00:38Z
CONTRIBUTOR
null
null
null
Until now, all repos were public by default when created without passing the `private` argument. This meant that passing `private=False` or `private=None` was strictly the same. This is not the case anymore. Enterprise Hub offers organizations to set a default visibility setting for new repos. This is useful for organizations forbidding public repos for security matters. This PR mostly updates docstrings + default values so that `private=None` is always passed when users don't set it manually. This PR doesn't create any breaking change. The real update has been done server-side when introducing the new Enterprise Hub feature. Related to https://github.com/huggingface/huggingface_hub/pull/2679.
{ "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Wauplin", "id": 11801849, "login": "Wauplin", "node_id": "MDQ6VXNlcjExODAxODQ5", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "repos_url": "https://api.github.com/users/Wauplin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "type": "User", "url": "https://api.github.com/users/Wauplin", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7302/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7302/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7302.diff", "html_url": "https://github.com/huggingface/datasets/pull/7302", "merged_at": "2024-11-29T17:00:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/7302.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7302" }
https://api.github.com/repos/huggingface/datasets/issues/6643
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6643/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6643/comments
https://api.github.com/repos/huggingface/datasets/issues/6643/events
https://github.com/huggingface/datasets/issues/6643
2,121,239,039
I_kwDODunzps5-b4n_
6,643
Faiss GPU index cannot be serialised when passed to trainer
{ "avatar_url": "https://avatars.githubusercontent.com/u/56388976?v=4", "events_url": "https://api.github.com/users/rubenweitzman/events{/privacy}", "followers_url": "https://api.github.com/users/rubenweitzman/followers", "following_url": "https://api.github.com/users/rubenweitzman/following{/other_user}", "gists_url": "https://api.github.com/users/rubenweitzman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rubenweitzman", "id": 56388976, "login": "rubenweitzman", "node_id": "MDQ6VXNlcjU2Mzg4OTc2", "organizations_url": "https://api.github.com/users/rubenweitzman/orgs", "received_events_url": "https://api.github.com/users/rubenweitzman/received_events", "repos_url": "https://api.github.com/users/rubenweitzman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rubenweitzman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rubenweitzman/subscriptions", "type": "User", "url": "https://api.github.com/users/rubenweitzman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! make sure your query embeddings are numpy arrays, not torch tensors ;)", "Hi Quentin, not sure how that solves the problem number 1. I am trying to pass on a dataset with a faiss gpu for training to the standard trainer but getting this serialisation error. What is a workaround this? I do not want to remove the faiss index, as I would want to use it to create batches of retrieved samples from the dataset. \r\nThanks in advance for your help!", "Issue number one seems to be an issue with FAISS indexes not being compatible with copy.deepcopy.\r\n\r\nMaybe you try to not remove the columns, e.g. by passing `remove_unused_columns=False`" ]
2024-02-06T16:41:00Z
2024-02-15T10:29:32Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am working on a retrieval project and encountering I have encountered two issues in the hugging face faiss integration: 1. I am trying to pass in a dataset with a faiss index to the Huggingface trainer. The code works for a cpu faiss index, but doesn't for a gpu one, getting error: ``` File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 1543, in train return inner_training_loop( File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 1555, in _inner_training_loop train_dataloader = self.get_train_dataloader() File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 831, in get_train_dataloader train_dataset = self._remove_unused_columns(train_dataset, description="training") File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/transformers/trainer.py", line 725, in _remove_unused_columns return dataset.remove_columns(ignored_columns) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/fingerprint.py", line 481, in wrapper out = func(dataset, *args, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2146, in remove_columns dataset = copy.deepcopy(self) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 271, in _reconstruct state = deepcopy(state, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 172, in deepcopy y = _reconstruct(x, memo, *rv) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 271, in _reconstruct state = deepcopy(state, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 146, in deepcopy y = copier(x, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 231, in _deepcopy_dict y[deepcopy(key, memo)] = deepcopy(value, memo) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/copy.py", line 161, in deepcopy rv = reductor(4) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/__init__.py", line 556, in index_getstate return {"this": serialize_index(self).tobytes()} File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/__init__.py", line 1607, in serialize_index write_index(index, writer) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/faiss/swigfaiss.py", line 9843, in write_index return _swigfaiss.write_index(*args) RuntimeError: Error in void faiss::write_index(const faiss::Index*, faiss::IOWriter*) at /project/faiss/faiss/impl/index_write.cpp:590: don't know how to serialize this type of index ``` The index was created with the add_faiss_index method ``` train_dataset.add_faiss_index( column='embeddings', index_name='embeddings', string_factory=faiss_index_string, train_size=config.faiss_train_size, device=0, # Use -1 for CPU, or specify GPU device ID faiss_verbose=True ) ``` 2. Athough faiss is written to be compatible on the gpu for searching [https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU](https://github.com/facebookresearch/faiss/wiki/Faiss-on-the-GPU) I am getting error when trying to use the hugggingface code to do the search on gpu. This seems to be caused by this line https://github.com/huggingface/datasets/blob/f9975f636542df7f95c27065ea93147440d690b7/src/datasets/search.py#L376 producing error ``` total_scores, total_examples = self.dataset.get_nearest_examples_batch('embeddings', embeddings, k=self.k) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 773, in get_nearest_examples_batch total_scores, total_indices = self.search_batch(index_name, queries, k, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 727, in search_batch return self._indexes[index_name].search_batch(queries, k, **kwargs) File "/users/rubman/.conda/envs/protein_npt_env/lib/python3.10/site-packages/datasets/search.py", line 376, in search_batch if not queries.flags.c_contiguous: AttributeError: 'Tensor' object has no attribute 'flags' ``` ### Steps to reproduce the bug ``` train_dataset.add_faiss_index( column='embeddings', index_name='embeddings', string_factory=faiss_index_string, train_size=config.faiss_train_size, device=0, # Use -1 for CPU, or specify GPU device ID faiss_verbose=True ) Trainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator, tokenizer=tokenizer ) train_dataset.get_nearest_examples_batch('embeddings', embeddings, k=self.k) ``` ### Expected behavior I would expect the faiss database code to be gpu compatible ### Environment info huggingface Version: 2.16.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6643/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6643/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7481/comments
https://api.github.com/repos/huggingface/datasets/issues/7481/events
https://github.com/huggingface/datasets/issues/7481
2,950,692,971
I_kwDODunzps6v4ABr
7,481
deal with python `10_000` legal number in slice syntax
{ "avatar_url": "https://avatars.githubusercontent.com/u/196988264?v=4", "events_url": "https://api.github.com/users/sfc-gh-sbekman/events{/privacy}", "followers_url": "https://api.github.com/users/sfc-gh-sbekman/followers", "following_url": "https://api.github.com/users/sfc-gh-sbekman/following{/other_user}", "gists_url": "https://api.github.com/users/sfc-gh-sbekman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sfc-gh-sbekman", "id": 196988264, "login": "sfc-gh-sbekman", "node_id": "U_kgDOC73NaA", "organizations_url": "https://api.github.com/users/sfc-gh-sbekman/orgs", "received_events_url": "https://api.github.com/users/sfc-gh-sbekman/received_events", "repos_url": "https://api.github.com/users/sfc-gh-sbekman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sfc-gh-sbekman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sfc-gh-sbekman/subscriptions", "type": "User", "url": "https://api.github.com/users/sfc-gh-sbekman", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "should be an easy fix, I opened a PR" ]
2025-03-26T20:10:54Z
2025-03-28T16:20:44Z
2025-03-28T16:20:44Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request ``` In [6]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1000]") In [7]: ds = datasets.load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:1_000]") [dozens of frames skipped] File /usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py:444, in _str_to_read_instruction(spec) 442 res = _SUB_SPEC_RE.match(spec) 443 if not res: --> 444 raise ValueError(f"Unrecognized instruction format: {spec}") ValueError: Unrecognized instruction format: train_sft[:1_000] ``` It took me a while to understand what the problem was. But apparently `pyarrow` doesn't allow python numbers that may include `_` as in `1_000`. The `_` aids readability since `10_000_000` vs `10000000` is obviously easier to grasp of what the actual number is. Feature request: ideally `datasets` being a python module will do the right thing and convert python numbers into whatever pyarrow supports - in this case stripping `_`s. Second best it'd err and tell the user that using numbers with `_` in split slices is not acceptible, so that the user won't have to deal with a huge pyarrow assert they know nothing about. Thank you!
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7481/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7481/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5034
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5034/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5034/comments
https://api.github.com/repos/huggingface/datasets/issues/5034/events
https://github.com/huggingface/datasets/pull/5034
1,388,855,136
PR_kwDODunzps4_wJCu
5,034
Update README.md of yahoo_answers_topics dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/6416600?v=4", "events_url": "https://api.github.com/users/borgr/events{/privacy}", "followers_url": "https://api.github.com/users/borgr/followers", "following_url": "https://api.github.com/users/borgr/following{/other_user}", "gists_url": "https://api.github.com/users/borgr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/borgr", "id": 6416600, "login": "borgr", "node_id": "MDQ6VXNlcjY0MTY2MDA=", "organizations_url": "https://api.github.com/users/borgr/orgs", "received_events_url": "https://api.github.com/users/borgr/received_events", "repos_url": "https://api.github.com/users/borgr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/borgr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/borgr/subscriptions", "type": "User", "url": "https://api.github.com/users/borgr", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5034). All of your documentation changes will be reflected on that endpoint.", "Thanks, @borgr. We have removed all dataset scripts from this repo. Subsequent PRs should be opened directly on the Hugging Face Hub.", "Do you mean to edit through \"edit dataset card\" button? because it just leads to a broken page...\r\nhttps://huggingface.co/datasets/yahoo_answers_topics\r\n![image](https://user-images.githubusercontent.com/6416600/193852796-009ba537-1e8f-4c8b-898a-8c4f817b86ee.png)\r\nhttps://github.com/huggingface/datasets/tree/main/datasets/yahoo_answers_topics", "Hi @borgr, good catch! I'm going to report the button leading to a broken link.\r\n\r\nIn the meantime, you can propose a PR to the `README.md` file using this link: https://huggingface.co/datasets/yahoo_answers_topics/blob/main/README.md" ]
2022-09-28T07:17:33Z
2022-10-06T15:56:05Z
2022-10-04T13:49:25Z
CONTRIBUTOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5034/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5034/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5034.diff", "html_url": "https://github.com/huggingface/datasets/pull/5034", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5034.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5034" }
https://api.github.com/repos/huggingface/datasets/issues/7471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7471/comments
https://api.github.com/repos/huggingface/datasets/issues/7471/events
https://github.com/huggingface/datasets/issues/7471
2,937,530,069
I_kwDODunzps6vFybV
7,471
Adding argument to `_get_data_files_patterns`
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi ! The pattern can be specified in advance in YAML in the README.md of the dataset :)\n\nFor example\n\n```\n---\nconfigs:\n- config_name: default\n data_files:\n - split: train\n path: \"train/*\"\n - split: test\n path: \"test/*\"\n---\n```\n\nSee the docs at https://huggingface.co/docs/hub/en/datasets-manual-configuration", "@lhoestq How can we choose in this case ? https://huggingface.co/datasets/datasets-examples/doc-image-5\n", "choose what ? sorry I didn't get it ^^'" ]
2025-03-21T07:17:53Z
2025-03-27T12:30:52Z
2025-03-26T07:26:27Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request How about adding if the user already know about the pattern? https://github.com/huggingface/datasets/blob/a256b85cbc67aa3f0e75d32d6586afc507cf535b/src/datasets/data_files.py#L252 ### Motivation While using this load_dataset people might use 10M of images for the local files. However, due to searching all the appropriate file pattern in fsspec, purely searching this pattern takes more than 10 hours (real use-case). ### Your contribution Yeah I can make this happen if this seems valid. @lhoestq WDYT? such like ``` def _get_data_files_patterns(pattern_resolver: Callable[[str], list[str]], patterns: PATTERNS) -> dict[str, list[str]]: ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7471/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6978
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6978/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6978/comments
https://api.github.com/repos/huggingface/datasets/issues/6978/events
https://github.com/huggingface/datasets/pull/6978
2,359,511,469
PR_kwDODunzps5yz0h6
6,978
Fix regression for pandas < 2.0.0 in JSON loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6978). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005144 / 0.011353 (-0.006209) | 0.003500 / 0.011008 (-0.007509) | 0.063670 / 0.038508 (0.025162) | 0.031793 / 0.023109 (0.008683) | 0.239611 / 0.275898 (-0.036287) | 0.276681 / 0.323480 (-0.046799) | 0.004148 / 0.007986 (-0.003838) | 0.002713 / 0.004328 (-0.001615) | 0.048832 / 0.004250 (0.044582) | 0.043066 / 0.037052 (0.006014) | 0.256835 / 0.258489 (-0.001655) | 0.292224 / 0.293841 (-0.001617) | 0.027530 / 0.128546 (-0.101017) | 0.010509 / 0.075646 (-0.065137) | 0.203370 / 0.419271 (-0.215901) | 0.035643 / 0.043533 (-0.007890) | 0.252161 / 0.255139 (-0.002978) | 0.271883 / 0.283200 (-0.011316) | 0.018658 / 0.141683 (-0.123024) | 1.081676 / 1.452155 (-0.370479) | 1.142146 / 1.492716 (-0.350571) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093484 / 0.018006 (0.075477) | 0.298607 / 0.000490 (0.298117) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019021 / 0.037411 (-0.018390) | 0.062471 / 0.014526 (0.047946) | 0.075393 / 0.176557 (-0.101163) | 0.121040 / 0.737135 (-0.616095) | 0.077613 / 0.296338 (-0.218726) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294857 / 0.215209 (0.079648) | 2.931143 / 2.077655 (0.853489) | 1.510866 / 1.504120 (0.006746) | 1.379574 / 1.541195 (-0.161621) | 1.352358 / 1.468490 (-0.116133) | 0.561670 / 4.584777 (-4.023107) | 2.378434 / 3.745712 (-1.367278) | 2.713203 / 5.269862 (-2.556658) | 1.706416 / 4.565676 (-2.859260) | 0.062355 / 0.424275 (-0.361920) | 0.004971 / 0.007607 (-0.002636) | 0.336498 / 0.226044 (0.110453) | 3.316464 / 2.268929 (1.047535) | 1.833035 / 55.444624 (-53.611589) | 1.532808 / 6.876477 (-5.343668) | 1.537323 / 2.142072 (-0.604749) | 0.639430 / 4.805227 (-4.165798) | 0.115808 / 6.500664 (-6.384856) | 0.043545 / 0.075469 (-0.031924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974428 / 1.841788 (-0.867360) | 11.368914 / 8.074308 (3.294606) | 9.754488 / 10.191392 (-0.436904) | 0.146277 / 0.680424 (-0.534146) | 0.013917 / 0.534201 (-0.520284) | 0.286809 / 0.579283 (-0.292474) | 0.267144 / 0.434364 (-0.167219) | 0.326161 / 0.540337 (-0.214177) | 0.418059 / 1.386936 (-0.968877) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005341 / 0.011353 (-0.006012) | 0.003460 / 0.011008 (-0.007548) | 0.050135 / 0.038508 (0.011627) | 0.032014 / 0.023109 (0.008905) | 0.259835 / 0.275898 (-0.016063) | 0.286275 / 0.323480 (-0.037205) | 0.004350 / 0.007986 (-0.003636) | 0.002800 / 0.004328 (-0.001529) | 0.049358 / 0.004250 (0.045107) | 0.040182 / 0.037052 (0.003130) | 0.278352 / 0.258489 (0.019863) | 0.307869 / 0.293841 (0.014028) | 0.029151 / 0.128546 (-0.099395) | 0.010091 / 0.075646 (-0.065555) | 0.058814 / 0.419271 (-0.360458) | 0.033150 / 0.043533 (-0.010383) | 0.263594 / 0.255139 (0.008455) | 0.284065 / 0.283200 (0.000866) | 0.017968 / 0.141683 (-0.123714) | 1.145605 / 1.452155 (-0.306550) | 1.196884 / 1.492716 (-0.295832) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094045 / 0.018006 (0.076039) | 0.299031 / 0.000490 (0.298541) | 0.000210 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022510 / 0.037411 (-0.014901) | 0.077478 / 0.014526 (0.062953) | 0.087746 / 0.176557 (-0.088811) | 0.129311 / 0.737135 (-0.607825) | 0.089921 / 0.296338 (-0.206418) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290279 / 0.215209 (0.075070) | 2.880725 / 2.077655 (0.803070) | 1.541262 / 1.504120 (0.037142) | 1.424475 / 1.541195 (-0.116719) | 1.436397 / 1.468490 (-0.032093) | 0.578237 / 4.584777 (-4.006540) | 0.965249 / 3.745712 (-2.780463) | 2.682534 / 5.269862 (-2.587327) | 1.732859 / 4.565676 (-2.832817) | 0.065523 / 0.424275 (-0.358752) | 0.005466 / 0.007607 (-0.002141) | 0.343985 / 0.226044 (0.117940) | 3.397463 / 2.268929 (1.128534) | 1.929370 / 55.444624 (-53.515255) | 1.605135 / 6.876477 (-5.271342) | 1.753926 / 2.142072 (-0.388146) | 0.659929 / 4.805227 (-4.145298) | 0.118093 / 6.500664 (-6.382571) | 0.041252 / 0.075469 (-0.034217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.009177 / 1.841788 (-0.832610) | 11.959624 / 8.074308 (3.885316) | 10.484672 / 10.191392 (0.293280) | 0.142085 / 0.680424 (-0.538339) | 0.015955 / 0.534201 (-0.518245) | 0.283649 / 0.579283 (-0.295634) | 0.125681 / 0.434364 (-0.308683) | 0.320490 / 0.540337 (-0.219847) | 0.440353 / 1.386936 (-0.946583) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e47a746bcda4b97db2467542b76d3215b3569ff0 \"CML watermark\")\n", "Maybe a patch release will be needed with this fix." ]
2024-06-18T10:26:34Z
2024-06-19T06:23:24Z
2024-06-19T05:50:18Z
MEMBER
null
null
null
A regression was introduced for pandas < 2.0.0 in PR: - #6914 As described in pandas docs, the `dtype_backend` parameter was first added in pandas 2.0.0: https://pandas.pydata.org/docs/reference/api/pandas.read_json.html This PR fixes the regression by passing (or not) the `dtype_backend` parameter depending on pandas version. Maybe, in a future 3.0 `datasets` release, we could just require pandas > 2.0. Reported by: - #6977
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6978/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6978/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6978.diff", "html_url": "https://github.com/huggingface/datasets/pull/6978", "merged_at": "2024-06-19T05:50:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/6978.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6978" }
https://api.github.com/repos/huggingface/datasets/issues/6746
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6746/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6746/comments
https://api.github.com/repos/huggingface/datasets/issues/6746/events
https://github.com/huggingface/datasets/issues/6746
2,198,993,949
I_kwDODunzps6DEfwd
6,746
ExpectedMoreSplits error when loading C4 dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/65165345?v=4", "events_url": "https://api.github.com/users/billwang485/events{/privacy}", "followers_url": "https://api.github.com/users/billwang485/followers", "following_url": "https://api.github.com/users/billwang485/following{/other_user}", "gists_url": "https://api.github.com/users/billwang485/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/billwang485", "id": 65165345, "login": "billwang485", "node_id": "MDQ6VXNlcjY1MTY1MzQ1", "organizations_url": "https://api.github.com/users/billwang485/orgs", "received_events_url": "https://api.github.com/users/billwang485/received_events", "repos_url": "https://api.github.com/users/billwang485/repos", "site_admin": false, "starred_url": "https://api.github.com/users/billwang485/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/billwang485/subscriptions", "type": "User", "url": "https://api.github.com/users/billwang485", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! We updated the `allenai/c4` repository to allow people to specify which language to load easily (the the [c4 dataset page](https://huggingface.co/datasets/allenai/c4))\r\n\r\nTo fix this issue **you can update** `datasets` and remove the mention of the legacy configuration name \"allenai--c4\":\r\n\r\n```python\r\ntraindata = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')\r\nvaldata = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')\r\n```", "Did you solve this problem?I have the same bug.It is no use to delete \"allenai--c4\".", "Did you solve it? I met this problem too.", "But after I romove allenai--c4,it still fails", "For me it works this way. I'm using datasets version 2.17.0", "First, pip install --upgrade datasets.\r\nSecond, Update the following two lines of code in data.py (in lib)\r\ntraindata = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')\r\nvaldata = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')", "The error is in the Wanda repository: https://github.com/locuslab/wanda\r\n- https://github.com/locuslab/wanda/issues/57\r\n\r\nConcretely, in these code lines:\r\nhttps://github.com/locuslab/wanda/blob/8e8fc87b4a2f9955baa7e76e64d5fce7fa8724a6/lib/data.py#L43-L44\r\n\r\nPlease report there and/or make the fix in their code.", "> traindata = load_dataset('allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train')\r\n> valdata = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')\r\n\r\nSolved for me ! Thanks!" ]
2024-03-21T02:53:04Z
2024-09-18T19:57:14Z
2024-07-29T07:21:08Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I encounter bug when running the example command line ```python python main.py \ --model decapoda-research/llama-7b-hf \ --prune_method wanda \ --sparsity_ratio 0.5 \ --sparsity_type unstructured \ --save out/llama_7b/unstructured/wanda/ ``` The bug occurred at these lines of code (when loading c4 dataset) ```python traindata = load_dataset('allenai/c4', 'allenai--c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train') valdata = load_dataset('allenai/c4', 'allenai--c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation') ``` The error message states: ``` raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'validation'} ``` ### Steps to reproduce the bug 1. I encounter bug when running the example command line ### Expected behavior The error message states: ``` raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) datasets.utils.info_utils.ExpectedMoreSplits: {'validation'} ``` ### Environment info I'm using cuda 12.4, so I use ```pip install pytorch``` instead of conda provided in install.md Also, I've tried another environment using the same commands in install.md, but the same bug occured
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6746/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6746/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/7255
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7255/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7255/comments
https://api.github.com/repos/huggingface/datasets/issues/7255/events
https://github.com/huggingface/datasets/pull/7255
2,618,540,355
PR_kwDODunzps6AG25R
7,255
fix decord import
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7255). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-10-28T14:08:19Z
2024-10-28T14:10:43Z
2024-10-28T14:09:14Z
MEMBER
null
null
null
delay the import until Video() is instantiated + also import duckdb first (otherwise importing duckdb later causes a segfault)
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7255/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7255/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7255.diff", "html_url": "https://github.com/huggingface/datasets/pull/7255", "merged_at": "2024-10-28T14:09:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/7255.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7255" }
https://api.github.com/repos/huggingface/datasets/issues/6691
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6691/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6691/comments
https://api.github.com/repos/huggingface/datasets/issues/6691/events
https://github.com/huggingface/datasets/issues/6691
2,152,134,041
I_kwDODunzps6ARvWZ
6,691
load_dataset() does not support tsv
{ "avatar_url": "https://avatars.githubusercontent.com/u/26873178?v=4", "events_url": "https://api.github.com/users/dipsivenkatesh/events{/privacy}", "followers_url": "https://api.github.com/users/dipsivenkatesh/followers", "following_url": "https://api.github.com/users/dipsivenkatesh/following{/other_user}", "gists_url": "https://api.github.com/users/dipsivenkatesh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dipsivenkatesh", "id": 26873178, "login": "dipsivenkatesh", "node_id": "MDQ6VXNlcjI2ODczMTc4", "organizations_url": "https://api.github.com/users/dipsivenkatesh/orgs", "received_events_url": "https://api.github.com/users/dipsivenkatesh/received_events", "repos_url": "https://api.github.com/users/dipsivenkatesh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dipsivenkatesh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dipsivenkatesh/subscriptions", "type": "User", "url": "https://api.github.com/users/dipsivenkatesh", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/77767961?v=4", "events_url": "https://api.github.com/users/harsh1504660/events{/privacy}", "followers_url": "https://api.github.com/users/harsh1504660/followers", "following_url": "https://api.github.com/users/harsh1504660/following{/other_user}", "gists_url": "https://api.github.com/users/harsh1504660/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harsh1504660", "id": 77767961, "login": "harsh1504660", "node_id": "MDQ6VXNlcjc3NzY3OTYx", "organizations_url": "https://api.github.com/users/harsh1504660/orgs", "received_events_url": "https://api.github.com/users/harsh1504660/received_events", "repos_url": "https://api.github.com/users/harsh1504660/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harsh1504660/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harsh1504660/subscriptions", "type": "User", "url": "https://api.github.com/users/harsh1504660", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/77767961?v=4", "events_url": "https://api.github.com/users/harsh1504660/events{/privacy}", "followers_url": "https://api.github.com/users/harsh1504660/followers", "following_url": "https://api.github.com/users/harsh1504660/following{/other_user}", "gists_url": "https://api.github.com/users/harsh1504660/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harsh1504660", "id": 77767961, "login": "harsh1504660", "node_id": "MDQ6VXNlcjc3NzY3OTYx", "organizations_url": "https://api.github.com/users/harsh1504660/orgs", "received_events_url": "https://api.github.com/users/harsh1504660/received_events", "repos_url": "https://api.github.com/users/harsh1504660/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harsh1504660/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harsh1504660/subscriptions", "type": "User", "url": "https://api.github.com/users/harsh1504660", "user_view_type": "public" } ]
null
[ "#self-assign", "Hi @dipsivenkatesh,\r\n\r\nPlease note that this functionality is already implemented. Our CSV builder uses `pandas.read_csv` under the hood, and you can pass the parameter `delimiter=\"\\t\"` to read TSV files.\r\n\r\nSee the list of CSV config parameters in our docs: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.packaged_modules.csv.CsvConfig" ]
2024-02-24T05:56:04Z
2024-02-26T07:15:07Z
2024-02-26T07:09:35Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Feature request the load_dataset() for local functions support file types like csv, json etc but not of type tsv (tab separated values). ### Motivation cant easily load files of type tsv, have to convert them to another type like csv then load ### Your contribution Can try by raising a PR with a little help, currently went through the code but didn't fully understand
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6691/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6691/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6300
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6300/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6300/comments
https://api.github.com/repos/huggingface/datasets/issues/6300/events
https://github.com/huggingface/datasets/pull/6300
1,940,153,432
PR_kwDODunzps5cpIoG
6,300
Unpin `jax` maximum version
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008410 / 0.011353 (-0.002943) | 0.004888 / 0.011008 (-0.006120) | 0.103342 / 0.038508 (0.064834) | 0.103697 / 0.023109 (0.080587) | 0.416445 / 0.275898 (0.140547) | 0.454604 / 0.323480 (0.131124) | 0.004976 / 0.007986 (-0.003010) | 0.003957 / 0.004328 (-0.000371) | 0.077398 / 0.004250 (0.073148) | 0.069026 / 0.037052 (0.031973) | 0.420484 / 0.258489 (0.161995) | 0.471828 / 0.293841 (0.177987) | 0.037133 / 0.128546 (-0.091413) | 0.010009 / 0.075646 (-0.065637) | 0.349573 / 0.419271 (-0.069698) | 0.063240 / 0.043533 (0.019708) | 0.421554 / 0.255139 (0.166415) | 0.433548 / 0.283200 (0.150348) | 0.029397 / 0.141683 (-0.112286) | 1.716860 / 1.452155 (0.264705) | 1.851264 / 1.492716 (0.358547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269733 / 0.018006 (0.251727) | 0.493313 / 0.000490 (0.492823) | 0.010438 / 0.000200 (0.010238) | 0.000401 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034690 / 0.037411 (-0.002722) | 0.105304 / 0.014526 (0.090778) | 0.115831 / 0.176557 (-0.060726) | 0.185017 / 0.737135 (-0.552118) | 0.117480 / 0.296338 (-0.178859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479414 / 0.215209 (0.264205) | 4.785526 / 2.077655 (2.707871) | 2.388412 / 1.504120 (0.884292) | 2.178222 / 1.541195 (0.637027) | 2.248214 / 1.468490 (0.779723) | 0.571723 / 4.584777 (-4.013054) | 4.721250 / 3.745712 (0.975538) | 4.073893 / 5.269862 (-1.195969) | 2.618131 / 4.565676 (-1.947546) | 0.068406 / 0.424275 (-0.355869) | 0.008890 / 0.007607 (0.001283) | 0.564224 / 0.226044 (0.338180) | 5.631412 / 2.268929 (3.362483) | 3.072212 / 55.444624 (-52.372412) | 2.760574 / 6.876477 (-4.115903) | 2.963060 / 2.142072 (0.820987) | 0.708150 / 4.805227 (-4.097077) | 0.160324 / 6.500664 (-6.340340) | 0.075402 / 0.075469 (-0.000067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.649965 / 1.841788 (-0.191823) | 24.297517 / 8.074308 (16.223209) | 17.658675 / 10.191392 (7.467283) | 0.171399 / 0.680424 (-0.509025) | 0.021172 / 0.534201 (-0.513029) | 0.477196 / 0.579283 (-0.102087) | 0.503900 / 0.434364 (0.069536) | 0.555858 / 0.540337 (0.015520) | 0.824302 / 1.386936 (-0.562634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008613 / 0.011353 (-0.002740) | 0.004848 / 0.011008 (-0.006160) | 0.078344 / 0.038508 (0.039836) | 0.098976 / 0.023109 (0.075867) | 0.520713 / 0.275898 (0.244815) | 0.566350 / 0.323480 (0.242870) | 0.006658 / 0.007986 (-0.001327) | 0.004043 / 0.004328 (-0.000285) | 0.077881 / 0.004250 (0.073631) | 0.070731 / 0.037052 (0.033678) | 0.519717 / 0.258489 (0.261228) | 0.575623 / 0.293841 (0.281782) | 0.038542 / 0.128546 (-0.090004) | 0.010277 / 0.075646 (-0.065369) | 0.084269 / 0.419271 (-0.335002) | 0.058088 / 0.043533 (0.014555) | 0.541790 / 0.255139 (0.286651) | 0.534915 / 0.283200 (0.251715) | 0.027851 / 0.141683 (-0.113831) | 1.814827 / 1.452155 (0.362672) | 1.898208 / 1.492716 (0.405492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244162 / 0.018006 (0.226156) | 0.482895 / 0.000490 (0.482405) | 0.005734 / 0.000200 (0.005534) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039328 / 0.037411 (0.001917) | 0.119795 / 0.014526 (0.105269) | 0.128570 / 0.176557 (-0.047986) | 0.191207 / 0.737135 (-0.545929) | 0.127147 / 0.296338 (-0.169192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.533545 / 0.215209 (0.318336) | 5.320135 / 2.077655 (3.242480) | 2.924573 / 1.504120 (1.420453) | 2.741351 / 1.541195 (1.200156) | 2.824217 / 1.468490 (1.355727) | 0.595842 / 4.584777 (-3.988935) | 4.343499 / 3.745712 (0.597787) | 3.976546 / 5.269862 (-1.293316) | 2.532541 / 4.565676 (-2.033135) | 0.070480 / 0.424275 (-0.353795) | 0.008868 / 0.007607 (0.001260) | 0.634297 / 0.226044 (0.408253) | 6.327314 / 2.268929 (4.058386) | 3.530741 / 55.444624 (-51.913883) | 3.121435 / 6.876477 (-3.755042) | 3.344473 / 2.142072 (1.202401) | 0.719413 / 4.805227 (-4.085814) | 0.162348 / 6.500664 (-6.338316) | 0.074964 / 0.075469 (-0.000505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679095 / 1.841788 (-0.162693) | 25.071620 / 8.074308 (16.997312) | 18.422398 / 10.191392 (8.231006) | 0.223981 / 0.680424 (-0.456443) | 0.026537 / 0.534201 (-0.507664) | 0.513867 / 0.579283 (-0.065416) | 0.535874 / 0.434364 (0.101510) | 0.567971 / 0.540337 (0.027634) | 0.842545 / 1.386936 (-0.544391) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8b871016c25cb3b90ac1ff65a4e54f0454f525e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006445 / 0.011353 (-0.004908) | 0.003978 / 0.011008 (-0.007030) | 0.084542 / 0.038508 (0.046034) | 0.069231 / 0.023109 (0.046122) | 0.308794 / 0.275898 (0.032896) | 0.339246 / 0.323480 (0.015766) | 0.005269 / 0.007986 (-0.002716) | 0.003285 / 0.004328 (-0.001043) | 0.065336 / 0.004250 (0.061086) | 0.053480 / 0.037052 (0.016428) | 0.316775 / 0.258489 (0.058286) | 0.357885 / 0.293841 (0.064044) | 0.031309 / 0.128546 (-0.097237) | 0.008450 / 0.075646 (-0.067196) | 0.287911 / 0.419271 (-0.131361) | 0.052756 / 0.043533 (0.009223) | 0.321516 / 0.255139 (0.066377) | 0.331998 / 0.283200 (0.048799) | 0.024129 / 0.141683 (-0.117553) | 1.507718 / 1.452155 (0.055563) | 1.571400 / 1.492716 (0.078683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237536 / 0.018006 (0.219530) | 0.499691 / 0.000490 (0.499201) | 0.007644 / 0.000200 (0.007444) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028243 / 0.037411 (-0.009168) | 0.081556 / 0.014526 (0.067030) | 0.096877 / 0.176557 (-0.079680) | 0.149985 / 0.737135 (-0.587150) | 0.095556 / 0.296338 (-0.200783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383215 / 0.215209 (0.168006) | 3.815800 / 2.077655 (1.738145) | 1.832227 / 1.504120 (0.328107) | 1.664001 / 1.541195 (0.122806) | 1.698786 / 1.468490 (0.230296) | 0.487594 / 4.584777 (-4.097183) | 3.569767 / 3.745712 (-0.175945) | 3.262387 / 5.269862 (-2.007475) | 2.017105 / 4.565676 (-2.548572) | 0.057555 / 0.424275 (-0.366720) | 0.007170 / 0.007607 (-0.000437) | 0.460134 / 0.226044 (0.234090) | 4.629800 / 2.268929 (2.360871) | 2.357126 / 55.444624 (-53.087499) | 1.970144 / 6.876477 (-4.906332) | 2.123520 / 2.142072 (-0.018552) | 0.613058 / 4.805227 (-4.192169) | 0.135869 / 6.500664 (-6.364795) | 0.061292 / 0.075469 (-0.014177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.311294 / 1.841788 (-0.530494) | 18.640807 / 8.074308 (10.566499) | 13.946834 / 10.191392 (3.755442) | 0.163976 / 0.680424 (-0.516448) | 0.018527 / 0.534201 (-0.515674) | 0.390530 / 0.579283 (-0.188753) | 0.412661 / 0.434364 (-0.021703) | 0.459514 / 0.540337 (-0.080823) | 0.635026 / 1.386936 (-0.751910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006645 / 0.011353 (-0.004708) | 0.003943 / 0.011008 (-0.007066) | 0.064470 / 0.038508 (0.025962) | 0.069895 / 0.023109 (0.046786) | 0.411091 / 0.275898 (0.135193) | 0.437628 / 0.323480 (0.114148) | 0.005214 / 0.007986 (-0.002772) | 0.003281 / 0.004328 (-0.001047) | 0.064434 / 0.004250 (0.060183) | 0.054294 / 0.037052 (0.017241) | 0.413576 / 0.258489 (0.155087) | 0.448793 / 0.293841 (0.154952) | 0.031754 / 0.128546 (-0.096793) | 0.008530 / 0.075646 (-0.067117) | 0.069950 / 0.419271 (-0.349322) | 0.047747 / 0.043533 (0.004214) | 0.411241 / 0.255139 (0.156102) | 0.430076 / 0.283200 (0.146876) | 0.023462 / 0.141683 (-0.118220) | 1.519501 / 1.452155 (0.067346) | 1.575782 / 1.492716 (0.083066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231816 / 0.018006 (0.213810) | 0.442802 / 0.000490 (0.442312) | 0.005738 / 0.000200 (0.005539) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031426 / 0.037411 (-0.005985) | 0.090758 / 0.014526 (0.076233) | 0.103414 / 0.176557 (-0.073142) | 0.156409 / 0.737135 (-0.580726) | 0.103900 / 0.296338 (-0.192439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438897 / 0.215209 (0.223688) | 4.385318 / 2.077655 (2.307663) | 2.352042 / 1.504120 (0.847923) | 2.182228 / 1.541195 (0.641033) | 2.266256 / 1.468490 (0.797766) | 0.492780 / 4.584777 (-4.091997) | 3.665787 / 3.745712 (-0.079925) | 3.315329 / 5.269862 (-1.954533) | 2.027993 / 4.565676 (-2.537684) | 0.058220 / 0.424275 (-0.366055) | 0.007429 / 0.007607 (-0.000178) | 0.508790 / 0.226044 (0.282746) | 5.107093 / 2.268929 (2.838164) | 2.799789 / 55.444624 (-52.644836) | 2.462828 / 6.876477 (-4.413649) | 2.610193 / 2.142072 (0.468120) | 0.588133 / 4.805227 (-4.217094) | 0.133418 / 6.500664 (-6.367246) | 0.059793 / 0.075469 (-0.015676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363358 / 1.841788 (-0.478430) | 19.258372 / 8.074308 (11.184064) | 14.730977 / 10.191392 (4.539584) | 0.169493 / 0.680424 (-0.510931) | 0.020462 / 0.534201 (-0.513739) | 0.397980 / 0.579283 (-0.181303) | 0.426638 / 0.434364 (-0.007726) | 0.474249 / 0.540337 (-0.066088) | 0.677640 / 1.386936 (-0.709296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b3d2619ecb8f01dd12283c30f04dfe6e443795 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003827 / 0.011008 (-0.007181) | 0.084394 / 0.038508 (0.045886) | 0.073166 / 0.023109 (0.050056) | 0.309380 / 0.275898 (0.033482) | 0.338501 / 0.323480 (0.015021) | 0.005346 / 0.007986 (-0.002640) | 0.003273 / 0.004328 (-0.001056) | 0.064606 / 0.004250 (0.060356) | 0.053500 / 0.037052 (0.016447) | 0.313143 / 0.258489 (0.054654) | 0.354364 / 0.293841 (0.060523) | 0.030919 / 0.128546 (-0.097627) | 0.008512 / 0.075646 (-0.067134) | 0.292774 / 0.419271 (-0.126498) | 0.052441 / 0.043533 (0.008908) | 0.310503 / 0.255139 (0.055364) | 0.341211 / 0.283200 (0.058011) | 0.023608 / 0.141683 (-0.118074) | 1.456220 / 1.452155 (0.004065) | 1.540189 / 1.492716 (0.047473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234321 / 0.018006 (0.216315) | 0.451809 / 0.000490 (0.451319) | 0.008560 / 0.000200 (0.008360) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028165 / 0.037411 (-0.009246) | 0.082548 / 0.014526 (0.068023) | 0.752621 / 0.176557 (0.576065) | 0.263949 / 0.737135 (-0.473187) | 0.097635 / 0.296338 (-0.198704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386611 / 0.215209 (0.171402) | 3.847528 / 2.077655 (1.769873) | 1.859173 / 1.504120 (0.355053) | 1.685269 / 1.541195 (0.144074) | 1.715823 / 1.468490 (0.247333) | 0.485272 / 4.584777 (-4.099505) | 3.500724 / 3.745712 (-0.244988) | 3.252149 / 5.269862 (-2.017713) | 2.052914 / 4.565676 (-2.512762) | 0.056794 / 0.424275 (-0.367481) | 0.007317 / 0.007607 (-0.000291) | 0.457924 / 0.226044 (0.231879) | 4.570092 / 2.268929 (2.301163) | 2.328829 / 55.444624 (-53.115796) | 1.986502 / 6.876477 (-4.889975) | 2.164645 / 2.142072 (0.022573) | 0.580455 / 4.805227 (-4.224772) | 0.134415 / 6.500664 (-6.366249) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267423 / 1.841788 (-0.574364) | 18.653450 / 8.074308 (10.579142) | 13.919682 / 10.191392 (3.728290) | 0.144001 / 0.680424 (-0.536423) | 0.018218 / 0.534201 (-0.515983) | 0.389933 / 0.579283 (-0.189350) | 0.418366 / 0.434364 (-0.015998) | 0.456341 / 0.540337 (-0.083997) | 0.631401 / 1.386936 (-0.755535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006838 / 0.011353 (-0.004515) | 0.003973 / 0.011008 (-0.007036) | 0.065217 / 0.038508 (0.026709) | 0.068357 / 0.023109 (0.045248) | 0.407960 / 0.275898 (0.132062) | 0.437794 / 0.323480 (0.114314) | 0.005398 / 0.007986 (-0.002587) | 0.003360 / 0.004328 (-0.000969) | 0.065503 / 0.004250 (0.061253) | 0.055676 / 0.037052 (0.018623) | 0.411381 / 0.258489 (0.152892) | 0.446902 / 0.293841 (0.153061) | 0.032156 / 0.128546 (-0.096390) | 0.008702 / 0.075646 (-0.066944) | 0.072295 / 0.419271 (-0.346976) | 0.047722 / 0.043533 (0.004189) | 0.406125 / 0.255139 (0.150986) | 0.428359 / 0.283200 (0.145160) | 0.021901 / 0.141683 (-0.119782) | 1.464186 / 1.452155 (0.012032) | 1.532809 / 1.492716 (0.040093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218505 / 0.018006 (0.200499) | 0.447450 / 0.000490 (0.446961) | 0.006509 / 0.000200 (0.006309) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031789 / 0.037411 (-0.005622) | 0.091100 / 0.014526 (0.076574) | 0.102812 / 0.176557 (-0.073745) | 0.155988 / 0.737135 (-0.581147) | 0.103983 / 0.296338 (-0.192355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436431 / 0.215209 (0.221222) | 4.336072 / 2.077655 (2.258417) | 2.344613 / 1.504120 (0.840493) | 2.173513 / 1.541195 (0.632319) | 2.313134 / 1.468490 (0.844644) | 0.493651 / 4.584777 (-4.091126) | 3.657541 / 3.745712 (-0.088171) | 3.289933 / 5.269862 (-1.979928) | 2.040271 / 4.565676 (-2.525406) | 0.058092 / 0.424275 (-0.366183) | 0.007348 / 0.007607 (-0.000259) | 0.507506 / 0.226044 (0.281462) | 5.093477 / 2.268929 (2.824548) | 2.770579 / 55.444624 (-52.674046) | 2.449507 / 6.876477 (-4.426970) | 2.645470 / 2.142072 (0.503397) | 0.590799 / 4.805227 (-4.214429) | 0.133411 / 6.500664 (-6.367253) | 0.059507 / 0.075469 (-0.015962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381148 / 1.841788 (-0.460639) | 19.188716 / 8.074308 (11.114408) | 14.709111 / 10.191392 (4.517719) | 0.191104 / 0.680424 (-0.489320) | 0.019862 / 0.534201 (-0.514339) | 0.395380 / 0.579283 (-0.183903) | 0.424757 / 0.434364 (-0.009607) | 0.468810 / 0.540337 (-0.071527) | 0.687058 / 1.386936 (-0.699878) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#407169e1ea91ae31f79ff29c4115b04a461279ab \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008872 / 0.011353 (-0.002481) | 0.004824 / 0.011008 (-0.006184) | 0.097012 / 0.038508 (0.058504) | 0.074728 / 0.023109 (0.051619) | 0.400604 / 0.275898 (0.124706) | 0.434316 / 0.323480 (0.110836) | 0.006025 / 0.007986 (-0.001961) | 0.004153 / 0.004328 (-0.000176) | 0.074093 / 0.004250 (0.069842) | 0.057239 / 0.037052 (0.020187) | 0.420611 / 0.258489 (0.162122) | 0.457779 / 0.293841 (0.163938) | 0.047610 / 0.128546 (-0.080936) | 0.014577 / 0.075646 (-0.061069) | 0.414351 / 0.419271 (-0.004921) | 0.063072 / 0.043533 (0.019539) | 0.426141 / 0.255139 (0.171002) | 0.429844 / 0.283200 (0.146644) | 0.034754 / 0.141683 (-0.106929) | 1.620946 / 1.452155 (0.168792) | 1.725831 / 1.492716 (0.233115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304712 / 0.018006 (0.286706) | 0.646924 / 0.000490 (0.646434) | 0.014486 / 0.000200 (0.014286) | 0.000626 / 0.000054 (0.000572) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034935 / 0.037411 (-0.002477) | 0.085788 / 0.014526 (0.071262) | 0.107749 / 0.176557 (-0.068807) | 0.170924 / 0.737135 (-0.566211) | 0.134985 / 0.296338 (-0.161354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602913 / 0.215209 (0.387704) | 6.041700 / 2.077655 (3.964045) | 2.539970 / 1.504120 (1.035850) | 2.184166 / 1.541195 (0.642972) | 2.241783 / 1.468490 (0.773293) | 0.864601 / 4.584777 (-3.720176) | 5.246955 / 3.745712 (1.501243) | 4.850458 / 5.269862 (-0.419404) | 3.101497 / 4.565676 (-1.464179) | 0.098591 / 0.424275 (-0.325684) | 0.008902 / 0.007607 (0.001295) | 0.732278 / 0.226044 (0.506234) | 7.163557 / 2.268929 (4.894629) | 3.226444 / 55.444624 (-52.218180) | 2.578737 / 6.876477 (-4.297740) | 2.850212 / 2.142072 (0.708140) | 1.026390 / 4.805227 (-3.778837) | 0.217077 / 6.500664 (-6.283587) | 0.080344 / 0.075469 (0.004875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687488 / 1.841788 (-0.154300) | 24.686337 / 8.074308 (16.612029) | 21.315989 / 10.191392 (11.124597) | 0.226176 / 0.680424 (-0.454248) | 0.035774 / 0.534201 (-0.498427) | 0.477807 / 0.579283 (-0.101476) | 0.636305 / 0.434364 (0.201941) | 0.553341 / 0.540337 (0.013003) | 0.797267 / 1.386936 (-0.589669) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008955 / 0.011353 (-0.002398) | 0.006099 / 0.011008 (-0.004909) | 0.086306 / 0.038508 (0.047798) | 0.090783 / 0.023109 (0.067674) | 0.554802 / 0.275898 (0.278904) | 0.598778 / 0.323480 (0.275299) | 0.008656 / 0.007986 (0.000670) | 0.004487 / 0.004328 (0.000159) | 0.084194 / 0.004250 (0.079943) | 0.076048 / 0.037052 (0.038996) | 0.533212 / 0.258489 (0.274723) | 0.584029 / 0.293841 (0.290188) | 0.051913 / 0.128546 (-0.076634) | 0.014253 / 0.075646 (-0.061393) | 0.100500 / 0.419271 (-0.318772) | 0.061092 / 0.043533 (0.017560) | 0.516955 / 0.255139 (0.261816) | 0.562754 / 0.283200 (0.279554) | 0.036673 / 0.141683 (-0.105010) | 1.853655 / 1.452155 (0.401501) | 1.968358 / 1.492716 (0.475642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308258 / 0.018006 (0.290252) | 0.630492 / 0.000490 (0.630002) | 0.010575 / 0.000200 (0.010375) | 0.000271 / 0.000054 (0.000217) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034762 / 0.037411 (-0.002649) | 0.107314 / 0.014526 (0.092788) | 0.132160 / 0.176557 (-0.044396) | 0.178737 / 0.737135 (-0.558398) | 0.125988 / 0.296338 (-0.170351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.730738 / 0.215209 (0.515528) | 7.240393 / 2.077655 (5.162738) | 3.557665 / 1.504120 (2.053545) | 3.541425 / 1.541195 (2.000230) | 3.103849 / 1.468490 (1.635359) | 0.926843 / 4.584777 (-3.657934) | 5.818264 / 3.745712 (2.072552) | 5.012984 / 5.269862 (-0.256878) | 3.286085 / 4.565676 (-1.279591) | 0.104879 / 0.424275 (-0.319396) | 0.009010 / 0.007607 (0.001403) | 0.806145 / 0.226044 (0.580101) | 8.263655 / 2.268929 (5.994727) | 4.108932 / 55.444624 (-51.335693) | 3.454613 / 6.876477 (-3.421864) | 3.629045 / 2.142072 (1.486973) | 1.062325 / 4.805227 (-3.742902) | 0.220482 / 6.500664 (-6.280182) | 0.081440 / 0.075469 (0.005970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665587 / 1.841788 (-0.176201) | 23.695299 / 8.074308 (15.620991) | 22.917493 / 10.191392 (12.726101) | 0.259033 / 0.680424 (-0.421391) | 0.040118 / 0.534201 (-0.494083) | 0.487329 / 0.579283 (-0.091954) | 0.607482 / 0.434364 (0.173118) | 0.568383 / 0.540337 (0.028045) | 0.824486 / 1.386936 (-0.562450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53592bb8f635a1d6ea3e77acc290efdfb28fcbd7 \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007095 / 0.011353 (-0.004258) | 0.004260 / 0.011008 (-0.006748) | 0.084729 / 0.038508 (0.046221) | 0.076498 / 0.023109 (0.053389) | 0.325981 / 0.275898 (0.050083) | 0.357140 / 0.323480 (0.033661) | 0.004325 / 0.007986 (-0.003660) | 0.003632 / 0.004328 (-0.000696) | 0.065075 / 0.004250 (0.060824) | 0.059058 / 0.037052 (0.022006) | 0.331895 / 0.258489 (0.073406) | 0.370782 / 0.293841 (0.076941) | 0.031886 / 0.128546 (-0.096660) | 0.008782 / 0.075646 (-0.066864) | 0.288159 / 0.419271 (-0.131113) | 0.053012 / 0.043533 (0.009479) | 0.319992 / 0.255139 (0.064853) | 0.347061 / 0.283200 (0.063861) | 0.026365 / 0.141683 (-0.115317) | 1.486112 / 1.452155 (0.033958) | 1.570150 / 1.492716 (0.077434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277155 / 0.018006 (0.259149) | 0.573507 / 0.000490 (0.573017) | 0.010122 / 0.000200 (0.009922) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029076 / 0.037411 (-0.008335) | 0.082517 / 0.014526 (0.067991) | 0.100710 / 0.176557 (-0.075847) | 0.154529 / 0.737135 (-0.582606) | 0.099531 / 0.296338 (-0.196807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382058 / 0.215209 (0.166849) | 3.803307 / 2.077655 (1.725652) | 1.834107 / 1.504120 (0.329987) | 1.665703 / 1.541195 (0.124508) | 1.739520 / 1.468490 (0.271030) | 0.490544 / 4.584777 (-4.094233) | 3.577874 / 3.745712 (-0.167838) | 3.327631 / 5.269862 (-1.942231) | 2.056634 / 4.565676 (-2.509043) | 0.057871 / 0.424275 (-0.366404) | 0.007326 / 0.007607 (-0.000281) | 0.453993 / 0.226044 (0.227949) | 4.549179 / 2.268929 (2.280250) | 2.320304 / 55.444624 (-53.124321) | 1.966082 / 6.876477 (-4.910395) | 2.189979 / 2.142072 (0.047907) | 0.586678 / 4.805227 (-4.218549) | 0.134919 / 6.500664 (-6.365745) | 0.061649 / 0.075469 (-0.013820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286228 / 1.841788 (-0.555560) | 19.409674 / 8.074308 (11.335366) | 14.290463 / 10.191392 (4.099071) | 0.165766 / 0.680424 (-0.514658) | 0.018200 / 0.534201 (-0.516001) | 0.390526 / 0.579283 (-0.188757) | 0.410953 / 0.434364 (-0.023411) | 0.455921 / 0.540337 (-0.084416) | 0.642271 / 1.386936 (-0.744665) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004064) | 0.004348 / 0.011008 (-0.006660) | 0.065935 / 0.038508 (0.027427) | 0.087327 / 0.023109 (0.064218) | 0.413461 / 0.275898 (0.137563) | 0.458904 / 0.323480 (0.135424) | 0.005996 / 0.007986 (-0.001990) | 0.003648 / 0.004328 (-0.000680) | 0.066578 / 0.004250 (0.062328) | 0.062072 / 0.037052 (0.025020) | 0.418469 / 0.258489 (0.159980) | 0.468960 / 0.293841 (0.175119) | 0.032616 / 0.128546 (-0.095930) | 0.008961 / 0.075646 (-0.066686) | 0.072537 / 0.419271 (-0.346734) | 0.048302 / 0.043533 (0.004769) | 0.411845 / 0.255139 (0.156706) | 0.441730 / 0.283200 (0.158530) | 0.025038 / 0.141683 (-0.116645) | 1.519402 / 1.452155 (0.067248) | 1.601791 / 1.492716 (0.109074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322494 / 0.018006 (0.304488) | 0.570210 / 0.000490 (0.569720) | 0.025815 / 0.000200 (0.025615) | 0.000166 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034657 / 0.037411 (-0.002754) | 0.096024 / 0.014526 (0.081498) | 0.109134 / 0.176557 (-0.067422) | 0.162170 / 0.737135 (-0.574965) | 0.110472 / 0.296338 (-0.185866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439032 / 0.215209 (0.223823) | 4.385768 / 2.077655 (2.308113) | 2.343261 / 1.504120 (0.839142) | 2.157926 / 1.541195 (0.616731) | 2.299193 / 1.468490 (0.830703) | 0.498961 / 4.584777 (-4.085816) | 3.651909 / 3.745712 (-0.093803) | 3.387587 / 5.269862 (-1.882275) | 2.144553 / 4.565676 (-2.421123) | 0.058242 / 0.424275 (-0.366033) | 0.007416 / 0.007607 (-0.000191) | 0.512714 / 0.226044 (0.286670) | 5.138569 / 2.268929 (2.869641) | 2.778683 / 55.444624 (-52.665941) | 2.532990 / 6.876477 (-4.343487) | 2.782211 / 2.142072 (0.640139) | 0.591881 / 4.805227 (-4.213346) | 0.135005 / 6.500664 (-6.365660) | 0.060965 / 0.075469 (-0.014504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356311 / 1.841788 (-0.485477) | 20.029994 / 8.074308 (11.955686) | 14.666570 / 10.191392 (4.475178) | 0.164363 / 0.680424 (-0.516061) | 0.020685 / 0.534201 (-0.513516) | 0.396020 / 0.579283 (-0.183263) | 0.429407 / 0.434364 (-0.004957) | 0.476924 / 0.540337 (-0.063413) | 0.693389 / 1.386936 (-0.693547) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#292d627e398e30a538a616395f3b5ce4e89bb1e8 \"CML watermark\")\n" ]
2023-10-12T14:42:40Z
2023-10-12T16:37:55Z
2023-10-12T16:28:57Z
COLLABORATOR
null
null
null
fix #6299 fix #6202
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6300/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6300/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6300.diff", "html_url": "https://github.com/huggingface/datasets/pull/6300", "merged_at": "2023-10-12T16:28:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/6300.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6300" }
https://api.github.com/repos/huggingface/datasets/issues/5183
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5183/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5183/comments
https://api.github.com/repos/huggingface/datasets/issues/5183/events
https://github.com/huggingface/datasets/issues/5183
1,431,418,066
I_kwDODunzps5VUbTS
5,183
Loading an external dataset in a format similar to conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4", "events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}", "followers_url": "https://api.github.com/users/Taghreed7878/followers", "following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}", "gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Taghreed7878", "id": 112555442, "login": "Taghreed7878", "node_id": "U_kgDOBrV1sg", "organizations_url": "https://api.github.com/users/Taghreed7878/orgs", "received_events_url": "https://api.github.com/users/Taghreed7878/received_events", "repos_url": "https://api.github.com/users/Taghreed7878/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions", "type": "User", "url": "https://api.github.com/users/Taghreed7878", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2022-11-01T13:18:29Z
2022-11-02T11:57:50Z
2022-11-02T11:57:50Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
I'm trying to load a custom dataset in a Dataset object, it's similar to conll2003 but with 2 columns only (word entity), I used the following script: features = datasets.Features( {"tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["B-PER", .... etc.]))} ) from datasets import Dataset INPUT_COLUMNS = "tokens ner_tags".split(" ") def read_conll(file): #all_labels = [] example = {col: [] for col in INPUT_COLUMNS} idx = 0 with open(file) as f: for line in f: if line: if line.startswith("-DOCSTART-") and example["tokens"] != []: print(idx, example) yield idx, example idx += 1 example = {col: [] for col in INPUT_COLUMNS} elif line == "\n" or (line.startswith("-DOCSTART-") and example["tokens"] == []): continue else: row_cols = line.split(" ") for i, col in enumerate(example): example[col] = row_cols[i].rstrip() dset = Dataset.from_generator(read_conll, gen_kwargs={"file": "/content/new_train.txt"}, features = features) The following error happened: [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <genexpr>(.0) 285 for key in unique_values(itertools.chain(*dicts)): # set merge all keys 286 # Will raise KeyError if the dict don't have the same keys --> 287 yield key, tuple(d[key] for d in dicts) 288 TypeError: tuple indices must be integers or slices, not str What does this mean and what should I modify?
{ "avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4", "events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}", "followers_url": "https://api.github.com/users/Taghreed7878/followers", "following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}", "gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Taghreed7878", "id": 112555442, "login": "Taghreed7878", "node_id": "U_kgDOBrV1sg", "organizations_url": "https://api.github.com/users/Taghreed7878/orgs", "received_events_url": "https://api.github.com/users/Taghreed7878/received_events", "repos_url": "https://api.github.com/users/Taghreed7878/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions", "type": "User", "url": "https://api.github.com/users/Taghreed7878", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5183/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5183/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5770
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5770/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5770/comments
https://api.github.com/repos/huggingface/datasets/issues/5770/events
https://github.com/huggingface/datasets/pull/5770
1,673,581,555
PR_kwDODunzps5OmntV
5,770
Add IterableDataset.from_spark
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hi again @lhoestq this is ready for review! Not sure I have permission to add people to the reviewers list...", "Cool ! I think you can define `IterableDataset.from_spark` instead of adding `streaming=` in `Dataset.from_spark`, it can be more intuitive IMO :)", "Thanks for reviewing! I moved the streaming behavior to IterableDataset.from_spark", "Thanks Quentin! I'll flesh out the docs in a follow-up PR", "Friendly ping @lhoestq ", "Thanks @lhoestq ! I fixed the partition order thing and added more unit tests.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006165 / 0.011353 (-0.005188) | 0.004497 / 0.011008 (-0.006511) | 0.099142 / 0.038508 (0.060634) | 0.027479 / 0.023109 (0.004369) | 0.352491 / 0.275898 (0.076593) | 0.402993 / 0.323480 (0.079513) | 0.004885 / 0.007986 (-0.003100) | 0.003315 / 0.004328 (-0.001013) | 0.075787 / 0.004250 (0.071537) | 0.035320 / 0.037052 (-0.001732) | 0.368401 / 0.258489 (0.109912) | 0.409090 / 0.293841 (0.115249) | 0.030125 / 0.128546 (-0.098421) | 0.011670 / 0.075646 (-0.063976) | 0.324381 / 0.419271 (-0.094890) | 0.050815 / 0.043533 (0.007283) | 0.352598 / 0.255139 (0.097460) | 0.389189 / 0.283200 (0.105989) | 0.092873 / 0.141683 (-0.048810) | 1.485140 / 1.452155 (0.032986) | 1.545586 / 1.492716 (0.052869) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199522 / 0.018006 (0.181516) | 0.404576 / 0.000490 (0.404087) | 0.003322 / 0.000200 (0.003122) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022945 / 0.037411 (-0.014466) | 0.095512 / 0.014526 (0.080987) | 0.103077 / 0.176557 (-0.073480) | 0.163918 / 0.737135 (-0.573217) | 0.105560 / 0.296338 (-0.190779) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417360 / 0.215209 (0.202151) | 4.161693 / 2.077655 (2.084039) | 1.851941 / 1.504120 (0.347821) | 1.649872 / 1.541195 (0.108677) | 1.682099 / 1.468490 (0.213609) | 0.693187 / 4.584777 (-3.891590) | 3.462528 / 3.745712 (-0.283184) | 1.839893 / 5.269862 (-3.429968) | 1.155945 / 4.565676 (-3.409731) | 0.082611 / 0.424275 (-0.341664) | 0.012076 / 0.007607 (0.004469) | 0.514325 / 0.226044 (0.288280) | 5.155052 / 2.268929 (2.886123) | 2.307280 / 55.444624 (-53.137345) | 1.966483 / 6.876477 (-4.909994) | 2.018892 / 2.142072 (-0.123181) | 0.803068 / 4.805227 (-4.002159) | 0.152213 / 6.500664 (-6.348451) | 0.066320 / 0.075469 (-0.009149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.218578 / 1.841788 (-0.623209) | 13.563869 / 8.074308 (5.489561) | 13.954596 / 10.191392 (3.763204) | 0.151527 / 0.680424 (-0.528897) | 0.016655 / 0.534201 (-0.517546) | 0.380637 / 0.579283 (-0.198646) | 0.395854 / 0.434364 (-0.038509) | 0.459111 / 0.540337 (-0.081226) | 0.560219 / 1.386936 (-0.826717) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006427 / 0.011353 (-0.004926) | 0.004728 / 0.011008 (-0.006280) | 0.080525 / 0.038508 (0.042017) | 0.027294 / 0.023109 (0.004185) | 0.414688 / 0.275898 (0.138790) | 0.449882 / 0.323480 (0.126402) | 0.004771 / 0.007986 (-0.003214) | 0.003402 / 0.004328 (-0.000926) | 0.078748 / 0.004250 (0.074497) | 0.037046 / 0.037052 (-0.000007) | 0.417398 / 0.258489 (0.158909) | 0.462921 / 0.293841 (0.169080) | 0.030364 / 0.128546 (-0.098182) | 0.011810 / 0.075646 (-0.063837) | 0.089787 / 0.419271 (-0.329485) | 0.039806 / 0.043533 (-0.003727) | 0.403401 / 0.255139 (0.148262) | 0.439477 / 0.283200 (0.156278) | 0.088431 / 0.141683 (-0.053252) | 1.534373 / 1.452155 (0.082219) | 1.592316 / 1.492716 (0.099600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217701 / 0.018006 (0.199695) | 0.384770 / 0.000490 (0.384280) | 0.000437 / 0.000200 (0.000237) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024952 / 0.037411 (-0.012459) | 0.098728 / 0.014526 (0.084202) | 0.106324 / 0.176557 (-0.070233) | 0.155484 / 0.737135 (-0.581651) | 0.109503 / 0.296338 (-0.186836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450639 / 0.215209 (0.235430) | 4.523110 / 2.077655 (2.445455) | 2.224810 / 1.504120 (0.720690) | 2.119516 / 1.541195 (0.578321) | 2.225192 / 1.468490 (0.756702) | 0.695397 / 4.584777 (-3.889380) | 3.433559 / 3.745712 (-0.312153) | 2.633127 / 5.269862 (-2.636735) | 1.448471 / 4.565676 (-3.117206) | 0.082262 / 0.424275 (-0.342013) | 0.012246 / 0.007607 (0.004639) | 0.561243 / 0.226044 (0.335199) | 5.652711 / 2.268929 (3.383782) | 2.689771 / 55.444624 (-52.754853) | 2.359512 / 6.876477 (-4.516965) | 2.471098 / 2.142072 (0.329026) | 0.802955 / 4.805227 (-4.002272) | 0.151142 / 6.500664 (-6.349522) | 0.067494 / 0.075469 (-0.007975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306879 / 1.841788 (-0.534909) | 14.030775 / 8.074308 (5.956467) | 12.917790 / 10.191392 (2.726398) | 0.141269 / 0.680424 (-0.539155) | 0.016264 / 0.534201 (-0.517937) | 0.411957 / 0.579283 (-0.167326) | 0.393235 / 0.434364 (-0.041129) | 0.505144 / 0.540337 (-0.035193) | 0.590660 / 1.386936 (-0.796276) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7790ebd7072eafff755fb575b392f3efa74069e4 \"CML watermark\")\n" ]
2023-04-18T17:47:53Z
2023-05-17T14:07:32Z
2023-05-17T14:00:38Z
CONTRIBUTOR
null
null
null
Follow-up from https://github.com/huggingface/datasets/pull/5701 Related issue: https://github.com/huggingface/datasets/issues/5678
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5770/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5770/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5770.diff", "html_url": "https://github.com/huggingface/datasets/pull/5770", "merged_at": "2023-05-17T14:00:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/5770.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5770" }
https://api.github.com/repos/huggingface/datasets/issues/5232
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5232/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5232/comments
https://api.github.com/repos/huggingface/datasets/issues/5232/events
https://github.com/huggingface/datasets/issues/5232
1,446,294,165
I_kwDODunzps5WNLKV
5,232
Incompatible dill versions in datasets 2.6.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/10574123?v=4", "events_url": "https://api.github.com/users/vinaykakade/events{/privacy}", "followers_url": "https://api.github.com/users/vinaykakade/followers", "following_url": "https://api.github.com/users/vinaykakade/following{/other_user}", "gists_url": "https://api.github.com/users/vinaykakade/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vinaykakade", "id": 10574123, "login": "vinaykakade", "node_id": "MDQ6VXNlcjEwNTc0MTIz", "organizations_url": "https://api.github.com/users/vinaykakade/orgs", "received_events_url": "https://api.github.com/users/vinaykakade/received_events", "repos_url": "https://api.github.com/users/vinaykakade/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vinaykakade/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinaykakade/subscriptions", "type": "User", "url": "https://api.github.com/users/vinaykakade", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting, @vinaykakade.\r\n\r\nWe are discussing about making a release early this week.\r\n\r\nPlease note that in the meantime, in your specific case (as we also pointed out here: https://github.com/huggingface/datasets/issues/5162#issuecomment-1291720293), you can circumvent the issue by pinning `multiprocess` to 0.70.13 version (instead of using latest 0.70.14).\r\n\r\nDuplicate of:\r\n- https://github.com/huggingface/datasets/issues/5162", "You can also make `pip-compile` work by using the backtracking resolver (instead of the legacy one): https://pip-tools.readthedocs.io/en/latest/#a-note-on-resolvers\r\n```\r\npip-compile --resolver=backtracking requirements.in\r\n```\r\nThis resolver will automatically use `multiprocess` 0.70.13 version.\r\n" ]
2022-11-12T06:46:23Z
2022-11-14T08:24:43Z
2022-11-14T08:07:59Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug datasets version 2.6.1 has a dependency on dill<0.3.6. This causes a conflict with dill>=0.3.6 used by multiprocess dependency in datasets 2.6.1 This issue is already fixed in https://github.com/huggingface/datasets/pull/5166/files, but not yet been released. Please release a new version of the datasets library to fix this. ### Steps to reproduce the bug 1. Create requirements.in with only dependency being datasets (or datasets[s3]) 2. Run pip-compile 3. The output is as follows: ``` Could not find a version that matches dill<0.3.6,>=0.3.6 (from datasets[s3]==2.6.1->-r requirements.in (line 1)) Tried: 0.2, 0.2, 0.2.1, 0.2.1, 0.2.2, 0.2.2, 0.2.3, 0.2.3, 0.2.4, 0.2.4, 0.2.5, 0.2.5, 0.2.6, 0.2.7, 0.2.7.1, 0.2.8, 0.2.8.1, 0.2.8.2, 0.2.9, 0.3.0, 0.3.1, 0.3.1.1, 0.3.2, 0.3.3, 0.3.3, 0.3.4, 0.3.4, 0.3.5, 0.3.5, 0.3.5.1, 0.3.5.1, 0.3.6, 0.3.6 Skipped pre-versions: 0.1a1, 0.2a1, 0.2a1, 0.2b1, 0.2b1 There are incompatible versions in the resolved dependencies: dill<0.3.6 (from datasets[s3]==2.6.1->-r requirements.in (line 1)) dill>=0.3.6 (from multiprocess==0.70.14->datasets[s3]==2.6.1->-r requirements.in (line 1)) ``` ### Expected behavior pip-compile produces requirements.txt without any conflicts ### Environment info datasets version 2.6.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5232/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5232/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6359/comments
https://api.github.com/repos/huggingface/datasets/issues/6359/events
https://github.com/huggingface/datasets/issues/6359
1,965,378,583
I_kwDODunzps51JUwX
6,359
Stuck in "Resolving data files..."
{ "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Luciennnnnnn", "id": 20135317, "login": "Luciennnnnnn", "node_id": "MDQ6VXNlcjIwMTM1MzE3", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "type": "User", "url": "https://api.github.com/users/Luciennnnnnn", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Most likely, the data file inference logic is the problem here.\r\n\r\nYou can run the following code to verify this:\r\n```python\r\nimport time\r\nfrom datasets.data_files import get_data_patterns\r\nstart_time = time.time()\r\nget_data_patterns(\"/path/to/img_dir\")\r\nend_time = time.time()\r\nprint(f\"Elapsed time: {end_time - start_time:.2f}s\")\r\n```\r\n \r\nWe plan to optimize this for the next version (or version after that). In the meantime, specifying the split patterns manually should give better performance:\r\n```python\r\nds = load_dataset(\"imagefolder\", data_files={\"train\": \"path/to/img_dir/train/**\", ...}, split=\"train\")\r\n```", "Hi, @mariosasko, you are right; data file inference logic is extremely slow.\r\n\r\nI have done a similar test, that is I modify the source code of datasets/load.py to measure the cost of two suspicious operations:\r\n```python\r\ndef get_module(self) -> DatasetModule:\r\n base_path = Path(self.data_dir or \"\").expanduser().resolve().as_posix()\r\n start = time.time()\r\n patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path)\r\n print(f\"patterns: {time.time() - start}\")\r\n start = time.time()\r\n data_files = DataFilesDict.from_patterns(\r\n patterns,\r\n download_config=self.download_config,\r\n base_path=base_path,\r\n )\r\n print(f\"data_files: {time.time() - start}\")\r\n```\r\nIt gaves:\r\npatterns: 3062.2050700187683\r\ndata_files: 413.9576675891876\r\n\r\nThus, these two operations contribute to almost all of load time. What's going on in them?", "Furthermore, what's my current workaround about this problem? Should I save it by `save_to_disk()` and load dataset through `load_from_disk`?", "were you able to solve this issue?, I am facing the same issue", "Still suffering from this issue. For me, I cannot download Emilia dataset, and stucked at 'Resolving data files' forever.\n``` e = load_dataset('amphion/Emilia-Dataset', token=my_token)\nResolving data files: 0%| | 1/4343 [00:00<11:27, 6.32it/s]\nResolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4343/4343 [00:01<00:00, 3844.15it/s]\n```" ]
2023-10-27T12:01:51Z
2025-03-09T02:18:19Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have an image dataset with 300k images, the size of image is 768 * 768. When I run `dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train')` in second time, it takes 50 minutes to finish "Resolving data files" part, what's going on in this part? From my understand, after Arrow files been created in the first run, the second run should not take time longer than one or two minutes. ### Steps to reproduce the bug # Run following code two times dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train') ### Expected behavior Fast dataset building ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Huggingface_hub version: 0.17.3 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6359/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6924
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6924/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6924/comments
https://api.github.com/repos/huggingface/datasets/issues/6924/events
https://github.com/huggingface/datasets/issues/6924
2,320,531,015
I_kwDODunzps6KUH5H
6,924
Caching map result of DatasetDict.
{ "avatar_url": "https://avatars.githubusercontent.com/u/56939432?v=4", "events_url": "https://api.github.com/users/MostHumble/events{/privacy}", "followers_url": "https://api.github.com/users/MostHumble/followers", "following_url": "https://api.github.com/users/MostHumble/following{/other_user}", "gists_url": "https://api.github.com/users/MostHumble/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MostHumble", "id": 56939432, "login": "MostHumble", "node_id": "MDQ6VXNlcjU2OTM5NDMy", "organizations_url": "https://api.github.com/users/MostHumble/orgs", "received_events_url": "https://api.github.com/users/MostHumble/received_events", "repos_url": "https://api.github.com/users/MostHumble/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MostHumble/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MostHumble/subscriptions", "type": "User", "url": "https://api.github.com/users/MostHumble", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-05-28T09:07:41Z
2024-05-28T09:07:41Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Hi! I'm currenty using the map function to tokenize a somewhat large dataset, so I need to use the cache to save ~25 mins. Changing num_proc incduces the recomputation of the map, I'm not sure why and if this is excepted behavior? here it says, that cached files are loaded sequentially: https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3005-L3006 it seems like I can pass in a fingerprint, and load it directly: https://github.com/huggingface/datasets/blob/bb2664cf540d5ce4b066365e7c8b26e7f1ca4743/src/datasets/arrow_dataset.py#L3108-L3125 **Environment Setup:** - Python 3.11.9 - datasets 2.19.1 conda-forge - Linux 6.1.83-1.el9.elrepo.x86_64 **MRE** ```python fixed raw_datasets fixed tokenize_function tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=9, remove_columns=['text'], load_from_cache_file= True, desc="Running tokenizer on dataset line_by_line", ) tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=5, remove_columns=['text'], load_from_cache_file= True, desc="Running tokenizer on dataset line_by_line", ) ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6924/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6924/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5368
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5368/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5368/comments
https://api.github.com/repos/huggingface/datasets/issues/5368/events
https://github.com/huggingface/datasets/pull/5368
1,500,322,973
PR_kwDODunzps5FpZyx
5,368
Align remove columns behavior and input dict mutation in `map` with previous behavior
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-16T14:28:47Z
2022-12-16T16:28:08Z
2022-12-16T16:25:12Z
COLLABORATOR
null
null
null
Align the `remove_columns` behavior and input dict mutation in `map` with the behavior before https://github.com/huggingface/datasets/pull/5252.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5368/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5368/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5368.diff", "html_url": "https://github.com/huggingface/datasets/pull/5368", "merged_at": "2022-12-16T16:25:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/5368.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5368" }
https://api.github.com/repos/huggingface/datasets/issues/6187
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6187/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6187/comments
https://api.github.com/repos/huggingface/datasets/issues/6187/events
https://github.com/huggingface/datasets/issues/6187
1,870,936,143
I_kwDODunzps5vhDhP
6,187
Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi! You can load this dataset with:\r\n```python\r\ndata_files = {\r\n \"train\": \"/content/PUBHEALTH/train.tsv\",\r\n \"validation\": \"/content/PUBHEALTH/dev.tsv\",\r\n \"test\": \"/content/PUBHEALTH/test.tsv\",\r\n}\r\n\r\ntsv_datasets_reloaded = load_dataset(\"csv\", data_files=data_files, sep=\"\\t\")\r\n```\r\n\r\nTo support your `load_dataset` call, defining aliases for the packaged builders, as suggested in https://github.com/huggingface/datasets/issues/5625, must be implemented. We can consider adding this feature if more people request it.\r\n \r\n(Also answered on the Discord [here](https://discord.com/channels/879548962464493619/1145956791134470224/1146071491260186744))" ]
2023-08-29T05:49:56Z
2023-08-29T16:21:45Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) [<ipython-input-48-6a7b3e847019>](https://localhost:8080/#) in <cell line: 7>() 5 } 6 ----> 7 csv_datasets_reloaded = load_dataset("tsv", data_files=data_files) 8 csv_datasets_reloaded 2 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1489 raise e1 from None 1490 if isinstance(e1, FileNotFoundError): -> 1491 raise FileNotFoundError( 1492 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1493 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory. Couldn't find 'tsv' on the Hugging Face Hub either: FileNotFoundError: Dataset 'tsv' doesn't exist on the Hub ``` ### Steps to reproduce the bug ``` data_files = { "train": "/content/PUBHEALTH/train.tsv", "validation": "/content/PUBHEALTH/dev.tsv", "test": "/content/PUBHEALTH/test.tsv", } tsv_datasets_reloaded = load_dataset("tsv", data_files=data_files) tsv_datasets_reloaded ``` ``` --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) <ipython-input-48-6a7b3e847019> in <cell line: 7>() 5 } 6 ----> 7 csv_datasets_reloaded = load_dataset("tsv", data_files=data_files) 8 csv_datasets_reloaded 2 frames /usr/local/lib/python3.10/dist-packages/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1489 raise e1 from None 1490 if isinstance(e1, FileNotFoundError): -> 1491 raise FileNotFoundError( 1492 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1493 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/tsv/tsv.py or any data file in the same directory. Couldn't find 'tsv' on the Hugging Face Hub either: FileNotFoundError: Dataset 'tsv' doesn't exist on the Hub ``` ### Expected behavior load the data, push to hub ### Environment info jupyter notebook RTX 3090
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6187/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6187/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5564
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5564/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5564/comments
https://api.github.com/repos/huggingface/datasets/issues/5564/events
https://github.com/huggingface/datasets/pull/5564
1,595,064,698
PR_kwDODunzps5KgwzU
5,564
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5564). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008810 / 0.011353 (-0.002543) | 0.004583 / 0.011008 (-0.006425) | 0.100787 / 0.038508 (0.062279) | 0.030170 / 0.023109 (0.007061) | 0.301749 / 0.275898 (0.025851) | 0.386958 / 0.323480 (0.063478) | 0.007211 / 0.007986 (-0.000775) | 0.004939 / 0.004328 (0.000611) | 0.078046 / 0.004250 (0.073796) | 0.035672 / 0.037052 (-0.001380) | 0.314403 / 0.258489 (0.055914) | 0.348547 / 0.293841 (0.054706) | 0.034242 / 0.128546 (-0.094304) | 0.011599 / 0.075646 (-0.064047) | 0.321936 / 0.419271 (-0.097336) | 0.043214 / 0.043533 (-0.000319) | 0.298782 / 0.255139 (0.043643) | 0.334513 / 0.283200 (0.051313) | 0.091630 / 0.141683 (-0.050053) | 1.518194 / 1.452155 (0.066039) | 1.553665 / 1.492716 (0.060949) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196322 / 0.018006 (0.178316) | 0.427280 / 0.000490 (0.426790) | 0.001933 / 0.000200 (0.001733) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023190 / 0.037411 (-0.014221) | 0.097387 / 0.014526 (0.082862) | 0.104532 / 0.176557 (-0.072024) | 0.166670 / 0.737135 (-0.570465) | 0.108787 / 0.296338 (-0.187552) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415776 / 0.215209 (0.200567) | 4.135899 / 2.077655 (2.058244) | 1.857600 / 1.504120 (0.353480) | 1.654099 / 1.541195 (0.112904) | 1.729102 / 1.468490 (0.260612) | 0.695946 / 4.584777 (-3.888831) | 3.352776 / 3.745712 (-0.392936) | 2.754443 / 5.269862 (-2.515418) | 1.517181 / 4.565676 (-3.048495) | 0.082782 / 0.424275 (-0.341493) | 0.012431 / 0.007607 (0.004824) | 0.526593 / 0.226044 (0.300548) | 5.263051 / 2.268929 (2.994123) | 2.290713 / 55.444624 (-53.153911) | 1.953017 / 6.876477 (-4.923460) | 1.998419 / 2.142072 (-0.143653) | 0.817055 / 4.805227 (-3.988173) | 0.148213 / 6.500664 (-6.352451) | 0.065527 / 0.075469 (-0.009942) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254275 / 1.841788 (-0.587513) | 13.618962 / 8.074308 (5.544654) | 14.057134 / 10.191392 (3.865742) | 0.137180 / 0.680424 (-0.543244) | 0.028460 / 0.534201 (-0.505741) | 0.393836 / 0.579283 (-0.185447) | 0.406665 / 0.434364 (-0.027699) | 0.476812 / 0.540337 (-0.063526) | 0.561047 / 1.386936 (-0.825889) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006483 / 0.011353 (-0.004870) | 0.004525 / 0.011008 (-0.006483) | 0.075696 / 0.038508 (0.037188) | 0.027306 / 0.023109 (0.004197) | 0.359141 / 0.275898 (0.083243) | 0.394595 / 0.323480 (0.071115) | 0.004907 / 0.007986 (-0.003079) | 0.003403 / 0.004328 (-0.000925) | 0.074473 / 0.004250 (0.070223) | 0.037801 / 0.037052 (0.000749) | 0.359350 / 0.258489 (0.100861) | 0.411902 / 0.293841 (0.118061) | 0.032280 / 0.128546 (-0.096267) | 0.011728 / 0.075646 (-0.063918) | 0.085692 / 0.419271 (-0.333580) | 0.047779 / 0.043533 (0.004246) | 0.348820 / 0.255139 (0.093681) | 0.389396 / 0.283200 (0.106197) | 0.094923 / 0.141683 (-0.046760) | 1.507137 / 1.452155 (0.054982) | 1.556873 / 1.492716 (0.064157) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197510 / 0.018006 (0.179504) | 0.413885 / 0.000490 (0.413395) | 0.002527 / 0.000200 (0.002327) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024571 / 0.037411 (-0.012840) | 0.099845 / 0.014526 (0.085319) | 0.108130 / 0.176557 (-0.068426) | 0.176153 / 0.737135 (-0.560982) | 0.111907 / 0.296338 (-0.184432) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436393 / 0.215209 (0.221184) | 4.343296 / 2.077655 (2.265642) | 2.056062 / 1.504120 (0.551942) | 1.855372 / 1.541195 (0.314177) | 1.946429 / 1.468490 (0.477939) | 0.701862 / 4.584777 (-3.882915) | 3.337115 / 3.745712 (-0.408597) | 2.755416 / 5.269862 (-2.514446) | 1.335596 / 4.565676 (-3.230081) | 0.083938 / 0.424275 (-0.340337) | 0.012914 / 0.007607 (0.005307) | 0.530272 / 0.226044 (0.304228) | 5.307739 / 2.268929 (3.038810) | 2.506435 / 55.444624 (-52.938189) | 2.170830 / 6.876477 (-4.705646) | 2.224641 / 2.142072 (0.082568) | 0.804416 / 4.805227 (-4.000811) | 0.151594 / 6.500664 (-6.349070) | 0.067221 / 0.075469 (-0.008248) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257063 / 1.841788 (-0.584725) | 14.054346 / 8.074308 (5.980038) | 13.490649 / 10.191392 (3.299257) | 0.139320 / 0.680424 (-0.541104) | 0.016501 / 0.534201 (-0.517700) | 0.382655 / 0.579283 (-0.196629) | 0.383305 / 0.434364 (-0.051059) | 0.465091 / 0.540337 (-0.075247) | 0.552552 / 1.386936 (-0.834384) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c480083958126c40bb7bdba8e1eeb3945a8fe6ea \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011278 / 0.011353 (-0.000075) | 0.007351 / 0.011008 (-0.003657) | 0.131145 / 0.038508 (0.092637) | 0.041585 / 0.023109 (0.018476) | 0.410230 / 0.275898 (0.134332) | 0.464069 / 0.323480 (0.140589) | 0.010228 / 0.007986 (0.002242) | 0.005324 / 0.004328 (0.000996) | 0.102680 / 0.004250 (0.098430) | 0.041644 / 0.037052 (0.004592) | 0.439127 / 0.258489 (0.180638) | 0.467828 / 0.293841 (0.173987) | 0.054373 / 0.128546 (-0.074173) | 0.019495 / 0.075646 (-0.056152) | 0.432425 / 0.419271 (0.013153) | 0.056863 / 0.043533 (0.013331) | 0.405883 / 0.255139 (0.150744) | 0.452786 / 0.283200 (0.169586) | 0.109888 / 0.141683 (-0.031795) | 1.797015 / 1.452155 (0.344860) | 1.985937 / 1.492716 (0.493221) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275121 / 0.018006 (0.257115) | 0.587585 / 0.000490 (0.587095) | 0.005557 / 0.000200 (0.005357) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032968 / 0.037411 (-0.004443) | 0.135886 / 0.014526 (0.121360) | 0.154000 / 0.176557 (-0.022557) | 0.233345 / 0.737135 (-0.503790) | 0.144125 / 0.296338 (-0.152214) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613056 / 0.215209 (0.397847) | 6.206135 / 2.077655 (4.128480) | 2.686989 / 1.504120 (1.182869) | 2.389946 / 1.541195 (0.848751) | 2.437506 / 1.468490 (0.969016) | 1.255900 / 4.584777 (-3.328877) | 5.654803 / 3.745712 (1.909091) | 5.467693 / 5.269862 (0.197832) | 2.872397 / 4.565676 (-1.693279) | 0.145658 / 0.424275 (-0.278617) | 0.016883 / 0.007607 (0.009276) | 0.793820 / 0.226044 (0.567775) | 7.961881 / 2.268929 (5.692952) | 3.617422 / 55.444624 (-51.827203) | 2.795185 / 6.876477 (-4.081292) | 2.881726 / 2.142072 (0.739653) | 1.434543 / 4.805227 (-3.370685) | 0.252206 / 6.500664 (-6.248458) | 0.094694 / 0.075469 (0.019225) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.552401 / 1.841788 (-0.289386) | 18.436068 / 8.074308 (10.361760) | 22.539049 / 10.191392 (12.347657) | 0.269471 / 0.680424 (-0.410953) | 0.053242 / 0.534201 (-0.480959) | 0.568325 / 0.579283 (-0.010958) | 0.660339 / 0.434364 (0.225975) | 0.689507 / 0.540337 (0.149169) | 0.836785 / 1.386936 (-0.550151) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009853 / 0.011353 (-0.001500) | 0.009752 / 0.011008 (-0.001256) | 0.095422 / 0.038508 (0.056914) | 0.037760 / 0.023109 (0.014651) | 0.450898 / 0.275898 (0.175000) | 0.501671 / 0.323480 (0.178191) | 0.006748 / 0.007986 (-0.001237) | 0.005054 / 0.004328 (0.000725) | 0.099382 / 0.004250 (0.095131) | 0.058078 / 0.037052 (0.021026) | 0.447606 / 0.258489 (0.189116) | 0.503887 / 0.293841 (0.210046) | 0.054579 / 0.128546 (-0.073967) | 0.026150 / 0.075646 (-0.049496) | 0.113042 / 0.419271 (-0.306230) | 0.061049 / 0.043533 (0.017516) | 0.437831 / 0.255139 (0.182692) | 0.480830 / 0.283200 (0.197630) | 0.121199 / 0.141683 (-0.020484) | 1.795409 / 1.452155 (0.343254) | 1.911207 / 1.492716 (0.418491) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311774 / 0.018006 (0.293768) | 0.602027 / 0.000490 (0.601537) | 0.000651 / 0.000200 (0.000451) | 0.000136 / 0.000054 (0.000081) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035185 / 0.037411 (-0.002227) | 0.149574 / 0.014526 (0.135048) | 0.153672 / 0.176557 (-0.022884) | 0.241720 / 0.737135 (-0.495416) | 0.153543 / 0.296338 (-0.142795) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678508 / 0.215209 (0.463299) | 6.535313 / 2.077655 (4.457658) | 2.840175 / 1.504120 (1.336055) | 2.458141 / 1.541195 (0.916947) | 2.551369 / 1.468490 (1.082879) | 1.339117 / 4.584777 (-3.245660) | 5.844429 / 3.745712 (2.098717) | 3.221100 / 5.269862 (-2.048762) | 2.114844 / 4.565676 (-2.450833) | 0.149263 / 0.424275 (-0.275012) | 0.016101 / 0.007607 (0.008494) | 0.830650 / 0.226044 (0.604605) | 8.096655 / 2.268929 (5.827727) | 3.445947 / 55.444624 (-51.998677) | 2.826874 / 6.876477 (-4.049603) | 2.812765 / 2.142072 (0.670693) | 1.453789 / 4.805227 (-3.351438) | 0.263911 / 6.500664 (-6.236753) | 0.082609 / 0.075469 (0.007139) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651624 / 1.841788 (-0.190163) | 18.703020 / 8.074308 (10.628712) | 21.360445 / 10.191392 (11.169053) | 0.249718 / 0.680424 (-0.430706) | 0.028373 / 0.534201 (-0.505828) | 0.576237 / 0.579283 (-0.003046) | 0.620574 / 0.434364 (0.186210) | 0.684155 / 0.540337 (0.143817) | 0.758950 / 1.386936 (-0.627986) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f51ef325602bb297a18a75680575cbe9b940b1d9 \"CML watermark\")\n" ]
2023-02-22T13:00:09Z
2023-02-22T13:09:26Z
2023-02-22T13:00:25Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5564/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5564/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5564.diff", "html_url": "https://github.com/huggingface/datasets/pull/5564", "merged_at": "2023-02-22T13:00:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/5564.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5564" }
https://api.github.com/repos/huggingface/datasets/issues/5932
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5932/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5932/comments
https://api.github.com/repos/huggingface/datasets/issues/5932/events
https://github.com/huggingface/datasets/pull/5932
1,746,249,161
PR_kwDODunzps5Sbrzo
5,932
[doc build] Use secrets
{ "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mishig25", "id": 11827707, "login": "mishig25", "node_id": "MDQ6VXNlcjExODI3NzA3", "organizations_url": "https://api.github.com/users/mishig25/orgs", "received_events_url": "https://api.github.com/users/mishig25/received_events", "repos_url": "https://api.github.com/users/mishig25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "type": "User", "url": "https://api.github.com/users/mishig25", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.006155 / 0.011008 (-0.004853) | 0.124032 / 0.038508 (0.085524) | 0.037337 / 0.023109 (0.014228) | 0.389274 / 0.275898 (0.113376) | 0.427736 / 0.323480 (0.104257) | 0.006929 / 0.007986 (-0.001057) | 0.005017 / 0.004328 (0.000689) | 0.096356 / 0.004250 (0.092105) | 0.055694 / 0.037052 (0.018642) | 0.391417 / 0.258489 (0.132928) | 0.448098 / 0.293841 (0.154257) | 0.042442 / 0.128546 (-0.086105) | 0.013456 / 0.075646 (-0.062190) | 0.423502 / 0.419271 (0.004230) | 0.062919 / 0.043533 (0.019386) | 0.384317 / 0.255139 (0.129178) | 0.410851 / 0.283200 (0.127652) | 0.112807 / 0.141683 (-0.028875) | 1.746050 / 1.452155 (0.293895) | 1.977974 / 1.492716 (0.485257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.306382 / 0.018006 (0.288375) | 0.620310 / 0.000490 (0.619820) | 0.009309 / 0.000200 (0.009109) | 0.000106 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026900 / 0.037411 (-0.010511) | 0.140125 / 0.014526 (0.125599) | 0.136295 / 0.176557 (-0.040261) | 0.207721 / 0.737135 (-0.529414) | 0.146328 / 0.296338 (-0.150011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616712 / 0.215209 (0.401503) | 6.237820 / 2.077655 (4.160166) | 2.503809 / 1.504120 (0.999689) | 2.129739 / 1.541195 (0.588544) | 2.160768 / 1.468490 (0.692277) | 0.971273 / 4.584777 (-3.613504) | 5.687161 / 3.745712 (1.941449) | 2.738148 / 5.269862 (-2.531713) | 1.692695 / 4.565676 (-2.872981) | 0.113701 / 0.424275 (-0.310574) | 0.014809 / 0.007607 (0.007202) | 0.774795 / 0.226044 (0.548750) | 7.660012 / 2.268929 (5.391083) | 3.253036 / 55.444624 (-52.191588) | 2.607498 / 6.876477 (-4.268979) | 2.681678 / 2.142072 (0.539606) | 1.095275 / 4.805227 (-3.709952) | 0.239078 / 6.500664 (-6.261586) | 0.081034 / 0.075469 (0.005565) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.574547 / 1.841788 (-0.267240) | 18.323566 / 8.074308 (10.249258) | 19.274482 / 10.191392 (9.083090) | 0.210275 / 0.680424 (-0.470149) | 0.031843 / 0.534201 (-0.502358) | 0.514843 / 0.579283 (-0.064440) | 0.633782 / 0.434364 (0.199418) | 0.588569 / 0.540337 (0.048232) | 0.721401 / 1.386936 (-0.665535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008866 / 0.011353 (-0.002487) | 0.006460 / 0.011008 (-0.004548) | 0.121337 / 0.038508 (0.082829) | 0.033896 / 0.023109 (0.010786) | 0.455702 / 0.275898 (0.179804) | 0.509685 / 0.323480 (0.186205) | 0.007650 / 0.007986 (-0.000336) | 0.005578 / 0.004328 (0.001250) | 0.098505 / 0.004250 (0.094255) | 0.056122 / 0.037052 (0.019069) | 0.478483 / 0.258489 (0.219994) | 0.560008 / 0.293841 (0.266167) | 0.044926 / 0.128546 (-0.083620) | 0.014562 / 0.075646 (-0.061085) | 0.115027 / 0.419271 (-0.304244) | 0.066494 / 0.043533 (0.022961) | 0.463434 / 0.255139 (0.208296) | 0.513856 / 0.283200 (0.230656) | 0.126436 / 0.141683 (-0.015247) | 1.874729 / 1.452155 (0.422575) | 1.925080 / 1.492716 (0.432364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012672 / 0.018006 (-0.005334) | 0.615797 / 0.000490 (0.615307) | 0.001606 / 0.000200 (0.001406) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031104 / 0.037411 (-0.006307) | 0.130107 / 0.014526 (0.115581) | 0.140587 / 0.176557 (-0.035970) | 0.205081 / 0.737135 (-0.532054) | 0.144068 / 0.296338 (-0.152270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646549 / 0.215209 (0.431340) | 6.403962 / 2.077655 (4.326307) | 2.812594 / 1.504120 (1.308474) | 2.478480 / 1.541195 (0.937285) | 2.552385 / 1.468490 (1.083895) | 0.991987 / 4.584777 (-3.592790) | 5.777917 / 3.745712 (2.032205) | 5.697830 / 5.269862 (0.427969) | 2.370583 / 4.565676 (-2.195094) | 0.109905 / 0.424275 (-0.314370) | 0.013801 / 0.007607 (0.006193) | 0.799932 / 0.226044 (0.573888) | 8.155672 / 2.268929 (5.886743) | 3.711662 / 55.444624 (-51.732963) | 3.042164 / 6.876477 (-3.834312) | 3.073549 / 2.142072 (0.931477) | 1.137515 / 4.805227 (-3.667712) | 0.231266 / 6.500664 (-6.269398) | 0.080893 / 0.075469 (0.005424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.669210 / 1.841788 (-0.172577) | 18.747144 / 8.074308 (10.672836) | 21.084589 / 10.191392 (10.893197) | 0.241379 / 0.680424 (-0.439045) | 0.029473 / 0.534201 (-0.504728) | 0.524605 / 0.579283 (-0.054678) | 0.622852 / 0.434364 (0.188488) | 0.604941 / 0.540337 (0.064604) | 0.715978 / 1.386936 (-0.670958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#142484a60b1330359d7713e906fc9e5e30aa9f64 \"CML watermark\")\n", "Cool ! what about `.github/workflows/build_pr_documentation.yml` and `.github/workflows/delete_doc_comment.yml` ?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005973 / 0.011353 (-0.005380) | 0.004389 / 0.011008 (-0.006620) | 0.096076 / 0.038508 (0.057568) | 0.031569 / 0.023109 (0.008460) | 0.328300 / 0.275898 (0.052402) | 0.359356 / 0.323480 (0.035876) | 0.005378 / 0.007986 (-0.002607) | 0.003703 / 0.004328 (-0.000625) | 0.075251 / 0.004250 (0.071000) | 0.042340 / 0.037052 (0.005287) | 0.346103 / 0.258489 (0.087614) | 0.379896 / 0.293841 (0.086055) | 0.027493 / 0.128546 (-0.101053) | 0.009033 / 0.075646 (-0.066613) | 0.327829 / 0.419271 (-0.091442) | 0.064074 / 0.043533 (0.020541) | 0.337703 / 0.255139 (0.082564) | 0.355335 / 0.283200 (0.072136) | 0.101179 / 0.141683 (-0.040504) | 1.471738 / 1.452155 (0.019584) | 1.539031 / 1.492716 (0.046315) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194097 / 0.018006 (0.176091) | 0.434190 / 0.000490 (0.433701) | 0.005730 / 0.000200 (0.005530) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025634 / 0.037411 (-0.011778) | 0.105080 / 0.014526 (0.090555) | 0.116508 / 0.176557 (-0.060049) | 0.173867 / 0.737135 (-0.563269) | 0.117749 / 0.296338 (-0.178590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401566 / 0.215209 (0.186357) | 4.003558 / 2.077655 (1.925903) | 1.802756 / 1.504120 (0.298636) | 1.604222 / 1.541195 (0.063027) | 1.656617 / 1.468490 (0.188127) | 0.523385 / 4.584777 (-4.061392) | 3.744292 / 3.745712 (-0.001420) | 1.794295 / 5.269862 (-3.475567) | 1.044690 / 4.565676 (-3.520987) | 0.064992 / 0.424275 (-0.359284) | 0.011542 / 0.007607 (0.003935) | 0.507830 / 0.226044 (0.281785) | 5.061574 / 2.268929 (2.792645) | 2.252896 / 55.444624 (-53.191729) | 1.912551 / 6.876477 (-4.963926) | 2.073510 / 2.142072 (-0.068562) | 0.642148 / 4.805227 (-4.163079) | 0.140151 / 6.500664 (-6.360513) | 0.062623 / 0.075469 (-0.012846) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180367 / 1.841788 (-0.661421) | 14.263475 / 8.074308 (6.189167) | 12.917251 / 10.191392 (2.725859) | 0.143815 / 0.680424 (-0.536608) | 0.017286 / 0.534201 (-0.516915) | 0.388411 / 0.579283 (-0.190872) | 0.430512 / 0.434364 (-0.003851) | 0.466595 / 0.540337 (-0.073742) | 0.564545 / 1.386936 (-0.822391) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006059 / 0.011353 (-0.005294) | 0.004419 / 0.011008 (-0.006590) | 0.074206 / 0.038508 (0.035697) | 0.031180 / 0.023109 (0.008071) | 0.380031 / 0.275898 (0.104133) | 0.410373 / 0.323480 (0.086893) | 0.005397 / 0.007986 (-0.002589) | 0.003952 / 0.004328 (-0.000376) | 0.074426 / 0.004250 (0.070176) | 0.046256 / 0.037052 (0.009203) | 0.385543 / 0.258489 (0.127054) | 0.430724 / 0.293841 (0.136883) | 0.028052 / 0.128546 (-0.100494) | 0.008810 / 0.075646 (-0.066836) | 0.080749 / 0.419271 (-0.338522) | 0.046746 / 0.043533 (0.003214) | 0.380325 / 0.255139 (0.125186) | 0.398901 / 0.283200 (0.115701) | 0.099607 / 0.141683 (-0.042076) | 1.433343 / 1.452155 (-0.018812) | 1.520447 / 1.492716 (0.027730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202232 / 0.018006 (0.184225) | 0.431342 / 0.000490 (0.430852) | 0.001020 / 0.000200 (0.000820) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028762 / 0.037411 (-0.008649) | 0.111777 / 0.014526 (0.097251) | 0.119283 / 0.176557 (-0.057273) | 0.168151 / 0.737135 (-0.568985) | 0.126093 / 0.296338 (-0.170245) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442689 / 0.215209 (0.227480) | 4.369202 / 2.077655 (2.291547) | 2.167703 / 1.504120 (0.663583) | 1.960580 / 1.541195 (0.419385) | 2.001459 / 1.468490 (0.532969) | 0.527169 / 4.584777 (-4.057608) | 3.738987 / 3.745712 (-0.006726) | 1.819002 / 5.269862 (-3.450860) | 1.082786 / 4.565676 (-3.482891) | 0.066209 / 0.424275 (-0.358066) | 0.011549 / 0.007607 (0.003942) | 0.545959 / 0.226044 (0.319915) | 5.466655 / 2.268929 (3.197727) | 2.671448 / 55.444624 (-52.773176) | 2.340968 / 6.876477 (-4.535509) | 2.358805 / 2.142072 (0.216733) | 0.649456 / 4.805227 (-4.155771) | 0.142009 / 6.500664 (-6.358655) | 0.064199 / 0.075469 (-0.011270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259819 / 1.841788 (-0.581969) | 14.456988 / 8.074308 (6.382680) | 14.478982 / 10.191392 (4.287590) | 0.163156 / 0.680424 (-0.517268) | 0.017090 / 0.534201 (-0.517111) | 0.391339 / 0.579283 (-0.187944) | 0.422021 / 0.434364 (-0.012343) | 0.465340 / 0.540337 (-0.074997) | 0.564517 / 1.386936 (-0.822419) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97358c88f996a65f49923ec215358044e4146a95 \"CML watermark\")\n", "> .github/workflows/delete_doc_comment.yml \r\n\r\nis already updated https://github.com/huggingface/datasets/pull/5932/files\r\n\r\n> .github/workflows/build_pr_documentation.yml\r\n\r\nindeed no changes are needed" ]
2023-06-07T16:09:39Z
2023-06-09T10:16:58Z
2023-06-09T09:53:16Z
NONE
null
null
null
Companion pr to https://github.com/huggingface/doc-builder/pull/379
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5932/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5932/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5932.diff", "html_url": "https://github.com/huggingface/datasets/pull/5932", "merged_at": "2023-06-09T09:53:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/5932.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5932" }
https://api.github.com/repos/huggingface/datasets/issues/6285
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6285/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6285/comments
https://api.github.com/repos/huggingface/datasets/issues/6285/events
https://github.com/huggingface/datasets/issues/6285
1,932,306,325
I_kwDODunzps5zLKeV
6,285
TypeError: expected str, bytes or os.PathLike object, not dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You should be able to load the images by modifying the `load_dataset` call like this:\r\n```python\r\ndataset = load_dataset(\"imagefolder\", data_dir=\"/content/datasets/PotholeDetectionYOLOv8-1\")\r\n```\r\n\r\nThe `imagefolder` builder expects the image files to be in `path/label/image_file` (e.g. .`.../train/dog/image_1.jpg`), so the solution for the labels in your case is to create metadata files (one for each split; as explained [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder)) that map the images to their labels.", "> You should be able to load the images by modifying the `load_dataset` call like this:\r\n> \r\n> ```python\r\n> dataset = load_dataset(\"imagefolder\", data_dir=\"/content/datasets/PotholeDetectionYOLOv8-1\")\r\n> ```\r\n> \r\n> The `imagefolder` builder expects the image files to be in `path/label/image_file` (e.g. .`.../train/dog/image_1.jpg`), so the solution for the labels in your case is to create metadata files (one for each split; as explained [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder)) that map the images to their labels.\r\n\r\nI tried like this but only uploads images and not labels, Andyrasika/potholes-dataset", "As explained in my previous comment, you need to define metadata files to load the labels or update the paths to be in the format `train/label/image` (`train- image /n -labels` is not supported by the loader).", "I downloaded my file after annotating using roboflow . It gives train-\r\nimages, labels , test- images, labels , valid- images, labels . I hope it\r\ngives you an idea of the dataset . Please advise on this dataset\r\n\r\nOn Tue, Oct 10, 2023 at 18:12 Mario Ε aΕ‘ko ***@***.***> wrote:\r\n\r\n> As explained in my previous comment, you need to define metadata files to\r\n> load the labels or update the paths to be in the format train/label/image\r\n> (train- image /n -labels is not supported by the loader).\r\n>\r\n> β€”\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6285#issuecomment-1755335215>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AE4LJNN56FWWTSBYTSTUWHLX6U7CVAVCNFSM6AAAAAA5YHCSTGVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONJVGMZTKMRRGU>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-10-09T04:56:26Z
2023-10-10T13:17:33Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug my dataset is in form : train- image /n -labels and tried the code: ``` from datasets import load_dataset data_files = { "train": "/content/datasets/PotholeDetectionYOLOv8-1/train/", "validation": "/content/datasets/PotholeDetectionYOLOv8-1/valid/", "test": "/content/datasets/PotholeDetectionYOLOv8-1/test/" } dataset = load_dataset("imagefolder", data_dir=data_files) dataset ``` got error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-29-2ef1926f73d9>](https://localhost:8080/#) in <cell line: 8>() 6 "test": "/content/datasets/PotholeDetectionYOLOv8-1/test/" 7 } ----> 8 dataset = load_dataset("imagefolder", data_dir=data_files) 9 dataset 6 frames [/usr/lib/python3.10/pathlib.py](https://localhost:8080/#) in _parse_args(cls, args) 576 parts += a._parts 577 else: --> 578 a = os.fspath(a) 579 if isinstance(a, str): 580 # Force-cast str subclasses to str (issue #21127) TypeError: expected str, bytes or os.PathLike object, not dict ``` ### Steps to reproduce the bug as share above ### Expected behavior load images and labels , but my dataset only uploads images - https://huggingface.co/datasets/Andyrasika/potholes-dataset ### Environment info colab pro
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6285/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6285/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6877
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6877/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6877/comments
https://api.github.com/repos/huggingface/datasets/issues/6877/events
https://github.com/huggingface/datasets/issues/6877
2,282,068,337
I_kwDODunzps6IBZlx
6,877
OSError: [Errno 24] Too many open files
{ "avatar_url": "https://avatars.githubusercontent.com/u/53355258?v=4", "events_url": "https://api.github.com/users/loicmagne/events{/privacy}", "followers_url": "https://api.github.com/users/loicmagne/followers", "following_url": "https://api.github.com/users/loicmagne/following{/other_user}", "gists_url": "https://api.github.com/users/loicmagne/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/loicmagne", "id": 53355258, "login": "loicmagne", "node_id": "MDQ6VXNlcjUzMzU1MjU4", "organizations_url": "https://api.github.com/users/loicmagne/orgs", "received_events_url": "https://api.github.com/users/loicmagne/received_events", "repos_url": "https://api.github.com/users/loicmagne/repos", "site_admin": false, "starred_url": "https://api.github.com/users/loicmagne/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/loicmagne/subscriptions", "type": "User", "url": "https://api.github.com/users/loicmagne", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "ulimit -n 8192 can solve this problem", "> ulimit -n 8192 can solve this problem\r\n\r\nWould there be a systematic way to do this ? The data loading is part of the [MTEB](https://github.com/embeddings-benchmark/mteb) library", "> > ulimit -n 8192 can solve this problem\r\n> \r\n> Would there be a systematic way to do this ? The data loading is part of the [MTEB](https://github.com/embeddings-benchmark/mteb) library\r\n\r\n I think we could modify the _prepare_split_single function", "I fixed it with https://github.com/huggingface/datasets/pull/6893, feel free to re-open if you're still having the issue :)", "> I fixed it with #6893, feel free to re-open if you're still having the issue :)\r\n\r\nThanks a lot!" ]
2024-05-07T01:15:09Z
2024-06-02T14:22:23Z
2024-05-13T13:01:55Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I am trying to load the 'default' subset of the following dataset which contains lots of files (828 per split): [https://huggingface.co/datasets/mteb/biblenlp-corpus-mmteb](https://huggingface.co/datasets/mteb/biblenlp-corpus-mmteb) When trying to load it using the `load_dataset` function I get the following error ```python >>> from datasets import load_dataset >>> d = load_dataset('mteb/biblenlp-corpus-mmteb') Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 201k/201k [00:00<00:00, 1.07MB/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 1069.15it/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 436182.33it/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 2228.75it/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 646478.73it/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 831032.24it/s] Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:00<00:00, 517645.51it/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:33<00:00, 24.87files/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:30<00:00, 27.48files/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 828/828 [00:30<00:00, 26.94files/s] Generating train split: 1571592 examples [00:03, 461438.97 examples/s] Generating test split: 11163 examples [00:00, 118190.72 examples/s] Traceback (most recent call last): File ".env/lib/python3.12/site-packages/datasets/builder.py", line 1995, in _prepare_split_single for _, table in generator: File ".env/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 99, in _generate_tables with open(file, "rb") as f: ^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/datasets/streaming.py", line 75, in wrapper return function(*args, download_config=download_config, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 1224, in xopen file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/core.py", line 135, in open return self.__enter__() ^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/core.py", line 103, in __enter__ f = self.fs.open(self.path, mode=mode) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/spec.py", line 1293, in open f = self._open( ^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/datasets/filesystems/compression.py", line 81, in _open return self.file.open() ^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/core.py", line 135, in open return self.__enter__() ^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/core.py", line 103, in __enter__ f = self.fs.open(self.path, mode=mode) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/spec.py", line 1293, in open f = self._open( ^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/implementations/local.py", line 197, in _open return LocalFileOpener(path, mode, fs=self, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File ".env/lib/python3.12/site-packages/fsspec/implementations/local.py", line 322, in __init__ self._open() File ".env/lib/python3.12/site-packages/fsspec/implementations/local.py", line 327, in _open self.f = open(self.path, mode=self.mode) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ OSError: [Errno 24] Too many open files: '.cache/huggingface/datasets/downloads/3a347186abfc0f9c924dde0221d246db758c7232c0101523f04a87c17d696618' The above exception was the direct cause of the following exception: Traceback (most recent call last): File ".env/lib/python3.12/site-packages/datasets/builder.py", line 981, in incomplete_dir yield tmp_dir File ".env/lib/python3.12/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File ".env/lib/python3.12/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File ".env/lib/python3.12/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File ".env/lib/python3.12/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File ".env/lib/python3.12/site-packages/datasets/load.py", line 2609, in load_dataset builder_instance.download_and_prepare( File ".env/lib/python3.12/site-packages/datasets/builder.py", line 1007, in download_and_prepare with incomplete_dir(self._output_dir) as tmp_output_dir: File "/usr/lib/python3.12/contextlib.py", line 158, in __exit__ self.gen.throw(value) File ".env/lib/python3.12/site-packages/datasets/builder.py", line 988, in incomplete_dir shutil.rmtree(tmp_dir) File "/usr/lib/python3.12/shutil.py", line 785, in rmtree _rmtree_safe_fd(fd, path, onexc) File "/usr/lib/python3.12/shutil.py", line 661, in _rmtree_safe_fd onexc(os.scandir, path, err) File "/usr/lib/python3.12/shutil.py", line 657, in _rmtree_safe_fd with os.scandir(topfd) as scandir_it: ^^^^^^^^^^^^^^^^^ OSError: [Errno 24] Too many open files: '.cache/huggingface/datasets/mteb___biblenlp-corpus-mmteb/default/0.0.0/3912ed967b0834547f35b2da9470c4976b357c9a.incomplete' ``` I looked for the maximum number of open files on my machine (Ubuntu 24.04) and it seems to be 1024, but even when I try to load a single split (`load_dataset('mteb/biblenlp-corpus-mmteb', split='train')`) I get the same error ### Steps to reproduce the bug ```python from datasets import load_dataset d = load_dataset('mteb/biblenlp-corpus-mmteb') ``` ### Expected behavior Load the dataset without error ### Environment info - `datasets` version: 2.19.0 - Platform: Linux-6.8.0-31-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.23.0 - PyArrow version: 16.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6877/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6877/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6673
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6673/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6673/comments
https://api.github.com/repos/huggingface/datasets/issues/6673/events
https://github.com/huggingface/datasets/issues/6673
2,139,522,827
I_kwDODunzps5_hocL
6,673
IterableDataset `set_epoch` is ignored when DataLoader `persistent_workers=True`
{ "avatar_url": "https://avatars.githubusercontent.com/u/5702664?v=4", "events_url": "https://api.github.com/users/rwightman/events{/privacy}", "followers_url": "https://api.github.com/users/rwightman/followers", "following_url": "https://api.github.com/users/rwightman/following{/other_user}", "gists_url": "https://api.github.com/users/rwightman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rwightman", "id": 5702664, "login": "rwightman", "node_id": "MDQ6VXNlcjU3MDI2NjQ=", "organizations_url": "https://api.github.com/users/rwightman/orgs", "received_events_url": "https://api.github.com/users/rwightman/received_events", "repos_url": "https://api.github.com/users/rwightman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rwightman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwightman/subscriptions", "type": "User", "url": "https://api.github.com/users/rwightman", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "fef2c0", "default": false, "description": "", "id": 3287858981, "name": "streaming", "node_id": "MDU6TGFiZWwzMjg3ODU4OTgx", "url": "https://api.github.com/repos/huggingface/datasets/labels/streaming" } ]
closed
false
null
[]
null
[]
2024-02-16T21:38:12Z
2024-07-01T17:45:31Z
2024-07-01T17:45:31Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug When persistent workers are enabled, the epoch that's set via the IterableDataset instance held by the training process is ignored by the workers as they are disconnected across processes. PyTorch samplers for non-iterable datasets have a mechanism to sync this, datasets.IterableDataset does not. In my own use of IterableDatasets I usually track the epoch count which crosses process boundaries in a multiprocessing.Value ### Steps to reproduce the bug Use a streaming dataset (Iterable) w/ the recommended pattern below and `persistent_workers=True` in the torch DataLoader. ``` for epoch in range(epochs): shuffled_dataset.set_epoch(epoch) for example in shuffled_dataset: ... ``` ### Expected behavior When the canonical bit of code above is used with `num_workers > 0` and `persistent_workers=True`, the epoch set via `set_epoch()` is propagated to the IterableDataset instances in the worker processes ### Environment info N/A
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6673/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6673/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4981
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4981/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4981/comments
https://api.github.com/repos/huggingface/datasets/issues/4981/events
https://github.com/huggingface/datasets/issues/4981
1,375,086,773
I_kwDODunzps5R9ii1
4,981
Can't create a dataset with `float16` features
{ "avatar_url": "https://avatars.githubusercontent.com/u/15098095?v=4", "events_url": "https://api.github.com/users/dconathan/events{/privacy}", "followers_url": "https://api.github.com/users/dconathan/followers", "following_url": "https://api.github.com/users/dconathan/following{/other_user}", "gists_url": "https://api.github.com/users/dconathan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dconathan", "id": 15098095, "login": "dconathan", "node_id": "MDQ6VXNlcjE1MDk4MDk1", "organizations_url": "https://api.github.com/users/dconathan/orgs", "received_events_url": "https://api.github.com/users/dconathan/received_events", "repos_url": "https://api.github.com/users/dconathan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dconathan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dconathan/subscriptions", "type": "User", "url": "https://api.github.com/users/dconathan", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi @dconathan, thanks for reporting.\r\n\r\nWe rely on Arrow as a backend, and as far as I know currently support for `float16` in Arrow is not fully implemented in Python (C++), hence the `ArrowNotImplementedError` you get.\r\n\r\nSee, e.g.: https://arrow.apache.org/docs/status.html?highlight=float16#data-types", "Thanks for the link…. didn’t realize arrow didn’t support it yet. Should it be removed from https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Value until Arrow supports it?", "Yes, you are right: maybe we should either remove it from our docs or add a comment explaining the issue.\r\n\r\nThe thing is that in Arrow it is partially supported: you can create `float16` values, but you can't cast them from/to other types. And current implementation of `Value` always tries to perform a cast from `float64` to `float16`.", "Maybe we can just add a note in the `Value` documentation ?", "Would you accept a PR to fix this? @lhoestq Do you have an idea of how hard it would be to fix?", "I think the issue comes mostly from pyarrow not supporting `float16` completely.\r\n\r\nFor example you stil can't cast from/to `float16`\r\n```python\r\nimport numpy as np\r\nimport pyarrow as pa\r\n\r\npa.array(range(5)).cast(pa.float16())\r\n# ArrowNotImplementedError: Unsupported cast from int64 to halffloat using function cast_half_float\r\npa.array(range(5), pa.float32()).cast(pa.float16())\r\n# ArrowNotImplementedError: Unsupported cast from float to halffloat using function cast_half_float\r\npa.array(range(5), pa.float16())\r\n# ArrowTypeError: Expected np.float16 instance\r\npa.array(np.arange(5, dtype=np.float16())).cast(pa.float32())\r\n# ArrowNotImplementedError: Unsupported cast from halffloat to float using function cast_float\r\n```", "Hmm it seems like we can either:\r\n1. try to fix pyarrow upstream\r\n2. half-support float16 with some workaround to make sure we don't ever do casting internally\r\n" ]
2022-09-15T21:03:24Z
2023-03-22T21:40:09Z
null
CONTRIBUTOR
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug I can't create a dataset with `float16` features. I understand from the traceback that this is a `pyarrow` error, but I don't see anywhere in the `datasets` documentation about how to successfully do this. Is it actually supported? I've tried older versions of `pyarrow` as well with the same exact error. The bug seems to arise from `datasets` casting the values to `double` and then `pyarrow` doesn't know how to convert those back to `float16`... does that sound right? Is there a way to bypass this since it's not necessary in the `numpy` and `torch` cases? Thanks! ## Steps to reproduce the bug All of the following raise the following error with the same exact (as far as I can tell) traceback: ```python ArrowNotImplementedError: Unsupported cast from double to halffloat using function cast_half_float ``` ```python from datasets import Dataset, Features, Value Dataset.from_dict({"x": [0.0, 1.0, 2.0]}, features=Features(x=Value("float16"))) import numpy as np Dataset.from_dict({"x": np.arange(3, dtype=np.float16)}, features=Features(x=Value("float16"))) import torch Dataset.from_dict({"x": torch.arange(3).to(torch.float16)}, features=Features(x=Value("float16"))) ``` ## Expected results A dataset with `float16` features is successfully created. ## Actual results ```python --------------------------------------------------------------------------- ArrowNotImplementedError Traceback (most recent call last) Cell In [14], line 1 ----> 1 Dataset.from_dict({"x": [1.0, 2.0, 3.0]}, features=Features(x=Value("float16"))) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py:870, in Dataset.from_dict(cls, mapping, features, info, split) 865 mapping = features.encode_batch(mapping) 866 mapping = { 867 col: OptimizedTypedSequence(data, type=features[col] if features is not None else None, col=col) 868 for col, data in mapping.items() 869 } --> 870 pa_table = InMemoryTable.from_pydict(mapping=mapping) 871 if info.features is None: 872 info.features = Features({col: ts.get_inferred_type() for col, ts in mapping.items()}) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:750, in InMemoryTable.from_pydict(cls, *args, **kwargs) 734 @classmethod 735 def from_pydict(cls, *args, **kwargs): 736 """ 737 Construct a Table from Arrow arrays or columns 738 (...) 748 :class:`datasets.table.Table`: 749 """ --> 750 return cls(pa.Table.from_pydict(*args, **kwargs)) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/table.pxi:3648, in pyarrow.lib.Table.from_pydict() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/table.pxi:5174, in pyarrow.lib._from_pydict() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:343, in pyarrow.lib.asarray() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:231, in pyarrow.lib.array() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:110, in pyarrow.lib._handle_arrow_array_protocol() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py:197, in TypedSequence.__arrow_array__(self, type) 192 # otherwise we can finally use the user's type 193 elif type is not None: 194 # We use cast_array_to_feature to support casting to custom types like Audio and Image 195 # Also, when trying type "string", we don't want to convert integers or floats to "string". 196 # We only do it if trying_type is False - since this is what the user asks for. --> 197 out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) 198 return out 199 except (TypeError, pa.lib.ArrowInvalid) as e: # handle type errors and overflows File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1683, in _wrap_for_chunked_arrays.<locals>.wrapper(array, *args, **kwargs) 1681 return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) 1682 else: -> 1683 return func(array, *args, **kwargs) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1853, in cast_array_to_feature(array, feature, allow_number_to_str) 1851 return array_cast(array, get_nested_type(feature), allow_number_to_str=allow_number_to_str) 1852 elif not isinstance(feature, (Sequence, dict, list, tuple)): -> 1853 return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) 1854 raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1683, in _wrap_for_chunked_arrays.<locals>.wrapper(array, *args, **kwargs) 1681 return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) 1682 else: -> 1683 return func(array, *args, **kwargs) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/datasets/table.py:1762, in array_cast(array, pa_type, allow_number_to_str) 1760 if pa.types.is_null(pa_type) and not pa.types.is_null(array.type): 1761 raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}") -> 1762 return array.cast(pa_type) 1763 raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{pa_type}") File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/array.pxi:919, in pyarrow.lib.Array.cast() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/compute.py:389, in cast(arr, target_type, safe, options) 387 else: 388 options = CastOptions.safe(target_type) --> 389 return call_function("cast", [arr], options) File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/_compute.pyx:560, in pyarrow._compute.call_function() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/_compute.pyx:355, in pyarrow._compute.Function.call() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status() File ~/scratch/scratch-env-39/.venv/lib/python3.9/site-packages/pyarrow/error.pxi:121, in pyarrow.lib.check_status() ArrowNotImplementedError: Unsupported cast from double to halffloat using function cast_half_float ``` ## Environment info - `datasets` version: 2.4.0 - Platform: macOS-12.5.1-arm64-arm-64bit - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.4.4
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4981/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4981/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/7121
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7121/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7121/comments
https://api.github.com/repos/huggingface/datasets/issues/7121/events
https://github.com/huggingface/datasets/pull/7121
2,480,978,483
PR_kwDODunzps55Iukl
7,121
Fix typed examples iterable state dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7121). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005273 / 0.011353 (-0.006079) | 0.003789 / 0.011008 (-0.007219) | 0.062811 / 0.038508 (0.024303) | 0.031055 / 0.023109 (0.007946) | 0.238663 / 0.275898 (-0.037235) | 0.269706 / 0.323480 (-0.053774) | 0.004105 / 0.007986 (-0.003881) | 0.002781 / 0.004328 (-0.001547) | 0.048800 / 0.004250 (0.044549) | 0.045759 / 0.037052 (0.008707) | 0.260467 / 0.258489 (0.001978) | 0.288800 / 0.293841 (-0.005041) | 0.029341 / 0.128546 (-0.099205) | 0.012413 / 0.075646 (-0.063233) | 0.203493 / 0.419271 (-0.215778) | 0.037270 / 0.043533 (-0.006263) | 0.246130 / 0.255139 (-0.009009) | 0.269046 / 0.283200 (-0.014154) | 0.017788 / 0.141683 (-0.123895) | 1.175537 / 1.452155 (-0.276617) | 1.197909 / 1.492716 (-0.294808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098258 / 0.018006 (0.080251) | 0.305283 / 0.000490 (0.304794) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019066 / 0.037411 (-0.018345) | 0.062723 / 0.014526 (0.048197) | 0.075827 / 0.176557 (-0.100730) | 0.121371 / 0.737135 (-0.615764) | 0.075167 / 0.296338 (-0.221171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296650 / 0.215209 (0.081441) | 2.910593 / 2.077655 (0.832939) | 1.510798 / 1.504120 (0.006678) | 1.375461 / 1.541195 (-0.165733) | 1.386423 / 1.468490 (-0.082067) | 0.743818 / 4.584777 (-3.840959) | 2.437848 / 3.745712 (-1.307864) | 2.943661 / 5.269862 (-2.326201) | 1.888977 / 4.565676 (-2.676699) | 0.080126 / 0.424275 (-0.344149) | 0.005168 / 0.007607 (-0.002439) | 0.348699 / 0.226044 (0.122654) | 3.477686 / 2.268929 (1.208758) | 1.901282 / 55.444624 (-53.543343) | 1.574847 / 6.876477 (-5.301629) | 1.594359 / 2.142072 (-0.547714) | 0.793415 / 4.805227 (-4.011812) | 0.133982 / 6.500664 (-6.366682) | 0.042435 / 0.075469 (-0.033034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963057 / 1.841788 (-0.878731) | 11.597217 / 8.074308 (3.522909) | 9.285172 / 10.191392 (-0.906220) | 0.130510 / 0.680424 (-0.549914) | 0.013964 / 0.534201 (-0.520237) | 0.299334 / 0.579283 (-0.279949) | 0.267775 / 0.434364 (-0.166589) | 0.336922 / 0.540337 (-0.203416) | 0.430493 / 1.386936 (-0.956443) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003941 / 0.011008 (-0.007067) | 0.050204 / 0.038508 (0.011696) | 0.032275 / 0.023109 (0.009166) | 0.271076 / 0.275898 (-0.004822) | 0.295565 / 0.323480 (-0.027914) | 0.004393 / 0.007986 (-0.003592) | 0.002881 / 0.004328 (-0.001447) | 0.048032 / 0.004250 (0.043782) | 0.040430 / 0.037052 (0.003378) | 0.281631 / 0.258489 (0.023142) | 0.317964 / 0.293841 (0.024124) | 0.032318 / 0.128546 (-0.096228) | 0.012348 / 0.075646 (-0.063298) | 0.060336 / 0.419271 (-0.358936) | 0.034148 / 0.043533 (-0.009385) | 0.273803 / 0.255139 (0.018664) | 0.292068 / 0.283200 (0.008868) | 0.018693 / 0.141683 (-0.122990) | 1.155704 / 1.452155 (-0.296451) | 1.192245 / 1.492716 (-0.300472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097588 / 0.018006 (0.079582) | 0.311760 / 0.000490 (0.311270) | 0.000232 / 0.000200 (0.000032) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022825 / 0.037411 (-0.014586) | 0.077698 / 0.014526 (0.063172) | 0.088567 / 0.176557 (-0.087989) | 0.129689 / 0.737135 (-0.607446) | 0.090626 / 0.296338 (-0.205712) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299791 / 0.215209 (0.084582) | 2.978558 / 2.077655 (0.900903) | 1.594095 / 1.504120 (0.089975) | 1.468476 / 1.541195 (-0.072719) | 1.482880 / 1.468490 (0.014390) | 0.717553 / 4.584777 (-3.867224) | 0.977501 / 3.745712 (-2.768211) | 2.954289 / 5.269862 (-2.315572) | 1.895473 / 4.565676 (-2.670203) | 0.078452 / 0.424275 (-0.345824) | 0.005508 / 0.007607 (-0.002099) | 0.350882 / 0.226044 (0.124837) | 3.480878 / 2.268929 (1.211949) | 1.965240 / 55.444624 (-53.479385) | 1.672448 / 6.876477 (-5.204029) | 1.674319 / 2.142072 (-0.467753) | 0.789049 / 4.805227 (-4.016178) | 0.132715 / 6.500664 (-6.367949) | 0.041081 / 0.075469 (-0.034388) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.022953 / 1.841788 (-0.818834) | 12.123349 / 8.074308 (4.049041) | 10.336115 / 10.191392 (0.144723) | 0.142233 / 0.680424 (-0.538191) | 0.015416 / 0.534201 (-0.518785) | 0.303088 / 0.579283 (-0.276195) | 0.124942 / 0.434364 (-0.309422) | 0.338454 / 0.540337 (-0.201883) | 0.460039 / 1.386936 (-0.926897) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3813ce846e52824b38e53895810682f0a496a2e3 \"CML watermark\")\n" ]
2024-08-22T14:45:03Z
2024-08-22T14:54:56Z
2024-08-22T14:49:06Z
MEMBER
null
null
null
fix https://github.com/huggingface/datasets/issues/7085 as noted by @VeryLazyBoy and reported by @AjayP13
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7121/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7121/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7121.diff", "html_url": "https://github.com/huggingface/datasets/pull/7121", "merged_at": "2024-08-22T14:49:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/7121.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7121" }
https://api.github.com/repos/huggingface/datasets/issues/6741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6741/comments
https://api.github.com/repos/huggingface/datasets/issues/6741/events
https://github.com/huggingface/datasets/pull/6741
2,194,626,108
PR_kwDODunzps5qEiu3
6,741
Fix offline mode with single config
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6741). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005093 / 0.011353 (-0.006260) | 0.003317 / 0.011008 (-0.007692) | 0.064795 / 0.038508 (0.026287) | 0.030373 / 0.023109 (0.007263) | 0.258776 / 0.275898 (-0.017122) | 0.269768 / 0.323480 (-0.053711) | 0.004186 / 0.007986 (-0.003799) | 0.002630 / 0.004328 (-0.001699) | 0.048643 / 0.004250 (0.044392) | 0.044220 / 0.037052 (0.007168) | 0.265113 / 0.258489 (0.006624) | 0.292202 / 0.293841 (-0.001639) | 0.027468 / 0.128546 (-0.101079) | 0.010123 / 0.075646 (-0.065523) | 0.226869 / 0.419271 (-0.192402) | 0.035739 / 0.043533 (-0.007794) | 0.253193 / 0.255139 (-0.001946) | 0.271002 / 0.283200 (-0.012198) | 0.017201 / 0.141683 (-0.124482) | 1.105836 / 1.452155 (-0.346318) | 1.161559 / 1.492716 (-0.331158) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090481 / 0.018006 (0.072475) | 0.299013 / 0.000490 (0.298524) | 0.000220 / 0.000200 (0.000020) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017684 / 0.037411 (-0.019727) | 0.061580 / 0.014526 (0.047054) | 0.074370 / 0.176557 (-0.102186) | 0.119468 / 0.737135 (-0.617667) | 0.074671 / 0.296338 (-0.221668) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284778 / 0.215209 (0.069569) | 2.780241 / 2.077655 (0.702586) | 1.504025 / 1.504120 (-0.000095) | 1.386644 / 1.541195 (-0.154550) | 1.402038 / 1.468490 (-0.066452) | 0.555180 / 4.584777 (-4.029597) | 2.410973 / 3.745712 (-1.334740) | 2.773252 / 5.269862 (-2.496610) | 1.722784 / 4.565676 (-2.842892) | 0.062773 / 0.424275 (-0.361502) | 0.004959 / 0.007607 (-0.002648) | 0.337163 / 0.226044 (0.111119) | 3.356947 / 2.268929 (1.088019) | 1.880953 / 55.444624 (-53.563671) | 1.556049 / 6.876477 (-5.320427) | 1.578589 / 2.142072 (-0.563483) | 0.641993 / 4.805227 (-4.163234) | 0.118624 / 6.500664 (-6.382040) | 0.042202 / 0.075469 (-0.033268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.995321 / 1.841788 (-0.846467) | 12.257597 / 8.074308 (4.183289) | 9.646214 / 10.191392 (-0.545178) | 0.131124 / 0.680424 (-0.549300) | 0.014119 / 0.534201 (-0.520082) | 0.287597 / 0.579283 (-0.291686) | 0.266983 / 0.434364 (-0.167381) | 0.328165 / 0.540337 (-0.212173) | 0.422405 / 1.386936 (-0.964531) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005091 / 0.011353 (-0.006262) | 0.003358 / 0.011008 (-0.007650) | 0.049136 / 0.038508 (0.010628) | 0.031075 / 0.023109 (0.007966) | 0.275047 / 0.275898 (-0.000851) | 0.296845 / 0.323480 (-0.026635) | 0.004949 / 0.007986 (-0.003037) | 0.002586 / 0.004328 (-0.001743) | 0.048164 / 0.004250 (0.043913) | 0.040754 / 0.037052 (0.003702) | 0.288715 / 0.258489 (0.030226) | 0.312383 / 0.293841 (0.018542) | 0.029372 / 0.128546 (-0.099174) | 0.010097 / 0.075646 (-0.065549) | 0.056752 / 0.419271 (-0.362520) | 0.033128 / 0.043533 (-0.010405) | 0.274986 / 0.255139 (0.019847) | 0.292692 / 0.283200 (0.009493) | 0.018309 / 0.141683 (-0.123374) | 1.190320 / 1.452155 (-0.261834) | 1.222529 / 1.492716 (-0.270188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091717 / 0.018006 (0.073711) | 0.300278 / 0.000490 (0.299788) | 0.000217 / 0.000200 (0.000017) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021394 / 0.037411 (-0.016018) | 0.074918 / 0.014526 (0.060392) | 0.087461 / 0.176557 (-0.089095) | 0.125499 / 0.737135 (-0.611636) | 0.087484 / 0.296338 (-0.208854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296557 / 0.215209 (0.081348) | 2.905527 / 2.077655 (0.827872) | 1.624640 / 1.504120 (0.120520) | 1.505495 / 1.541195 (-0.035700) | 1.514066 / 1.468490 (0.045576) | 0.569376 / 4.584777 (-4.015401) | 2.448575 / 3.745712 (-1.297137) | 2.772805 / 5.269862 (-2.497057) | 1.757287 / 4.565676 (-2.808390) | 0.064209 / 0.424275 (-0.360066) | 0.005688 / 0.007607 (-0.001919) | 0.353175 / 0.226044 (0.127131) | 3.481591 / 2.268929 (1.212662) | 1.995384 / 55.444624 (-53.449240) | 1.684623 / 6.876477 (-5.191854) | 1.675750 / 2.142072 (-0.466323) | 0.644463 / 4.805227 (-4.160764) | 0.115393 / 6.500664 (-6.385271) | 0.040671 / 0.075469 (-0.034799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.037487 / 1.841788 (-0.804301) | 11.902194 / 8.074308 (3.827886) | 10.148579 / 10.191392 (-0.042813) | 0.150261 / 0.680424 (-0.530163) | 0.015001 / 0.534201 (-0.519200) | 0.291008 / 0.579283 (-0.288275) | 0.278758 / 0.434364 (-0.155606) | 0.334037 / 0.540337 (-0.206301) | 0.419942 / 1.386936 (-0.966994) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dcd01046388fc052d37acc5a450bea69e3c57afc \"CML watermark\")\n" ]
2024-03-19T10:48:32Z
2024-03-25T16:35:21Z
2024-03-25T16:23:59Z
MEMBER
null
null
null
Reported in https://github.com/huggingface/datasets/issues/4760 The cache was not able to reload a dataset with a single config form the cache if the config name is not specificed For example ```python from datasets import load_dataset, config config.HF_DATASETS_OFFLINE = True load_dataset("openai_humaneval") ``` This was due to a regression in https://github.com/huggingface/datasets/pull/6632
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6741/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6741/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6741.diff", "html_url": "https://github.com/huggingface/datasets/pull/6741", "merged_at": "2024-03-25T16:23:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/6741.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6741" }
https://api.github.com/repos/huggingface/datasets/issues/5491
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5491/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5491/comments
https://api.github.com/repos/huggingface/datasets/issues/5491/events
https://github.com/huggingface/datasets/pull/5491
1,566,235,012
PR_kwDODunzps5JA9OD
5,491
[MINOR] Typo
{ "avatar_url": "https://avatars.githubusercontent.com/u/3664563?v=4", "events_url": "https://api.github.com/users/cakiki/events{/privacy}", "followers_url": "https://api.github.com/users/cakiki/followers", "following_url": "https://api.github.com/users/cakiki/following{/other_user}", "gists_url": "https://api.github.com/users/cakiki/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cakiki", "id": 3664563, "login": "cakiki", "node_id": "MDQ6VXNlcjM2NjQ1NjM=", "organizations_url": "https://api.github.com/users/cakiki/orgs", "received_events_url": "https://api.github.com/users/cakiki/received_events", "repos_url": "https://api.github.com/users/cakiki/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cakiki/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cakiki/subscriptions", "type": "User", "url": "https://api.github.com/users/cakiki", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008726 / 0.011353 (-0.002627) | 0.004589 / 0.011008 (-0.006419) | 0.101078 / 0.038508 (0.062570) | 0.029732 / 0.023109 (0.006622) | 0.298309 / 0.275898 (0.022411) | 0.367800 / 0.323480 (0.044320) | 0.007025 / 0.007986 (-0.000961) | 0.003513 / 0.004328 (-0.000815) | 0.079531 / 0.004250 (0.075281) | 0.035588 / 0.037052 (-0.001465) | 0.307850 / 0.258489 (0.049361) | 0.351603 / 0.293841 (0.057762) | 0.033593 / 0.128546 (-0.094954) | 0.011669 / 0.075646 (-0.063977) | 0.323025 / 0.419271 (-0.096246) | 0.042047 / 0.043533 (-0.001486) | 0.300565 / 0.255139 (0.045426) | 0.329362 / 0.283200 (0.046163) | 0.089001 / 0.141683 (-0.052682) | 1.472799 / 1.452155 (0.020644) | 1.488902 / 1.492716 (-0.003814) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012491 / 0.018006 (-0.005515) | 0.408245 / 0.000490 (0.407755) | 0.003878 / 0.000200 (0.003678) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023698 / 0.037411 (-0.013713) | 0.100442 / 0.014526 (0.085916) | 0.108233 / 0.176557 (-0.068323) | 0.145308 / 0.737135 (-0.591827) | 0.113121 / 0.296338 (-0.183218) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420490 / 0.215209 (0.205281) | 4.179838 / 2.077655 (2.102183) | 2.156007 / 1.504120 (0.651887) | 1.911358 / 1.541195 (0.370163) | 1.867961 / 1.468490 (0.399471) | 0.685254 / 4.584777 (-3.899523) | 3.382386 / 3.745712 (-0.363326) | 3.285657 / 5.269862 (-1.984205) | 1.693878 / 4.565676 (-2.871798) | 0.081680 / 0.424275 (-0.342595) | 0.012182 / 0.007607 (0.004575) | 0.526021 / 0.226044 (0.299977) | 5.276217 / 2.268929 (3.007289) | 2.541518 / 55.444624 (-52.903106) | 2.313452 / 6.876477 (-4.563025) | 2.340000 / 2.142072 (0.197928) | 0.807099 / 4.805227 (-3.998128) | 0.147587 / 6.500664 (-6.353077) | 0.064280 / 0.075469 (-0.011189) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223466 / 1.841788 (-0.618321) | 13.911365 / 8.074308 (5.837057) | 14.261550 / 10.191392 (4.070158) | 0.135922 / 0.680424 (-0.544502) | 0.028832 / 0.534201 (-0.505368) | 0.393142 / 0.579283 (-0.186141) | 0.400507 / 0.434364 (-0.033857) | 0.471792 / 0.540337 (-0.068546) | 0.558278 / 1.386936 (-0.828658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006644 / 0.011353 (-0.004709) | 0.004531 / 0.011008 (-0.006478) | 0.076285 / 0.038508 (0.037777) | 0.027249 / 0.023109 (0.004140) | 0.343137 / 0.275898 (0.067239) | 0.378498 / 0.323480 (0.055018) | 0.004950 / 0.007986 (-0.003036) | 0.003422 / 0.004328 (-0.000907) | 0.075662 / 0.004250 (0.071412) | 0.039692 / 0.037052 (0.002640) | 0.343402 / 0.258489 (0.084913) | 0.385067 / 0.293841 (0.091226) | 0.032382 / 0.128546 (-0.096164) | 0.011577 / 0.075646 (-0.064069) | 0.085534 / 0.419271 (-0.333738) | 0.052139 / 0.043533 (0.008606) | 0.342176 / 0.255139 (0.087037) | 0.367298 / 0.283200 (0.084098) | 0.096088 / 0.141683 (-0.045595) | 1.470770 / 1.452155 (0.018615) | 1.567316 / 1.492716 (0.074600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217664 / 0.018006 (0.199657) | 0.397807 / 0.000490 (0.397317) | 0.006864 / 0.000200 (0.006664) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025064 / 0.037411 (-0.012348) | 0.100906 / 0.014526 (0.086380) | 0.107444 / 0.176557 (-0.069113) | 0.143679 / 0.737135 (-0.593457) | 0.112460 / 0.296338 (-0.183879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442634 / 0.215209 (0.227425) | 4.410687 / 2.077655 (2.333032) | 2.067445 / 1.504120 (0.563325) | 1.860569 / 1.541195 (0.319374) | 1.943523 / 1.468490 (0.475033) | 0.694585 / 4.584777 (-3.890192) | 3.375906 / 3.745712 (-0.369806) | 3.483334 / 5.269862 (-1.786528) | 1.437700 / 4.565676 (-3.127977) | 0.083138 / 0.424275 (-0.341137) | 0.012979 / 0.007607 (0.005372) | 0.536414 / 0.226044 (0.310370) | 5.379872 / 2.268929 (3.110943) | 2.517907 / 55.444624 (-52.926717) | 2.164772 / 6.876477 (-4.711705) | 2.212839 / 2.142072 (0.070767) | 0.799675 / 4.805227 (-4.005553) | 0.150253 / 6.500664 (-6.350411) | 0.067033 / 0.075469 (-0.008436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295592 / 1.841788 (-0.546196) | 14.372932 / 8.074308 (6.298623) | 13.618423 / 10.191392 (3.427031) | 0.141212 / 0.680424 (-0.539212) | 0.016933 / 0.534201 (-0.517268) | 0.385664 / 0.579283 (-0.193619) | 0.386919 / 0.434364 (-0.047445) | 0.477022 / 0.540337 (-0.063315) | 0.565158 / 1.386936 (-0.821778) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#38c715cc787a81d0fd894205b4b24aca2f45f84b \"CML watermark\")\n" ]
2023-02-01T14:39:39Z
2023-02-02T07:42:28Z
2023-02-02T07:35:14Z
CONTRIBUTOR
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5491/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5491/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5491.diff", "html_url": "https://github.com/huggingface/datasets/pull/5491", "merged_at": "2023-02-02T07:35:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/5491.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5491" }
https://api.github.com/repos/huggingface/datasets/issues/6246
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6246/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6246/comments
https://api.github.com/repos/huggingface/datasets/issues/6246/events
https://github.com/huggingface/datasets/issues/6246
1,899,848,414
I_kwDODunzps5xPWLe
6,246
Add new column to dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I think it's an issue with the code.\r\n\r\nSpecifically:\r\n```python\r\ndataset = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```\r\n\r\nNow `dataset` is the train set with a new column. \r\nTo fix this, you can do:\r\n\r\n```python\r\ndataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```", "> I think it's an issue with the code.\r\n> \r\n> Specifically:\r\n> \r\n> ```python\r\n> dataset = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n> \r\n> Now `dataset` is the train set with a new column. To fix this, you can do:\r\n> \r\n> ```python\r\n> dataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n\r\nThanks for your response, but i can not access mask images, please let me know why the problem still persists. Here is the notebook for reference: https://colab.research.google.com/drive/10lZ_zLtU4itYVmIVTvIEVbjfOtCZaAZy?usp=sharing ", "I think there is a slight misunderstanding.\r\n```python\r\nnew_column = [\"mask\"] * len(dataset[\"train\"])\r\ndataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n```\r\n\r\nadds a column with the string `mask` to your dataset.\r\nIf you're trying to load the images `\"mask_{idx}.png\"` in your dataset, you could try:\r\n\r\n```\r\nfrom datasets import Image\r\n\r\ndataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/workspace/data/mask_{idx}.png\", with_indices=True).cast_column(\"mask\", Image())\r\n```\r\n\r\nWhat this does is that it adds a column to your dataset name `mask` with the path to the mask, then it cast the column as an `Image` feature.\r\n\r\nThis [link](https://huggingface.co/docs/datasets/v2.5.1/en/image_load) explains how to load images.\r\n\r\nHope this helps!", "> I think there is a slight misunderstanding.\r\n> \r\n> ```python\r\n> new_column = [\"mask\"] * len(dataset[\"train\"])\r\n> dataset['train'] = dataset['train'].add_column(\"/workspace/data\", new_column)\r\n> ```\r\n> \r\n> adds a column with the string `mask` to your dataset. If you're trying to load the images `\"mask_{idx}.png\"` in your dataset, you could try:\r\n> \r\n> ```\r\n> from datasets import Image\r\n> \r\n> dataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/workspace/data/mask_{idx}.png\", with_indices=True).cast_column(\"mask\", Image())\r\n> ```\r\n> \r\n> What this does is that it adds a column to your dataset name `mask` with the path to the mask, then it cast the column as an `Image` feature.\r\n> \r\n> This [link](https://huggingface.co/docs/datasets/v2.5.1/en/image_load) explains how to load images.\r\n> \r\n> Hope this helps!\r\n\r\nThank you very much, this is really helpful...\r\ni made some changes for it to work:\r\n```\r\ndataset['train'] = dataset['train'].map(lambda u, idx: {'mask': f\"/content/data/mask_{idx}.png\"}, with_indices=True).cast_column(\"mask\", Image())\r\n```\r\nThanks Again @Dref360 " ]
2023-09-17T16:59:48Z
2023-09-18T16:20:09Z
2023-09-18T16:20:09Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug ``` --------------------------------------------------------------------------- KeyError Traceback (most recent call last) [<ipython-input-9-bd197b36b6a0>](https://localhost:8080/#) in <cell line: 1>() ----> 1 dataset['train']['/workspace/data'] 3 frames [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_column_key(key, columns) 518 def _check_valid_column_key(key: str, columns: List[str]) -> None: 519 if key not in columns: --> 520 raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}") 521 522 KeyError: "Column train not in the dataset. Current columns in the dataset: ['image', '/workspace/data']" ``` ### Steps to reproduce the bug please find the notebook for reference: https://colab.research.google.com/drive/10lZ_zLtU4itYVmIVTvIEVbjfOtCZaAZy?usp=sharing ### Expected behavior add column to the dataset ### Environment info colab pro
{ "avatar_url": "https://avatars.githubusercontent.com/u/20493493?v=4", "events_url": "https://api.github.com/users/andysingal/events{/privacy}", "followers_url": "https://api.github.com/users/andysingal/followers", "following_url": "https://api.github.com/users/andysingal/following{/other_user}", "gists_url": "https://api.github.com/users/andysingal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andysingal", "id": 20493493, "login": "andysingal", "node_id": "MDQ6VXNlcjIwNDkzNDkz", "organizations_url": "https://api.github.com/users/andysingal/orgs", "received_events_url": "https://api.github.com/users/andysingal/received_events", "repos_url": "https://api.github.com/users/andysingal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andysingal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andysingal/subscriptions", "type": "User", "url": "https://api.github.com/users/andysingal", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6246/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6246/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/6800
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6800/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6800/comments
https://api.github.com/repos/huggingface/datasets/issues/6800/events
https://github.com/huggingface/datasets/issues/6800
2,236,431,288
I_kwDODunzps6FTTu4
6,800
High overhead when loading lots of subsets from the same dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/53355258?v=4", "events_url": "https://api.github.com/users/loicmagne/events{/privacy}", "followers_url": "https://api.github.com/users/loicmagne/followers", "following_url": "https://api.github.com/users/loicmagne/following{/other_user}", "gists_url": "https://api.github.com/users/loicmagne/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/loicmagne", "id": 53355258, "login": "loicmagne", "node_id": "MDQ6VXNlcjUzMzU1MjU4", "organizations_url": "https://api.github.com/users/loicmagne/orgs", "received_events_url": "https://api.github.com/users/loicmagne/received_events", "repos_url": "https://api.github.com/users/loicmagne/repos", "site_admin": false, "starred_url": "https://api.github.com/users/loicmagne/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/loicmagne/subscriptions", "type": "User", "url": "https://api.github.com/users/loicmagne", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi !\r\n\r\nIt's possible to multiple files at once:\r\n\r\n```python\r\ndata_files = \"data/*.jsonl\"\r\n# Or pass a list of files\r\nlangs = ['ka-ml', 'br-sr', 'ka-pt', 'id-ko', ..., 'fi-ze_zh', 'he-kk', 'ka-tr']\r\ndata_files = [f\"data/{lang}.jsonl\" for lang in langs]\r\nds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=data_files, split=\"train\")\r\n```\r\n\r\nAlso maybe you can add a subset called \"all\" for people that want to load all the data without having to list all the languages ?\r\n\r\n```yaml\r\n - config_name: all\r\n data_files: data/*.jsonl\r\n```\r\n", "Thanks for your reply, it is indeed much faster, however the result is a dataset where all the subsets are \"merged\" together, the language pair is lost:\r\n```\r\nDatasetDict({\r\n train: Dataset({\r\n features: ['sentence1', 'sentence2'],\r\n num_rows: 247809\r\n })\r\n})\r\n```\r\nI guess I could add a 'lang' feature for each row in the dataset, is there a better way to do it ?", "Hi @lhoestq over at https://github.com/embeddings-benchmark/mteb/issues/530 we have started examining these issues and would love to make a PR for datasets if we believe there is a way to improve the speed. As I assume you have a better overview than me @lhoestq, would you be interested in a PR, and might you have an idea about where we would start working on it?\r\n\r\nWe see a speed comparison of \r\n1. 15 minutes (for ~20% of the languages) when loaded using a for loop\r\n2. 17 minutes using the your suggestion\r\n3. ~30 seconds when using @loicmagne \"merged\" method.\r\n\r\nWorth mentioning is that solution 2 looses the language information.", "Can you retry using `datasets` 2.19 ? We improved a lot the speed of downloading datasets with tons of small files.\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nNow this takes 17sec on my side instead of the 17min minutes @loicmagne mentioned :)\r\n\r\n```python\r\n>>> %time ds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=\"data/*.jsonl\")\r\nDownloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 13.7k/13.7k [00:00<00:00, 5.47MB/s]\r\nResolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 250/250 [00:00<00:00, 612.51it/s]\r\nDownloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 250/250 [00:12<00:00, 19.68files/s]\r\nGenerating train split: 247809 examples [00:00, 1057071.08 examples/s]\r\nCPU times: user 4.95 s, sys: 3.1 s, total: 8.05 s\r\nWall time: 17.4 s\r\n```", "> Can you retry using `datasets` 2.19 ? We improved a lot the speed of downloading datasets with tons of small files.\r\n> \r\n> ```\r\n> pip install -U datasets\r\n> ```\r\n> \r\n> Now this takes 17sec on my side instead of the 17min minutes @loicmagne mentioned :)\r\n> \r\n> ```python\r\n> >>> %time ds = load_dataset(\"loicmagne/open-subtitles-250-bitext-mining\", data_files=\"data/*.jsonl\")\r\n> Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 13.7k/13.7k [00:00<00:00, 5.47MB/s]\r\n> Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 250/250 [00:00<00:00, 612.51it/s]\r\n> Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 250/250 [00:12<00:00, 19.68files/s]\r\n> Generating train split: 247809 examples [00:00, 1057071.08 examples/s]\r\n> CPU times: user 4.95 s, sys: 3.1 s, total: 8.05 s\r\n> Wall time: 17.4 s\r\n> ```\r\n\r\nI was actually just noticing that, I bumped from 2.18 to 2.19 and got a massive speedup, amazing!\r\n\r\nAbout the fact that subset names are lost when loading all files at once, currently my solution is to add a 'lang' feature to each rows, convert to polars and use:\r\n\r\n```python\r\nds_split = ds.to_polars().group_by('lang')\r\n```\r\n\r\nIt's fast so I think it's an acceptable solution, but is there a better way to do it ?", "It's the fastest way I think :)\r\n\r\nAlternatively you can download the dataset repository locally using [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/download) (either via CLI or in python) and load the subsets one by one locally using a for loop as you were doing before (just pass the directory path to load_dataset instead of the dataset_id). " ]
2024-04-10T21:08:57Z
2024-04-24T13:48:05Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I have a multilingual dataset that contains a lot of subsets. Each subset corresponds to a pair of languages, you can see here an example with 250 subsets: [https://hf.co/datasets/loicmagne/open-subtitles-250-bitext-mining](). As part of the MTEB benchmark, we may need to load all the subsets of the dataset. The dataset is relatively small and contains only ~45MB of data, but when I try to load every subset, it takes 15 minutes from the HF hub and 13 minutes from the cache This issue https://github.com/huggingface/datasets/issues/5499 also referenced this overhead, but I'm wondering if there is anything I can do to speedup loading different subsets of the same dataset, both when loading from disk and from the HF hub? Currently each subset is stored in a jsonl file ### Steps to reproduce the bug ``` from datasets import load_dataset for subset in ['ka-ml', 'br-sr', 'bg-br', 'kk-lv', 'br-sk', 'br-fi', 'eu-ze_zh', 'kk-nl', 'kk-vi', 'ja-kk', 'br-sv', 'kk-zh_cn', 'kk-ms', 'br-et', 'br-hu', 'eo-kk', 'br-tr', 'ko-tl', 'te-zh_tw', 'br-hr', 'br-nl', 'ka-si', 'br-cs', 'br-is', 'br-ro', 'br-de', 'et-kk', 'fr-hy', 'br-no', 'is-ko', 'br-da', 'br-en', 'eo-lt', 'is-ze_zh', 'eu-ko', 'br-it', 'br-id', 'eu-zh_cn', 'is-ja', 'br-sl', 'br-gl', 'br-pt_br', 'br-es', 'br-pt', 'is-th', 'fa-is', 'br-ca', 'eu-ka', 'is-zh_cn', 'eu-ur', 'id-kk', 'br-sq', 'eu-ja', 'uk-ur', 'is-zh_tw', 'ka-ko', 'eu-zh_tw', 'eu-th', 'eu-is', 'is-tl', 'br-eo', 'eo-ze_zh', 'eu-te', 'ar-kk', 'eo-lv', 'ko-ze_zh', 'ml-ze_zh', 'is-lt', 'br-fr', 'ko-te', 'kk-sl', 'eu-fa', 'eo-ko', 'ka-ze_en', 'eo-eu', 'ta-zh_tw', 'eu-lv', 'ko-lv', 'lt-tl', 'eu-si', 'hy-ru', 'ar-is', 'eu-lt', 'eu-tl', 'eu-uk', 'ka-ze_zh', 'si-ze_zh', 'el-is', 'bn-is', 'ko-ze_en', 'eo-si', 'cs-kk', 'is-uk', 'eu-ze_en', 'ta-ze_zh', 'is-pl', 'is-mk', 'eu-ta', 'ko-lt', 'is-lv', 'fa-ko', 'bn-ko', 'hi-is', 'bn-ze_zh', 'bn-eu', 'bn-ja', 'is-ml', 'eu-ru', 'ko-ta', 'is-vi', 'ja-tl', 'eu-mk', 'eu-he', 'ka-zh_tw', 'ka-zh_cn', 'si-tl', 'is-kk', 'eu-fi', 'fi-ko', 'is-ur', 'ka-th', 'ko-ur', 'eo-ja', 'he-is', 'is-tr', 'ka-ur', 'et-ko', 'eu-vi', 'is-sk', 'gl-is', 'fr-is', 'is-sq', 'hu-is', 'fr-kk', 'eu-sq', 'is-ru', 'ja-ka', 'fi-tl', 'ka-lv', 'fi-is', 'is-si', 'ar-ko', 'ko-sl', 'ar-eu', 'ko-si', 'bg-is', 'eu-hu', 'ko-sv', 'bn-hu', 'kk-ro', 'eu-hi', 'ka-ms', 'ko-th', 'ko-sr', 'ko-mk', 'fi-kk', 'ka-vi', 'eu-ml', 'ko-ml', 'de-ko', 'fa-ze_zh', 'eu-sk', 'is-sl', 'et-is', 'eo-is', 'is-sr', 'is-ze_en', 'kk-pt_br', 'hr-hy', 'kk-pl', 'ja-ta', 'is-ms', 'hi-ze_en', 'is-ro', 'ko-zh_cn', 'el-eu', 'ka-pl', 'ka-sq', 'eu-sl', 'fa-ka', 'ko-no', 'si-ze_en', 'ko-uk', 'ja-ze_zh', 'hu-ko', 'kk-no', 'eu-pl', 'is-pt_br', 'bn-lv', 'tl-zh_cn', 'is-nl', 'he-ko', 'ko-sq', 'ta-th', 'lt-ta', 'da-ko', 'ca-is', 'is-ta', 'bn-fi', 'ja-ml', 'lv-si', 'eu-sv', 'ja-te', 'bn-ur', 'bn-ca', 'bs-ko', 'bs-is', 'eu-sr', 'ko-vi', 'ko-zh_tw', 'et-tl', 'kk-tr', 'eo-vi', 'is-it', 'ja-ko', 'eo-et', 'id-is', 'bn-et', 'bs-eu', 'bn-lt', 'tl-uk', 'bn-zh_tw', 'da-eu', 'el-ko', 'no-tl', 'ko-sk', 'is-pt', 'hu-kk', 'si-zh_tw', 'si-te', 'ka-ru', 'lt-ml', 'af-ja', 'bg-eu', 'eo-th', 'cs-is', 'pl-ze_zh', 'el-kk', 'kk-sv', 'ka-nl', 'ko-pl', 'bg-ko', 'ka-pt_br', 'et-eu', 'tl-zh_tw', 'ka-pt', 'id-ko', 'fi-ze_zh', 'he-kk', 'ka-tr']: load_dataset('loicmagne/open-subtitles-250-bitext-mining', subset) ``` ### Expected behavior Faster loading? ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-27-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2023.5.0
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6800/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6800/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/6338
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6338/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6338/comments
https://api.github.com/repos/huggingface/datasets/issues/6338/events
https://github.com/huggingface/datasets/pull/6338
1,956,886,072
PR_kwDODunzps5dg_sb
6,338
pin fsspec before it switches to glob.glob
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "closing in favor of https://github.com/huggingface/datasets/pull/6337", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6338). All of your documentation changes will be reflected on that endpoint." ]
2023-10-23T10:50:54Z
2024-01-11T06:32:56Z
2023-10-23T10:51:52Z
MEMBER
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6338/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6338/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6338.diff", "html_url": "https://github.com/huggingface/datasets/pull/6338", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6338.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6338" }
https://api.github.com/repos/huggingface/datasets/issues/6799
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6799/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6799/comments
https://api.github.com/repos/huggingface/datasets/issues/6799/events
https://github.com/huggingface/datasets/pull/6799
2,236,124,531
PR_kwDODunzps5sRk_r
6,799
fix `DatasetBuilder._split_generators` incomplete type annotation
{ "avatar_url": "https://avatars.githubusercontent.com/u/33965649?v=4", "events_url": "https://api.github.com/users/JonasLoos/events{/privacy}", "followers_url": "https://api.github.com/users/JonasLoos/followers", "following_url": "https://api.github.com/users/JonasLoos/following{/other_user}", "gists_url": "https://api.github.com/users/JonasLoos/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JonasLoos", "id": 33965649, "login": "JonasLoos", "node_id": "MDQ6VXNlcjMzOTY1NjQ5", "organizations_url": "https://api.github.com/users/JonasLoos/orgs", "received_events_url": "https://api.github.com/users/JonasLoos/received_events", "repos_url": "https://api.github.com/users/JonasLoos/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JonasLoos/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JonasLoos/subscriptions", "type": "User", "url": "https://api.github.com/users/JonasLoos", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6799). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The CI failures are unrelated to the changes", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004974 / 0.011353 (-0.006378) | 0.003153 / 0.011008 (-0.007856) | 0.062785 / 0.038508 (0.024277) | 0.029504 / 0.023109 (0.006395) | 0.245558 / 0.275898 (-0.030340) | 0.274022 / 0.323480 (-0.049457) | 0.003173 / 0.007986 (-0.004813) | 0.002643 / 0.004328 (-0.001686) | 0.048917 / 0.004250 (0.044667) | 0.042965 / 0.037052 (0.005912) | 0.261266 / 0.258489 (0.002777) | 0.291546 / 0.293841 (-0.002295) | 0.027860 / 0.128546 (-0.100686) | 0.010397 / 0.075646 (-0.065249) | 0.205981 / 0.419271 (-0.213290) | 0.035663 / 0.043533 (-0.007870) | 0.250466 / 0.255139 (-0.004673) | 0.273947 / 0.283200 (-0.009253) | 0.016659 / 0.141683 (-0.125023) | 1.147884 / 1.452155 (-0.304270) | 1.187609 / 1.492716 (-0.305107) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095564 / 0.018006 (0.077558) | 0.300086 / 0.000490 (0.299597) | 0.000212 / 0.000200 (0.000012) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018100 / 0.037411 (-0.019311) | 0.061342 / 0.014526 (0.046816) | 0.073747 / 0.176557 (-0.102810) | 0.120577 / 0.737135 (-0.616559) | 0.075797 / 0.296338 (-0.220541) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288766 / 0.215209 (0.073557) | 2.835274 / 2.077655 (0.757620) | 1.515288 / 1.504120 (0.011168) | 1.396097 / 1.541195 (-0.145098) | 1.424293 / 1.468490 (-0.044197) | 0.568356 / 4.584777 (-4.016421) | 2.393171 / 3.745712 (-1.352541) | 2.756219 / 5.269862 (-2.513642) | 1.731343 / 4.565676 (-2.834334) | 0.062542 / 0.424275 (-0.361733) | 0.005385 / 0.007607 (-0.002223) | 0.340876 / 0.226044 (0.114832) | 3.376649 / 2.268929 (1.107720) | 1.856135 / 55.444624 (-53.588490) | 1.581802 / 6.876477 (-5.294675) | 1.591081 / 2.142072 (-0.550992) | 0.647963 / 4.805227 (-4.157264) | 0.119218 / 6.500664 (-6.381446) | 0.042660 / 0.075469 (-0.032809) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005017 / 1.841788 (-0.836770) | 11.670779 / 8.074308 (3.596471) | 9.533790 / 10.191392 (-0.657602) | 0.141571 / 0.680424 (-0.538853) | 0.013987 / 0.534201 (-0.520214) | 0.286598 / 0.579283 (-0.292685) | 0.260123 / 0.434364 (-0.174240) | 0.324186 / 0.540337 (-0.216151) | 0.421246 / 1.386936 (-0.965690) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005196 / 0.011353 (-0.006157) | 0.003697 / 0.011008 (-0.007311) | 0.049530 / 0.038508 (0.011022) | 0.030892 / 0.023109 (0.007783) | 0.284787 / 0.275898 (0.008889) | 0.302833 / 0.323480 (-0.020647) | 0.004203 / 0.007986 (-0.003783) | 0.002736 / 0.004328 (-0.001592) | 0.050203 / 0.004250 (0.045953) | 0.040335 / 0.037052 (0.003283) | 0.292508 / 0.258489 (0.034019) | 0.317918 / 0.293841 (0.024077) | 0.029144 / 0.128546 (-0.099403) | 0.010171 / 0.075646 (-0.065475) | 0.058130 / 0.419271 (-0.361141) | 0.032743 / 0.043533 (-0.010790) | 0.281354 / 0.255139 (0.026215) | 0.296951 / 0.283200 (0.013751) | 0.018399 / 0.141683 (-0.123284) | 1.158852 / 1.452155 (-0.293303) | 1.189750 / 1.492716 (-0.302966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093073 / 0.018006 (0.075066) | 0.301779 / 0.000490 (0.301290) | 0.000209 / 0.000200 (0.000009) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021565 / 0.037411 (-0.015846) | 0.075237 / 0.014526 (0.060711) | 0.087368 / 0.176557 (-0.089188) | 0.126955 / 0.737135 (-0.610180) | 0.088456 / 0.296338 (-0.207883) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291225 / 0.215209 (0.076016) | 2.863220 / 2.077655 (0.785565) | 1.616936 / 1.504120 (0.112817) | 1.500553 / 1.541195 (-0.040641) | 1.501693 / 1.468490 (0.033203) | 0.560118 / 4.584777 (-4.024659) | 2.439241 / 3.745712 (-1.306472) | 2.786804 / 5.269862 (-2.483058) | 1.737772 / 4.565676 (-2.827905) | 0.063668 / 0.424275 (-0.360607) | 0.005320 / 0.007607 (-0.002287) | 0.344539 / 0.226044 (0.118495) | 3.418803 / 2.268929 (1.149874) | 1.981791 / 55.444624 (-53.462834) | 1.698484 / 6.876477 (-5.177993) | 1.686815 / 2.142072 (-0.455258) | 0.646911 / 4.805227 (-4.158316) | 0.116969 / 6.500664 (-6.383696) | 0.040380 / 0.075469 (-0.035089) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.017337 / 1.841788 (-0.824451) | 11.858212 / 8.074308 (3.783904) | 10.270287 / 10.191392 (0.078895) | 0.154266 / 0.680424 (-0.526158) | 0.014886 / 0.534201 (-0.519315) | 0.292354 / 0.579283 (-0.286929) | 0.270888 / 0.434364 (-0.163476) | 0.333289 / 0.540337 (-0.207049) | 0.423001 / 1.386936 (-0.963935) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d9cc95f6d0513bbc692bb73c669346e3d1825cb0 \"CML watermark\")\n" ]
2024-04-10T17:46:08Z
2024-04-11T15:41:06Z
2024-04-11T15:34:58Z
CONTRIBUTOR
null
null
null
solve #6798: add missing `StreamingDownloadManager` type annotation to the `dl_manager` argument of the `DatasetBuilder._split_generators` function
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6799/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6799/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6799.diff", "html_url": "https://github.com/huggingface/datasets/pull/6799", "merged_at": "2024-04-11T15:34:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/6799.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6799" }
https://api.github.com/repos/huggingface/datasets/issues/6138
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6138/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6138/comments
https://api.github.com/repos/huggingface/datasets/issues/6138/events
https://github.com/huggingface/datasets/pull/6138
1,844,952,496
PR_kwDODunzps5XoH2V
6,138
Ignore CI lint rule violation in Pickler.memoize
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003890 / 0.011008 (-0.007118) | 0.084044 / 0.038508 (0.045536) | 0.071893 / 0.023109 (0.048784) | 0.346926 / 0.275898 (0.071028) | 0.397487 / 0.323480 (0.074007) | 0.004065 / 0.007986 (-0.003921) | 0.003218 / 0.004328 (-0.001111) | 0.064670 / 0.004250 (0.060420) | 0.052414 / 0.037052 (0.015362) | 0.355413 / 0.258489 (0.096924) | 0.398894 / 0.293841 (0.105053) | 0.030763 / 0.128546 (-0.097783) | 0.008590 / 0.075646 (-0.067056) | 0.286857 / 0.419271 (-0.132415) | 0.051126 / 0.043533 (0.007593) | 0.346125 / 0.255139 (0.090986) | 0.395673 / 0.283200 (0.112474) | 0.025766 / 0.141683 (-0.115917) | 1.466238 / 1.452155 (0.014084) | 1.543117 / 1.492716 (0.050400) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213210 / 0.018006 (0.195204) | 0.451981 / 0.000490 (0.451491) | 0.003784 / 0.000200 (0.003585) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027756 / 0.037411 (-0.009655) | 0.082446 / 0.014526 (0.067920) | 0.095414 / 0.176557 (-0.081142) | 0.151812 / 0.737135 (-0.585323) | 0.096296 / 0.296338 (-0.200042) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383729 / 0.215209 (0.168520) | 3.835126 / 2.077655 (1.757471) | 1.891972 / 1.504120 (0.387852) | 1.719934 / 1.541195 (0.178739) | 1.899980 / 1.468490 (0.431490) | 0.488741 / 4.584777 (-4.096036) | 3.634120 / 3.745712 (-0.111592) | 3.243314 / 5.269862 (-2.026547) | 2.028382 / 4.565676 (-2.537294) | 0.057355 / 0.424275 (-0.366920) | 0.007717 / 0.007607 (0.000110) | 0.459835 / 0.226044 (0.233790) | 4.591793 / 2.268929 (2.322864) | 2.346861 / 55.444624 (-53.097764) | 2.067357 / 6.876477 (-4.809120) | 2.254954 / 2.142072 (0.112882) | 0.587016 / 4.805227 (-4.218211) | 0.133918 / 6.500664 (-6.366746) | 0.060311 / 0.075469 (-0.015158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250016 / 1.841788 (-0.591772) | 19.674333 / 8.074308 (11.600025) | 14.522764 / 10.191392 (4.331372) | 0.145741 / 0.680424 (-0.534683) | 0.018593 / 0.534201 (-0.515608) | 0.392833 / 0.579283 (-0.186450) | 0.408194 / 0.434364 (-0.026170) | 0.455164 / 0.540337 (-0.085174) | 0.622722 / 1.386936 (-0.764214) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006583 / 0.011353 (-0.004770) | 0.004008 / 0.011008 (-0.007000) | 0.064688 / 0.038508 (0.026180) | 0.074969 / 0.023109 (0.051860) | 0.360504 / 0.275898 (0.084606) | 0.396926 / 0.323480 (0.073446) | 0.005190 / 0.007986 (-0.002796) | 0.003363 / 0.004328 (-0.000966) | 0.064372 / 0.004250 (0.060122) | 0.054428 / 0.037052 (0.017376) | 0.361204 / 0.258489 (0.102715) | 0.400917 / 0.293841 (0.107077) | 0.031117 / 0.128546 (-0.097429) | 0.008406 / 0.075646 (-0.067241) | 0.069655 / 0.419271 (-0.349617) | 0.048582 / 0.043533 (0.005049) | 0.365396 / 0.255139 (0.110257) | 0.381344 / 0.283200 (0.098145) | 0.023809 / 0.141683 (-0.117874) | 1.472926 / 1.452155 (0.020772) | 1.547298 / 1.492716 (0.054582) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276912 / 0.018006 (0.258906) | 0.449096 / 0.000490 (0.448607) | 0.018921 / 0.000200 (0.018721) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030237 / 0.037411 (-0.007174) | 0.088610 / 0.014526 (0.074084) | 0.101529 / 0.176557 (-0.075027) | 0.154070 / 0.737135 (-0.583065) | 0.103471 / 0.296338 (-0.192867) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416047 / 0.215209 (0.200838) | 4.152374 / 2.077655 (2.074719) | 2.111181 / 1.504120 (0.607061) | 1.943582 / 1.541195 (0.402387) | 2.031729 / 1.468490 (0.563239) | 0.486740 / 4.584777 (-4.098037) | 3.631547 / 3.745712 (-0.114165) | 3.251202 / 5.269862 (-2.018660) | 2.041272 / 4.565676 (-2.524405) | 0.057287 / 0.424275 (-0.366988) | 0.007303 / 0.007607 (-0.000304) | 0.491027 / 0.226044 (0.264982) | 4.906757 / 2.268929 (2.637829) | 2.581694 / 55.444624 (-52.862931) | 2.250996 / 6.876477 (-4.625481) | 2.441771 / 2.142072 (0.299698) | 0.600714 / 4.805227 (-4.204514) | 0.133233 / 6.500664 (-6.367431) | 0.060856 / 0.075469 (-0.014613) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340062 / 1.841788 (-0.501725) | 19.973899 / 8.074308 (11.899591) | 14.347381 / 10.191392 (4.155989) | 0.166651 / 0.680424 (-0.513773) | 0.018691 / 0.534201 (-0.515510) | 0.393580 / 0.579283 (-0.185703) | 0.409425 / 0.434364 (-0.024939) | 0.474409 / 0.540337 (-0.065929) | 0.649423 / 1.386936 (-0.737514) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5da68102297c3639207a7901952d2765a4cdb8b \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006593 / 0.011353 (-0.004760) | 0.004123 / 0.011008 (-0.006885) | 0.084424 / 0.038508 (0.045916) | 0.076867 / 0.023109 (0.053758) | 0.309149 / 0.275898 (0.033251) | 0.348572 / 0.323480 (0.025092) | 0.005463 / 0.007986 (-0.002523) | 0.003440 / 0.004328 (-0.000889) | 0.064604 / 0.004250 (0.060353) | 0.053920 / 0.037052 (0.016868) | 0.345221 / 0.258489 (0.086732) | 0.363209 / 0.293841 (0.069368) | 0.031209 / 0.128546 (-0.097337) | 0.008690 / 0.075646 (-0.066956) | 0.288851 / 0.419271 (-0.130421) | 0.052239 / 0.043533 (0.008707) | 0.308643 / 0.255139 (0.053504) | 0.346407 / 0.283200 (0.063207) | 0.023935 / 0.141683 (-0.117748) | 1.469207 / 1.452155 (0.017052) | 1.532855 / 1.492716 (0.040138) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290885 / 0.018006 (0.272879) | 0.580561 / 0.000490 (0.580071) | 0.004698 / 0.000200 (0.004498) | 0.000286 / 0.000054 (0.000231) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028015 / 0.037411 (-0.009396) | 0.081172 / 0.014526 (0.066646) | 0.096822 / 0.176557 (-0.079735) | 0.151355 / 0.737135 (-0.585781) | 0.098017 / 0.296338 (-0.198321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384069 / 0.215209 (0.168859) | 3.828635 / 2.077655 (1.750980) | 1.829311 / 1.504120 (0.325192) | 1.672520 / 1.541195 (0.131325) | 1.743944 / 1.468490 (0.275453) | 0.481594 / 4.584777 (-4.103183) | 3.556204 / 3.745712 (-0.189509) | 3.279499 / 5.269862 (-1.990363) | 2.033243 / 4.565676 (-2.532434) | 0.056525 / 0.424275 (-0.367750) | 0.007717 / 0.007607 (0.000109) | 0.466815 / 0.226044 (0.240771) | 4.657022 / 2.268929 (2.388094) | 2.438600 / 55.444624 (-53.006024) | 2.097999 / 6.876477 (-4.778478) | 2.263122 / 2.142072 (0.121049) | 0.636001 / 4.805227 (-4.169226) | 0.147727 / 6.500664 (-6.352937) | 0.059293 / 0.075469 (-0.016176) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243111 / 1.841788 (-0.598677) | 19.558379 / 8.074308 (11.484071) | 14.141017 / 10.191392 (3.949625) | 0.169840 / 0.680424 (-0.510583) | 0.017912 / 0.534201 (-0.516289) | 0.391325 / 0.579283 (-0.187958) | 0.417169 / 0.434364 (-0.017195) | 0.457129 / 0.540337 (-0.083209) | 0.629907 / 1.386936 (-0.757029) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006687 / 0.011353 (-0.004666) | 0.004165 / 0.011008 (-0.006844) | 0.064738 / 0.038508 (0.026230) | 0.077286 / 0.023109 (0.054177) | 0.364236 / 0.275898 (0.088338) | 0.393228 / 0.323480 (0.069748) | 0.005451 / 0.007986 (-0.002535) | 0.003547 / 0.004328 (-0.000781) | 0.065761 / 0.004250 (0.061510) | 0.056526 / 0.037052 (0.019474) | 0.365523 / 0.258489 (0.107034) | 0.403331 / 0.293841 (0.109490) | 0.030900 / 0.128546 (-0.097646) | 0.008757 / 0.075646 (-0.066889) | 0.070961 / 0.419271 (-0.348311) | 0.048394 / 0.043533 (0.004861) | 0.365908 / 0.255139 (0.110769) | 0.381197 / 0.283200 (0.097998) | 0.022940 / 0.141683 (-0.118743) | 1.487909 / 1.452155 (0.035754) | 1.532931 / 1.492716 (0.040215) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317506 / 0.018006 (0.299500) | 0.513391 / 0.000490 (0.512902) | 0.005464 / 0.000200 (0.005264) | 0.000214 / 0.000054 (0.000159) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032289 / 0.037411 (-0.005122) | 0.090157 / 0.014526 (0.075631) | 0.103514 / 0.176557 (-0.073043) | 0.158236 / 0.737135 (-0.578899) | 0.106554 / 0.296338 (-0.189784) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406455 / 0.215209 (0.191246) | 4.061563 / 2.077655 (1.983908) | 2.082201 / 1.504120 (0.578081) | 1.914433 / 1.541195 (0.373238) | 2.039342 / 1.468490 (0.570852) | 0.478444 / 4.584777 (-4.106333) | 3.599755 / 3.745712 (-0.145957) | 3.294453 / 5.269862 (-1.975409) | 2.028519 / 4.565676 (-2.537158) | 0.056118 / 0.424275 (-0.368157) | 0.007325 / 0.007607 (-0.000282) | 0.493177 / 0.226044 (0.267132) | 4.926218 / 2.268929 (2.657289) | 2.605033 / 55.444624 (-52.839591) | 2.239933 / 6.876477 (-4.636544) | 2.454210 / 2.142072 (0.312137) | 0.571905 / 4.805227 (-4.233322) | 0.133251 / 6.500664 (-6.367413) | 0.062422 / 0.075469 (-0.013047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.352752 / 1.841788 (-0.489036) | 20.265109 / 8.074308 (12.190801) | 14.293064 / 10.191392 (4.101672) | 0.169267 / 0.680424 (-0.511157) | 0.018607 / 0.534201 (-0.515594) | 0.393655 / 0.579283 (-0.185628) | 0.402132 / 0.434364 (-0.032232) | 0.477566 / 0.540337 (-0.062772) | 0.651773 / 1.386936 (-0.735163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#80023f36b2b6678347979421ef973d8969d31306 \"CML watermark\")\n" ]
2023-08-10T11:03:15Z
2023-08-10T11:31:45Z
2023-08-10T11:22:56Z
MEMBER
null
null
null
This PR ignores the violation of the lint rule E721 in `Pickler.memoize`. The lint rule violation was introduced in this PR: - #3182 @lhoestq is there a reason you did not use `isinstance` instead? As a hotfix, we just ignore the violation of the lint rule. Fix #6136.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6138/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6138/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6138.diff", "html_url": "https://github.com/huggingface/datasets/pull/6138", "merged_at": "2023-08-10T11:22:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/6138.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6138" }
https://api.github.com/repos/huggingface/datasets/issues/7349
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7349/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7349/comments
https://api.github.com/repos/huggingface/datasets/issues/7349/events
https://github.com/huggingface/datasets/pull/7349
2,767,670,454
PR_kwDODunzps6GqseO
7,349
Webdataset special columns in last position
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7349). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2025-01-03T14:32:15Z
2025-01-03T14:34:39Z
2025-01-03T14:32:30Z
MEMBER
null
null
null
Place columns "__key__" and "__url__" in last position in the Dataset Viewer since they are not the main content before: <img width="1012" alt="image" src="https://github.com/user-attachments/assets/b556c1fe-2674-4ba0-9643-c074aa9716fd" />
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7349/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7349/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7349.diff", "html_url": "https://github.com/huggingface/datasets/pull/7349", "merged_at": "2025-01-03T14:32:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/7349.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7349" }
https://api.github.com/repos/huggingface/datasets/issues/6665
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6665/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6665/comments
https://api.github.com/repos/huggingface/datasets/issues/6665/events
https://github.com/huggingface/datasets/pull/6665
2,136,136,425
PR_kwDODunzps5m9JgW
6,665
Allow SplitDict setitem to replace existing SplitInfo
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6665). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004968 / 0.011353 (-0.006385) | 0.003732 / 0.011008 (-0.007276) | 0.063672 / 0.038508 (0.025164) | 0.027066 / 0.023109 (0.003957) | 0.253306 / 0.275898 (-0.022592) | 0.283382 / 0.323480 (-0.040098) | 0.004217 / 0.007986 (-0.003768) | 0.002865 / 0.004328 (-0.001464) | 0.048672 / 0.004250 (0.044421) | 0.040740 / 0.037052 (0.003688) | 0.271848 / 0.258489 (0.013359) | 0.293162 / 0.293841 (-0.000679) | 0.027410 / 0.128546 (-0.101136) | 0.010605 / 0.075646 (-0.065042) | 0.210545 / 0.419271 (-0.208726) | 0.036085 / 0.043533 (-0.007447) | 0.259807 / 0.255139 (0.004668) | 0.274056 / 0.283200 (-0.009144) | 0.018812 / 0.141683 (-0.122871) | 1.116687 / 1.452155 (-0.335468) | 1.164276 / 1.492716 (-0.328440) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092874 / 0.018006 (0.074868) | 0.355897 / 0.000490 (0.355407) | 0.000224 / 0.000200 (0.000024) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018461 / 0.037411 (-0.018950) | 0.062061 / 0.014526 (0.047535) | 0.072353 / 0.176557 (-0.104203) | 0.119162 / 0.737135 (-0.617974) | 0.082974 / 0.296338 (-0.213364) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291631 / 0.215209 (0.076422) | 2.861495 / 2.077655 (0.783841) | 1.496753 / 1.504120 (-0.007367) | 1.371164 / 1.541195 (-0.170031) | 1.415473 / 1.468490 (-0.053018) | 0.566778 / 4.584777 (-4.017999) | 2.376209 / 3.745712 (-1.369503) | 2.812326 / 5.269862 (-2.457535) | 1.765640 / 4.565676 (-2.800037) | 0.063274 / 0.424275 (-0.361001) | 0.004933 / 0.007607 (-0.002674) | 0.342345 / 0.226044 (0.116301) | 3.407487 / 2.268929 (1.138558) | 1.856646 / 55.444624 (-53.587978) | 1.590284 / 6.876477 (-5.286193) | 1.610068 / 2.142072 (-0.532004) | 0.656007 / 4.805227 (-4.149220) | 0.118310 / 6.500664 (-6.382354) | 0.042596 / 0.075469 (-0.032873) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.991392 / 1.841788 (-0.850395) | 11.612397 / 8.074308 (3.538089) | 9.627836 / 10.191392 (-0.563556) | 0.130575 / 0.680424 (-0.549848) | 0.014152 / 0.534201 (-0.520049) | 0.289736 / 0.579283 (-0.289548) | 0.260041 / 0.434364 (-0.174323) | 0.339730 / 0.540337 (-0.200608) | 0.447529 / 1.386936 (-0.939407) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005315 / 0.011353 (-0.006038) | 0.003955 / 0.011008 (-0.007053) | 0.049618 / 0.038508 (0.011110) | 0.030404 / 0.023109 (0.007295) | 0.258727 / 0.275898 (-0.017171) | 0.282020 / 0.323480 (-0.041460) | 0.004356 / 0.007986 (-0.003629) | 0.002866 / 0.004328 (-0.001462) | 0.049122 / 0.004250 (0.044872) | 0.045534 / 0.037052 (0.008482) | 0.269560 / 0.258489 (0.011071) | 0.301225 / 0.293841 (0.007384) | 0.029786 / 0.128546 (-0.098761) | 0.010433 / 0.075646 (-0.065213) | 0.058222 / 0.419271 (-0.361049) | 0.052968 / 0.043533 (0.009435) | 0.256605 / 0.255139 (0.001467) | 0.279899 / 0.283200 (-0.003300) | 0.018233 / 0.141683 (-0.123450) | 1.164060 / 1.452155 (-0.288095) | 1.218049 / 1.492716 (-0.274667) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093646 / 0.018006 (0.075639) | 0.288804 / 0.000490 (0.288314) | 0.000224 / 0.000200 (0.000024) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022193 / 0.037411 (-0.015219) | 0.075507 / 0.014526 (0.060981) | 0.086091 / 0.176557 (-0.090465) | 0.127433 / 0.737135 (-0.609703) | 0.087064 / 0.296338 (-0.209274) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292459 / 0.215209 (0.077250) | 2.842430 / 2.077655 (0.764776) | 1.505824 / 1.504120 (0.001704) | 1.377052 / 1.541195 (-0.164143) | 1.408757 / 1.468490 (-0.059733) | 0.571705 / 4.584777 (-4.013072) | 2.459798 / 3.745712 (-1.285914) | 2.714826 / 5.269862 (-2.555035) | 1.782064 / 4.565676 (-2.783613) | 0.063113 / 0.424275 (-0.361162) | 0.005099 / 0.007607 (-0.002509) | 0.343624 / 0.226044 (0.117579) | 3.415806 / 2.268929 (1.146878) | 1.853253 / 55.444624 (-53.591371) | 1.584392 / 6.876477 (-5.292084) | 1.720384 / 2.142072 (-0.421689) | 0.646637 / 4.805227 (-4.158590) | 0.118072 / 6.500664 (-6.382593) | 0.041362 / 0.075469 (-0.034107) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020086 / 1.841788 (-0.821701) | 12.303980 / 8.074308 (4.229672) | 10.322869 / 10.191392 (0.131477) | 0.140959 / 0.680424 (-0.539465) | 0.015372 / 0.534201 (-0.518829) | 0.288552 / 0.579283 (-0.290731) | 0.278243 / 0.434364 (-0.156121) | 0.328399 / 0.540337 (-0.211939) | 0.433618 / 1.386936 (-0.953318) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9469092d88ff7bb4d3f7fe6c2de0109ca458b5da \"CML watermark\")\n" ]
2024-02-15T10:17:08Z
2024-03-01T16:02:46Z
2024-03-01T15:56:38Z
MEMBER
null
null
null
Fix this code provided by @clefourrier ```python import datasets import os token = os.getenv("TOKEN") results = datasets.load_dataset("gaia-benchmark/results_public", "2023", token=token, download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD) results["test"] = datasets.Dataset.from_list([row for row in results["test"] if row["model"] != "StateFlow"]) results["test"].push_to_hub("gaia-benchmark/results_public", "2023", token=token, split="test") ``` ``` ValueError Traceback (most recent call last) Cell In[43], line 1 ----> 1 results["test"].push_to_hub("gaia-benchmark/results_public", "2023", token=token, split="test") File ~/miniconda3/envs/default310/lib/python3.10/site-packages/datasets/arrow_dataset.py:5498, in Dataset.push_to_hub(self, repo_id, config_name, split, private, token, branch, max_shard_size, num_shards, embed_external_files) 5496 repo_info.dataset_size = (repo_info.dataset_size or 0) + dataset_nbytes 5497 repo_info.size_in_bytes = repo_info.download_size + repo_info.dataset_size -> 5498 repo_info.splits[split] = SplitInfo( 5499 split, num_bytes=dataset_nbytes, num_examples=len(self), dataset_name=dataset_name 5500 ) 5501 info_to_dump = repo_info 5502 # create the metadata configs if it was uploaded with push_to_hub before metadata configs existed File ~/miniconda3/envs/default310/lib/python3.10/site-packages/datasets/splits.py:541, in SplitDict.__setitem__(self, key, value) 539 raise ValueError(f"Cannot add elem. (key mismatch: '{key}' != '{value.name}')") 540 if key in self: --> 541 raise ValueError(f"Split {key} already present") 542 super().__setitem__(key, value) ValueError: Split test already present ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6665/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6665/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6665.diff", "html_url": "https://github.com/huggingface/datasets/pull/6665", "merged_at": "2024-03-01T15:56:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/6665.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6665" }
https://api.github.com/repos/huggingface/datasets/issues/6688
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6688/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6688/comments
https://api.github.com/repos/huggingface/datasets/issues/6688/events
https://github.com/huggingface/datasets/issues/6688
2,148,609,859
I_kwDODunzps6AES9D
6,688
Tensor type (e.g. from `return_tensors`) ignored in map
{ "avatar_url": "https://avatars.githubusercontent.com/u/11166137?v=4", "events_url": "https://api.github.com/users/srossi93/events{/privacy}", "followers_url": "https://api.github.com/users/srossi93/followers", "following_url": "https://api.github.com/users/srossi93/following{/other_user}", "gists_url": "https://api.github.com/users/srossi93/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/srossi93", "id": 11166137, "login": "srossi93", "node_id": "MDQ6VXNlcjExMTY2MTM3", "organizations_url": "https://api.github.com/users/srossi93/orgs", "received_events_url": "https://api.github.com/users/srossi93/received_events", "repos_url": "https://api.github.com/users/srossi93/repos", "site_admin": false, "starred_url": "https://api.github.com/users/srossi93/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/srossi93/subscriptions", "type": "User", "url": "https://api.github.com/users/srossi93", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi, this is expected behavior since all the tensors are converted to Arrow data (the storage type behind a Dataset).\r\n\r\nTo get pytorch tensors back, you can set the dataset format to \"torch\":\r\n\r\n```python\r\nds = ds.with_format(\"torch\")\r\n```", "Thanks. Just one additional question. During the pipeline `<framework> -> arrow -> <framework>`, does `.with_format` zero-copies the tensors or is it a deep copy? And is this behavior framework-dependent?\r\n\r\nThanks again.", "We do zero-copy Arrow <-> NumPy <-> PyTorch when the output dtype matches the original dtype, but for other frameworks it depends. For example JAX doesn't allow zero-copy NumPy -> JAX at all IIRC.\r\n\r\nCurrently tokenized data are formatted using a copy though, since tokens are stored as int32 and returned as int64 torch tensors." ]
2024-02-22T09:27:57Z
2024-02-22T15:56:21Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
### Describe the bug I don't know if it is a bug or an expected behavior, but the tensor type seems to be ignored after applying map. For example, mapping over to tokenize text with a transformers' tokenizer always returns lists and it ignore the `return_tensors` argument. If this is an expected behaviour (e.g., for caching/Arrow compatibility/etc.) it should be clearly documented. For example, current documentation (see [here](https://huggingface.co/docs/datasets/v2.17.1/en/nlp_process#map)) clearly state to "set `return_tensors="np"` when you tokenize your text" to have Numpy arrays. ### Steps to reproduce the bug ```py # %%% import datasets import numpy as np import tensorflow as tf import torch from transformers import AutoTokenizer # %% ds = datasets.load_dataset("cnn_dailymail", "1.0.0", split="train[:1%]") tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") #%% for return_tensors in [None, "np", "pt", "tf", "jax"]: print(f"********** no map, return_tensors={return_tensors} **********") _ds = tokenizer(ds["article"], return_tensors=return_tensors, truncation=True, padding=True) print('Type <input_ids>:', type(_ds["input_ids"])) # %% for return_tensors in [None, "np", "pt", "tf", "jax"]: print(f"********** map, return_tensors={return_tensors} **********") _ds = ds.map( lambda examples: tokenizer(examples["article"], return_tensors=return_tensors, truncation=True, padding=True), batched=True, remove_columns=["article"], ) print('Type <input_ids>:', type(_ds[0]["input_ids"])) ``` ### Expected behavior The output from the script above. I would expect the second half to be the same. ``` ********** no map, return_tensors=None ********** Type <input_ids>: <class 'list'> ********** no map, return_tensors=np ********** Type <input_ids>: <class 'numpy.ndarray'> ********** no map, return_tensors=pt ********** Type <input_ids>: <class 'torch.Tensor'> ********** no map, return_tensors=tf ********** Type <input_ids>: <class 'tensorflow.python.framework.ops.EagerTensor'> ********** no map, return_tensors=jax ********** Type <input_ids>: <class 'jaxlib.xla_extension.ArrayImpl'> ********** map, return_tensors=None ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=np ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=pt ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=tf ********** Type <input_ids>: <class 'list'> ********** map, return_tensors=jax ********** Type <input_ids>: <class 'list'> ``` ### Environment info - `datasets` version: 2.17.1 - Platform: Redacted (linux) - Python version: 3.10.12 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6688/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6688/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/5089
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5089/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5089/comments
https://api.github.com/repos/huggingface/datasets/issues/5089/events
https://github.com/huggingface/datasets/issues/5089
1,400,788,486
I_kwDODunzps5TflYG
5,089
Resume failed process
{ "avatar_url": "https://avatars.githubusercontent.com/u/208336?v=4", "events_url": "https://api.github.com/users/felix-schneider/events{/privacy}", "followers_url": "https://api.github.com/users/felix-schneider/followers", "following_url": "https://api.github.com/users/felix-schneider/following{/other_user}", "gists_url": "https://api.github.com/users/felix-schneider/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/felix-schneider", "id": 208336, "login": "felix-schneider", "node_id": "MDQ6VXNlcjIwODMzNg==", "organizations_url": "https://api.github.com/users/felix-schneider/orgs", "received_events_url": "https://api.github.com/users/felix-schneider/received_events", "repos_url": "https://api.github.com/users/felix-schneider/repos", "site_admin": false, "starred_url": "https://api.github.com/users/felix-schneider/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/felix-schneider/subscriptions", "type": "User", "url": "https://api.github.com/users/felix-schneider", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2022-10-07T08:07:03Z
2022-10-07T08:07:03Z
null
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
**Is your feature request related to a problem? Please describe.** When a process (`map`, `filter`, etc.) crashes part-way through, you lose all progress. **Describe the solution you'd like** It would be good if the cache reflected the partial progress, so that after we restart the script, the process can restart where it left off. **Describe alternatives you've considered** Doing processing outside of `datasets`, by writing the dataset to json files and building a restart mechanism myself. **Additional context** N/A
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5089/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5089/timeline
null
null
null
null
https://api.github.com/repos/huggingface/datasets/issues/4708
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4708/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4708/comments
https://api.github.com/repos/huggingface/datasets/issues/4708/events
https://github.com/huggingface/datasets/pull/4708
1,308,279,700
PR_kwDODunzps47lewm
4,708
Fix require torchaudio and refactor test requirements
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-07-18T17:24:28Z
2022-07-22T06:30:56Z
2022-07-22T06:18:11Z
MEMBER
null
null
null
Currently there is a bug in `require_torchaudio` (indeed it is requiring `sox` instead): ```python def require_torchaudio(test_case): if find_spec("sox") is None: ... ``` The bug was introduced by: - #3685 - Commit: https://github.com/huggingface/datasets/pull/3685/commits/b5a3e7122d49c4dcc9333b1d8d18a833fc04b940 which moved ```python require_sndfile = pytest.mark.skipif( # In Windows and OS X, soundfile installs sndfile (sys.platform != "linux" and find_spec("soundfile") is None) # In Linux, soundfile throws RuntimeError if sndfile not installed with distribution package manager or (sys.platform == "linux" and find_library("sndfile") is None), reason="Test requires 'sndfile': `pip install soundfile`; " "Linux requires sndfile installed with distribution package manager, e.g.: `sudo apt-get install libsndfile1`", ) require_sox = pytest.mark.skipif( find_library("sox") is None, reason="Test requires 'sox'; only available in non-Windows, e.g.: `sudo apt-get install sox`", ) require_torchaudio = pytest.mark.skipif(find_spec("torchaudio") is None, reason="Test requires 'torchaudio'") ``` to ```python def require_sndfile(test_case): """ Decorator marking a test that requires soundfile. These tests are skipped when soundfile isn't installed. """ if (sys.platform != "linux" and find_spec("soundfile") is None) or ( sys.platform == "linux" and find_library("sndfile") is None ): test_case = unittest.skip( "test requires 'sndfile': `pip install soundfile`; " "Linux requires sndfile installed with distribution package manager, e.g.: `sudo apt-get install libsndfile1`", )(test_case) return test_case def require_sox(test_case): """ Decorator marking a test that requires sox. These tests are skipped when sox isn't installed. """ if find_library("sox") is None: return unittest.skip("test requires 'sox'; only available in non-Windows, e.g.: `sudo apt-get install sox`")( test_case ) return test_case def require_torchaudio(test_case): """ Decorator marking a test that requires torchaudio. These tests are skipped when torchaudio isn't installed. """ if find_spec("sox") is None: return unittest.skip("test requires 'torchaudio'")(test_case) return test_case ``` This PR; - fixes the bug in `require_torchaudio` - refactors the test requirements back to using `pytest` instead of `unittest` - the text in `pytest.skipif` `reason` can be used if needed in a test body: `require_torchaudio.kwargs["reason"]`
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4708/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4708/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4708.diff", "html_url": "https://github.com/huggingface/datasets/pull/4708", "merged_at": "2022-07-22T06:18:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/4708.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4708" }
https://api.github.com/repos/huggingface/datasets/issues/5802
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5802/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5802/comments
https://api.github.com/repos/huggingface/datasets/issues/5802/events
https://github.com/huggingface/datasets/pull/5802
1,686,509,799
PR_kwDODunzps5PR199
5,802
Validate non-empty data_files
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007818 / 0.011353 (-0.003535) | 0.005456 / 0.011008 (-0.005552) | 0.114685 / 0.038508 (0.076177) | 0.038398 / 0.023109 (0.015289) | 0.351289 / 0.275898 (0.075391) | 0.389170 / 0.323480 (0.065690) | 0.006213 / 0.007986 (-0.001773) | 0.005796 / 0.004328 (0.001467) | 0.085315 / 0.004250 (0.081065) | 0.049251 / 0.037052 (0.012198) | 0.368119 / 0.258489 (0.109630) | 0.394725 / 0.293841 (0.100884) | 0.040390 / 0.128546 (-0.088157) | 0.014076 / 0.075646 (-0.061570) | 0.393771 / 0.419271 (-0.025500) | 0.058929 / 0.043533 (0.015397) | 0.349526 / 0.255139 (0.094387) | 0.378409 / 0.283200 (0.095210) | 0.114354 / 0.141683 (-0.027329) | 1.749244 / 1.452155 (0.297089) | 1.847946 / 1.492716 (0.355229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241648 / 0.018006 (0.223641) | 0.468419 / 0.000490 (0.467929) | 0.004311 / 0.000200 (0.004111) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029978 / 0.037411 (-0.007433) | 0.121832 / 0.014526 (0.107306) | 0.133516 / 0.176557 (-0.043041) | 0.199174 / 0.737135 (-0.537961) | 0.138181 / 0.296338 (-0.158158) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478346 / 0.215209 (0.263137) | 4.723967 / 2.077655 (2.646312) | 2.107724 / 1.504120 (0.603604) | 1.874810 / 1.541195 (0.333615) | 1.911568 / 1.468490 (0.443078) | 0.800966 / 4.584777 (-3.783811) | 4.399032 / 3.745712 (0.653320) | 2.346160 / 5.269862 (-2.923702) | 1.506673 / 4.565676 (-3.059004) | 0.099119 / 0.424275 (-0.325156) | 0.014055 / 0.007607 (0.006448) | 0.582419 / 0.226044 (0.356375) | 5.789147 / 2.268929 (3.520218) | 2.632443 / 55.444624 (-52.812182) | 2.217630 / 6.876477 (-4.658846) | 2.337709 / 2.142072 (0.195637) | 0.995345 / 4.805227 (-3.809882) | 0.200040 / 6.500664 (-6.300624) | 0.076855 / 0.075469 (0.001386) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.386104 / 1.841788 (-0.455683) | 17.109772 / 8.074308 (9.035464) | 16.147612 / 10.191392 (5.956220) | 0.162846 / 0.680424 (-0.517577) | 0.020692 / 0.534201 (-0.513509) | 0.495752 / 0.579283 (-0.083531) | 0.475715 / 0.434364 (0.041351) | 0.619826 / 0.540337 (0.079488) | 0.720745 / 1.386936 (-0.666191) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008255 / 0.011353 (-0.003098) | 0.006118 / 0.011008 (-0.004890) | 0.088004 / 0.038508 (0.049496) | 0.039225 / 0.023109 (0.016116) | 0.399290 / 0.275898 (0.123392) | 0.432272 / 0.323480 (0.108792) | 0.007382 / 0.007986 (-0.000603) | 0.004576 / 0.004328 (0.000248) | 0.086511 / 0.004250 (0.082260) | 0.050472 / 0.037052 (0.013420) | 0.404160 / 0.258489 (0.145671) | 0.445356 / 0.293841 (0.151515) | 0.041549 / 0.128546 (-0.086997) | 0.014148 / 0.075646 (-0.061498) | 0.101697 / 0.419271 (-0.317574) | 0.057474 / 0.043533 (0.013941) | 0.395093 / 0.255139 (0.139954) | 0.418613 / 0.283200 (0.135414) | 0.123217 / 0.141683 (-0.018466) | 1.726146 / 1.452155 (0.273991) | 1.852746 / 1.492716 (0.360029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256876 / 0.018006 (0.238870) | 0.476336 / 0.000490 (0.475846) | 0.000465 / 0.000200 (0.000265) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034304 / 0.037411 (-0.003107) | 0.132617 / 0.014526 (0.118091) | 0.141712 / 0.176557 (-0.034845) | 0.198101 / 0.737135 (-0.539034) | 0.150877 / 0.296338 (-0.145461) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504717 / 0.215209 (0.289508) | 5.035060 / 2.077655 (2.957405) | 2.494812 / 1.504120 (0.990692) | 2.306601 / 1.541195 (0.765406) | 2.481860 / 1.468490 (1.013370) | 0.826041 / 4.584777 (-3.758736) | 4.414748 / 3.745712 (0.669036) | 2.417899 / 5.269862 (-2.851963) | 1.574548 / 4.565676 (-2.991128) | 0.101712 / 0.424275 (-0.322563) | 0.014388 / 0.007607 (0.006781) | 0.616674 / 0.226044 (0.390630) | 6.180382 / 2.268929 (3.911453) | 2.969110 / 55.444624 (-52.475514) | 2.574383 / 6.876477 (-4.302094) | 2.711008 / 2.142072 (0.568935) | 0.997679 / 4.805227 (-3.807548) | 0.201241 / 6.500664 (-6.299423) | 0.076132 / 0.075469 (0.000663) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.542704 / 1.841788 (-0.299084) | 17.610700 / 8.074308 (9.536392) | 16.152973 / 10.191392 (5.961581) | 0.166040 / 0.680424 (-0.514384) | 0.020286 / 0.534201 (-0.513915) | 0.506724 / 0.579283 (-0.072559) | 0.484348 / 0.434364 (0.049984) | 0.606524 / 0.540337 (0.066187) | 0.734997 / 1.386936 (-0.651939) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a200ec9126a0879f3d38d4e9e3787633a23af42e \"CML watermark\")\n" ]
2023-04-27T09:51:36Z
2023-04-27T14:59:47Z
2023-04-27T14:51:40Z
MEMBER
null
null
null
This PR adds validation of `data_files`, so that they are non-empty (str, list, or dict) or `None` (default). See: https://github.com/huggingface/datasets/pull/5787#discussion_r1178862327
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5802/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5802/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5802.diff", "html_url": "https://github.com/huggingface/datasets/pull/5802", "merged_at": "2023-04-27T14:51:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/5802.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5802" }
https://api.github.com/repos/huggingface/datasets/issues/4711
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4711/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4711/comments
https://api.github.com/repos/huggingface/datasets/issues/4711/events
https://github.com/huggingface/datasets/issues/4711
1,309,138,570
I_kwDODunzps5OB96K
4,711
Document how to create a dataset loading script for audio/vision
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
null
[]
null
[ "I'm closing this issue as both the Audio and Image sections now have a \"Create dataset\" page that contains the info about writing the loading script version of a dataset." ]
2022-07-19T08:03:40Z
2023-07-25T16:07:52Z
2023-07-25T16:07:52Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
Currently, in our docs for Audio/Vision/Text, we explain how to: - Load data - Process data However we only explain how to *Create a dataset loading script* for text data. I think it would be useful that we add the same for Audio/Vision as these have some specificities different from Text. See, for example: - #4697 - and comment there: https://github.com/huggingface/datasets/issues/4697#issuecomment-1191502492 CC: @stevhliu
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 4, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/4711/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4711/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5195
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5195/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5195/comments
https://api.github.com/repos/huggingface/datasets/issues/5195/events
https://github.com/huggingface/datasets/pull/5195
1,434,290,689
PR_kwDODunzps5CHhF2
5,195
[wip testing docs]
{ "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mishig25", "id": 11827707, "login": "mishig25", "node_id": "MDQ6VXNlcjExODI3NzA3", "organizations_url": "https://api.github.com/users/mishig25/orgs", "received_events_url": "https://api.github.com/users/mishig25/received_events", "repos_url": "https://api.github.com/users/mishig25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "type": "User", "url": "https://api.github.com/users/mishig25", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5195). All of your documentation changes will be reflected on that endpoint." ]
2022-11-03T08:37:34Z
2023-04-04T15:10:37Z
2023-04-04T15:10:33Z
NONE
null
null
null
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/11827707?v=4", "events_url": "https://api.github.com/users/mishig25/events{/privacy}", "followers_url": "https://api.github.com/users/mishig25/followers", "following_url": "https://api.github.com/users/mishig25/following{/other_user}", "gists_url": "https://api.github.com/users/mishig25/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mishig25", "id": 11827707, "login": "mishig25", "node_id": "MDQ6VXNlcjExODI3NzA3", "organizations_url": "https://api.github.com/users/mishig25/orgs", "received_events_url": "https://api.github.com/users/mishig25/received_events", "repos_url": "https://api.github.com/users/mishig25/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mishig25/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mishig25/subscriptions", "type": "User", "url": "https://api.github.com/users/mishig25", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5195/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5195/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5195.diff", "html_url": "https://github.com/huggingface/datasets/pull/5195", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5195.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5195" }
https://api.github.com/repos/huggingface/datasets/issues/6315
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6315/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6315/comments
https://api.github.com/repos/huggingface/datasets/issues/6315/events
https://github.com/huggingface/datasets/issues/6315
1,951,800,819
I_kwDODunzps50Vh3z
6,315
Hub datasets with CSV metadata raise ArrowInvalid: JSON parse error: Invalid value. in row 0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" } ]
null
[]
2023-10-19T10:11:29Z
2023-10-20T06:14:10Z
2023-10-20T06:14:10Z
MEMBER
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
When trying to load a Hub dataset that contains a CSV metadata file, it raises an `ArrowInvalid` error: ``` E pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0 pyarrow/error.pxi:100: ArrowInvalid ``` See: https://huggingface.co/datasets/lukarape/public_small_papers/discussions/1
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6315/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6315/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/5085
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5085/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5085/comments
https://api.github.com/repos/huggingface/datasets/issues/5085/events
https://github.com/huggingface/datasets/issues/5085
1,400,113,569
I_kwDODunzps5TdAmh
5,085
Filtering on an empty dataset returns a corrupted dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/36087158?v=4", "events_url": "https://api.github.com/users/gabegma/events{/privacy}", "followers_url": "https://api.github.com/users/gabegma/followers", "following_url": "https://api.github.com/users/gabegma/following{/other_user}", "gists_url": "https://api.github.com/users/gabegma/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gabegma", "id": 36087158, "login": "gabegma", "node_id": "MDQ6VXNlcjM2MDg3MTU4", "organizations_url": "https://api.github.com/users/gabegma/orgs", "received_events_url": "https://api.github.com/users/gabegma/received_events", "repos_url": "https://api.github.com/users/gabegma/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gabegma/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gabegma/subscriptions", "type": "User", "url": "https://api.github.com/users/gabegma", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "DF8D62", "default": false, "description": "", "id": 4614514401, "name": "hacktoberfest", "node_id": "LA_kwDODunzps8AAAABEwvm4Q", "url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/23029765?v=4", "events_url": "https://api.github.com/users/Mouhanedg56/events{/privacy}", "followers_url": "https://api.github.com/users/Mouhanedg56/followers", "following_url": "https://api.github.com/users/Mouhanedg56/following{/other_user}", "gists_url": "https://api.github.com/users/Mouhanedg56/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mouhanedg56", "id": 23029765, "login": "Mouhanedg56", "node_id": "MDQ6VXNlcjIzMDI5NzY1", "organizations_url": "https://api.github.com/users/Mouhanedg56/orgs", "received_events_url": "https://api.github.com/users/Mouhanedg56/received_events", "repos_url": "https://api.github.com/users/Mouhanedg56/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mouhanedg56/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mouhanedg56/subscriptions", "type": "User", "url": "https://api.github.com/users/Mouhanedg56", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/23029765?v=4", "events_url": "https://api.github.com/users/Mouhanedg56/events{/privacy}", "followers_url": "https://api.github.com/users/Mouhanedg56/followers", "following_url": "https://api.github.com/users/Mouhanedg56/following{/other_user}", "gists_url": "https://api.github.com/users/Mouhanedg56/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mouhanedg56", "id": 23029765, "login": "Mouhanedg56", "node_id": "MDQ6VXNlcjIzMDI5NzY1", "organizations_url": "https://api.github.com/users/Mouhanedg56/orgs", "received_events_url": "https://api.github.com/users/Mouhanedg56/received_events", "repos_url": "https://api.github.com/users/Mouhanedg56/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mouhanedg56/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mouhanedg56/subscriptions", "type": "User", "url": "https://api.github.com/users/Mouhanedg56", "user_view_type": "public" } ]
null
[ "~~It seems like #5043 fix (merged recently) is the root cause of such behaviour. When we empty indices mapping (because the dataset length equals to zero), we can no longer get column item like: `ds_filter_2['sentence']` which uses\r\n`ds_filter_1._indices.column(0)`~~\r\n\r\n**UPDATE:**\r\nEmpty datasets are returned without going through partial function on `map` method, which will not work to get indices for `filter`: we need to run `get_indices_from_mask_function` partial function on the dataset to get output = `{\"indices\": []}`. But this is complicated since functions used in args, in particular `get_indices_from_mask_function`, do not support empty datasets.\r\nWe can just handle empty datasets aside on filter method.", "#self-assign", "Thank you for solving this amazingly quickly!" ]
2022-10-06T18:18:49Z
2022-10-07T19:06:02Z
2022-10-07T18:40:26Z
NONE
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
## Describe the bug When filtering a dataset twice, where the first result is an empty dataset, the second dataset seems corrupted. ## Steps to reproduce the bug ```python datasets = load_dataset("glue", "sst2") dataset_split = datasets['validation'] ds_filter_1 = dataset_split.filter(lambda x: False) # Some filtering condition that leads to an empty dataset assert ds_filter_1.num_rows == 0 sentences = ds_filter_1['sentence'] assert len(sentences) == 0 ds_filter_2 = ds_filter_1.filter(lambda x: False) # Some other filtering condition assert ds_filter_2.num_rows == 0 assert 'sentence' in ds_filter_2.column_names sentences = ds_filter_2['sentence'] ``` ## Expected results The last line should be returning an empty list, same as 4 lines above. ## Actual results The last line currently raises `IndexError: index out of bounds`. ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.5.2 - Platform: macOS-11.6.6-x86_64-i386-64bit - Python version: 3.9.11 - PyArrow version: 7.0.0 - Pandas version: 1.4.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 3, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/5085/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5085/timeline
null
completed
null
null
https://api.github.com/repos/huggingface/datasets/issues/4943
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4943/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4943/comments
https://api.github.com/repos/huggingface/datasets/issues/4943/events
https://github.com/huggingface/datasets/pull/4943
1,363,967,650
PR_kwDODunzps4-eZd_
4,943
Add splits to MBPP dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/2788526?v=4", "events_url": "https://api.github.com/users/cwarny/events{/privacy}", "followers_url": "https://api.github.com/users/cwarny/followers", "following_url": "https://api.github.com/users/cwarny/following{/other_user}", "gists_url": "https://api.github.com/users/cwarny/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cwarny", "id": 2788526, "login": "cwarny", "node_id": "MDQ6VXNlcjI3ODg1MjY=", "organizations_url": "https://api.github.com/users/cwarny/orgs", "received_events_url": "https://api.github.com/users/cwarny/received_events", "repos_url": "https://api.github.com/users/cwarny/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cwarny/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cwarny/subscriptions", "type": "User", "url": "https://api.github.com/users/cwarny", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "```\r\n(env) cwarny@Cedrics-Air datasets % RUN_SLOW=1 pytest tests/test_dataset_common.py::LocalDatasetTest::test_load_real_dataset_mbpp\r\n================================================================================================ test session starts =================================================================================================\r\nplatform darwin -- Python 3.8.13, pytest-7.1.3, pluggy-1.0.0\r\nrootdir: /Users/cwarny/datasets, configfile: setup.cfg\r\ncollected 1 item \r\n\r\ntests/test_dataset_common.py . [100%]\r\n\r\n================================================================================================= 1 passed in 1.12s ==================================================================================================\r\n(env) cwarny@Cedrics-Air datasets % RUN_SLOW=1 pytest tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_all_configs_mbpp \r\n================================================================================================ test session starts =================================================================================================\r\nplatform darwin -- Python 3.8.13, pytest-7.1.3, pluggy-1.0.0\r\nrootdir: /Users/cwarny/datasets, configfile: setup.cfg\r\ncollected 1 item \r\n\r\ntests/test_dataset_common.py . [100%]\r\n\r\n================================================================================================= 1 passed in 0.35s ==================================================================================================\r\n\r\n```", "_The documentation is not available anymore as the PR was closed or merged._", "Hi @cwarny ! Thanks for adding the correct splits :)\r\n\r\nYou can fix the CI error by running `make style` - this should reformat the dataset script", "done" ]
2022-09-07T01:18:31Z
2022-09-13T12:29:19Z
2022-09-13T12:27:21Z
CONTRIBUTOR
null
null
null
This PR addresses https://github.com/huggingface/datasets/issues/4795
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4943/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4943/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4943.diff", "html_url": "https://github.com/huggingface/datasets/pull/4943", "merged_at": "2022-09-13T12:27:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/4943.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4943" }