url
string | repository_url
string | labels_url
string | comments_url
string | events_url
string | html_url
string | id
int64 | node_id
string | number
int64 | title
string | user
dict | labels
list | state
string | locked
bool | assignee
dict | assignees
list | milestone
dict | comments
list | created_at
timestamp[ns, tz=UTC] | updated_at
timestamp[ns, tz=UTC] | closed_at
timestamp[ns, tz=UTC] | author_association
string | type
float64 | active_lock_reason
float64 | sub_issues_summary
dict | body
string | closed_by
dict | reactions
dict | timeline_url
string | performed_via_github_app
float64 | state_reason
string | draft
float64 | pull_request
dict |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5816
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5816/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5816/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5816/events
|
https://github.com/huggingface/datasets/pull/5816
| 1,694,590,856
|
PR_kwDODunzps5Ps4t9
| 5,816
|
Preserve `stopping_strategy` of shuffled interleaved dataset (random cycling case)
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007862 / 0.011353 (-0.003491) | 0.005747 / 0.011008 (-0.005261) | 0.106818 / 0.038508 (0.068310) | 0.036630 / 0.023109 (0.013521) | 0.344218 / 0.275898 (0.068320) | 0.398803 / 0.323480 (0.075324) | 0.006187 / 0.007986 (-0.001799) | 0.005686 / 0.004328 (0.001358) | 0.078568 / 0.004250 (0.074318) | 0.051786 / 0.037052 (0.014734) | 0.361736 / 0.258489 (0.103247) | 0.396323 / 0.293841 (0.102482) | 0.037943 / 0.128546 (-0.090603) | 0.013957 / 0.075646 (-0.061689) | 0.366782 / 0.419271 (-0.052490) | 0.054700 / 0.043533 (0.011167) | 0.349692 / 0.255139 (0.094553) | 0.366481 / 0.283200 (0.083281) | 0.117394 / 0.141683 (-0.024289) | 1.593156 / 1.452155 (0.141001) | 1.708864 / 1.492716 (0.216148) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229529 / 0.018006 (0.211523) | 0.490531 / 0.000490 (0.490042) | 0.002934 / 0.000200 (0.002734) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028074 / 0.037411 (-0.009337) | 0.122321 / 0.014526 (0.107795) | 0.129120 / 0.176557 (-0.047436) | 0.188413 / 0.737135 (-0.548722) | 0.138983 / 0.296338 (-0.157355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479350 / 0.215209 (0.264141) | 4.926201 / 2.077655 (2.848546) | 2.265557 / 1.504120 (0.761437) | 2.014580 / 1.541195 (0.473386) | 2.120517 / 1.468490 (0.652027) | 0.795334 / 4.584777 (-3.789443) | 4.509754 / 3.745712 (0.764042) | 4.328313 / 5.269862 (-0.941548) | 2.153304 / 4.565676 (-2.412373) | 0.102942 / 0.424275 (-0.321333) | 0.053504 / 0.007607 (0.045896) | 0.609392 / 0.226044 (0.383347) | 6.114048 / 2.268929 (3.845119) | 2.773306 / 55.444624 (-52.671318) | 2.443434 / 6.876477 (-4.433042) | 2.612005 / 2.142072 (0.469932) | 0.950435 / 4.805227 (-3.854792) | 0.194081 / 6.500664 (-6.306583) | 0.074513 / 0.075469 (-0.000956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.402897 / 1.841788 (-0.438891) | 18.263033 / 8.074308 (10.188724) | 16.579809 / 10.191392 (6.388417) | 0.212319 / 0.680424 (-0.468104) | 0.020468 / 0.534201 (-0.513733) | 0.494850 / 0.579283 (-0.084433) | 0.483790 / 0.434364 (0.049426) | 0.572073 / 0.540337 (0.031735) | 0.684353 / 1.386936 (-0.702583) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009732 / 0.011353 (-0.001621) | 0.005901 / 0.011008 (-0.005107) | 0.084568 / 0.038508 (0.046060) | 0.038743 / 0.023109 (0.015634) | 0.431323 / 0.275898 (0.155425) | 0.472124 / 0.323480 (0.148644) | 0.006255 / 0.007986 (-0.001731) | 0.005892 / 0.004328 (0.001563) | 0.081913 / 0.004250 (0.077662) | 0.055560 / 0.037052 (0.018507) | 0.442857 / 0.258489 (0.184368) | 0.481887 / 0.293841 (0.188046) | 0.040730 / 0.128546 (-0.087816) | 0.014339 / 0.075646 (-0.061307) | 0.099258 / 0.419271 (-0.320013) | 0.054692 / 0.043533 (0.011159) | 0.436323 / 0.255139 (0.181184) | 0.461046 / 0.283200 (0.177846) | 0.125972 / 0.141683 (-0.015710) | 1.673173 / 1.452155 (0.221018) | 1.781364 / 1.492716 (0.288648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271450 / 0.018006 (0.253444) | 0.514484 / 0.000490 (0.513994) | 0.000455 / 0.000200 (0.000255) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036104 / 0.037411 (-0.001308) | 0.143306 / 0.014526 (0.128780) | 0.151105 / 0.176557 (-0.025451) | 0.210737 / 0.737135 (-0.526399) | 0.151404 / 0.296338 (-0.144934) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573613 / 0.215209 (0.358404) | 5.828222 / 2.077655 (3.750567) | 2.993028 / 1.504120 (1.488908) | 2.617900 / 1.541195 (1.076706) | 2.754673 / 1.468490 (1.286183) | 1.010624 / 4.584777 (-3.574152) | 4.971261 / 3.745712 (1.225549) | 4.382017 / 5.269862 (-0.887845) | 1.971894 / 4.565676 (-2.593782) | 0.104404 / 0.424275 (-0.319871) | 0.014595 / 0.007607 (0.006988) | 0.657684 / 0.226044 (0.431639) | 6.566151 / 2.268929 (4.297222) | 3.221378 / 55.444624 (-52.223246) | 2.809402 / 6.876477 (-4.067075) | 2.882426 / 2.142072 (0.740354) | 1.006134 / 4.805227 (-3.799093) | 0.204469 / 6.500664 (-6.296196) | 0.078147 / 0.075469 (0.002678) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.574768 / 1.841788 (-0.267020) | 18.193335 / 8.074308 (10.119027) | 17.275353 / 10.191392 (7.083961) | 0.166890 / 0.680424 (-0.513534) | 0.020612 / 0.534201 (-0.513589) | 0.496179 / 0.579283 (-0.083104) | 0.507824 / 0.434364 (0.073460) | 0.620984 / 0.540337 (0.080647) | 0.749727 / 1.386936 (-0.637209) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006534 / 0.011353 (-0.004819) | 0.004456 / 0.011008 (-0.006553) | 0.097978 / 0.038508 (0.059470) | 0.027614 / 0.023109 (0.004505) | 0.309833 / 0.275898 (0.033935) | 0.337006 / 0.323480 (0.013526) | 0.004986 / 0.007986 (-0.002999) | 0.004521 / 0.004328 (0.000193) | 0.075053 / 0.004250 (0.070803) | 0.037095 / 0.037052 (0.000043) | 0.305430 / 0.258489 (0.046941) | 0.345298 / 0.293841 (0.051457) | 0.029784 / 0.128546 (-0.098762) | 0.011449 / 0.075646 (-0.064197) | 0.323346 / 0.419271 (-0.095925) | 0.042188 / 0.043533 (-0.001345) | 0.318653 / 0.255139 (0.063514) | 0.333799 / 0.283200 (0.050599) | 0.088194 / 0.141683 (-0.053488) | 1.511012 / 1.452155 (0.058857) | 1.578205 / 1.492716 (0.085489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229695 / 0.018006 (0.211689) | 0.413276 / 0.000490 (0.412786) | 0.009142 / 0.000200 (0.008942) | 0.000537 / 0.000054 (0.000482) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024327 / 0.037411 (-0.013084) | 0.097953 / 0.014526 (0.083427) | 0.105551 / 0.176557 (-0.071005) | 0.169397 / 0.737135 (-0.567738) | 0.109784 / 0.296338 (-0.186554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417713 / 0.215209 (0.202504) | 4.190703 / 2.077655 (2.113048) | 1.873504 / 1.504120 (0.369384) | 1.664540 / 1.541195 (0.123346) | 1.704539 / 1.468490 (0.236049) | 0.699840 / 4.584777 (-3.884937) | 3.480605 / 3.745712 (-0.265107) | 1.844229 / 5.269862 (-3.425633) | 1.155793 / 4.565676 (-3.409883) | 0.083013 / 0.424275 (-0.341262) | 0.012414 / 0.007607 (0.004807) | 0.518357 / 0.226044 (0.292313) | 5.186136 / 2.268929 (2.917207) | 2.329263 / 55.444624 (-53.115361) | 1.991395 / 6.876477 (-4.885081) | 2.074563 / 2.142072 (-0.067509) | 0.801388 / 4.805227 (-4.003839) | 0.152236 / 6.500664 (-6.348428) | 0.067414 / 0.075469 (-0.008055) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197290 / 1.841788 (-0.644497) | 13.666537 / 8.074308 (5.592229) | 13.017190 / 10.191392 (2.825798) | 0.142109 / 0.680424 (-0.538314) | 0.016321 / 0.534201 (-0.517880) | 0.378434 / 0.579283 (-0.200849) | 0.381101 / 0.434364 (-0.053263) | 0.444113 / 0.540337 (-0.096225) | 0.521448 / 1.386936 (-0.865488) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006273 / 0.011353 (-0.005080) | 0.004408 / 0.011008 (-0.006600) | 0.077100 / 0.038508 (0.038592) | 0.027361 / 0.023109 (0.004251) | 0.358170 / 0.275898 (0.082272) | 0.390125 / 0.323480 (0.066646) | 0.004736 / 0.007986 (-0.003250) | 0.004663 / 0.004328 (0.000334) | 0.077626 / 0.004250 (0.073376) | 0.037103 / 0.037052 (0.000051) | 0.360044 / 0.258489 (0.101555) | 0.411539 / 0.293841 (0.117698) | 0.030173 / 0.128546 (-0.098373) | 0.011618 / 0.075646 (-0.064028) | 0.086036 / 0.419271 (-0.333235) | 0.039077 / 0.043533 (-0.004456) | 0.382223 / 0.255139 (0.127084) | 0.384817 / 0.283200 (0.101618) | 0.094591 / 0.141683 (-0.047092) | 1.494961 / 1.452155 (0.042807) | 1.583769 / 1.492716 (0.091053) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227467 / 0.018006 (0.209460) | 0.396648 / 0.000490 (0.396159) | 0.000382 / 0.000200 (0.000182) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025346 / 0.037411 (-0.012065) | 0.102086 / 0.014526 (0.087560) | 0.108570 / 0.176557 (-0.067986) | 0.158777 / 0.737135 (-0.578359) | 0.112885 / 0.296338 (-0.183453) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.460731 / 0.215209 (0.245522) | 4.556450 / 2.077655 (2.478795) | 2.258185 / 1.504120 (0.754065) | 2.122584 / 1.541195 (0.581389) | 2.224638 / 1.468490 (0.756148) | 0.691909 / 4.584777 (-3.892868) | 3.482634 / 3.745712 (-0.263078) | 2.772837 / 5.269862 (-2.497024) | 1.533897 / 4.565676 (-3.031780) | 0.083025 / 0.424275 (-0.341250) | 0.012629 / 0.007607 (0.005022) | 0.548397 / 0.226044 (0.322352) | 5.492005 / 2.268929 (3.223077) | 2.669841 / 55.444624 (-52.774784) | 2.366947 / 6.876477 (-4.509529) | 2.496795 / 2.142072 (0.354722) | 0.804868 / 4.805227 (-4.000359) | 0.151686 / 6.500664 (-6.348978) | 0.068333 / 0.075469 (-0.007136) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.320414 / 1.841788 (-0.521374) | 14.367567 / 8.074308 (6.293258) | 14.047702 / 10.191392 (3.856310) | 0.129087 / 0.680424 (-0.551337) | 0.016658 / 0.534201 (-0.517543) | 0.381949 / 0.579283 (-0.197335) | 0.390105 / 0.434364 (-0.044258) | 0.445947 / 0.540337 (-0.094390) | 0.531074 / 1.386936 (-0.855862) |\n\n</details>\n</details>\n\n\n"
] | 2023-05-03T18:34:18Z
| 2023-05-04T14:31:55Z
| 2023-05-04T14:24:49Z
|
COLLABORATOR
| null | null | null |
Preserve the `stopping_strategy` in the `RandomlyCyclingMultiSourcesExamplesIterable.shard_data_sources` to fix shuffling a dataset interleaved (from multiple sources) with probabilities.
Fix #5812
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5816/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5816/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5816.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5816",
"merged_at": "2023-05-04T14:24:49Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5816.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5816"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6797
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6797/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6797/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6797/events
|
https://github.com/huggingface/datasets/pull/6797
| 2,234,890,097
|
PR_kwDODunzps5sNYKZ
| 6,797
|
Fix CI test_load_dataset_distributed_with_script
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6797). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Finally:\r\n- the initial issue seems it was temporary\r\n- there is a different issue now \r\n\r\n```\r\nFAILED tests/test_load.py::ModuleFactoryTest::test_HubDatasetModuleFactoryWithParquetExport - datasets.utils._dataset_viewer.DatasetViewerError: No exported Parquet files available.\r\nFAILED tests/test_load.py::ModuleFactoryTest::test_HubDatasetModuleFactoryWithParquetExport_errors_on_wrong_sha - datasets.utils._dataset_viewer.DatasetViewerError: No exported Parquet files available.\r\nFAILED tests/test_load.py::test_load_dataset_builder_for_community_dataset_with_script - AssertionError: assert 'dataset_with_script' == 'parquet'\r\n \r\n - parquet\r\n + dataset_with_script\r\n```"
] | 2024-04-10T06:57:48Z
| 2024-04-10T08:25:00Z
| 2024-04-10T08:18:01Z
|
MEMBER
| null | null | null |
Fix #6796.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6797/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6797/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6797.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6797",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/6797.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6797"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5800
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5800/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5800/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5800/events
|
https://github.com/huggingface/datasets/pull/5800
| 1,686,348,096
|
PR_kwDODunzps5PRTRh
| 5,800
|
Change downloaded file permission based on umask
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2023-04-27T08:13:30Z
| 2023-04-27T09:33:05Z
| 2023-04-27T09:30:16Z
|
MEMBER
| null | null | null |
This PR changes the permission of downloaded files to cache, so that the umask is taken into account.
Related to:
- #2157
Fix #5799.
CC: @stas00
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5800/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5800/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5800.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5800",
"merged_at": "2023-04-27T09:30:16Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5800.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5800"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5173
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5173/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5173/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5173/events
|
https://github.com/huggingface/datasets/pull/5173
| 1,425,880,441
|
PR_kwDODunzps5BreEm
| 5,173
|
Raise ffmpeg warnings only once
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-10-27T15:58:33Z
| 2022-10-28T16:03:05Z
| 2022-10-28T16:00:51Z
|
CONTRIBUTOR
| null | null | null |
Our warnings looks nice now.
`librosa` warning that was raised at each decoding:
```
/usr/local/lib/python3.7/dist-packages/librosa/core/audio.py:165: UserWarning: PySoundFile failed. Trying audioread instead.
warnings.warn("PySoundFile failed. Trying audioread instead.")
```
is suppressed with `filterwarnings("ignore")` in a context manager. That means the first warning is also ignored (setting `filterwarnings("once")` didn't work!), so I added info that audioread is used for decoding to our message. Hope it's enough.
Tests failed at first because they used to check if the warning was raised at (each) decoding in `librosa` case but now we throw only one warning (at first decoding). I removed this check for warnings, do you think it's fine?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5173/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5173/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5173.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5173",
"merged_at": "2022-10-28T16:00:51Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5173.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5173"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6274
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6274/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6274/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6274/events
|
https://github.com/huggingface/datasets/issues/6274
| 1,921,036,328
|
I_kwDODunzps5ygLAo
| 6,274
|
FileNotFoundError for dataset with multiple builder config
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/97120485?v=4",
"events_url": "https://api.github.com/users/LouisChen15/events{/privacy}",
"followers_url": "https://api.github.com/users/LouisChen15/followers",
"following_url": "https://api.github.com/users/LouisChen15/following{/other_user}",
"gists_url": "https://api.github.com/users/LouisChen15/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/LouisChen15",
"id": 97120485,
"login": "LouisChen15",
"node_id": "U_kgDOBcnw5Q",
"organizations_url": "https://api.github.com/users/LouisChen15/orgs",
"received_events_url": "https://api.github.com/users/LouisChen15/received_events",
"repos_url": "https://api.github.com/users/LouisChen15/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/LouisChen15/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LouisChen15/subscriptions",
"type": "User",
"url": "https://api.github.com/users/LouisChen15",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Please tell me if the above info is not enough for solving the problem. I will then make my dataset public temporarily so that you can really reproduce the bug. ",
"Hi! \r\nCould you share how to solve this problem? \r\nI faced this same error. "
] | 2023-10-01T23:45:56Z
| 2024-08-14T04:42:02Z
| 2023-10-02T20:09:38Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When there is only one config and only the dataset name is entered when using datasets.load_dataset(), it works fine. But if I create a second builder_config for my dataset and enter the config name when using datasets.load_dataset(), the following error will happen.
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow'
The "XXX.incomplete folder" in the cache folder of my dataset will disappear before "generating test split", which does not happen when config name is not entered and the config name is "default"
C:\Users\chenx\.cache\huggingface\datasets\my_dataset\0_shot_multiple_choice\1.0.0
The folder that is supposed to remain under the above directory will disappear, and the data generator will not have a place to generate data into.
### Steps to reproduce the bug
test = load_dataset('my_dataset', '0_shot_multiple_choice')
### Expected behavior
FileNotFoundError: [Errno 2] No such file or directory: 'C:/Users/chenx/.cache/huggingface/datasets/my_dataset/0_shot_multiple_choice/1.0.0/97c3854a012cfd6b045e3be4c864739902af2d818bb9235b047baa94c302e9a2.incomplete/my_dataset-test-00000-00000-of-NNNNN.arrow'
### Environment info
datasets 2.14.5
python 3.8.18
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/97120485?v=4",
"events_url": "https://api.github.com/users/LouisChen15/events{/privacy}",
"followers_url": "https://api.github.com/users/LouisChen15/followers",
"following_url": "https://api.github.com/users/LouisChen15/following{/other_user}",
"gists_url": "https://api.github.com/users/LouisChen15/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/LouisChen15",
"id": 97120485,
"login": "LouisChen15",
"node_id": "U_kgDOBcnw5Q",
"organizations_url": "https://api.github.com/users/LouisChen15/orgs",
"received_events_url": "https://api.github.com/users/LouisChen15/received_events",
"repos_url": "https://api.github.com/users/LouisChen15/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/LouisChen15/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/LouisChen15/subscriptions",
"type": "User",
"url": "https://api.github.com/users/LouisChen15",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6274/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6274/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7106
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7106/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7106/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7106/events
|
https://github.com/huggingface/datasets/pull/7106
| 2,469,854,262
|
PR_kwDODunzps54jntM
| 7,106
|
Rename LargeList.dtype to LargeList.feature
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7106). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005598 / 0.011353 (-0.005755) | 0.004327 / 0.011008 (-0.006681) | 0.063961 / 0.038508 (0.025453) | 0.031039 / 0.023109 (0.007930) | 0.245586 / 0.275898 (-0.030312) | 0.273765 / 0.323480 (-0.049715) | 0.003463 / 0.007986 (-0.004523) | 0.002871 / 0.004328 (-0.001457) | 0.049169 / 0.004250 (0.044918) | 0.049342 / 0.037052 (0.012290) | 0.259255 / 0.258489 (0.000766) | 0.295688 / 0.293841 (0.001847) | 0.029527 / 0.128546 (-0.099019) | 0.012507 / 0.075646 (-0.063139) | 0.209420 / 0.419271 (-0.209851) | 0.036666 / 0.043533 (-0.006866) | 0.272031 / 0.255139 (0.016892) | 0.272585 / 0.283200 (-0.010614) | 0.020004 / 0.141683 (-0.121679) | 1.158605 / 1.452155 (-0.293550) | 1.230930 / 1.492716 (-0.261787) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.109196 / 0.018006 (0.091189) | 0.377759 / 0.000490 (0.377270) | 0.000222 / 0.000200 (0.000022) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018961 / 0.037411 (-0.018450) | 0.063189 / 0.014526 (0.048663) | 0.075253 / 0.176557 (-0.101303) | 0.122912 / 0.737135 (-0.614223) | 0.077961 / 0.296338 (-0.218378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278425 / 0.215209 (0.063216) | 2.748336 / 2.077655 (0.670681) | 1.468410 / 1.504120 (-0.035710) | 1.347859 / 1.541195 (-0.193336) | 1.389175 / 1.468490 (-0.079315) | 0.742833 / 4.584777 (-3.841943) | 2.358930 / 3.745712 (-1.386782) | 3.062720 / 5.269862 (-2.207141) | 1.912264 / 4.565676 (-2.653412) | 0.079263 / 0.424275 (-0.345012) | 0.005212 / 0.007607 (-0.002396) | 0.332482 / 0.226044 (0.106438) | 3.287045 / 2.268929 (1.018116) | 1.827862 / 55.444624 (-53.616762) | 1.525087 / 6.876477 (-5.351390) | 1.581742 / 2.142072 (-0.560330) | 0.791737 / 4.805227 (-4.013490) | 0.135774 / 6.500664 (-6.364890) | 0.043700 / 0.075469 (-0.031769) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982104 / 1.841788 (-0.859683) | 12.227639 / 8.074308 (4.153331) | 9.492719 / 10.191392 (-0.698673) | 0.144792 / 0.680424 (-0.535632) | 0.014844 / 0.534201 (-0.519357) | 0.304919 / 0.579283 (-0.274364) | 0.262955 / 0.434364 (-0.171409) | 0.339517 / 0.540337 (-0.200821) | 0.430929 / 1.386936 (-0.956007) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005982 / 0.011353 (-0.005371) | 0.004199 / 0.011008 (-0.006809) | 0.050674 / 0.038508 (0.012166) | 0.032713 / 0.023109 (0.009604) | 0.270071 / 0.275898 (-0.005827) | 0.300469 / 0.323480 (-0.023011) | 0.005159 / 0.007986 (-0.002826) | 0.002961 / 0.004328 (-0.001368) | 0.048403 / 0.004250 (0.044152) | 0.042024 / 0.037052 (0.004971) | 0.288927 / 0.258489 (0.030438) | 0.321412 / 0.293841 (0.027571) | 0.032436 / 0.128546 (-0.096110) | 0.012472 / 0.075646 (-0.063175) | 0.060527 / 0.419271 (-0.358744) | 0.034222 / 0.043533 (-0.009311) | 0.276259 / 0.255139 (0.021120) | 0.293168 / 0.283200 (0.009969) | 0.019245 / 0.141683 (-0.122438) | 1.180766 / 1.452155 (-0.271388) | 1.220269 / 1.492716 (-0.272447) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.110082 / 0.018006 (0.092076) | 0.364221 / 0.000490 (0.363731) | 0.000221 / 0.000200 (0.000021) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022923 / 0.037411 (-0.014488) | 0.078022 / 0.014526 (0.063496) | 0.089543 / 0.176557 (-0.087013) | 0.129855 / 0.737135 (-0.607280) | 0.090891 / 0.296338 (-0.205448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304169 / 0.215209 (0.088960) | 2.969772 / 2.077655 (0.892117) | 1.582647 / 1.504120 (0.078527) | 1.464446 / 1.541195 (-0.076749) | 1.485422 / 1.468490 (0.016932) | 0.720105 / 4.584777 (-3.864672) | 0.966730 / 3.745712 (-2.778982) | 3.017549 / 5.269862 (-2.252313) | 1.924574 / 4.565676 (-2.641103) | 0.079938 / 0.424275 (-0.344337) | 0.005684 / 0.007607 (-0.001923) | 0.364093 / 0.226044 (0.138048) | 3.569470 / 2.268929 (1.300541) | 1.956535 / 55.444624 (-53.488089) | 1.669432 / 6.876477 (-5.207045) | 1.687596 / 2.142072 (-0.454476) | 0.802725 / 4.805227 (-4.002502) | 0.132874 / 6.500664 (-6.367790) | 0.041403 / 0.075469 (-0.034067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.033317 / 1.841788 (-0.808471) | 12.590652 / 8.074308 (4.516344) | 10.618609 / 10.191392 (0.427217) | 0.131833 / 0.680424 (-0.548591) | 0.015675 / 0.534201 (-0.518526) | 0.300804 / 0.579283 (-0.278479) | 0.127253 / 0.434364 (-0.307111) | 0.342559 / 0.540337 (-0.197779) | 0.464302 / 1.386936 (-0.922634) |\n\n</details>\n</details>\n\n\n"
] | 2024-08-16T09:12:04Z
| 2024-08-26T04:31:59Z
| 2024-08-26T04:26:02Z
|
MEMBER
| null | null | null |
Rename `LargeList.dtype` to `LargeList.feature`.
Note that `dtype` is usually used for NumPy data types ("int64", "float32",...): see `Value.dtype`.
However, `LargeList` attribute (like `Sequence.feature`) expects a `FeatureType` instead.
With this renaming:
- we avoid confusion about the expected type and
- we also align `LargeList` with `Sequence`.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7106/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7106/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7106.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7106",
"merged_at": "2024-08-26T04:26:02Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7106.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7106"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5394
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5394/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5394/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5394/events
|
https://github.com/huggingface/datasets/issues/5394
| 1,513,976,229
|
I_kwDODunzps5aPXGl
| 5,394
|
CI error: TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
] | null |
[
"I still getting the same error :\r\n\r\n`python -m spacy download fr_core_news_lg\r\n`.\r\n`import spacy`",
"@MFatnassi, this issue and the corresponding fix only affect our Continuous Integration testing environment.\r\n\r\nNote that `datasets` does not depend on `spacy`."
] | 2022-12-29T18:58:44Z
| 2022-12-30T10:40:51Z
| 2022-12-29T21:00:27Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
While installing the dependencies, the CI raises a TypeError:
```
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 183, in _run_module_as_main
mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 142, in _get_module_details
return _get_module_details(pkg_main_name, error)
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 109, in _get_module_details
__import__(pkg_name)
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/__init__.py", line 6, in <module>
from .errors import setup_default_warnings
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/errors.py", line 2, in <module>
from .compat import Literal
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/compat.py", line 3, in <module>
from thinc.util import copy_array
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/thinc/__init__.py", line 5, in <module>
from .config import registry
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/thinc/config.py", line 2, in <module>
import confection
File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/confection/__init__.py", line 10, in <module>
from pydantic import BaseModel, create_model, ValidationError, Extra
File "pydantic/__init__.py", line 2, in init pydantic.__init__
File "pydantic/dataclasses.py", line 46, in init pydantic.dataclasses
# | None | Attribute is set to None. |
File "pydantic/main.py", line 121, in init pydantic.main
TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'
```
See: https://github.com/huggingface/datasets/actions/runs/3793736481/jobs/6466356565
### Steps to reproduce the bug
```shell
pip install .[tests,metrics-tests]
python -m spacy download en_core_web_sm
```
### Expected behavior
No error.
### Environment info
See: https://github.com/huggingface/datasets/actions/runs/3793736481/jobs/6466356565
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5394/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5394/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/4567
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4567/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4567/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4567/events
|
https://github.com/huggingface/datasets/pull/4567
| 1,284,528,474
|
PR_kwDODunzps46Wh0-
| 4,567
|
Add evaluation data for amazon_reviews_multi
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4",
"events_url": "https://api.github.com/users/lewtun/events{/privacy}",
"followers_url": "https://api.github.com/users/lewtun/followers",
"following_url": "https://api.github.com/users/lewtun/following{/other_user}",
"gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lewtun",
"id": 26859204,
"login": "lewtun",
"node_id": "MDQ6VXNlcjI2ODU5MjA0",
"organizations_url": "https://api.github.com/users/lewtun/orgs",
"received_events_url": "https://api.github.com/users/lewtun/received_events",
"repos_url": "https://api.github.com/users/lewtun/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lewtun/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lewtun",
"user_view_type": "public"
}
|
[
{
"color": "0e8a16",
"default": false,
"description": "Contribution to a dataset script",
"id": 4564477500,
"name": "dataset contribution",
"node_id": "LA_kwDODunzps8AAAABEBBmPA",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution"
}
] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"As discussed with @lewtun, we are closing this PR, because it requires first the task names to be aligned between AutoTrain and datasets."
] | 2022-06-25T09:40:52Z
| 2023-09-24T09:35:22Z
| 2022-09-23T09:37:23Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4567/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4567/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4567.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4567",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/4567.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4567"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6478
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6478/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6478/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6478/events
|
https://github.com/huggingface/datasets/issues/6478
| 2,028,071,596
|
I_kwDODunzps544eqs
| 6,478
|
How to load data from lakefs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4",
"events_url": "https://api.github.com/users/d710055071/events{/privacy}",
"followers_url": "https://api.github.com/users/d710055071/followers",
"following_url": "https://api.github.com/users/d710055071/following{/other_user}",
"gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/d710055071",
"id": 12895488,
"login": "d710055071",
"node_id": "MDQ6VXNlcjEyODk1NDg4",
"organizations_url": "https://api.github.com/users/d710055071/orgs",
"received_events_url": "https://api.github.com/users/d710055071/received_events",
"repos_url": "https://api.github.com/users/d710055071/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/d710055071/subscriptions",
"type": "User",
"url": "https://api.github.com/users/d710055071",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"You can create a `pandas` DataFrame following [this](https://lakefs.io/data-version-control/dvc-using-python/) tutorial, and then convert this DataFrame to a `Dataset` with `datasets.Dataset.from_pandas`. For larger datasets (to memory map them), you can use `Dataset.from_generator` with a generator function that reads lakeFS files with `s3fs`.",
"@mariosasko hello,\r\nThis can achieve and https://huggingface.co/datasets Does the same effect apply to the dataset? For example, downloading while using",
"There is a blogspot from lakes on this topic: https://lakefs.io/blog/data-version-control-hugging-face-datasets/"
] | 2023-12-06T09:04:11Z
| 2024-07-03T19:13:57Z
| 2024-07-03T19:13:56Z
|
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
My dataset is stored on the company's lakefs server. How can I write code to load the dataset? It would be great if I could provide code examples or provide some references
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/9143109?v=4",
"events_url": "https://api.github.com/users/andimarafioti/events{/privacy}",
"followers_url": "https://api.github.com/users/andimarafioti/followers",
"following_url": "https://api.github.com/users/andimarafioti/following{/other_user}",
"gists_url": "https://api.github.com/users/andimarafioti/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/andimarafioti",
"id": 9143109,
"login": "andimarafioti",
"node_id": "MDQ6VXNlcjkxNDMxMDk=",
"organizations_url": "https://api.github.com/users/andimarafioti/orgs",
"received_events_url": "https://api.github.com/users/andimarafioti/received_events",
"repos_url": "https://api.github.com/users/andimarafioti/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/andimarafioti/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/andimarafioti/subscriptions",
"type": "User",
"url": "https://api.github.com/users/andimarafioti",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6478/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6478/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6069
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6069/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6069/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6069/events
|
https://github.com/huggingface/datasets/issues/6069
| 1,820,831,535
|
I_kwDODunzps5sh68v
| 6,069
|
KeyError: dataset has no key "image"
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/28512232?v=4",
"events_url": "https://api.github.com/users/etetteh/events{/privacy}",
"followers_url": "https://api.github.com/users/etetteh/followers",
"following_url": "https://api.github.com/users/etetteh/following{/other_user}",
"gists_url": "https://api.github.com/users/etetteh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/etetteh",
"id": 28512232,
"login": "etetteh",
"node_id": "MDQ6VXNlcjI4NTEyMjMy",
"organizations_url": "https://api.github.com/users/etetteh/orgs",
"received_events_url": "https://api.github.com/users/etetteh/received_events",
"repos_url": "https://api.github.com/users/etetteh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/etetteh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/etetteh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/etetteh",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"You can list the dataset's columns with `ds.column_names` before `.map` to check whether the dataset has an `image` column. If it doesn't, then this is a bug. Otherwise, please paste the line with the `.map` call.\r\n\r\n\r\n",
"This is the piece of code I am running:\r\n```\r\ndata_transforms = utils.get_data_augmentation(args)\r\nimage_dataset = utils.load_image_dataset(args.dataset)\r\n\r\ndef resize(examples):\r\n examples[\"pixel_values\"] = [image.convert(\"RGB\").resize((300, 300)) for image in examples[\"image\"]]\r\n return examples\r\n\r\ndef preprocess_train(example_batch):\r\n print(f\"Example batch: \\n{example_batch}\")\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"train\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\ndef preprocess_val(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"val\"](image.convert(\"RGB\")) for image in example_batch[\"pixel_values\"]\r\n ]\r\n return example_batch\r\n\r\nimage_dataset = image_dataset.map(resize, remove_columns=[\"image\"], batched=True)\r\n\r\nimage_dataset[\"train\"].set_transform(preprocess_train)\r\nimage_dataset[\"validation\"].set_transform(preprocess_val)\r\n```\r\n\r\nWhen I print ds.column_names I get the following\r\n`{'train': ['image', 'label'], 'validation': ['image', 'label'], 'test': ['image', 'label']}`\r\n\r\nThe `print(f\"Example batch: \\n{example_batch}\")` in the `preprocess_train` function outputs only labels without images:\r\n```\r\nExample batch: \r\n{'label': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]}\r\n```\r\n\r\nThe weird part of it all is that a sample code runs in a jupyter lab notebook without any bugs, but when I run my scripts from the terminal I get the bug. The same code.",
"The `remove_columns=[\"image\"]` argument in the `.map` call removes the `image` column from the output, so drop this argument to preserve it.",
"The problem is not with the removal of the image key. The bug is why only the labels are sent to be process, instead of all the featues or dictionary keys.\r\n\r\nP.S. I just dropped the removal argument as you've suggested, but that didn't solve the problem, because only the labels are being sent to be processed",
"All the `image_dataset.column_names` after the `map` call should also be present in `preprocess_train `/`preprocess_val` unless (input) `columns` in `set_transform` are specified.\r\n\r\nIf that's not the case, we need a full reproducer (not snippets) with the environment info.",
"I have resolved the error after including a collate function as indicated in the Quick Start session of the Datasets docs.:\r\n\r\nHere is what I did:\r\n```\r\ndata_transforms = utils.get_data_augmentation(args)\r\nimage_dataset = utils.load_image_dataset(args.dataset)\r\n\r\ndef preprocess_train(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"train\"](image.convert(\"RGB\")) for image in example_batch[\"image\"]\r\n ]\r\n return example_batch\r\n\r\ndef preprocess_val(example_batch):\r\n example_batch[\"pixel_values\"] = [\r\n data_transforms[\"val\"](image.convert(\"RGB\")) for image in example_batch[\"image\"]\r\n ]\r\n return example_batch\r\n\r\ndef collate_fn(examples):\r\n images = []\r\n labels = []\r\n for example in examples:\r\n images.append((example[\"pixel_values\"]))\r\n labels.append(example[\"label\"])\r\n\r\n pixel_values = torch.stack(images)\r\n labels = torch.tensor(labels)\r\n return {\"pixel_values\": pixel_values, \"label\": labels}\r\n\r\ntrain_dataset = image_dataset[\"train\"].with_transform(preprocess_train)\r\nval_dataset = image_dataset[\"validation\"].with_transform(preprocess_val)\r\n\r\nimage_datasets = {\r\n \"train\": train_dataset,\r\n \"val\": val_dataset\r\n}\r\n\r\nsamplers = {\r\n \"train\": data.RandomSampler(train_dataset),\r\n \"val\": data.SequentialSampler(val_dataset),\r\n}\r\n\r\ndataloaders = {\r\n x: data.DataLoader(\r\n image_datasets[x],\r\n collate_fn=collate_fn,\r\n batch_size=batch_size,\r\n sampler=samplers[x],\r\n num_workers=args.num_workers,\r\n worker_init_fn=utils.set_seed_for_worker,\r\n generator=g,\r\n pin_memory=True,\r\n )\r\n for x in [\"train\", \"val\"]\r\n}\r\n\r\ntrain_loader, val_loader = dataloaders[\"train\"], dataloaders[\"val\"]\r\n```\r\nEverything runs fine without any bug now. ",
"are you using hf Trainer? hf trainer will remove columns not used in model.forward. set `remove_unused_columns=False` might works"
] | 2023-07-25T17:45:50Z
| 2024-09-06T08:16:16Z
| 2023-07-27T12:42:17Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I've loaded a local image dataset with:
`ds = laod_dataset("imagefolder", data_dir=path-to-data)`
And defined a transform to process the data, following the Datasets docs.
However, I get a keyError error, indicating there's no "image" key in my dataset. When I printed out the example_batch sent to the transformation function, it shows only the labels are being sent to the function.
For some reason, the images are not in the example batches.
### Steps to reproduce the bug
I'm using the latest stable version of datasets
### Expected behavior
I expect the example_batches to contain both images and labels
### Environment info
I'm using the latest stable version of datasets
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/28512232?v=4",
"events_url": "https://api.github.com/users/etetteh/events{/privacy}",
"followers_url": "https://api.github.com/users/etetteh/followers",
"following_url": "https://api.github.com/users/etetteh/following{/other_user}",
"gists_url": "https://api.github.com/users/etetteh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/etetteh",
"id": 28512232,
"login": "etetteh",
"node_id": "MDQ6VXNlcjI4NTEyMjMy",
"organizations_url": "https://api.github.com/users/etetteh/orgs",
"received_events_url": "https://api.github.com/users/etetteh/received_events",
"repos_url": "https://api.github.com/users/etetteh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/etetteh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/etetteh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/etetteh",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6069/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6069/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7486
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7486/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7486/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7486/events
|
https://github.com/huggingface/datasets/issues/7486
| 2,954,042,179
|
I_kwDODunzps6wExtD
| 7,486
|
`shared_datadir` fixture is missing
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4",
"events_url": "https://api.github.com/users/lahwaacz/events{/privacy}",
"followers_url": "https://api.github.com/users/lahwaacz/followers",
"following_url": "https://api.github.com/users/lahwaacz/following{/other_user}",
"gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lahwaacz",
"id": 1289205,
"login": "lahwaacz",
"node_id": "MDQ6VXNlcjEyODkyMDU=",
"organizations_url": "https://api.github.com/users/lahwaacz/orgs",
"received_events_url": "https://api.github.com/users/lahwaacz/received_events",
"repos_url": "https://api.github.com/users/lahwaacz/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lahwaacz",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"OK I was missing the `pytest-datadir` package. Sorry for the noise!"
] | 2025-03-27T18:17:12Z
| 2025-03-27T19:49:11Z
| 2025-03-27T19:49:10Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Running the tests for the latest release fails due to missing `shared_datadir` fixture.
### Steps to reproduce the bug
Running `pytest` while building a package for Arch Linux leads to these errors:
```
==================================== ERRORS ====================================
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>1] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>2] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>3] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>4] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>5] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>6] _________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
_______________ ERROR at setup of test_dataset_with_pdf_feature ________________
[gw44] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 34
@require_pdfplumber
def test_dataset_with_pdf_feature(shared_datadir):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:34
_________ ERROR at setup of test_pdf_feature_encode_example[<lambda>0] _________
[gw46] linux -- Python 3.13.2 /build/python-datasets/src/datasets-3.5.0/test-env/bin/python
file /build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py, line 8
@require_pdfplumber
@pytest.mark.parametrize(
"build_example",
[
lambda pdf_path: pdf_path,
lambda pdf_path: open(pdf_path, "rb").read(),
lambda pdf_path: {"path": pdf_path},
lambda pdf_path: {"path": pdf_path, "bytes": None},
lambda pdf_path: {"path": pdf_path, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"path": None, "bytes": open(pdf_path, "rb").read()},
lambda pdf_path: {"bytes": open(pdf_path, "rb").read()},
],
)
def test_pdf_feature_encode_example(shared_datadir, build_example):
E fixture 'shared_datadir' not found
> available fixtures: _hf_gated_dataset_repo_txt_data, arrow_file, arrow_path, audio_file, bz2_csv_path, bz2_file, cache, capfd, capfdbinary, caplog, capsys, capsysbinary, ci_hfh_hf_hub_url, ci_hub_config, cleanup_repo, csv2_path, csv_path, data_dir_with_hidden_files, dataset, dataset_dict, disable_implicit_token, disable_tqdm_output, doctest_namespace, geoparquet_path, gz_file, hf_api, hf_gated_dataset_repo_txt_data, hf_private_dataset_repo_txt_data, hf_private_dataset_repo_txt_data_, hf_private_dataset_repo_zipped_img_data, hf_private_dataset_repo_zipped_img_data_, hf_private_dataset_repo_zipped_txt_data, hf_private_dataset_repo_zipped_txt_data_, hf_token, image_file, json_dict_of_lists_path, json_list_of_dicts_path, jsonl2_path, jsonl_312_path, jsonl_gz_path, jsonl_path, jsonl_str_path, lz4_file, mock_fsspec, mockfs, monkeypatch, parquet_path, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, set_ci_hub_access_token, set_sqlalchemy_silence_uber_warning, set_test_cache_config, set_update_download_counts_to_false, seven_zip_file, sqlite_path, tar_file, tar_jsonl_path, tar_nested_jsonl_path, temporary_repo, tensor_file, testrun_uid, text2_path, text_dir, text_dir_with_unsupported_extension, text_file, text_file_content, text_gz_path, text_path, text_path_with_unicode_new_lines, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory, tmpfs, worker_id, xml_file, xz_file, zero_time_out_for_remote_code, zip_csv_path, zip_csv_with_dir_path, zip_file, zip_image_path, zip_jsonl_path, zip_jsonl_with_dir_path, zip_nested_jsonl_path, zip_text_path, zip_text_with_dir_path, zip_unsupported_ext_path, zip_uppercase_csv_path, zstd_file
> use 'pytest --fixtures [testpath]' for help on them.
/build/python-datasets/src/datasets-3.5.0/tests/features/test_pdf.py:8
```
### Expected behavior
All fixtures used in tests should be available.
### Environment info
Arch Linux build system, building the [python-datasets](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets) package.
There are actually [many deselected tests](https://gitlab.archlinux.org/archlinux/packaging/packages/python-datasets/-/blob/6f97957f0c326cc7b3da6b7f12326305bcaef374/PKGBUILD#L66-148) which were failing on previous releases, but these errors popped up in 3.5.0.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1289205?v=4",
"events_url": "https://api.github.com/users/lahwaacz/events{/privacy}",
"followers_url": "https://api.github.com/users/lahwaacz/followers",
"following_url": "https://api.github.com/users/lahwaacz/following{/other_user}",
"gists_url": "https://api.github.com/users/lahwaacz/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lahwaacz",
"id": 1289205,
"login": "lahwaacz",
"node_id": "MDQ6VXNlcjEyODkyMDU=",
"organizations_url": "https://api.github.com/users/lahwaacz/orgs",
"received_events_url": "https://api.github.com/users/lahwaacz/received_events",
"repos_url": "https://api.github.com/users/lahwaacz/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lahwaacz/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lahwaacz/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lahwaacz",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7486/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7486/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/4609
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4609/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4609/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4609/events
|
https://github.com/huggingface/datasets/issues/4609
| 1,290,392,083
|
I_kwDODunzps5M6dIT
| 4,609
|
librispeech dataset has to download whole subset when specifing the split to use
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/73462159?v=4",
"events_url": "https://api.github.com/users/sunhaozhepy/events{/privacy}",
"followers_url": "https://api.github.com/users/sunhaozhepy/followers",
"following_url": "https://api.github.com/users/sunhaozhepy/following{/other_user}",
"gists_url": "https://api.github.com/users/sunhaozhepy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sunhaozhepy",
"id": 73462159,
"login": "sunhaozhepy",
"node_id": "MDQ6VXNlcjczNDYyMTU5",
"organizations_url": "https://api.github.com/users/sunhaozhepy/orgs",
"received_events_url": "https://api.github.com/users/sunhaozhepy/received_events",
"repos_url": "https://api.github.com/users/sunhaozhepy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sunhaozhepy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sunhaozhepy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sunhaozhepy",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"Hi! You can use streaming to fetch only a subset of the data:\r\n```python\r\nraw_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"train.100\", streaming=True)\r\n```\r\nAlso, we plan to make it possible to download a particular split in the non-streaming mode, but this task is not easy due to how our dataset scripts are structured.",
"Hi,\r\n\r\nThat's a great help. Thank you very much."
] | 2022-06-30T16:38:24Z
| 2022-07-12T21:44:32Z
| 2022-07-12T21:44:32Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
librispeech dataset has to download whole subset when specifing the split to use
## Steps to reproduce the bug
see below
# Sample code to reproduce the bug
```
!pip install datasets
from datasets import load_dataset
raw_dataset = load_dataset("librispeech_asr", "clean", split="train.100")
```
## Expected results
The split "train.clean.100" is downloaded.
## Actual results
All four splits in "clean" subset is downloaded.
## Environment info
- `datasets` version: 2.3.2
- Platform: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic
- Python version: 3.7.13
- PyArrow version: 6.0.1
- Pandas version: 1.3.5
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/73462159?v=4",
"events_url": "https://api.github.com/users/sunhaozhepy/events{/privacy}",
"followers_url": "https://api.github.com/users/sunhaozhepy/followers",
"following_url": "https://api.github.com/users/sunhaozhepy/following{/other_user}",
"gists_url": "https://api.github.com/users/sunhaozhepy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sunhaozhepy",
"id": 73462159,
"login": "sunhaozhepy",
"node_id": "MDQ6VXNlcjczNDYyMTU5",
"organizations_url": "https://api.github.com/users/sunhaozhepy/orgs",
"received_events_url": "https://api.github.com/users/sunhaozhepy/received_events",
"repos_url": "https://api.github.com/users/sunhaozhepy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sunhaozhepy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sunhaozhepy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sunhaozhepy",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4609/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4609/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5831
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5831/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5831/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5831/events
|
https://github.com/huggingface/datasets/issues/5831
| 1,701,813,835
|
I_kwDODunzps5lb55L
| 5,831
|
[Bug]504 Server Error when loading dataset which was already cached
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/20473466?v=4",
"events_url": "https://api.github.com/users/SingL3/events{/privacy}",
"followers_url": "https://api.github.com/users/SingL3/followers",
"following_url": "https://api.github.com/users/SingL3/following{/other_user}",
"gists_url": "https://api.github.com/users/SingL3/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SingL3",
"id": 20473466,
"login": "SingL3",
"node_id": "MDQ6VXNlcjIwNDczNDY2",
"organizations_url": "https://api.github.com/users/SingL3/orgs",
"received_events_url": "https://api.github.com/users/SingL3/received_events",
"repos_url": "https://api.github.com/users/SingL3/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SingL3/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SingL3/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SingL3",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"I am experiencing the same problem with the following environment:\r\n\r\n* `datasets` version: 2.11.0\r\n* Platform: `Linux 5.19.0-41-generic x86_64 GNU/Linux`\r\n* Python version: `3.8.5`\r\n* Huggingface_hub version: 0.13.3\r\n* PyArrow version: `11.0.0`\r\n* Pandas version: `1.5.3`\r\n\r\nTrying to get some diagnostics, I got the following: \r\n\r\n```python\r\n>>> from huggingface_hub import scan_cache_dir\r\n>>> sd = scan_cache_dir()\r\n>>> sd\r\nHFCacheInfo(size_on_disk=0, repos=frozenset(), warnings=[CorruptedCacheException('Repo path is not a directory: /home/myname/.cache/huggingface/hub/version_diffusers_cache.txt')])\r\n\r\n```\r\nHowever, that might also be because I had tried to manually specify the `cache_dir` and that resulted in trying to download the dataset again ... but into a folder one level higher up than it should have.\r\n\r\nNote that my issue is with the `huggan/wikiart` dataset, so it is not a dataset-specific issue.",
"same problem with a private dataset repo, seems the huggingface hub server got some connection problem?",
"Yes, dataset server seems down for now",
"@SingL3 You can avoid this error by setting the [`HF_DATASETS_OFFLINE`](https://huggingface.co/docs/datasets/v2.12.0/en/loading#offline) env variable to 1. By default, if an internet connection is available, we check whether the cache of a cached dataset is up-to-date.\r\n\r\n@lucidBrot `datasets`' cache is still not aligned with `huggigface_hub`'s. We plan to align it eventually.",
"Today we had a big issue affecting the Hugging Face Hub, thus all the `504 Server Error: Gateway Time-out` errors.\r\n\r\nIt is fixed now and loading your datasets should work as expected.",
"Hi, @albertvillanova.\r\nIf there is a locally cached version of datasets or something cache using huggingface_hub, when a network problem(either client or server) occurs, is it a better way to fallback to use the current cached version rather than raise a exception and exit?"
] | 2023-05-09T10:31:07Z
| 2023-05-10T01:48:20Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I have already cached the dataset using:
```
dataset = load_dataset("databricks/databricks-dolly-15k",
cache_dir="/mnt/data/llm/datasets/databricks-dolly-15k")
```
After that, I tried to load it again using the same machine, I got this error:
```
Traceback (most recent call last):
File "/mnt/home/llm/pythia/train.py", line 16, in <module>
dataset = load_dataset("databricks/databricks-dolly-15k",
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1773, in load_dataset
builder_instance = load_dataset_builder(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1502, in load_dataset_builder
dataset_module = dataset_module_factory(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1219, in dataset_module_factory
raise e1 from None
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1186, in dataset_module_factory
raise e
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/datasets/load.py", line 1160, in dataset_module_factory
dataset_info = hf_api.dataset_info(
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 120, in _inner_fn
return fn(*args, **kwargs)
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 1667, in dataset_info
hf_raise_for_status(r)
File "/mnt/data/conda/envs/pythia_ft/lib/python3.9/site-packages/huggingface_hub/utils/_errors.py", line 301, in hf_raise_for_status
raise HfHubHTTPError(str(e), response=response) from e
huggingface_hub.utils._errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/databricks/databricks-dolly-15k
```
### Steps to reproduce the bug
1. cache the databrick-dolly-15k dataset using load_dataset, setting a cache_dir
2. use load_dataset again, setting the same cache_dir
### Expected behavior
Dataset loaded succuessfully.
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-4.18.0-372.16.1.el8_6.x86_64-x86_64-with-glibc2.27
- Python version: 3.9.16
- Huggingface_hub version: 0.14.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/20473466?v=4",
"events_url": "https://api.github.com/users/SingL3/events{/privacy}",
"followers_url": "https://api.github.com/users/SingL3/followers",
"following_url": "https://api.github.com/users/SingL3/following{/other_user}",
"gists_url": "https://api.github.com/users/SingL3/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SingL3",
"id": 20473466,
"login": "SingL3",
"node_id": "MDQ6VXNlcjIwNDczNDY2",
"organizations_url": "https://api.github.com/users/SingL3/orgs",
"received_events_url": "https://api.github.com/users/SingL3/received_events",
"repos_url": "https://api.github.com/users/SingL3/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SingL3/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SingL3/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SingL3",
"user_view_type": "public"
}
|
{
"+1": 3,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 3,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5831/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5831/timeline
| null |
reopened
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5313
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5313/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5313/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5313/events
|
https://github.com/huggingface/datasets/pull/5313
| 1,468,484,136
|
PR_kwDODunzps5D6Qfb
| 5,313
|
Fix description of streaming in the docs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-29T18:00:28Z
| 2022-12-01T14:55:30Z
| 2022-12-01T14:00:34Z
|
CONTRIBUTOR
| null | null | null |
We say that "the data is being downloaded progressively" which is not true, it's just streamed, so I fixed it. Probably I missed some other places where it is written?
Also changed docstrings for `StreamingDownloadManager`'s `download` and `extract` to reflect the same, as these docstrings are displayed in the documentation cc @lhoestq
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/polinaeterna",
"id": 16348744,
"login": "polinaeterna",
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"type": "User",
"url": "https://api.github.com/users/polinaeterna",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5313/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5313/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5313.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5313",
"merged_at": "2022-12-01T14:00:34Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5313.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5313"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7108
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7108/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7108/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7108/events
|
https://github.com/huggingface/datasets/issues/7108
| 2,470,665,327
|
I_kwDODunzps6TQ1xv
| 7,108
|
website broken: Create a new dataset repository, doesn't create a new repo in Firefox
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/147971?v=4",
"events_url": "https://api.github.com/users/neoneye/events{/privacy}",
"followers_url": "https://api.github.com/users/neoneye/followers",
"following_url": "https://api.github.com/users/neoneye/following{/other_user}",
"gists_url": "https://api.github.com/users/neoneye/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/neoneye",
"id": 147971,
"login": "neoneye",
"node_id": "MDQ6VXNlcjE0Nzk3MQ==",
"organizations_url": "https://api.github.com/users/neoneye/orgs",
"received_events_url": "https://api.github.com/users/neoneye/received_events",
"repos_url": "https://api.github.com/users/neoneye/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/neoneye/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neoneye/subscriptions",
"type": "User",
"url": "https://api.github.com/users/neoneye",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"I don't reproduce, I was able to create a new repo: https://huggingface.co/datasets/severo/reproduce-datasets-issues-7108. Can you confirm it's still broken?",
"I have just tried again.\r\n\r\nFirefox: The `Create dataset` doesn't work. It has worked in the past. It's my preferred browser.\r\n\r\nChrome: The `Create dataset` works.\r\n\r\nIt seems to be a Firefox specific issue.",
"I have updated Firefox 129.0 (64 bit), and now the `Create dataset` is working again in Firefox.\r\n\r\nUX: It would be nice with better error messages on HuggingFace.",
"maybe an issue with the cookie. cc @Wauplin @coyotte508 "
] | 2024-08-16T17:23:00Z
| 2024-08-19T13:21:12Z
| 2024-08-19T06:52:48Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
This issue is also reported here:
https://discuss.huggingface.co/t/create-a-new-dataset-repository-broken-page/102644
This page is broken.
https://huggingface.co/new-dataset
I fill in the form with my text, and click `Create Dataset`.

Then the form gets wiped. And no repo got created. No error message visible in the developer console.

# Idea for improvement
For better UX, if the repo cannot be created, then show an error message, that something went wrong.
# Work around, that works for me
```python
from huggingface_hub import HfApi, HfFolder
repo_id = 'simon-arc-solve-fractal-v3'
api = HfApi()
username = api.whoami()['name']
repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=True, repo_type="dataset")
```
### Steps to reproduce the bug
Go https://huggingface.co/new-dataset
Fill in the form.
Click `Create dataset`.
Now the form is cleared. And the page doesn't jump anywhere.
### Expected behavior
The moment the user clicks `Create dataset`, the repo gets created and the page jumps to the created repo.
### Environment info
Firefox 128.0.3 (64-bit)
macOS Sonoma 14.5
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/147971?v=4",
"events_url": "https://api.github.com/users/neoneye/events{/privacy}",
"followers_url": "https://api.github.com/users/neoneye/followers",
"following_url": "https://api.github.com/users/neoneye/following{/other_user}",
"gists_url": "https://api.github.com/users/neoneye/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/neoneye",
"id": 147971,
"login": "neoneye",
"node_id": "MDQ6VXNlcjE0Nzk3MQ==",
"organizations_url": "https://api.github.com/users/neoneye/orgs",
"received_events_url": "https://api.github.com/users/neoneye/received_events",
"repos_url": "https://api.github.com/users/neoneye/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/neoneye/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neoneye/subscriptions",
"type": "User",
"url": "https://api.github.com/users/neoneye",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7108/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7108/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5674
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5674/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5674/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5674/events
|
https://github.com/huggingface/datasets/issues/5674
| 1,641,084,105
|
I_kwDODunzps5h0PTJ
| 5,674
|
Stored XSS
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4",
"events_url": "https://api.github.com/users/Fadavvi/events{/privacy}",
"followers_url": "https://api.github.com/users/Fadavvi/followers",
"following_url": "https://api.github.com/users/Fadavvi/following{/other_user}",
"gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Fadavvi",
"id": 21213484,
"login": "Fadavvi",
"node_id": "MDQ6VXNlcjIxMjEzNDg0",
"organizations_url": "https://api.github.com/users/Fadavvi/orgs",
"received_events_url": "https://api.github.com/users/Fadavvi/received_events",
"repos_url": "https://api.github.com/users/Fadavvi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Fadavvi",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi! You can contact `security@huggingface.co` to report this vulnerability."
] | 2023-03-26T20:55:58Z
| 2024-04-30T22:56:41Z
| 2023-03-27T21:01:55Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
x
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4",
"events_url": "https://api.github.com/users/Fadavvi/events{/privacy}",
"followers_url": "https://api.github.com/users/Fadavvi/followers",
"following_url": "https://api.github.com/users/Fadavvi/following{/other_user}",
"gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Fadavvi",
"id": 21213484,
"login": "Fadavvi",
"node_id": "MDQ6VXNlcjIxMjEzNDg0",
"organizations_url": "https://api.github.com/users/Fadavvi/orgs",
"received_events_url": "https://api.github.com/users/Fadavvi/received_events",
"repos_url": "https://api.github.com/users/Fadavvi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Fadavvi",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5674/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5674/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5967
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5967/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5967/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5967/events
|
https://github.com/huggingface/datasets/issues/5967
| 1,763,926,520
|
I_kwDODunzps5pI2H4
| 5,967
|
Config name / split name lost after map with multiproc
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanchit-gandhi",
"id": 93869735,
"login": "sanchit-gandhi",
"node_id": "U_kgDOBZhWpw",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanchit-gandhi",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"This must be due to DatasetInfo.from_merge which drops them and is used in `concatenate_datasets`.\r\n\r\nAnd you're experiencing this issue because multiprocessing does concatenate the resulting datasets from each process.\r\n\r\nMaybe they should be kept if all the subdatasets share the same values for config_name and split",
"That sounds like a clean workaround!"
] | 2023-06-19T17:27:36Z
| 2023-06-28T08:55:25Z
| null |
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Performing a `.map` method on a dataset loses it's config name / split name only if run with multiproc
### Steps to reproduce the bug
```python
from datasets import Audio, load_dataset
from transformers import AutoFeatureExtractor
import numpy as np
# load dummy dataset
libri = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean")
# make train / test splits
libri = libri["validation"].train_test_split(seed=42, shuffle=True, test_size=0.1)
# example feature extractor
model_id = "ntu-spml/distilhubert"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, do_normalize=True, return_attention_mask=True)
sampling_rate = feature_extractor.sampling_rate
libri = libri.cast_column("audio", Audio(sampling_rate=sampling_rate))
max_duration = 30.0
def preprocess_function(examples):
audio_arrays = [x["array"] for x in examples["audio"]]
inputs = feature_extractor(
audio_arrays,
sampling_rate=feature_extractor.sampling_rate,
max_length=int(feature_extractor.sampling_rate * max_duration),
truncation=True,
return_attention_mask=True,
)
return inputs
# single proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=1
)
print(10 * "=" ,"Single processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
# multi proc map
libri_encoded = libri.map(
preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=2
)
print(10 * "=" ,"Multi processing", 10 * "=")
print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split)
print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split)
```
**Print Output:**
```
========== Single processing ==========
Config name before: clean Split name before: validation
Config name after: clean Split name after: validation
========== Multi processing ==========
Config name before: clean Split name before: validation
Config name after: None Split name after: None
```
=> we can see that the config/split names are lost in the multiprocessing setting
### Expected behavior
Should retain both config / split names in the multiproc setting
### Environment info
- `datasets` version: 2.13.1.dev0
- Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 12.0.0
- Pandas version: 2.0.2
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5967/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5967/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/6784
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6784/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6784/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6784/events
|
https://github.com/huggingface/datasets/pull/6784
| 2,228,390,504
|
PR_kwDODunzps5r3UTj
| 6,784
|
Extract data on the fly in packaged builders
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6784). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"CI failures are unrelated, so this is ready for the review",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005130 / 0.011353 (-0.006223) | 0.003784 / 0.011008 (-0.007224) | 0.064899 / 0.038508 (0.026391) | 0.029456 / 0.023109 (0.006347) | 0.253384 / 0.275898 (-0.022514) | 0.273509 / 0.323480 (-0.049971) | 0.004116 / 0.007986 (-0.003870) | 0.002713 / 0.004328 (-0.001615) | 0.053984 / 0.004250 (0.049733) | 0.043538 / 0.037052 (0.006485) | 0.264696 / 0.258489 (0.006207) | 0.298321 / 0.293841 (0.004480) | 0.027916 / 0.128546 (-0.100630) | 0.010734 / 0.075646 (-0.064912) | 0.208284 / 0.419271 (-0.210988) | 0.035873 / 0.043533 (-0.007659) | 0.251028 / 0.255139 (-0.004111) | 0.270835 / 0.283200 (-0.012364) | 0.017475 / 0.141683 (-0.124208) | 1.130728 / 1.452155 (-0.321426) | 1.188672 / 1.492716 (-0.304044) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094191 / 0.018006 (0.076185) | 0.304064 / 0.000490 (0.303575) | 0.000251 / 0.000200 (0.000051) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018414 / 0.037411 (-0.018998) | 0.061550 / 0.014526 (0.047024) | 0.074200 / 0.176557 (-0.102357) | 0.120250 / 0.737135 (-0.616885) | 0.076018 / 0.296338 (-0.220321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302517 / 0.215209 (0.087308) | 2.943936 / 2.077655 (0.866282) | 1.584847 / 1.504120 (0.080727) | 1.464501 / 1.541195 (-0.076694) | 1.472402 / 1.468490 (0.003912) | 0.570971 / 4.584777 (-4.013806) | 2.383207 / 3.745712 (-1.362505) | 2.811520 / 5.269862 (-2.458342) | 1.746997 / 4.565676 (-2.818680) | 0.063391 / 0.424275 (-0.360884) | 0.005296 / 0.007607 (-0.002311) | 0.358948 / 0.226044 (0.132903) | 3.604704 / 2.268929 (1.335776) | 1.935813 / 55.444624 (-53.508812) | 1.659944 / 6.876477 (-5.216533) | 1.687151 / 2.142072 (-0.454922) | 0.658044 / 4.805227 (-4.147183) | 0.120425 / 6.500664 (-6.380240) | 0.042694 / 0.075469 (-0.032775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986308 / 1.841788 (-0.855479) | 11.727945 / 8.074308 (3.653637) | 9.532785 / 10.191392 (-0.658607) | 0.140071 / 0.680424 (-0.540352) | 0.013472 / 0.534201 (-0.520729) | 0.285828 / 0.579283 (-0.293455) | 0.261571 / 0.434364 (-0.172793) | 0.323114 / 0.540337 (-0.217223) | 0.418132 / 1.386936 (-0.968804) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005428 / 0.011353 (-0.005925) | 0.003954 / 0.011008 (-0.007054) | 0.050336 / 0.038508 (0.011828) | 0.029941 / 0.023109 (0.006831) | 0.281483 / 0.275898 (0.005585) | 0.304822 / 0.323480 (-0.018658) | 0.004151 / 0.007986 (-0.003835) | 0.002862 / 0.004328 (-0.001466) | 0.049196 / 0.004250 (0.044945) | 0.040266 / 0.037052 (0.003213) | 0.293515 / 0.258489 (0.035026) | 0.319165 / 0.293841 (0.025324) | 0.029186 / 0.128546 (-0.099360) | 0.010838 / 0.075646 (-0.064809) | 0.058789 / 0.419271 (-0.360483) | 0.032847 / 0.043533 (-0.010686) | 0.280164 / 0.255139 (0.025025) | 0.299609 / 0.283200 (0.016410) | 0.018291 / 0.141683 (-0.123392) | 1.153858 / 1.452155 (-0.298297) | 1.219108 / 1.492716 (-0.273608) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093783 / 0.018006 (0.075777) | 0.301526 / 0.000490 (0.301037) | 0.000211 / 0.000200 (0.000011) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022105 / 0.037411 (-0.015306) | 0.074844 / 0.014526 (0.060318) | 0.087147 / 0.176557 (-0.089409) | 0.127678 / 0.737135 (-0.609457) | 0.088630 / 0.296338 (-0.207709) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286805 / 0.215209 (0.071596) | 2.828664 / 2.077655 (0.751009) | 1.579771 / 1.504120 (0.075651) | 1.463137 / 1.541195 (-0.078058) | 1.509238 / 1.468490 (0.040748) | 0.583425 / 4.584777 (-4.001352) | 2.424905 / 3.745712 (-1.320807) | 2.819354 / 5.269862 (-2.450508) | 1.784695 / 4.565676 (-2.780981) | 0.063374 / 0.424275 (-0.360901) | 0.005337 / 0.007607 (-0.002270) | 0.342291 / 0.226044 (0.116247) | 3.404319 / 2.268929 (1.135390) | 1.956909 / 55.444624 (-53.487716) | 1.694317 / 6.876477 (-5.182160) | 1.696256 / 2.142072 (-0.445817) | 0.655748 / 4.805227 (-4.149480) | 0.116785 / 6.500664 (-6.383879) | 0.040930 / 0.075469 (-0.034539) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.034463 / 1.841788 (-0.807325) | 12.252041 / 8.074308 (4.177733) | 10.593960 / 10.191392 (0.402568) | 0.139311 / 0.680424 (-0.541112) | 0.016177 / 0.534201 (-0.518023) | 0.288910 / 0.579283 (-0.290373) | 0.281588 / 0.434364 (-0.152776) | 0.323066 / 0.540337 (-0.217272) | 0.427604 / 1.386936 (-0.959332) |\n\n</details>\n</details>\n\n\n"
] | 2024-04-05T16:12:25Z
| 2024-04-16T16:37:47Z
| 2024-04-16T16:31:29Z
|
COLLABORATOR
| null | null | null |
Instead of waiting for data files to be extracted in the packaged builders, we can prepend the compression prefix and extract them as they are being read (using `fsspec`). This saves disk space (deleting extracted archives is not set by default) and slightly speeds up dataset generation (less disk reads)
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6784/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6784/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6784.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6784",
"merged_at": "2024-04-16T16:31:29Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6784.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6784"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4687
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4687/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4687/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4687/events
|
https://github.com/huggingface/datasets/pull/4687
| 1,306,021,415
|
PR_kwDODunzps47eF_E
| 4,687
|
Trigger CI also on push to main
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-07-15T13:11:29Z
| 2022-07-15T13:47:21Z
| 2022-07-15T13:35:23Z
|
MEMBER
| null | null | null |
Currently, new CI (on GitHub Actions) is only triggered on pull requests branches when the base branch is main.
This PR also triggers the CI when a PR is merged to main branch.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4687/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4687/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4687.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4687",
"merged_at": "2022-07-15T13:35:23Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4687.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4687"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5591
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5591/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5591/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5591/events
|
https://github.com/huggingface/datasets/pull/5591
| 1,603,571,407
|
PR_kwDODunzps5K9S79
| 5,591
|
set dev version
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5591). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008826 / 0.011353 (-0.002527) | 0.004595 / 0.011008 (-0.006413) | 0.103387 / 0.038508 (0.064879) | 0.030241 / 0.023109 (0.007132) | 0.351202 / 0.275898 (0.075303) | 0.417601 / 0.323480 (0.094121) | 0.007121 / 0.007986 (-0.000865) | 0.003497 / 0.004328 (-0.000831) | 0.079256 / 0.004250 (0.075006) | 0.037617 / 0.037052 (0.000564) | 0.380542 / 0.258489 (0.122053) | 0.397863 / 0.293841 (0.104022) | 0.034291 / 0.128546 (-0.094255) | 0.011767 / 0.075646 (-0.063879) | 0.323737 / 0.419271 (-0.095534) | 0.041502 / 0.043533 (-0.002031) | 0.352982 / 0.255139 (0.097843) | 0.378618 / 0.283200 (0.095418) | 0.091671 / 0.141683 (-0.050012) | 1.499278 / 1.452155 (0.047123) | 1.517489 / 1.492716 (0.024773) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190108 / 0.018006 (0.172102) | 0.414404 / 0.000490 (0.413915) | 0.001064 / 0.000200 (0.000864) | 0.000066 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023214 / 0.037411 (-0.014198) | 0.099351 / 0.014526 (0.084825) | 0.105227 / 0.176557 (-0.071330) | 0.150620 / 0.737135 (-0.586516) | 0.109323 / 0.296338 (-0.187015) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412463 / 0.215209 (0.197254) | 4.138123 / 2.077655 (2.060469) | 1.845163 / 1.504120 (0.341043) | 1.641108 / 1.541195 (0.099913) | 1.715471 / 1.468490 (0.246981) | 0.697397 / 4.584777 (-3.887380) | 3.449829 / 3.745712 (-0.295883) | 1.959309 / 5.269862 (-3.310553) | 1.285754 / 4.565676 (-3.279923) | 0.082746 / 0.424275 (-0.341529) | 0.012523 / 0.007607 (0.004916) | 0.524745 / 0.226044 (0.298700) | 5.257085 / 2.268929 (2.988156) | 2.293163 / 55.444624 (-53.151461) | 1.958309 / 6.876477 (-4.918168) | 2.016106 / 2.142072 (-0.125966) | 0.814359 / 4.805227 (-3.990869) | 0.149443 / 6.500664 (-6.351221) | 0.066013 / 0.075469 (-0.009456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248495 / 1.841788 (-0.593292) | 14.303301 / 8.074308 (6.228993) | 14.238533 / 10.191392 (4.047141) | 0.161421 / 0.680424 (-0.519003) | 0.028779 / 0.534201 (-0.505422) | 0.396511 / 0.579283 (-0.182772) | 0.412784 / 0.434364 (-0.021580) | 0.473984 / 0.540337 (-0.066353) | 0.569610 / 1.386936 (-0.817327) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007003 / 0.011353 (-0.004350) | 0.004621 / 0.011008 (-0.006387) | 0.079418 / 0.038508 (0.040910) | 0.028659 / 0.023109 (0.005550) | 0.340594 / 0.275898 (0.064696) | 0.377972 / 0.323480 (0.054492) | 0.005421 / 0.007986 (-0.002565) | 0.004852 / 0.004328 (0.000523) | 0.077579 / 0.004250 (0.073329) | 0.042662 / 0.037052 (0.005610) | 0.342264 / 0.258489 (0.083775) | 0.387255 / 0.293841 (0.093414) | 0.032574 / 0.128546 (-0.095972) | 0.011820 / 0.075646 (-0.063826) | 0.087960 / 0.419271 (-0.331312) | 0.045199 / 0.043533 (0.001667) | 0.341785 / 0.255139 (0.086646) | 0.365014 / 0.283200 (0.081814) | 0.096129 / 0.141683 (-0.045554) | 1.498962 / 1.452155 (0.046807) | 1.557331 / 1.492716 (0.064615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236216 / 0.018006 (0.218210) | 0.440189 / 0.000490 (0.439699) | 0.000399 / 0.000200 (0.000199) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026357 / 0.037411 (-0.011055) | 0.104485 / 0.014526 (0.089959) | 0.109616 / 0.176557 (-0.066941) | 0.163005 / 0.737135 (-0.574130) | 0.113859 / 0.296338 (-0.182479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437452 / 0.215209 (0.222243) | 4.371854 / 2.077655 (2.294199) | 2.056845 / 1.504120 (0.552725) | 1.856071 / 1.541195 (0.314876) | 1.957978 / 1.468490 (0.489488) | 0.703171 / 4.584777 (-3.881606) | 3.433889 / 3.745712 (-0.311823) | 1.968321 / 5.269862 (-3.301541) | 1.204947 / 4.565676 (-3.360729) | 0.084499 / 0.424275 (-0.339777) | 0.012729 / 0.007607 (0.005122) | 0.537534 / 0.226044 (0.311490) | 5.383346 / 2.268929 (3.114417) | 2.522136 / 55.444624 (-52.922488) | 2.192715 / 6.876477 (-4.683762) | 2.243579 / 2.142072 (0.101507) | 0.811136 / 4.805227 (-3.994091) | 0.154015 / 6.500664 (-6.346649) | 0.069324 / 0.075469 (-0.006145) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294232 / 1.841788 (-0.547556) | 14.809448 / 8.074308 (6.735140) | 13.510074 / 10.191392 (3.318682) | 0.158033 / 0.680424 (-0.522391) | 0.016703 / 0.534201 (-0.517498) | 0.393976 / 0.579283 (-0.185307) | 0.385983 / 0.434364 (-0.048381) | 0.476691 / 0.540337 (-0.063646) | 0.565694 / 1.386936 (-0.821242) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009155 / 0.011353 (-0.002198) | 0.005227 / 0.011008 (-0.005781) | 0.099767 / 0.038508 (0.061259) | 0.035338 / 0.023109 (0.012229) | 0.293913 / 0.275898 (0.018015) | 0.366976 / 0.323480 (0.043496) | 0.007802 / 0.007986 (-0.000184) | 0.005286 / 0.004328 (0.000958) | 0.075117 / 0.004250 (0.070867) | 0.042336 / 0.037052 (0.005284) | 0.304690 / 0.258489 (0.046201) | 0.343496 / 0.293841 (0.049655) | 0.038745 / 0.128546 (-0.089802) | 0.012275 / 0.075646 (-0.063371) | 0.334455 / 0.419271 (-0.084817) | 0.052611 / 0.043533 (0.009078) | 0.293229 / 0.255139 (0.038090) | 0.314340 / 0.283200 (0.031140) | 0.108676 / 0.141683 (-0.033007) | 1.444495 / 1.452155 (-0.007659) | 1.492244 / 1.492716 (-0.000472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204852 / 0.018006 (0.186846) | 0.438202 / 0.000490 (0.437712) | 0.005043 / 0.000200 (0.004843) | 0.000282 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027268 / 0.037411 (-0.010143) | 0.109497 / 0.014526 (0.094972) | 0.117187 / 0.176557 (-0.059369) | 0.162551 / 0.737135 (-0.574584) | 0.124175 / 0.296338 (-0.172164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401667 / 0.215209 (0.186458) | 4.010274 / 2.077655 (1.932619) | 1.882617 / 1.504120 (0.378497) | 1.721960 / 1.541195 (0.180765) | 1.806874 / 1.468490 (0.338384) | 0.711253 / 4.584777 (-3.873524) | 3.806585 / 3.745712 (0.060873) | 3.713011 / 5.269862 (-1.556851) | 1.896558 / 4.565676 (-2.669119) | 0.086092 / 0.424275 (-0.338184) | 0.012129 / 0.007607 (0.004522) | 0.504905 / 0.226044 (0.278861) | 5.050794 / 2.268929 (2.781865) | 2.324331 / 55.444624 (-53.120293) | 2.020170 / 6.876477 (-4.856307) | 2.079685 / 2.142072 (-0.062388) | 0.854782 / 4.805227 (-3.950445) | 0.166754 / 6.500664 (-6.333910) | 0.062434 / 0.075469 (-0.013035) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187897 / 1.841788 (-0.653891) | 14.618517 / 8.074308 (6.544209) | 13.205760 / 10.191392 (3.014368) | 0.154322 / 0.680424 (-0.526102) | 0.029243 / 0.534201 (-0.504958) | 0.442390 / 0.579283 (-0.136893) | 0.434651 / 0.434364 (0.000287) | 0.523082 / 0.540337 (-0.017256) | 0.602675 / 1.386936 (-0.784261) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007214 / 0.011353 (-0.004139) | 0.005225 / 0.011008 (-0.005783) | 0.076497 / 0.038508 (0.037989) | 0.032761 / 0.023109 (0.009652) | 0.336005 / 0.275898 (0.060107) | 0.373547 / 0.323480 (0.050067) | 0.005460 / 0.007986 (-0.002526) | 0.003933 / 0.004328 (-0.000395) | 0.074540 / 0.004250 (0.070289) | 0.047785 / 0.037052 (0.010733) | 0.341917 / 0.258489 (0.083428) | 0.396978 / 0.293841 (0.103137) | 0.036763 / 0.128546 (-0.091783) | 0.012043 / 0.075646 (-0.063603) | 0.087632 / 0.419271 (-0.331640) | 0.049376 / 0.043533 (0.005843) | 0.335169 / 0.255139 (0.080030) | 0.354852 / 0.283200 (0.071652) | 0.100180 / 0.141683 (-0.041503) | 1.443422 / 1.452155 (-0.008733) | 1.518618 / 1.492716 (0.025901) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209593 / 0.018006 (0.191587) | 0.444028 / 0.000490 (0.443538) | 0.004545 / 0.000200 (0.004345) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029676 / 0.037411 (-0.007735) | 0.115444 / 0.014526 (0.100918) | 0.121765 / 0.176557 (-0.054791) | 0.171037 / 0.737135 (-0.566098) | 0.128592 / 0.296338 (-0.167746) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428556 / 0.215209 (0.213347) | 4.228531 / 2.077655 (2.150877) | 2.039190 / 1.504120 (0.535070) | 1.836518 / 1.541195 (0.295324) | 1.897040 / 1.468490 (0.428550) | 0.698893 / 4.584777 (-3.885884) | 3.753998 / 3.745712 (0.008286) | 2.097731 / 5.269862 (-3.172131) | 1.338315 / 4.565676 (-3.227361) | 0.087119 / 0.424275 (-0.337156) | 0.012149 / 0.007607 (0.004542) | 0.520774 / 0.226044 (0.294730) | 5.227420 / 2.268929 (2.958492) | 2.522235 / 55.444624 (-52.922389) | 2.194213 / 6.876477 (-4.682264) | 2.241406 / 2.142072 (0.099333) | 0.843119 / 4.805227 (-3.962109) | 0.169128 / 6.500664 (-6.331536) | 0.065071 / 0.075469 (-0.010398) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254490 / 1.841788 (-0.587298) | 15.037137 / 8.074308 (6.962829) | 13.115333 / 10.191392 (2.923941) | 0.181743 / 0.680424 (-0.498681) | 0.017748 / 0.534201 (-0.516453) | 0.425758 / 0.579283 (-0.153525) | 0.429926 / 0.434364 (-0.004438) | 0.524386 / 0.540337 (-0.015951) | 0.643044 / 1.386936 (-0.743892) |\n\n</details>\n</details>\n\n\n"
] | 2023-02-28T18:09:05Z
| 2023-02-28T18:16:31Z
| 2023-02-28T18:09:15Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5591/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5591/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5591.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5591",
"merged_at": "2023-02-28T18:09:15Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5591.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5591"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5351
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5351/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5351/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5351/events
|
https://github.com/huggingface/datasets/issues/5351
| 1,490,659,504
|
I_kwDODunzps5Y2aiw
| 5,351
|
Do we need to implement `_prepare_split`?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/7530947?v=4",
"events_url": "https://api.github.com/users/jmwoloso/events{/privacy}",
"followers_url": "https://api.github.com/users/jmwoloso/followers",
"following_url": "https://api.github.com/users/jmwoloso/following{/other_user}",
"gists_url": "https://api.github.com/users/jmwoloso/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jmwoloso",
"id": 7530947,
"login": "jmwoloso",
"node_id": "MDQ6VXNlcjc1MzA5NDc=",
"organizations_url": "https://api.github.com/users/jmwoloso/orgs",
"received_events_url": "https://api.github.com/users/jmwoloso/received_events",
"repos_url": "https://api.github.com/users/jmwoloso/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jmwoloso/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmwoloso/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jmwoloso",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi! `DatasetBuilder` is a parent class for concrete builders: `GeneratorBasedBuilder`, `ArrowBasedBuilder` and `BeamBasedBuilder`. When writing a builder script, these classes are the ones you should inherit from. And since all of them implement `_prepare_split`, you only have to implement the three methods mentioned above.",
"Thanks so much @mariosasko for the fast response! I've been referencing [this page in the docs](https://huggingface.co/docs/datasets/v2.4.0/en/about_dataset_load) because it it pretty comprehensive in terms of what we have to do and I figured since we subclass the `BuilderConfig` the same pattern would hold, but I've also seen the page with those sub-classed builders as well, so that fills in a knowledge gap for me.",
"cc @stevhliu who may have some ideas on how to improve this part of the docs.",
"one more question for my understanding @mariosasko. the requirement of a loading script has always seemed counterintuitive to me. if i have to provide a script with every dataset, what is the point of using `datasets` if we're doing all the work of loading it, I can just do that in my code and skip the datasets integration (this of course discounts other potential benefits around metadata management, etc., my example is just simplest use case though for the sake of discussion).\r\n\r\nso i figured I would implement my own `BuilderConfig` and `DatasetBuilder` to handle that portion of it and not have to make a script. i _thought_ this would result in `datasets` (via `download_and_prepare`) then making me something that I could load using `load_dataset` moving forward.\r\n\r\nConcretely, i envisioned this pattern being possible:\r\n\r\n ```\r\nclass MyBuilderConfig(BuilderConfig):\r\n def __init__(self, name=\"my_named_dataset\", ...):\r\n super().__init__(name, ...)\r\n\r\nclass MyDatasetBuilder(GeneratorBasedBuilder):\r\n BUILDER_CONFIG_CLASS = MyBuilderConfig\r\n ....\r\n\r\nmy_builder = MyDatasetBuilder(...)\r\n\r\n# this doesn't exactly work like I thought; I don't get a dataset back, but NoneType instead\r\n# though I can see it loading the files and it generates the cache, etc.\r\nmy_dataset = my_builder.download_and_prepare()\r\n\r\n# load the dataset in the future by referencing it by name and loading from the cached arrow version\r\nnew_instance_of_my_dataset = load_dataset(\"my_named_dataset\")\r\n```\r\n\r\nI've seen references to the `save_to_disk` method which might be the next step I need in order to load it by name, in which case, that makes sense, then i just need to debug why `download_and_prepare` isn't returning me a dataset, but I feel like I still have a larger conceptual knowledge gap on how to use the library correctly.\r\n\r\nThanks again in advance!",
"> the requirement of a loading script has always seemed counterintuitive to me\r\n\r\nThis is a requirement only for datasets not stored in standard formats such as CSV, JSON, SQL, Parquet, ImageFolder, etc. \r\n\r\n> if i have to provide a script with every dataset, what is the point of using datasets if we're doing all the work of loading it, I can just do that in my code and skip the datasets integration (this of course discounts other potential benefits around metadata management, etc., my example is just simplest use case though for the sake of discussion)\r\n\r\nOur README/documentation lists the main features... \r\n\r\nOne of the main ones is that our library makes it easy to work with datasets larger than RAM (thanks to Arrow and the caching mechanism), and this is not trivial to implement.\r\n\r\nRegarding the step-by-step builder, this is the pattern:\r\n```python\r\nfrom datasets import load_dataset_builder\r\nbuilder = load_dataset_builder(\"path/to/script\") # or direct instantiation with MyDatasetBuilder(...)\r\nbuilder.download_and_prepare()\r\ndset = builder.as_dataset()\r\n```",
"ok, that makes sense. thank you @mariosasko. I realized i'd never looked on the hub at any of the files associated with any datasets. just did that now and it appears that i'll need to have a script regardless _but_ that will just contain my custom config and builder classes, so without realizing it I was already making my script, I just need to wrap that in a file that sits alongside my data (I looked at Glue and realized I was already doing what I thought didn't make sense to have to do, lol).\r\n\r\n`download_and_prepare` isn't returning me a dataset though, but I'll look into that and open another issue if I can't figure it out.",
"`download_and_prepare` downloads and prepares the arrow files. You need to call `as_dataset` on the builder to get the dataset.",
"ok, I think I was assigning the output of `builder.download_and_prepare` but it's an inplace op, so that explains the `NoneType` i was getting back. Now I'm getting:\r\n\r\n```\r\nArrowInvalid Traceback (most recent call last)\r\n<ipython-input-7-3ed50fb87c70> in <module>\r\n----> 1 ds = dataset_builder.as_dataset()\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in as_dataset(self, split, run_post_process, ignore_verifications, in_memory)\r\n 1020 \r\n 1021 # Create a dataset for each of the given splits\r\n-> 1022 datasets = map_nested(\r\n 1023 partial(\r\n 1024 self._build_single_dataset,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)\r\n 442 num_proc = 1\r\n 443 if num_proc <= 1 or len(iterable) < parallel_min_length:\r\n--> 444 mapped = [\r\n 445 _single_map_nested((function, obj, types, None, True, None))\r\n 446 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in <listcomp>(.0)\r\n 443 if num_proc <= 1 or len(iterable) < parallel_min_length:\r\n 444 mapped = [\r\n--> 445 _single_map_nested((function, obj, types, None, True, None))\r\n 446 for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)\r\n 447 ]\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/utils/py_utils.py in _single_map_nested(args)\r\n 344 # Singleton first to spare some computation\r\n 345 if not isinstance(data_struct, dict) and not isinstance(data_struct, types):\r\n--> 346 return function(data_struct)\r\n 347 \r\n 348 # Reduce logging to keep things readable in multiprocessing with tqdm\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in _build_single_dataset(self, split, run_post_process, ignore_verifications, in_memory)\r\n 1051 \r\n 1052 # Build base dataset\r\n-> 1053 ds = self._as_dataset(\r\n 1054 split=split,\r\n 1055 in_memory=in_memory,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/builder.py in _as_dataset(self, split, in_memory)\r\n 1120 \"\"\"\r\n 1121 cache_dir = self._fs._strip_protocol(self._output_dir)\r\n-> 1122 dataset_kwargs = ArrowReader(cache_dir, self.info).read(\r\n 1123 name=self.name,\r\n 1124 instructions=split,\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read(self, name, instructions, split_infos, in_memory)\r\n 236 msg = f'Instruction \"{instructions}\" corresponds to no data!'\r\n 237 raise ValueError(msg)\r\n--> 238 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory)\r\n 239 \r\n 240 def read_files(\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read_files(self, files, original_instructions, in_memory)\r\n 257 \"\"\"\r\n 258 # Prepend path to filename\r\n--> 259 pa_table = self._read_files(files, in_memory=in_memory)\r\n 260 # If original_instructions is not None, convert it to a human-readable NamedSplit\r\n 261 if original_instructions is not None:\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in _read_files(self, files, in_memory)\r\n 192 f[\"filename\"] = os.path.join(self._path, f[\"filename\"])\r\n 193 for f_dict in files:\r\n--> 194 pa_table: Table = self._get_table_from_filename(f_dict, in_memory=in_memory)\r\n 195 pa_tables.append(pa_table)\r\n 196 pa_tables = [t for t in pa_tables if len(t) > 0]\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in _get_table_from_filename(self, filename_skip_take, in_memory)\r\n 327 filename_skip_take[\"take\"] if \"take\" in filename_skip_take else None,\r\n 328 )\r\n--> 329 table = ArrowReader.read_table(filename, in_memory=in_memory)\r\n 330 if take == -1:\r\n 331 take = len(table) - skip\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/arrow_reader.py in read_table(filename, in_memory)\r\n 348 \"\"\"\r\n 349 table_cls = InMemoryTable if in_memory else MemoryMappedTable\r\n--> 350 return table_cls.from_file(filename)\r\n 351 \r\n 352 \r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/table.py in from_file(cls, filename, replays)\r\n 1034 @classmethod\r\n 1035 def from_file(cls, filename: str, replays=None):\r\n-> 1036 table = _memory_mapped_arrow_table_from_file(filename)\r\n 1037 table = cls._apply_replays(table, replays)\r\n 1038 return cls(table, filename, replays)\r\n\r\n/databricks/python/lib/python3.8/site-packages/datasets/table.py in _memory_mapped_arrow_table_from_file(filename)\r\n 48 def _memory_mapped_arrow_table_from_file(filename: str) -> pa.Table:\r\n 49 memory_mapped_stream = pa.memory_map(filename)\r\n---> 50 opened_stream = pa.ipc.open_stream(memory_mapped_stream)\r\n 51 pa_table = opened_stream.read_all()\r\n 52 return pa_table\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.py in open_stream(source)\r\n 152 reader : RecordBatchStreamReader\r\n 153 \"\"\"\r\n--> 154 return RecordBatchStreamReader(source)\r\n 155 \r\n 156 \r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.py in __init__(self, source)\r\n 43 \r\n 44 def __init__(self, source):\r\n---> 45 self._open(source)\r\n 46 \r\n 47 \r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/ipc.pxi in pyarrow.lib._RecordBatchStreamReader._open()\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()\r\n\r\n/databricks/python/lib/python3.8/site-packages/pyarrow/error.pxi in pyarrow.lib.check_status()\r\n\r\nArrowInvalid: Tried reading schema message, was null or length 0\r\n```\r\n\r\n",
"looks like my arrow files are all empty @mariosasko \r\n\r\n\r\n\r\n\r\ni also see the `incomplete_info.lock` file a level up too. seems like the data isn't being persisted to disk when I call `download_and_prepare`. is there something else i need to do before then, perhaps?",
"quick update @mariosasko. i got it working! i had to downgrade to `datasets==2.4.0`. testing other versions now and will let you know the results.",
"I've tested with every version of `datasets>2.4.0` and i get the same error with all of them."
] | 2022-12-12T01:38:54Z
| 2022-12-20T18:20:57Z
| 2022-12-12T16:48:56Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I'm not sure this is a bug or if it's just missing in the documentation, or i'm not doing something correctly, but I'm subclassing `DatasetBuilder` and getting the following error because on the `DatasetBuilder` class the `_prepare_split` method is abstract (as are the others we are required to implement, hence the genesis of my question):
```
Traceback (most recent call last):
File "/home/jason/source/python/prism_machine_learning/examples/create_hf_datasets.py", line 28, in <module>
dataset_builder.download_and_prepare()
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 704, in download_and_prepare
self._download_and_prepare(
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 793, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/jason/.virtualenvs/pml/lib/python3.8/site-packages/datasets/builder.py", line 1124, in _prepare_split
raise NotImplementedError()
NotImplementedError
```
### Steps to reproduce the bug
I will share implementation if it turns out that everything should be working (i.e. we only need to implement those 3 methods the docs mention), but I don't want to distract from the original question.
### Expected behavior
I just need to know if there are additional methods we need to implement when subclassing `DatasetBuilder` besides what the documentation specifies -> `_info`, `_split_generators` and `_generate_examples`
### Environment info
- `datasets` version: 2.4.0
- Platform: Linux-5.4.0-135-generic-x86_64-with-glibc2.2.5
- Python version: 3.8.12
- PyArrow version: 7.0.0
- Pandas version: 1.4.1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/7530947?v=4",
"events_url": "https://api.github.com/users/jmwoloso/events{/privacy}",
"followers_url": "https://api.github.com/users/jmwoloso/followers",
"following_url": "https://api.github.com/users/jmwoloso/following{/other_user}",
"gists_url": "https://api.github.com/users/jmwoloso/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jmwoloso",
"id": 7530947,
"login": "jmwoloso",
"node_id": "MDQ6VXNlcjc1MzA5NDc=",
"organizations_url": "https://api.github.com/users/jmwoloso/orgs",
"received_events_url": "https://api.github.com/users/jmwoloso/received_events",
"repos_url": "https://api.github.com/users/jmwoloso/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jmwoloso/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmwoloso/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jmwoloso",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5351/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5351/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/4772
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4772/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4772/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4772/events
|
https://github.com/huggingface/datasets/issues/4772
| 1,322,693,123
|
I_kwDODunzps5O1rID
| 4,772
|
AssertionError when using label_cols in to_tf_dataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/9555494?v=4",
"events_url": "https://api.github.com/users/lehrig/events{/privacy}",
"followers_url": "https://api.github.com/users/lehrig/followers",
"following_url": "https://api.github.com/users/lehrig/following{/other_user}",
"gists_url": "https://api.github.com/users/lehrig/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lehrig",
"id": 9555494,
"login": "lehrig",
"node_id": "MDQ6VXNlcjk1NTU0OTQ=",
"organizations_url": "https://api.github.com/users/lehrig/orgs",
"received_events_url": "https://api.github.com/users/lehrig/received_events",
"repos_url": "https://api.github.com/users/lehrig/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lehrig/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lehrig/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lehrig",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"cc @Rocketknight1 ",
"Hi @lehrig, this is caused by the data collator renaming \"label\" to \"labels\". If you set `label_cols=[\"labels\"]` in the call it will work correctly. However, I agree that the cause of the bug is not obvious, so I'll see if I can make a PR to clarify things when the collator renames columns.",
"Thanks - and wow, that appears like a strange side-effect of the data collator. Is that really needed?\r\n\r\nWhy not make it more explicit? For example, extend `DefaultDataCollator` with an optional property `label_col_name` to be used as label column; only when it is not provided default to `labels` (and document that this happens) for backwards-compatibility? ",
"Haha, I honestly have no idea why our data collators rename `\"label\"` (the standard label column name in our datasets) to `\"labels\"` (the standard label column name input to our models). It's been a pain point when I design TF data pipelines, though, because I don't want to hardcode things like that - especially in `datasets`, because the renaming is something that happens purely at the `transformers` end. I don't think I could make the change in the data collators themselves at this point, because it would break backward compatibility for everything in PyTorch as well as TF.\r\n\r\nIn the most recent version of `transformers` we added a [prepare_tf_dataset](https://huggingface.co/docs/transformers/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset) method to our models which takes care of these details for you, and even chooses appropriate columns and labels for the model you're using. In future we might make that the officially recommended way to convert HF datasets to `tf.data.Dataset`.",
"Interesting, that'd be great especially for clarity. https://huggingface.co/docs/datasets/use_with_tensorflow#data-loading already improved clarity, yet, all those options will still confuse people. Looking forward to those advances in the hope there'll be only 1 way in the future ;)\r\n\r\nAnyways, I am happy for the time being with the work-around you provided. Thank you!"
] | 2022-07-29T21:32:12Z
| 2022-09-12T11:24:46Z
| 2022-09-12T11:24:46Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
An incorrect `AssertionError` is raised when using `label_cols` in `to_tf_dataset` and the label's key name is `label`.
The assertion is in this line:
https://github.com/huggingface/datasets/blob/2.4.0/src/datasets/arrow_dataset.py#L475
## Steps to reproduce the bug
```python
from datasets import load_dataset
from transformers import DefaultDataCollator
dataset = load_dataset('glue', 'mrpc', split='train')
tf_dataset = dataset.to_tf_dataset(
columns=["sentence1", "sentence2", "idx"],
label_cols=["label"],
batch_size=16,
collate_fn=DefaultDataCollator(return_tensors="tf"),
)
```
## Expected results
No assertion error.
## Actual results
```
AssertionError: in user code:
File "/opt/conda/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 475, in split_features_and_labels *
assert set(features.keys()).union(labels.keys()) == set(input_batch.keys())
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.4.0
- Platform: Linux-4.18.0-305.45.1.el8_4.ppc64le-ppc64le-with-glibc2.17
- Python version: 3.8.13
- PyArrow version: 7.0.0
- Pandas version: 1.4.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4",
"events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}",
"followers_url": "https://api.github.com/users/Rocketknight1/followers",
"following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}",
"gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Rocketknight1",
"id": 12866554,
"login": "Rocketknight1",
"node_id": "MDQ6VXNlcjEyODY2NTU0",
"organizations_url": "https://api.github.com/users/Rocketknight1/orgs",
"received_events_url": "https://api.github.com/users/Rocketknight1/received_events",
"repos_url": "https://api.github.com/users/Rocketknight1/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Rocketknight1",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4772/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4772/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5734
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5734/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5734/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5734/events
|
https://github.com/huggingface/datasets/issues/5734
| 1,662,058,028
|
I_kwDODunzps5jEP4s
| 5,734
|
Remove temporary pin of fsspec
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
] | null |
[] | 2023-04-11T09:04:17Z
| 2023-04-11T11:04:52Z
| 2023-04-11T11:04:52Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
Once root cause is found and fixed, remove the temporary pin introduced by:
- #5731
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5734/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5734/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5506
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5506/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5506/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5506/events
|
https://github.com/huggingface/datasets/issues/5506
| 1,571,838,641
|
I_kwDODunzps5dsFqx
| 5,506
|
IterableDataset and Dataset return different batch sizes when using Trainer with multiple GPUs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/38166299?v=4",
"events_url": "https://api.github.com/users/kheyer/events{/privacy}",
"followers_url": "https://api.github.com/users/kheyer/followers",
"following_url": "https://api.github.com/users/kheyer/following{/other_user}",
"gists_url": "https://api.github.com/users/kheyer/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kheyer",
"id": 38166299,
"login": "kheyer",
"node_id": "MDQ6VXNlcjM4MTY2Mjk5",
"organizations_url": "https://api.github.com/users/kheyer/orgs",
"received_events_url": "https://api.github.com/users/kheyer/received_events",
"repos_url": "https://api.github.com/users/kheyer/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kheyer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kheyer/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kheyer",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi ! `datasets` doesn't do batching - the PyTorch DataLoader does and is created by the `Trainer`. Do you pass other arguments to training_args with respect to data loading ?\r\n\r\nAlso we recently released `.to_iterable_dataset` that does pretty much what you implemented, but using contiguous shards to get a better speed:\r\n```python\r\nif use_iterable_dataset:\r\n num_shards = 100\r\n dataset = dataset.to_iterable_dataset(num_shards=num_shards)\r\n```",
"This is the full set of training args passed. No training args were changed when switching dataset types.\r\n\r\n```python\r\ntraining_args = TrainingArguments(\r\n output_dir=\"./checkpoints\",\r\n overwrite_output_dir=True,\r\n num_train_epochs=1,\r\n per_device_train_batch_size=256,\r\n save_steps=2000,\r\n save_total_limit=4,\r\n prediction_loss_only=True,\r\n report_to='none',\r\n gradient_accumulation_steps=6,\r\n fp16=True,\r\n max_steps=60000,\r\n lr_scheduler_type='linear',\r\n warmup_ratio=0.1,\r\n logging_steps=100,\r\n weight_decay=0.01,\r\n adam_beta1=0.9,\r\n adam_beta2=0.98,\r\n adam_epsilon=1e-6,\r\n learning_rate=1e-4\r\n)\r\n```",
"I think the issue comes from `transformers`: https://github.com/huggingface/transformers/issues/21444",
"Makes sense. Given that it's a `transformers` issue and already being tracked, I'll close this out."
] | 2023-02-06T03:26:03Z
| 2023-02-08T18:30:08Z
| 2023-02-08T18:30:07Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I am training a Roberta model using 2 GPUs and the `Trainer` API with a batch size of 256.
Initially I used a standard `Dataset`, but had issues with slow data loading. After reading [this issue](https://github.com/huggingface/datasets/issues/2252), I swapped to loading my dataset as contiguous shards and passing those to an `IterableDataset`. I observed an unexpected drop in GPU memory utilization, and found the batch size returned from the model had been cut in half.
When using `Trainer` with 2 GPUs and a batch size of 256, `Dataset` returns a batch of size 512 (256 per GPU), while `IterableDataset` returns a batch size of 256 (256 total). My guess is `IterableDataset` isn't accounting for multiple cards.
### Steps to reproduce the bug
```python
import datasets
from datasets import IterableDataset
from transformers import RobertaConfig
from transformers import RobertaTokenizerFast
from transformers import RobertaForMaskedLM
from transformers import DataCollatorForLanguageModeling
from transformers import Trainer, TrainingArguments
use_iterable_dataset = True
def gen_from_shards(shards):
for shard in shards:
for example in shard:
yield example
dataset = datasets.load_from_disk('my_dataset.hf')
if use_iterable_dataset:
n_shards = 100
shards = [dataset.shard(num_shards=n_shards, index=i) for i in range(n_shards)]
dataset = IterableDataset.from_generator(gen_from_shards, gen_kwargs={"shards": shards})
tokenizer = RobertaTokenizerFast.from_pretrained("./my_tokenizer", max_len=160, use_fast=True)
config = RobertaConfig(
vocab_size=8248,
max_position_embeddings=256,
num_attention_heads=8,
num_hidden_layers=6,
type_vocab_size=1)
model = RobertaForMaskedLM(config=config)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)
training_args = TrainingArguments(
per_device_train_batch_size=256
# other args removed for brevity
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
trainer.train()
```
### Expected behavior
Expected `Dataset` and `IterableDataset` to have the same batch size behavior. If the current behavior is intentional, the batch size printout at the start of training should be updated. Currently, both dataset classes result in `Trainer` printing the same total batch size, even though the batch size sent to the GPUs are different.
### Environment info
datasets 2.7.1
transformers 4.25.1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/38166299?v=4",
"events_url": "https://api.github.com/users/kheyer/events{/privacy}",
"followers_url": "https://api.github.com/users/kheyer/followers",
"following_url": "https://api.github.com/users/kheyer/following{/other_user}",
"gists_url": "https://api.github.com/users/kheyer/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kheyer",
"id": 38166299,
"login": "kheyer",
"node_id": "MDQ6VXNlcjM4MTY2Mjk5",
"organizations_url": "https://api.github.com/users/kheyer/orgs",
"received_events_url": "https://api.github.com/users/kheyer/received_events",
"repos_url": "https://api.github.com/users/kheyer/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kheyer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kheyer/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kheyer",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5506/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5506/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5226
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5226/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5226/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5226/events
|
https://github.com/huggingface/datasets/issues/5226
| 1,444,385,148
|
I_kwDODunzps5WF5F8
| 5,226
|
Q: Memory release when removing the column?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43239645?v=4",
"events_url": "https://api.github.com/users/bayartsogt-ya/events{/privacy}",
"followers_url": "https://api.github.com/users/bayartsogt-ya/followers",
"following_url": "https://api.github.com/users/bayartsogt-ya/following{/other_user}",
"gists_url": "https://api.github.com/users/bayartsogt-ya/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/bayartsogt-ya",
"id": 43239645,
"login": "bayartsogt-ya",
"node_id": "MDQ6VXNlcjQzMjM5NjQ1",
"organizations_url": "https://api.github.com/users/bayartsogt-ya/orgs",
"received_events_url": "https://api.github.com/users/bayartsogt-ya/received_events",
"repos_url": "https://api.github.com/users/bayartsogt-ya/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/bayartsogt-ya/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bayartsogt-ya/subscriptions",
"type": "User",
"url": "https://api.github.com/users/bayartsogt-ya",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi ! Datasets are memory mapped from your disk, i.e. they're not loaded in RAM. This is possible thanks to the Arrow data format.\r\n\r\nTherefore the column you remove is not in RAM, so removing it doesn't cause the RAM to decrease.",
"Thanks for the explanation! @lhoestq \r\nI wonder since it is memory mapped, can we reduce or remove this memory map?",
"Yes you can `del common_voice` for example or wait for it to be garbage collected"
] | 2022-11-10T18:35:27Z
| 2022-11-29T15:10:10Z
| 2022-11-29T15:10:10Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
How do I release memory when I use methods like `.remove_columns()` or `clear()` in notebooks?
```python
from datasets import load_dataset
common_voice = load_dataset("mozilla-foundation/common_voice_11_0", "ja", use_auth_token=True)
# check memory -> RAM Used (GB): 0.704 / Total (GB) 33.670
common_voice = common_voice.remove_columns(column_names=common_voice.column_names['train'])
common_voice.clear()
# check memory -> RAM Used (GB): 0.705 / Total (GB) 33.670
```
I tried `gc.collect()` but did not help
### Steps to reproduce the bug
1. load dataset
2. remove all the columns
3. check memory is reduced or not
[link to reproduce](https://www.kaggle.com/code/bayartsogtya/huggingface-dataset-memory-issue/notebook?scriptVersionId=110630567)
### Expected behavior
Memory released when I remove the column
### Environment info
- `datasets` version: 2.1.0
- Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- PyArrow version: 8.0.0
- Pandas version: 1.3.5
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5226/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5226/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6617
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6617/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6617/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6617/events
|
https://github.com/huggingface/datasets/pull/6617
| 2,100,459,449
|
PR_kwDODunzps5lEagV
| 6,617
|
Fix CI: pyarrow 15, pandas 2.2 and sqlachemy
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6617). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004774 / 0.011353 (-0.006579) | 0.003397 / 0.011008 (-0.007611) | 0.063862 / 0.038508 (0.025354) | 0.029353 / 0.023109 (0.006244) | 0.245921 / 0.275898 (-0.029977) | 0.268414 / 0.323480 (-0.055066) | 0.002834 / 0.007986 (-0.005152) | 0.002606 / 0.004328 (-0.001723) | 0.049690 / 0.004250 (0.045439) | 0.041637 / 0.037052 (0.004585) | 0.262526 / 0.258489 (0.004037) | 0.288200 / 0.293841 (-0.005641) | 0.027233 / 0.128546 (-0.101313) | 0.010322 / 0.075646 (-0.065324) | 0.213860 / 0.419271 (-0.205411) | 0.034930 / 0.043533 (-0.008602) | 0.249256 / 0.255139 (-0.005883) | 0.270016 / 0.283200 (-0.013184) | 0.019413 / 0.141683 (-0.122270) | 1.124801 / 1.452155 (-0.327354) | 1.166224 / 1.492716 (-0.326492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091641 / 0.018006 (0.073635) | 0.299679 / 0.000490 (0.299189) | 0.000209 / 0.000200 (0.000009) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018084 / 0.037411 (-0.019327) | 0.060143 / 0.014526 (0.045617) | 0.072556 / 0.176557 (-0.104001) | 0.118555 / 0.737135 (-0.618580) | 0.073786 / 0.296338 (-0.222553) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278193 / 0.215209 (0.062984) | 2.707954 / 2.077655 (0.630300) | 1.483575 / 1.504120 (-0.020545) | 1.371939 / 1.541195 (-0.169256) | 1.395009 / 1.468490 (-0.073481) | 0.559949 / 4.584777 (-4.024828) | 2.372529 / 3.745712 (-1.373183) | 2.823641 / 5.269862 (-2.446221) | 1.722999 / 4.565676 (-2.842678) | 0.062535 / 0.424275 (-0.361741) | 0.004970 / 0.007607 (-0.002637) | 0.338625 / 0.226044 (0.112580) | 3.317576 / 2.268929 (1.048648) | 1.854552 / 55.444624 (-53.590073) | 1.589323 / 6.876477 (-5.287154) | 1.624630 / 2.142072 (-0.517442) | 0.638388 / 4.805227 (-4.166839) | 0.116675 / 6.500664 (-6.383989) | 0.041850 / 0.075469 (-0.033619) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.938025 / 1.841788 (-0.903763) | 11.450072 / 8.074308 (3.375764) | 10.414943 / 10.191392 (0.223551) | 0.128416 / 0.680424 (-0.552007) | 0.013798 / 0.534201 (-0.520403) | 0.287997 / 0.579283 (-0.291286) | 0.259976 / 0.434364 (-0.174387) | 0.320737 / 0.540337 (-0.219601) | 0.424292 / 1.386936 (-0.962644) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005107 / 0.011353 (-0.006246) | 0.003374 / 0.011008 (-0.007634) | 0.050067 / 0.038508 (0.011559) | 0.031419 / 0.023109 (0.008310) | 0.275303 / 0.275898 (-0.000595) | 0.286736 / 0.323480 (-0.036744) | 0.004177 / 0.007986 (-0.003808) | 0.002742 / 0.004328 (-0.001586) | 0.049011 / 0.004250 (0.044761) | 0.044373 / 0.037052 (0.007321) | 0.289189 / 0.258489 (0.030700) | 0.320117 / 0.293841 (0.026276) | 0.050154 / 0.128546 (-0.078392) | 0.010541 / 0.075646 (-0.065106) | 0.058318 / 0.419271 (-0.360954) | 0.033090 / 0.043533 (-0.010443) | 0.276820 / 0.255139 (0.021681) | 0.290854 / 0.283200 (0.007654) | 0.017268 / 0.141683 (-0.124415) | 1.159345 / 1.452155 (-0.292809) | 1.224829 / 1.492716 (-0.267887) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092468 / 0.018006 (0.074462) | 0.301176 / 0.000490 (0.300686) | 0.000216 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021858 / 0.037411 (-0.015553) | 0.074873 / 0.014526 (0.060347) | 0.086238 / 0.176557 (-0.090318) | 0.125555 / 0.737135 (-0.611580) | 0.087791 / 0.296338 (-0.208547) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292283 / 0.215209 (0.077073) | 2.847306 / 2.077655 (0.769651) | 1.600833 / 1.504120 (0.096713) | 1.474253 / 1.541195 (-0.066942) | 1.474871 / 1.468490 (0.006381) | 0.576427 / 4.584777 (-4.008350) | 2.380116 / 3.745712 (-1.365596) | 2.782059 / 5.269862 (-2.487803) | 1.730642 / 4.565676 (-2.835035) | 0.063860 / 0.424275 (-0.360415) | 0.005019 / 0.007607 (-0.002588) | 0.343247 / 0.226044 (0.117202) | 3.393427 / 2.268929 (1.124498) | 1.935346 / 55.444624 (-53.509278) | 1.680124 / 6.876477 (-5.196353) | 1.665788 / 2.142072 (-0.476285) | 0.648767 / 4.805227 (-4.156460) | 0.121962 / 6.500664 (-6.378702) | 0.040669 / 0.075469 (-0.034800) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996535 / 1.841788 (-0.845252) | 12.074553 / 8.074308 (4.000245) | 10.812740 / 10.191392 (0.621348) | 0.142690 / 0.680424 (-0.537734) | 0.014977 / 0.534201 (-0.519224) | 0.285619 / 0.579283 (-0.293664) | 0.269401 / 0.434364 (-0.164963) | 0.329882 / 0.540337 (-0.210456) | 0.416169 / 1.386936 (-0.970767) |\n\n</details>\n</details>\n\n\n"
] | 2024-01-25T13:57:41Z
| 2024-01-26T14:56:46Z
| 2024-01-26T14:50:44Z
|
MEMBER
| null | null | null |
this should fix the CI failures on `main`
close https://github.com/huggingface/datasets/issues/5477
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6617/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6617/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6617.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6617",
"merged_at": "2024-01-26T14:50:44Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6617.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6617"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4950
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4950/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4950/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4950/events
|
https://github.com/huggingface/datasets/pull/4950
| 1,365,458,633
|
PR_kwDODunzps4-jWZ1
| 4,950
|
Update Enwik8 broken link and information
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/54819091?v=4",
"events_url": "https://api.github.com/users/mtanghu/events{/privacy}",
"followers_url": "https://api.github.com/users/mtanghu/followers",
"following_url": "https://api.github.com/users/mtanghu/following{/other_user}",
"gists_url": "https://api.github.com/users/mtanghu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mtanghu",
"id": 54819091,
"login": "mtanghu",
"node_id": "MDQ6VXNlcjU0ODE5MDkx",
"organizations_url": "https://api.github.com/users/mtanghu/orgs",
"received_events_url": "https://api.github.com/users/mtanghu/received_events",
"repos_url": "https://api.github.com/users/mtanghu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mtanghu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mtanghu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mtanghu",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-09-08T03:15:00Z
| 2022-09-24T22:14:35Z
| 2022-09-08T14:51:00Z
|
CONTRIBUTOR
| null | null | null |
The current enwik8 dataset link give a 502 bad gateway error which can be view on https://huggingface.co/datasets/enwik8 (click the dropdown to see the dataset preview, it will show the error). This corrects the links, and json metadata as well as adds a little bit more information about enwik8.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4950/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4950/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4950.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4950",
"merged_at": "2022-09-08T14:51:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4950.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4950"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5810
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5810/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5810/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5810/events
|
https://github.com/huggingface/datasets/pull/5810
| 1,689,917,822
|
PR_kwDODunzps5PdJHI
| 5,810
|
Add `fn_kwargs` to `map` and `filter` of `IterableDataset` and `IterableDatasetDict`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/3927621?v=4",
"events_url": "https://api.github.com/users/yuukicammy/events{/privacy}",
"followers_url": "https://api.github.com/users/yuukicammy/followers",
"following_url": "https://api.github.com/users/yuukicammy/following{/other_user}",
"gists_url": "https://api.github.com/users/yuukicammy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yuukicammy",
"id": 3927621,
"login": "yuukicammy",
"node_id": "MDQ6VXNlcjM5Mjc2MjE=",
"organizations_url": "https://api.github.com/users/yuukicammy/orgs",
"received_events_url": "https://api.github.com/users/yuukicammy/received_events",
"repos_url": "https://api.github.com/users/yuukicammy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yuukicammy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yuukicammy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yuukicammy",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"Sorry, the local test passed because it was inadvertently testing the main branch. I am currently fixing where the test failed.",
"- I have fixed the bug and addressed the above two points.\r\n- I have tested locally and confirmed that the test passes.\r\n\r\nPlease check the contents. @lhoestq \r\n\r\n5715a7e64bdd2951e6705aee58d592392e1538d6",
"Cool ! You can run `make style` to fix code formatting to fix the ci",
"I had forgotten about it. I did it. @lhoestq \r\n00248926a37c6f1387614aa388c36fdc105a59f5",
"Thanks for putting this together @yuukicammy ! Looking forward to using this new addition ASAP. \r\n@lhoestq - sorry to bother you with this, but if this looks good to you, any chance we could get this merged in? \r\n\r\nThanks again to you both! ",
"Yup there's just one test to remove and we can merge",
"Sorry for my understanding wrong! Correspondence has been addressed. @lhoestq \r\n ca511b7b29fdde51ffd69b58bda79220472e9e94\r\n\r\nThanks for your comment! @brianhill11 ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006788 / 0.011353 (-0.004564) | 0.004372 / 0.011008 (-0.006636) | 0.097746 / 0.038508 (0.059238) | 0.034858 / 0.023109 (0.011749) | 0.298122 / 0.275898 (0.022224) | 0.335272 / 0.323480 (0.011792) | 0.005810 / 0.007986 (-0.002175) | 0.004944 / 0.004328 (0.000616) | 0.072352 / 0.004250 (0.068101) | 0.041730 / 0.037052 (0.004678) | 0.316482 / 0.258489 (0.057992) | 0.338710 / 0.293841 (0.044869) | 0.027975 / 0.128546 (-0.100571) | 0.008746 / 0.075646 (-0.066901) | 0.329336 / 0.419271 (-0.089935) | 0.051327 / 0.043533 (0.007794) | 0.300695 / 0.255139 (0.045556) | 0.322813 / 0.283200 (0.039613) | 0.101133 / 0.141683 (-0.040550) | 1.422767 / 1.452155 (-0.029388) | 1.538364 / 1.492716 (0.045648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.016698 / 0.018006 (-0.001308) | 0.447042 / 0.000490 (0.446552) | 0.007609 / 0.000200 (0.007409) | 0.000277 / 0.000054 (0.000223) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026732 / 0.037411 (-0.010679) | 0.108295 / 0.014526 (0.093769) | 0.116905 / 0.176557 (-0.059652) | 0.173166 / 0.737135 (-0.563969) | 0.122560 / 0.296338 (-0.173779) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394893 / 0.215209 (0.179683) | 3.950314 / 2.077655 (1.872659) | 1.780576 / 1.504120 (0.276456) | 1.579855 / 1.541195 (0.038660) | 1.711197 / 1.468490 (0.242707) | 0.521469 / 4.584777 (-4.063308) | 3.838850 / 3.745712 (0.093138) | 3.101095 / 5.269862 (-2.168767) | 1.531574 / 4.565676 (-3.034102) | 0.065291 / 0.424275 (-0.358984) | 0.011979 / 0.007607 (0.004372) | 0.496543 / 0.226044 (0.270498) | 4.965446 / 2.268929 (2.696517) | 2.250788 / 55.444624 (-53.193837) | 1.923231 / 6.876477 (-4.953245) | 2.075372 / 2.142072 (-0.066700) | 0.638708 / 4.805227 (-4.166519) | 0.142048 / 6.500664 (-6.358616) | 0.064225 / 0.075469 (-0.011244) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211799 / 1.841788 (-0.629989) | 14.791822 / 8.074308 (6.717514) | 14.274993 / 10.191392 (4.083601) | 0.163942 / 0.680424 (-0.516482) | 0.017541 / 0.534201 (-0.516660) | 0.396440 / 0.579283 (-0.182843) | 0.427502 / 0.434364 (-0.006861) | 0.494273 / 0.540337 (-0.046064) | 0.586877 / 1.386936 (-0.800059) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004506) | 0.004854 / 0.011008 (-0.006154) | 0.075654 / 0.038508 (0.037146) | 0.034295 / 0.023109 (0.011186) | 0.378095 / 0.275898 (0.102197) | 0.407833 / 0.323480 (0.084353) | 0.006155 / 0.007986 (-0.001830) | 0.004259 / 0.004328 (-0.000070) | 0.076195 / 0.004250 (0.071944) | 0.051901 / 0.037052 (0.014849) | 0.375027 / 0.258489 (0.116538) | 0.428189 / 0.293841 (0.134348) | 0.028814 / 0.128546 (-0.099733) | 0.009209 / 0.075646 (-0.066438) | 0.083681 / 0.419271 (-0.335591) | 0.049158 / 0.043533 (0.005625) | 0.366669 / 0.255139 (0.111530) | 0.388767 / 0.283200 (0.105568) | 0.107837 / 0.141683 (-0.033845) | 1.476354 / 1.452155 (0.024199) | 1.580160 / 1.492716 (0.087443) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218900 / 0.018006 (0.200894) | 0.445475 / 0.000490 (0.444985) | 0.000423 / 0.000200 (0.000223) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029740 / 0.037411 (-0.007671) | 0.115192 / 0.014526 (0.100666) | 0.122439 / 0.176557 (-0.054118) | 0.170639 / 0.737135 (-0.566496) | 0.128085 / 0.296338 (-0.168254) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437745 / 0.215209 (0.222536) | 4.385695 / 2.077655 (2.308040) | 2.189893 / 1.504120 (0.685773) | 2.023160 / 1.541195 (0.481965) | 2.112798 / 1.468490 (0.644308) | 0.522497 / 4.584777 (-4.062280) | 3.881356 / 3.745712 (0.135644) | 3.206090 / 5.269862 (-2.063772) | 1.308241 / 4.565676 (-3.257435) | 0.065635 / 0.424275 (-0.358640) | 0.012288 / 0.007607 (0.004681) | 0.537265 / 0.226044 (0.311220) | 5.361641 / 2.268929 (3.092712) | 2.638941 / 55.444624 (-52.805684) | 2.344717 / 6.876477 (-4.531759) | 2.437619 / 2.142072 (0.295546) | 0.645079 / 4.805227 (-4.160149) | 0.143852 / 6.500664 (-6.356812) | 0.065796 / 0.075469 (-0.009673) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276588 / 1.841788 (-0.565200) | 15.239396 / 8.074308 (7.165088) | 13.150591 / 10.191392 (2.959199) | 0.163635 / 0.680424 (-0.516789) | 0.017533 / 0.534201 (-0.516668) | 0.397659 / 0.579283 (-0.181624) | 0.425589 / 0.434364 (-0.008774) | 0.466570 / 0.540337 (-0.073768) | 0.563953 / 1.386936 (-0.822983) |\n\n</details>\n</details>\n\n\n"
] | 2023-04-30T13:23:01Z
| 2023-05-22T08:12:39Z
| 2023-05-22T08:05:31Z
|
CONTRIBUTOR
| null | null | null |
# Overview
I've added an argument`fn_kwargs` for map and filter methods of `IterableDataset` and `IterableDatasetDict` classes.
# Details
Currently, the map and filter methods of some classes related to `IterableDataset` do not allow specifing the arguments passed to the function. This pull request adds `fn_kwargs` to pass arguments to the mapping function. This allows users to preprocess data more flexibly.
Added `fn_kwargs` to the following classes and methods (description of the argument is also added).
1. class `FilteredExamplesIterable`
2. method `filter` of class `IterableDataset`
3. method `map` of class `IterableDatasetDict`
4. method `filter` of class `IterableDatasetDict`
# Example of changes
Here's an example of how to use the new functionality:
```python
from datasets import IterableDatasetDict
def preprocess_function(example, a=None, b=None):
# do something
return example
dataset = IterableDatasetDict(...)
dataset = dataset.map(preprocess_function, fn_kwargs={"a": 1, "b": 2})
```
# Related Issues
This pull request is related to the following issue:
https://github.com/huggingface/datasets/issues/3444 .
# Testing
I have added unit tests to test the new functionality.
In test_iterable_dataset.py
- Added `test_filtered_examples_iterable_with_fn_kwargs` for [1](#details).
- Added `test_iterable_dataset_filter` for [2](#details).
- Added `test_iterable_dataset_map_with_fn_kwargs`. This is not a newly added feature, but was added because it was not tested.
In test_dataset_dict.py
- Added `_create_dummy_iterable_dataset` for [3](#details) and [4](#details).
- Added `_create_dummy_iterable_dataset_dict` for [3](#details) and [4](#details).
- Added `test_iterable_map` for [3](#details).
- Added `test_iterable_filter` for [4](#details).
Note that, there is no test for `IterableDatasetDict` at the current main branch. I thought about writing tests for `IterableDatasetDict` in a new file, but I decided to add them in the test file for `DatasetDict` (test_dataset_dict.py).
# Checklist
- [x] Format the code.
- [x] Added tests.
- [x] Passed tests locally.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5810/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5810/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5810.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5810",
"merged_at": "2023-05-22T08:05:31Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5810.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5810"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5586
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5586/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5586/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5586/events
|
https://github.com/huggingface/datasets/issues/5586
| 1,602,961,544
|
I_kwDODunzps5fi0CI
| 5,586
|
.sort() is broken when used after .filter(), only in 2.10.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/57797966?v=4",
"events_url": "https://api.github.com/users/MattYoon/events{/privacy}",
"followers_url": "https://api.github.com/users/MattYoon/followers",
"following_url": "https://api.github.com/users/MattYoon/following{/other_user}",
"gists_url": "https://api.github.com/users/MattYoon/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/MattYoon",
"id": 57797966,
"login": "MattYoon",
"node_id": "MDQ6VXNlcjU3Nzk3OTY2",
"organizations_url": "https://api.github.com/users/MattYoon/orgs",
"received_events_url": "https://api.github.com/users/MattYoon/received_events",
"repos_url": "https://api.github.com/users/MattYoon/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/MattYoon/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MattYoon/subscriptions",
"type": "User",
"url": "https://api.github.com/users/MattYoon",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"Thanks for reporting and thanks @mariosasko for fixing ! We just did a patch release `2.10.1` with the fix"
] | 2023-02-28T12:18:09Z
| 2023-02-28T18:17:26Z
| 2023-02-28T17:21:59Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi, thank you for your support!
It seems like the addition of multiple key sort (#5502) in 2.10.0 broke the `.sort()` method.
After filtering a dataset with `.filter()`, the `.sort()` seems to refer to the query_table index of the previous unfiltered dataset, resulting in an IndexError.
This only happens with the 2.10.0 release.
### Steps to reproduce the bug
```Python
from datasets import load_dataset
# dataset with length of 1104
ds = load_dataset('glue', 'ax')['test']
ds = ds.filter(lambda x: x['idx'] > 1100)
ds.sort('premise')
print('Done')
```
File "/home/dongkeun/datasets_test/test.py", line 5, in <module>
ds.sort('premise')
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 528, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/fingerprint.py", line 511, in wrapper
out = func(dataset, *args, **kwargs)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3959, in sort
sort_table = query_table(
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 588, in query_table
_check_valid_index_key(key, size)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 537, in _check_valid_index_key
_check_valid_index_key(max(key), size=size)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 531, in _check_valid_index_key
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
IndexError: Invalid key: 1103 is out of bounds for size 3
### Expected behavior
It should sort the dataset and print "Done". Which it does on 2.9.0.
### Environment info
- `datasets` version: 2.10.0
- Platform: Linux-5.15.0-41-generic-x86_64-with-glibc2.31
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5586/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5586/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7055
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7055/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7055/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7055/events
|
https://github.com/huggingface/datasets/issues/7055
| 2,421,708,891
|
I_kwDODunzps6QWFhb
| 7,055
|
WebDataset with different prefixes are unsupported
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4",
"events_url": "https://api.github.com/users/hlky/events{/privacy}",
"followers_url": "https://api.github.com/users/hlky/followers",
"following_url": "https://api.github.com/users/hlky/following{/other_user}",
"gists_url": "https://api.github.com/users/hlky/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hlky",
"id": 106811348,
"login": "hlky",
"node_id": "U_kgDOBl3P1A",
"organizations_url": "https://api.github.com/users/hlky/orgs",
"received_events_url": "https://api.github.com/users/hlky/received_events",
"repos_url": "https://api.github.com/users/hlky/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hlky/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hlky",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Since `datasets` uses is built on Arrow to store the data, it requires each sample to have the same columns.\r\n\r\nThis can be fixed by specifyign in advance the name of all the possible columns in the `dataset_info` in YAML, and missing values will be `None`",
"Thanks. This currently doesn't work for WebDataset because there's no `BuilderConfig` with `features` and in turn `_info` is missing `features=self.config.features`. I'll prepare a PR to fix this.\r\n\r\nNote it may be useful to add the [expected format of `features`](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [`Builder Parameters`](https://huggingface.co/docs/datasets/repository_structure#builder-parameters).\r\n",
"Oh good catch ! thanks\r\n\r\n> Note it may be useful to add the [expected format of features](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [Buil](https://huggingface.co/docs/datasets/repository_structure#builder-parameters)\r\n\r\nGood idea, let me open a PR",
"#7060 ",
"Actually I just tried with `datasets` on the `main` branch and having `features` defined in `dataset_info` worked for me\r\n\r\n```python\r\n>>> list(load_dataset(\"/Users/quentinlhoest/tmp\", streaming=True, split=\"train\"))\r\n[{'txt': 'hello there\\n', 'other': None}]\r\n```\r\nwhere `tmp` contains data.tar with \"hello there\\n\" in a text file and the README.md:\r\n```\r\n---\r\ndataset_info:\r\n features:\r\n - name: txt\r\n dtype: string\r\n - name: other\r\n dtype: string\r\n---\r\n\r\nThis is a dataset card\r\n```\r\n\r\nWhat error did you get when you tried to specify the columns in `dataset_info` ?",
"If you review the changes in #7060 you'll note that `features` are not passed to `DatasetInfo`.\r\n\r\nIn your case the features are being extracted by [this code](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L72-L98).\r\n\r\nTry with the `Steps to reproduce the bug`. It's the same error mentioned in `Describe the bug` because `features` are not passed to `DatasetInfo`.\r\n\r\n`features` are [not used](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L365-L366) when the `BuilderConfig` has no `features` attribute. `WebDataset` uses the default [`BuilderConfig`](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L101-L124).\r\n\r\nThere is a [warning](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/load.py#L640-L648) that `features` are ignored.\r\n\r\nNote that as mentioned in `Describe the bug` this could also be resolved by removing the check [here](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) because Arrow actually handles this itself, Arrow sets any missing fields to `None`, at least in my case.",
"Note for anyone else who encounters this issue, every dataset type except folder-based types supported features in the [documented](https://huggingface.co/docs/datasets/repository_structure#builder-parameters) manner; [Arrow](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/arrow/arrow.py#L15-L21), [csv](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/csv/csv.py#L25-L68), [generator](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/generator/generator.py#L8-L19), [json](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/json/json.py#L42-L52), [pandas](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/pandas/pandas.py#L14-L20), [parquet](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/parquet/parquet.py#L16-L24), [spark](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/spark/spark.py#L31-L37), [sql](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/sql/sql.py#L24-L35) and [text](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/text/text.py#L18-L27). `WebDataset` is different and requires [`dataset_info` which is vaguely documented](https://huggingface.co/docs/datasets/dataset_script#optional-generate-dataset-metadata) under dataset loading scripts.",
"Thanks for explaining. I see the Dataset Viewer is still failing - I'll update `datasets` in the Viewer to fix this"
] | 2024-07-22T01:14:19Z
| 2024-07-24T13:26:30Z
| 2024-07-23T13:28:46Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Consider a WebDataset with multiple images for each item where the number of images may vary: [example](https://huggingface.co/datasets/bigdata-pw/fashion-150k)
Due to this [code](https://github.com/huggingface/datasets/blob/87f4c2088854ff33e817e724e75179e9975c1b02/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) an error is given.
```
The TAR archives of the dataset should be in WebDataset format, but the files in the archive don't share the same prefix or the same types.
```
The purpose of this check is unclear because PyArrow supports different keys.
Removing the check allows the dataset to be loaded and there's no issue when iterating through the dataset.
```
>>> from datasets import load_dataset
>>> path = "shards/*.tar"
>>> dataset = load_dataset("webdataset", data_files={"train": path}, split="train", streaming=True)
Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 152/152 [00:00<00:00, 56458.93it/s]
>>> dataset
IterableDataset({
features: ['__key__', '__url__', '1.jpg', '2.jpg', '3.jpg', '4.jpg', 'json'],
n_shards: 152
})
```
### Steps to reproduce the bug
```python
from datasets import load_dataset
load_dataset("bigdata-pw/fashion-150k")
```
### Expected behavior
Dataset loads without error
### Environment info
- `datasets` version: 2.20.0
- Platform: Linux-5.14.0-467.el9.x86_64-x86_64-with-glibc2.34
- Python version: 3.9.19
- `huggingface_hub` version: 0.23.4
- PyArrow version: 17.0.0
- Pandas version: 2.2.2
- `fsspec` version: 2024.5.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4",
"events_url": "https://api.github.com/users/hlky/events{/privacy}",
"followers_url": "https://api.github.com/users/hlky/followers",
"following_url": "https://api.github.com/users/hlky/following{/other_user}",
"gists_url": "https://api.github.com/users/hlky/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hlky",
"id": 106811348,
"login": "hlky",
"node_id": "U_kgDOBl3P1A",
"organizations_url": "https://api.github.com/users/hlky/orgs",
"received_events_url": "https://api.github.com/users/hlky/received_events",
"repos_url": "https://api.github.com/users/hlky/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hlky/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hlky",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7055/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7055/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7187
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7187/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7187/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7187/events
|
https://github.com/huggingface/datasets/issues/7187
| 2,560,501,308
|
I_kwDODunzps6YniY8
| 7,187
|
shard_data_sources() got an unexpected keyword argument 'worker_id'
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/27758466?v=4",
"events_url": "https://api.github.com/users/Qinghao-Hu/events{/privacy}",
"followers_url": "https://api.github.com/users/Qinghao-Hu/followers",
"following_url": "https://api.github.com/users/Qinghao-Hu/following{/other_user}",
"gists_url": "https://api.github.com/users/Qinghao-Hu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Qinghao-Hu",
"id": 27758466,
"login": "Qinghao-Hu",
"node_id": "MDQ6VXNlcjI3NzU4NDY2",
"organizations_url": "https://api.github.com/users/Qinghao-Hu/orgs",
"received_events_url": "https://api.github.com/users/Qinghao-Hu/received_events",
"repos_url": "https://api.github.com/users/Qinghao-Hu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Qinghao-Hu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Qinghao-Hu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Qinghao-Hu",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2024-10-02T01:26:35Z
| 2024-10-02T01:26:35Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
```
[rank0]: File "/home/qinghao/miniconda3/envs/doremi/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 238, in __iter__
[rank0]: for key_example in islice(self.generate_examples_fn(**gen_kwags), shard_example_idx_start, None):
[rank0]: File "/home/qinghao/miniconda3/envs/doremi/lib/python3.10/site-packages/datasets/packaged_modules/generator/generator.py", line 32, in _generate_examples
[rank0]: for idx, ex in enumerate(self.config.generator(**gen_kwargs)):
[rank0]: File "/home/qinghao/workdir/doremi/doremi/dataloader.py", line 337, in take_data_generator
[rank0]: for ex in ds:
[rank0]: File "/home/qinghao/miniconda3/envs/doremi/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1791, in __iter__
[rank0]: yield from self._iter_pytorch()
[rank0]: File "/home/qinghao/miniconda3/envs/doremi/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1704, in _iter_pytorch
[rank0]: ex_iterable = ex_iterable.shard_data_sources(worker_id=worker_info.id, num_workers=worker_info.num_workers)
[rank0]: TypeError: UpdatableRandomlyCyclingMultiSourcesExamplesIterable.shard_data_sources() got an unexpected keyword argument 'worker_id'
```
### Steps to reproduce the bug
IterableDataset cannot use
### Expected behavior
can work on datasets==2.10, but will raise error for later versions.
### Environment info
datasets==3.0.1
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7187/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7187/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/5254
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5254/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5254/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5254/events
|
https://github.com/huggingface/datasets/pull/5254
| 1,452,600,088
|
PR_kwDODunzps5DE47u
| 5,254
|
typo
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/7569098?v=4",
"events_url": "https://api.github.com/users/WrRan/events{/privacy}",
"followers_url": "https://api.github.com/users/WrRan/followers",
"following_url": "https://api.github.com/users/WrRan/following{/other_user}",
"gists_url": "https://api.github.com/users/WrRan/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/WrRan",
"id": 7569098,
"login": "WrRan",
"node_id": "MDQ6VXNlcjc1NjkwOTg=",
"organizations_url": "https://api.github.com/users/WrRan/orgs",
"received_events_url": "https://api.github.com/users/WrRan/received_events",
"repos_url": "https://api.github.com/users/WrRan/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/WrRan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/WrRan/subscriptions",
"type": "User",
"url": "https://api.github.com/users/WrRan",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[] | 2022-11-17T02:39:57Z
| 2022-11-18T10:53:45Z
| 2022-11-18T10:53:45Z
|
CONTRIBUTOR
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5254/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5254/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5254.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5254",
"merged_at": "2022-11-18T10:53:45Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5254.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5254"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6012
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6012/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6012/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6012/events
|
https://github.com/huggingface/datasets/issues/6012
| 1,795,575,432
|
I_kwDODunzps5rBk6I
| 6,012
|
[FR] Transform Chaining, Lazy Mapping
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/NightMachinery",
"id": 36224762,
"login": "NightMachinery",
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"type": "User",
"url": "https://api.github.com/users/NightMachinery",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[
"You can use `with_transform` to get a new dataset object.\r\n\r\nSupport for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex. ",
"> You can use `with_transform` to get a new dataset object.\r\n> \r\n> Support for lazy `map` has already been discussed [here](https://github.com/huggingface/datasets/issues/3385) a little bit. Personally, I'm not a fan, as this would make `map` even more complex.\r\n\r\nI read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\n`with_transform` still does not chain AFAIU.",
"> I read about IterableDataset, and it seems to have lazy mapping. But I can't figure out how to convert an IterableDataset into a normal one when needed.\r\n\r\nYou must cache an `IterableDataset` to disk to load it as a `Dataset`. One way to do this is with `Dataset.from_generator`:\r\n```python\r\nfrom functools import partial\r\nfrom datasets import Dataset\r\n\r\ndef gen_from_iterable_dataset(iterable_ds)\r\n yield from iterable_ds\r\n\r\nds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n```\r\n\r\n> with_transform still does not chain AFAIU.\r\n\r\nYes, not supported yet - the solution is to combine the transforms into a single one.",
"I wonder if it would be beneficial to have a dedicated method to do that ? Maybe a `.save_to_disk()` so that the user can reload the resulting dataset later ?",
"> ```python\r\n> from functools import partial\r\n> from datasets import Dataset\r\n> \r\n> def gen_from_iterable_dataset(iterable_ds)\r\n> yield from iterable_ds\r\n> \r\n> ds = Dataset.from_generator(partial(gen_from_iterable_dataset, iterable_ds), features=iterable_ds.features})\r\n> ```\r\n\r\n@mariosasko With these complex mapping functions, what hash will be used to cache this dataset?\r\n",
"The params passed to `Dataset.from_generator` will be used to compute the hash (`partial` encapsulates the `iterable_ds` value, so changing it will also change the hash)",
"Hi, I think this feature would be very useful. I want to concatenate large datasets with heterogeneous columns. I dislike `map` since I don't want multiple copy of that datasets locally. I tried to use \"set_transform\" on each dataset to convert it to a standard features format, but `datasets.concatenate_datasets` ignores the updated format of the datasets. A work around is to use `torch.utils.data.ConcatDataset`. Is there a neat way to do it using HF datasets?",
"@mariosasko These features would be handy for large datasets. A typical use case is video datasets: We have millions of videos, each stored in some OSS so they require some custom loading logic.\n\n1) Due to the memory limit, loading the videos a priori into the memory is infeasible. But we can postpone video loading until they are needed with lazy mapping.\n2) With chained transforms, we can allow the users to specify their custom video preprocessing logic while keeping the loading logic the same.",
"FYI lazy map is available for `IterableDataset`(map is applied on-the-fly when iterating on the dataset):\n\n```python\nds = load_dataset(...streaming=True)\n# or\nds = Dataset.from_list(...).to_iterable_dataset()\n# or\nds = IterableDataset.from_generator(...)\n\n# Then you can chain many map/filter/shuffle/etc.\nds = ds.map(...).filter(...).map(...)\n\n# The map functions are applied on-the-fly when iterating on the dataset\nfor example in ds:\n ..."
] | 2023-07-09T21:40:21Z
| 2025-01-20T14:06:28Z
| null |
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
Currently using a `map` call processes and duplicates the whole dataset, which takes both time and disk space.
The solution is to allow lazy mapping, which is essentially a saved chain of transforms that are applied on the fly whenever a slice of the dataset is requested.
The API should look like `map`, as `set_transform` changes the current dataset while `map` returns another dataset.
### Motivation
Lazy processing allows lower disk usage and faster experimentation.
### Your contribution
_
| null |
{
"+1": 6,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 6,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6012/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6012/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/5011
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5011/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5011/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5011/events
|
https://github.com/huggingface/datasets/issues/5011
| 1,382,609,587
|
I_kwDODunzps5SaPKz
| 5,011
|
Audio: `encode_example` fails with IndexError
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanchit-gandhi",
"id": 93869735,
"login": "sanchit-gandhi",
"node_id": "U_kgDOBZhWpw",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanchit-gandhi",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"Sorry bug on my part 😅 Closing "
] | 2022-09-22T15:07:27Z
| 2022-09-23T09:05:18Z
| 2022-09-23T09:05:18Z
|
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
Loading the dataset [earnings-22](https://huggingface.co/datasets/sanchit-gandhi/earnings22_split) from the Hub yields an Index Error. I created this dataset locally and then pushed to hub at the specified URL. Thus, I expect the dataset should work out-of-the-box! Indeed, the dataset viewer functions correctly, and there were no issues when I had the dataset locally.
Don't think it's a sound file bug as the version matches what worked previously.
Update: the bug appeared for me on a GPU, mysteriously on a TPU I can't repro and it downloads correctly...
## Steps to reproduce the bug
```python
from datasets import load_dataset
earnings22 = load_dataset("sanchit-gandhi/earnings22_split")
```
## Expected results
```
>>> earnings22
DatasetDict({
validation: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 2650
})
train: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 52006
})
test: Dataset({
features: ['source_id', 'audio', 'segment_id', 'sentence', 'start_ts', 'end_ts', 'id'],
num_rows: 2735
})
})
```
## Actual results
```
Traceback (most recent call last):
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 2764, in _map_single
writer.write(example)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 451, in write
self.write_examples_on_file()
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 409, in write_examples_on_file
self.write_batch(batch_examples=batch_examples)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 508, in write_batch
arrays.append(pa.array(typed_sequence))
File "pyarrow/array.pxi", line 231, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/arrow_writer.py", line 197, in __arrow_array__
out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/table.py", line 1683, in wrapper
return func(array, *args, **kwargs)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/table.py", line 1795, in cast_array_to_feature
return feature.cast_storage(array)
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 190, in cast_storage
storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()])
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 190, in <listcomp>
storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()])
File "/opt/conda/envs/hf/lib/python3.8/site-packages/datasets/features/audio.py", line 92, in encode_example
sf.write(buffer, value["array"], value["sampling_rate"], format="wav")
File "/opt/conda/envs/hf/lib/python3.8/site-packages/soundfile.py", line 313, in write
channels = data.shape[1]
IndexError: tuple index out of range
```
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.4.0
- Platform: Linux-4.19.0-21-cloud-amd64-x86_64-with-glibc2.10
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.3
Plus:
- SoundFile version: 0.10.3.post1
cc @lhoestq @polinaeterna
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sanchit-gandhi",
"id": 93869735,
"login": "sanchit-gandhi",
"node_id": "U_kgDOBZhWpw",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sanchit-gandhi",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5011/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5011/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6280
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6280/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6280/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6280/events
|
https://github.com/huggingface/datasets/issues/6280
| 1,928,215,278
|
I_kwDODunzps5y7jru
| 6,280
|
Couldn't cast array of type fixed_size_list to Sequence(Value(float64))
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4",
"events_url": "https://api.github.com/users/jmif/events{/privacy}",
"followers_url": "https://api.github.com/users/jmif/followers",
"following_url": "https://api.github.com/users/jmif/following{/other_user}",
"gists_url": "https://api.github.com/users/jmif/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/jmif",
"id": 1000442,
"login": "jmif",
"node_id": "MDQ6VXNlcjEwMDA0NDI=",
"organizations_url": "https://api.github.com/users/jmif/orgs",
"received_events_url": "https://api.github.com/users/jmif/received_events",
"repos_url": "https://api.github.com/users/jmif/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmif/subscriptions",
"type": "User",
"url": "https://api.github.com/users/jmif",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Thanks for reporting! I've opened a PR with a fix.",
"Thanks for the quick response @mariosasko! I just installed your branch via `poetry add 'git+https://github.com/huggingface/datasets#fix-array_values'` and I can confirm it works on the example provided.\r\n\r\nFollow up question for you, should `None`s be supported in these types of features as they are in others?\r\n\r\nFor example, the following script:\r\n\r\n```\r\nfrom datasets import Features, Value, Sequence, ClassLabel, Dataset\r\n\r\ndataset_features = Features({\r\n 'text': Value('string'),\r\n 'embedding': Sequence(Value('double'), length=2),\r\n 'categories': Sequence(ClassLabel(names=sorted([\r\n 'one',\r\n 'two',\r\n 'three'\r\n ]))),\r\n})\r\n\r\ndataset = Dataset.from_dict(\r\n {\r\n 'text': ['A'] * 10000,\r\n \"embedding\": [None] * 10000, # THIS LINE CHANGED\r\n 'categories': [[0]] * 10000,\r\n },\r\n features=dataset_features\r\n)\r\n\r\ndef test_mapper(r):\r\n r['text'] = list(map(lambda t: t + ' b', r['text']))\r\n return r\r\n\r\n\r\ndataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2)\r\n```\r\n\r\nfails with\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py\", line 125, in worker\r\n result = (True, func(*args, **kwds))\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py\", line 1354, in _write_generator_to_queue\r\n for i, result in enumerate(func(**kwargs)):\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 3493, in _map_single\r\n writer.write_batch(batch)\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_writer.py\", line 549, in write_batch\r\n array = cast_array_to_feature(col_values, col_type) if col_type is not None else col_values\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/table.py\", line 2160, in cast_array_to_feature\r\n raise TypeError(f\"Couldn't cast array of type\\n{array.type}\\nto\\n{feature}\")\r\nTypeError: Couldn't cast array of type\r\nfixed_size_list<item: double>[2]\r\nto\r\nSequence(feature=Value(dtype='float64', id=None), length=2, id=None)\r\n```\r\n\r\nIdeally we can have empty embedding columns as well!",
"This part of PyArrow is buggy and inconsistent regarding features implemented across the types, so the only option is to operate on the Arrow buffer level to fix issues such as the above one.",
"Ok - can you take the POC I did [here](https://github.com/huggingface/datasets/commit/15443098e9ce053943172f7ec6fce3769d7dff6e)? Happy to turn this into an actual PR but would appreciate feedback on the implementation before I take another pass!"
] | 2023-10-05T12:48:31Z
| 2024-02-06T19:24:20Z
| 2024-02-06T19:24:20Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I have a dataset with an embedding column, when I try to map that dataset I get the following exception:
```
Traceback (most recent call last):
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3189, in map
for rank, done, content in iflatmap_unordered(
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in iflatmap_unordered
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1387, in <listcomp>
[async_result.get(timeout=0.05) for async_result in async_results]
File "/Users/jmif/.virtualenvs/llm-training/lib/python3.10/site-packages/multiprocess/pool.py", line 774, in get
raise self._value
TypeError: Couldn't cast array of type
fixed_size_list<item: float>[2]
to
Sequence(feature=Value(dtype='float32', id=None), length=2, id=None)
```
### Steps to reproduce the bug
Here's a simple repro script:
```
from datasets import Features, Value, Sequence, ClassLabel, Dataset
dataset_features = Features({
'text': Value('string'),
'embedding': Sequence(Value('double'), length=2),
'categories': Sequence(ClassLabel(names=sorted([
'one',
'two',
'three'
]))),
})
dataset = Dataset.from_dict(
{
'text': ['A'] * 10000,
'embedding': [[0.0, 0.1]] * 10000,
'categories': [[0]] * 10000,
},
features=dataset_features
)
def test_mapper(r):
r['text'] = list(map(lambda t: t + ' b', r['text']))
return r
dataset = dataset.map(test_mapper, batched=True, batch_size=10, features=dataset_features, num_proc=2)
```
Removing the embedding column fixes the issue!
### Expected behavior
The mapping completes successfully.
### Environment info
- `datasets` version: 2.14.4
- Platform: macOS-14.0-arm64-arm-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.17.1
- PyArrow version: 13.0.0
- Pandas version: 2.0.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6280/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6280/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6127
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6127/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6127/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6127/events
|
https://github.com/huggingface/datasets/pull/6127
| 1,839,746,721
|
PR_kwDODunzps5XWdP5
| 6,127
|
Fix authentication issues
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006103 / 0.011353 (-0.005250) | 0.003588 / 0.011008 (-0.007420) | 0.080335 / 0.038508 (0.041827) | 0.059634 / 0.023109 (0.036525) | 0.356093 / 0.275898 (0.080195) | 0.407376 / 0.323480 (0.083896) | 0.005343 / 0.007986 (-0.002643) | 0.002928 / 0.004328 (-0.001400) | 0.062580 / 0.004250 (0.058330) | 0.047544 / 0.037052 (0.010491) | 0.364305 / 0.258489 (0.105816) | 0.421463 / 0.293841 (0.127623) | 0.027249 / 0.128546 (-0.101298) | 0.008010 / 0.075646 (-0.067636) | 0.262543 / 0.419271 (-0.156728) | 0.044978 / 0.043533 (0.001445) | 0.339344 / 0.255139 (0.084205) | 0.395288 / 0.283200 (0.112088) | 0.021425 / 0.141683 (-0.120258) | 1.439767 / 1.452155 (-0.012387) | 1.498081 / 1.492716 (0.005365) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196976 / 0.018006 (0.178970) | 0.435383 / 0.000490 (0.434893) | 0.004559 / 0.000200 (0.004359) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023653 / 0.037411 (-0.013759) | 0.072944 / 0.014526 (0.058418) | 0.083651 / 0.176557 (-0.092906) | 0.144590 / 0.737135 (-0.592545) | 0.084844 / 0.296338 (-0.211494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398752 / 0.215209 (0.183543) | 3.959539 / 2.077655 (1.881884) | 1.935277 / 1.504120 (0.431157) | 1.751994 / 1.541195 (0.210799) | 1.828386 / 1.468490 (0.359896) | 0.500492 / 4.584777 (-4.084284) | 3.086630 / 3.745712 (-0.659082) | 2.851664 / 5.269862 (-2.418198) | 1.869792 / 4.565676 (-2.695885) | 0.058509 / 0.424275 (-0.365766) | 0.006500 / 0.007607 (-0.001107) | 0.467468 / 0.226044 (0.241424) | 4.686168 / 2.268929 (2.417240) | 2.427632 / 55.444624 (-53.016993) | 2.193194 / 6.876477 (-4.683283) | 2.408574 / 2.142072 (0.266501) | 0.592173 / 4.805227 (-4.213054) | 0.125381 / 6.500664 (-6.375283) | 0.060679 / 0.075469 (-0.014790) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236066 / 1.841788 (-0.605722) | 18.591689 / 8.074308 (10.517381) | 14.138774 / 10.191392 (3.947382) | 0.147455 / 0.680424 (-0.532968) | 0.016921 / 0.534201 (-0.517280) | 0.328129 / 0.579283 (-0.251154) | 0.348872 / 0.434364 (-0.085491) | 0.380311 / 0.540337 (-0.160026) | 0.532901 / 1.386936 (-0.854035) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005914 / 0.011353 (-0.005438) | 0.003614 / 0.011008 (-0.007394) | 0.062857 / 0.038508 (0.024349) | 0.060633 / 0.023109 (0.037524) | 0.419684 / 0.275898 (0.143786) | 0.449025 / 0.323480 (0.125546) | 0.004595 / 0.007986 (-0.003391) | 0.002861 / 0.004328 (-0.001467) | 0.063253 / 0.004250 (0.059003) | 0.048770 / 0.037052 (0.011718) | 0.419838 / 0.258489 (0.161349) | 0.465183 / 0.293841 (0.171342) | 0.027350 / 0.128546 (-0.101196) | 0.008065 / 0.075646 (-0.067582) | 0.068321 / 0.419271 (-0.350950) | 0.041083 / 0.043533 (-0.002449) | 0.400831 / 0.255139 (0.145692) | 0.449286 / 0.283200 (0.166086) | 0.020472 / 0.141683 (-0.121210) | 1.437215 / 1.452155 (-0.014940) | 1.503679 / 1.492716 (0.010963) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230764 / 0.018006 (0.212758) | 0.420774 / 0.000490 (0.420285) | 0.004012 / 0.000200 (0.003812) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026009 / 0.037411 (-0.011402) | 0.077943 / 0.014526 (0.063417) | 0.087281 / 0.176557 (-0.089276) | 0.139422 / 0.737135 (-0.597713) | 0.089090 / 0.296338 (-0.207248) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417298 / 0.215209 (0.202088) | 4.152303 / 2.077655 (2.074648) | 2.179996 / 1.504120 (0.675877) | 2.020619 / 1.541195 (0.479424) | 2.085241 / 1.468490 (0.616751) | 0.501111 / 4.584777 (-4.083666) | 3.079849 / 3.745712 (-0.665863) | 2.820607 / 5.269862 (-2.449255) | 1.863988 / 4.565676 (-2.701688) | 0.057662 / 0.424275 (-0.366613) | 0.006778 / 0.007607 (-0.000830) | 0.498661 / 0.226044 (0.272616) | 4.986503 / 2.268929 (2.717574) | 2.620676 / 55.444624 (-52.823949) | 2.297546 / 6.876477 (-4.578931) | 2.458148 / 2.142072 (0.316075) | 0.599490 / 4.805227 (-4.205738) | 0.125102 / 6.500664 (-6.375562) | 0.061411 / 0.075469 (-0.014059) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.323816 / 1.841788 (-0.517971) | 18.462614 / 8.074308 (10.388306) | 13.845826 / 10.191392 (3.654434) | 0.146115 / 0.680424 (-0.534309) | 0.016862 / 0.534201 (-0.517339) | 0.335449 / 0.579283 (-0.243834) | 0.343792 / 0.434364 (-0.090572) | 0.394068 / 0.540337 (-0.146269) | 0.536378 / 1.386936 (-0.850558) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006825 / 0.011353 (-0.004527) | 0.004005 / 0.011008 (-0.007003) | 0.085504 / 0.038508 (0.046996) | 0.077252 / 0.023109 (0.054143) | 0.351891 / 0.275898 (0.075993) | 0.383404 / 0.323480 (0.059924) | 0.004153 / 0.007986 (-0.003833) | 0.003344 / 0.004328 (-0.000985) | 0.064936 / 0.004250 (0.060685) | 0.057653 / 0.037052 (0.020601) | 0.368155 / 0.258489 (0.109666) | 0.406122 / 0.293841 (0.112282) | 0.032049 / 0.128546 (-0.096497) | 0.008698 / 0.075646 (-0.066949) | 0.292394 / 0.419271 (-0.126878) | 0.053634 / 0.043533 (0.010101) | 0.358273 / 0.255139 (0.103134) | 0.378441 / 0.283200 (0.095242) | 0.026928 / 0.141683 (-0.114755) | 1.458718 / 1.452155 (0.006563) | 1.536231 / 1.492716 (0.043515) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213956 / 0.018006 (0.195950) | 0.458620 / 0.000490 (0.458130) | 0.002718 / 0.000200 (0.002519) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027870 / 0.037411 (-0.009541) | 0.083922 / 0.014526 (0.069396) | 0.152056 / 0.176557 (-0.024501) | 0.151584 / 0.737135 (-0.585552) | 0.095698 / 0.296338 (-0.200641) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407762 / 0.215209 (0.192553) | 4.074324 / 2.077655 (1.996669) | 2.089929 / 1.504120 (0.585809) | 1.920024 / 1.541195 (0.378829) | 2.013410 / 1.468490 (0.544920) | 0.486056 / 4.584777 (-4.098721) | 3.656869 / 3.745712 (-0.088843) | 3.304008 / 5.269862 (-1.965854) | 2.074363 / 4.565676 (-2.491313) | 0.057293 / 0.424275 (-0.366982) | 0.007240 / 0.007607 (-0.000367) | 0.482696 / 0.226044 (0.256652) | 4.833251 / 2.268929 (2.564322) | 2.570391 / 55.444624 (-52.874233) | 2.220619 / 6.876477 (-4.655857) | 2.426316 / 2.142072 (0.284243) | 0.584811 / 4.805227 (-4.220416) | 0.134907 / 6.500664 (-6.365757) | 0.061115 / 0.075469 (-0.014354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251969 / 1.841788 (-0.589818) | 19.601611 / 8.074308 (11.527303) | 14.190217 / 10.191392 (3.998825) | 0.166296 / 0.680424 (-0.514128) | 0.018334 / 0.534201 (-0.515867) | 0.395172 / 0.579283 (-0.184111) | 0.410440 / 0.434364 (-0.023924) | 0.462263 / 0.540337 (-0.078074) | 0.645504 / 1.386936 (-0.741432) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006991 / 0.011353 (-0.004362) | 0.004084 / 0.011008 (-0.006924) | 0.065208 / 0.038508 (0.026700) | 0.077809 / 0.023109 (0.054699) | 0.386472 / 0.275898 (0.110574) | 0.418686 / 0.323480 (0.095206) | 0.005346 / 0.007986 (-0.002640) | 0.003416 / 0.004328 (-0.000912) | 0.066209 / 0.004250 (0.061958) | 0.057517 / 0.037052 (0.020465) | 0.407684 / 0.258489 (0.149195) | 0.425438 / 0.293841 (0.131597) | 0.032166 / 0.128546 (-0.096380) | 0.008662 / 0.075646 (-0.066985) | 0.071712 / 0.419271 (-0.347560) | 0.049764 / 0.043533 (0.006231) | 0.394882 / 0.255139 (0.139743) | 0.403589 / 0.283200 (0.120389) | 0.023688 / 0.141683 (-0.117995) | 1.468488 / 1.452155 (0.016334) | 1.533118 / 1.492716 (0.040401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252949 / 0.018006 (0.234943) | 0.447355 / 0.000490 (0.446865) | 0.011721 / 0.000200 (0.011521) | 0.000107 / 0.000054 (0.000052) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031444 / 0.037411 (-0.005968) | 0.089390 / 0.014526 (0.074864) | 0.100103 / 0.176557 (-0.076454) | 0.153301 / 0.737135 (-0.583835) | 0.101336 / 0.296338 (-0.195003) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408574 / 0.215209 (0.193365) | 4.073135 / 2.077655 (1.995480) | 2.086550 / 1.504120 (0.582430) | 1.930651 / 1.541195 (0.389457) | 2.013548 / 1.468490 (0.545058) | 0.477235 / 4.584777 (-4.107542) | 3.547545 / 3.745712 (-0.198167) | 3.321957 / 5.269862 (-1.947905) | 2.057705 / 4.565676 (-2.507971) | 0.056730 / 0.424275 (-0.367545) | 0.007882 / 0.007607 (0.000275) | 0.487297 / 0.226044 (0.261253) | 4.874184 / 2.268929 (2.605255) | 2.631129 / 55.444624 (-52.813496) | 2.235755 / 6.876477 (-4.640722) | 2.463329 / 2.142072 (0.321257) | 0.578308 / 4.805227 (-4.226919) | 0.132726 / 6.500664 (-6.367938) | 0.064883 / 0.075469 (-0.010586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.347564 / 1.841788 (-0.494223) | 20.192973 / 8.074308 (12.118665) | 14.563553 / 10.191392 (4.372161) | 0.168244 / 0.680424 (-0.512180) | 0.018638 / 0.534201 (-0.515563) | 0.394789 / 0.579283 (-0.184494) | 0.419677 / 0.434364 (-0.014687) | 0.480274 / 0.540337 (-0.060063) | 0.641204 / 1.386936 (-0.745732) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005939 / 0.011353 (-0.005413) | 0.003457 / 0.011008 (-0.007551) | 0.079985 / 0.038508 (0.041477) | 0.056492 / 0.023109 (0.033383) | 0.312356 / 0.275898 (0.036458) | 0.354038 / 0.323480 (0.030558) | 0.004551 / 0.007986 (-0.003435) | 0.002828 / 0.004328 (-0.001501) | 0.062369 / 0.004250 (0.058119) | 0.044712 / 0.037052 (0.007660) | 0.318244 / 0.258489 (0.059755) | 0.361977 / 0.293841 (0.068136) | 0.026460 / 0.128546 (-0.102086) | 0.007928 / 0.075646 (-0.067719) | 0.261378 / 0.419271 (-0.157894) | 0.044209 / 0.043533 (0.000676) | 0.313931 / 0.255139 (0.058792) | 0.339553 / 0.283200 (0.056354) | 0.019776 / 0.141683 (-0.121907) | 1.443126 / 1.452155 (-0.009029) | 1.508149 / 1.492716 (0.015432) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183801 / 0.018006 (0.165795) | 0.427967 / 0.000490 (0.427477) | 0.002028 / 0.000200 (0.001828) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023697 / 0.037411 (-0.013715) | 0.072128 / 0.014526 (0.057602) | 0.083701 / 0.176557 (-0.092855) | 0.142821 / 0.737135 (-0.594315) | 0.082276 / 0.296338 (-0.214063) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434427 / 0.215209 (0.219218) | 4.325962 / 2.077655 (2.248308) | 2.277115 / 1.504120 (0.772995) | 2.093736 / 1.541195 (0.552541) | 2.127984 / 1.468490 (0.659494) | 0.502336 / 4.584777 (-4.082441) | 3.023243 / 3.745712 (-0.722469) | 2.805154 / 5.269862 (-2.464708) | 1.821273 / 4.565676 (-2.744403) | 0.057480 / 0.424275 (-0.366795) | 0.006365 / 0.007607 (-0.001242) | 0.508258 / 0.226044 (0.282213) | 5.087950 / 2.268929 (2.819022) | 2.705029 / 55.444624 (-52.739596) | 2.378392 / 6.876477 (-4.498085) | 2.515380 / 2.142072 (0.373307) | 0.589283 / 4.805227 (-4.215944) | 0.125719 / 6.500664 (-6.374945) | 0.061074 / 0.075469 (-0.014395) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221895 / 1.841788 (-0.619893) | 18.025917 / 8.074308 (9.951609) | 13.556901 / 10.191392 (3.365509) | 0.142614 / 0.680424 (-0.537809) | 0.016731 / 0.534201 (-0.517469) | 0.328374 / 0.579283 (-0.250910) | 0.342553 / 0.434364 (-0.091811) | 0.374502 / 0.540337 (-0.165836) | 0.534173 / 1.386936 (-0.852763) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005817 / 0.011353 (-0.005536) | 0.003500 / 0.011008 (-0.007509) | 0.062240 / 0.038508 (0.023732) | 0.058128 / 0.023109 (0.035019) | 0.424014 / 0.275898 (0.148116) | 0.468453 / 0.323480 (0.144973) | 0.004641 / 0.007986 (-0.003345) | 0.002821 / 0.004328 (-0.001508) | 0.062180 / 0.004250 (0.057930) | 0.047578 / 0.037052 (0.010526) | 0.427367 / 0.258489 (0.168878) | 0.467889 / 0.293841 (0.174048) | 0.027144 / 0.128546 (-0.101403) | 0.007969 / 0.075646 (-0.067678) | 0.067764 / 0.419271 (-0.351508) | 0.040719 / 0.043533 (-0.002814) | 0.423663 / 0.255139 (0.168524) | 0.458556 / 0.283200 (0.175356) | 0.019196 / 0.141683 (-0.122487) | 1.471546 / 1.452155 (0.019392) | 1.547541 / 1.492716 (0.054825) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228777 / 0.018006 (0.210770) | 0.406663 / 0.000490 (0.406173) | 0.003688 / 0.000200 (0.003488) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025494 / 0.037411 (-0.011917) | 0.076339 / 0.014526 (0.061814) | 0.084233 / 0.176557 (-0.092324) | 0.136995 / 0.737135 (-0.600140) | 0.085443 / 0.296338 (-0.210895) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420441 / 0.215209 (0.205232) | 4.187018 / 2.077655 (2.109363) | 2.142139 / 1.504120 (0.638019) | 1.974530 / 1.541195 (0.433335) | 2.027321 / 1.468490 (0.558831) | 0.498116 / 4.584777 (-4.086661) | 2.988514 / 3.745712 (-0.757198) | 2.782046 / 5.269862 (-2.487816) | 1.821725 / 4.565676 (-2.743951) | 0.057711 / 0.424275 (-0.366564) | 0.006664 / 0.007607 (-0.000944) | 0.491015 / 0.226044 (0.264971) | 4.921037 / 2.268929 (2.652108) | 2.574964 / 55.444624 (-52.869661) | 2.251703 / 6.876477 (-4.624774) | 2.361154 / 2.142072 (0.219082) | 0.593362 / 4.805227 (-4.211865) | 0.126107 / 6.500664 (-6.374557) | 0.061840 / 0.075469 (-0.013630) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.327459 / 1.841788 (-0.514328) | 18.062960 / 8.074308 (9.988652) | 13.669253 / 10.191392 (3.477861) | 0.130719 / 0.680424 (-0.549705) | 0.016564 / 0.534201 (-0.517637) | 0.335821 / 0.579283 (-0.243462) | 0.341691 / 0.434364 (-0.092673) | 0.392651 / 0.540337 (-0.147686) | 0.529650 / 1.386936 (-0.857286) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009625 / 0.011353 (-0.001728) | 0.005354 / 0.011008 (-0.005654) | 0.114350 / 0.038508 (0.075842) | 0.086637 / 0.023109 (0.063528) | 0.465381 / 0.275898 (0.189483) | 0.490411 / 0.323480 (0.166931) | 0.006575 / 0.007986 (-0.001411) | 0.004287 / 0.004328 (-0.000041) | 0.093134 / 0.004250 (0.088884) | 0.060209 / 0.037052 (0.023156) | 0.459570 / 0.258489 (0.201080) | 0.523320 / 0.293841 (0.229479) | 0.047943 / 0.128546 (-0.080603) | 0.014764 / 0.075646 (-0.060882) | 0.383887 / 0.419271 (-0.035384) | 0.069864 / 0.043533 (0.026331) | 0.469122 / 0.255139 (0.213983) | 0.509953 / 0.283200 (0.226753) | 0.037800 / 0.141683 (-0.103883) | 1.877589 / 1.452155 (0.425434) | 2.014913 / 1.492716 (0.522197) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.309146 / 0.018006 (0.291140) | 0.644390 / 0.000490 (0.643900) | 0.005017 / 0.000200 (0.004817) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032964 / 0.037411 (-0.004447) | 0.103236 / 0.014526 (0.088711) | 0.119950 / 0.176557 (-0.056607) | 0.207674 / 0.737135 (-0.529461) | 0.117278 / 0.296338 (-0.179060) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605464 / 0.215209 (0.390255) | 6.027805 / 2.077655 (3.950150) | 2.719725 / 1.504120 (1.215605) | 2.262752 / 1.541195 (0.721558) | 2.330310 / 1.468490 (0.861820) | 0.862537 / 4.584777 (-3.722240) | 5.347080 / 3.745712 (1.601368) | 4.792170 / 5.269862 (-0.477691) | 3.103694 / 4.565676 (-1.461983) | 0.103646 / 0.424275 (-0.320629) | 0.009411 / 0.007607 (0.001804) | 0.743052 / 0.226044 (0.517008) | 7.289684 / 2.268929 (5.020755) | 3.436530 / 55.444624 (-52.008094) | 2.722440 / 6.876477 (-4.154036) | 2.952380 / 2.142072 (0.810308) | 1.047688 / 4.805227 (-3.757539) | 0.212724 / 6.500664 (-6.287940) | 0.081473 / 0.075469 (0.006004) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.714437 / 1.841788 (-0.127351) | 24.384330 / 8.074308 (16.310022) | 22.444162 / 10.191392 (12.252770) | 0.226264 / 0.680424 (-0.454160) | 0.030530 / 0.534201 (-0.503671) | 0.473999 / 0.579283 (-0.105284) | 0.575005 / 0.434364 (0.140641) | 0.542789 / 0.540337 (0.002451) | 0.776079 / 1.386936 (-0.610857) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009366 / 0.011353 (-0.001987) | 0.005239 / 0.011008 (-0.005769) | 0.085116 / 0.038508 (0.046608) | 0.089600 / 0.023109 (0.066491) | 0.485778 / 0.275898 (0.209880) | 0.540054 / 0.323480 (0.216574) | 0.006290 / 0.007986 (-0.001695) | 0.004054 / 0.004328 (-0.000274) | 0.083535 / 0.004250 (0.079284) | 0.067200 / 0.037052 (0.030148) | 0.519520 / 0.258489 (0.261031) | 0.544049 / 0.293841 (0.250208) | 0.054300 / 0.128546 (-0.074246) | 0.013650 / 0.075646 (-0.061996) | 0.102515 / 0.419271 (-0.316757) | 0.063054 / 0.043533 (0.019522) | 0.491724 / 0.255139 (0.236585) | 0.547498 / 0.283200 (0.264298) | 0.039266 / 0.141683 (-0.102416) | 1.801226 / 1.452155 (0.349071) | 1.861778 / 1.492716 (0.369061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313009 / 0.018006 (0.295003) | 0.587695 / 0.000490 (0.587205) | 0.004972 / 0.000200 (0.004772) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029230 / 0.037411 (-0.008181) | 0.091154 / 0.014526 (0.076628) | 0.110505 / 0.176557 (-0.066052) | 0.164204 / 0.737135 (-0.572932) | 0.107812 / 0.296338 (-0.188526) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.610535 / 0.215209 (0.395326) | 6.162517 / 2.077655 (4.084862) | 2.866718 / 1.504120 (1.362598) | 2.542412 / 1.541195 (1.001218) | 2.584136 / 1.468490 (1.115645) | 0.874319 / 4.584777 (-3.710458) | 5.257184 / 3.745712 (1.511472) | 4.705840 / 5.269862 (-0.564022) | 2.971708 / 4.565676 (-1.593969) | 0.099026 / 0.424275 (-0.325249) | 0.009142 / 0.007607 (0.001535) | 0.728660 / 0.226044 (0.502615) | 7.560922 / 2.268929 (5.291994) | 3.439521 / 55.444624 (-52.005103) | 2.854730 / 6.876477 (-4.021746) | 3.088951 / 2.142072 (0.946879) | 0.973621 / 4.805227 (-3.831606) | 0.209792 / 6.500664 (-6.290872) | 0.081107 / 0.075469 (0.005638) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.716809 / 1.841788 (-0.124978) | 24.386927 / 8.074308 (16.312619) | 20.715524 / 10.191392 (10.524131) | 0.260831 / 0.680424 (-0.419592) | 0.030701 / 0.534201 (-0.503500) | 0.490018 / 0.579283 (-0.089265) | 0.590424 / 0.434364 (0.156060) | 0.589942 / 0.540337 (0.049604) | 0.798094 / 1.386936 (-0.588842) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006592 / 0.011353 (-0.004761) | 0.003880 / 0.011008 (-0.007128) | 0.083761 / 0.038508 (0.045253) | 0.075966 / 0.023109 (0.052857) | 0.315291 / 0.275898 (0.039393) | 0.355920 / 0.323480 (0.032440) | 0.004972 / 0.007986 (-0.003014) | 0.003053 / 0.004328 (-0.001275) | 0.063553 / 0.004250 (0.059302) | 0.050794 / 0.037052 (0.013742) | 0.317681 / 0.258489 (0.059192) | 0.361991 / 0.293841 (0.068150) | 0.028119 / 0.128546 (-0.100427) | 0.008203 / 0.075646 (-0.067443) | 0.271756 / 0.419271 (-0.147516) | 0.046701 / 0.043533 (0.003168) | 0.316520 / 0.255139 (0.061381) | 0.350499 / 0.283200 (0.067300) | 0.022399 / 0.141683 (-0.119284) | 1.416017 / 1.452155 (-0.036138) | 1.503087 / 1.492716 (0.010371) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208250 / 0.018006 (0.190244) | 0.470345 / 0.000490 (0.469856) | 0.003687 / 0.000200 (0.003487) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026163 / 0.037411 (-0.011248) | 0.083315 / 0.014526 (0.068789) | 0.088541 / 0.176557 (-0.088015) | 0.150078 / 0.737135 (-0.587057) | 0.088862 / 0.296338 (-0.207476) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404911 / 0.215209 (0.189702) | 4.059257 / 2.077655 (1.981602) | 1.890987 / 1.504120 (0.386867) | 1.726608 / 1.541195 (0.185413) | 1.767479 / 1.468490 (0.298989) | 0.518826 / 4.584777 (-4.065951) | 3.212145 / 3.745712 (-0.533567) | 3.029933 / 5.269862 (-2.239929) | 2.000203 / 4.565676 (-2.565474) | 0.059631 / 0.424275 (-0.364644) | 0.006707 / 0.007607 (-0.000900) | 0.485741 / 0.226044 (0.259697) | 4.871938 / 2.268929 (2.603010) | 2.418856 / 55.444624 (-53.025769) | 2.084847 / 6.876477 (-4.791630) | 2.207992 / 2.142072 (0.065920) | 0.614354 / 4.805227 (-4.190873) | 0.128932 / 6.500664 (-6.371732) | 0.062342 / 0.075469 (-0.013127) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.325792 / 1.841788 (-0.515995) | 19.718995 / 8.074308 (11.644687) | 15.278535 / 10.191392 (5.087143) | 0.146719 / 0.680424 (-0.533705) | 0.017718 / 0.534201 (-0.516483) | 0.335709 / 0.579283 (-0.243574) | 0.378060 / 0.434364 (-0.056304) | 0.391135 / 0.540337 (-0.149202) | 0.548045 / 1.386936 (-0.838891) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006504 / 0.011353 (-0.004849) | 0.003742 / 0.011008 (-0.007266) | 0.064405 / 0.038508 (0.025897) | 0.077618 / 0.023109 (0.054509) | 0.365325 / 0.275898 (0.089427) | 0.408109 / 0.323480 (0.084629) | 0.004909 / 0.007986 (-0.003076) | 0.002972 / 0.004328 (-0.001356) | 0.063933 / 0.004250 (0.059682) | 0.052916 / 0.037052 (0.015863) | 0.370891 / 0.258489 (0.112402) | 0.412134 / 0.293841 (0.118293) | 0.028171 / 0.128546 (-0.100375) | 0.008150 / 0.075646 (-0.067497) | 0.069248 / 0.419271 (-0.350024) | 0.042353 / 0.043533 (-0.001180) | 0.368117 / 0.255139 (0.112978) | 0.397548 / 0.283200 (0.114348) | 0.022967 / 0.141683 (-0.118716) | 1.472740 / 1.452155 (0.020586) | 1.524028 / 1.492716 (0.031311) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256854 / 0.018006 (0.238848) | 0.471499 / 0.000490 (0.471009) | 0.009609 / 0.000200 (0.009409) | 0.000109 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027978 / 0.037411 (-0.009433) | 0.086741 / 0.014526 (0.072215) | 0.091189 / 0.176557 (-0.085368) | 0.146117 / 0.737135 (-0.591018) | 0.092358 / 0.296338 (-0.203980) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426356 / 0.215209 (0.211147) | 4.263782 / 2.077655 (2.186127) | 2.178198 / 1.504120 (0.674078) | 2.015405 / 1.541195 (0.474211) | 2.055966 / 1.468490 (0.587476) | 0.507531 / 4.584777 (-4.077246) | 3.175967 / 3.745712 (-0.569745) | 3.055697 / 5.269862 (-2.214165) | 1.987663 / 4.565676 (-2.578014) | 0.058452 / 0.424275 (-0.365823) | 0.006944 / 0.007607 (-0.000663) | 0.502534 / 0.226044 (0.276489) | 5.024693 / 2.268929 (2.755765) | 2.754971 / 55.444624 (-52.689653) | 2.470845 / 6.876477 (-4.405632) | 2.698675 / 2.142072 (0.556602) | 0.602357 / 4.805227 (-4.202871) | 0.129490 / 6.500664 (-6.371174) | 0.065127 / 0.075469 (-0.010342) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.398487 / 1.841788 (-0.443301) | 19.692279 / 8.074308 (11.617971) | 15.124064 / 10.191392 (4.932672) | 0.148938 / 0.680424 (-0.531486) | 0.017418 / 0.534201 (-0.516783) | 0.340480 / 0.579283 (-0.238803) | 0.377223 / 0.434364 (-0.057141) | 0.405303 / 0.540337 (-0.135034) | 0.548923 / 1.386936 (-0.838013) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006433 / 0.011353 (-0.004920) | 0.004002 / 0.011008 (-0.007006) | 0.084130 / 0.038508 (0.045622) | 0.070628 / 0.023109 (0.047519) | 0.312372 / 0.275898 (0.036474) | 0.343993 / 0.323480 (0.020513) | 0.003936 / 0.007986 (-0.004050) | 0.003336 / 0.004328 (-0.000993) | 0.064715 / 0.004250 (0.060465) | 0.052511 / 0.037052 (0.015458) | 0.314092 / 0.258489 (0.055603) | 0.363152 / 0.293841 (0.069311) | 0.030898 / 0.128546 (-0.097648) | 0.008396 / 0.075646 (-0.067250) | 0.288083 / 0.419271 (-0.131188) | 0.051654 / 0.043533 (0.008122) | 0.315252 / 0.255139 (0.060113) | 0.346756 / 0.283200 (0.063556) | 0.025167 / 0.141683 (-0.116515) | 1.487265 / 1.452155 (0.035110) | 1.557528 / 1.492716 (0.064812) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206517 / 0.018006 (0.188510) | 0.458359 / 0.000490 (0.457869) | 0.003719 / 0.000200 (0.003519) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029631 / 0.037411 (-0.007780) | 0.083856 / 0.014526 (0.069330) | 0.340431 / 0.176557 (0.163875) | 0.153864 / 0.737135 (-0.583271) | 0.095951 / 0.296338 (-0.200388) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379182 / 0.215209 (0.163973) | 3.783396 / 2.077655 (1.705741) | 1.835932 / 1.504120 (0.331813) | 1.667563 / 1.541195 (0.126369) | 1.739309 / 1.468490 (0.270818) | 0.478957 / 4.584777 (-4.105820) | 3.521974 / 3.745712 (-0.223738) | 3.237635 / 5.269862 (-2.032227) | 2.000300 / 4.565676 (-2.565377) | 0.056389 / 0.424275 (-0.367887) | 0.007242 / 0.007607 (-0.000365) | 0.452642 / 0.226044 (0.226598) | 4.524339 / 2.268929 (2.255411) | 2.346210 / 55.444624 (-53.098414) | 1.957196 / 6.876477 (-4.919281) | 2.180051 / 2.142072 (0.037979) | 0.570205 / 4.805227 (-4.235022) | 0.131346 / 6.500664 (-6.369318) | 0.059327 / 0.075469 (-0.016142) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244709 / 1.841788 (-0.597079) | 19.566277 / 8.074308 (11.491969) | 14.172598 / 10.191392 (3.981206) | 0.166493 / 0.680424 (-0.513931) | 0.018281 / 0.534201 (-0.515920) | 0.391608 / 0.579283 (-0.187675) | 0.402642 / 0.434364 (-0.031722) | 0.464974 / 0.540337 (-0.075364) | 0.637565 / 1.386936 (-0.749371) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006929 / 0.011353 (-0.004424) | 0.004114 / 0.011008 (-0.006894) | 0.064589 / 0.038508 (0.026081) | 0.083334 / 0.023109 (0.060225) | 0.391280 / 0.275898 (0.115382) | 0.426157 / 0.323480 (0.102678) | 0.005336 / 0.007986 (-0.002650) | 0.003395 / 0.004328 (-0.000934) | 0.064560 / 0.004250 (0.060310) | 0.057094 / 0.037052 (0.020042) | 0.398959 / 0.258489 (0.140470) | 0.432470 / 0.293841 (0.138629) | 0.031412 / 0.128546 (-0.097134) | 0.008670 / 0.075646 (-0.066976) | 0.071249 / 0.419271 (-0.348022) | 0.048934 / 0.043533 (0.005401) | 0.384207 / 0.255139 (0.129068) | 0.407992 / 0.283200 (0.124792) | 0.024492 / 0.141683 (-0.117191) | 1.467788 / 1.452155 (0.015634) | 1.541011 / 1.492716 (0.048295) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.279607 / 0.018006 (0.261600) | 0.448899 / 0.000490 (0.448410) | 0.020990 / 0.000200 (0.020790) | 0.000132 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030313 / 0.037411 (-0.007099) | 0.089209 / 0.014526 (0.074684) | 0.101024 / 0.176557 (-0.075532) | 0.153468 / 0.737135 (-0.583667) | 0.103219 / 0.296338 (-0.193120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429176 / 0.215209 (0.213967) | 4.302234 / 2.077655 (2.224580) | 2.291103 / 1.504120 (0.786983) | 2.126257 / 1.541195 (0.585062) | 2.207090 / 1.468490 (0.738600) | 0.484643 / 4.584777 (-4.100134) | 3.557429 / 3.745712 (-0.188283) | 3.253804 / 5.269862 (-2.016058) | 2.026087 / 4.565676 (-2.539589) | 0.057793 / 0.424275 (-0.366482) | 0.007761 / 0.007607 (0.000154) | 0.504819 / 0.226044 (0.278775) | 5.046868 / 2.268929 (2.777940) | 2.773149 / 55.444624 (-52.671475) | 2.398036 / 6.876477 (-4.478440) | 2.608094 / 2.142072 (0.466021) | 0.630499 / 4.805227 (-4.174729) | 0.135496 / 6.500664 (-6.365168) | 0.061329 / 0.075469 (-0.014140) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.327124 / 1.841788 (-0.514664) | 19.889796 / 8.074308 (11.815488) | 14.196100 / 10.191392 (4.004708) | 0.161963 / 0.680424 (-0.518461) | 0.018529 / 0.534201 (-0.515672) | 0.392325 / 0.579283 (-0.186958) | 0.404836 / 0.434364 (-0.029528) | 0.475898 / 0.540337 (-0.064439) | 0.633563 / 1.386936 (-0.753373) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006390 / 0.011353 (-0.004963) | 0.003683 / 0.011008 (-0.007325) | 0.081274 / 0.038508 (0.042766) | 0.062193 / 0.023109 (0.039083) | 0.355360 / 0.275898 (0.079462) | 0.396471 / 0.323480 (0.072992) | 0.003569 / 0.007986 (-0.004416) | 0.003928 / 0.004328 (-0.000400) | 0.062292 / 0.004250 (0.058041) | 0.049700 / 0.037052 (0.012648) | 0.354604 / 0.258489 (0.096115) | 0.419436 / 0.293841 (0.125595) | 0.027151 / 0.128546 (-0.101395) | 0.007954 / 0.075646 (-0.067692) | 0.262231 / 0.419271 (-0.157041) | 0.045483 / 0.043533 (0.001950) | 0.354285 / 0.255139 (0.099146) | 0.385178 / 0.283200 (0.101978) | 0.021183 / 0.141683 (-0.120500) | 1.420785 / 1.452155 (-0.031370) | 1.531545 / 1.492716 (0.038829) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202298 / 0.018006 (0.184292) | 0.442172 / 0.000490 (0.441683) | 0.003565 / 0.000200 (0.003366) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024229 / 0.037411 (-0.013183) | 0.074352 / 0.014526 (0.059826) | 0.087530 / 0.176557 (-0.089026) | 0.146478 / 0.737135 (-0.590658) | 0.085145 / 0.296338 (-0.211194) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.388395 / 0.215209 (0.173186) | 3.877623 / 2.077655 (1.799968) | 1.882444 / 1.504120 (0.378324) | 1.707871 / 1.541195 (0.166676) | 1.772132 / 1.468490 (0.303642) | 0.491937 / 4.584777 (-4.092840) | 3.057947 / 3.745712 (-0.687765) | 2.822390 / 5.269862 (-2.447471) | 1.879719 / 4.565676 (-2.685957) | 0.056830 / 0.424275 (-0.367445) | 0.006415 / 0.007607 (-0.001192) | 0.458945 / 0.226044 (0.232900) | 4.594502 / 2.268929 (2.325574) | 2.339677 / 55.444624 (-53.104948) | 1.983750 / 6.876477 (-4.892727) | 2.173792 / 2.142072 (0.031719) | 0.580390 / 4.805227 (-4.224838) | 0.124568 / 6.500664 (-6.376096) | 0.061694 / 0.075469 (-0.013775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265108 / 1.841788 (-0.576680) | 18.415254 / 8.074308 (10.340946) | 13.963829 / 10.191392 (3.772437) | 0.148926 / 0.680424 (-0.531498) | 0.016919 / 0.534201 (-0.517282) | 0.331082 / 0.579283 (-0.248201) | 0.345777 / 0.434364 (-0.088587) | 0.381123 / 0.540337 (-0.159214) | 0.543297 / 1.386936 (-0.843639) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006121 / 0.011353 (-0.005232) | 0.003717 / 0.011008 (-0.007291) | 0.063653 / 0.038508 (0.025144) | 0.063723 / 0.023109 (0.040613) | 0.360233 / 0.275898 (0.084335) | 0.398353 / 0.323480 (0.074873) | 0.004696 / 0.007986 (-0.003290) | 0.002876 / 0.004328 (-0.001452) | 0.063057 / 0.004250 (0.058806) | 0.050258 / 0.037052 (0.013206) | 0.362946 / 0.258489 (0.104457) | 0.403260 / 0.293841 (0.109419) | 0.027738 / 0.128546 (-0.100809) | 0.008025 / 0.075646 (-0.067621) | 0.068781 / 0.419271 (-0.350491) | 0.042114 / 0.043533 (-0.001419) | 0.363546 / 0.255139 (0.108407) | 0.385640 / 0.283200 (0.102440) | 0.021757 / 0.141683 (-0.119926) | 1.482364 / 1.452155 (0.030209) | 1.571859 / 1.492716 (0.079143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235628 / 0.018006 (0.217622) | 0.439909 / 0.000490 (0.439419) | 0.003070 / 0.000200 (0.002870) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027045 / 0.037411 (-0.010366) | 0.080413 / 0.014526 (0.065887) | 0.088953 / 0.176557 (-0.087603) | 0.141907 / 0.737135 (-0.595228) | 0.090604 / 0.296338 (-0.205735) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423250 / 0.215209 (0.208041) | 4.216510 / 2.077655 (2.138855) | 2.162946 / 1.504120 (0.658826) | 2.014561 / 1.541195 (0.473366) | 2.086347 / 1.468490 (0.617857) | 0.496591 / 4.584777 (-4.088186) | 3.089594 / 3.745712 (-0.656118) | 2.853640 / 5.269862 (-2.416221) | 1.878149 / 4.565676 (-2.687527) | 0.056914 / 0.424275 (-0.367361) | 0.006762 / 0.007607 (-0.000845) | 0.493470 / 0.226044 (0.267426) | 4.929966 / 2.268929 (2.661037) | 2.640885 / 55.444624 (-52.803739) | 2.335950 / 6.876477 (-4.540527) | 2.565866 / 2.142072 (0.423793) | 0.585433 / 4.805227 (-4.219794) | 0.124969 / 6.500664 (-6.375695) | 0.062361 / 0.075469 (-0.013108) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369144 / 1.841788 (-0.472644) | 19.037582 / 8.074308 (10.963274) | 14.069141 / 10.191392 (3.877749) | 0.146469 / 0.680424 (-0.533954) | 0.016911 / 0.534201 (-0.517290) | 0.336802 / 0.579283 (-0.242482) | 0.336411 / 0.434364 (-0.097953) | 0.392360 / 0.540337 (-0.147977) | 0.536078 / 1.386936 (-0.850858) |\n\n</details>\n</details>\n\n\n"
] | 2023-08-07T15:41:25Z
| 2023-08-08T15:24:59Z
| 2023-08-08T15:16:22Z
|
MEMBER
| null | null | null |
This PR fixes 3 authentication issues:
- Fix authentication when passing `token`.
- Fix authentication in `Audio.decode_example` and `Image.decode_example`.
- Fix authentication to resolve `data_files` in repositories without script.
This PR also fixes our CI so that we properly test when passing `token` and we do not use the token stored in `HfFolder`.
Fix #6126.
## Details
### Fix authentication when passing `token`
See c0a77dc943de68a17f23f141517028c734c78623
The root issue was caused when the `token` was set in an already instantiated `DownloadConfig` and thus not propagated to `self._storage_options`:
```python
download_config.token = token
```
As this usage pattern is very common, the fix consists in overriding `DownloadConfig.__setattr__`.
This fixes authentication issues in the following functions:
- `load_dataset` and `load_dataset_builder`
- `Dataset.push_to_hub` and `Dataset.push_to_hub`
- `inspect.get_dataset_config_info`, `inspect.get_dataset_infos` and `inspect.get_dataset_split_names`
### Fix authentication in `Audio.decode_example` and `Image.decode_example`.
See: 58e62af004b6b8b84dcfd897a4bc71637cfa6c3f
The `token` was not set because the `repo_id` was wrongly tried to be parsed from an HTTP URL (`"http://..."`), instead of an HFFileSystem URL (`"hf://"`)
### Fix authentication to resolve `data_files` in repositories without script
See: e4684fc1032321abf0d494b0c130ea7c82ebda80
This is fixed by passing `download_config` to the function `create_builder_configs_from_metadata_configs`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6127/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6127/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6127.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6127",
"merged_at": "2023-08-08T15:16:22Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6127.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6127"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6637
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6637/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6637/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6637/events
|
https://github.com/huggingface/datasets/issues/6637
| 2,113,025,975
|
I_kwDODunzps598je3
| 6,637
|
'with_format' is extremely slow when used together with 'interleave_datasets' or 'shuffle' on IterableDatasets
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/22883190?v=4",
"events_url": "https://api.github.com/users/tobycrisford/events{/privacy}",
"followers_url": "https://api.github.com/users/tobycrisford/followers",
"following_url": "https://api.github.com/users/tobycrisford/following{/other_user}",
"gists_url": "https://api.github.com/users/tobycrisford/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/tobycrisford",
"id": 22883190,
"login": "tobycrisford",
"node_id": "MDQ6VXNlcjIyODgzMTkw",
"organizations_url": "https://api.github.com/users/tobycrisford/orgs",
"received_events_url": "https://api.github.com/users/tobycrisford/received_events",
"repos_url": "https://api.github.com/users/tobycrisford/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/tobycrisford/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tobycrisford/subscriptions",
"type": "User",
"url": "https://api.github.com/users/tobycrisford",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"The \"torch\" formatting is usually fast because we do zero-copy conversion from the Arrow data on your disk to Torch tensors. However IterableDataset shuffling seems to do data copies that slow down the pipeline, and it shuffles python objects instead of Arrow data.\r\n\r\nTo fix this we need to implement `BufferShuffledExamplesIterable.iter_arrow()` (same as regular `BufferShuffledExamplesIterable.__iter__()` but yields Arrow tables)\r\n\r\nhttps://github.com/huggingface/datasets/blob/b7d854b7fd3e9a330e21b76ee8421d4a7ebb4a7a/src/datasets/iterable_dataset.py#L968-L974\r\n"
] | 2024-02-01T17:16:54Z
| 2024-02-05T10:43:47Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
If you:
1. Interleave two iterable datasets together with the interleave_datasets function, or shuffle an iterable dataset
2. Set the output format to torch tensors with .with_format('torch')
Then iterating through the dataset becomes over 100x slower than it is if you don't apply the torch formatting.
### Steps to reproduce the bug
```python
import datasets
import torch
from tqdm import tqdm
rand_a = torch.randn(3,224,224)
rand_b = torch.randn(3,224,224)
a = torch.stack([rand_a] * 1000)
b = torch.stack([rand_b] * 1000)
features = datasets.Features({"tensor": datasets.Array3D(shape=(3,224,224), dtype="float32")})
ds_a = datasets.Dataset.from_dict({"tensor": a}, features=features).to_iterable_dataset()
ds_b = datasets.Dataset.from_dict({"tensor": b}, features=features).to_iterable_dataset()
# Iterating through either dataset with torch formatting is really fast (2000it/s on my machine)
for example in tqdm(ds_a.with_format('torch')):
pass
# Iterating through either dataset shuffled is also pretty fast (100it/s on my machine)
for example in tqdm(ds_a.shuffle()):
pass
# Iterating through this interleaved dataset is pretty fast (200it/s on my machine)
ds_fast = datasets.interleave_datasets([ds_a, ds_b])
for example in tqdm(ds_fast):
pass
# Iterating through either dataset with torch formatting *after shuffling* is really slow... (<2it/s on my machine)
for example in tqdm(ds_a.shuffle().with_format('torch')):
pass
# Iterating through this torch formatted interleaved dataset is also really slow (<2it/s on my machine)...
ds_slow = datasets.interleave_datasets([ds_a, ds_b]).with_format('torch')
for example in tqdm(ds_slow):
pass
# Even doing this is way faster!! (70it/s on my machine)
for example in tqdm(ds_fast):
test = torch.tensor(example['tensor'])
```
### Expected behavior
Applying torch formatting to the interleaved dataset shouldn't increase the time taken to iterate through the dataset by very much, since even explicitly converting every example is over 70x faster than calling .with_format('torch').
### Environment info
- `datasets` version: 2.16.1
- Platform: Linux-6.5.0-15-generic-x86_64-with-glibc2.38
- Python version: 3.11.6
- `huggingface_hub` version: 0.20.3
- PyArrow version: 15.0.0
- Pandas version: 2.2.0
- `fsspec` version: 2023.10.0
| null |
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 3,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 4,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6637/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6637/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/6199
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6199/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6199/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6199/events
|
https://github.com/huggingface/datasets/issues/6199
| 1,875,165,185
|
I_kwDODunzps5vxMAB
| 6,199
|
Use load_dataset for local json files, but it not works
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/50519434?v=4",
"events_url": "https://api.github.com/users/Garen-in-bush/events{/privacy}",
"followers_url": "https://api.github.com/users/Garen-in-bush/followers",
"following_url": "https://api.github.com/users/Garen-in-bush/following{/other_user}",
"gists_url": "https://api.github.com/users/Garen-in-bush/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Garen-in-bush",
"id": 50519434,
"login": "Garen-in-bush",
"node_id": "MDQ6VXNlcjUwNTE5NDM0",
"organizations_url": "https://api.github.com/users/Garen-in-bush/orgs",
"received_events_url": "https://api.github.com/users/Garen-in-bush/received_events",
"repos_url": "https://api.github.com/users/Garen-in-bush/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Garen-in-bush/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Garen-in-bush/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Garen-in-bush",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hugging Face's datasets library may prioritize remote configurations. Make sure there are no conflicting configurations causing the library to prefer downloading data\r\nMay be try debugging\r\nraw_datasets = load_dataset('json', data_files=data_files)\r\nprint(raw_datasets)\r\n",
"It doesn't download them but writes them to the local HF cache. The logging could indeed be better. Does loading the dataset succeed? If it doesn't, can you share the error stack trace?"
] | 2023-08-31T09:42:34Z
| 2023-08-31T19:05:07Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
when I use load_dataset to load my local datasets,it always goes to Hugging Face to download the data instead of loading the local dataset.
### Steps to reproduce the bug
`raw_datasets = load_dataset(
‘json’,
data_files=data_files)`
### Expected behavior

### Environment info
python version 3.8.5
datasets version 2.12
os version unbuntu 18.04
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6199/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6199/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/6383
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6383/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6383/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6383/events
|
https://github.com/huggingface/datasets/issues/6383
| 1,978,189,389
|
I_kwDODunzps516MZN
| 6,383
|
imagenet-1k downloads over and over
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/6847529?v=4",
"events_url": "https://api.github.com/users/seann999/events{/privacy}",
"followers_url": "https://api.github.com/users/seann999/followers",
"following_url": "https://api.github.com/users/seann999/following{/other_user}",
"gists_url": "https://api.github.com/users/seann999/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/seann999",
"id": 6847529,
"login": "seann999",
"node_id": "MDQ6VXNlcjY4NDc1Mjk=",
"organizations_url": "https://api.github.com/users/seann999/orgs",
"received_events_url": "https://api.github.com/users/seann999/received_events",
"repos_url": "https://api.github.com/users/seann999/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/seann999/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/seann999/subscriptions",
"type": "User",
"url": "https://api.github.com/users/seann999",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Have you solved this problem?"
] | 2023-11-06T02:58:58Z
| 2024-06-12T13:15:00Z
| 2023-11-06T06:02:39Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
What could be causing this?
```
$ python3
Python 3.8.13 (default, Mar 28 2022, 11:38:47)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from datasets import load_dataset
>>> load_dataset("imagenet-1k")
Downloading builder script: 100%|██████████| 4.72k/4.72k [00:00<00:00, 7.51MB/s]
Downloading readme: 100%|███████████████████| 85.4k/85.4k [00:00<00:00, 510kB/s]
Downloading extra modules: 100%|████████████| 46.4k/46.4k [00:00<00:00, 300kB/s]
Downloading data: 100%|████████████████████| 29.1G/29.1G [19:36<00:00, 24.8MB/s]
Downloading data: 100%|████████████████████| 29.3G/29.3G [08:38<00:00, 56.5MB/s]
Downloading data: 100%|████████████████████| 29.0G/29.0G [09:26<00:00, 51.2MB/s]
Downloading data: 100%|████████████████████| 29.2G/29.2G [09:38<00:00, 50.6MB/s]
Downloading data: 100%|███████████████████▉| 29.2G/29.2G [09:37<00:00, 44.1MB/s^Downloading data: 0%| | 106M/29.1G [00:05<23:49, 20.3MB/s]
```
### Steps to reproduce the bug
See above commands/code
### Expected behavior
imagenet-1k is downloaded
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-6.2.0-34-generic-x86_64-with-glibc2.17
- Python version: 3.8.13
- Huggingface_hub version: 0.15.1
- PyArrow version: 14.0.0
- Pandas version: 1.5.2
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/6847529?v=4",
"events_url": "https://api.github.com/users/seann999/events{/privacy}",
"followers_url": "https://api.github.com/users/seann999/followers",
"following_url": "https://api.github.com/users/seann999/following{/other_user}",
"gists_url": "https://api.github.com/users/seann999/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/seann999",
"id": 6847529,
"login": "seann999",
"node_id": "MDQ6VXNlcjY4NDc1Mjk=",
"organizations_url": "https://api.github.com/users/seann999/orgs",
"received_events_url": "https://api.github.com/users/seann999/received_events",
"repos_url": "https://api.github.com/users/seann999/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/seann999/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/seann999/subscriptions",
"type": "User",
"url": "https://api.github.com/users/seann999",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6383/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6383/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5946
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5946/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5946/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5946/events
|
https://github.com/huggingface/datasets/issues/5946
| 1,754,234,469
|
I_kwDODunzps5oj35l
| 5,946
|
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ??
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/70565543?v=4",
"events_url": "https://api.github.com/users/syngokhan/events{/privacy}",
"followers_url": "https://api.github.com/users/syngokhan/followers",
"following_url": "https://api.github.com/users/syngokhan/following{/other_user}",
"gists_url": "https://api.github.com/users/syngokhan/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/syngokhan",
"id": 70565543,
"login": "syngokhan",
"node_id": "MDQ6VXNlcjcwNTY1NTQz",
"organizations_url": "https://api.github.com/users/syngokhan/orgs",
"received_events_url": "https://api.github.com/users/syngokhan/received_events",
"repos_url": "https://api.github.com/users/syngokhan/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/syngokhan/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/syngokhan/subscriptions",
"type": "User",
"url": "https://api.github.com/users/syngokhan",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"https://colab.research.google.com/#scrollTo=AQ_HCYruWIHU&fileId=https%3A//huggingface.co/dfurman/falcon-40b-chat-oasst1/blob/main/finetune_falcon40b_oasst1_with_bnb_peft.ipynb\r\n\r\nI ran the same administration exactly the same but got the same error",
"Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq",
"> Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq\n\nThe problem has not been solved, I have tried this before, but the problem is the same",
"> \r\n\r\n@syngokhan did u solve it? \r\nI am desperate ",
"data = data[\"train\"].shuffle().map(generate_and_tokenize_prompt, batched = False) # change this line to -\r\n\r\ndata[\"train\"] = data[\"train\"].shuffle().map(generate_and_tokenize_prompt, batched = False)\r\nAfter doing this change you code should run fine.",
"> > \r\n> \r\n> @syngokhan did u solve it? I am desperate\r\n\r\nrefer to my earlier comment. you will find the solution."
] | 2023-06-13T07:34:15Z
| 2023-07-14T12:04:48Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
in <cell line: 1>:1 │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │
│ │
│ 1534 │ │ inner_training_loop = find_executable_batch_size( │
│ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │
│ 1536 │ │ ) │
│ ❱ 1537 │ │ return inner_training_loop( │
│ 1538 │ │ │ args=args, │
│ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │
│ 1540 │ │ │ trial=trial, │
│ │
│ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │
│ │
│ 1786 │ │ │ │ rng_to_sync = True │
│ 1787 │ │ │ │
│ 1788 │ │ │ step = -1 │
│ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │
│ 1790 │ │ │ │ total_batched_samples += 1 │
│ 1791 │ │ │ │ if rng_to_sync: │
│ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │
│ │
│ 374 │ │ dataloader_iter = super().__iter__() │
│ 375 │ │ # We iterate one batch ahead to check when we are at the end │
│ 376 │ │ try: │
│ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │
│ 378 │ │ except StopIteration: │
│ 379 │ │ │ yield │
│ 380 │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │
│ │
│ 630 │ │ │ if self._sampler_iter is None: │
│ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │
│ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │
│ ❱ 633 │ │ │ data = self._next_data() │
│ 634 │ │ │ self._num_yielded += 1 │
│ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │
│ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │
│ │
│ 674 │ │
│ 675 │ def _next_data(self): │
│ 676 │ │ index = self._next_index() # may raise StopIteration │
│ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │
│ 678 │ │ if self._pin_memory: │
│ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │
│ 680 │ │ return data │
│ │
│ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │
│ │
│ 46 │ def fetch(self, possibly_batched_index): │
│ 47 │ │ if self.auto_collation: │
│ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │
│ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │
│ 50 │ │ │ else: │
│ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │
│ 52 │ │ else: │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │
│ │
│ 2779 │ │
│ 2780 │ def __getitems__(self, keys: List) -> List: │
│ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │
│ ❱ 2782 │ │ batch = self.__getitem__(keys) │
│ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │
│ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │
│ 2785 │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │
│ │
│ 2775 │ │
│ 2776 │ def __getitem__(self, key): # noqa: F811 │
│ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │
│ ❱ 2778 │ │ return self._getitem(key) │
│ 2779 │ │
│ 2780 │ def __getitems__(self, keys: List) -> List: │
│ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │
│ │
│ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │
│ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │
│ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │
│ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │
│ 2763 │ │ formatted_output = format_table( │
│ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │
│ 2765 │ │ ) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │
│ │
│ 575 │ │ _check_valid_column_key(key, table.column_names) │
│ 576 │ else: │
│ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │
│ ❱ 578 │ │ _check_valid_index_key(key, size) │
│ 579 │ # Query the main table │
│ 580 │ if indices is None: │
│ 581 │ │ pa_subtable = _query_table(table, key) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │
│ _check_valid_index_key │
│ │
│ 528 │ │ │ _check_valid_index_key(min(key), size=size) │
│ 529 │ elif isinstance(key, Iterable): │
│ 530 │ │ if len(key) > 0: │
│ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │
│ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │
│ 533 │ else: │
│ 534 │ │ _raise_bad_key_type(key) │
│ │
│ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │
│ _check_valid_index_key │
│ │
│ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │
│ 519 │ if isinstance(key, int): │
│ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │
│ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │
│ 522 │ │ return │
│ 523 │ elif isinstance(key, slice): │
│ 524 │ │ pass
### Steps to reproduce the bug
``
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import Dataset,load_dataset
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
MODEL_NAME = "tiiuae/falcon-7b"
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map = "auto",
trust_remote_code = True,
quantization_config = bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
r = 16,
lora_alpha = 32,
target_modules = ["query_key_value"],
lora_dropout = 0.05,
bias = "none",
task_type = "CASUAL_LM"
)
model = get_peft_model(model,config)
print_trainable_parameters(model)
def generate_prompt(data_point):
return f"""
<human>: {data_point["question"]}
<assistant>: {data_point["answer"]}
""".strip()
def generate_and_tokenize_prompt(data_point):
full_prompt = generate_prompt(data_point)
tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None)
return dict({
"input_ids" : tokenized_full_prompt["input_ids"],
"attention_mask" : tokenized_full_prompt["attention_mask"]
})
data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False)
OUTPUT_DIR = "experiments"
trainings_args = transformers.TrainingArguments(
per_device_train_batch_size = 1,
gradient_accumulation_steps = 4,
num_train_epochs = 1,
learning_rate = 2e-4,
fp16 = True,
save_total_limit = 3,
logging_steps = 1,
output_dir = OUTPUT_DIR,
max_steps = 80,
optim = "paged_adamw_8bit",
lr_scheduler_type = "cosine",
warmup_ratio = 0.05,
#remove_unused_columns=True
)
trainer = transformers.Trainer(
model = model,
train_dataset = data,
args = trainings_args,
data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
trainer.train()
IndexError: Invalid key: 32 is out of bounds for size 0
DataSet Format is like :
[{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ]
### Expected behavior
-
### Environment info
!pip install -q pip
!pip install -q bitsandbytes==0.39.0
!pip install -q torch==2.0.1
!pip install -q git+https://github.com/huggingface/transformers.git
!pip install -q git+https://github.com/huggingface/peft.git
!pip install -q git+https://github.com/huggingface/accelerate.git
!pip install -q datasets
!pip install -q loralib==0.1.1
!pip install -q einops==0.6.1
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import Dataset,load_dataset
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5946/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5946/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7519
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7519/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7519/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7519/events
|
https://github.com/huggingface/datasets/pull/7519
| 2,996,458,961
|
PR_kwDODunzps6Sq76Z
| 7,519
|
pdf docs fixes
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7519). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2025-04-15T13:35:56Z
| 2025-04-15T13:38:31Z
| 2025-04-15T13:36:03Z
|
MEMBER
| null | null | null |
close https://github.com/huggingface/datasets/issues/7494
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7519/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7519/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7519.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7519",
"merged_at": "2025-04-15T13:36:03Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7519.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7519"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5136
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5136/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5136/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5136/events
|
https://github.com/huggingface/datasets/pull/5136
| 1,414,492,139
|
PR_kwDODunzps5BFWMG
| 5,136
|
Update docs once dataset scripts transferred to the Hub
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-10-19T07:58:27Z
| 2022-10-20T08:12:21Z
| 2022-10-20T08:10:00Z
|
MEMBER
| null | null | null |
Todo:
- [x] Update docs:
- [x] Datasets on GitHub (legacy)
- [x] Load: offline
- [x] About dataset load:
- [x] Maintaining integrity
- [x] Security
- [x] Update docstrings:
- [x] Inspect:
- [x] get_dataset_config_info
- [x] get_dataset_split_names
- [x] Load:
- [x] dataset_module_factory
- [x] load_dataset_builder
- [x] load_dataset
- [x] Remove `ADD_NEW_DATASET.md`
- [x] Update `.github/ISSUE_TEMPLATE/config.yml`
Fix #5135.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5136/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5136/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5136.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5136",
"merged_at": "2022-10-20T08:10:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5136.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5136"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7265
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7265/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7265/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7265/events
|
https://github.com/huggingface/datasets/pull/7265
| 2,624,090,418
|
PR_kwDODunzps6AYofJ
| 7,265
|
Disallow video push_to_hub
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7265). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2024-10-30T13:21:55Z
| 2024-10-30T13:36:05Z
| 2024-10-30T13:36:02Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7265/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7265/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7265.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7265",
"merged_at": "2024-10-30T13:36:02Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7265.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7265"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4940
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4940/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4940/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4940/events
|
https://github.com/huggingface/datasets/pull/4940
| 1,363,513,058
|
PR_kwDODunzps4-c6WY
| 4,940
|
Fix multilinguality tag and missing sections in xquad_r dataset card
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-09-06T16:05:35Z
| 2022-09-12T10:11:07Z
| 2022-09-12T10:08:48Z
|
MEMBER
| null | null | null |
This PR fixes issue reported on the Hub:
- Label as multilingual: https://huggingface.co/datasets/xquad_r/discussions/1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4940/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4940/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4940.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4940",
"merged_at": "2022-09-12T10:08:48Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4940.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4940"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4733
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4733/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4733/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4733/events
|
https://github.com/huggingface/datasets/issues/4733
| 1,314,479,616
|
I_kwDODunzps5OWV4A
| 4,733
|
rouge metric
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/29248466?v=4",
"events_url": "https://api.github.com/users/asking28/events{/privacy}",
"followers_url": "https://api.github.com/users/asking28/followers",
"following_url": "https://api.github.com/users/asking28/following{/other_user}",
"gists_url": "https://api.github.com/users/asking28/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/asking28",
"id": 29248466,
"login": "asking28",
"node_id": "MDQ6VXNlcjI5MjQ4NDY2",
"organizations_url": "https://api.github.com/users/asking28/orgs",
"received_events_url": "https://api.github.com/users/asking28/received_events",
"repos_url": "https://api.github.com/users/asking28/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/asking28/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/asking28/subscriptions",
"type": "User",
"url": "https://api.github.com/users/asking28",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
] | null |
[
"Fixed by:\r\n- #4735"
] | 2022-07-22T07:06:51Z
| 2022-07-22T09:08:02Z
| 2022-07-22T09:05:35Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
A clear and concise description of what the bug is.
Loading Rouge metric gives error after latest rouge-score==0.0.7 release.
Downgrading rougemetric==0.0.4 works fine.
## Steps to reproduce the bug
```python
# Sample code to reproduce the bug
```
## Expected results
A clear and concise description of the expected results.
from rouge_score import rouge_scorer, scoring
should run
## Actual results
Specify the actual results or traceback.
File "/root/.cache/huggingface/modules/datasets_modules/metrics/rouge/0ffdb60f436bdb8884d5e4d608d53dbe108e82dac4f494a66f80ef3f647c104f/rouge.py", line 21, in <module>
from rouge_score import rouge_scorer, scoring
ImportError: cannot import name 'rouge_scorer' from 'rouge_score' (unknown location)
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version:
- Platform: Linux
- Python version:3.9
- PyArrow version:
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4733/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4733/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5625
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5625/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5625/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5625/events
|
https://github.com/huggingface/datasets/issues/5625
| 1,618,971,855
|
I_kwDODunzps5gf4zP
| 5,625
|
Allow "jsonl" data type signifier
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4",
"events_url": "https://api.github.com/users/BramVanroy/events{/privacy}",
"followers_url": "https://api.github.com/users/BramVanroy/followers",
"following_url": "https://api.github.com/users/BramVanroy/following{/other_user}",
"gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/BramVanroy",
"id": 2779410,
"login": "BramVanroy",
"node_id": "MDQ6VXNlcjI3Nzk0MTA=",
"organizations_url": "https://api.github.com/users/BramVanroy/orgs",
"received_events_url": "https://api.github.com/users/BramVanroy/received_events",
"repos_url": "https://api.github.com/users/BramVanroy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/BramVanroy",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[
"You can use \"json\" instead. It doesn't work by extension names, but rather by dataset builder names, e.g. \"text\", \"imagefolder\", etc. I don't think the example in `transformers` is correct because of that",
"Yes, I understand the reasoning but this issue is to propose that the example in transformers (while incorrect) \"makes sense\" in terms of user expectation. So the question is whether it would be possible to add \"aliases\" for common types (like \"json\" and \"text\") based on common extensions (like jsonl and txt)?"
] | 2023-03-10T13:21:48Z
| 2023-03-11T10:35:39Z
| null |
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
`load_dataset` currently does not accept `jsonl` as type but only `json`.
### Motivation
I was working with one of the `run_translation` scripts and used my own datasets (`.jsonl`) as train_dataset. But the default code did not work because
```
FileNotFoundError: Couldn't find a dataset script at jsonl\jsonl.py or any data file in the same directory. Couldn't find 'jsonl' on the Hugging Face Hub either: FileNotFoundError: Dataset 'jsonl' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.
```
The reason is because the script has these lines to extract the data type by its extension. Therefore, the derived type is `jsonl` which is not recognized by datasets as the error above shows.
https://github.com/huggingface/transformers/blob/ade26bf9912f69e2110137443e4406d7dbe253e7/examples/pytorch/translation/run_translation.py#L342-L356
I suppose you could argue that this is the script's fault (in which case I'll do a PR over at `transformers`) but it makes sense to me to add `jsonl` as an alias to `json` in `datasets`.
### Your contribution
At the moment I cannot work on this. I think it can be as "easy" as having an alias for json, namely jsonl.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5625/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5625/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/5685
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5685/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5685/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5685/events
|
https://github.com/huggingface/datasets/issues/5685
| 1,646,048,667
|
I_kwDODunzps5iHLWb
| 5,685
|
Broken Image render on the hub website
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/15908060?v=4",
"events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/events{/privacy}",
"followers_url": "https://api.github.com/users/FrancescoSaverioZuppichini/followers",
"following_url": "https://api.github.com/users/FrancescoSaverioZuppichini/following{/other_user}",
"gists_url": "https://api.github.com/users/FrancescoSaverioZuppichini/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/FrancescoSaverioZuppichini",
"id": 15908060,
"login": "FrancescoSaverioZuppichini",
"node_id": "MDQ6VXNlcjE1OTA4MDYw",
"organizations_url": "https://api.github.com/users/FrancescoSaverioZuppichini/orgs",
"received_events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/received_events",
"repos_url": "https://api.github.com/users/FrancescoSaverioZuppichini/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/FrancescoSaverioZuppichini/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FrancescoSaverioZuppichini/subscriptions",
"type": "User",
"url": "https://api.github.com/users/FrancescoSaverioZuppichini",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi! \r\n\r\nYou can fix the viewer by adding the `dataset_info` YAML field deleted in https://huggingface.co/datasets/Francesco/cell-towers/commit/b95b59ddd91ebe9c12920f0efe0ed415cd0d4298 back to the metadata section of the card. \r\n\r\nTo avoid this issue in the feature, you can use `huggingface_hub`'s [RepoCard](https://huggingface.co/docs/huggingface_hub/package_reference/cards) API to update the dataset card instead of `upload_file`:\r\n```python\r\nfrom huggingface_hub import DatasetCard\r\n# Load card\r\ncard = DatasetCard.load(\"<namespace>/<repo_id>\")\r\n# Modify card content\r\ncard.content = ...\r\n# Push card to the Hub\r\ncard.push_to_hub(\"<namespace>/<repo_id>\")\r\n```\r\n\r\nHowever, the best solution would be to use the features info stored in the header of the Parquet shards generated with `push_to_hub` on the viewer side to avoid unexpected issues such as this one. This shouldn't be too hard to address.",
"Thanks for reporting @FrancescoSaverioZuppichini.\r\n\r\nFor future issues with your specific dataset, you can use its \"Community\" tab to start a conversation: https://huggingface.co/datasets/Francesco/cell-towers/discussions/new",
"Thanks @albertvillanova , @mariosasko I was not aware of this requirement from the doc (must have skipped :sweat_smile: )\r\n\r\nConfirmed, adding back `dataset_info` fixed the issu"
] | 2023-03-29T15:25:30Z
| 2023-03-30T07:54:25Z
| 2023-03-30T07:54:25Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi :wave:
Not sure if this is the right place to ask, but I am trying to load a huge amount of datasets on the hub (:partying_face: ) but I am facing a little issue with the `image` type

See this [dataset](https://huggingface.co/datasets/Francesco/cell-towers), basically for some reason the first image has numerical bytes inside, not sure if that is okay, but the image render feature **doesn't work**
So the dataset is stored in the following way
```python
builder.download_and_prepare(output_dir=str(output_dir))
ds = builder.as_dataset(split="train")
# [NOTE] no idea how to push it from the builder folder
ds.push_to_hub(repo_id=repo_id)
builder.as_dataset(split="validation").push_to_hub(repo_id=repo_id)
ds = builder.as_dataset(split="test")
ds.push_to_hub(repo_id=repo_id)
```
The build is this class
```python
class COCOLikeDatasetBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"category": datasets.ClassLabel(names=categories),
}
),
}
)
return datasets.DatasetInfo(
description=description,
features=features,
homepage=homepage,
license=license,
citation=citation,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_file_path": "train/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annotation_file_path": "test/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_file_path": "valid/_annotations.coco.json",
"files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, annotation_file_path, files):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
# This loop relies on the ordering of the files in the archive:
# Annotation files come first, then the images.
for path, f in files:
file_name = os.path.basename(path)
if annotation_file_path in path:
annotations = json.load(f)
category_id_to_category = {
category["id"]: category["name"]
for category in annotations["categories"]
}
print(category_id_to_category)
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
image_id_to_image = {
annot["file_name"]: annot for annot in annotations["images"]
}
elif file_name in image_id_to_image:
image = image_id_to_image[file_name]
objects = [
process_annot(annot, category_id_to_category)
for annot in image_id_to_annotations[image["id"]]
]
print(file_name)
yield idx, {
"image_id": image["id"],
"image": {"path": path, "bytes": f.read()},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
```
Basically, I want to add to the hub every dataset I come across on coco format
Thanks
Fra
### Steps to reproduce the bug
In this case, you can just navigate on the [dataset](https://huggingface.co/datasets/Francesco/cell-towers)
### Expected behavior
I was expecting the image rendering feature to work
### Environment info
Not a lot to share, I am using `datasets` from a fresh venv
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/15908060?v=4",
"events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/events{/privacy}",
"followers_url": "https://api.github.com/users/FrancescoSaverioZuppichini/followers",
"following_url": "https://api.github.com/users/FrancescoSaverioZuppichini/following{/other_user}",
"gists_url": "https://api.github.com/users/FrancescoSaverioZuppichini/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/FrancescoSaverioZuppichini",
"id": 15908060,
"login": "FrancescoSaverioZuppichini",
"node_id": "MDQ6VXNlcjE1OTA4MDYw",
"organizations_url": "https://api.github.com/users/FrancescoSaverioZuppichini/orgs",
"received_events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/received_events",
"repos_url": "https://api.github.com/users/FrancescoSaverioZuppichini/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/FrancescoSaverioZuppichini/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/FrancescoSaverioZuppichini/subscriptions",
"type": "User",
"url": "https://api.github.com/users/FrancescoSaverioZuppichini",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5685/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5685/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5687
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5687/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5687/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5687/events
|
https://github.com/huggingface/datasets/issues/5687
| 1,647,009,018
|
I_kwDODunzps5iK1z6
| 5,687
|
Document to compress data files before uploading
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
}
] |
closed
| false
| null |
[] | null |
[
"Great idea!\r\n\r\nShould we also take this opportunity to include some audio/image file formats? Currently, it still reads very text heavy. Something like:\r\n\r\n> We support many text, audio, and image data extensions such as `.zip`, `.rar`, `.mp3`, and `.jpg` among many others. For data extensions like `.csv`, `.json`, `.jsonl`, and `txt`, we recommend compressing them before uploading to the Hub. These file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of supported file extensions.",
"Hi @stevhliu, thanks for your suggestion.\r\n\r\nI agree it is a good opportunity to mention that audio/image file formats are also supported.\r\n\r\nNit:\r\nI would not mention .zip, .rar after \"text, audio, and image data extensions\". Those are \"compression\" extensions and not \"text, audio, and image data extensions\".\r\n\r\nWhat about something similar to:\r\n> We support many text, audio, and image data extensions such as `.csv`, `.mp3`, and `.jpg` among many others. For text data extensions like `.csv`, `.json`, `.jsonl`, and `.txt`, we recommend compressing them before uploading to the Hub (to `.zip` or `.gz` file extension for example). \r\n>\r\n> Note that text file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of tracked file extensions by default.\r\n\r\nNote that for compressions I have mentioned:\r\n- gz, to compress individual files\r\n- zip, to compress and archive multiple files; zip is preferred rather than tar because it supports streaming out of the box",
"Perfect, thanks for making the distinction between compression and data extensions!"
] | 2023-03-30T06:41:07Z
| 2023-04-19T07:25:59Z
| 2023-04-19T07:25:59Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
In our docs to [Share a dataset to the Hub](https://huggingface.co/docs/datasets/upload_dataset), we tell users to upload directly their data files, like CSV, JSON, JSON-Lines, text,... However, these extensions are not tracked by Git LFS by default, as they are not in the `.giattributes` file. Therefore, if they are too large, Git will fail to commit/upload them.
I think for those file extensions (.csv, .json, .jsonl, .txt), we should better recommend to **compress** their data files (using ZIP for example) before uploading them to the Hub.
- Compressed files are tracked by Git LFS in our default `.gitattributes` file
What do you think?
CC: @stevhliu
See related issue:
- https://huggingface.co/datasets/tcor0005/langchain-docs-400-chunksize/discussions/1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5687/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5687/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6009
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6009/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6009/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6009/events
|
https://github.com/huggingface/datasets/pull/6009
| 1,792,059,808
|
PR_kwDODunzps5U1mus
| 6,009
|
Fix cast for dictionaries with no keys
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006961 / 0.011353 (-0.004392) | 0.004390 / 0.011008 (-0.006618) | 0.103249 / 0.038508 (0.064741) | 0.048084 / 0.023109 (0.024975) | 0.351213 / 0.275898 (0.075315) | 0.416918 / 0.323480 (0.093439) | 0.005539 / 0.007986 (-0.002446) | 0.003555 / 0.004328 (-0.000774) | 0.079306 / 0.004250 (0.075055) | 0.066937 / 0.037052 (0.029884) | 0.382601 / 0.258489 (0.124112) | 0.406125 / 0.293841 (0.112284) | 0.032269 / 0.128546 (-0.096277) | 0.009133 / 0.075646 (-0.066514) | 0.354449 / 0.419271 (-0.064822) | 0.068978 / 0.043533 (0.025445) | 0.352314 / 0.255139 (0.097175) | 0.390398 / 0.283200 (0.107199) | 0.025640 / 0.141683 (-0.116043) | 1.553865 / 1.452155 (0.101710) | 1.601292 / 1.492716 (0.108576) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208310 / 0.018006 (0.190303) | 0.440076 / 0.000490 (0.439586) | 0.000363 / 0.000200 (0.000163) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029173 / 0.037411 (-0.008238) | 0.111323 / 0.014526 (0.096797) | 0.123001 / 0.176557 (-0.053556) | 0.180180 / 0.737135 (-0.556955) | 0.125804 / 0.296338 (-0.170534) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419919 / 0.215209 (0.204710) | 4.194515 / 2.077655 (2.116860) | 1.881234 / 1.504120 (0.377114) | 1.672914 / 1.541195 (0.131720) | 1.723102 / 1.468490 (0.254612) | 0.543584 / 4.584777 (-4.041193) | 3.822477 / 3.745712 (0.076765) | 1.837946 / 5.269862 (-3.431915) | 1.094975 / 4.565676 (-3.470701) | 0.066788 / 0.424275 (-0.357487) | 0.011689 / 0.007607 (0.004082) | 0.520983 / 0.226044 (0.294938) | 5.209245 / 2.268929 (2.940316) | 2.392916 / 55.444624 (-53.051708) | 2.060042 / 6.876477 (-4.816434) | 2.162291 / 2.142072 (0.020219) | 0.668472 / 4.805227 (-4.136755) | 0.144373 / 6.500664 (-6.356291) | 0.066152 / 0.075469 (-0.009318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251256 / 1.841788 (-0.590532) | 15.161338 / 8.074308 (7.087030) | 14.416133 / 10.191392 (4.224741) | 0.166145 / 0.680424 (-0.514279) | 0.018168 / 0.534201 (-0.516033) | 0.433364 / 0.579283 (-0.145919) | 0.417484 / 0.434364 (-0.016880) | 0.502543 / 0.540337 (-0.037794) | 0.602904 / 1.386936 (-0.784032) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006946 / 0.011353 (-0.004407) | 0.004248 / 0.011008 (-0.006761) | 0.079707 / 0.038508 (0.041199) | 0.046226 / 0.023109 (0.023117) | 0.375864 / 0.275898 (0.099966) | 0.430740 / 0.323480 (0.107260) | 0.006222 / 0.007986 (-0.001764) | 0.003474 / 0.004328 (-0.000854) | 0.079622 / 0.004250 (0.075372) | 0.066666 / 0.037052 (0.029613) | 0.379487 / 0.258489 (0.120998) | 0.423002 / 0.293841 (0.129161) | 0.032836 / 0.128546 (-0.095710) | 0.008976 / 0.075646 (-0.066670) | 0.086578 / 0.419271 (-0.332693) | 0.055651 / 0.043533 (0.012118) | 0.360787 / 0.255139 (0.105648) | 0.384265 / 0.283200 (0.101065) | 0.025350 / 0.141683 (-0.116333) | 1.547880 / 1.452155 (0.095725) | 1.605850 / 1.492716 (0.113134) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184227 / 0.018006 (0.166220) | 0.442071 / 0.000490 (0.441582) | 0.002887 / 0.000200 (0.002687) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031923 / 0.037411 (-0.005488) | 0.119093 / 0.014526 (0.104568) | 0.128704 / 0.176557 (-0.047853) | 0.187065 / 0.737135 (-0.550070) | 0.134135 / 0.296338 (-0.162204) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455731 / 0.215209 (0.240522) | 4.562911 / 2.077655 (2.485256) | 2.247431 / 1.504120 (0.743311) | 2.053346 / 1.541195 (0.512151) | 2.049611 / 1.468490 (0.581121) | 0.546069 / 4.584777 (-4.038708) | 3.821852 / 3.745712 (0.076140) | 3.358497 / 5.269862 (-1.911364) | 1.667697 / 4.565676 (-2.897979) | 0.067968 / 0.424275 (-0.356307) | 0.012344 / 0.007607 (0.004737) | 0.550864 / 0.226044 (0.324820) | 5.496867 / 2.268929 (3.227939) | 2.680031 / 55.444624 (-52.764594) | 2.328673 / 6.876477 (-4.547804) | 2.436754 / 2.142072 (0.294682) | 0.681195 / 4.805227 (-4.124033) | 0.148761 / 6.500664 (-6.351904) | 0.067716 / 0.075469 (-0.007753) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353798 / 1.841788 (-0.487990) | 15.992965 / 8.074308 (7.918657) | 14.051539 / 10.191392 (3.860147) | 0.181087 / 0.680424 (-0.499337) | 0.018653 / 0.534201 (-0.515548) | 0.433499 / 0.579283 (-0.145784) | 0.428845 / 0.434364 (-0.005519) | 0.501100 / 0.540337 (-0.039238) | 0.603666 / 1.386936 (-0.783270) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010983 / 0.011353 (-0.000370) | 0.005630 / 0.011008 (-0.005378) | 0.109967 / 0.038508 (0.071458) | 0.101580 / 0.023109 (0.078471) | 0.490205 / 0.275898 (0.214307) | 0.534653 / 0.323480 (0.211173) | 0.008365 / 0.007986 (0.000379) | 0.004317 / 0.004328 (-0.000012) | 0.082429 / 0.004250 (0.078179) | 0.080556 / 0.037052 (0.043504) | 0.494627 / 0.258489 (0.236138) | 0.544189 / 0.293841 (0.250348) | 0.049419 / 0.128546 (-0.079127) | 0.014033 / 0.075646 (-0.061613) | 0.370406 / 0.419271 (-0.048866) | 0.083468 / 0.043533 (0.039935) | 0.463829 / 0.255139 (0.208690) | 0.507516 / 0.283200 (0.224316) | 0.053266 / 0.141683 (-0.088417) | 1.778680 / 1.452155 (0.326525) | 1.916616 / 1.492716 (0.423900) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267646 / 0.018006 (0.249640) | 0.617824 / 0.000490 (0.617334) | 0.007720 / 0.000200 (0.007520) | 0.000139 / 0.000054 (0.000085) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034464 / 0.037411 (-0.002948) | 0.113626 / 0.014526 (0.099100) | 0.118911 / 0.176557 (-0.057646) | 0.194701 / 0.737135 (-0.542434) | 0.123431 / 0.296338 (-0.172907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606073 / 0.215209 (0.390863) | 6.086393 / 2.077655 (4.008738) | 2.568712 / 1.504120 (1.064593) | 2.260801 / 1.541195 (0.719606) | 2.411798 / 1.468490 (0.943307) | 0.876433 / 4.584777 (-3.708344) | 5.521280 / 3.745712 (1.775568) | 5.969722 / 5.269862 (0.699861) | 3.671028 / 4.565676 (-0.894649) | 0.097082 / 0.424275 (-0.327193) | 0.011354 / 0.007607 (0.003747) | 0.713842 / 0.226044 (0.487798) | 7.291172 / 2.268929 (5.022244) | 3.315272 / 55.444624 (-52.129352) | 2.777487 / 6.876477 (-4.098990) | 3.025449 / 2.142072 (0.883377) | 1.014115 / 4.805227 (-3.791112) | 0.217928 / 6.500664 (-6.282736) | 0.083097 / 0.075469 (0.007627) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.640060 / 1.841788 (-0.201728) | 25.342172 / 8.074308 (17.267864) | 22.776510 / 10.191392 (12.585118) | 0.227300 / 0.680424 (-0.453124) | 0.032233 / 0.534201 (-0.501968) | 0.507547 / 0.579283 (-0.071736) | 0.647044 / 0.434364 (0.212680) | 0.607019 / 0.540337 (0.066682) | 0.823548 / 1.386936 (-0.563388) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009576 / 0.011353 (-0.001777) | 0.009322 / 0.011008 (-0.001687) | 0.087184 / 0.038508 (0.048676) | 0.100795 / 0.023109 (0.077685) | 0.492138 / 0.275898 (0.216240) | 0.528386 / 0.323480 (0.204906) | 0.006689 / 0.007986 (-0.001296) | 0.004735 / 0.004328 (0.000406) | 0.085519 / 0.004250 (0.081269) | 0.072648 / 0.037052 (0.035595) | 0.496068 / 0.258489 (0.237579) | 0.549634 / 0.293841 (0.255793) | 0.049709 / 0.128546 (-0.078837) | 0.015077 / 0.075646 (-0.060569) | 0.099445 / 0.419271 (-0.319826) | 0.068080 / 0.043533 (0.024547) | 0.500426 / 0.255139 (0.245287) | 0.531437 / 0.283200 (0.248238) | 0.053176 / 0.141683 (-0.088507) | 1.827942 / 1.452155 (0.375787) | 1.914286 / 1.492716 (0.421570) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247658 / 0.018006 (0.229652) | 0.590805 / 0.000490 (0.590315) | 0.005319 / 0.000200 (0.005119) | 0.000165 / 0.000054 (0.000110) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036993 / 0.037411 (-0.000418) | 0.112944 / 0.014526 (0.098419) | 0.118964 / 0.176557 (-0.057593) | 0.194867 / 0.737135 (-0.542269) | 0.120816 / 0.296338 (-0.175523) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.638062 / 0.215209 (0.422853) | 6.246785 / 2.077655 (4.169130) | 2.957779 / 1.504120 (1.453659) | 2.739118 / 1.541195 (1.197924) | 2.795362 / 1.468490 (1.326872) | 0.890532 / 4.584777 (-3.694245) | 5.508198 / 3.745712 (1.762486) | 5.222315 / 5.269862 (-0.047547) | 3.152731 / 4.565676 (-1.412946) | 0.098344 / 0.424275 (-0.325931) | 0.008800 / 0.007607 (0.001193) | 0.757889 / 0.226044 (0.531845) | 7.545715 / 2.268929 (5.276787) | 3.694536 / 55.444624 (-51.750088) | 3.112872 / 6.876477 (-3.763605) | 3.182358 / 2.142072 (1.040285) | 1.028171 / 4.805227 (-3.777056) | 0.215223 / 6.500664 (-6.285441) | 0.085856 / 0.075469 (0.010387) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.853138 / 1.841788 (0.011350) | 25.939672 / 8.074308 (17.865364) | 23.118029 / 10.191392 (12.926637) | 0.250599 / 0.680424 (-0.429825) | 0.029942 / 0.534201 (-0.504259) | 0.508748 / 0.579283 (-0.070535) | 0.593966 / 0.434364 (0.159602) | 0.605499 / 0.540337 (0.065162) | 0.863827 / 1.386936 (-0.523109) |\n\n</details>\n</details>\n\n\n"
] | 2023-07-06T18:48:14Z
| 2023-07-07T14:13:00Z
| 2023-07-07T14:01:13Z
|
COLLABORATOR
| null | null | null |
Fix #5677
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6009/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6009/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6009.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6009",
"merged_at": "2023-07-07T14:01:13Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6009.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6009"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5400
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5400/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5400/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5400/events
|
https://github.com/huggingface/datasets/pull/5400
| 1,517,032,972
|
PR_kwDODunzps5GhaGI
| 5,400
|
Support streaming datasets with os.path.exists and Path.exists
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008638 / 0.011353 (-0.002715) | 0.004565 / 0.011008 (-0.006444) | 0.098984 / 0.038508 (0.060476) | 0.030118 / 0.023109 (0.007009) | 0.321779 / 0.275898 (0.045881) | 0.366905 / 0.323480 (0.043426) | 0.006931 / 0.007986 (-0.001055) | 0.004728 / 0.004328 (0.000399) | 0.078358 / 0.004250 (0.074108) | 0.037755 / 0.037052 (0.000702) | 0.312694 / 0.258489 (0.054205) | 0.351781 / 0.293841 (0.057940) | 0.033266 / 0.128546 (-0.095280) | 0.011397 / 0.075646 (-0.064250) | 0.323501 / 0.419271 (-0.095771) | 0.040779 / 0.043533 (-0.002754) | 0.303533 / 0.255139 (0.048394) | 0.340940 / 0.283200 (0.057740) | 0.088701 / 0.141683 (-0.052982) | 1.472058 / 1.452155 (0.019904) | 1.529535 / 1.492716 (0.036818) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191803 / 0.018006 (0.173797) | 0.409773 / 0.000490 (0.409283) | 0.002704 / 0.000200 (0.002504) | 0.000217 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023520 / 0.037411 (-0.013891) | 0.096967 / 0.014526 (0.082441) | 0.107911 / 0.176557 (-0.068646) | 0.146425 / 0.737135 (-0.590710) | 0.109025 / 0.296338 (-0.187314) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418565 / 0.215209 (0.203356) | 4.183429 / 2.077655 (2.105774) | 1.886534 / 1.504120 (0.382414) | 1.689015 / 1.541195 (0.147820) | 1.710757 / 1.468490 (0.242267) | 0.693211 / 4.584777 (-3.891566) | 3.380062 / 3.745712 (-0.365650) | 2.619910 / 5.269862 (-2.649952) | 1.457512 / 4.565676 (-3.108164) | 0.082421 / 0.424275 (-0.341854) | 0.012126 / 0.007607 (0.004519) | 0.525249 / 0.226044 (0.299205) | 5.244541 / 2.268929 (2.975613) | 2.305908 / 55.444624 (-53.138717) | 1.945298 / 6.876477 (-4.931178) | 2.015618 / 2.142072 (-0.126455) | 0.816746 / 4.805227 (-3.988481) | 0.148325 / 6.500664 (-6.352339) | 0.063939 / 0.075469 (-0.011530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255790 / 1.841788 (-0.585998) | 13.433219 / 8.074308 (5.358911) | 13.916957 / 10.191392 (3.725565) | 0.153468 / 0.680424 (-0.526956) | 0.028722 / 0.534201 (-0.505479) | 0.398245 / 0.579283 (-0.181038) | 0.399067 / 0.434364 (-0.035296) | 0.457525 / 0.540337 (-0.082812) | 0.542391 / 1.386936 (-0.844545) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006411 / 0.011353 (-0.004942) | 0.004552 / 0.011008 (-0.006456) | 0.098036 / 0.038508 (0.059527) | 0.026532 / 0.023109 (0.003422) | 0.412270 / 0.275898 (0.136372) | 0.442771 / 0.323480 (0.119291) | 0.004891 / 0.007986 (-0.003094) | 0.003488 / 0.004328 (-0.000841) | 0.075437 / 0.004250 (0.071186) | 0.036228 / 0.037052 (-0.000824) | 0.413246 / 0.258489 (0.154757) | 0.453546 / 0.293841 (0.159705) | 0.031054 / 0.128546 (-0.097492) | 0.011589 / 0.075646 (-0.064058) | 0.318477 / 0.419271 (-0.100794) | 0.041075 / 0.043533 (-0.002457) | 0.411182 / 0.255139 (0.156043) | 0.436991 / 0.283200 (0.153792) | 0.086563 / 0.141683 (-0.055120) | 1.511948 / 1.452155 (0.059793) | 1.570925 / 1.492716 (0.078208) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200510 / 0.018006 (0.182504) | 0.403450 / 0.000490 (0.402960) | 0.000397 / 0.000200 (0.000197) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023950 / 0.037411 (-0.013461) | 0.097334 / 0.014526 (0.082808) | 0.105228 / 0.176557 (-0.071328) | 0.137699 / 0.737135 (-0.599436) | 0.107063 / 0.296338 (-0.189275) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474420 / 0.215209 (0.259211) | 4.748212 / 2.077655 (2.670557) | 2.407318 / 1.504120 (0.903198) | 2.198949 / 1.541195 (0.657755) | 2.220377 / 1.468490 (0.751887) | 0.704022 / 4.584777 (-3.880755) | 3.366128 / 3.745712 (-0.379584) | 1.839454 / 5.269862 (-3.430408) | 1.151183 / 4.565676 (-3.414493) | 0.082818 / 0.424275 (-0.341457) | 0.012765 / 0.007607 (0.005158) | 0.571913 / 0.226044 (0.345868) | 5.722544 / 2.268929 (3.453615) | 2.858279 / 55.444624 (-52.586346) | 2.513479 / 6.876477 (-4.362998) | 2.574227 / 2.142072 (0.432154) | 0.803282 / 4.805227 (-4.001945) | 0.150603 / 6.500664 (-6.350061) | 0.066594 / 0.075469 (-0.008875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301161 / 1.841788 (-0.540627) | 13.580745 / 8.074308 (5.506436) | 13.301551 / 10.191392 (3.110159) | 0.141424 / 0.680424 (-0.539000) | 0.016579 / 0.534201 (-0.517622) | 0.380726 / 0.579283 (-0.198557) | 0.383011 / 0.434364 (-0.051353) | 0.438717 / 0.540337 (-0.101620) | 0.527085 / 1.386936 (-0.859851) |\n\n</details>\n</details>\n\n\n"
] | 2023-01-03T07:42:37Z
| 2023-01-06T10:42:44Z
| 2023-01-06T10:35:44Z
|
MEMBER
| null | null | null |
Support streaming datasets with `os.path.exists` and `pathlib.Path.exists`.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5400/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5400/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5400.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5400",
"merged_at": "2023-01-06T10:35:44Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5400.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5400"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5653
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5653/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5653/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5653/events
|
https://github.com/huggingface/datasets/issues/5653
| 1,633,254,159
|
I_kwDODunzps5hWXsP
| 5,653
|
Doc: save_to_disk, `num_proc` will affect `num_shards`, but it's not documented
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/RmZeta2718",
"id": 42400165,
"login": "RmZeta2718",
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"type": "User",
"url": "https://api.github.com/users/RmZeta2718",
"user_view_type": "public"
}
|
[
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
}
] |
closed
| false
| null |
[] | null |
[
"I agree this should be documented"
] | 2023-03-21T05:25:35Z
| 2023-03-24T16:36:23Z
| 2023-03-24T16:36:23Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
[`num_proc`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_proc) will affect `num_shards`, but it's not documented
### Steps to reproduce the bug
Nothing to reproduce
### Expected behavior
[document of `num_shards`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_shards) explicitly says that it depends on `max_shard_size`, it should also mention `num_proc`.
### Environment info
datasets main document
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5653/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5653/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5271
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5271/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5271/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5271/events
|
https://github.com/huggingface/datasets/pull/5271
| 1,456,807,738
|
PR_kwDODunzps5DTDX1
| 5,271
|
Fix #5269
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/32936898?v=4",
"events_url": "https://api.github.com/users/Freed-Wu/events{/privacy}",
"followers_url": "https://api.github.com/users/Freed-Wu/followers",
"following_url": "https://api.github.com/users/Freed-Wu/following{/other_user}",
"gists_url": "https://api.github.com/users/Freed-Wu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Freed-Wu",
"id": 32936898,
"login": "Freed-Wu",
"node_id": "MDQ6VXNlcjMyOTM2ODk4",
"organizations_url": "https://api.github.com/users/Freed-Wu/orgs",
"received_events_url": "https://api.github.com/users/Freed-Wu/received_events",
"repos_url": "https://api.github.com/users/Freed-Wu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Freed-Wu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Freed-Wu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Freed-Wu",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"See <https://github.com/huggingface/datasets/issues/5269>"
] | 2022-11-20T07:50:49Z
| 2022-11-21T15:07:19Z
| 2022-11-21T15:06:38Z
|
NONE
| null | null | null |
```
$ datasets-cli convert --datasets_directory <TAB>
datasets_directory
benchmarks/ docs/ metrics/ notebooks/ src/ templates/ tests/ utils/
```
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/32936898?v=4",
"events_url": "https://api.github.com/users/Freed-Wu/events{/privacy}",
"followers_url": "https://api.github.com/users/Freed-Wu/followers",
"following_url": "https://api.github.com/users/Freed-Wu/following{/other_user}",
"gists_url": "https://api.github.com/users/Freed-Wu/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Freed-Wu",
"id": 32936898,
"login": "Freed-Wu",
"node_id": "MDQ6VXNlcjMyOTM2ODk4",
"organizations_url": "https://api.github.com/users/Freed-Wu/orgs",
"received_events_url": "https://api.github.com/users/Freed-Wu/received_events",
"repos_url": "https://api.github.com/users/Freed-Wu/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Freed-Wu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Freed-Wu/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Freed-Wu",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5271/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5271/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5271.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5271",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/5271.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5271"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4606
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4606/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4606/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4606/events
|
https://github.com/huggingface/datasets/issues/4606
| 1,290,083,534
|
I_kwDODunzps5M5RzO
| 4,606
|
evaluation result changes after `datasets` version change
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/70014488?v=4",
"events_url": "https://api.github.com/users/thnkinbtfly/events{/privacy}",
"followers_url": "https://api.github.com/users/thnkinbtfly/followers",
"following_url": "https://api.github.com/users/thnkinbtfly/following{/other_user}",
"gists_url": "https://api.github.com/users/thnkinbtfly/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/thnkinbtfly",
"id": 70014488,
"login": "thnkinbtfly",
"node_id": "MDQ6VXNlcjcwMDE0NDg4",
"organizations_url": "https://api.github.com/users/thnkinbtfly/orgs",
"received_events_url": "https://api.github.com/users/thnkinbtfly/received_events",
"repos_url": "https://api.github.com/users/thnkinbtfly/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/thnkinbtfly/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/thnkinbtfly/subscriptions",
"type": "User",
"url": "https://api.github.com/users/thnkinbtfly",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"Hi! The GH/no-namespace datasets versioning is synced with the version of the `datasets` lib, which means that the `wikiann` script was modified between the two compared versions. In this scenario, you can ensure reproducibility by pinning the script version, which is done by passing `revision=\"x.y.z\"` (e.g. `revision=\"2.2.0\"`) to `load_dataset.`\r\n"
] | 2022-06-30T12:43:26Z
| 2023-07-25T15:05:26Z
| 2023-07-25T15:05:26Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
evaluation result changes after `datasets` version change
## Steps to reproduce the bug
1. Train a model on WikiAnn
2. reload the ckpt -> test accuracy becomes same as eval accuracy
3. such behavior is gone after downgrading `datasets`
https://colab.research.google.com/drive/1kYz7-aZRGdayaq-gDTt30tyEgsKlpYOw?usp=sharing
## Expected results
evaluation result shouldn't change before/after `datasets` version changes
## Actual results
evaluation result changes before/after `datasets` version changes
## Environment info
<!-- You can run the command `datasets-cli env` and copy-and-paste its output below. -->
- `datasets` version: 2.3.2
- Platform: colab
- Python version: 3.7.13
- PyArrow version: 6.0.1
Q. How could the evaluation result change before/after `datasets` version changes?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4606/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4606/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5294
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5294/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5294/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5294/events
|
https://github.com/huggingface/datasets/pull/5294
| 1,463,679,582
|
PR_kwDODunzps5DqgLW
| 5,294
|
Support streaming datasets with pathlib.Path.with_suffix
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-11-24T18:04:38Z
| 2022-11-29T07:09:08Z
| 2022-11-29T07:06:32Z
|
MEMBER
| null | null | null |
This PR extends the support in streaming mode for datasets that use `pathlib.Path.with_suffix`.
Fix #5293.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5294/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5294/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5294.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5294",
"merged_at": "2022-11-29T07:06:32Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5294.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5294"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5046
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5046/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5046/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5046/events
|
https://github.com/huggingface/datasets/issues/5046
| 1,391,372,519
|
I_kwDODunzps5S7qjn
| 5,046
|
Audiofolder creates empty Dataset if files same level as metadata
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/577139?v=4",
"events_url": "https://api.github.com/users/msis/events{/privacy}",
"followers_url": "https://api.github.com/users/msis/followers",
"following_url": "https://api.github.com/users/msis/following{/other_user}",
"gists_url": "https://api.github.com/users/msis/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/msis",
"id": 577139,
"login": "msis",
"node_id": "MDQ6VXNlcjU3NzEzOQ==",
"organizations_url": "https://api.github.com/users/msis/orgs",
"received_events_url": "https://api.github.com/users/msis/received_events",
"repos_url": "https://api.github.com/users/msis/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/msis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/msis/subscriptions",
"type": "User",
"url": "https://api.github.com/users/msis",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
},
{
"color": "DF8D62",
"default": false,
"description": "",
"id": 4614514401,
"name": "hacktoberfest",
"node_id": "LA_kwDODunzps8AAAABEwvm4Q",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/9295277?v=4",
"events_url": "https://api.github.com/users/riccardobucco/events{/privacy}",
"followers_url": "https://api.github.com/users/riccardobucco/followers",
"following_url": "https://api.github.com/users/riccardobucco/following{/other_user}",
"gists_url": "https://api.github.com/users/riccardobucco/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/riccardobucco",
"id": 9295277,
"login": "riccardobucco",
"node_id": "MDQ6VXNlcjkyOTUyNzc=",
"organizations_url": "https://api.github.com/users/riccardobucco/orgs",
"received_events_url": "https://api.github.com/users/riccardobucco/received_events",
"repos_url": "https://api.github.com/users/riccardobucco/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/riccardobucco/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/riccardobucco/subscriptions",
"type": "User",
"url": "https://api.github.com/users/riccardobucco",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/9295277?v=4",
"events_url": "https://api.github.com/users/riccardobucco/events{/privacy}",
"followers_url": "https://api.github.com/users/riccardobucco/followers",
"following_url": "https://api.github.com/users/riccardobucco/following{/other_user}",
"gists_url": "https://api.github.com/users/riccardobucco/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/riccardobucco",
"id": 9295277,
"login": "riccardobucco",
"node_id": "MDQ6VXNlcjkyOTUyNzc=",
"organizations_url": "https://api.github.com/users/riccardobucco/orgs",
"received_events_url": "https://api.github.com/users/riccardobucco/received_events",
"repos_url": "https://api.github.com/users/riccardobucco/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/riccardobucco/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/riccardobucco/subscriptions",
"type": "User",
"url": "https://api.github.com/users/riccardobucco",
"user_view_type": "public"
}
] | null |
[
"Hi! Unfortunately, I can't reproduce this behavior. Instead, I get `ValueError: audio at 2063_fe9936e7-62b2-4e62-a276-acbd344480ce_1.wav doesn't have metadata in /audio-data/metadata.csv`, which can be fixed by removing the `./` from the file name.\r\n\r\n(Link to a Colab that tries to reproduce this behavior: https://colab.research.google.com/drive/1IhQzULYi0Van1xLrN_SddBX1JF7mLZZK?usp=sharing)",
"I think we can make the file name matching part more robust by replacing `file_name` with `os.path.normpath(file_name)`, to ignore \"./\" among other things, in these two places:\r\n* https://github.com/huggingface/datasets/blob/85cd129bde605cd9acacdff0d065fc02e39e09b1/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L319\r\n* https://github.com/huggingface/datasets/blob/85cd129bde605cd9acacdff0d065fc02e39e09b1/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L388",
"@mariosasko Some tests failed (see my PR). Any thoughts on that?",
"Yes, I mentioned the solution in my review.",
"I realized what I was doing wrong.\r\n\r\nThe documentation puts the files in a subfolder.\r\nOnce I have done that, it worked.\r\n\r\nBut l agree that this should be handled better if possible."
] | 2022-09-29T19:17:23Z
| 2022-10-28T13:05:07Z
| 2022-10-28T13:05:07Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
When audio files are at the same level as the metadata (`metadata.csv` or `metadata.jsonl` ), the `load_dataset` returns a `DatasetDict` with no rows but the correct columns.
https://github.com/huggingface/datasets/blob/1ea4d091b7a4b83a85b2eeb8df65115d39af3766/docs/source/audio_dataset.mdx?plain=1#L88
## Steps to reproduce the bug
`metadata.csv`:
```csv
file_name,duration,transcription
./2063_fe9936e7-62b2-4e62-a276-acbd344480ce_1.wav,10.768,hello
```
```python
>>> audio_dataset = load_dataset("audiofolder", data_dir="/audio-data/")
>>> audio_dataset
DatasetDict({
train: Dataset({
features: ['audio', 'duration', 'transcription'],
num_rows: 0
})
validation: Dataset({
features: ['audio', 'duration', 'transcription'],
num_rows: 0
})
})
```
I've tried, with no success,:
- setting `split` to something else so I don't get a `DatasetDict`,
- removing the `./`,
- using `.jsonl`.
## Expected results
```
Dataset({
features: ['audio', 'duration', 'transcription'],
num_rows: 1
})
```
## Actual results
```
DatasetDict({
train: Dataset({
features: ['audio', 'duration', 'transcription'],
num_rows: 0
})
validation: Dataset({
features: ['audio', 'duration', 'transcription'],
num_rows: 0
})
})
```
## Environment info
- `datasets` version: 2.5.1
- Platform: Linux-5.13.0-1025-aws-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 9.0.0
- Pandas version: 1.5.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5046/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5046/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7219
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7219/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7219/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7219/events
|
https://github.com/huggingface/datasets/pull/7219
| 2,581,708,084
|
PR_kwDODunzps5-XAQF
| 7,219
|
bump fsspec
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7219). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2024-10-11T15:56:36Z
| 2024-10-14T08:21:56Z
| 2024-10-14T08:21:55Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7219/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7219/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7219.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7219",
"merged_at": "2024-10-14T08:21:55Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7219.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7219"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5457
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5457/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5457/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5457/events
|
https://github.com/huggingface/datasets/issues/5457
| 1,554,171,264
|
I_kwDODunzps5cosWA
| 5,457
|
prebuilt dataset relies on `downloads/extracted`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4",
"events_url": "https://api.github.com/users/stas00/events{/privacy}",
"followers_url": "https://api.github.com/users/stas00/followers",
"following_url": "https://api.github.com/users/stas00/following{/other_user}",
"gists_url": "https://api.github.com/users/stas00/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/stas00",
"id": 10676103,
"login": "stas00",
"node_id": "MDQ6VXNlcjEwNjc2MTAz",
"organizations_url": "https://api.github.com/users/stas00/orgs",
"received_events_url": "https://api.github.com/users/stas00/received_events",
"repos_url": "https://api.github.com/users/stas00/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stas00/subscriptions",
"type": "User",
"url": "https://api.github.com/users/stas00",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi! \r\n\r\nThis issue is due to our audio/image datasets not being self-contained. This allows us to save disk space (files are written only once) but also leads to the issues like this one. We plan to make all our datasets self-contained in Datasets 3.0.\r\n\r\nIn the meantime, you can run the following map to ensure your dataset is self-contained:\r\n```python\r\nfrom datasets.table import embed_table_storage\r\n# load_dataset ...\r\ndset = dset.with_format(\"arrow\")\r\ndset.map(embed_table_storage, batched=True)\r\ndset = dset.with_format(\"python\")\r\n```\r\n",
"Understood. Thank you, Mario.\r\n\r\nPerhaps the solution could be very simple - move the extracted files into the directory of the cached dataset? Which would make it self-contained already and won't require waiting for a new major release. Unless I'm missing some back-compat nuance.\r\n\r\nBut regardless if X relies on Y - it could check if Y is still there when loading X. so not checking full consistency but just the top-level directory it relies on.",
"Hello, \r\n\r\nI also face some problem with prebuilt dataset that relies on the same directory on \r\n\r\n`.cache\\\\huggingface\\\\datasets\\\\downloads\\\\extracted\\\\b557ce52f22c65030869d849d199d7b3fd5af18b335143729c717d29f6221baa\\\\ADEChallengeData2016\\\\annotations\\\\training\\\\ADE_train_00000023.png'`\r\n\r\nThe images exist but the training function somehow cannot reached it. Is this also related to the same problem?\r\n\r\nCurrently the directory map looked like this:\r\n```\r\n\r\n> (hf-pretrain38) C:\\Users\\Len\\.cache\\huggingface>tree\r\n> Folder PATH listing\r\n> C:.\r\n> ├───datasets\r\n> │ ├───downloads\r\n> │ │ └───extracted\r\n> │ │ ├───64c6a0967481dbc192dceabeac06c02b47b992a106357d49e1916dfcdc23a2ea\r\n> │ │ │ └───release_test\r\n> │ │ │ └───testing\r\n> │ │ └───b557ce52f22c65030869d849d199d7b3fd5af18b335143729c717d29f6221baa\r\n> │ │ └───ADEChallengeData2016\r\n> │ │ ├───annotations\r\n> │ │ │ ├───training\r\n> │ │ │ └───validation\r\n> │ │ └───images\r\n> │ │ ├───training\r\n> │ │ └───validation\r\n> │ ├───parquet\r\n> │ │ └───yelp_review_full-66f1f8c8d1a2da02\r\n> │ │ └───0.0.0\r\n> │ │ └───14a00e99c0d15a23649d0db8944380ac81082d4b021f398733dd84f3a6c569a7\r\n> │ └───scene_parse_150\r\n> │ └───scene_parsing\r\n> │ └───1.0.0\r\n> │ └───d998c54e1b5c5bad12b4d2ec7e1a5f74eee4c153bc1b089a0001677ae9b3fd75\r\n> ├───evaluate\r\n> │ └───downloads\r\n> ├───hub\r\n> │ ├───.locks\r\n> │ │ ├───datasets--scene_parse_150\r\n> │ │ ├───models--facebook--mask2former-swin-large-cityscapes-instance\r\n> │ │ ├───models--facebook--mask2former-swin-large-cityscapes-panoptic\r\n> │ │ ├───models--nvidia--mit-b0\r\n> │ │ └───models--nvidia--segformer-b1-finetuned-cityscapes-1024-1024\r\n> │ ├───datasets--huggingface--label-files\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───9462154cba99c3c7f569d3b4f1ba26614afd558c\r\n> │ ├───datasets--scene_parse_150\r\n> │ │ ├───.no_exist\r\n> │ │ │ └───ac1c0c0e23875e74cd77aca0fd725fd6a35c3667\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───ac1c0c0e23875e74cd77aca0fd725fd6a35c3667\r\n> │ ├───models--bert-base-cased\r\n> │ │ ├───.no_exist\r\n> │ │ │ └───cd5ef92a9fb2f889e972770a36d4ed042daf221e\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───cd5ef92a9fb2f889e972770a36d4ed042daf221e\r\n> │ ├───models--bert-case-cased\r\n> │ ├───models--facebook--detr-resnet-50-panoptic\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───d53b52a799403a8867920f82c869e40732b47037\r\n> │ ├───models--facebook--mask2former-swin-base-coco-panoptic\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───8351ef9576a965d65196da91a5015dcaf6c6b5d2\r\n> │ ├───models--facebook--mask2former-swin-large-cityscapes-instance\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───70fed72d02a138560da931a1c6a2dcfbb56cd2ff\r\n> │ ├───models--facebook--mask2former-swin-large-cityscapes-panoptic\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───544d76fe93971ee046dacae19b6d4f6ecb5d9088\r\n> │ ├───models--google_bert--bert-base-cased\r\n> │ ├───models--nvidia--mit-b0\r\n> │ │ ├───.no_exist\r\n> │ │ │ └───80983a413c30d36a39c20203974ae7807835e2b4\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ │ └───refs\r\n> │ │ │ └───pr\r\n> │ │ └───snapshots\r\n> │ │ ├───25ce79d97e6d9d509ed12e17cb2eb89b0a83a2dc\r\n> │ │ └───80983a413c30d36a39c20203974ae7807835e2b4\r\n> │ ├───models--nvidia--segformer-b0-finetuned-cityscapes-768-768\r\n> │ │ ├───blobs\r\n> │ │ ├───refs\r\n> │ │ └───snapshots\r\n> │ │ └───d3b7801ed329668d5bff04cd33365fa37f538c3b\r\n> │ └───models--nvidia--segformer-b1-finetuned-cityscapes-1024-1024\r\n> │ ├───.no_exist\r\n> │ │ └───ec86afeba68e656629ccf47e0c8d2902f964917b\r\n> │ ├───blobs\r\n> │ ├───refs\r\n> │ │ └───refs\r\n> │ │ └───pr\r\n> │ └───snapshots\r\n> │ ├───ad2bb0101129289844ea62577e6a22adc2752004\r\n> │ └───ec86afeba68e656629ccf47e0c8d2902f964917b\r\n> ├───metrics\r\n> │ └───mean_io_u\r\n> │ └───default\r\n> └───modules\r\n> ├───datasets_modules\r\n> │ ├───datasets\r\n> │ │ ├───scene_parse_150\r\n> │ │ │ ├───d998c54e1b5c5bad12b4d2ec7e1a5f74eee4c153bc1b089a0001677ae9b3fd75\r\n> │ │ │ │ └───__pycache__\r\n> │ │ │ └───__pycache__\r\n> │ │ └───__pycache__\r\n> │ └───__pycache__\r\n> └───evaluate_modules\r\n> ├───metrics\r\n> │ ├───evaluate-metric--mean_iou\r\n> │ │ ├───9e450724f21f05592bfb0255fe2fa576df8171fa060d11121d8aecfff0db80d0\r\n> │ │ │ └───__pycache__\r\n> │ │ └───__pycache__\r\n> │ └───__pycache__\r\n> └───__pycache__\r\n```\r\n\r\nWill appreciate for some help and will help in completing further details, thanks in advance"
] | 2023-01-24T02:09:32Z
| 2024-11-18T07:43:51Z
| null |
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I pre-built the dataset:
```
python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing
```
and it can be used just fine.
now I wipe out `downloads/extracted` and it no longer works.
```
rm -r ~/.cache/huggingface/datasets/downloads
```
That is I can still load it:
```
python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing
No config specified, defaulting to: general-pmd-synthetic-testing/100.unique
Found cached dataset general-pmd-synthetic-testing (/home/stas/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing/100.unique/1.1.1/86bc445e3e48cb5ef79de109eb4e54ff85b318cd55c3835c4ee8f86eae33d9d2)
```
but if I try to use it:
```
E stderr: Traceback (most recent call last):
E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/main.py", line 116, in <module>
E stderr: train_loader, val_loader = get_dataloaders(
E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 170, in get_dataloaders
E stderr: train_loader = get_dataloader_from_config(
E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 443, in get_dataloader_from_config
E stderr: dataloader = get_dataloader(
E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 264, in get_dataloader
E stderr: is_pmd = "meta" in hf_dataset[0] and "source" in hf_dataset[0]
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2601, in __getitem__
E stderr: return self._getitem(
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2586, in _getitem
E stderr: formatted_output = format_table(
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 634, in format_table
E stderr: return formatter(pa_table, query_type=query_type)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 406, in __call__
E stderr: return self.format_row(pa_table)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 442, in format_row
E stderr: row = self.python_features_decoder.decode_row(row)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 225, in decode_row
E stderr: return self.features.decode_example(row) if self.features else row
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1846, in decode_example
E stderr: return {
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1847, in <dictcomp>
E stderr: column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1304, in decode_nested_example
E stderr: return decode_nested_example([schema.feature], obj)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1296, in decode_nested_example
E stderr: if decode_nested_example(sub_schema, first_elmt) != first_elmt:
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1309, in decode_nested_example
E stderr: return schema.decode_example(obj, token_per_repo_id=token_per_repo_id)
E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/image.py", line 144, in decode_example
E stderr: image = PIL.Image.open(path)
E stderr: File "/home/stas/anaconda3/envs/py38-pt113/lib/python3.8/site-packages/PIL/Image.py", line 3092, in open
E stderr: fp = builtins.open(filename, "rb")
E stderr: FileNotFoundError: [Errno 2] No such file or directory: '/mnt/nvme0/code/data/cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data/101/images_01.jpg'
```
Only if I wipe out the cached dir and rebuild then it starts working as `download/extracted` is back again with extracted files.
```
rm -r ~/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing
python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing
```
I think there are 2 issues here:
1. why does it still rely on extracted files after `arrow` files were printed - did I do something incorrectly when creating this dataset?
2. why doesn't the dataset know that it has been gutted and loads just fine? If it has a dependency on `download/extracted` then `load_dataset` should check if it's there and fail or force rebuilding. I am sure this could be a very expensive operation, so probably really solving #1 will not require this check. and this second item is probably an overkill. Other than perhaps if it had an optional `check_consistency` flag to do that.
### Environment info
datasets@main
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5457/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5457/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7252
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7252/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7252/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7252/events
|
https://github.com/huggingface/datasets/pull/7252
| 2,613,795,544
|
PR_kwDODunzps5_41s7
| 7,252
|
Add IterableDataset.shard()
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7252). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Is there some way to get this to work for pytorch dataloader workers?\r\n\r\neg. start with a single sharded IterableDataset.from_generator(), then reshard before calling map() to do expensive processing over multiple workers"
] | 2024-10-25T11:07:12Z
| 2025-03-21T03:58:43Z
| 2024-10-25T15:45:22Z
|
MEMBER
| null | null | null |
Will be useful to distribute a dataset across workers (other than pytorch) like spark
I also renamed `.n_shards` -> `.num_shards` for consistency and kept the old name for backward compatibility. And a few changes in internal functions for consistency as well (rank, world_size -> num_shards, index)
Breaking change: the new default for `contiguous` in `Dataset.shard()` is `True`, but imo not a big deal since I couldn't find any usage of `contiguous=False` internally (we always do contiguous=True for map-style datasets since its more optimized) or in the wild
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7252/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7252/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7252.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7252",
"merged_at": "2024-10-25T15:45:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7252.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7252"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6805
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6805/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6805/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6805/events
|
https://github.com/huggingface/datasets/issues/6805
| 2,239,034,951
|
I_kwDODunzps6FdPZH
| 6,805
|
Batched mapping of existing string column casts boolean to string
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/46891489?v=4",
"events_url": "https://api.github.com/users/starmpcc/events{/privacy}",
"followers_url": "https://api.github.com/users/starmpcc/followers",
"following_url": "https://api.github.com/users/starmpcc/following{/other_user}",
"gists_url": "https://api.github.com/users/starmpcc/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/starmpcc",
"id": 46891489,
"login": "starmpcc",
"node_id": "MDQ6VXNlcjQ2ODkxNDg5",
"organizations_url": "https://api.github.com/users/starmpcc/orgs",
"received_events_url": "https://api.github.com/users/starmpcc/received_events",
"repos_url": "https://api.github.com/users/starmpcc/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/starmpcc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/starmpcc/subscriptions",
"type": "User",
"url": "https://api.github.com/users/starmpcc",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"This seems to be hardcoded behavior in table.py `array_cast`.\r\n```python\r\nif (\r\n not allow_number_to_str\r\n and pa.types.is_string(pa_type)\r\n and (pa.types.is_floating(array.type) or pa.types.is_integer(array.type))\r\n ):\r\n raise TypeError(\r\n f\"Couldn't cast array of type {array.type} to {pa_type} since allow_number_to_str is set to {allow_number_to_str}\"\r\n )\r\n if pa.types.is_null(pa_type) and not pa.types.is_null(array.type):\r\n raise TypeError(f\"Couldn't cast array of type {array.type} to {pa_type}\")\r\n return array.cast(pa_type)\r\n```\r\nwhere floats and integers are not cast to string but booleans are.\r\nMaybe this should be extended to booleans?",
"Thanks for reporting! @Modexus Do you want to open a PR with the suggested fix?",
"I'll gladly create a PR but not sure what the behavior should be.\r\n\r\nShould a value returned from map be cast to the current feature?\r\nAt the moment this seems very inconsistent since `datetime `is also cast (this would only fix `boolean`) but nested structures are not.\r\n\r\n```python\r\ndset = Dataset.from_dict({\"a\": [\"Hello world!\"]})\r\ndset = dset.map(lambda x: {\"a\": date(2021, 1, 1)})\r\n# dset[0][\"a\"] == '2021-01-01'\r\n```\r\n```python\r\ndset = Dataset.from_dict({\"a\": [\"Hello world!\"]})\r\ndset = dset.map(lambda x: {\"a\": [True]})\r\n# dset[0][\"a\"] == [True]\r\n```\r\n\r\nIs there are reason to cast the value if the user doesn't specify it explicitly?\r\nSeems tricky that some things are cast and some are not.",
"Indeed, it also makes sense to raise a `TypeError` for temporal and decimal types.\r\n\r\n> Is there are reason to cast the value if the user doesn't specify it explicitly?\r\n\r\nThis is how PyArrow's built-in `cast` behaves - it allows casting from primitive types to strings. Hence, we need `allow_number_to_str` to disallow such casts (e.g., in the [scenario](https://github.com/huggingface/datasets/blob/a3bc89d8bfd47c2a175c3ce16d92b7307cdeafd6/src/datasets/arrow_writer.py#L208) when we are \"trying a type\" to preserve the original type if there is a column in the output dataset with the same name as in the input one).\r\n\r\nPS: In the PR, we can introduce `allow_numeric_to_str` (for floats, integers, decimals, booleans) and `allow_temporal_to_str` (for dates, timestamps, ...) and deprecate `allow_number_to_str` to make it clear what each parameter does.",
"Would just `allow_primitive_to_str` work?\r\nThis should include all `numeric`, `boolean `and `temporal`formats.\r\n\r\nNote that at least in the [ C++ implementation](https://arrow.apache.org/docs/cpp/api/utilities.html#_CPPv410is_numericRK8DataType) `numeric `seems to exclude `boolean`.\r\n[](https://arrow.apache.org/docs/cpp/api/utilities.html#_CPPv410is_numericRK8DataType)",
"Indeed, `allow_primitive_to_str` sounds better.\r\n\r\nPS: PyArrow's `pa.types.is_primitive` returns `False` for decimal types, but I think is okay for us to treat decimals as primitive types (or we can have `allow_decimal_to_str` to be fully consistent with PyArrow)",
"Fixed by:\r\n- #6811"
] | 2024-04-12T04:21:41Z
| 2024-07-03T15:00:07Z
| 2024-07-03T15:00:07Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Let the dataset contain a column named 'a', which is of the string type.
If 'a' is converted to a boolean using batched mapping, the mapper automatically casts the boolean to a string (e.g., True -> 'true').
It only happens when the original column and the mapped column name are identical.
Thank you!
### Steps to reproduce the bug
```python
from datasets import Dataset
dset = Dataset.from_dict({'a': ['11', '22']})
dset = dset.map(lambda x: {'a': [True for _ in x['a']]}, batched=True)
print(dset['a'])
```
```
> ['true', 'true']
```
### Expected behavior
[True, True]
### Environment info
- `datasets` version: 2.18.0
- Platform: Linux-5.4.0-148-generic-x86_64-with-glibc2.31
- Python version: 3.10.13
- `huggingface_hub` version: 0.21.4
- PyArrow version: 15.0.2
- Pandas version: 2.2.1
- `fsspec` version: 2023.12.2
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6805/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6805/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7438
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7438/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7438/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7438/events
|
https://github.com/huggingface/datasets/pull/7438
| 2,899,209,484
|
PR_kwDODunzps6Nk37h
| 7,438
|
Allow dataset row indexing with np.int types (#7423)
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4",
"events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}",
"followers_url": "https://api.github.com/users/DavidRConnell/followers",
"following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}",
"gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/DavidRConnell",
"id": 35470740,
"login": "DavidRConnell",
"node_id": "MDQ6VXNlcjM1NDcwNzQw",
"organizations_url": "https://api.github.com/users/DavidRConnell/orgs",
"received_events_url": "https://api.github.com/users/DavidRConnell/received_events",
"repos_url": "https://api.github.com/users/DavidRConnell/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions",
"type": "User",
"url": "https://api.github.com/users/DavidRConnell",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-03-06T03:10:43Z
| 2025-03-06T03:10:43Z
| null |
NONE
| null | null | null |
@lhoestq
Proposed fix for #7423. Added a couple simple tests as requested. I had some test failures related to Java and pyspark even when installing with dev but these don't seem to be related to the changes here and fail for me even on clean main.
The typeerror raised when using the wrong type is: "Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable." I think that is fine. But I could modify the int part to something more generic (although I'm not sure what) if wanted.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7438/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7438/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7438.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7438",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7438.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7438"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6860
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6860/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6860/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6860/events
|
https://github.com/huggingface/datasets/issues/6860
| 2,275,537,137
|
I_kwDODunzps6HofDx
| 6,860
|
CI fails after huggingface_hub-0.23.0 release: FutureWarning: "resume_download"
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
] | null |
[
"I think this needs to be fixed on transformers.\r\n\r\nCC: @Wauplin ",
"See:\r\n- https://github.com/huggingface/transformers/issues/30618",
"Opened https://github.com/huggingface/transformers/pull/30620"
] | 2024-05-02T13:24:17Z
| 2024-05-02T16:53:45Z
| 2024-05-02T16:53:45Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
CI fails after latest huggingface_hub-0.23.0 release: https://github.com/huggingface/huggingface_hub/releases/tag/v0.23.0
```
FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_bertscore - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_perplexity - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
FAILED tests/test_fingerprint.py::TokenizersHashTest::test_hash_tokenizer - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
FAILED tests/test_fingerprint.py::TokenizersHashTest::test_hash_tokenizer_with_cache - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
FAILED tests/test_arrow_dataset.py::MiscellaneousDatasetTest::test_set_format_encode - FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
```
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6860/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6860/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6356
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6356/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6356/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6356/events
|
https://github.com/huggingface/datasets/pull/6356
| 1,964,015,802
|
PR_kwDODunzps5d5Jri
| 6,356
|
Add `fsspec` version to the `datasets-cli env` command output
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008775 / 0.011353 (-0.002578) | 0.005304 / 0.011008 (-0.005704) | 0.108912 / 0.038508 (0.070404) | 0.075589 / 0.023109 (0.052479) | 0.456612 / 0.275898 (0.180713) | 0.502303 / 0.323480 (0.178823) | 0.006695 / 0.007986 (-0.001291) | 0.004404 / 0.004328 (0.000076) | 0.084802 / 0.004250 (0.080552) | 0.062711 / 0.037052 (0.025659) | 0.465062 / 0.258489 (0.206573) | 0.505321 / 0.293841 (0.211480) | 0.049401 / 0.128546 (-0.079146) | 0.014784 / 0.075646 (-0.060862) | 0.378202 / 0.419271 (-0.041069) | 0.069826 / 0.043533 (0.026293) | 0.461161 / 0.255139 (0.206022) | 0.484616 / 0.283200 (0.201416) | 0.035998 / 0.141683 (-0.105685) | 1.846343 / 1.452155 (0.394189) | 1.999439 / 1.492716 (0.506723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317779 / 0.018006 (0.299773) | 0.605967 / 0.000490 (0.605477) | 0.011412 / 0.000200 (0.011212) | 0.000410 / 0.000054 (0.000356) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031118 / 0.037411 (-0.006293) | 0.095425 / 0.014526 (0.080900) | 0.108002 / 0.176557 (-0.068554) | 0.184625 / 0.737135 (-0.552511) | 0.108180 / 0.296338 (-0.188159) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.587497 / 0.215209 (0.372288) | 5.818632 / 2.077655 (3.740977) | 2.629776 / 1.504120 (1.125656) | 2.266129 / 1.541195 (0.724934) | 2.324618 / 1.468490 (0.856128) | 0.830049 / 4.584777 (-3.754728) | 5.380062 / 3.745712 (1.634350) | 4.808525 / 5.269862 (-0.461336) | 2.960368 / 4.565676 (-1.605309) | 0.093637 / 0.424275 (-0.330638) | 0.009187 / 0.007607 (0.001580) | 0.703468 / 0.226044 (0.477424) | 6.924509 / 2.268929 (4.655580) | 3.380582 / 55.444624 (-52.064043) | 2.689118 / 6.876477 (-4.187358) | 2.712418 / 2.142072 (0.570345) | 1.017144 / 4.805227 (-3.788084) | 0.212874 / 6.500664 (-6.287791) | 0.080053 / 0.075469 (0.004584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623663 / 1.841788 (-0.218125) | 23.668872 / 8.074308 (15.594564) | 20.245972 / 10.191392 (10.054580) | 0.236448 / 0.680424 (-0.443976) | 0.029730 / 0.534201 (-0.504470) | 0.491525 / 0.579283 (-0.087758) | 0.593780 / 0.434364 (0.159416) | 0.548776 / 0.540337 (0.008438) | 0.799370 / 1.386936 (-0.587566) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009714 / 0.011353 (-0.001639) | 0.005328 / 0.011008 (-0.005681) | 0.078460 / 0.038508 (0.039952) | 0.077791 / 0.023109 (0.054682) | 0.510124 / 0.275898 (0.234226) | 0.547769 / 0.323480 (0.224289) | 0.006868 / 0.007986 (-0.001118) | 0.004145 / 0.004328 (-0.000183) | 0.088696 / 0.004250 (0.084445) | 0.072387 / 0.037052 (0.035334) | 0.527373 / 0.258489 (0.268884) | 0.561948 / 0.293841 (0.268107) | 0.049769 / 0.128546 (-0.078777) | 0.014401 / 0.075646 (-0.061246) | 0.097541 / 0.419271 (-0.321731) | 0.062237 / 0.043533 (0.018705) | 0.531001 / 0.255139 (0.275862) | 0.561797 / 0.283200 (0.278597) | 0.038482 / 0.141683 (-0.103201) | 1.783558 / 1.452155 (0.331404) | 1.864339 / 1.492716 (0.371622) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289389 / 0.018006 (0.271383) | 0.595326 / 0.000490 (0.594836) | 0.004583 / 0.000200 (0.004383) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034492 / 0.037411 (-0.002919) | 0.102934 / 0.014526 (0.088409) | 0.121689 / 0.176557 (-0.054868) | 0.182121 / 0.737135 (-0.555015) | 0.127087 / 0.296338 (-0.169252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.645726 / 0.215209 (0.430517) | 6.462235 / 2.077655 (4.384580) | 3.044176 / 1.504120 (1.540056) | 2.731181 / 1.541195 (1.189986) | 2.805508 / 1.468490 (1.337018) | 0.846324 / 4.584777 (-3.738453) | 5.341074 / 3.745712 (1.595362) | 4.687111 / 5.269862 (-0.582751) | 3.035472 / 4.565676 (-1.530205) | 0.099193 / 0.424275 (-0.325082) | 0.008825 / 0.007607 (0.001218) | 0.795102 / 0.226044 (0.569058) | 7.895770 / 2.268929 (5.626842) | 3.826752 / 55.444624 (-51.617873) | 3.112217 / 6.876477 (-3.764259) | 3.526878 / 2.142072 (1.384806) | 1.011352 / 4.805227 (-3.793875) | 0.213424 / 6.500664 (-6.287240) | 0.076228 / 0.075469 (0.000759) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.805232 / 1.841788 (-0.036556) | 24.049100 / 8.074308 (15.974792) | 23.056011 / 10.191392 (12.864619) | 0.261656 / 0.680424 (-0.418767) | 0.032021 / 0.534201 (-0.502179) | 0.483829 / 0.579283 (-0.095454) | 0.602208 / 0.434364 (0.167844) | 0.565848 / 0.540337 (0.025511) | 0.818678 / 1.386936 (-0.568258) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008043 / 0.011353 (-0.003310) | 0.004642 / 0.011008 (-0.006366) | 0.102592 / 0.038508 (0.064084) | 0.099508 / 0.023109 (0.076399) | 0.377692 / 0.275898 (0.101794) | 0.409929 / 0.323480 (0.086450) | 0.006363 / 0.007986 (-0.001622) | 0.003881 / 0.004328 (-0.000447) | 0.076636 / 0.004250 (0.072386) | 0.067021 / 0.037052 (0.029969) | 0.371454 / 0.258489 (0.112964) | 0.423637 / 0.293841 (0.129796) | 0.038632 / 0.128546 (-0.089914) | 0.010055 / 0.075646 (-0.065591) | 0.352021 / 0.419271 (-0.067251) | 0.064988 / 0.043533 (0.021456) | 0.369614 / 0.255139 (0.114475) | 0.396972 / 0.283200 (0.113773) | 0.028866 / 0.141683 (-0.112817) | 1.757620 / 1.452155 (0.305465) | 1.886283 / 1.492716 (0.393567) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257579 / 0.018006 (0.239572) | 0.529859 / 0.000490 (0.529369) | 0.011720 / 0.000200 (0.011520) | 0.000455 / 0.000054 (0.000401) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034163 / 0.037411 (-0.003248) | 0.101422 / 0.014526 (0.086896) | 0.114858 / 0.176557 (-0.061698) | 0.180265 / 0.737135 (-0.556870) | 0.116034 / 0.296338 (-0.180305) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477609 / 0.215209 (0.262400) | 4.830116 / 2.077655 (2.752461) | 2.323844 / 1.504120 (0.819724) | 2.174496 / 1.541195 (0.633301) | 2.268594 / 1.468490 (0.800104) | 0.612429 / 4.584777 (-3.972348) | 4.265277 / 3.745712 (0.519565) | 4.095741 / 5.269862 (-1.174121) | 2.561532 / 4.565676 (-2.004144) | 0.068043 / 0.424275 (-0.356233) | 0.009139 / 0.007607 (0.001532) | 0.545512 / 0.226044 (0.319467) | 5.456403 / 2.268929 (3.187475) | 2.778937 / 55.444624 (-52.665688) | 2.428560 / 6.876477 (-4.447917) | 2.557483 / 2.142072 (0.415411) | 0.696721 / 4.805227 (-4.108506) | 0.157217 / 6.500664 (-6.343447) | 0.071334 / 0.075469 (-0.004135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617755 / 1.841788 (-0.224032) | 23.368508 / 8.074308 (15.294200) | 17.028591 / 10.191392 (6.837199) | 0.195881 / 0.680424 (-0.484542) | 0.021788 / 0.534201 (-0.512413) | 0.468484 / 0.579283 (-0.110799) | 0.474604 / 0.434364 (0.040240) | 0.544738 / 0.540337 (0.004400) | 0.771722 / 1.386936 (-0.615214) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007939 / 0.011353 (-0.003414) | 0.004684 / 0.011008 (-0.006324) | 0.077273 / 0.038508 (0.038765) | 0.088763 / 0.023109 (0.065654) | 0.489178 / 0.275898 (0.213280) | 0.531547 / 0.323480 (0.208067) | 0.006214 / 0.007986 (-0.001772) | 0.003988 / 0.004328 (-0.000340) | 0.076685 / 0.004250 (0.072434) | 0.066628 / 0.037052 (0.029576) | 0.497153 / 0.258489 (0.238664) | 0.538301 / 0.293841 (0.244460) | 0.037939 / 0.128546 (-0.090607) | 0.010054 / 0.075646 (-0.065592) | 0.084642 / 0.419271 (-0.334629) | 0.057140 / 0.043533 (0.013608) | 0.487701 / 0.255139 (0.232562) | 0.519676 / 0.283200 (0.236477) | 0.026560 / 0.141683 (-0.115123) | 1.809676 / 1.452155 (0.357521) | 1.864884 / 1.492716 (0.372168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259005 / 0.018006 (0.240998) | 0.522900 / 0.000490 (0.522410) | 0.006885 / 0.000200 (0.006685) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039838 / 0.037411 (0.002426) | 0.117777 / 0.014526 (0.103251) | 0.129189 / 0.176557 (-0.047368) | 0.198584 / 0.737135 (-0.538552) | 0.129753 / 0.296338 (-0.166586) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.543366 / 0.215209 (0.328157) | 5.241502 / 2.077655 (3.163847) | 2.719079 / 1.504120 (1.214959) | 2.525337 / 1.541195 (0.984142) | 2.648908 / 1.468490 (1.180418) | 0.589239 / 4.584777 (-3.995538) | 4.379856 / 3.745712 (0.634144) | 4.139919 / 5.269862 (-1.129943) | 2.633412 / 4.565676 (-1.932264) | 0.074582 / 0.424275 (-0.349693) | 0.009106 / 0.007607 (0.001499) | 0.635540 / 0.226044 (0.409495) | 6.072965 / 2.268929 (3.804037) | 3.327233 / 55.444624 (-52.117391) | 3.012637 / 6.876477 (-3.863840) | 3.113226 / 2.142072 (0.971154) | 0.712705 / 4.805227 (-4.092523) | 0.159550 / 6.500664 (-6.341114) | 0.073446 / 0.075469 (-0.002023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.718732 / 1.841788 (-0.123055) | 23.249445 / 8.074308 (15.175137) | 17.630643 / 10.191392 (7.439251) | 0.201017 / 0.680424 (-0.479407) | 0.024162 / 0.534201 (-0.510039) | 0.475054 / 0.579283 (-0.104229) | 0.492348 / 0.434364 (0.057985) | 0.587118 / 0.540337 (0.046781) | 0.777462 / 1.386936 (-0.609474) |\n\n</details>\n</details>\n\n\n"
] | 2023-10-26T17:19:25Z
| 2023-10-26T18:42:56Z
| 2023-10-26T18:32:21Z
|
COLLABORATOR
| null | null | null |
... to make debugging issues easier, as `fsspec`'s releases often introduce breaking changes.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6356/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6356/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6356.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6356",
"merged_at": "2023-10-26T18:32:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6356.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6356"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5937
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5937/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5937/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5937/events
|
https://github.com/huggingface/datasets/pull/5937
| 1,749,388,597
|
PR_kwDODunzps5SmLIs
| 5,937
|
Avoid parallel redownload in cache
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006157 / 0.011353 (-0.005196) | 0.003790 / 0.011008 (-0.007219) | 0.097889 / 0.038508 (0.059381) | 0.029038 / 0.023109 (0.005929) | 0.306918 / 0.275898 (0.031020) | 0.339637 / 0.323480 (0.016157) | 0.003526 / 0.007986 (-0.004460) | 0.003102 / 0.004328 (-0.001227) | 0.076908 / 0.004250 (0.072658) | 0.039254 / 0.037052 (0.002201) | 0.309197 / 0.258489 (0.050708) | 0.345635 / 0.293841 (0.051794) | 0.027954 / 0.128546 (-0.100593) | 0.008510 / 0.075646 (-0.067136) | 0.314674 / 0.419271 (-0.104598) | 0.057102 / 0.043533 (0.013569) | 0.307495 / 0.255139 (0.052356) | 0.329501 / 0.283200 (0.046302) | 0.098450 / 0.141683 (-0.043233) | 1.480102 / 1.452155 (0.027948) | 1.550554 / 1.492716 (0.057838) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207440 / 0.018006 (0.189434) | 0.426560 / 0.000490 (0.426071) | 0.003250 / 0.000200 (0.003050) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023777 / 0.037411 (-0.013634) | 0.103905 / 0.014526 (0.089379) | 0.108324 / 0.176557 (-0.068233) | 0.167223 / 0.737135 (-0.569913) | 0.113529 / 0.296338 (-0.182810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426770 / 0.215209 (0.211561) | 4.251806 / 2.077655 (2.174151) | 2.010426 / 1.504120 (0.506306) | 1.858630 / 1.541195 (0.317435) | 1.941318 / 1.468490 (0.472828) | 0.558056 / 4.584777 (-4.026721) | 3.399107 / 3.745712 (-0.346606) | 1.758386 / 5.269862 (-3.511476) | 1.036305 / 4.565676 (-3.529372) | 0.067094 / 0.424275 (-0.357182) | 0.011167 / 0.007607 (0.003560) | 0.526705 / 0.226044 (0.300661) | 5.250319 / 2.268929 (2.981390) | 2.496723 / 55.444624 (-52.947902) | 2.154013 / 6.876477 (-4.722464) | 2.394724 / 2.142072 (0.252652) | 0.669723 / 4.805227 (-4.135504) | 0.136367 / 6.500664 (-6.364297) | 0.067080 / 0.075469 (-0.008389) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269700 / 1.841788 (-0.572088) | 14.099775 / 8.074308 (6.025467) | 14.422936 / 10.191392 (4.231544) | 0.132344 / 0.680424 (-0.548080) | 0.016744 / 0.534201 (-0.517457) | 0.378286 / 0.579283 (-0.200997) | 0.392282 / 0.434364 (-0.042082) | 0.437648 / 0.540337 (-0.102689) | 0.528554 / 1.386936 (-0.858382) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006086 / 0.011353 (-0.005267) | 0.003769 / 0.011008 (-0.007239) | 0.077414 / 0.038508 (0.038906) | 0.027806 / 0.023109 (0.004697) | 0.360333 / 0.275898 (0.084434) | 0.404725 / 0.323480 (0.081245) | 0.003443 / 0.007986 (-0.004543) | 0.004434 / 0.004328 (0.000106) | 0.077309 / 0.004250 (0.073059) | 0.040441 / 0.037052 (0.003388) | 0.358627 / 0.258489 (0.100138) | 0.415246 / 0.293841 (0.121405) | 0.027718 / 0.128546 (-0.100829) | 0.008495 / 0.075646 (-0.067151) | 0.082874 / 0.419271 (-0.336397) | 0.042323 / 0.043533 (-0.001210) | 0.354895 / 0.255139 (0.099756) | 0.390032 / 0.283200 (0.106832) | 0.092377 / 0.141683 (-0.049306) | 1.492817 / 1.452155 (0.040662) | 1.551859 / 1.492716 (0.059143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198921 / 0.018006 (0.180915) | 0.417699 / 0.000490 (0.417209) | 0.001349 / 0.000200 (0.001149) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026349 / 0.037411 (-0.011062) | 0.105712 / 0.014526 (0.091186) | 0.111792 / 0.176557 (-0.064765) | 0.163677 / 0.737135 (-0.573459) | 0.116864 / 0.296338 (-0.179474) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447532 / 0.215209 (0.232323) | 4.468770 / 2.077655 (2.391116) | 2.403820 / 1.504120 (0.899700) | 2.273640 / 1.541195 (0.732445) | 2.337505 / 1.468490 (0.869015) | 0.560729 / 4.584777 (-4.024048) | 3.389165 / 3.745712 (-0.356547) | 2.697614 / 5.269862 (-2.572247) | 1.351909 / 4.565676 (-3.213768) | 0.068089 / 0.424275 (-0.356186) | 0.011639 / 0.007607 (0.004032) | 0.555277 / 0.226044 (0.329233) | 5.559291 / 2.268929 (3.290363) | 2.657609 / 55.444624 (-52.787015) | 2.346667 / 6.876477 (-4.529809) | 2.615823 / 2.142072 (0.473751) | 0.668662 / 4.805227 (-4.136566) | 0.136593 / 6.500664 (-6.364071) | 0.068384 / 0.075469 (-0.007085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312089 / 1.841788 (-0.529699) | 14.477510 / 8.074308 (6.403202) | 14.231432 / 10.191392 (4.040040) | 0.132015 / 0.680424 (-0.548409) | 0.016908 / 0.534201 (-0.517293) | 0.368315 / 0.579283 (-0.210968) | 0.397964 / 0.434364 (-0.036400) | 0.432446 / 0.540337 (-0.107891) | 0.526349 / 1.386936 (-0.860587) |\n\n</details>\n</details>\n\n\n"
] | 2023-06-09T08:18:36Z
| 2023-06-14T12:30:59Z
| 2023-06-14T12:23:57Z
|
MEMBER
| null | null | null |
Avoid parallel redownload in cache by retrying inside the lock if path exists.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5937/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5937/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5937.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5937",
"merged_at": "2023-06-14T12:23:57Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5937.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5937"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4965
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4965/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4965/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4965/events
|
https://github.com/huggingface/datasets/issues/4965
| 1,368,661,002
|
I_kwDODunzps5RlBwK
| 4,965
|
[Apple M1] MemoryError: Cannot allocate write+execute memory for ffi.callback()
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/35718590?v=4",
"events_url": "https://api.github.com/users/hoangtnm/events{/privacy}",
"followers_url": "https://api.github.com/users/hoangtnm/followers",
"following_url": "https://api.github.com/users/hoangtnm/following{/other_user}",
"gists_url": "https://api.github.com/users/hoangtnm/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hoangtnm",
"id": 35718590,
"login": "hoangtnm",
"node_id": "MDQ6VXNlcjM1NzE4NTkw",
"organizations_url": "https://api.github.com/users/hoangtnm/orgs",
"received_events_url": "https://api.github.com/users/hoangtnm/received_events",
"repos_url": "https://api.github.com/users/hoangtnm/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hoangtnm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hoangtnm/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hoangtnm",
"user_view_type": "public"
}
|
[
{
"color": "d73a4a",
"default": true,
"description": "Something isn't working",
"id": 1935892857,
"name": "bug",
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug"
}
] |
closed
| false
| null |
[] | null |
[
"Hi! This seems like a bug in `soundfile`. Could you please open an issue in their repo? `soundfile` works without any issues on my M1, so I'm not sure we can help.",
"Hi @mariosasko, can you share how you installed `soundfile` on your mac M1?",
"Hi @hoangtnm - I upgraded to python 3.10 and it fixed the problem for me. I was also running 3.8 on an M1 mac.",
"Same here, upgrade python didn't work for me \r\n\r\nMemoryError: Cannot allocate write+execute memory for ffi.callback()\r\n\r\nany idea?",
"This is a `soundfile` issue, so there isn't much we can do about it. Hopefully, it gets fixed soon.",
"> Hi @hoangtnm - I upgraded to python 3.10 and it fixed the problem for me. I was also running 3.8 on an M1 mac.\r\n\r\nit work for me too \r\n"
] | 2022-09-10T15:55:49Z
| 2024-03-21T17:25:53Z
| 2023-07-21T14:45:50Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
## Describe the bug
I'm trying to run `cast_column("audio", Audio())` on Apple M1 Pro, but it seems that it doesn't work.
## Steps to reproduce the bug
```python
import datasets
dataset = load_dataset("csv", data_files="./train.csv")["train"]
dataset = dataset.map(lambda x: {"audio": str(DATA_DIR / "audio" / x["audio"])})
dataset = dataset.cast_column("audio", Audio())
dataset[0]
```
## Expected results
```
{'audio': {'bytes': None,
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav'},
'english_transcription': 'I would like to set up a joint account with my partner',
'intent_class': 11,
'lang_id': 4,
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'transcription': 'I would like to set up a joint account with my partner'}
```
## Actual results
````---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 dataset[0]
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/arrow_dataset.py:2165, in Dataset.__getitem__(self, key)
2163 def __getitem__(self, key): # noqa: F811
2164 """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 2165 return self._getitem(
2166 key,
2167 )
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/arrow_dataset.py:2150, in Dataset._getitem(self, key, decoded, **kwargs)
2148 formatter = get_formatter(format_type, features=self.features, decoded=decoded, **format_kwargs)
2149 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
-> 2150 formatted_output = format_table(
2151 pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
2152 )
2153 return formatted_output
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/formatting/formatting.py:532, in format_table(table, key, formatter, format_columns, output_all_columns)
530 python_formatter = PythonFormatter(features=None)
531 if format_columns is None:
--> 532 return formatter(pa_table, query_type=query_type)
533 elif query_type == "column":
534 if key in format_columns:
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/formatting/formatting.py:281, in Formatter.__call__(self, pa_table, query_type)
279 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
280 if query_type == "row":
--> 281 return self.format_row(pa_table)
282 elif query_type == "column":
283 return self.format_column(pa_table)
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/formatting/formatting.py:312, in PythonFormatter.format_row(self, pa_table)
310 row = self.python_arrow_extractor().extract_row(pa_table)
311 if self.decoded:
--> 312 row = self.python_features_decoder.decode_row(row)
313 return row
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/formatting/formatting.py:221, in PythonFeaturesDecoder.decode_row(self, row)
220 def decode_row(self, row: dict) -> dict:
--> 221 return self.features.decode_example(row) if self.features else row
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/features/features.py:1647, in Features.decode_example(self, example, token_per_repo_id)
1634 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1635 """Decode example with custom feature decoding.
1636
1637 Args:
(...)
1644 :obj:`dict[str, Any]`
1645 """
-> 1647 return {
1648 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1649 if self._column_requires_decoding[column_name]
1650 else value
1651 for column_name, (feature, value) in zip_dict(
1652 {key: value for key, value in self.items() if key in example}, example
1653 )
1654 }
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/features/features.py:1648, in <dictcomp>(.0)
1634 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1635 """Decode example with custom feature decoding.
1636
1637 Args:
(...)
1644 :obj:`dict[str, Any]`
1645 """
1647 return {
-> 1648 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1649 if self._column_requires_decoding[column_name]
1650 else value
1651 for column_name, (feature, value) in zip_dict(
1652 {key: value for key, value in self.items() if key in example}, example
1653 )
1654 }
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/features/features.py:1260, in decode_nested_example(schema, obj, token_per_repo_id)
1257 # Object with special decoding:
1258 elif isinstance(schema, (Audio, Image)):
1259 # we pass the token to read and decode files from private repositories in streaming mode
-> 1260 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) if obj is not None else None
1261 return obj
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/features/audio.py:156, in Audio.decode_example(self, value, token_per_repo_id)
154 array, sampling_rate = self._decode_non_mp3_file_like(file)
155 else:
--> 156 array, sampling_rate = self._decode_non_mp3_path_like(path, token_per_repo_id=token_per_repo_id)
157 return {"path": path, "array": array, "sampling_rate": sampling_rate}
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/datasets/features/audio.py:257, in Audio._decode_non_mp3_path_like(self, path, format, token_per_repo_id)
254 use_auth_token = None
256 with xopen(path, "rb", use_auth_token=use_auth_token) as f:
--> 257 array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono)
258 return array, sampling_rate
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/librosa/util/decorators.py:88, in deprecate_positional_args.<locals>._inner_deprecate_positional_args.<locals>.inner_f(*args, **kwargs)
86 extra_args = len(args) - len(all_args)
87 if extra_args <= 0:
---> 88 return f(*args, **kwargs)
90 # extra_args > 0
91 args_msg = [
92 "{}={}".format(name, arg)
93 for name, arg in zip(kwonly_args[:extra_args], args[-extra_args:])
94 ]
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/librosa/core/audio.py:164, in load(path, sr, mono, offset, duration, dtype, res_type)
161 else:
162 # Otherwise try soundfile first, and then fall back if necessary
163 try:
--> 164 y, sr_native = __soundfile_load(path, offset, duration, dtype)
166 except RuntimeError as exc:
167 # If soundfile failed, try audioread instead
168 if isinstance(path, (str, pathlib.PurePath)):
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/librosa/core/audio.py:195, in __soundfile_load(path, offset, duration, dtype)
192 context = path
193 else:
194 # Otherwise, create the soundfile object
--> 195 context = sf.SoundFile(path)
197 with context as sf_desc:
198 sr_native = sf_desc.samplerate
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/soundfile.py:629, in SoundFile.__init__(self, file, mode, samplerate, channels, subtype, endian, format, closefd)
626 self._mode = mode
627 self._info = _create_info_struct(file, mode, samplerate, channels,
628 format, subtype, endian)
--> 629 self._file = self._open(file, mode_int, closefd)
630 if set(mode).issuperset('r+') and self.seekable():
631 # Move write position to 0 (like in Python file objects)
632 self.seek(0)
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/soundfile.py:1179, in SoundFile._open(self, file, mode_int, closefd)
1177 file_ptr = _snd.sf_open_fd(file, mode_int, self._info, closefd)
1178 elif _has_virtual_io_attrs(file, mode_int):
-> 1179 file_ptr = _snd.sf_open_virtual(self._init_virtual_io(file),
1180 mode_int, self._info, _ffi.NULL)
1181 else:
1182 raise TypeError("Invalid file: {0!r}".format(self.name))
File ~/miniconda3/envs/rodan/lib/python3.8/site-packages/soundfile.py:1197, in SoundFile._init_virtual_io(self, file)
1194 def _init_virtual_io(self, file):
1195 """Initialize callback functions for sf_open_virtual()."""
1196 @_ffi.callback("sf_vio_get_filelen")
-> 1197 def vio_get_filelen(user_data):
1198 curr = file.tell()
1199 file.seek(0, SEEK_END)
MemoryError: Cannot allocate write+execute memory for ffi.callback(). You might be running on a system that prevents this. For more information, see https://cffi.readthedocs.io/en/latest/using.html#callbacks
```
## Environment info
- `datasets` version: 2.4.0
- Platform: macOS-12.5.1-arm64-arm-64bit
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.4
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4965/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4965/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6115
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6115/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6115/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6115/events
|
https://github.com/huggingface/datasets/pull/6115
| 1,834,765,485
|
PR_kwDODunzps5XGChP
| 6,115
|
Release: 2.14.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007578 / 0.011353 (-0.003775) | 0.004271 / 0.011008 (-0.006738) | 0.086607 / 0.038508 (0.048098) | 0.063209 / 0.023109 (0.040099) | 0.351724 / 0.275898 (0.075826) | 0.399261 / 0.323480 (0.075781) | 0.004767 / 0.007986 (-0.003219) | 0.003487 / 0.004328 (-0.000842) | 0.071483 / 0.004250 (0.067233) | 0.051281 / 0.037052 (0.014229) | 0.387726 / 0.258489 (0.129237) | 0.408446 / 0.293841 (0.114605) | 0.041189 / 0.128546 (-0.087357) | 0.012446 / 0.075646 (-0.063200) | 0.331147 / 0.419271 (-0.088124) | 0.056721 / 0.043533 (0.013188) | 0.361306 / 0.255139 (0.106167) | 0.409651 / 0.283200 (0.126451) | 0.035485 / 0.141683 (-0.106198) | 1.461391 / 1.452155 (0.009236) | 1.554820 / 1.492716 (0.062104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237119 / 0.018006 (0.219113) | 0.518731 / 0.000490 (0.518241) | 0.004192 / 0.000200 (0.003992) | 0.000114 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024912 / 0.037411 (-0.012499) | 0.089420 / 0.014526 (0.074894) | 0.091209 / 0.176557 (-0.085347) | 0.152580 / 0.737135 (-0.584555) | 0.089660 / 0.296338 (-0.206678) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515223 / 0.215209 (0.300014) | 5.328359 / 2.077655 (3.250705) | 1.974326 / 1.504120 (0.470206) | 1.665216 / 1.541195 (0.124021) | 1.736040 / 1.468490 (0.267550) | 0.734746 / 4.584777 (-3.850031) | 4.186613 / 3.745712 (0.440901) | 3.535760 / 5.269862 (-1.734102) | 2.333247 / 4.565676 (-2.232429) | 0.071845 / 0.424275 (-0.352430) | 0.006147 / 0.007607 (-0.001460) | 0.546649 / 0.226044 (0.320605) | 5.452281 / 2.268929 (3.183353) | 2.512984 / 55.444624 (-52.931640) | 2.104210 / 6.876477 (-4.772267) | 2.409251 / 2.142072 (0.267178) | 0.822797 / 4.805227 (-3.982430) | 0.166648 / 6.500664 (-6.334016) | 0.056350 / 0.075469 (-0.019119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397798 / 1.841788 (-0.443989) | 20.549399 / 8.074308 (12.475091) | 19.118168 / 10.191392 (8.926776) | 0.216361 / 0.680424 (-0.464063) | 0.027064 / 0.534201 (-0.507136) | 0.410762 / 0.579283 (-0.168521) | 0.559225 / 0.434364 (0.124861) | 0.468028 / 0.540337 (-0.072309) | 0.691520 / 1.386936 (-0.695416) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006463 / 0.011353 (-0.004890) | 0.003879 / 0.011008 (-0.007130) | 0.058723 / 0.038508 (0.020215) | 0.057202 / 0.023109 (0.034092) | 0.344397 / 0.275898 (0.068499) | 0.360388 / 0.323480 (0.036908) | 0.005502 / 0.007986 (-0.002483) | 0.004101 / 0.004328 (-0.000227) | 0.058168 / 0.004250 (0.053917) | 0.059112 / 0.037052 (0.022060) | 0.362206 / 0.258489 (0.103717) | 0.386444 / 0.293841 (0.092603) | 0.036613 / 0.128546 (-0.091934) | 0.010482 / 0.075646 (-0.065165) | 0.065850 / 0.419271 (-0.353421) | 0.046528 / 0.043533 (0.002995) | 0.349568 / 0.255139 (0.094429) | 0.360181 / 0.283200 (0.076981) | 0.029030 / 0.141683 (-0.112653) | 1.314569 / 1.452155 (-0.137586) | 1.422393 / 1.492716 (-0.070324) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281554 / 0.018006 (0.263548) | 0.608018 / 0.000490 (0.607528) | 0.004568 / 0.000200 (0.004368) | 0.000182 / 0.000054 (0.000127) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023515 / 0.037411 (-0.013896) | 0.072994 / 0.014526 (0.058468) | 0.080688 / 0.176557 (-0.095868) | 0.125904 / 0.737135 (-0.611232) | 0.085457 / 0.296338 (-0.210882) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471530 / 0.215209 (0.256321) | 4.796197 / 2.077655 (2.718542) | 2.189181 / 1.504120 (0.685061) | 1.886649 / 1.541195 (0.345454) | 1.871067 / 1.468490 (0.402577) | 0.661043 / 4.584777 (-3.923734) | 4.344027 / 3.745712 (0.598315) | 3.656967 / 5.269862 (-1.612895) | 2.286033 / 4.565676 (-2.279644) | 0.079146 / 0.424275 (-0.345129) | 0.006840 / 0.007607 (-0.000767) | 0.588750 / 0.226044 (0.362706) | 6.301286 / 2.268929 (4.032357) | 3.074702 / 55.444624 (-52.369923) | 2.398739 / 6.876477 (-4.477738) | 2.555057 / 2.142072 (0.412985) | 0.874189 / 4.805227 (-3.931038) | 0.191423 / 6.500664 (-6.309241) | 0.061227 / 0.075469 (-0.014242) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.472763 / 1.841788 (-0.369024) | 19.441304 / 8.074308 (11.366996) | 15.974276 / 10.191392 (5.782884) | 0.172503 / 0.680424 (-0.507921) | 0.027016 / 0.534201 (-0.507185) | 0.356085 / 0.579283 (-0.223198) | 0.473251 / 0.434364 (0.038887) | 0.427949 / 0.540337 (-0.112388) | 0.588924 / 1.386936 (-0.798013) |\n\n</details>\n</details>\n\n\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006166 / 0.011353 (-0.005187) | 0.003558 / 0.011008 (-0.007450) | 0.080576 / 0.038508 (0.042068) | 0.066542 / 0.023109 (0.043432) | 0.323997 / 0.275898 (0.048099) | 0.369828 / 0.323480 (0.046348) | 0.004896 / 0.007986 (-0.003090) | 0.002909 / 0.004328 (-0.001419) | 0.062553 / 0.004250 (0.058302) | 0.049795 / 0.037052 (0.012742) | 0.321369 / 0.258489 (0.062880) | 0.422860 / 0.293841 (0.129019) | 0.027394 / 0.128546 (-0.101152) | 0.007954 / 0.075646 (-0.067693) | 0.264122 / 0.419271 (-0.155149) | 0.044881 / 0.043533 (0.001349) | 0.316702 / 0.255139 (0.061563) | 0.374718 / 0.283200 (0.091518) | 0.021728 / 0.141683 (-0.119955) | 1.394456 / 1.452155 (-0.057699) | 1.474936 / 1.492716 (-0.017780) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191902 / 0.018006 (0.173896) | 0.430468 / 0.000490 (0.429979) | 0.003790 / 0.000200 (0.003590) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024974 / 0.037411 (-0.012438) | 0.073053 / 0.014526 (0.058527) | 0.083801 / 0.176557 (-0.092756) | 0.143457 / 0.737135 (-0.593678) | 0.085099 / 0.296338 (-0.211240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428411 / 0.215209 (0.213202) | 4.278077 / 2.077655 (2.200422) | 2.230039 / 1.504120 (0.725919) | 2.057191 / 1.541195 (0.515996) | 2.120109 / 1.468490 (0.651619) | 0.495242 / 4.584777 (-4.089535) | 3.031299 / 3.745712 (-0.714413) | 2.802685 / 5.269862 (-2.467176) | 1.839828 / 4.565676 (-2.725849) | 0.056875 / 0.424275 (-0.367401) | 0.006446 / 0.007607 (-0.001161) | 0.498958 / 0.226044 (0.272913) | 4.980440 / 2.268929 (2.711511) | 2.659659 / 55.444624 (-52.784965) | 2.315174 / 6.876477 (-4.561303) | 2.475920 / 2.142072 (0.333848) | 0.586946 / 4.805227 (-4.218282) | 0.124291 / 6.500664 (-6.376373) | 0.060701 / 0.075469 (-0.014768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.245062 / 1.841788 (-0.596725) | 18.201444 / 8.074308 (10.127136) | 13.723271 / 10.191392 (3.531879) | 0.130203 / 0.680424 (-0.550221) | 0.016773 / 0.534201 (-0.517428) | 0.332909 / 0.579283 (-0.246374) | 0.347469 / 0.434364 (-0.086895) | 0.381364 / 0.540337 (-0.158973) | 0.541723 / 1.386936 (-0.845213) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005934 / 0.011353 (-0.005419) | 0.003573 / 0.011008 (-0.007435) | 0.062195 / 0.038508 (0.023687) | 0.059026 / 0.023109 (0.035917) | 0.413993 / 0.275898 (0.138095) | 0.459552 / 0.323480 (0.136072) | 0.004610 / 0.007986 (-0.003376) | 0.002907 / 0.004328 (-0.001421) | 0.062983 / 0.004250 (0.058733) | 0.047797 / 0.037052 (0.010745) | 0.415461 / 0.258489 (0.156972) | 0.417424 / 0.293841 (0.123583) | 0.027098 / 0.128546 (-0.101449) | 0.008106 / 0.075646 (-0.067540) | 0.067600 / 0.419271 (-0.351672) | 0.041432 / 0.043533 (-0.002101) | 0.407861 / 0.255139 (0.152722) | 0.430774 / 0.283200 (0.147575) | 0.020738 / 0.141683 (-0.120945) | 1.435127 / 1.452155 (-0.017028) | 1.486961 / 1.492716 (-0.005755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231174 / 0.018006 (0.213168) | 0.421208 / 0.000490 (0.420718) | 0.005411 / 0.000200 (0.005211) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025362 / 0.037411 (-0.012049) | 0.078534 / 0.014526 (0.064008) | 0.085304 / 0.176557 (-0.091252) | 0.139048 / 0.737135 (-0.598087) | 0.087015 / 0.296338 (-0.209323) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448506 / 0.215209 (0.233297) | 4.486694 / 2.077655 (2.409039) | 2.488022 / 1.504120 (0.983902) | 2.325321 / 1.541195 (0.784126) | 2.381311 / 1.468490 (0.912821) | 0.502102 / 4.584777 (-4.082675) | 3.018326 / 3.745712 (-0.727386) | 2.824922 / 5.269862 (-2.444940) | 1.857414 / 4.565676 (-2.708263) | 0.057514 / 0.424275 (-0.366761) | 0.006829 / 0.007607 (-0.000779) | 0.521939 / 0.226044 (0.295895) | 5.224393 / 2.268929 (2.955465) | 2.933132 / 55.444624 (-52.511492) | 2.661187 / 6.876477 (-4.215290) | 2.781950 / 2.142072 (0.639878) | 0.592927 / 4.805227 (-4.212300) | 0.126685 / 6.500664 (-6.373979) | 0.064188 / 0.075469 (-0.011281) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351107 / 1.841788 (-0.490681) | 18.344453 / 8.074308 (10.270145) | 13.838788 / 10.191392 (3.647396) | 0.157881 / 0.680424 (-0.522543) | 0.016636 / 0.534201 (-0.517565) | 0.331597 / 0.579283 (-0.247686) | 0.345573 / 0.434364 (-0.088791) | 0.397361 / 0.540337 (-0.142976) | 0.534289 / 1.386936 (-0.852647) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006399 / 0.011353 (-0.004954) | 0.003872 / 0.011008 (-0.007136) | 0.083722 / 0.038508 (0.045214) | 0.068845 / 0.023109 (0.045736) | 0.329112 / 0.275898 (0.053214) | 0.343295 / 0.323480 (0.019815) | 0.005137 / 0.007986 (-0.002849) | 0.003303 / 0.004328 (-0.001026) | 0.064495 / 0.004250 (0.060245) | 0.051448 / 0.037052 (0.014395) | 0.322554 / 0.258489 (0.064065) | 0.361934 / 0.293841 (0.068093) | 0.030821 / 0.128546 (-0.097726) | 0.008482 / 0.075646 (-0.067164) | 0.288136 / 0.419271 (-0.131135) | 0.051935 / 0.043533 (0.008402) | 0.308283 / 0.255139 (0.053144) | 0.343421 / 0.283200 (0.060221) | 0.023639 / 0.141683 (-0.118044) | 1.485442 / 1.452155 (0.033288) | 1.533282 / 1.492716 (0.040565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218163 / 0.018006 (0.200157) | 0.464473 / 0.000490 (0.463983) | 0.003097 / 0.000200 (0.002897) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028650 / 0.037411 (-0.008761) | 0.083295 / 0.014526 (0.068769) | 0.096468 / 0.176557 (-0.080088) | 0.152086 / 0.737135 (-0.585050) | 0.102586 / 0.296338 (-0.193752) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393038 / 0.215209 (0.177829) | 3.925514 / 2.077655 (1.847859) | 1.938419 / 1.504120 (0.434300) | 1.760265 / 1.541195 (0.219071) | 1.810024 / 1.468490 (0.341534) | 0.486232 / 4.584777 (-4.098545) | 3.618747 / 3.745712 (-0.126965) | 3.206950 / 5.269862 (-2.062912) | 1.999240 / 4.565676 (-2.566436) | 0.056986 / 0.424275 (-0.367289) | 0.007193 / 0.007607 (-0.000415) | 0.469313 / 0.226044 (0.243269) | 4.688670 / 2.268929 (2.419741) | 2.400332 / 55.444624 (-53.044292) | 2.074197 / 6.876477 (-4.802279) | 2.290823 / 2.142072 (0.148751) | 0.582339 / 4.805227 (-4.222888) | 0.134127 / 6.500664 (-6.366537) | 0.061061 / 0.075469 (-0.014408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272782 / 1.841788 (-0.569006) | 19.463375 / 8.074308 (11.389067) | 14.306819 / 10.191392 (4.115427) | 0.164608 / 0.680424 (-0.515816) | 0.018626 / 0.534201 (-0.515575) | 0.395225 / 0.579283 (-0.184058) | 0.408984 / 0.434364 (-0.025380) | 0.463364 / 0.540337 (-0.076974) | 0.630425 / 1.386936 (-0.756511) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006465 / 0.011353 (-0.004888) | 0.003975 / 0.011008 (-0.007033) | 0.063643 / 0.038508 (0.025134) | 0.075214 / 0.023109 (0.052105) | 0.361734 / 0.275898 (0.085836) | 0.396664 / 0.323480 (0.073184) | 0.005251 / 0.007986 (-0.002735) | 0.003249 / 0.004328 (-0.001080) | 0.063841 / 0.004250 (0.059591) | 0.054504 / 0.037052 (0.017451) | 0.374791 / 0.258489 (0.116302) | 0.399205 / 0.293841 (0.105364) | 0.031355 / 0.128546 (-0.097192) | 0.008483 / 0.075646 (-0.067163) | 0.070234 / 0.419271 (-0.349037) | 0.048336 / 0.043533 (0.004803) | 0.373484 / 0.255139 (0.118345) | 0.382174 / 0.283200 (0.098974) | 0.022560 / 0.141683 (-0.119123) | 1.449799 / 1.452155 (-0.002355) | 1.525255 / 1.492716 (0.032539) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228350 / 0.018006 (0.210343) | 0.444344 / 0.000490 (0.443855) | 0.003699 / 0.000200 (0.003499) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030681 / 0.037411 (-0.006731) | 0.087340 / 0.014526 (0.072814) | 0.098636 / 0.176557 (-0.077920) | 0.151665 / 0.737135 (-0.585471) | 0.100840 / 0.296338 (-0.195498) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417857 / 0.215209 (0.202648) | 4.168407 / 2.077655 (2.090752) | 2.201758 / 1.504120 (0.697638) | 1.997834 / 1.541195 (0.456639) | 2.127693 / 1.468490 (0.659202) | 0.486429 / 4.584777 (-4.098348) | 3.676335 / 3.745712 (-0.069378) | 3.226268 / 5.269862 (-2.043594) | 2.027255 / 4.565676 (-2.538422) | 0.056759 / 0.424275 (-0.367516) | 0.007628 / 0.007607 (0.000021) | 0.500482 / 0.226044 (0.274438) | 4.996236 / 2.268929 (2.727307) | 2.628884 / 55.444624 (-52.815740) | 2.347611 / 6.876477 (-4.528866) | 2.551328 / 2.142072 (0.409255) | 0.582449 / 4.805227 (-4.222778) | 0.132844 / 6.500664 (-6.367821) | 0.061791 / 0.075469 (-0.013678) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.373718 / 1.841788 (-0.468070) | 19.921217 / 8.074308 (11.846909) | 14.209642 / 10.191392 (4.018250) | 0.185334 / 0.680424 (-0.495090) | 0.018228 / 0.534201 (-0.515973) | 0.395549 / 0.579283 (-0.183734) | 0.404446 / 0.434364 (-0.029918) | 0.472456 / 0.540337 (-0.067882) | 0.622739 / 1.386936 (-0.764197) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006007 / 0.011353 (-0.005346) | 0.003588 / 0.011008 (-0.007420) | 0.080334 / 0.038508 (0.041826) | 0.058932 / 0.023109 (0.035823) | 0.404613 / 0.275898 (0.128715) | 0.438377 / 0.323480 (0.114897) | 0.003468 / 0.007986 (-0.004518) | 0.003702 / 0.004328 (-0.000627) | 0.062936 / 0.004250 (0.058686) | 0.047987 / 0.037052 (0.010934) | 0.411409 / 0.258489 (0.152920) | 0.450244 / 0.293841 (0.156403) | 0.027007 / 0.128546 (-0.101539) | 0.007932 / 0.075646 (-0.067714) | 0.261390 / 0.419271 (-0.157882) | 0.044992 / 0.043533 (0.001459) | 0.409730 / 0.255139 (0.154591) | 0.433331 / 0.283200 (0.150131) | 0.020446 / 0.141683 (-0.121237) | 1.425418 / 1.452155 (-0.026736) | 1.479242 / 1.492716 (-0.013475) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187375 / 0.018006 (0.169368) | 0.428532 / 0.000490 (0.428043) | 0.003406 / 0.000200 (0.003206) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024390 / 0.037411 (-0.013022) | 0.072571 / 0.014526 (0.058045) | 0.083513 / 0.176557 (-0.093044) | 0.144395 / 0.737135 (-0.592741) | 0.084813 / 0.296338 (-0.211526) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409176 / 0.215209 (0.193967) | 4.078082 / 2.077655 (2.000428) | 1.913596 / 1.504120 (0.409476) | 1.718470 / 1.541195 (0.177275) | 1.753106 / 1.468490 (0.284616) | 0.494167 / 4.584777 (-4.090610) | 3.029531 / 3.745712 (-0.716181) | 2.807331 / 5.269862 (-2.462531) | 1.839471 / 4.565676 (-2.726206) | 0.057169 / 0.424275 (-0.367106) | 0.006433 / 0.007607 (-0.001175) | 0.482666 / 0.226044 (0.256621) | 4.817601 / 2.268929 (2.548673) | 2.449967 / 55.444624 (-52.994658) | 2.113891 / 6.876477 (-4.762586) | 2.399293 / 2.142072 (0.257221) | 0.578903 / 4.805227 (-4.226324) | 0.124306 / 6.500664 (-6.376358) | 0.061572 / 0.075469 (-0.013897) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254692 / 1.841788 (-0.587096) | 18.414049 / 8.074308 (10.339741) | 13.992059 / 10.191392 (3.800667) | 0.146671 / 0.680424 (-0.533753) | 0.016925 / 0.534201 (-0.517275) | 0.333124 / 0.579283 (-0.246159) | 0.348007 / 0.434364 (-0.086357) | 0.378519 / 0.540337 (-0.161819) | 0.532540 / 1.386936 (-0.854396) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006050 / 0.011353 (-0.005303) | 0.003614 / 0.011008 (-0.007394) | 0.061707 / 0.038508 (0.023199) | 0.062874 / 0.023109 (0.039765) | 0.364760 / 0.275898 (0.088862) | 0.398136 / 0.323480 (0.074656) | 0.005598 / 0.007986 (-0.002388) | 0.002836 / 0.004328 (-0.001493) | 0.061880 / 0.004250 (0.057630) | 0.048165 / 0.037052 (0.011113) | 0.372656 / 0.258489 (0.114167) | 0.403967 / 0.293841 (0.110126) | 0.027046 / 0.128546 (-0.101501) | 0.008091 / 0.075646 (-0.067555) | 0.066783 / 0.419271 (-0.352489) | 0.041186 / 0.043533 (-0.002347) | 0.376009 / 0.255139 (0.120870) | 0.391769 / 0.283200 (0.108569) | 0.021020 / 0.141683 (-0.120663) | 1.514593 / 1.452155 (0.062438) | 1.548506 / 1.492716 (0.055790) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237610 / 0.018006 (0.219604) | 0.434274 / 0.000490 (0.433784) | 0.009720 / 0.000200 (0.009520) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025605 / 0.037411 (-0.011807) | 0.078971 / 0.014526 (0.064445) | 0.088154 / 0.176557 (-0.088403) | 0.139112 / 0.737135 (-0.598023) | 0.088890 / 0.296338 (-0.207449) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420027 / 0.215209 (0.204818) | 4.189493 / 2.077655 (2.111838) | 2.143907 / 1.504120 (0.639787) | 1.967032 / 1.541195 (0.425837) | 2.011845 / 1.468490 (0.543355) | 0.496692 / 4.584777 (-4.088085) | 3.025456 / 3.745712 (-0.720256) | 2.828436 / 5.269862 (-2.441426) | 1.860673 / 4.565676 (-2.705003) | 0.057199 / 0.424275 (-0.367076) | 0.006770 / 0.007607 (-0.000838) | 0.491281 / 0.226044 (0.265236) | 4.918065 / 2.268929 (2.649136) | 2.593172 / 55.444624 (-52.851452) | 2.250750 / 6.876477 (-4.625727) | 2.406235 / 2.142072 (0.264162) | 0.588648 / 4.805227 (-4.216579) | 0.125635 / 6.500664 (-6.375029) | 0.061697 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374065 / 1.841788 (-0.467722) | 18.439315 / 8.074308 (10.365007) | 14.031660 / 10.191392 (3.840268) | 0.153665 / 0.680424 (-0.526759) | 0.016980 / 0.534201 (-0.517221) | 0.331799 / 0.579283 (-0.247484) | 0.343201 / 0.434364 (-0.091163) | 0.392445 / 0.540337 (-0.147892) | 0.530387 / 1.386936 (-0.856549) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008189 / 0.011353 (-0.003164) | 0.004598 / 0.011008 (-0.006410) | 0.102199 / 0.038508 (0.063691) | 0.077961 / 0.023109 (0.054852) | 0.364936 / 0.275898 (0.089038) | 0.402606 / 0.323480 (0.079126) | 0.005522 / 0.007986 (-0.002464) | 0.004007 / 0.004328 (-0.000322) | 0.071560 / 0.004250 (0.067310) | 0.055818 / 0.037052 (0.018765) | 0.378394 / 0.258489 (0.119905) | 0.428990 / 0.293841 (0.135149) | 0.043142 / 0.128546 (-0.085404) | 0.013254 / 0.075646 (-0.062392) | 0.331102 / 0.419271 (-0.088170) | 0.061407 / 0.043533 (0.017875) | 0.387397 / 0.255139 (0.132258) | 0.416062 / 0.283200 (0.132862) | 0.036330 / 0.141683 (-0.105353) | 1.735352 / 1.452155 (0.283198) | 1.773329 / 1.492716 (0.280613) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188587 / 0.018006 (0.170581) | 0.519506 / 0.000490 (0.519016) | 0.004702 / 0.000200 (0.004502) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027152 / 0.037411 (-0.010260) | 0.094296 / 0.014526 (0.079770) | 0.098155 / 0.176557 (-0.078402) | 0.162541 / 0.737135 (-0.574595) | 0.112092 / 0.296338 (-0.184246) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.537555 / 0.215209 (0.322346) | 5.486821 / 2.077655 (3.409166) | 2.377127 / 1.504120 (0.873008) | 2.073205 / 1.541195 (0.532011) | 2.075130 / 1.468490 (0.606640) | 0.783779 / 4.584777 (-3.800998) | 5.029524 / 3.745712 (1.283812) | 4.382724 / 5.269862 (-0.887138) | 2.836180 / 4.565676 (-1.729496) | 0.108840 / 0.424275 (-0.315435) | 0.008123 / 0.007607 (0.000516) | 0.673460 / 0.226044 (0.447416) | 6.674030 / 2.268929 (4.405102) | 3.208922 / 55.444624 (-52.235702) | 2.464908 / 6.876477 (-4.411568) | 2.661929 / 2.142072 (0.519856) | 0.962529 / 4.805227 (-3.842698) | 0.197974 / 6.500664 (-6.302690) | 0.066656 / 0.075469 (-0.008813) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430373 / 1.841788 (-0.411415) | 21.180540 / 8.074308 (13.106232) | 19.027491 / 10.191392 (8.836099) | 0.217520 / 0.680424 (-0.462904) | 0.028038 / 0.534201 (-0.506163) | 0.435266 / 0.579283 (-0.144017) | 0.529510 / 0.434364 (0.095147) | 0.511011 / 0.540337 (-0.029327) | 0.728940 / 1.386936 (-0.657996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007883 / 0.011353 (-0.003470) | 0.004448 / 0.011008 (-0.006560) | 0.071350 / 0.038508 (0.032842) | 0.075269 / 0.023109 (0.052160) | 0.396705 / 0.275898 (0.120807) | 0.457809 / 0.323480 (0.134329) | 0.005193 / 0.007986 (-0.002792) | 0.003695 / 0.004328 (-0.000633) | 0.078087 / 0.004250 (0.073836) | 0.054276 / 0.037052 (0.017224) | 0.412184 / 0.258489 (0.153695) | 0.452400 / 0.293841 (0.158559) | 0.049762 / 0.128546 (-0.078784) | 0.013206 / 0.075646 (-0.062440) | 0.085985 / 0.419271 (-0.333287) | 0.058837 / 0.043533 (0.015304) | 0.432481 / 0.255139 (0.177342) | 0.433260 / 0.283200 (0.150060) | 0.031190 / 0.141683 (-0.110493) | 1.582707 / 1.452155 (0.130552) | 1.664457 / 1.492716 (0.171741) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223639 / 0.018006 (0.205633) | 0.524388 / 0.000490 (0.523899) | 0.005489 / 0.000200 (0.005289) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030182 / 0.037411 (-0.007230) | 0.089309 / 0.014526 (0.074783) | 0.103306 / 0.176557 (-0.073250) | 0.162624 / 0.737135 (-0.574511) | 0.108957 / 0.296338 (-0.187381) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.577423 / 0.215209 (0.362214) | 5.900154 / 2.077655 (3.822500) | 2.687369 / 1.504120 (1.183249) | 2.513061 / 1.541195 (0.971866) | 2.506453 / 1.468490 (1.037963) | 0.830838 / 4.584777 (-3.753939) | 5.032195 / 3.745712 (1.286483) | 4.396827 / 5.269862 (-0.873035) | 2.884230 / 4.565676 (-1.681447) | 0.102239 / 0.424275 (-0.322036) | 0.008178 / 0.007607 (0.000571) | 0.710027 / 0.226044 (0.483983) | 7.149626 / 2.268929 (4.880698) | 3.403605 / 55.444624 (-52.041019) | 2.661970 / 6.876477 (-4.214506) | 2.760227 / 2.142072 (0.618154) | 1.043981 / 4.805227 (-3.761246) | 0.195028 / 6.500664 (-6.305636) | 0.065211 / 0.075469 (-0.010258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.581265 / 1.841788 (-0.260522) | 21.640230 / 8.074308 (13.565922) | 19.031860 / 10.191392 (8.840468) | 0.196903 / 0.680424 (-0.483520) | 0.027061 / 0.534201 (-0.507140) | 0.444995 / 0.579283 (-0.134288) | 0.528195 / 0.434364 (0.093831) | 0.521540 / 0.540337 (-0.018797) | 0.730204 / 1.386936 (-0.656732) |\n\n</details>\n</details>\n\n\n"
] | 2023-08-03T10:18:32Z
| 2023-08-03T15:08:02Z
| 2023-08-03T10:24:57Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6115/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6115/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6115.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6115",
"merged_at": "2023-08-03T10:24:57Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6115.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6115"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7288
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7288/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7288/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7288/events
|
https://github.com/huggingface/datasets/pull/7288
| 2,647,052,280
|
PR_kwDODunzps6BbIpz
| 7,288
|
Release v3.1.1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4",
"events_url": "https://api.github.com/users/alex-hh/events{/privacy}",
"followers_url": "https://api.github.com/users/alex-hh/followers",
"following_url": "https://api.github.com/users/alex-hh/following{/other_user}",
"gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/alex-hh",
"id": 5719745,
"login": "alex-hh",
"node_id": "MDQ6VXNlcjU3MTk3NDU=",
"organizations_url": "https://api.github.com/users/alex-hh/orgs",
"received_events_url": "https://api.github.com/users/alex-hh/received_events",
"repos_url": "https://api.github.com/users/alex-hh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/alex-hh",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[] | 2024-11-10T09:38:15Z
| 2024-11-10T09:38:48Z
| 2024-11-10T09:38:48Z
|
CONTRIBUTOR
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4",
"events_url": "https://api.github.com/users/alex-hh/events{/privacy}",
"followers_url": "https://api.github.com/users/alex-hh/followers",
"following_url": "https://api.github.com/users/alex-hh/following{/other_user}",
"gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/alex-hh",
"id": 5719745,
"login": "alex-hh",
"node_id": "MDQ6VXNlcjU3MTk3NDU=",
"organizations_url": "https://api.github.com/users/alex-hh/orgs",
"received_events_url": "https://api.github.com/users/alex-hh/received_events",
"repos_url": "https://api.github.com/users/alex-hh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/alex-hh",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7288/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7288/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7288.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7288",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7288.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7288"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5002
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5002/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5002/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5002/events
|
https://github.com/huggingface/datasets/issues/5002
| 1,380,589,402
|
I_kwDODunzps5SSh9a
| 5,002
|
Dataset Viewer issue for loubnabnl/humaneval-x
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/44069155?v=4",
"events_url": "https://api.github.com/users/loubnabnl/events{/privacy}",
"followers_url": "https://api.github.com/users/loubnabnl/followers",
"following_url": "https://api.github.com/users/loubnabnl/following{/other_user}",
"gists_url": "https://api.github.com/users/loubnabnl/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/loubnabnl",
"id": 44069155,
"login": "loubnabnl",
"node_id": "MDQ6VXNlcjQ0MDY5MTU1",
"organizations_url": "https://api.github.com/users/loubnabnl/orgs",
"received_events_url": "https://api.github.com/users/loubnabnl/received_events",
"repos_url": "https://api.github.com/users/loubnabnl/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/loubnabnl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/loubnabnl/subscriptions",
"type": "User",
"url": "https://api.github.com/users/loubnabnl",
"user_view_type": "public"
}
|
[
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
] | null |
[
"It's a bug! Thanks for reporting, I'm looking at it",
"Fixed."
] | 2022-09-21T09:06:17Z
| 2022-09-21T11:49:49Z
| 2022-09-21T11:49:49Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Link
https://huggingface.co/datasets/loubnabnl/humaneval-x/viewer/
### Description
The dataset has subsets but the viewer gets stuck in the default subset even when I select another one (the data loading of the subsets works fine)
### Owner
Yes
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5002/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5002/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7312
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7312/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7312/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7312/events
|
https://github.com/huggingface/datasets/pull/7312
| 2,725,103,094
|
PR_kwDODunzps6EbwNN
| 7,312
|
[Audio Features - DO NOT MERGE] PoC for adding an offset+sliced reading to audio file.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/11910731?v=4",
"events_url": "https://api.github.com/users/TParcollet/events{/privacy}",
"followers_url": "https://api.github.com/users/TParcollet/followers",
"following_url": "https://api.github.com/users/TParcollet/following{/other_user}",
"gists_url": "https://api.github.com/users/TParcollet/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/TParcollet",
"id": 11910731,
"login": "TParcollet",
"node_id": "MDQ6VXNlcjExOTEwNzMx",
"organizations_url": "https://api.github.com/users/TParcollet/orgs",
"received_events_url": "https://api.github.com/users/TParcollet/received_events",
"repos_url": "https://api.github.com/users/TParcollet/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/TParcollet/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TParcollet/subscriptions",
"type": "User",
"url": "https://api.github.com/users/TParcollet",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2024-12-08T10:27:31Z
| 2024-12-08T10:27:31Z
| null |
NONE
| null | null | null |
This is a proof of concept for #7310 . The idea is to enable the access to others column of the dataset row when loading an audio file into a table. This is to allow sliced reading. As stated in the issue, many people have very long audio files and use start and stop slicing in this audio file.
Right now, this code work as a PoC on my dataset. However, this is **just to illustrate** the idea. Many things are messed up, the first being that the shards have wildly varying sizes.
Could be of interest to @lhoestq and @sanchit-gandhi ?
Happy to test better ideas locally.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 1,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7312/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7312/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7312.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7312",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7312.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7312"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5982
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5982/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5982/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5982/events
|
https://github.com/huggingface/datasets/issues/5982
| 1,770,333,296
|
I_kwDODunzps5phSRw
| 5,982
|
404 on Datasets Documentation Page
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/118509387?v=4",
"events_url": "https://api.github.com/users/kmulka-bloomberg/events{/privacy}",
"followers_url": "https://api.github.com/users/kmulka-bloomberg/followers",
"following_url": "https://api.github.com/users/kmulka-bloomberg/following{/other_user}",
"gists_url": "https://api.github.com/users/kmulka-bloomberg/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kmulka-bloomberg",
"id": 118509387,
"login": "kmulka-bloomberg",
"node_id": "U_kgDOBxBPSw",
"organizations_url": "https://api.github.com/users/kmulka-bloomberg/orgs",
"received_events_url": "https://api.github.com/users/kmulka-bloomberg/received_events",
"repos_url": "https://api.github.com/users/kmulka-bloomberg/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kmulka-bloomberg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kmulka-bloomberg/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kmulka-bloomberg",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"This wasn’t working for me a bit earlier, but it looks to be back up now",
"We had a minor issue updating the docs after the latest release. It should work now :)."
] | 2023-06-22T20:14:57Z
| 2023-06-26T15:45:03Z
| 2023-06-26T15:45:03Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Getting a 404 from the Hugging Face Datasets docs page:
https://huggingface.co/docs/datasets/index
### Steps to reproduce the bug
1. Go to URL https://huggingface.co/docs/datasets/index
2. Notice 404 not found
### Expected behavior
URL should either show docs or redirect to new location
### Environment info
hugginface.co
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5982/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5982/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7413
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7413/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7413/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7413/events
|
https://github.com/huggingface/datasets/issues/7413
| 2,860,947,582
|
I_kwDODunzps6qhph-
| 7,413
|
Documentation on multiple media files of the same type with WebDataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4",
"events_url": "https://api.github.com/users/DCNemesis/events{/privacy}",
"followers_url": "https://api.github.com/users/DCNemesis/followers",
"following_url": "https://api.github.com/users/DCNemesis/following{/other_user}",
"gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/DCNemesis",
"id": 3616964,
"login": "DCNemesis",
"node_id": "MDQ6VXNlcjM2MTY5NjQ=",
"organizations_url": "https://api.github.com/users/DCNemesis/orgs",
"received_events_url": "https://api.github.com/users/DCNemesis/received_events",
"repos_url": "https://api.github.com/users/DCNemesis/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions",
"type": "User",
"url": "https://api.github.com/users/DCNemesis",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Yes this is correct and it works with huggingface datasets as well ! Feel free to include an example here: https://github.com/huggingface/datasets/blob/main/docs/source/video_dataset.mdx"
] | 2025-02-18T16:13:20Z
| 2025-02-20T14:17:54Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
The [current documentation](https://huggingface.co/docs/datasets/en/video_dataset) on a creating a video dataset includes only examples with one media file and one json. It would be useful to have examples where multiple files of the same type are included. For example, in a sign language dataset, you may have a base video and a video annotation of the extracted pose. According to the WebDataset documentation, this should be able to be done with period separated filenames. For example:
```e39871fd9fd74f55.base.mp4
e39871fd9fd74f55.pose.mp4
e39871fd9fd74f55.json
f18b91585c4d3f3e.base.mp4
f18b91585c4d3f3e.pose.mp4
f18b91585c4d3f3e.json
...
```
If you can confirm that this method of including multiple media files works with huggingface datasets and include an example in the documentation, I'd appreciate it.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7413/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7413/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/5594
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5594/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5594/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5594/events
|
https://github.com/huggingface/datasets/issues/5594
| 1,603,980,995
|
I_kwDODunzps5fms7D
| 5,594
|
Error while downloading the xtreme udpos dataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/24687672?v=4",
"events_url": "https://api.github.com/users/simran-khanuja/events{/privacy}",
"followers_url": "https://api.github.com/users/simran-khanuja/followers",
"following_url": "https://api.github.com/users/simran-khanuja/following{/other_user}",
"gists_url": "https://api.github.com/users/simran-khanuja/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simran-khanuja",
"id": 24687672,
"login": "simran-khanuja",
"node_id": "MDQ6VXNlcjI0Njg3Njcy",
"organizations_url": "https://api.github.com/users/simran-khanuja/orgs",
"received_events_url": "https://api.github.com/users/simran-khanuja/received_events",
"repos_url": "https://api.github.com/users/simran-khanuja/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simran-khanuja/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simran-khanuja/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simran-khanuja",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi! I cannot reproduce this error on my machine.\r\n\r\nThe raised error could mean that one of the downloaded files is corrupted. To verify this is not the case, you can run `load_dataset` as follows:\r\n```python\r\ntrain_dataset = load_dataset('xtreme', 'udpos.English', split=\"train\", cache_dir=args.cache_dir, download_mode=\"force_redownload\", verification_mode=\"all_checks\")\r\n```",
"Hi! Apologies for the delayed response! I tried the above and it doesn't solve the issue. Actually, the dataset gets downloaded most times, but sometimes this error occurs (at random afaik). Is it possible that there is a server issue for this particular dataset? I am able to download other datasets using the same code on the same machine with no issues :( I get this error now : \r\n```\r\nDownloading data: 16%|███████████████▌ | 55.9M/355M [04:45<25:25, 196kB/s]\r\nTraceback (most recent call last):\r\n File \"/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py\", line 1107, in <module>\r\n main()\r\n File \"/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py\", line 439, in main\r\n en_dataset = load_dataset(\"xtreme\", \"udpos.English\", split=\"train\", download_mode=\"force_redownload\", verification_mode=\"all_checks\")\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/load.py\", line 1782, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 872, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 1649, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 949, in _download_and_prepare\r\n verify_checksums(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/utils/info_utils.py\", line 62, in verify_checksums\r\n raise NonMatchingChecksumError(\r\ndatasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3105/ud-treebanks-v2.5.tgz']\r\nSet `verification_mode='no_checks'` to skip checksums verification and ignore this error\r\n```",
"If this happens randomly, then this means the data file from the error message is not always downloaded correctly. \r\n\r\nThe only solution in this scenario is to download the dataset again by passing `download_mode=\"force_redownload\"` to the `load_dataset` call.",
"Wow. I effectively have to redownload a dataset of 1TB because of this now?\r\nBecause 3% of its parts are broken?\r\n\r\nWhy is this downloader library so sh*t and badly documented also? I found almost nothing on the net, at least finally this issue about the problem here.\r\nNo words to express how disappointed I am by that dataset tool provided by Huggingface here, which I sadly have to use because HF is the only place where the Dataset I plan to work with is hosted....\r\n\r\nI mean... checksum check after download... or hitting timeout of a part... and redownload if not matching... that's content of every junior developer training session.\r\n\r\nI added `verification_mode=\"all_checks\"`. And it really calculated checksums for 4096 parts of ~350 MB... But then did nothing and tried to extract still, hitting the error again. \r\n\r\nEDIT: Apparently it is able to fix it by getting a little help: Just delete the broken parts and associated files from `~/.cache/huggingface/datasets/downloads`",
"I'm getting it too, although just retrying fixed it. Nevertheless, the dataset is too large to have re-downloaded the whole thing, for it's probably just one file with an issue. It would be good to know if there's a way people could manually examine the files (first for sizes, then possibly checksums)... going to the web or elsewhere to compare and correct it by hand, if ever needed.",
"Okay, no, it got further but it is repeatedly giving me:\r\n```/home/jaggz/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_11_0/3f27acf10f303eac5b6fbbbe02495aeddb46ecffdb0a2fe3507fcfbf89094631/common_voice_11_0.py\", line 195, in _generate_examples\r\nresult[\"audio\"] = {\"path\": path, \"bytes\": file.read()}\r\n^^^^^^^^^^^\r\nFile \"/usr/lib/python3.11/tarfile.py\", line 687, in read\r\nraise ReadError(\"unexpected end of data\")\r\ntarfile.ReadError: unexpected end of data\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\nFile \"/home/jaggz/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 625, in <module>\r\nmain()\r\nFile \"/home/jaggz/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 360, in main\r\nraw_datasets[\"train\"] = load_dataset(\r\n^^^^^^^^^^^^^\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/load.py\", line 2153, in load_dataset\r\nbuilder_instance.download_and_prepare(\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/builder.py\", line 954, in download_and_prepare\r\nself._download_and_prepare(\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/builder.py\", line 1717, in _download_and_prepare\r\nsuper()._download_and_prepare(\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/builder.py\", line 1049, in _download_and_prepare\r\nself._prepare_split(split_generator, **prepare_split_kwargs)\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/builder.py\", line 1555, in _prepare_split\r\nfor job_id, done, content in self._prepare_split_single(\r\nFile \"/home/jaggz/venvs/pynow/lib/python3.11/site-packages/datasets/builder.py\", line 1712, in _prepare_split_single\r\nraise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.builder.DatasetGenerationError: An error occurred while generating the datase\r\n",
"@RuntimeRacer \r\n> EDIT: Apparently it is able to fix it by getting a little help: Just delete the broken parts and associated files from `~/.cache/huggingface/datasets/downloads`\r\n\r\nHow do you know the broken parts?\r\nMine's consistently erroring and.. yeah, really this thing should be able to check the files (but where's that even done)...\r\n\r\n2023-11-02 00:14:09.846055: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n/home/j/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py:299: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.\r\n warnings.warn(\r\n11/02/2023 00:14:37 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: True\r\n11/02/2023 00:14:37 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(\r\n_n_gpu=1,\r\nadafactor=False,\r\nadam_beta1=0.9,\r\nadam_beta2=0.999,\r\n...\r\nlogging_dir=./whisper-tiny-en/runs/Nov02_00-14-28_jsys,\r\n...\r\nrun_name=./whisper-tiny-en,\r\n...\r\nweight_decay=0.0,\r\n)\r\n11/02/2023 00:14:37 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(\r\n_n_gpu=1,\r\nadafactor=False,\r\n...\r\nlogging_dir=./whisper-tiny-en/runs/Nov02_00-14-28_jsys,\r\n...\r\nweight_decay=0.0,\r\n)\r\n\r\nDownloading data files: 0%| | 0/5 [00:00<?, ?it/s]\r\nDownloading data files: 100%|██████████| 5/5 [00:00<00:00, 2426.42it/s]\r\n\r\nExtracting data files: 0%| | 0/5 [00:00<?, ?it/s]\r\nExtracting data files: 100%|██████████| 5/5 [00:00<00:00, 421.16it/s]\r\n\r\nDownloading data files: 0%| | 0/5 [00:00<?, ?it/s]\r\nDownloading data files: 100%|██████████| 5/5 [00:00<00:00, 18707.87it/s]\r\n\r\nExtracting data files: 0%| | 0/5 [00:00<?, ?it/s]\r\nExtracting data files: 100%|██████████| 5/5 [00:00<00:00, 3754.97it/s]\r\n\r\nGenerating train split: 0 examples [00:00, ? examples/s]\r\n\r\nReading metadata...: 0it [00:00, ?it/s]\u001b[A\r\n...\r\nReading metadata...: 948736it [00:23, 40632.92it/s] \r\n\r\nGenerating train split: 1 examples [00:23, 23.37s/ examples]\r\n...\r\nGenerating train split: 948736 examples [08:28, 1866.15 examples/s]\r\n\r\nGenerating validation split: 0 examples [00:00, ? examples/s]\r\n\r\nReading metadata...: 0it [00:00, ?it/s]\u001b[A\r\n\r\nReading metadata...: 16089it [00:00, 157411.88it/s]\u001b[A\r\nReading metadata...: 16354it [00:00, 158233.27it/s]\r\n\r\nGenerating validation split: 1 examples [00:00, 7.60 examples/s]\r\nGenerating validation split: 16354 examples [00:14, 1154.77 examples/s]\r\n\r\nGenerating test split: 0 examples [00:00, ? examples/s]\r\n\r\nReading metadata...: 0it [00:00, ?it/s]\u001b[A\r\nReading metadata...: 16354it [00:00, 194855.03it/s]\r\n\r\nGenerating test split: 1 examples [00:00, 4.53 examples/s]\r\nGenerating test split: 16354 examples [00:07, 2105.43 examples/s]\r\n\r\nGenerating other split: 0 examples [00:00, ? examples/s]\r\n\r\nReading metadata...: 0it [00:00, ?it/s]\u001b[A\r\nReading metadata...: 290846it [00:01, 235823.90it/s]\r\n\r\nGenerating other split: 1 examples [00:01, 1.27s/ examples]\r\n...\r\nGenerating other split: 290846 examples [02:12, 2196.96 examples/s]\r\nGenerating invalidated split: 0 examples [00:00, ? examples/s]\r\nReading metadata...: 252599it [00:01, 241965.85it/s]\r\n\r\nGenerating invalidated split: 1 examples [00:01, 1.08s/ examples]\r\n...\r\nGenerating invalidated split: 60130 examples [00:34, 1764.14 examples/s]\r\nTraceback (most recent call last):\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 1676, in _prepare_split_single\r\n for key, record in generator:\r\n File \"/home/j/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_11_0/3f27acf10f303eac5b6fbbbe02495aeddb46ecffdb0a2fe3507fcfbf89094631/common_voice_11_0.py\", line 195, in _generate_examples\r\n result[\"audio\"] = {\"path\": path, \"bytes\": file.read()}\r\n ^^^^^^^^^^^\r\n File \"/usr/lib/python3.11/tarfile.py\", line 687, in read\r\n raise ReadError(\"unexpected end of data\")\r\ntarfile.ReadError: unexpected end of data\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/home/j/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 625, in <module>\r\n main()\r\n File \"/home/j/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 360, in main\r\n raw_datasets[\"train\"] = load_dataset(\r\n ^^^^^^^^^^^^^\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/load.py\", line 2153, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 954, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 1717, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 1049, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 1555, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/home/j/venvs/pycur/lib/python3.11/site-packages/datasets/builder.py\", line 1712, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.builder.DatasetGenerationError: An error occurred while generating the dataset\r\n",
"@jaggzh Hi, I actually came around with a fix for this, wasn't that easy to solve since there were a lot of hidden pitfalls in the code, and it's quite hacky, but I was able to download the full dataset.\r\n\r\nI just didn't create a PR for it yet since I was too lazy to create a fork and change my local repo's origin. 😅 \r\nLet me try to do this tonight, I'll give you a ping once it's up.\r\n\r\nEDIT: And no, what I wrote above about adding a param to the download config does NOT solve it apparently. A code fix is required here.",
"@jaggzh PR is up: https://github.com/huggingface/datasets/pull/6380\r\n\r\n🤞 on approval for merge to the main repo.",
"@mariosasko Can you re-open this? We really need some better diagnostics output, at the least, to locate which files are contributing, some checksum output, etc. I can't even tell if this is a mozilla...py issue or huggingface datasets or ....",
"@RuntimeRacer \r\nBeautiful, thank you so much. I patched with your PR and am re-running now.\r\n(I'm running this script: https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py)\r\nOkay, actually it failed; so now I'm running with verification_mode='all_checks' added to the load_data() call and it's re-running now. Wish me luck.\r\n(Note: It's generating checksums; I don't see an option that handles anything between basic_checks and all_checks -- Something checking dl'ed files' lengths would be a good common fix I'd think; corruption is more rare nowadays than a short file (although maybe your patch helps prevent that in the first place.) :}",
"@RuntimeRacer \r\nNo luck. Sigh.\r\n[Edit: My tmux copy didn't get some data. That was weird. I'm adding in the initial part of the output:]\r\n```\r\nDownloading data files: 100%|██████████| 5/5 [00:00<00:00, 2190.69it/s]\r\nComputing checksums: 100%|██████████| 41/41 [11:39<00:00, 17.05s/it] Extracting data files: 100%|██████████| 5/5 [00:00<00:00, 12.37it/s]\r\nDownloading data files: 100%|██████████| 5/5 [00:00<00:00, 107.64it/s]\r\nExtracting data files: 100%|██████████| 5/5 [00:00<00:00, 3149.82it/s]\r\nReading metadata...: 948736it [00:03, 243227.36it/s]s/s]\r\n...\r\n```\r\n```\r\n...\r\nReading metadata...: 252599it [00:01, 249267.71it/s]xamples/s]\r\nGenerating invalidated split: 60130 examples [00:31, 1916.33 examples/s]\r\nTraceback (most recent call last):\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 1676, in _prepare_split_single\r\nfor key, record in generator:\r\nFile \"/home/j/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_11_0/3f27acf10f303eac5b6fbbbe02495aeddb46ecffdb0a2fe3507fcfbf89094631/common_voice_11_0.py\", line 195, in _generate_examples\r\nresult[\"audio\"] = {\"path\": path, \"bytes\": file.read()}\r\n^^^^^^^^^^^\r\nFile \"/usr/lib/python3.11/tarfile.py\", line 687, in read\r\nraise ReadError(\"unexpected end of data\")\r\ntarfile.ReadError: unexpected end of data\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\nFile \"/home/j/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 627, in <module>\r\nmain()\r\nFile \"/home/j/src/transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py\", line 360, in main\r\nraw_datasets[\"train\"] = load_dataset(\r\n^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/load.py\", line 2153, in load_dataset\r\nbuilder_instance.download_and_prepare(\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 954, in download_and_prepare\r\nself._download_and_prepare(\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 1717, in _download_and_prepare\r\nsuper()._download_and_prepare(\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 1049, in _download_and_prepare\r\nself._prepare_split(split_generator, **prepare_split_kwargs)\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 1555, in _prepare_split\r\nfor job_id, done, content in self._prepare_split_single(\r\nFile \"/home/j/src/py/datasets/src/datasets/builder.py\", line 1712\r\n```",
"I'm unable to reproduce this error. Based on https://github.com/psf/requests/issues/4956, newer releases of `urllib3` check the returned content length by default, so perhaps updating `requests` and `urllib3` to the latest versions (`pip install -U requests urllib3`) and loading the dataset with `datasets.load_dataset(\"xtreme\", \"udpos.English\", download_config=datasets.DownloadConfig(resume_download=True))` (re-run when it fails to resume the download) can fix the issue.",
"@jaggzh I think you will need to re-download the whole dataset with my patched code. Files which have already been downloaded and marked as complete by the broken downloader won't be detected even on re-run (I described that in the PR).\r\nI also had to download reazonspeech, which is over 1TB, twice. 🙈 \r\nFor re-download, you need to manually delete the dataset files from your local machine's huggingface download cache.\r\n\r\n@mariosasko Not sure how you tested it, but it's not an issue in `requests` or `urllib`. The problem is the huggingface downloader, which generates a nested download thread for the actual download I think.\r\nThe issue I had with the reazonspeech dataset (https://huggingface.co/datasets/reazon-research/reazonspeech/tree/main) basically was, that it started downloading a part, but sometimes the connection would 'starve' and only continue with a few kilobytes, and eventually stop receiving any data at all.\r\nSometimes it would even recover during the download and finish properly.\r\nHowever, if it did not recover, the request would hit the really generous default timeout (which is 100 seconds I think), however the exception thrown by the failure inside `urllib`, isn't captured or handled by the upper level downloader code of the `datasets` library.\r\n`datasets` even has a retry mechanism, which would continue interrupted downloads if they have the `.incomplete` suffix, which isn't cleared if, for example, a manual `CTRL+C` is sent by the user to the python process.\r\nBut: If it runs into that edge case I described above (TL;DR: connection starves after minutes + timeout exception which isn't captured), the cache downloader will consider the download as successful and remove the `.incomplete` suffix nevertheless, leaving the archive file in a corrupted state.\r\n\r\nHonestly, I spent hours on trying to figure out what was even going on and why the retry mechanics of the cache downloader didn't work at all.\r\nBut it is indeed an issue caused by the download process itself not receiving any info about actual content size and filesize size on disk of the archive to be downloaded, thus, having no direct control in case something fails on the request level.\r\n\r\nIMHO, this requires a major refactor of the way this part of the downloader works.\r\nYet I was able to quick-fix it by adding some synthetic Exception handling and explicit retry-handling in the code, als done in my PR.",
"@RuntimeRacer \r\nUgh. It took a day. I'm seeing if I can get some debug code in here to examine the files myself. (I'm not sure why checksum tests would fail, so, yeah, I think you're right -- this stuff needs some work. Going through ipdb right now to try to get some idea of what's going on in the code).",
"@RuntimeRacer Data can only be appended to the `.incomplete` files if `load_dataset` is called with `download_config=DownloadConfig(resume_download=True)`. \r\n\r\nWhere exactly does this exception happen (in the code)? The error stack trace would help a lot.",
"@mariosasko I do not have a trace of this exception nor do I know which type it is. I am honestly not even sure if an exception is thrown, or the process just aborts without error.\r\n\r\n> @RuntimeRacer Data can only be appended to the .incomplete files if load_dataset is called with download_config=DownloadConfig(resume_download=True).\r\n\r\nWell, I think I did a very clear explaination of the issue in the PR I shared, and the description above, but maybe I wasn't precise enough. Let me try to explain once more:\r\n\r\nWhat you mention here is the \"normal\" case, if the process is aborted. In this case, there will be files with `.incomplete` suffix, which the cache downloader can continue to download. That is correct.\r\n\r\nBUT: What I am talking about all the time is an edge case: if the download step crashes / timeouts internally, the cache downloader will NOT be aware of this, and REMOVES the `.incomplete` suffix.\r\nIt does NOT know that the file is incomplete when the `http_get` function returns and will remove the `.incomplete` suffix in any case once `http_get` returns.\r\nBut the problem is that `http_get` returns without failure, even if the download failed.\r\nAnd this is still a problem even with latest `urllib` and `requests` library.\r\n",
"@RuntimeRacer Updating `urllib3` and `requests` to the latest versions fixes the issue explained in this [blog](https://blog.petrzemek.net/2018/04/22/on-incomplete-http-reads-and-the-requests-library-in-python/) post. \r\n\r\nHowever, the issue explained above seems more similar to [this](https://stackoverflow.com/questions/52731196/python-3-6-5-requests-with-streaming-getting-stuck-in-iter-content-even-if-chun) one. To address it, we can reduce the default timeout to 10 seconds (btw, this was the initial value, but it was causing problems for some users) and expose a config variable so that users can easily control it. Additionally, we can re-run `http_get` similarly to https://github.com/huggingface/huggingface_hub/pull/1766 when the connection/timeout error happens to make the logic even more robust. Would this work for you? The last part is what you did in the PR, right?\r\n\r\n@jaggzh From all the datasets mentioned in this issue, `xtreme` is the only one that stores the data file checksums in the metadata. So, the checksum check has no effect when enabled for the rest of the datasets.",
"(I don't have any .incomplete files, just the extraction errors.)\r\nI was going through the code to try to relate filenames to the hex/hash files, but realized I might not need to.\r\nSo instead I coded up a script in bash to examine the tar files for validity (had an issue with bash subshells not adding to my array so I had cgpt recode it in perl).\r\n\r\n```perl\r\n#!/usr/bin/perl\r\nuse strict;\r\nuse warnings;\r\n\r\n# Initialize the array to store tar files\r\nmy @tars;\r\n\r\n# Open the current directory\r\nopendir(my $dh, '.') or die \"Cannot open directory: $!\";\r\n\r\n# Read files in the current directory\r\nwhile (my $f = readdir($dh)) {\r\n # Skip files ending with lock, json, or py\r\n next if $f =~ /\\.(lock|json|py)$/;\r\n\r\n # Use the `file` command to determine the type of file\r\n my $ft = `file \"$f\"`;\r\n\r\n # If it's a tar archive, add it to the list\r\n if ($ft =~ /tar archive/) {\r\n push @tars, $f;\r\n }\r\n}\r\n\r\nclosedir($dh);\r\n\r\nprint \"Final Tars count: \" . scalar(@tars) . \"\\n\";\r\n\r\n# Iterate over the tar files and check them\r\nforeach my $i (0 .. $#tars) {\r\n my $f = $tars[$i];\r\n printf '%d/%d ', $i+1, scalar(@tars);\r\n \r\n # Use `ls -lgG` to list the files, similar to the original bash script\r\n system(\"ls -lgG '$f'\");\r\n\r\n # Check the integrity of the tar file\r\n my $errfn = \"/tmp/$f.tarerr\";\r\n if (system(\"tar tf '$f' > /dev/null 2> '$errfn'\") != 0) {\r\n print \" BAD $f\\n\";\r\n print \" ERR: \";\r\n system(\"cat '$errfn'\");\r\n }\r\n\r\n # Remove the error file if it exists\r\n unlink $errfn if -e $errfn;\r\n}\r\n```\r\n\r\nThis found one hash file that errored in the tar extraction, and one small tmp* file that also was supposedly a tar and was erroring. I removed those two and re-data loaded.. it grabbed just what it needed and I'm on my way. Yay!\r\n\r\nSo... is there a way for the datasets api to get file sizes? That would be a very easy and fast test, leaving checksum slowdowns for extra-messed-up situations.\r\n\r\n",
"> @RuntimeRacer Updating `urllib3` and `requests` to the latest versions fixes the issue explained in this [blog](https://blog.petrzemek.net/2018/04/22/on-incomplete-http-reads-and-the-requests-library-in-python/) post.\r\n> \r\n> However, the issue explained above seems more similar to [this](https://stackoverflow.com/questions/52731196/python-3-6-5-requests-with-streaming-getting-stuck-in-iter-content-even-if-chun) one. To address it, we can reduce the default timeout to 10 seconds (btw, this was the initial value, but it was causing problems for some users) and expose a config variable so that users can easily control it. Additionally, we can re-run `http_get` similarly to [huggingface/huggingface_hub#1766](https://github.com/huggingface/huggingface_hub/pull/1766) when the connection/timeout error happens to make the logic even more robust. Would this work for you? The last part is what you did in the PR, right?\r\n> \r\n> @jaggzh From all the datasets mentioned in this issue, `xtreme` is the only one that stores the data file checksums in the metadata. So, the checksum check has no effect when enabled for the rest of the datasets.\r\n\r\n@mariosasko Well if you look at my commit date, you will see that I run into this problem still in October. The blog post you mention and the update in the pull request for `urllib` was from July: https://github.com/psf/requests/issues/4956#issuecomment-1648632935\r\n\r\nBut yeah the [issue on StackOverflow](https://stackoverflow.com/questions/52731196/python-3-6-5-requests-with-streaming-getting-stuck-in-iter-content-even-if-chun) you mentioned seems like that's the source issue I was running into there.\r\nI experimented with timeouts, but changing them didn't help to resolve the issue of the starving connection unfortunately.\r\nHowever, https://github.com/huggingface/huggingface_hub/pull/1766 seems like that could be working; it's very similar to my change. So yeah I think this would fix it probably.\r\n\r\nAlso I can confirm the checksum option did not work for [reazonspeech](https://huggingface.co/datasets/reazon-research/reazonspeech/tree/main) as well. So maybe it's a double edge case that only occurs for some datasets. 🤷♂️ ",
"Also, the hf urls to files -- while I can't see a way of getting a listing from the hf site side -- do include the file size in the http header response. So we do have a quick way of just verifying lengths for resume. (This message may not be interesting to you all).\r\n\r\nFirst, a json clip (mozilla-foundation___common_voice_11_0/en/11.0.0/3f27acf10f303eac5b6fbbbe02495aeddb46ecffdb0a2fe3507fcfbf89094631/dataset_info.json):\r\n\r\n* I don't know how specific this .json is to mozilla common voice\r\n* Note that *dataset_size* is not the dataset size :) DatasetInfo class docs indicate it might be their \"combined size in bytes of the Arrow tables for all splits.\"\r\n* *num_bytes*: does match the individual file size though, and matches the http header (further down)\r\n```\r\n{\r\n \"builder_name\" : \"common_voice_11_0\",\r\n...\r\n \"config_name\" : \"en\",\r\n \"dataset_name\" : \"common_voice_11_0\",\r\n \"dataset_size\" : 1680793952,\r\n...\r\n \"download_checksums\" : {\r\n...\r\n \"https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/resolve/main/audio/en/invalidated/en_invalidated_3.tar\" : {\r\n \"checksum\" : null,\r\n \"num_bytes\" : 2110853120\r\n },\r\n...\r\n```\r\n\r\n```bash\r\n~/.cache/huggingface/datasets/downloads$ ls -lgG b45f82cb87bab2c35361857fcd46042ab658b42c37dc9a455248c2866c9b8f40* | cut -c 14-\r\n```\r\n```\r\n2110853120 Nov 1 16:28 b45f82cb87bab2c35361857fcd46042ab658b42c37dc9a455248c2866c9b8f40\r\n148 Nov 1 16:28 b45f82cb87bab2c35361857fcd46042ab658b42c37dc9a455248c2866c9b8f40.json\r\n0 Nov 1 16:07 b45f82cb87bab2c35361857fcd46042ab658b42c37dc9a455248c2866c9b8f40.lock\r\n```\r\n\r\n* Note the -L to follow redirects. Two headers are below:\r\n\r\n```bash\r\n$ curl -I -L https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/resolve/main/audio/en/invalidated/en_invalidated_3.tar\r\n```\r\n```\r\nHTTP/2 302 \r\ncontent-type: text/plain; charset=utf-8\r\ncontent-length: 1215\r\nlocation: https://cdn-lfs.huggingface.co/repos/00/ce/00ce867b4ae70bd23a10b60c32a8626d87b2666fc088ad03f86b94788faff554/984086fc250badece2992e8be4d7c4430f7c1208fb8bf37dc7c4aecdc803b220?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27en_invalidated_3.tar%3B+filename%3D%22en_invalidated_3.tar%22%3B&response-content-type=application%2Fx-tar&Expires=1699389040&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY5OTM4OTA0MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5odWdnaW5nZmFjZS5jby9yZXBvcy8wMC9jZS8wMGNlODY3YjRhZTcwYmQyM2ExMGI2MGMzMmE4NjI2ZDg3YjI2NjZmYzA4OGFkMDNmODZiOTQ3ODhmYWZmNTU0Lzk4NDA4NmZjMjUwYmFkZWNlMjk5MmU4YmU0ZDdjNDQzMGY3YzEyMDhmYjhiZjM3ZGM3YzRhZWNkYzgwM2IyMjA%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=WYc32e75PqbKSAv3KTpG86ooFT6oOyDDQpCt1i2B8gVS10J3qvpZlDmxaBgnGlCCl7SRiAvhIQctgwooNtWbUeDqK3T4bAo0-OOrGCuVi-%7EKWUBcoHce7nHWpl%7Ex9ubHS%7EFoYcGB2SCEqh5fIgGjNV-VKRX6TSXkRto5bclQq4VCJKHufDsJ114A1V4Qu%7EYiRIWKG4Gi93Xv4OFhyWY0uqykvP5c0x02F%7ELX0m3WbW-eXBk6Fw2xnV1XLrEkdR-9Ax2vHqMYIIw6yV0wWEc1hxE393P9mMG1TNDj%7EXDuCoOaA7LbrwBCxai%7Ew2MopdPamTXyOia5-FnSqEdsV29v4Q__&Key-Pair-Id=KVTP0A1DKRTAX\r\ndate: Sat, 04 Nov 2023 20:30:40 GMT\r\nx-powered-by: huggingface-moon\r\nx-request-id: Root=1-6546a9f0-5e7f729d09bdb38e35649a7e\r\naccess-control-allow-origin: https://huggingface.co\r\nvary: Origin, Accept\r\naccess-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,ETag,Link,Accept-Ranges,Content-Range\r\nx-repo-commit: 23b4059922516c140711b91831aa3393a22e9b80\r\naccept-ranges: bytes\r\nx-linked-size: 2110853120\r\nx-linked-etag: \"984086fc250badece2992e8be4d7c4430f7c1208fb8bf37dc7c4aecdc803b220\"\r\nx-cache: Miss from cloudfront\r\nvia: 1.1 f31a6426ebd75ce4393909b12f5cbdcc.cloudfront.net (CloudFront)\r\nx-amz-cf-pop: LAX53-P4\r\nx-amz-cf-id: BcYMFcHVcxPome2IjAvx0ZU90G41QlNI_HEHDGDqCQaEPvrOsnsGXw==\r\n\r\nHTTP/2 200 \r\ncontent-type: application/x-tar\r\ncontent-length: 2110853120\r\ndate: Sat, 04 Nov 2023 20:19:35 GMT\r\nlast-modified: Fri, 18 Nov 2022 15:08:22 GMT\r\netag: \"acac28988e2f7e73b68e865179fbd008\"\r\nx-amz-storage-class: INTELLIGENT_TIERING\r\nx-amz-version-id: LgTuOcd9FGN4JnAXp26O.1v2VW42GPtF\r\ncontent-disposition: attachment; filename*=UTF-8''en_invalidated_3.tar; filename=\"en_invalidated_3.tar\";\r\naccept-ranges: bytes\r\nserver: AmazonS3\r\nx-cache: Hit from cloudfront\r\nvia: 1.1 d07c8167eda81d307ca96358727f505e.cloudfront.net (CloudFront)\r\nx-amz-cf-pop: LAX50-P5\r\nx-amz-cf-id: 6oNZg_V8U1M_JXsMHQAPuRmDfxbY2BnMUWcVH0nz3VnfEZCzF5lgkQ==\r\nage: 666\r\ncache-control: public, max-age=604800, immutable, s-maxage=604800\r\nvary: Origin\r\n\r\n```\r\n"
] | 2023-02-28T23:40:53Z
| 2023-11-04T20:45:56Z
| 2023-07-24T14:22:18Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi,
I am facing an error while downloading the xtreme udpos dataset using load_dataset. I have datasets 2.10.1 installed
```Downloading and preparing dataset xtreme/udpos.Arabic to /compute/tir-1-18/skhanuja/multilingual_ft/cache/data/xtreme/udpos.Arabic/1.0.0/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4...
Downloading data: 16%|██████████████▏ | 56.9M/355M [03:11<16:43, 297kB/s]
Generating train split: 0%| | 0/6075 [00:00<?, ? examples/s]Traceback (most recent call last):
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1608, in _prepare_split_single
for key, record in generator:
File "/home/skhanuja/.cache/huggingface/modules/datasets_modules/datasets/xtreme/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4/xtreme.py", line 732, in _generate_examples
yield from UdposParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
File "/home/skhanuja/.cache/huggingface/modules/datasets_modules/datasets/xtreme/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4/xtreme.py", line 921, in generate_examples
for path, file in filepath:
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 158, in __iter__
yield from self.generator(*self.args, **self.kwargs)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 211, in _iter_from_path
yield from cls._iter_tar(f)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 167, in _iter_tar
for tarinfo in stream:
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/tarfile.py", line 2475, in __iter__
tarinfo = self.next()
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/tarfile.py", line 2344, in next
raise ReadError("unexpected end of data")
tarfile.ReadError: unexpected end of data
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py", line 855, in <module>
main()
File "/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py", line 487, in main
train_dataset = load_dataset(dataset_name, source_language, split="train", cache_dir=args.cache_dir, download_mode="force_redownload")
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/load.py", line 1782, in load_dataset
builder_instance.download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 872, in download_and_prepare
self._download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1649, in _download_and_prepare
super()._download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 967, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1488, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1644, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Steps to reproduce the bug
```
train_dataset = load_dataset('xtreme', 'udpos.English', split="train", cache_dir=args.cache_dir, download_mode="force_redownload")
```
### Expected behavior
Download the udpos dataset
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-3.10.0-957.1.3.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.8
- PyArrow version: 10.0.1
- Pandas version: 1.5.2
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mariosasko",
"id": 47462742,
"login": "mariosasko",
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mariosasko",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5594/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5594/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/6428
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6428/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6428/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6428/events
|
https://github.com/huggingface/datasets/pull/6428
| 1,996,306,394
|
PR_kwDODunzps5fmakS
| 6,428
|
Set dev version
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6428). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004839 / 0.011353 (-0.006514) | 0.002928 / 0.011008 (-0.008080) | 0.061730 / 0.038508 (0.023221) | 0.030523 / 0.023109 (0.007414) | 0.252679 / 0.275898 (-0.023219) | 0.281597 / 0.323480 (-0.041883) | 0.003025 / 0.007986 (-0.004961) | 0.002374 / 0.004328 (-0.001955) | 0.048134 / 0.004250 (0.043884) | 0.045843 / 0.037052 (0.008791) | 0.256274 / 0.258489 (-0.002215) | 0.288704 / 0.293841 (-0.005137) | 0.023486 / 0.128546 (-0.105060) | 0.007186 / 0.075646 (-0.068461) | 0.202519 / 0.419271 (-0.216753) | 0.058192 / 0.043533 (0.014659) | 0.256448 / 0.255139 (0.001309) | 0.279417 / 0.283200 (-0.003783) | 0.019942 / 0.141683 (-0.121740) | 1.100954 / 1.452155 (-0.351201) | 1.168183 / 1.492716 (-0.324533) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091314 / 0.018006 (0.073308) | 0.298614 / 0.000490 (0.298124) | 0.000232 / 0.000200 (0.000032) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018071 / 0.037411 (-0.019340) | 0.062265 / 0.014526 (0.047740) | 0.073228 / 0.176557 (-0.103328) | 0.119163 / 0.737135 (-0.617972) | 0.074717 / 0.296338 (-0.221622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.273906 / 0.215209 (0.058697) | 2.683995 / 2.077655 (0.606340) | 1.418773 / 1.504120 (-0.085347) | 1.310473 / 1.541195 (-0.230722) | 1.303152 / 1.468490 (-0.165339) | 0.390846 / 4.584777 (-4.193931) | 2.346407 / 3.745712 (-1.399305) | 2.582945 / 5.269862 (-2.686916) | 1.569549 / 4.565676 (-2.996128) | 0.044893 / 0.424275 (-0.379383) | 0.004754 / 0.007607 (-0.002853) | 0.323491 / 0.226044 (0.097447) | 3.229736 / 2.268929 (0.960808) | 1.783551 / 55.444624 (-53.661074) | 1.499685 / 6.876477 (-5.376792) | 1.515826 / 2.142072 (-0.626246) | 0.475768 / 4.805227 (-4.329460) | 0.099579 / 6.500664 (-6.401085) | 0.042709 / 0.075469 (-0.032760) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.926120 / 1.841788 (-0.915667) | 11.597189 / 8.074308 (3.522881) | 10.327055 / 10.191392 (0.135663) | 0.127479 / 0.680424 (-0.552945) | 0.014844 / 0.534201 (-0.519357) | 0.261181 / 0.579283 (-0.318102) | 0.258407 / 0.434364 (-0.175957) | 0.303192 / 0.540337 (-0.237146) | 0.416665 / 1.386936 (-0.970271) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004759 / 0.011353 (-0.006594) | 0.002780 / 0.011008 (-0.008228) | 0.047991 / 0.038508 (0.009483) | 0.052263 / 0.023109 (0.029153) | 0.261228 / 0.275898 (-0.014670) | 0.287779 / 0.323480 (-0.035701) | 0.003961 / 0.007986 (-0.004024) | 0.002357 / 0.004328 (-0.001971) | 0.047755 / 0.004250 (0.043505) | 0.038066 / 0.037052 (0.001014) | 0.269502 / 0.258489 (0.011013) | 0.298348 / 0.293841 (0.004507) | 0.024398 / 0.128546 (-0.104149) | 0.007189 / 0.075646 (-0.068457) | 0.053356 / 0.419271 (-0.365915) | 0.032459 / 0.043533 (-0.011074) | 0.266389 / 0.255139 (0.011250) | 0.305367 / 0.283200 (0.022168) | 0.017629 / 0.141683 (-0.124054) | 1.145789 / 1.452155 (-0.306366) | 1.204778 / 1.492716 (-0.287938) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091347 / 0.018006 (0.073341) | 0.298671 / 0.000490 (0.298181) | 0.000229 / 0.000200 (0.000029) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021374 / 0.037411 (-0.016037) | 0.068869 / 0.014526 (0.054344) | 0.080443 / 0.176557 (-0.096113) | 0.118759 / 0.737135 (-0.618376) | 0.081646 / 0.296338 (-0.214692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295274 / 0.215209 (0.080065) | 2.889349 / 2.077655 (0.811695) | 1.561020 / 1.504120 (0.056900) | 1.425025 / 1.541195 (-0.116170) | 1.495446 / 1.468490 (0.026956) | 0.403825 / 4.584777 (-4.180952) | 2.404905 / 3.745712 (-1.340807) | 2.590104 / 5.269862 (-2.679758) | 1.570559 / 4.565676 (-2.995118) | 0.046342 / 0.424275 (-0.377933) | 0.004799 / 0.007607 (-0.002809) | 0.349981 / 0.226044 (0.123937) | 3.437341 / 2.268929 (1.168412) | 1.948155 / 55.444624 (-53.496469) | 1.637765 / 6.876477 (-5.238711) | 1.671521 / 2.142072 (-0.470551) | 0.479500 / 4.805227 (-4.325727) | 0.098305 / 6.500664 (-6.402359) | 0.040864 / 0.075469 (-0.034605) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979986 / 1.841788 (-0.861801) | 12.169722 / 8.074308 (4.095413) | 11.297345 / 10.191392 (1.105953) | 0.129123 / 0.680424 (-0.551301) | 0.015389 / 0.534201 (-0.518812) | 0.270964 / 0.579283 (-0.308319) | 0.269590 / 0.434364 (-0.164774) | 0.310662 / 0.540337 (-0.229675) | 0.406272 / 1.386936 (-0.980664) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004620 / 0.011353 (-0.006733) | 0.002971 / 0.011008 (-0.008038) | 0.062864 / 0.038508 (0.024355) | 0.028743 / 0.023109 (0.005634) | 0.246729 / 0.275898 (-0.029169) | 0.271165 / 0.323480 (-0.052315) | 0.003930 / 0.007986 (-0.004056) | 0.002422 / 0.004328 (-0.001906) | 0.047430 / 0.004250 (0.043180) | 0.044895 / 0.037052 (0.007843) | 0.249128 / 0.258489 (-0.009361) | 0.283384 / 0.293841 (-0.010457) | 0.023288 / 0.128546 (-0.105259) | 0.007241 / 0.075646 (-0.068405) | 0.207551 / 0.419271 (-0.211720) | 0.055008 / 0.043533 (0.011475) | 0.252781 / 0.255139 (-0.002358) | 0.296924 / 0.283200 (0.013724) | 0.017860 / 0.141683 (-0.123822) | 1.094597 / 1.452155 (-0.357558) | 1.162314 / 1.492716 (-0.330402) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091423 / 0.018006 (0.073417) | 0.302833 / 0.000490 (0.302343) | 0.000242 / 0.000200 (0.000042) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018143 / 0.037411 (-0.019268) | 0.066371 / 0.014526 (0.051845) | 0.072774 / 0.176557 (-0.103783) | 0.119062 / 0.737135 (-0.618073) | 0.102836 / 0.296338 (-0.193502) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280117 / 0.215209 (0.064908) | 2.757955 / 2.077655 (0.680301) | 1.494994 / 1.504120 (-0.009126) | 1.375325 / 1.541195 (-0.165870) | 1.384179 / 1.468490 (-0.084311) | 0.399824 / 4.584777 (-4.184953) | 2.368575 / 3.745712 (-1.377137) | 2.574035 / 5.269862 (-2.695827) | 1.548738 / 4.565676 (-3.016939) | 0.045841 / 0.424275 (-0.378434) | 0.004799 / 0.007607 (-0.002808) | 0.331522 / 0.226044 (0.105478) | 3.324471 / 2.268929 (1.055543) | 1.838637 / 55.444624 (-53.605987) | 1.562854 / 6.876477 (-5.313623) | 1.581736 / 2.142072 (-0.560336) | 0.468832 / 4.805227 (-4.336396) | 0.099309 / 6.500664 (-6.401355) | 0.042078 / 0.075469 (-0.033391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.928468 / 1.841788 (-0.913320) | 11.331143 / 8.074308 (3.256835) | 10.296213 / 10.191392 (0.104821) | 0.138912 / 0.680424 (-0.541511) | 0.014044 / 0.534201 (-0.520157) | 0.267293 / 0.579283 (-0.311991) | 0.267267 / 0.434364 (-0.167097) | 0.306560 / 0.540337 (-0.233778) | 0.423926 / 1.386936 (-0.963010) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004842 / 0.011353 (-0.006511) | 0.002917 / 0.011008 (-0.008091) | 0.048263 / 0.038508 (0.009755) | 0.051453 / 0.023109 (0.028344) | 0.278330 / 0.275898 (0.002432) | 0.298569 / 0.323480 (-0.024911) | 0.003936 / 0.007986 (-0.004049) | 0.002479 / 0.004328 (-0.001850) | 0.048281 / 0.004250 (0.044031) | 0.038925 / 0.037052 (0.001872) | 0.285258 / 0.258489 (0.026769) | 0.313701 / 0.293841 (0.019860) | 0.024916 / 0.128546 (-0.103630) | 0.007142 / 0.075646 (-0.068504) | 0.053634 / 0.419271 (-0.365638) | 0.032842 / 0.043533 (-0.010690) | 0.279373 / 0.255139 (0.024234) | 0.295844 / 0.283200 (0.012644) | 0.018142 / 0.141683 (-0.123541) | 1.136960 / 1.452155 (-0.315195) | 1.184438 / 1.492716 (-0.308278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090271 / 0.018006 (0.072264) | 0.299940 / 0.000490 (0.299450) | 0.000234 / 0.000200 (0.000034) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021175 / 0.037411 (-0.016237) | 0.070924 / 0.014526 (0.056398) | 0.080584 / 0.176557 (-0.095972) | 0.119278 / 0.737135 (-0.617857) | 0.082361 / 0.296338 (-0.213977) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298312 / 0.215209 (0.083103) | 2.895361 / 2.077655 (0.817706) | 1.616120 / 1.504120 (0.112001) | 1.484444 / 1.541195 (-0.056750) | 1.541893 / 1.468490 (0.073403) | 0.409968 / 4.584777 (-4.174809) | 2.423639 / 3.745712 (-1.322073) | 2.585122 / 5.269862 (-2.684740) | 1.540343 / 4.565676 (-3.025333) | 0.046604 / 0.424275 (-0.377671) | 0.004742 / 0.007607 (-0.002865) | 0.341659 / 0.226044 (0.115614) | 3.409259 / 2.268929 (1.140330) | 2.007068 / 55.444624 (-53.437556) | 1.681348 / 6.876477 (-5.195129) | 1.719253 / 2.142072 (-0.422819) | 0.482301 / 4.805227 (-4.322926) | 0.099619 / 6.500664 (-6.401045) | 0.041247 / 0.075469 (-0.034222) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971783 / 1.841788 (-0.870004) | 12.208000 / 8.074308 (4.133692) | 10.948230 / 10.191392 (0.756838) | 0.131824 / 0.680424 (-0.548599) | 0.015696 / 0.534201 (-0.518505) | 0.272265 / 0.579283 (-0.307018) | 0.276093 / 0.434364 (-0.158270) | 0.305897 / 0.540337 (-0.234441) | 0.411632 / 1.386936 (-0.975304) |\n\n</details>\n</details>\n\n\n"
] | 2023-11-16T08:12:55Z
| 2023-11-16T08:19:39Z
| 2023-11-16T08:13:28Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6428/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6428/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6428.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6428",
"merged_at": "2023-11-16T08:13:28Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6428.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6428"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7185
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7185/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7185/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7185/events
|
https://github.com/huggingface/datasets/issues/7185
| 2,558,508,748
|
I_kwDODunzps6Yf77M
| 7,185
|
CI benchmarks are broken
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"color": "d4c5f9",
"default": false,
"description": "Maintenance tasks",
"id": 4296013012,
"name": "maintenance",
"node_id": "LA_kwDODunzps8AAAABAA_01A",
"url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance"
}
] |
closed
| false
| null |
[] | null |
[
"Fixed by #7205"
] | 2024-10-01T08:16:08Z
| 2024-10-09T16:07:48Z
| 2024-10-09T16:07:48Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
Since Aug 30, 2024, CI benchmarks are broken: https://github.com/huggingface/datasets/actions/runs/11108421214/job/30861323975
```
{"level":"error","message":"Resource not accessible by integration","name":"HttpError","request":{"body":"{\"body\":\"<details>\\n<summary>Show benchmarks</summary>\\n\\nPyArrow==8.0.0\\n\\n<details>\\n<summary>Show updated benchmarks!</summary>\\n\\n### Benchmark: benchmark_array_xd.json\\n\\n| metric | read_batch_formatted_as_numpy after write_array2d |
...
"headers":{"accept":"application/vnd.github.v3+json","authorization":"token [REDACTED]","content-type":"application/json; charset=utf-8","user-agent":"octokit-rest.js/18.0.0 octokit-core.js/3.6.0 Node.js/16.20.2 (linux; x64)"},"method":"POST","request":{"agent":{"_events":{},"_eventsCount":2,"cache":
...
"response":{"data":{"documentation_url":"https://docs.github.com/rest/issues/comments#create-an-issue-comment","message":"Resource not accessible by integration","status":"403"},
...
"stack":"HttpError: Resource not accessible by integration\n at /usr/lib/node_modules/@dvcorg/cml/node_modules/@octokit/request/dist-node/index.js:86:21\n at processTicksAndRejections (node:internal/process/task_queues:96:5)\n at async Job.doExecute (/usr/lib/node_modules/@dvcorg/cml/node_modules/bottleneck/light.js:405:18)","status":403}
```
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7185/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7185/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7335
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7335/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7335/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7335/events
|
https://github.com/huggingface/datasets/issues/7335
| 2,743,437,260
|
I_kwDODunzps6jhYfM
| 7,335
|
Too many open files: '/root/.cache/huggingface/token'
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4",
"events_url": "https://api.github.com/users/kopyl/events{/privacy}",
"followers_url": "https://api.github.com/users/kopyl/followers",
"following_url": "https://api.github.com/users/kopyl/following{/other_user}",
"gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kopyl",
"id": 17604849,
"login": "kopyl",
"node_id": "MDQ6VXNlcjE3NjA0ODQ5",
"organizations_url": "https://api.github.com/users/kopyl/orgs",
"received_events_url": "https://api.github.com/users/kopyl/received_events",
"repos_url": "https://api.github.com/users/kopyl/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kopyl/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kopyl",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2024-12-16T21:30:24Z
| 2024-12-16T21:30:24Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I ran this code:
```
from datasets import load_dataset
dataset = load_dataset("common-canvas/commoncatalog-cc-by", cache_dir="/datadrive/datasets/cc", num_proc=1000)
```
And got this error.
Before it was some other file though (lie something...incomplete)
runnting
```
ulimit -n 8192
```
did not help at all.
### Steps to reproduce the bug
Run the code i sent
### Expected behavior
Should be no errors
### Environment info
linux, jupyter lab.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7335/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7335/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7507
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7507/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7507/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7507/events
|
https://github.com/huggingface/datasets/issues/7507
| 2,984,309,806
|
I_kwDODunzps6x4PQu
| 7,507
|
Front-end statistical data quantity deviation
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4",
"events_url": "https://api.github.com/users/rangehow/events{/privacy}",
"followers_url": "https://api.github.com/users/rangehow/followers",
"following_url": "https://api.github.com/users/rangehow/following{/other_user}",
"gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/rangehow",
"id": 88258534,
"login": "rangehow",
"node_id": "MDQ6VXNlcjg4MjU4NTM0",
"organizations_url": "https://api.github.com/users/rangehow/orgs",
"received_events_url": "https://api.github.com/users/rangehow/received_events",
"repos_url": "https://api.github.com/users/rangehow/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rangehow/subscriptions",
"type": "User",
"url": "https://api.github.com/users/rangehow",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi ! the format of this dataset is not supported by the Dataset Viewer. It looks like this dataset was saved using `save_to_disk()` which is meant for local storage / easy reload without compression, not for sharing online."
] | 2025-04-10T02:51:38Z
| 2025-04-15T12:54:51Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
While browsing the dataset at https://huggingface.co/datasets/NeuML/wikipedia-20250123, I noticed that a dataset with nearly 7M entries was estimated to be only 4M in size—almost half the actual amount. According to the post-download loading and the dataset_info (https://huggingface.co/datasets/NeuML/wikipedia-20250123/blob/main/train/dataset_info.json), the true data volume is indeed close to 7M. This significant discrepancy could mislead users when sorting datasets by row count. Why not directly retrieve this information from dataset_info?
Not sure if this is the right place to report this bug, but leaving it here for the team's awareness.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7507/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7507/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/4645
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4645/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4645/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4645/events
|
https://github.com/huggingface/datasets/pull/4645
| 1,296,027,785
|
PR_kwDODunzps468oZ6
| 4,645
|
Set HF_SCRIPTS_VERSION to main
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-07-06T15:43:21Z
| 2022-07-06T15:56:21Z
| 2022-07-06T15:45:05Z
|
MEMBER
| null | null | null |
After renaming "master" to "main", the CI fails with
```
AssertionError: 'https://raw.githubusercontent.com/huggingface/datasets/main/datasets/_dummy/_dummy.py' not found in "Couldn't find a dataset script at /home/circleci/datasets/_dummy/_dummy.py or any data file in the same directory. Couldn't find '_dummy' on the Hugging Face Hub either: FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/datasets/_dummy/_dummy.py"
```
This is because in the CI we were still using `HF_SCRIPTS_VERSION=master`. I changed it to "main"
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4645/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4645/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4645.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4645",
"merged_at": "2022-07-06T15:45:05Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4645.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4645"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6095
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6095/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6095/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6095/events
|
https://github.com/huggingface/datasets/pull/6095
| 1,826,496,967
|
PR_kwDODunzps5WqJtr
| 6,095
|
Fix deprecation of errors in TextConfig
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012497 / 0.011353 (0.001144) | 0.005355 / 0.011008 (-0.005654) | 0.106018 / 0.038508 (0.067510) | 0.093069 / 0.023109 (0.069960) | 0.394699 / 0.275898 (0.118801) | 0.449723 / 0.323480 (0.126243) | 0.006434 / 0.007986 (-0.001552) | 0.004187 / 0.004328 (-0.000141) | 0.079620 / 0.004250 (0.075370) | 0.062513 / 0.037052 (0.025460) | 0.410305 / 0.258489 (0.151816) | 0.467231 / 0.293841 (0.173390) | 0.048130 / 0.128546 (-0.080416) | 0.013747 / 0.075646 (-0.061899) | 0.357979 / 0.419271 (-0.061293) | 0.064764 / 0.043533 (0.021231) | 0.411029 / 0.255139 (0.155890) | 0.454734 / 0.283200 (0.171534) | 0.037215 / 0.141683 (-0.104468) | 1.801331 / 1.452155 (0.349176) | 1.951628 / 1.492716 (0.458912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231073 / 0.018006 (0.213067) | 0.564179 / 0.000490 (0.563689) | 0.000947 / 0.000200 (0.000747) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030629 / 0.037411 (-0.006783) | 0.092522 / 0.014526 (0.077996) | 0.109781 / 0.176557 (-0.066775) | 0.183185 / 0.737135 (-0.553950) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.600095 / 0.215209 (0.384886) | 6.072868 / 2.077655 (3.995213) | 2.684109 / 1.504120 (1.179989) | 2.436204 / 1.541195 (0.895010) | 2.514667 / 1.468490 (1.046177) | 0.865455 / 4.584777 (-3.719322) | 5.245561 / 3.745712 (1.499849) | 5.628688 / 5.269862 (0.358826) | 3.457343 / 4.565676 (-1.108333) | 0.107563 / 0.424275 (-0.316712) | 0.008803 / 0.007607 (0.001196) | 0.754014 / 0.226044 (0.527970) | 7.341226 / 2.268929 (5.072297) | 3.482090 / 55.444624 (-51.962534) | 2.726071 / 6.876477 (-4.150406) | 3.168494 / 2.142072 (1.026422) | 1.023517 / 4.805227 (-3.781710) | 0.207440 / 6.500664 (-6.293224) | 0.073642 / 0.075469 (-0.001827) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.588636 / 1.841788 (-0.253152) | 23.305257 / 8.074308 (15.230949) | 22.071476 / 10.191392 (11.880084) | 0.242044 / 0.680424 (-0.438379) | 0.028830 / 0.534201 (-0.505371) | 0.461414 / 0.579283 (-0.117869) | 0.591024 / 0.434364 (0.156660) | 0.548984 / 0.540337 (0.008646) | 0.783318 / 1.386936 (-0.603618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008724 / 0.011353 (-0.002629) | 0.004638 / 0.011008 (-0.006371) | 0.081024 / 0.038508 (0.042516) | 0.077533 / 0.023109 (0.054423) | 0.444827 / 0.275898 (0.168929) | 0.507812 / 0.323480 (0.184332) | 0.006017 / 0.007986 (-0.001968) | 0.004204 / 0.004328 (-0.000124) | 0.082154 / 0.004250 (0.077904) | 0.063818 / 0.037052 (0.026765) | 0.463468 / 0.258489 (0.204979) | 0.536784 / 0.293841 (0.242943) | 0.046393 / 0.128546 (-0.082153) | 0.014349 / 0.075646 (-0.061298) | 0.089213 / 0.419271 (-0.330059) | 0.058313 / 0.043533 (0.014780) | 0.463674 / 0.255139 (0.208535) | 0.495865 / 0.283200 (0.212665) | 0.036586 / 0.141683 (-0.105096) | 1.801601 / 1.452155 (0.349447) | 1.871219 / 1.492716 (0.378502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273411 / 0.018006 (0.255405) | 0.531745 / 0.000490 (0.531255) | 0.000424 / 0.000200 (0.000224) | 0.000130 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037689 / 0.037411 (0.000278) | 0.109544 / 0.014526 (0.095019) | 0.124053 / 0.176557 (-0.052504) | 0.179960 / 0.737135 (-0.557175) | 0.118218 / 0.296338 (-0.178120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639859 / 0.215209 (0.424650) | 6.347385 / 2.077655 (4.269730) | 2.910188 / 1.504120 (1.406068) | 2.698821 / 1.541195 (1.157626) | 2.802652 / 1.468490 (1.334161) | 0.816109 / 4.584777 (-3.768668) | 5.190313 / 3.745712 (1.444601) | 4.642684 / 5.269862 (-0.627178) | 2.948092 / 4.565676 (-1.617584) | 0.095877 / 0.424275 (-0.328398) | 0.009631 / 0.007607 (0.002024) | 0.779136 / 0.226044 (0.553091) | 7.611586 / 2.268929 (5.342658) | 3.760804 / 55.444624 (-51.683820) | 3.139355 / 6.876477 (-3.737122) | 3.419660 / 2.142072 (1.277587) | 1.036397 / 4.805227 (-3.768831) | 0.224015 / 6.500664 (-6.276649) | 0.084037 / 0.075469 (0.008568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.710608 / 1.841788 (-0.131179) | 24.447646 / 8.074308 (16.373338) | 21.345322 / 10.191392 (11.153930) | 0.232383 / 0.680424 (-0.448040) | 0.026381 / 0.534201 (-0.507820) | 0.475995 / 0.579283 (-0.103289) | 0.611939 / 0.434364 (0.177575) | 0.541441 / 0.540337 (0.001104) | 0.742796 / 1.386936 (-0.644140) |\n\n</details>\n</details>\n\n\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006140 / 0.011353 (-0.005213) | 0.003664 / 0.011008 (-0.007344) | 0.080765 / 0.038508 (0.042257) | 0.065009 / 0.023109 (0.041900) | 0.312787 / 0.275898 (0.036889) | 0.354637 / 0.323480 (0.031157) | 0.004846 / 0.007986 (-0.003140) | 0.003019 / 0.004328 (-0.001310) | 0.062823 / 0.004250 (0.058573) | 0.050446 / 0.037052 (0.013394) | 0.314478 / 0.258489 (0.055989) | 0.360206 / 0.293841 (0.066365) | 0.027282 / 0.128546 (-0.101265) | 0.008024 / 0.075646 (-0.067622) | 0.262125 / 0.419271 (-0.157146) | 0.045793 / 0.043533 (0.002260) | 0.310508 / 0.255139 (0.055369) | 0.340899 / 0.283200 (0.057699) | 0.021850 / 0.141683 (-0.119833) | 1.510791 / 1.452155 (0.058636) | 1.570661 / 1.492716 (0.077944) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192136 / 0.018006 (0.174130) | 0.449310 / 0.000490 (0.448820) | 0.004556 / 0.000200 (0.004356) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023689 / 0.037411 (-0.013722) | 0.076316 / 0.014526 (0.061791) | 0.084800 / 0.176557 (-0.091757) | 0.153154 / 0.737135 (-0.583981) | 0.086467 / 0.296338 (-0.209871) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432254 / 0.215209 (0.217045) | 4.305098 / 2.077655 (2.227443) | 2.304267 / 1.504120 (0.800147) | 2.139503 / 1.541195 (0.598309) | 2.220414 / 1.468490 (0.751924) | 0.498595 / 4.584777 (-4.086182) | 3.058593 / 3.745712 (-0.687119) | 4.324501 / 5.269862 (-0.945361) | 2.667731 / 4.565676 (-1.897946) | 0.059917 / 0.424275 (-0.364358) | 0.006829 / 0.007607 (-0.000778) | 0.504608 / 0.226044 (0.278564) | 5.044480 / 2.268929 (2.775552) | 2.753080 / 55.444624 (-52.691545) | 2.449265 / 6.876477 (-4.427212) | 2.635113 / 2.142072 (0.493040) | 0.590760 / 4.805227 (-4.214467) | 0.130133 / 6.500664 (-6.370532) | 0.062759 / 0.075469 (-0.012710) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267014 / 1.841788 (-0.574773) | 18.562890 / 8.074308 (10.488581) | 13.991257 / 10.191392 (3.799865) | 0.147108 / 0.680424 (-0.533315) | 0.017216 / 0.534201 (-0.516985) | 0.330317 / 0.579283 (-0.248966) | 0.351328 / 0.434364 (-0.083036) | 0.381097 / 0.540337 (-0.159241) | 0.558718 / 1.386936 (-0.828218) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006385 / 0.011353 (-0.004967) | 0.003668 / 0.011008 (-0.007340) | 0.062581 / 0.038508 (0.024073) | 0.067006 / 0.023109 (0.043896) | 0.428465 / 0.275898 (0.152567) | 0.466106 / 0.323480 (0.142626) | 0.005806 / 0.007986 (-0.002180) | 0.003117 / 0.004328 (-0.001212) | 0.063554 / 0.004250 (0.059303) | 0.054404 / 0.037052 (0.017352) | 0.431168 / 0.258489 (0.172679) | 0.467578 / 0.293841 (0.173737) | 0.027779 / 0.128546 (-0.100767) | 0.008055 / 0.075646 (-0.067592) | 0.067718 / 0.419271 (-0.351554) | 0.043042 / 0.043533 (-0.000491) | 0.425926 / 0.255139 (0.170787) | 0.453699 / 0.283200 (0.170500) | 0.023495 / 0.141683 (-0.118187) | 1.435356 / 1.452155 (-0.016799) | 1.509340 / 1.492716 (0.016624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242322 / 0.018006 (0.224316) | 0.446865 / 0.000490 (0.446376) | 0.001079 / 0.000200 (0.000879) | 0.000065 / 0.000054 (0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025376 / 0.037411 (-0.012035) | 0.079373 / 0.014526 (0.064847) | 0.088554 / 0.176557 (-0.088002) | 0.141026 / 0.737135 (-0.596109) | 0.090666 / 0.296338 (-0.205672) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434800 / 0.215209 (0.219590) | 4.314491 / 2.077655 (2.236836) | 2.320688 / 1.504120 (0.816568) | 2.163941 / 1.541195 (0.622747) | 2.292576 / 1.468490 (0.824086) | 0.500226 / 4.584777 (-4.084551) | 3.114604 / 3.745712 (-0.631108) | 4.206997 / 5.269862 (-1.062864) | 2.461126 / 4.565676 (-2.104551) | 0.057717 / 0.424275 (-0.366558) | 0.006989 / 0.007607 (-0.000618) | 0.515623 / 0.226044 (0.289579) | 5.155301 / 2.268929 (2.886372) | 2.733589 / 55.444624 (-52.711035) | 2.542111 / 6.876477 (-4.334366) | 2.697035 / 2.142072 (0.554963) | 0.594213 / 4.805227 (-4.211014) | 0.128537 / 6.500664 (-6.372127) | 0.065223 / 0.075469 (-0.010246) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306738 / 1.841788 (-0.535050) | 19.065370 / 8.074308 (10.991062) | 14.242096 / 10.191392 (4.050704) | 0.146177 / 0.680424 (-0.534246) | 0.017186 / 0.534201 (-0.517015) | 0.337224 / 0.579283 (-0.242059) | 0.349997 / 0.434364 (-0.084367) | 0.390408 / 0.540337 (-0.149930) | 0.524597 / 1.386936 (-0.862339) |\n\n</details>\n</details>\n\n\n"
] | 2023-07-28T14:08:37Z
| 2023-07-31T05:26:32Z
| 2023-07-31T05:17:38Z
|
MEMBER
| null | null | null |
This PR fixes an issue with the deprecation of `errors` in `TextConfig` introduced by:
- #5974
```python
In [1]: ds = load_dataset("text", data_files="test.txt", errors="strict")
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-13-701c27131a5d> in <module>
----> 1 ds = load_dataset("text", data_files="test.txt", errors="strict")
~/huggingface/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
2107
2108 # Create a dataset builder
-> 2109 builder_instance = load_dataset_builder(
2110 path=path,
2111 name=name,
~/huggingface/datasets/src/datasets/load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs)
1830 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
1831 # Instantiate the dataset builder
-> 1832 builder_instance: DatasetBuilder = builder_cls(
1833 cache_dir=cache_dir,
1834 dataset_name=dataset_name,
~/huggingface/datasets/src/datasets/builder.py in __init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)
371 if data_dir is not None:
372 config_kwargs["data_dir"] = data_dir
--> 373 self.config, self.config_id = self._create_builder_config(
374 config_name=config_name,
375 custom_features=features,
~/huggingface/datasets/src/datasets/builder.py in _create_builder_config(self, config_name, custom_features, **config_kwargs)
550 if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION:
551 config_kwargs["version"] = self.VERSION
--> 552 builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
553
554 # otherwise use the config_kwargs to overwrite the attributes
TypeError: __init__() got an unexpected keyword argument 'errors'
```
Similar to:
- #6094
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6095/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6095/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6095.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6095",
"merged_at": "2023-07-31T05:17:38Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6095.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6095"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4935
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4935/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4935/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4935/events
|
https://github.com/huggingface/datasets/issues/4935
| 1,363,226,736
|
I_kwDODunzps5RQTBw
| 4,935
|
Dataset Viewer issue for ubuntu_dialogs_corpus
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/87330568?v=4",
"events_url": "https://api.github.com/users/CibinQuadance/events{/privacy}",
"followers_url": "https://api.github.com/users/CibinQuadance/followers",
"following_url": "https://api.github.com/users/CibinQuadance/following{/other_user}",
"gists_url": "https://api.github.com/users/CibinQuadance/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/CibinQuadance",
"id": 87330568,
"login": "CibinQuadance",
"node_id": "MDQ6VXNlcjg3MzMwNTY4",
"organizations_url": "https://api.github.com/users/CibinQuadance/orgs",
"received_events_url": "https://api.github.com/users/CibinQuadance/received_events",
"repos_url": "https://api.github.com/users/CibinQuadance/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/CibinQuadance/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/CibinQuadance/subscriptions",
"type": "User",
"url": "https://api.github.com/users/CibinQuadance",
"user_view_type": "public"
}
|
[
{
"color": "E5583E",
"default": false,
"description": "Related to the dataset viewer on huggingface.co",
"id": 3470211881,
"name": "dataset-viewer",
"node_id": "LA_kwDODunzps7O1zsp",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
] | null |
[
"The dataset maintainers (https://huggingface.co/datasets/ubuntu_dialogs_corpus) decided to forbid the dataset from being downloaded automatically (https://huggingface.co/docs/datasets/v2.4.0/en/loading#manual-download), and the dataset viewer respects this.\r\nWe will try to improve the error display though. Thanks for reporting."
] | 2022-09-06T12:41:50Z
| 2022-09-06T12:51:25Z
| 2022-09-06T12:51:25Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Link
_No response_
### Description
_No response_
### Owner
_No response_
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4935/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4935/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5855
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5855/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5855/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5855/events
|
https://github.com/huggingface/datasets/issues/5855
| 1,708,784,943
|
I_kwDODunzps5l2f0v
| 5,855
|
`to_tf_dataset` consumes too much memory
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/28751760?v=4",
"events_url": "https://api.github.com/users/massquantity/events{/privacy}",
"followers_url": "https://api.github.com/users/massquantity/followers",
"following_url": "https://api.github.com/users/massquantity/following{/other_user}",
"gists_url": "https://api.github.com/users/massquantity/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/massquantity",
"id": 28751760,
"login": "massquantity",
"node_id": "MDQ6VXNlcjI4NzUxNzYw",
"organizations_url": "https://api.github.com/users/massquantity/orgs",
"received_events_url": "https://api.github.com/users/massquantity/received_events",
"repos_url": "https://api.github.com/users/massquantity/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/massquantity/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/massquantity/subscriptions",
"type": "User",
"url": "https://api.github.com/users/massquantity",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Cc @amyeroberts @Rocketknight1 \r\n\r\nIndded I think it's because it does something like this under the hood when there's no multiprocessing:\r\n\r\n```python\r\ntf_dataset = tf_dataset.shuffle(len(dataset))\r\n```\r\n\r\nPS: with multiprocessing it appears to be different:\r\n\r\n```python\r\nindices = np.arange(len(dataset))\r\nif shuffle:\r\n np.random.shuffle(indices)\r\n```",
"Hi @massquantity, the dataset being shuffled there is not the full dataset. If you look at [the line above](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/tf_utils.py#L182), the dataset is actually just a single indices array at that point, and that array is the only thing that gets fully loaded into memory and shuffled. We then load samples from the dataset by applying a transform function to the shuffled dataset, which fetches samples based on the indices it receives.\r\n\r\nIf your dataset is **really** gigantic, then this index tensor might be a memory issue, but since it's just an int64 tensor it will only use 1GB of memory per 125 million samples.\r\n\r\nStill, if you're encountering memory issues, there might be another cause here - can you share some code to reproduce the error, or does it depend on some internal/proprietary dataset?",
"Hi @Rocketknight1, you're right and I also noticed that only indices are used in shuffling. My data has shape (50000000, 10), but really the problem doesn't relate to a specific dataset. Simply running the following code costs me 10GB of memory.\r\n\r\n```python\r\nfrom datasets import Dataset\r\n\r\ndef gen():\r\n for i in range(50000000):\r\n yield {\"data\": i}\r\n\r\nds = Dataset.from_generator(gen, cache_dir=\"./huggingface\")\r\n\r\ntf_ds = ds.to_tf_dataset(\r\n batch_size=1,\r\n shuffle=True,\r\n drop_remainder=False,\r\n prefetch=True,\r\n)\r\ntf_ds = iter(tf_ds)\r\nnext(tf_ds)\r\n# {'data': <tf.Tensor: shape=(1,), dtype=int64, numpy=array([0])>}\r\n```\r\n\r\nI just realized maybe it was an issue from tensorflow (I'm using tf 2.12). So I tried the following code, and it used 10GB of memory too.\r\n```python\r\nimport numpy as np\r\nimport tensorflow as tf\r\n\r\ndata_size = 50000000\r\ntf_dataset = tf.data.Dataset.from_tensor_slices(np.arange(data_size))\r\ntf_dataset = iter(tf_dataset.shuffle(data_size))\r\nnext(tf_dataset)\r\n# <tf.Tensor: shape=(), dtype=int64, numpy=24774043>\r\n```\r\n\r\nBy the way, as @lhoestq mentioned, multiprocessing uses numpy shuffling, and it uses less than 1 GB of memory:\r\n```python\r\ntf_ds_mp = ds.to_tf_dataset(\r\n batch_size=1,\r\n shuffle=True,\r\n drop_remainder=False,\r\n prefetch=True,\r\n num_workers=2,\r\n)\r\n```",
"Thanks for that reproduction script - I've confirmed the same issue is occurring for me. Investigating it now!",
"Update: The memory usage is occurring in creation of the index and shuffle buffer. You can reproduce it very simply with:\r\n\r\n```python\r\nimport tensorflow as tf\r\nindices = tf.range(50_000_000, dtype=tf.int64)\r\ndataset = tf.data.Dataset.from_tensor_slices(indices)\r\ndataset = dataset.shuffle(len(dataset))\r\nprint(next(iter(dataset))\r\n```\r\nWhen I wrote this code I thought `tf.data` had an optimization for shuffling an entire tensor that wouldn't create the entire shuffle buffer, but evidently it's just creating the enormous buffer in memory. I'll see if I can find a more efficient way to do this - we might end up moving everything to the `numpy` multiprocessing path to avoid it.",
"I opened a PR to fix this - will continue the discussion there!"
] | 2023-05-14T01:22:29Z
| 2023-06-08T16:32:52Z
| 2023-06-08T16:32:52Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi, I'm using `to_tf_dataset` to convert a _large_ dataset to `tf.data.Dataset`. I observed that the data loading *before* training took a lot of time and memory, even with `batch_size=1`.
After some digging, i believe the reason lies in the shuffle behavior. The [source code](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/tf_utils.py#L185) uses `len(dataset)` as the `buffer_size`, which may load all the data into the memory, and the [tf.data doc](https://www.tensorflow.org/guide/data#randomly_shuffling_input_data) also states that "While large buffer_sizes shuffle more thoroughly, they can take a lot of memory, and significant time to fill".
### Steps to reproduce the bug
```python
from datasets import Dataset
def gen(): # some large data
for i in range(50000000):
yield {"data": i}
ds = Dataset.from_generator(gen, cache_dir="./huggingface")
tf_ds = ds.to_tf_dataset(
batch_size=64,
shuffle=False, # no shuffle
drop_remainder=False,
prefetch=True,
)
# fast and memory friendly 🤗
for batch in tf_ds:
...
tf_ds_shuffle = ds.to_tf_dataset(
batch_size=64,
shuffle=True,
drop_remainder=False,
prefetch=True,
)
# slow and memory hungry for simple iteration 😱
for batch in tf_ds_shuffle:
...
```
### Expected behavior
Shuffling should not load all the data into the memory. Would adding a `buffer_size` parameter in the `to_tf_dataset` API alleviate the problem?
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.17.1-051701-generic-x86_64-with-glibc2.17
- Python version: 3.8.13
- Huggingface_hub version: 0.13.4
- PyArrow version: 11.0.0
- Pandas version: 1.4.3
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4",
"events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}",
"followers_url": "https://api.github.com/users/Rocketknight1/followers",
"following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}",
"gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Rocketknight1",
"id": 12866554,
"login": "Rocketknight1",
"node_id": "MDQ6VXNlcjEyODY2NTU0",
"organizations_url": "https://api.github.com/users/Rocketknight1/orgs",
"received_events_url": "https://api.github.com/users/Rocketknight1/received_events",
"repos_url": "https://api.github.com/users/Rocketknight1/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Rocketknight1",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5855/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5855/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5841
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5841/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5841/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5841/events
|
https://github.com/huggingface/datasets/issues/5841
| 1,705,286,639
|
I_kwDODunzps5lpJvv
| 5,841
|
Abusurdly slow on iteration
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/41792945?v=4",
"events_url": "https://api.github.com/users/fecet/events{/privacy}",
"followers_url": "https://api.github.com/users/fecet/followers",
"following_url": "https://api.github.com/users/fecet/following{/other_user}",
"gists_url": "https://api.github.com/users/fecet/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/fecet",
"id": 41792945,
"login": "fecet",
"node_id": "MDQ6VXNlcjQxNzkyOTQ1",
"organizations_url": "https://api.github.com/users/fecet/orgs",
"received_events_url": "https://api.github.com/users/fecet/received_events",
"repos_url": "https://api.github.com/users/fecet/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/fecet/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fecet/subscriptions",
"type": "User",
"url": "https://api.github.com/users/fecet",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi ! You can try to use the [Image](https://huggingface.co/docs/datasets/v2.12.0/en/package_reference/main_classes#datasets.Image) type which [decodes images on-the-fly](https://huggingface.co/docs/datasets/v2.12.0/en/about_dataset_features#image-feature) into pytorch tensors :)\r\n\r\n```python\r\nds = Dataset.from_dict({\"tensor\":a}).with_format(\"torch\")\r\n%time sum(1 for _ in ds)\r\n# CPU times: user 5.04 s, sys: 96.5 ms, total: 5.14 s\r\n# Wall time: 5.14 s\r\n# 10000\r\n```\r\n\r\n```python\r\nfeatures = Features({\"tensor\": Image()})\r\nds = Dataset.from_dict({\"tensor\":a}, features=features).with_format(\"torch\")\r\n%time sum(1 for _ in ds)\r\n# CPU times: user 1.86 s, sys: 49 ms, total: 1.91 s\r\n# Wall time: 1.9 s\r\n# 10000\r\n```\r\n\r\n-> Speed x2.7\r\n\r\nAnd if you want to keep using arrays of integers, consider using the [Array2D](https://huggingface.co/docs/datasets/v2.12.0/en/package_reference/main_classes#datasets.Array2D) or [Array3D](https://huggingface.co/docs/datasets/v2.12.0/en/package_reference/main_classes#datasets.Array3D) types which are even faster (since it doesn't decode images):\r\n\r\n```python\r\nfeatures = Features({\"tensor\": Array2D(shape=(100, 224), dtype=\"float32\")})\r\nds = Dataset.from_dict({\"tensor\":a}, features=features).with_format(\"torch\")\r\n%time sum(1 for _ in ds)\r\n# CPU times: user 828 ms, sys: 68.4 ms, total: 896 ms\r\n# Wall time: 897 ms\r\n# 10000\r\n```\r\n\r\n-> Speed x5.7\r\n\r\nBatching also speeds up a lot\r\n\r\n```python\r\nfrom torch.utils.data import DataLoader\r\ndl = DataLoader(ds, batch_size=100)\r\n%time sum(1 for _ in dl)\r\n# CPU times: user 564 ms, sys: 83.5 ms, total: 648 ms\r\n# Wall time: 579 ms\r\n# 100\r\n```\r\n\r\n-> Speed x8.9\r\n\r\n```python\r\n%time sum(1 for _ in ds.iter(batch_size=100))\r\n# CPU times: user 119 ms, sys: 96.8 ms, total: 215 ms\r\n# Wall time: 117 ms\r\n# 100\r\n```\r\n\r\n-> Speed x46",
"Anyway, regarding the speed difference between numpy and pytorch, I think the issue is that we first convert numpy sub-arrays to pytorch and then consolidate into one tensor, while we should to the opposite. Indeed converting a numpy array to pytorch has a fix cost that seems to cause a slow down. The current pipeline is\r\n\r\n```\r\narrow -> nested numpy arrays -> lists of torch tensors -> one torch tensor\r\n```\r\n\r\nand we should do\r\n\r\n```\r\narrow -> nested numpy arrays -> one numpy array -> one torch tensor\r\n```",
"I have a similar issue: iterating over a dataset takes 5s without applying any transform, but takes ~30s after applying a transform.\r\nHere is the minimum code to reproduce the problem\r\n\r\n```python\r\nimport numpy as np\r\nfrom datasets import Dataset, DatasetDict, load_dataset, Array3D, Image, Features\r\nfrom torch.utils.data import DataLoader\r\nfrom tqdm import tqdm\r\nimport torchvision \r\nfrom torchvision.transforms import ToTensor, Normalize\r\n\r\n\r\n#################################\r\n# Without transform\r\n#################################\r\n \r\ntrain_dataset = load_dataset(\r\n 'cifar100',\r\n split='train',\r\n use_auth_token=True,\r\n)\r\n\r\ntrain_dataset.set_format(type=\"numpy\", columns=[\"img\", \"fine_label\"])\r\n\r\ntrain_loader= DataLoader(\r\n train_dataset,\r\n batch_size=100,\r\n pin_memory=False,\r\n shuffle=True,\r\n num_workers=8,\r\n)\r\n\r\nfor batch in tqdm(train_loader, desc=\"Loading data, no transform\"):\r\n pass\r\n\r\n\r\n#################################\r\n# With transform\r\n#################################\r\n\r\ntransform_func = torchvision.transforms.Compose([\r\n ToTensor(), \r\n Normalize(mean=[0.485, 0.456, 0.406], std= [0.229, 0.224, 0.225]),] \r\n)\r\n \r\ntrain_dataset = train_dataset.map(\r\n desc=f\"Preprocessing samples\",\r\n function=lambda x: {\"img\": transform_func(x[\"img\"])},\r\n)\r\n\r\ntrain_dataset.set_format(type=\"numpy\", columns=[\"img\", \"fine_label\"])\r\n\r\n\r\ntrain_loader= DataLoader(\r\n train_dataset,\r\n batch_size=100,\r\n pin_memory=False,\r\n shuffle=True,\r\n num_workers=8,\r\n)\r\n\r\n\r\nfor batch in tqdm(train_loader, desc=\"Loading data after transform\"):\r\n pass \r\n```\r\n\r\nI have also tried converting the Image column to an Array3D\r\n```python\r\nimg_shape = train_dataset[0][\"img\"].shape\r\n\r\nfeatures = train_dataset.features.copy()\r\nfeatures[\"x\"] = Array3D(shape=img_shape, dtype=\"float32\")\r\n\r\ntrain_dataset = train_dataset.map(\r\n desc=f\"Preprocessing samples\",\r\n function=lambda x: {\"x\": np.array(x[\"img\"], dtype=np.uint8)},\r\n features=features,\r\n)\r\ntrain_dataset.cast_column(\"x\", Array3D(shape=img_shape, dtype=\"float32\"))\r\ntrain_dataset.set_format(type=\"numpy\", columns=[\"x\", \"fine_label\"])\r\n```\r\nbut to no avail. Any clue?",
"Thanks! I convert my dataset feature to Array3D and this speed became awesome!"
] | 2023-05-11T08:04:09Z
| 2023-05-15T15:38:13Z
| 2023-05-15T15:38:13Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I am attempting to iterate through an image dataset, but I am encountering a significant slowdown in the iteration speed. In order to investigate this issue, I conducted the following experiment:
```python
a=torch.randn(100,224)
a=torch.stack([a] * 10000)
a.shape
# %%
ds=Dataset.from_dict({"tensor":a})
for i in tqdm(ds.with_format("numpy")):
pass
for i in tqdm(ds.with_format("torch")):
pass
```
I noticed that the dataset in numpy format performs significantly faster than the one in torch format. My hypothesis is that the dataset undergoes a transformation process of torch->python->numpy(torch) in the background, which might be causing the slowdown. Is there any way to expedite the process by bypassing such transformations?
Furthermore, if I increase the size of a to an image shape, like:
```python
a=torch.randn(3,224,224)
```
the iteration speed becomes absurdly slow, around 100 iterations per second, whereas the speed with numpy format is approximately 250 iterations per second. This level of speed would be unacceptable for large image datasets, as it could take several hours just to iterate through a single epoch.
### Steps to reproduce the bug
```python
a=torch.randn(100,224)
a=torch.stack([a] * 10000)
a.shape
# %%
ds=Dataset.from_dict({"tensor":a})
for i in tqdm(ds.with_format("numpy")):
pass
for i in tqdm(ds.with_format("torch")):
pass
```
### Expected behavior
iteration faster
### Environment info
- `datasets` version: 2.11.0
- Platform: Linux-5.4.0-148-generic-x86_64-with-glibc2.10
- Python version: 3.8.16
- Huggingface_hub version: 0.13.4
- PyArrow version: 11.0.0
- Pandas version: 2.0.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/41792945?v=4",
"events_url": "https://api.github.com/users/fecet/events{/privacy}",
"followers_url": "https://api.github.com/users/fecet/followers",
"following_url": "https://api.github.com/users/fecet/following{/other_user}",
"gists_url": "https://api.github.com/users/fecet/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/fecet",
"id": 41792945,
"login": "fecet",
"node_id": "MDQ6VXNlcjQxNzkyOTQ1",
"organizations_url": "https://api.github.com/users/fecet/orgs",
"received_events_url": "https://api.github.com/users/fecet/received_events",
"repos_url": "https://api.github.com/users/fecet/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/fecet/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/fecet/subscriptions",
"type": "User",
"url": "https://api.github.com/users/fecet",
"user_view_type": "public"
}
|
{
"+1": 2,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5841/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5841/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5807
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5807/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5807/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5807/events
|
https://github.com/huggingface/datasets/pull/5807
| 1,688,977,237
|
PR_kwDODunzps5PaKRE
| 5,807
|
Support parallelized downloading in load_dataset with Spark
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12763339?v=4",
"events_url": "https://api.github.com/users/es94129/events{/privacy}",
"followers_url": "https://api.github.com/users/es94129/followers",
"following_url": "https://api.github.com/users/es94129/following{/other_user}",
"gists_url": "https://api.github.com/users/es94129/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/es94129",
"id": 12763339,
"login": "es94129",
"node_id": "MDQ6VXNlcjEyNzYzMzM5",
"organizations_url": "https://api.github.com/users/es94129/orgs",
"received_events_url": "https://api.github.com/users/es94129/received_events",
"repos_url": "https://api.github.com/users/es94129/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/es94129/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/es94129/subscriptions",
"type": "User",
"url": "https://api.github.com/users/es94129",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi @lhoestq or other maintainers, this is ready for review, could you please take a look?",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5807). All of your documentation changes will be reflected on that endpoint.",
"Per the discussion in #5798, will implement with `joblibspark` instead."
] | 2023-04-28T18:34:32Z
| 2023-05-25T16:54:14Z
| 2023-05-25T16:54:14Z
|
CONTRIBUTOR
| null | null | null |
As proposed in https://github.com/huggingface/datasets/issues/5798, this adds support to parallelized downloading in `load_dataset` with Spark, which can speed up the process by distributing the workload to worker nodes.
Parallelizing dataset processing is not supported in this PR.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12763339?v=4",
"events_url": "https://api.github.com/users/es94129/events{/privacy}",
"followers_url": "https://api.github.com/users/es94129/followers",
"following_url": "https://api.github.com/users/es94129/following{/other_user}",
"gists_url": "https://api.github.com/users/es94129/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/es94129",
"id": 12763339,
"login": "es94129",
"node_id": "MDQ6VXNlcjEyNzYzMzM5",
"organizations_url": "https://api.github.com/users/es94129/orgs",
"received_events_url": "https://api.github.com/users/es94129/received_events",
"repos_url": "https://api.github.com/users/es94129/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/es94129/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/es94129/subscriptions",
"type": "User",
"url": "https://api.github.com/users/es94129",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5807/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5807/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5807.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5807",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/5807.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5807"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7472
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7472/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7472/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7472/events
|
https://github.com/huggingface/datasets/issues/7472
| 2,937,607,272
|
I_kwDODunzps6vGFRo
| 7,472
|
Label casting during `map` process is canceled after the `map` process
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4",
"events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}",
"followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers",
"following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}",
"gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yoshitomo-matsubara",
"id": 11156001,
"login": "yoshitomo-matsubara",
"node_id": "MDQ6VXNlcjExMTU2MDAx",
"organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs",
"received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events",
"repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yoshitomo-matsubara",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Hi ! By default `map()` tries to keep the types of each column of the dataset, so here it reuses the int type since all your float values can be converted to integers. But I agree it would be nice to store float values as float values and don't try to reuse the same type in this case.\n\nIn the meantime, you can either store the float values in a new column, or pass the output `features=` manually to `map()`",
"Hi @lhoestq \n\nThank you for the answer & suggestion!\n\nCan we add some flag to `map()` function like `reuses_original_type=True` and skip reusing the original type when it's False?\n\nLet me know if it sounds like a reasonable solution. I am happy to submit a PR for this.",
"In general we try to avoid adding new parameters when it's already possible to achieve the same results with existing parameters (here `features=`). But since it's not always convenient to know in advance the `features=` I'm open to contributions to adding this parameter yes",
"Thank you for sharing the context. Good to know that. \n\nI submitted a PR #7483. Could you review the PR?",
"Hi @lhoestq \n\nLet me know if there is something that I should add to [the PR](https://github.com/huggingface/datasets/pull/7483)!",
"Closing this issue as the PR #7483 was merged"
] | 2025-03-21T07:56:22Z
| 2025-04-10T05:11:15Z
| 2025-04-10T05:11:14Z
|
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When preprocessing a multi-label dataset, I introduced a step to convert int labels to float labels as [BCEWithLogitsLoss](https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html) expects float labels and forward function of models in transformers package internally use `BCEWithLogitsLoss`
However, the casting was canceled after `.map` process and the label values still use int values, which leads to an error
```
File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py", line 1711, in forward
loss = loss_fct(logits, labels)
File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/loss.py", line 819, in forward
return F.binary_cross_entropy_with_logits(
File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/functional.py", line 3628, in binary_cross_entropy_with_logits
return torch.binary_cross_entropy_with_logits(
RuntimeError: result type Float can't be cast to the desired output type Long
```
This seems like happening only when the original labels are int values (see examples below)
### Steps to reproduce the bug
If the original dataset uses a list of int labels, it will cancel the int->float casting
```python
from datasets import Dataset
data = {
'text': ['text1', 'text2', 'text3', 'text4'],
'labels': [[0, 1, 2], [3], [3, 4], [3]]
}
dataset = Dataset.from_dict(data)
label_set = set([label for labels in data['labels'] for label in labels])
label2idx = {label: idx for idx, label in enumerate(sorted(label_set))}
def multi_labels_to_ids(labels):
ids = [0.0] * len(label2idx)
for label in labels:
ids[label2idx[label]] = 1.0
return ids
def preprocess(examples):
result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]}
print('"labels" are int', examples['labels'])
result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']]
print('"labels" were converted to multi-label format with float values', result['labels'])
return result
preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text'])
print(preprocessed_dataset[0]['labels'])
# Output: "[1, 1, 1, 0, 0]"
# Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]"
```
If the original dataset uses non-int labels, it works as expected.
```python
from datasets import Dataset
data = {
'text': ['text1', 'text2', 'text3', 'text4'],
'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']]
}
dataset = Dataset.from_dict(data)
label_set = set([label for labels in data['labels'] for label in labels])
label2idx = {label: idx for idx, label in enumerate(sorted(label_set))}
def multi_labels_to_ids(labels):
ids = [0.0] * len(label2idx)
for label in labels:
ids[label2idx[label]] = 1.0
return ids
def preprocess(examples):
result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]}
print('"labels" are int', examples['labels'])
result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']]
print('"labels" were converted to multi-label format with float values', result['labels'])
return result
preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text'])
print(preprocessed_dataset[0]['labels'])
# Output: "[1.0, 1.0, 1.0, 0.0, 0.0]"
# Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]"
```
Note that the only difference between these two examples is
> 'labels': [[0, 1, 2], [3], [3, 4], [3]]
v.s
> 'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']]
### Expected behavior
Even if the original dataset uses a list of int labels, the int->float casting during `.map` process should not be canceled as shown in the above example
### Environment info
OS Ubuntu 22.04 LTS
Python 3.10.11
datasets v3.4.1
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4",
"events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}",
"followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers",
"following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}",
"gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/yoshitomo-matsubara",
"id": 11156001,
"login": "yoshitomo-matsubara",
"node_id": "MDQ6VXNlcjExMTU2MDAx",
"organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs",
"received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events",
"repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions",
"type": "User",
"url": "https://api.github.com/users/yoshitomo-matsubara",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7472/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7472/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5537
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5537/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5537/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5537/events
|
https://github.com/huggingface/datasets/issues/5537
| 1,587,567,464
|
I_kwDODunzps5eoFto
| 5,537
|
Increase speed of data files resolution
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
},
{
"color": "BDE59C",
"default": false,
"description": "Issues a bit more difficult than \"Good First\" issues",
"id": 3761482852,
"name": "good second issue",
"node_id": "LA_kwDODunzps7gM6xk",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/35013374?v=4",
"events_url": "https://api.github.com/users/semajyllek/events{/privacy}",
"followers_url": "https://api.github.com/users/semajyllek/followers",
"following_url": "https://api.github.com/users/semajyllek/following{/other_user}",
"gists_url": "https://api.github.com/users/semajyllek/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/semajyllek",
"id": 35013374,
"login": "semajyllek",
"node_id": "MDQ6VXNlcjM1MDEzMzc0",
"organizations_url": "https://api.github.com/users/semajyllek/orgs",
"received_events_url": "https://api.github.com/users/semajyllek/received_events",
"repos_url": "https://api.github.com/users/semajyllek/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/semajyllek/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/semajyllek/subscriptions",
"type": "User",
"url": "https://api.github.com/users/semajyllek",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/35013374?v=4",
"events_url": "https://api.github.com/users/semajyllek/events{/privacy}",
"followers_url": "https://api.github.com/users/semajyllek/followers",
"following_url": "https://api.github.com/users/semajyllek/following{/other_user}",
"gists_url": "https://api.github.com/users/semajyllek/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/semajyllek",
"id": 35013374,
"login": "semajyllek",
"node_id": "MDQ6VXNlcjM1MDEzMzc0",
"organizations_url": "https://api.github.com/users/semajyllek/orgs",
"received_events_url": "https://api.github.com/users/semajyllek/received_events",
"repos_url": "https://api.github.com/users/semajyllek/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/semajyllek/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/semajyllek/subscriptions",
"type": "User",
"url": "https://api.github.com/users/semajyllek",
"user_view_type": "public"
}
] | null |
[
"#self-assign",
"You were right, if `self.dir_cache` is not None in glob, it is exactly the same as what is returned by find, at least for all the tests we have, and some extended evaluation I did across a random sample of about 1000 datasets. \r\n\r\nThanks for the nice hints, and let me know if this is not exactly what we want here!\r\n\r\nsee PR: https://github.com/huggingface/datasets/pull/5704\r\n\r\n",
"I think we can make the data files resolution (significantly) faster in 2 steps:\r\n\r\n1. `glob` calls `find` (which in turn calls `ls`), so we need `find` to be fast, and this can be achieved by fetching all the entries in a single API call and avoiding calls to `ls`. Implementing this for `HfFileSystem.find` (the one in `huggingface_hub`) is on my TO-DO list.\r\n2. caching the repeated `find` calls in `_get_data_files_patterns` when the `data_files` patterns are not provided in `load_dataset`. To address this, we can introduce a `_resolve_single_pattern` function that would accept a filesystem object and a list of regex patterns to resolve. Then we can wrap this filesystem object in `_get_data_files_patterns` with an object that would cache the find calls before resolving the patterns with `_resolve_single_pattern`. (Feel free to suggest a cleaner implementation)\r\n\r\nWDYT?",
"Good idea :) \r\n\r\nFor 2:\r\n\r\nThat would work ! It's also possible to have a FileSystem with a cache on `.find` and use it inside the resolver passed to `_get_data_files_patterns`. Right now they're pretty simple:\r\n\r\n```python\r\n# for remote repositories\r\nresolver = partial(_resolve_single_pattern_in_dataset_repository, dataset_info, base_path=base_path)\r\n# for local\r\nresolver = partial(_resolve_single_pattern_locally, base_path)\r\n```",
"something like this maybe (with Quentin's reimplementation of `HfFilesystem.find`)?\r\n\r\n ```\r\n @lru_cache(max_size=None)\r\n def _find(self, path, maxdepth=None, withdirs=False, detail=False, **kwargs):\r\n```\r\n\r\nIn any case please let me know if I can help in any way!"
] | 2023-02-16T12:11:45Z
| 2023-12-15T13:12:31Z
| 2023-12-15T13:12:31Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
Certain datasets like `bigcode/the-stack-dedup` have so many files that loading them takes forever right from the data files resolution step.
`datasets` uses file patterns to check the structure of the repository but it takes too much time to iterate over and over again on all the data files.
This comes from `resolve_patterns_in_dataset_repository` which calls `_resolve_single_pattern_in_dataset_repository`, which iterates on all the files at
```python
glob_iter = [PurePath(filepath) for filepath in fs.glob(PurePath(pattern).as_posix()) if fs.isfile(filepath)]
```
but calling `glob` on such a dataset is too expensive. Indeed it calls `ls()` in `hffilesystem.py` too many times.
Maybe `glob` can be more optimized in `hffilesystem.py`, or the data files resolution can directly be implemented in the filesystem by checking its `dir_cache` ?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5537/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5537/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7034
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7034/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7034/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7034/events
|
https://github.com/huggingface/datasets/pull/7034
| 2,397,525,974
|
PR_kwDODunzps50y-ya
| 7,034
|
chore: fix typos in docs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/150505746?v=4",
"events_url": "https://api.github.com/users/hattizai/events{/privacy}",
"followers_url": "https://api.github.com/users/hattizai/followers",
"following_url": "https://api.github.com/users/hattizai/following{/other_user}",
"gists_url": "https://api.github.com/users/hattizai/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hattizai",
"id": 150505746,
"login": "hattizai",
"node_id": "U_kgDOCPiJEg",
"organizations_url": "https://api.github.com/users/hattizai/orgs",
"received_events_url": "https://api.github.com/users/hattizai/received_events",
"repos_url": "https://api.github.com/users/hattizai/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hattizai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hattizai/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hattizai",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005319 / 0.011353 (-0.006034) | 0.003979 / 0.011008 (-0.007030) | 0.063858 / 0.038508 (0.025350) | 0.031064 / 0.023109 (0.007955) | 0.232761 / 0.275898 (-0.043137) | 0.260362 / 0.323480 (-0.063118) | 0.004271 / 0.007986 (-0.003715) | 0.002801 / 0.004328 (-0.001527) | 0.049471 / 0.004250 (0.045220) | 0.043432 / 0.037052 (0.006379) | 0.247467 / 0.258489 (-0.011022) | 0.271926 / 0.293841 (-0.021915) | 0.030063 / 0.128546 (-0.098483) | 0.012659 / 0.075646 (-0.062988) | 0.204650 / 0.419271 (-0.214622) | 0.036340 / 0.043533 (-0.007192) | 0.237480 / 0.255139 (-0.017659) | 0.255955 / 0.283200 (-0.027244) | 0.017922 / 0.141683 (-0.123761) | 1.152251 / 1.452155 (-0.299904) | 1.195610 / 1.492716 (-0.297106) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095411 / 0.018006 (0.077405) | 0.296836 / 0.000490 (0.296346) | 0.000226 / 0.000200 (0.000026) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018547 / 0.037411 (-0.018865) | 0.063423 / 0.014526 (0.048897) | 0.073587 / 0.176557 (-0.102970) | 0.120327 / 0.737135 (-0.616808) | 0.076185 / 0.296338 (-0.220154) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282815 / 0.215209 (0.067606) | 2.781204 / 2.077655 (0.703549) | 1.432489 / 1.504120 (-0.071631) | 1.312018 / 1.541195 (-0.229177) | 1.328290 / 1.468490 (-0.140200) | 0.734169 / 4.584777 (-3.850608) | 2.380654 / 3.745712 (-1.365058) | 2.904945 / 5.269862 (-2.364916) | 1.872079 / 4.565676 (-2.693598) | 0.078329 / 0.424275 (-0.345946) | 0.005151 / 0.007607 (-0.002457) | 0.338957 / 0.226044 (0.112912) | 3.353638 / 2.268929 (1.084709) | 1.812223 / 55.444624 (-53.632401) | 1.514860 / 6.876477 (-5.361617) | 1.528539 / 2.142072 (-0.613533) | 0.798711 / 4.805227 (-4.006516) | 0.135129 / 6.500664 (-6.365535) | 0.042355 / 0.075469 (-0.033114) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954665 / 1.841788 (-0.887122) | 11.431925 / 8.074308 (3.357617) | 9.652583 / 10.191392 (-0.538809) | 0.132538 / 0.680424 (-0.547886) | 0.015517 / 0.534201 (-0.518683) | 0.303826 / 0.579283 (-0.275457) | 0.267530 / 0.434364 (-0.166834) | 0.340775 / 0.540337 (-0.199562) | 0.429909 / 1.386936 (-0.957027) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005819 / 0.011353 (-0.005533) | 0.003829 / 0.011008 (-0.007179) | 0.049707 / 0.038508 (0.011199) | 0.030810 / 0.023109 (0.007701) | 0.269637 / 0.275898 (-0.006261) | 0.295857 / 0.323480 (-0.027623) | 0.004462 / 0.007986 (-0.003523) | 0.002823 / 0.004328 (-0.001505) | 0.048544 / 0.004250 (0.044294) | 0.039692 / 0.037052 (0.002639) | 0.286837 / 0.258489 (0.028348) | 0.319874 / 0.293841 (0.026034) | 0.033319 / 0.128546 (-0.095227) | 0.012318 / 0.075646 (-0.063329) | 0.060319 / 0.419271 (-0.358953) | 0.034341 / 0.043533 (-0.009192) | 0.271132 / 0.255139 (0.015993) | 0.292577 / 0.283200 (0.009377) | 0.018298 / 0.141683 (-0.123384) | 1.136871 / 1.452155 (-0.315284) | 1.192894 / 1.492716 (-0.299822) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098890 / 0.018006 (0.080884) | 0.307830 / 0.000490 (0.307341) | 0.000214 / 0.000200 (0.000014) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023066 / 0.037411 (-0.014346) | 0.076732 / 0.014526 (0.062206) | 0.088154 / 0.176557 (-0.088403) | 0.129849 / 0.737135 (-0.607286) | 0.089368 / 0.296338 (-0.206970) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298298 / 0.215209 (0.083089) | 2.914801 / 2.077655 (0.837147) | 1.609280 / 1.504120 (0.105160) | 1.486971 / 1.541195 (-0.054223) | 1.496254 / 1.468490 (0.027764) | 0.723780 / 4.584777 (-3.860997) | 0.972436 / 3.745712 (-2.773276) | 2.993773 / 5.269862 (-2.276089) | 1.911170 / 4.565676 (-2.654506) | 0.080599 / 0.424275 (-0.343677) | 0.005713 / 0.007607 (-0.001894) | 0.350510 / 0.226044 (0.124465) | 3.464035 / 2.268929 (1.195107) | 2.001558 / 55.444624 (-53.443066) | 1.691888 / 6.876477 (-5.184589) | 1.732348 / 2.142072 (-0.409724) | 0.818572 / 4.805227 (-3.986655) | 0.136770 / 6.500664 (-6.363894) | 0.041722 / 0.075469 (-0.033748) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021225 / 1.841788 (-0.820563) | 11.941224 / 8.074308 (3.866915) | 10.118500 / 10.191392 (-0.072892) | 0.146167 / 0.680424 (-0.534257) | 0.015700 / 0.534201 (-0.518501) | 0.301511 / 0.579283 (-0.277772) | 0.122716 / 0.434364 (-0.311648) | 0.349048 / 0.540337 (-0.191290) | 0.444940 / 1.386936 (-0.941996) |\n\n</details>\n</details>\n\n\n"
] | 2024-07-09T08:35:05Z
| 2024-08-13T08:22:25Z
| 2024-08-13T08:16:22Z
|
CONTRIBUTOR
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7034/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7034/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7034.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7034",
"merged_at": "2024-08-13T08:16:22Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7034.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7034"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4563
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/4563/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/4563/comments
|
https://api.github.com/repos/huggingface/datasets/issues/4563/events
|
https://github.com/huggingface/datasets/pull/4563
| 1,283,914,383
|
PR_kwDODunzps46UmZQ
| 4,563
|
Support streaming allocine dataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2022-06-24T15:55:03Z
| 2022-06-24T16:54:57Z
| 2022-06-24T16:44:41Z
|
MEMBER
| null | null | null |
Support streaming allocine dataset.
Fix #4562.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/4563/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/4563/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/4563.diff",
"html_url": "https://github.com/huggingface/datasets/pull/4563",
"merged_at": "2022-06-24T16:44:41Z",
"patch_url": "https://github.com/huggingface/datasets/pull/4563.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/4563"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5853
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5853/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5853/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5853/events
|
https://github.com/huggingface/datasets/pull/5853
| 1,708,092,786
|
PR_kwDODunzps5QaZLP
| 5,853
|
[docs] Redirects, migrated from nginx
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/326577?v=4",
"events_url": "https://api.github.com/users/julien-c/events{/privacy}",
"followers_url": "https://api.github.com/users/julien-c/followers",
"following_url": "https://api.github.com/users/julien-c/following{/other_user}",
"gists_url": "https://api.github.com/users/julien-c/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/julien-c",
"id": 326577,
"login": "julien-c",
"node_id": "MDQ6VXNlcjMyNjU3Nw==",
"organizations_url": "https://api.github.com/users/julien-c/orgs",
"received_events_url": "https://api.github.com/users/julien-c/received_events",
"repos_url": "https://api.github.com/users/julien-c/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/julien-c/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/julien-c/subscriptions",
"type": "User",
"url": "https://api.github.com/users/julien-c",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"@mishig25 note that it's not exactly the same behavior as in nginx as here it interacts a bit with the `version` and the `language`\r\n\r\nShould be close enough, though.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007212 / 0.011353 (-0.004141) | 0.005125 / 0.011008 (-0.005883) | 0.098460 / 0.038508 (0.059952) | 0.034040 / 0.023109 (0.010931) | 0.320203 / 0.275898 (0.044305) | 0.357787 / 0.323480 (0.034307) | 0.006000 / 0.007986 (-0.001986) | 0.005644 / 0.004328 (0.001316) | 0.072654 / 0.004250 (0.068403) | 0.049393 / 0.037052 (0.012341) | 0.345686 / 0.258489 (0.087196) | 0.362345 / 0.293841 (0.068504) | 0.036597 / 0.128546 (-0.091949) | 0.012303 / 0.075646 (-0.063343) | 0.334374 / 0.419271 (-0.084897) | 0.062010 / 0.043533 (0.018477) | 0.312547 / 0.255139 (0.057408) | 0.336021 / 0.283200 (0.052821) | 0.112304 / 0.141683 (-0.029378) | 1.446706 / 1.452155 (-0.005449) | 1.523256 / 1.492716 (0.030540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217658 / 0.018006 (0.199652) | 0.449208 / 0.000490 (0.448718) | 0.002878 / 0.000200 (0.002679) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025735 / 0.037411 (-0.011676) | 0.105876 / 0.014526 (0.091350) | 0.114887 / 0.176557 (-0.061669) | 0.170984 / 0.737135 (-0.566152) | 0.121420 / 0.296338 (-0.174918) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419670 / 0.215209 (0.204461) | 4.189453 / 2.077655 (2.111798) | 1.938236 / 1.504120 (0.434116) | 1.769747 / 1.541195 (0.228553) | 1.910919 / 1.468490 (0.442429) | 0.705046 / 4.584777 (-3.879730) | 3.783774 / 3.745712 (0.038062) | 2.096504 / 5.269862 (-3.173358) | 1.339265 / 4.565676 (-3.226412) | 0.086670 / 0.424275 (-0.337605) | 0.012243 / 0.007607 (0.004636) | 0.524701 / 0.226044 (0.298657) | 5.240689 / 2.268929 (2.971760) | 2.473622 / 55.444624 (-52.971003) | 2.170568 / 6.876477 (-4.705909) | 2.289653 / 2.142072 (0.147581) | 0.848913 / 4.805227 (-3.956314) | 0.168332 / 6.500664 (-6.332332) | 0.064926 / 0.075469 (-0.010543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193614 / 1.841788 (-0.648173) | 14.920403 / 8.074308 (6.846095) | 14.475059 / 10.191392 (4.283667) | 0.164458 / 0.680424 (-0.515966) | 0.017613 / 0.534201 (-0.516588) | 0.426311 / 0.579283 (-0.152972) | 0.431478 / 0.434364 (-0.002886) | 0.520280 / 0.540337 (-0.020057) | 0.627738 / 1.386936 (-0.759198) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007458 / 0.011353 (-0.003895) | 0.005363 / 0.011008 (-0.005645) | 0.076713 / 0.038508 (0.038205) | 0.034189 / 0.023109 (0.011079) | 0.359938 / 0.275898 (0.084040) | 0.395532 / 0.323480 (0.072052) | 0.005977 / 0.007986 (-0.002008) | 0.004263 / 0.004328 (-0.000065) | 0.075971 / 0.004250 (0.071721) | 0.051924 / 0.037052 (0.014871) | 0.362818 / 0.258489 (0.104329) | 0.409897 / 0.293841 (0.116056) | 0.035494 / 0.128546 (-0.093053) | 0.012399 / 0.075646 (-0.063247) | 0.088335 / 0.419271 (-0.330937) | 0.047968 / 0.043533 (0.004435) | 0.355744 / 0.255139 (0.100606) | 0.376339 / 0.283200 (0.093139) | 0.104542 / 0.141683 (-0.037141) | 1.464826 / 1.452155 (0.012672) | 1.600665 / 1.492716 (0.107948) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220841 / 0.018006 (0.202834) | 0.446444 / 0.000490 (0.445954) | 0.000392 / 0.000200 (0.000192) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029402 / 0.037411 (-0.008009) | 0.116511 / 0.014526 (0.101986) | 0.122959 / 0.176557 (-0.053598) | 0.171674 / 0.737135 (-0.565462) | 0.129871 / 0.296338 (-0.166468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450411 / 0.215209 (0.235202) | 4.471859 / 2.077655 (2.394205) | 2.229439 / 1.504120 (0.725319) | 2.053308 / 1.541195 (0.512114) | 2.142476 / 1.468490 (0.673986) | 0.708299 / 4.584777 (-3.876478) | 3.797830 / 3.745712 (0.052118) | 2.142509 / 5.269862 (-3.127352) | 1.333357 / 4.565676 (-3.232320) | 0.086837 / 0.424275 (-0.337439) | 0.012102 / 0.007607 (0.004495) | 0.548428 / 0.226044 (0.322384) | 5.490611 / 2.268929 (3.221682) | 2.713882 / 55.444624 (-52.730742) | 2.399638 / 6.876477 (-4.476839) | 2.481549 / 2.142072 (0.339477) | 0.839812 / 4.805227 (-3.965415) | 0.168890 / 6.500664 (-6.331774) | 0.065564 / 0.075469 (-0.009906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275507 / 1.841788 (-0.566281) | 14.896343 / 8.074308 (6.822035) | 13.159701 / 10.191392 (2.968309) | 0.172065 / 0.680424 (-0.508359) | 0.017507 / 0.534201 (-0.516694) | 0.420031 / 0.579283 (-0.159252) | 0.438835 / 0.434364 (0.004471) | 0.490597 / 0.540337 (-0.049741) | 0.583952 / 1.386936 (-0.802984) |\n\n</details>\n</details>\n\n\n"
] | 2023-05-12T19:19:27Z
| 2023-05-15T10:37:19Z
| 2023-05-15T10:30:14Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/326577?v=4",
"events_url": "https://api.github.com/users/julien-c/events{/privacy}",
"followers_url": "https://api.github.com/users/julien-c/followers",
"following_url": "https://api.github.com/users/julien-c/following{/other_user}",
"gists_url": "https://api.github.com/users/julien-c/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/julien-c",
"id": 326577,
"login": "julien-c",
"node_id": "MDQ6VXNlcjMyNjU3Nw==",
"organizations_url": "https://api.github.com/users/julien-c/orgs",
"received_events_url": "https://api.github.com/users/julien-c/received_events",
"repos_url": "https://api.github.com/users/julien-c/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/julien-c/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/julien-c/subscriptions",
"type": "User",
"url": "https://api.github.com/users/julien-c",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5853/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5853/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5853.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5853",
"merged_at": "2023-05-15T10:30:14Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5853.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5853"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5480
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5480/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5480/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5480/events
|
https://github.com/huggingface/datasets/pull/5480
| 1,560,364,866
|
PR_kwDODunzps5ItY2y
| 5,480
|
Select columns of Dataset or DatasetDict
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4",
"events_url": "https://api.github.com/users/daskol/events{/privacy}",
"followers_url": "https://api.github.com/users/daskol/followers",
"following_url": "https://api.github.com/users/daskol/following{/other_user}",
"gists_url": "https://api.github.com/users/daskol/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/daskol",
"id": 9336514,
"login": "daskol",
"node_id": "MDQ6VXNlcjkzMzY1MTQ=",
"organizations_url": "https://api.github.com/users/daskol/orgs",
"received_events_url": "https://api.github.com/users/daskol/received_events",
"repos_url": "https://api.github.com/users/daskol/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/daskol/subscriptions",
"type": "User",
"url": "https://api.github.com/users/daskol",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009963 / 0.011353 (-0.001390) | 0.005512 / 0.011008 (-0.005496) | 0.100495 / 0.038508 (0.061987) | 0.039929 / 0.023109 (0.016820) | 0.299749 / 0.275898 (0.023850) | 0.372330 / 0.323480 (0.048850) | 0.008689 / 0.007986 (0.000703) | 0.004334 / 0.004328 (0.000006) | 0.076469 / 0.004250 (0.072218) | 0.048091 / 0.037052 (0.011039) | 0.303884 / 0.258489 (0.045395) | 0.352747 / 0.293841 (0.058906) | 0.038941 / 0.128546 (-0.089605) | 0.012541 / 0.075646 (-0.063105) | 0.334227 / 0.419271 (-0.085044) | 0.048802 / 0.043533 (0.005269) | 0.295800 / 0.255139 (0.040661) | 0.316222 / 0.283200 (0.033022) | 0.108246 / 0.141683 (-0.033437) | 1.452735 / 1.452155 (0.000580) | 1.466293 / 1.492716 (-0.026423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010497 / 0.018006 (-0.007510) | 0.507427 / 0.000490 (0.506937) | 0.003054 / 0.000200 (0.002854) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029529 / 0.037411 (-0.007883) | 0.114151 / 0.014526 (0.099625) | 0.120599 / 0.176557 (-0.055957) | 0.161881 / 0.737135 (-0.575255) | 0.127669 / 0.296338 (-0.168669) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399631 / 0.215209 (0.184421) | 3.992997 / 2.077655 (1.915343) | 1.803770 / 1.504120 (0.299650) | 1.612301 / 1.541195 (0.071106) | 1.717846 / 1.468490 (0.249356) | 0.706753 / 4.584777 (-3.878024) | 3.798224 / 3.745712 (0.052512) | 2.169733 / 5.269862 (-3.100128) | 1.358264 / 4.565676 (-3.207413) | 0.086828 / 0.424275 (-0.337447) | 0.012606 / 0.007607 (0.004999) | 0.512085 / 0.226044 (0.286041) | 5.101491 / 2.268929 (2.832563) | 2.285688 / 55.444624 (-53.158936) | 1.955160 / 6.876477 (-4.921317) | 2.045887 / 2.142072 (-0.096186) | 0.878836 / 4.805227 (-3.926392) | 0.166483 / 6.500664 (-6.334181) | 0.062656 / 0.075469 (-0.012814) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215152 / 1.841788 (-0.626636) | 15.436187 / 8.074308 (7.361879) | 14.489951 / 10.191392 (4.298559) | 0.199019 / 0.680424 (-0.481404) | 0.029148 / 0.534201 (-0.505053) | 0.440309 / 0.579283 (-0.138974) | 0.452041 / 0.434364 (0.017677) | 0.527102 / 0.540337 (-0.013236) | 0.634302 / 1.386936 (-0.752634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007814 / 0.011353 (-0.003539) | 0.005582 / 0.011008 (-0.005427) | 0.075466 / 0.038508 (0.036958) | 0.034421 / 0.023109 (0.011312) | 0.342345 / 0.275898 (0.066447) | 0.389943 / 0.323480 (0.066463) | 0.006346 / 0.007986 (-0.001639) | 0.004442 / 0.004328 (0.000113) | 0.074440 / 0.004250 (0.070190) | 0.056383 / 0.037052 (0.019331) | 0.340293 / 0.258489 (0.081804) | 0.394416 / 0.293841 (0.100575) | 0.037217 / 0.128546 (-0.091330) | 0.012597 / 0.075646 (-0.063050) | 0.087005 / 0.419271 (-0.332267) | 0.051626 / 0.043533 (0.008094) | 0.336690 / 0.255139 (0.081551) | 0.369143 / 0.283200 (0.085943) | 0.110764 / 0.141683 (-0.030919) | 1.459003 / 1.452155 (0.006849) | 1.557333 / 1.492716 (0.064617) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319596 / 0.018006 (0.301590) | 0.514697 / 0.000490 (0.514207) | 0.005286 / 0.000200 (0.005086) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032579 / 0.037411 (-0.004832) | 0.111094 / 0.014526 (0.096568) | 0.127827 / 0.176557 (-0.048730) | 0.169967 / 0.737135 (-0.567168) | 0.133149 / 0.296338 (-0.163189) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424637 / 0.215209 (0.209428) | 4.217889 / 2.077655 (2.140235) | 2.044844 / 1.504120 (0.540724) | 1.863513 / 1.541195 (0.322319) | 1.975674 / 1.468490 (0.507184) | 0.695493 / 4.584777 (-3.889284) | 3.815562 / 3.745712 (0.069850) | 3.534427 / 5.269862 (-1.735435) | 1.684874 / 4.565676 (-2.880802) | 0.085560 / 0.424275 (-0.338715) | 0.012439 / 0.007607 (0.004832) | 0.541231 / 0.226044 (0.315187) | 5.287166 / 2.268929 (3.018237) | 2.596622 / 55.444624 (-52.848002) | 2.315913 / 6.876477 (-4.560564) | 2.418454 / 2.142072 (0.276381) | 0.838947 / 4.805227 (-3.966281) | 0.168149 / 6.500664 (-6.332515) | 0.066439 / 0.075469 (-0.009030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264814 / 1.841788 (-0.576974) | 15.861324 / 8.074308 (7.787016) | 14.352515 / 10.191392 (4.161123) | 0.167032 / 0.680424 (-0.513391) | 0.017766 / 0.534201 (-0.516435) | 0.421821 / 0.579283 (-0.157462) | 0.426657 / 0.434364 (-0.007707) | 0.526742 / 0.540337 (-0.013595) | 0.623851 / 1.386936 (-0.763085) |\n\n</details>\n</details>\n\n\n"
] | 2023-01-27T20:06:16Z
| 2023-02-13T11:10:13Z
| 2023-02-13T09:59:35Z
|
CONTRIBUTOR
| null | null | null |
Close #5474 and #5468.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5480/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5480/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/5480.diff",
"html_url": "https://github.com/huggingface/datasets/pull/5480",
"merged_at": "2023-02-13T09:59:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/5480.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5480"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6499
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6499/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6499/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6499/events
|
https://github.com/huggingface/datasets/pull/6499
| 2,043,166,976
|
PR_kwDODunzps5iFIUF
| 6,499
|
docs: add reference Git over SSH
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6499). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003546 / 0.011008 (-0.007463) | 0.063335 / 0.038508 (0.024827) | 0.051987 / 0.023109 (0.028878) | 0.240429 / 0.275898 (-0.035469) | 0.260659 / 0.323480 (-0.062820) | 0.003866 / 0.007986 (-0.004120) | 0.002617 / 0.004328 (-0.001712) | 0.048653 / 0.004250 (0.044403) | 0.038176 / 0.037052 (0.001124) | 0.245496 / 0.258489 (-0.012993) | 0.277141 / 0.293841 (-0.016700) | 0.027886 / 0.128546 (-0.100660) | 0.010738 / 0.075646 (-0.064908) | 0.211255 / 0.419271 (-0.208016) | 0.045205 / 0.043533 (0.001672) | 0.243062 / 0.255139 (-0.012077) | 0.262877 / 0.283200 (-0.020323) | 0.023426 / 0.141683 (-0.118257) | 1.092247 / 1.452155 (-0.359908) | 1.161074 / 1.492716 (-0.331642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090488 / 0.018006 (0.072482) | 0.300993 / 0.000490 (0.300504) | 0.000212 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018543 / 0.037411 (-0.018868) | 0.061418 / 0.014526 (0.046892) | 0.073242 / 0.176557 (-0.103314) | 0.120757 / 0.737135 (-0.616378) | 0.073967 / 0.296338 (-0.222372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282341 / 0.215209 (0.067132) | 2.741106 / 2.077655 (0.663451) | 1.416573 / 1.504120 (-0.087547) | 1.287904 / 1.541195 (-0.253291) | 1.309425 / 1.468490 (-0.159065) | 0.582592 / 4.584777 (-4.002184) | 2.404866 / 3.745712 (-1.340846) | 2.895397 / 5.269862 (-2.374464) | 1.799864 / 4.565676 (-2.765812) | 0.064386 / 0.424275 (-0.359889) | 0.004920 / 0.007607 (-0.002687) | 0.330879 / 0.226044 (0.104835) | 3.287064 / 2.268929 (1.018135) | 1.765169 / 55.444624 (-53.679456) | 1.490442 / 6.876477 (-5.386034) | 1.530960 / 2.142072 (-0.611113) | 0.655939 / 4.805227 (-4.149288) | 0.118529 / 6.500664 (-6.382135) | 0.042350 / 0.075469 (-0.033119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959027 / 1.841788 (-0.882761) | 11.911284 / 8.074308 (3.836976) | 10.576898 / 10.191392 (0.385506) | 0.141038 / 0.680424 (-0.539386) | 0.014184 / 0.534201 (-0.520017) | 0.305335 / 0.579283 (-0.273948) | 0.267531 / 0.434364 (-0.166832) | 0.353362 / 0.540337 (-0.186975) | 0.466258 / 1.386936 (-0.920678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003561 / 0.011008 (-0.007448) | 0.049181 / 0.038508 (0.010673) | 0.056664 / 0.023109 (0.033555) | 0.267142 / 0.275898 (-0.008756) | 0.291871 / 0.323480 (-0.031609) | 0.003996 / 0.007986 (-0.003990) | 0.003147 / 0.004328 (-0.001181) | 0.048527 / 0.004250 (0.044276) | 0.040239 / 0.037052 (0.003187) | 0.269728 / 0.258489 (0.011239) | 0.295531 / 0.293841 (0.001690) | 0.030316 / 0.128546 (-0.098231) | 0.010666 / 0.075646 (-0.064981) | 0.058176 / 0.419271 (-0.361095) | 0.033218 / 0.043533 (-0.010315) | 0.265383 / 0.255139 (0.010244) | 0.285102 / 0.283200 (0.001902) | 0.018295 / 0.141683 (-0.123388) | 1.117830 / 1.452155 (-0.334325) | 1.196919 / 1.492716 (-0.295798) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088547 / 0.018006 (0.070541) | 0.293220 / 0.000490 (0.292730) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022060 / 0.037411 (-0.015351) | 0.071973 / 0.014526 (0.057448) | 0.081721 / 0.176557 (-0.094836) | 0.119990 / 0.737135 (-0.617145) | 0.081639 / 0.296338 (-0.214700) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293712 / 0.215209 (0.078503) | 2.872986 / 2.077655 (0.795331) | 1.568944 / 1.504120 (0.064824) | 1.434555 / 1.541195 (-0.106639) | 1.457747 / 1.468490 (-0.010743) | 0.559296 / 4.584777 (-4.025481) | 2.471845 / 3.745712 (-1.273867) | 2.840916 / 5.269862 (-2.428946) | 1.754909 / 4.565676 (-2.810768) | 0.064585 / 0.424275 (-0.359690) | 0.004992 / 0.007607 (-0.002615) | 0.349149 / 0.226044 (0.123104) | 3.385906 / 2.268929 (1.116977) | 1.940644 / 55.444624 (-53.503980) | 1.638300 / 6.876477 (-5.238177) | 1.649939 / 2.142072 (-0.492133) | 0.645680 / 4.805227 (-4.159547) | 0.118080 / 6.500664 (-6.382584) | 0.040643 / 0.075469 (-0.034826) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969965 / 1.841788 (-0.871822) | 12.099766 / 8.074308 (4.025457) | 10.550650 / 10.191392 (0.359258) | 0.131736 / 0.680424 (-0.548688) | 0.015483 / 0.534201 (-0.518718) | 0.289231 / 0.579283 (-0.290052) | 0.287505 / 0.434364 (-0.146858) | 0.327326 / 0.540337 (-0.213011) | 0.570364 / 1.386936 (-0.816572) |\n\n</details>\n</details>\n\n\n"
] | 2023-12-15T08:38:31Z
| 2023-12-15T11:48:47Z
| 2023-12-15T11:42:38Z
|
COLLABORATOR
| null | null | null |
see https://discuss.huggingface.co/t/update-datasets-getting-started-to-new-git-security/65893
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/severo",
"id": 1676121,
"login": "severo",
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"organizations_url": "https://api.github.com/users/severo/orgs",
"received_events_url": "https://api.github.com/users/severo/received_events",
"repos_url": "https://api.github.com/users/severo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/severo",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6499/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6499/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6499.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6499",
"merged_at": "2023-12-15T11:42:38Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6499.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6499"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7479
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7479/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7479/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7479/events
|
https://github.com/huggingface/datasets/issues/7479
| 2,950,235,396
|
I_kwDODunzps6v2QUE
| 7,479
|
Features.from_arrow_schema is destructive
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4",
"events_url": "https://api.github.com/users/BramVanroy/events{/privacy}",
"followers_url": "https://api.github.com/users/BramVanroy/followers",
"following_url": "https://api.github.com/users/BramVanroy/following{/other_user}",
"gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/BramVanroy",
"id": 2779410,
"login": "BramVanroy",
"node_id": "MDQ6VXNlcjI3Nzk0MTA=",
"organizations_url": "https://api.github.com/users/BramVanroy/orgs",
"received_events_url": "https://api.github.com/users/BramVanroy/received_events",
"repos_url": "https://api.github.com/users/BramVanroy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/BramVanroy",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-03-26T16:46:43Z
| 2025-03-26T16:46:58Z
| null |
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
I came across this, perhaps niche, bug where `Features` does not/cannot account for pyarrow's `nullable=False` option in Fields. Interestingly, I found that in regular "flat" fields this does not necessarily lead to conflicts, but when a non-nullable field is in a struct, an incompatibility arises.
It's not easy to explain in words, so the minimal example below should help I hope.
Note that I suggest a solution in the comments in the code, simply allowing `Dataset.to_parquet` to allow for a `schema` argument which, when provided, will override the default ds.features.arrow_schema.
### Steps to reproduce the bug
```python
import os
from datasets import Dataset, Features
import pyarrow as pa
import pyarrow.parquet as pq
# HF datasets is destructive when you call Features.from_arrow_schema(schema) on a schema
# because it will not account for nullable and non-nullable fields in structs (it will always allow nullable)
# Reloading the same dataset with the original schema will raise an error because the schema is not the same anymore
non_nullable_schema = pa.schema(
[
pa.field("text", pa.string(), nullable=False),
pa.field("meta",
pa.struct(
[
pa.field("date", pa.list_(pa.string()), nullable=False),
],
),
),
]
)
print("ORIGINAL SCHEMA")
print(non_nullable_schema)
print()
feats = Features.from_arrow_schema(non_nullable_schema)
print("FEATUR-IZED SCHEMA (nullable-restrictions are gone)")
print(feats.arrow_schema)
print()
ds = Dataset.from_dict(
{
"text": ["a", "b", "c"],
"meta": [{"date": ["2021-01-01"]}, {"date": ["2021-01-02"]}, {"date": ["2021-01-03"]}],
},
features=feats,
)
fname = "tmp.parquet"
# This is not possible: TypeError: pyarrow.parquet.core.ParquetWriter() got multiple values for keyword argument 'schema'
# Though I believe this would be the easiest fix: allow schema to be passed to to_parquet and overwrite the schema in the dataset
# ds.to_parquet(fname, schema=non_nullable_schema)
ds.to_parquet(fname)
try:
_ = pq.read_table(fname, schema=non_nullable_schema)
finally:
os.unlink(fname)
```
### Expected behavior
- Non-destructive behavior when converting an arrow schema to Features; or
- the ability to override the default arrow schema with a custom one
### Environment info
- `datasets` version: 3.2.0
- Platform: Linux-5.14.0-427.20.1.el9_4.x86_64-x86_64-with-glibc2.34
- Python version: 3.11.10
- `huggingface_hub` version: 0.27.1
- PyArrow version: 18.1.0
- Pandas version: 2.2.3
- `fsspec` version: 2024.9.0
| null |
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7479/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7479/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/6393
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6393/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6393/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6393/events
|
https://github.com/huggingface/datasets/issues/6393
| 1,984,913,259
|
I_kwDODunzps52T19r
| 6,393
|
Filter occasionally hangs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4",
"events_url": "https://api.github.com/users/dakinggg/events{/privacy}",
"followers_url": "https://api.github.com/users/dakinggg/followers",
"following_url": "https://api.github.com/users/dakinggg/following{/other_user}",
"gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dakinggg",
"id": 43149077,
"login": "dakinggg",
"node_id": "MDQ6VXNlcjQzMTQ5MDc3",
"organizations_url": "https://api.github.com/users/dakinggg/orgs",
"received_events_url": "https://api.github.com/users/dakinggg/received_events",
"repos_url": "https://api.github.com/users/dakinggg/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dakinggg",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"It looks like I may not be the first to encounter this: https://github.com/huggingface/datasets/issues/3172",
"Adding some more information, it seems to occur more frequently with large (millions of samples) datasets.",
"More information. My code is structured as (1) load (2) map (3) filter (4) filter. It was always the second filter that failed. Combining the two filters into one seems to reliably work.",
"@lhoestq it'd be great if someone had a chance to look at this. I suspect it is impacting many users given the other issue that I linked.",
"Hi ! Sorry for the late response. Was it happening after the first or the second filter ?\r\n\r\nIt looks like an issue with the garbage collector (which makes it random). Maybe datasets created with `filter` are not always handled properly ? cc @mariosasko",
"It was after the second filter (and combining the two filters into one seemingly resolved it). I obviously haven't tried all settings to know that these details are causal, but it did work for me.",
"Thanks, that's good to know.\r\n\r\nThe stacktrace suggests an issue when `del self._indices` is called, which happens when a filtered dataset falls out of scope. The indices are a PyArrow table memory mapped from disk, so I'm not quite sure how calling `del` on it can cause this issue. We do `del self._indices` to make sure the file on disk is not used anymore by the current process and avoid e.g. permission errors.\r\n\r\nHopefully we can find a way to reproduce this error, otherwise it will be quite hard to understand what happened",
"Yeah, I have a reliable repro, but it is not even close to minimal and uses a dataset I can't share. Perhaps you could try getting close to my setting.\r\n\r\n(1) make a large (~20GB) jsonl with prompt/response pairs\r\n(2) load it on a linux machine (`dataset = load_dataset(...)`)\r\n(3) map a tokenizer to it, with multiprocessing (`tokenized_dataset = dataset.map(...)`)\r\n(4) filter it once based on something, with multiprocessing (`filtered_1 = tokenized_dataset.filter(...)`)\r\n(5) filter it again based on something, with multiprocessing (`filtered_2 = filtered_1.filter(...)`)\r\n\r\nI included the variable names just in case it is relevant that I was creating new datasets each time, not overwriting the same variable.",
"@lhoestq I have another version of the repro that seems fairly reliably. I have lots of jsonl files, and I iteratively load each one with `load_dataset('json', data_files='path/to/my/file.jsonl', streaming=False, split='train')` and then `dataset.map(..., num_proc=<int>)`. This iteration hangs in a random place each time. So seems like there is a bug that hits with _some_ frequency.",
"With `num_proc=None` it works fine.",
"I am also having similar issue to #3172 when trying to tokenize the data. My dataset contains 10M samples. Is there anything that could be done without having to split up the processing into multiple datasets?",
"https://github.com/huggingface/datasets/pull/7411 seems to have fixed the issue for me, curious if it resolves others issues too."
] | 2023-11-09T06:18:30Z
| 2025-02-22T00:49:19Z
| 2025-02-22T00:49:19Z
|
CONTRIBUTOR
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
A call to `.filter` occasionally hangs (after the filter is complete, according to tqdm)
There is a trace produced
```
Exception ignored in: <function Dataset.__del__ at 0x7efb48130c10>
Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/datasets/arrow_dataset.py", line 1366, in __del__
if hasattr(self, "_indices"):
File "/usr/lib/python3/dist-packages/composer/core/engine.py", line 123, in sigterm_handler
sys.exit(128 + signal)
SystemExit: 143
```
but I'm not sure if the trace is actually from `datasets`, or from surrounding code that is trying to clean up after datasets gets stuck.
Unfortunately I can't reproduce this issue anywhere close to reliably. It happens infrequently when using `num_procs > 1`. Anecdotally I started seeing it when using larger datasets (~10M samples).
### Steps to reproduce the bug
N/A see description
### Expected behavior
map/filter calls always complete sucessfully
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-5.4.0-137-generic-x86_64-with-glibc2.31
- Python version: 3.10.13
- Huggingface_hub version: 0.17.3
- PyArrow version: 13.0.0
- Pandas version: 2.1.2
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4",
"events_url": "https://api.github.com/users/dakinggg/events{/privacy}",
"followers_url": "https://api.github.com/users/dakinggg/followers",
"following_url": "https://api.github.com/users/dakinggg/following{/other_user}",
"gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/dakinggg",
"id": 43149077,
"login": "dakinggg",
"node_id": "MDQ6VXNlcjQzMTQ5MDc3",
"organizations_url": "https://api.github.com/users/dakinggg/orgs",
"received_events_url": "https://api.github.com/users/dakinggg/received_events",
"repos_url": "https://api.github.com/users/dakinggg/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions",
"type": "User",
"url": "https://api.github.com/users/dakinggg",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6393/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6393/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/5144
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5144/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5144/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5144/events
|
https://github.com/huggingface/datasets/issues/5144
| 1,417,974,731
|
I_kwDODunzps5UhJPL
| 5,144
|
Inconsistent documentation on map remove_columns
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/22047467?v=4",
"events_url": "https://api.github.com/users/zhaowei-wang-nlp/events{/privacy}",
"followers_url": "https://api.github.com/users/zhaowei-wang-nlp/followers",
"following_url": "https://api.github.com/users/zhaowei-wang-nlp/following{/other_user}",
"gists_url": "https://api.github.com/users/zhaowei-wang-nlp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/zhaowei-wang-nlp",
"id": 22047467,
"login": "zhaowei-wang-nlp",
"node_id": "MDQ6VXNlcjIyMDQ3NDY3",
"organizations_url": "https://api.github.com/users/zhaowei-wang-nlp/orgs",
"received_events_url": "https://api.github.com/users/zhaowei-wang-nlp/received_events",
"repos_url": "https://api.github.com/users/zhaowei-wang-nlp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/zhaowei-wang-nlp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zhaowei-wang-nlp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/zhaowei-wang-nlp",
"user_view_type": "public"
}
|
[
{
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation",
"id": 1935892861,
"name": "documentation",
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation"
},
{
"color": "cfd3d7",
"default": true,
"description": "This issue or pull request already exists",
"id": 1935892865,
"name": "duplicate",
"node_id": "MDU6TGFiZWwxOTM1ODkyODY1",
"url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate"
},
{
"color": "7057ff",
"default": true,
"description": "Good for newcomers",
"id": 1935892877,
"name": "good first issue",
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue"
},
{
"color": "DF8D62",
"default": false,
"description": "",
"id": 4614514401,
"name": "hacktoberfest",
"node_id": "LA_kwDODunzps8AAAABEwvm4Q",
"url": "https://api.github.com/repos/huggingface/datasets/labels/hacktoberfest"
}
] |
closed
| false
| null |
[] | null |
[
"Thanks for reporting, @zhaowei-wang-nlp.\r\n\r\nYou are right, the documentation is confusing on the behavior of `remove_columns`. We should better explain it. ",
"This is a duplicate of https://github.com/huggingface/datasets/issues/2343.",
"I'm closing this issue because as @mariosasko pointed out, it is a duplicate of:\r\n- #2343"
] | 2022-10-21T08:37:53Z
| 2022-11-15T14:15:10Z
| 2022-11-15T14:15:10Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
The page [process](https://huggingface.co/docs/datasets/process) says this about the parameter `remove_columns` of the function `map`:
When you remove a column, it is only removed after the example has been provided to the mapped function.
So it seems that the `remove_columns` parameter removes after the mapped functions.
However, another page, [the documentation of the function map](https://huggingface.co/docs/datasets/v2.6.1/en/package_reference/main_classes#datasets.Dataset.map.remove_columns) says:
Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding columns with names in remove_columns, these columns will be kept.
So one page says "after the mapped function" and another says "before the mapped function."
Is there something wrong?
### Steps to reproduce the bug
Not about code.
### Expected behavior
consistent about the descriptions of the behavior of the parameter `remove_columns` in the function `map`.
### Environment info
datasets V2.6.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5144/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5144/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7178
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7178/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7178/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7178/events
|
https://github.com/huggingface/datasets/issues/7178
| 2,552,378,330
|
I_kwDODunzps6YIjPa
| 7,178
|
Support Python 3.11
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
closed
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
] | null |
[] | 2024-09-27T08:50:47Z
| 2024-10-08T16:21:04Z
| 2024-10-08T16:21:04Z
|
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
Support Python 3.11: https://peps.python.org/pep-0664/
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7178/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7178/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7450
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7450/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7450/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7450/events
|
https://github.com/huggingface/datasets/pull/7450
| 2,916,681,414
|
PR_kwDODunzps6OfMKs
| 7,450
|
Add IterableDataset.decode with multithreading
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7450). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2025-03-13T10:41:35Z
| 2025-03-14T10:35:37Z
| 2025-03-14T10:35:35Z
|
MEMBER
| null | null | null |
Useful for dataset streaming for multimodal datasets, and especially for lerobot.
It speeds up streaming up to 20 times.
When decoding is enabled (default), media types are decoded:
* audio -> dict of "array" and "sampling_rate" and "path"
* image -> PIL.Image
* video -> torchvision.io.VideoReader
You can enable multithreading using `num_threads`. This is especially useful to speed up remote
data streaming. However it can be slower than `num_threads=0` for local data on fast disks.
PS: Disabling decoding is useful if you want to iterate on the paths or bytes of the media files
without actually decoding their content.
Example: Speed up streaming with multithreading:
```py
>>> import os
>>> from datasets import load_dataset
>>> from tqdm import tqdm
>>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True)
>>> num_threads = min(32, (os.cpu_count() or 1) + 4)
>>> ds = ds.decode(num_threads=num_threads)
>>> for _ in tqdm(ds): # 20 times faster !
... ...
```
why not multiprocessing ? decoding is done with the GIL released in soundfile/PIL/torchvision so multiprocessing would just use more memory
TODO
- [x] test
- [x] add to docs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7450/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7450/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7450.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7450",
"merged_at": "2025-03-14T10:35:35Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7450.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7450"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6581
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6581/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6581/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6581/events
|
https://github.com/huggingface/datasets/pull/6581
| 2,075,919,265
|
PR_kwDODunzps5jxIbt
| 6,581
|
fix os.listdir return name is empty string
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/12895488?v=4",
"events_url": "https://api.github.com/users/d710055071/events{/privacy}",
"followers_url": "https://api.github.com/users/d710055071/followers",
"following_url": "https://api.github.com/users/d710055071/following{/other_user}",
"gists_url": "https://api.github.com/users/d710055071/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/d710055071",
"id": 12895488,
"login": "d710055071",
"node_id": "MDQ6VXNlcjEyODk1NDg4",
"organizations_url": "https://api.github.com/users/d710055071/orgs",
"received_events_url": "https://api.github.com/users/d710055071/received_events",
"repos_url": "https://api.github.com/users/d710055071/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/d710055071/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/d710055071/subscriptions",
"type": "User",
"url": "https://api.github.com/users/d710055071",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6581). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"\r\nObj [\"name\"] ends with \"/\"",
"@lhoestq \r\n\r\nhello,\r\nCan you help me check if there are any issues with this PR? Why hasn't anyone merged?\r\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004968 / 0.011353 (-0.006385) | 0.003516 / 0.011008 (-0.007492) | 0.063787 / 0.038508 (0.025279) | 0.031695 / 0.023109 (0.008586) | 0.240081 / 0.275898 (-0.035817) | 0.260984 / 0.323480 (-0.062496) | 0.003832 / 0.007986 (-0.004153) | 0.002680 / 0.004328 (-0.001648) | 0.049199 / 0.004250 (0.044948) | 0.044720 / 0.037052 (0.007668) | 0.255812 / 0.258489 (-0.002677) | 0.275923 / 0.293841 (-0.017918) | 0.026849 / 0.128546 (-0.101697) | 0.010473 / 0.075646 (-0.065174) | 0.209069 / 0.419271 (-0.210202) | 0.035731 / 0.043533 (-0.007802) | 0.246596 / 0.255139 (-0.008543) | 0.265889 / 0.283200 (-0.017311) | 0.017607 / 0.141683 (-0.124075) | 1.128648 / 1.452155 (-0.323507) | 1.174379 / 1.492716 (-0.318338) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098214 / 0.018006 (0.080207) | 0.311969 / 0.000490 (0.311480) | 0.000266 / 0.000200 (0.000066) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018401 / 0.037411 (-0.019010) | 0.061347 / 0.014526 (0.046821) | 0.073628 / 0.176557 (-0.102928) | 0.121359 / 0.737135 (-0.615776) | 0.075148 / 0.296338 (-0.221190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.274098 / 0.215209 (0.058889) | 2.707633 / 2.077655 (0.629978) | 1.453615 / 1.504120 (-0.050504) | 1.311942 / 1.541195 (-0.229253) | 1.332394 / 1.468490 (-0.136096) | 0.566947 / 4.584777 (-4.017830) | 2.383291 / 3.745712 (-1.362421) | 2.754779 / 5.269862 (-2.515083) | 1.725164 / 4.565676 (-2.840512) | 0.062124 / 0.424275 (-0.362152) | 0.005111 / 0.007607 (-0.002496) | 0.334217 / 0.226044 (0.108173) | 3.271619 / 2.268929 (1.002690) | 1.776906 / 55.444624 (-53.667718) | 1.519238 / 6.876477 (-5.357239) | 1.534722 / 2.142072 (-0.607351) | 0.646143 / 4.805227 (-4.159084) | 0.117015 / 6.500664 (-6.383649) | 0.042578 / 0.075469 (-0.032891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948488 / 1.841788 (-0.893299) | 11.598027 / 8.074308 (3.523719) | 10.269199 / 10.191392 (0.077807) | 0.144887 / 0.680424 (-0.535537) | 0.014745 / 0.534201 (-0.519456) | 0.289185 / 0.579283 (-0.290099) | 0.275243 / 0.434364 (-0.159120) | 0.328088 / 0.540337 (-0.212250) | 0.430161 / 1.386936 (-0.956775) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005020 / 0.011353 (-0.006333) | 0.003246 / 0.011008 (-0.007762) | 0.049810 / 0.038508 (0.011302) | 0.032215 / 0.023109 (0.009105) | 0.271033 / 0.275898 (-0.004866) | 0.294957 / 0.323480 (-0.028523) | 0.004192 / 0.007986 (-0.003793) | 0.002652 / 0.004328 (-0.001677) | 0.049132 / 0.004250 (0.044881) | 0.047818 / 0.037052 (0.010766) | 0.292370 / 0.258489 (0.033881) | 0.316142 / 0.293841 (0.022301) | 0.049539 / 0.128546 (-0.079007) | 0.010533 / 0.075646 (-0.065113) | 0.058131 / 0.419271 (-0.361141) | 0.033807 / 0.043533 (-0.009725) | 0.277623 / 0.255139 (0.022484) | 0.292294 / 0.283200 (0.009094) | 0.021110 / 0.141683 (-0.120573) | 1.160997 / 1.452155 (-0.291157) | 1.213553 / 1.492716 (-0.279163) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098220 / 0.018006 (0.080214) | 0.312342 / 0.000490 (0.311852) | 0.000231 / 0.000200 (0.000031) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022893 / 0.037411 (-0.014519) | 0.075572 / 0.014526 (0.061046) | 0.088357 / 0.176557 (-0.088199) | 0.126354 / 0.737135 (-0.610782) | 0.089763 / 0.296338 (-0.206575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284368 / 0.215209 (0.069159) | 2.785497 / 2.077655 (0.707842) | 1.499364 / 1.504120 (-0.004756) | 1.376020 / 1.541195 (-0.165175) | 1.394270 / 1.468490 (-0.074220) | 0.571945 / 4.584777 (-4.012832) | 2.419148 / 3.745712 (-1.326564) | 2.796974 / 5.269862 (-2.472887) | 1.749531 / 4.565676 (-2.816145) | 0.064088 / 0.424275 (-0.360187) | 0.005294 / 0.007607 (-0.002313) | 0.336250 / 0.226044 (0.110206) | 3.315933 / 2.268929 (1.047004) | 1.877165 / 55.444624 (-53.567459) | 1.592336 / 6.876477 (-5.284140) | 1.599979 / 2.142072 (-0.542093) | 0.655617 / 4.805227 (-4.149610) | 0.117636 / 6.500664 (-6.383028) | 0.040813 / 0.075469 (-0.034656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976887 / 1.841788 (-0.864901) | 12.668753 / 8.074308 (4.594445) | 11.081253 / 10.191392 (0.889861) | 0.134494 / 0.680424 (-0.545930) | 0.016053 / 0.534201 (-0.518148) | 0.291607 / 0.579283 (-0.287676) | 0.287726 / 0.434364 (-0.146638) | 0.328108 / 0.540337 (-0.212229) | 0.425194 / 1.386936 (-0.961742) |\n\n</details>\n</details>\n\n\n"
] | 2024-01-11T07:10:55Z
| 2024-01-24T10:14:43Z
| 2024-01-24T10:08:28Z
|
CONTRIBUTOR
| null | null | null |
fix #6588
xlistdir return name is empty string
for example:
`
from datasets.download.streaming_download_manager import xjoin
from datasets.download.streaming_download_manager import xlistdir
config = DownloadConfig(storage_options=options)
manger = StreamingDownloadManager("ILSVRC2012",download_config=config)
input_path = "lakefs://datalab/main/imagenet/ILSVRC2012.zip"
download_files = manger.download_and_extract(input_path)
current_dir = xjoin(download_files,"ILSVRC2012/Images/ILSVRC2012_img_train")
folder_list = xlistdir(current_dir)
`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6581/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6581/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6581.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6581",
"merged_at": "2024-01-24T10:08:28Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6581.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6581"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6388
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6388/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6388/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6388/events
|
https://github.com/huggingface/datasets/issues/6388
| 1,981,136,093
|
I_kwDODunzps52Fbzd
| 6,388
|
How to create 3d medical imgae dataset?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/41177312?v=4",
"events_url": "https://api.github.com/users/QingYunA/events{/privacy}",
"followers_url": "https://api.github.com/users/QingYunA/followers",
"following_url": "https://api.github.com/users/QingYunA/following{/other_user}",
"gists_url": "https://api.github.com/users/QingYunA/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/QingYunA",
"id": 41177312,
"login": "QingYunA",
"node_id": "MDQ6VXNlcjQxMTc3MzEy",
"organizations_url": "https://api.github.com/users/QingYunA/orgs",
"received_events_url": "https://api.github.com/users/QingYunA/received_events",
"repos_url": "https://api.github.com/users/QingYunA/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/QingYunA/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/QingYunA/subscriptions",
"type": "User",
"url": "https://api.github.com/users/QingYunA",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[] | 2023-11-07T11:27:36Z
| 2023-11-07T11:28:53Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
I am newer to huggingface, after i look up `datasets` docs, I can't find how to create the dataset contains 3d medical image (ends with '.mhd', '.dcm', '.nii')
### Motivation
help us to upload 3d medical dataset to huggingface!
### Your contribution
I'll submit a PR if I find a way to add this feature
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6388/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6388/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7514
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7514/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7514/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7514/events
|
https://github.com/huggingface/datasets/pull/7514
| 2,994,714,923
|
PR_kwDODunzps6Sk7Et
| 7,514
|
Do not hash `generator` in `BuilderConfig.create_config_id`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[] | 2025-04-15T01:26:43Z
| 2025-04-23T11:55:55Z
| 2025-04-15T16:27:51Z
|
NONE
| null | null | null |
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, and hashing a `generator` can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough.
Maybe we should pop generator from `config_kwargs_to_add_to_suffix` before hashing to avoid it.
There is a more detailed description of the problem this PR solves in #7513
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7514/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7514/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7514.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7514",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7514.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7514"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6931
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6931/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6931/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6931/events
|
https://github.com/huggingface/datasets/pull/6931
| 2,323,457,525
|
PR_kwDODunzps5w5I-Y
| 6,931
|
[WebDataset] Support compressed files
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6931). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005362 / 0.011353 (-0.005991) | 0.003969 / 0.011008 (-0.007039) | 0.063390 / 0.038508 (0.024882) | 0.030814 / 0.023109 (0.007705) | 0.246891 / 0.275898 (-0.029007) | 0.271047 / 0.323480 (-0.052432) | 0.004036 / 0.007986 (-0.003950) | 0.002732 / 0.004328 (-0.001597) | 0.049466 / 0.004250 (0.045216) | 0.047227 / 0.037052 (0.010175) | 0.255978 / 0.258489 (-0.002511) | 0.297956 / 0.293841 (0.004115) | 0.028641 / 0.128546 (-0.099905) | 0.010510 / 0.075646 (-0.065136) | 0.204268 / 0.419271 (-0.215004) | 0.037093 / 0.043533 (-0.006440) | 0.247287 / 0.255139 (-0.007852) | 0.263830 / 0.283200 (-0.019370) | 0.018335 / 0.141683 (-0.123348) | 1.116074 / 1.452155 (-0.336081) | 1.182589 / 1.492716 (-0.310128) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094435 / 0.018006 (0.076429) | 0.310422 / 0.000490 (0.309932) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019220 / 0.037411 (-0.018192) | 0.062090 / 0.014526 (0.047564) | 0.074511 / 0.176557 (-0.102046) | 0.121825 / 0.737135 (-0.615310) | 0.075406 / 0.296338 (-0.220933) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281185 / 0.215209 (0.065976) | 2.770157 / 2.077655 (0.692502) | 1.472095 / 1.504120 (-0.032025) | 1.339342 / 1.541195 (-0.201853) | 1.374621 / 1.468490 (-0.093869) | 0.566607 / 4.584777 (-4.018170) | 2.357642 / 3.745712 (-1.388070) | 2.735034 / 5.269862 (-2.534827) | 1.782779 / 4.565676 (-2.782897) | 0.063046 / 0.424275 (-0.361229) | 0.005015 / 0.007607 (-0.002592) | 0.336690 / 0.226044 (0.110646) | 3.360955 / 2.268929 (1.092027) | 1.804424 / 55.444624 (-53.640200) | 1.517334 / 6.876477 (-5.359143) | 1.665254 / 2.142072 (-0.476818) | 0.627185 / 4.805227 (-4.178042) | 0.114388 / 6.500664 (-6.386276) | 0.041788 / 0.075469 (-0.033681) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975270 / 1.841788 (-0.866517) | 11.647633 / 8.074308 (3.573325) | 9.872873 / 10.191392 (-0.318519) | 0.141744 / 0.680424 (-0.538680) | 0.014524 / 0.534201 (-0.519677) | 0.286697 / 0.579283 (-0.292586) | 0.266837 / 0.434364 (-0.167527) | 0.328513 / 0.540337 (-0.211825) | 0.424676 / 1.386936 (-0.962260) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005654 / 0.011353 (-0.005699) | 0.004058 / 0.011008 (-0.006950) | 0.051030 / 0.038508 (0.012522) | 0.033085 / 0.023109 (0.009976) | 0.307532 / 0.275898 (0.031634) | 0.335672 / 0.323480 (0.012192) | 0.004244 / 0.007986 (-0.003742) | 0.002842 / 0.004328 (-0.001487) | 0.050131 / 0.004250 (0.045880) | 0.040709 / 0.037052 (0.003656) | 0.319514 / 0.258489 (0.061025) | 0.357153 / 0.293841 (0.063312) | 0.029014 / 0.128546 (-0.099532) | 0.010999 / 0.075646 (-0.064648) | 0.058789 / 0.419271 (-0.360482) | 0.033284 / 0.043533 (-0.010249) | 0.310783 / 0.255139 (0.055644) | 0.331466 / 0.283200 (0.048266) | 0.018998 / 0.141683 (-0.122685) | 1.138822 / 1.452155 (-0.313332) | 1.180731 / 1.492716 (-0.311985) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095725 / 0.018006 (0.077719) | 0.302788 / 0.000490 (0.302298) | 0.000206 / 0.000200 (0.000006) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023247 / 0.037411 (-0.014164) | 0.077619 / 0.014526 (0.063093) | 0.090489 / 0.176557 (-0.086067) | 0.132033 / 0.737135 (-0.605102) | 0.090964 / 0.296338 (-0.205374) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297912 / 0.215209 (0.082703) | 2.954107 / 2.077655 (0.876452) | 1.591155 / 1.504120 (0.087035) | 1.469217 / 1.541195 (-0.071978) | 1.513315 / 1.468490 (0.044825) | 0.562728 / 4.584777 (-4.022049) | 0.960093 / 3.745712 (-2.785620) | 2.852106 / 5.269862 (-2.417756) | 1.861668 / 4.565676 (-2.704009) | 0.063530 / 0.424275 (-0.360745) | 0.005194 / 0.007607 (-0.002413) | 0.351116 / 0.226044 (0.125072) | 3.498787 / 2.268929 (1.229859) | 1.952223 / 55.444624 (-53.492401) | 1.696208 / 6.876477 (-5.180269) | 1.861650 / 2.142072 (-0.280422) | 0.653494 / 4.805227 (-4.151733) | 0.123797 / 6.500664 (-6.376868) | 0.042696 / 0.075469 (-0.032773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.006657 / 1.841788 (-0.835131) | 12.659771 / 8.074308 (4.585463) | 10.672140 / 10.191392 (0.480748) | 0.143726 / 0.680424 (-0.536698) | 0.015895 / 0.534201 (-0.518306) | 0.285952 / 0.579283 (-0.293331) | 0.126078 / 0.434364 (-0.308286) | 0.325943 / 0.540337 (-0.214395) | 0.410774 / 1.386936 (-0.976162) |\n\n</details>\n</details>\n\n\n"
] | 2024-05-29T14:19:06Z
| 2024-05-29T16:33:18Z
| 2024-05-29T16:24:21Z
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6931/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6931/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6931.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6931",
"merged_at": "2024-05-29T16:24:21Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6931.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6931"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5951
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/5951/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/5951/comments
|
https://api.github.com/repos/huggingface/datasets/issues/5951/events
|
https://github.com/huggingface/datasets/issues/5951
| 1,756,363,546
|
I_kwDODunzps5or_sa
| 5,951
|
What is the Right way to use discofuse dataset??
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/125154243?v=4",
"events_url": "https://api.github.com/users/akesh1235/events{/privacy}",
"followers_url": "https://api.github.com/users/akesh1235/followers",
"following_url": "https://api.github.com/users/akesh1235/following{/other_user}",
"gists_url": "https://api.github.com/users/akesh1235/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/akesh1235",
"id": 125154243,
"login": "akesh1235",
"node_id": "U_kgDOB3Wzww",
"organizations_url": "https://api.github.com/users/akesh1235/orgs",
"received_events_url": "https://api.github.com/users/akesh1235/received_events",
"repos_url": "https://api.github.com/users/akesh1235/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/akesh1235/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/akesh1235/subscriptions",
"type": "User",
"url": "https://api.github.com/users/akesh1235",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"Thanks for opening https://huggingface.co/datasets/discofuse/discussions/3, let's continue the discussion over there if you don't mind",
"I have posted there also sir, please check\r\n@lhoestq"
] | 2023-06-14T08:38:39Z
| 2023-06-14T13:25:06Z
| 2023-06-14T12:10:16Z
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
**Below is the following way, as per my understanding , Is it correct :question: :question:**
The **columns/features from `DiscoFuse dataset`** that will be the **input to the `encoder` and `decoder`** are:
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
1. **coherent_first_sentence**
2. **coherent_second_sentence**
3. **incoherent_first_sentence**
4. **incoherent_second_sentence**
[Click here for Dataset link](https://huggingface.co/datasets/discofuse/viewer/discofuse-wikipedia/train?row=6)
The **`encoder` will take these four columns as input and encode them into a sequence of hidden states. The `decoder` will then take these hidden states as input and decode them into a new sentence that fuses the two original sentences together.**
The **discourse type, connective_string, has_coref_type_pronoun, and has_coref_type_nominal columns will not be used as input to the encoder or decoder.** These columns are used to provide additional information about the dataset, but they are not necessary for the task of sentence fusion.
Please correct me if I am wrong; otherwise, if this understanding is right, how shall I implement this task practically?
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/5951/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/5951/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7298
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7298/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7298/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7298/events
|
https://github.com/huggingface/datasets/issues/7298
| 2,694,196,968
|
I_kwDODunzps6gli7o
| 7,298
|
loading dataset issue with load_dataset() when training controlnet
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/81594044?v=4",
"events_url": "https://api.github.com/users/sarahahtee/events{/privacy}",
"followers_url": "https://api.github.com/users/sarahahtee/followers",
"following_url": "https://api.github.com/users/sarahahtee/following{/other_user}",
"gists_url": "https://api.github.com/users/sarahahtee/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sarahahtee",
"id": 81594044,
"login": "sarahahtee",
"node_id": "MDQ6VXNlcjgxNTk0MDQ0",
"organizations_url": "https://api.github.com/users/sarahahtee/orgs",
"received_events_url": "https://api.github.com/users/sarahahtee/received_events",
"repos_url": "https://api.github.com/users/sarahahtee/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sarahahtee/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sarahahtee/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sarahahtee",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2024-11-26T10:50:18Z
| 2024-11-26T10:50:18Z
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
i'm unable to load my dataset for [controlnet training](https://github.com/huggingface/diffusers/blob/074e12358bc17e7dbe111ea4f62f05dbae8a49d5/examples/controlnet/train_controlnet.py#L606) using load_dataset(). however, load_from_disk() seems to work?
would appreciate if someone can explain why that's the case here
1. for reference here's the structure of the original training files _before_ dataset creation -
```
- dir train
- dir A (illustrations)
- dir B (SignWriting)
- prompt.json containing:
{"source": "B/file.png", "target": "A/file.png", "prompt": "..."}
```
2. here are features _after_ dataset creation -
```
"features": {
"control_image": {
"_type": "Image"
},
"image": {
"_type": "Image"
},
"caption": {
"dtype": "string",
"_type": "Value"
}
```
3. I've also attempted to upload the dataset to huggingface with the same error output
### Steps to reproduce the bug
1. [dataset creation script](https://github.com/sign-language-processing/signwriting-illustration/blob/main/signwriting_illustration/controlnet_huggingface/dataset.py)
2. controlnet [training script](examples/controlnet/train_controlnet.py) used
3. training parameters -
! accelerate launch diffusers/examples/controlnet/train_controlnet.py \
--pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \
--output_dir="$OUTPUT_DIR" \
--train_data_dir="$HF_DATASET_DIR" \
--conditioning_image_column=control_image \
--image_column=image \
--caption_column=caption \
--resolution=512\
--learning_rate=1e-5 \
--validation_image "./validation/0a4b3c71265bb3a726457837428dda78.png" "./validation/0a5922fe2c638e6776bd62f623145004.png" "./validation/1c9f1a53106f64c682cf5d009ee7156f.png" \
--validation_prompt "An illustration of a man with short hair" "An illustration of a woman with short hair" "An illustration of Barack Obama" \
--train_batch_size=4 \
--num_train_epochs=500 \
--tracker_project_name="sd-controlnet-signwriting-test" \
--hub_model_id="sarahahtee/signwriting-illustration-test" \
--checkpointing_steps=5000 \
--validation_steps=1000 \
--report_to wandb \
--push_to_hub
4. command -
` sbatch --export=HUGGINGFACE_TOKEN=hf_token,WANDB_API_KEY=api_key script.sh`
### Expected behavior
```
11/25/2024 17:12:18 - INFO - __main__ - Initializing controlnet weights from unet
Generating train split: 1 examples [00:00, 334.85 examples/s]
Traceback (most recent call last):
File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 1189, in <module>
main(args)
File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 923, in main
train_dataset = make_train_dataset(args, tokenizer, accelerator)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 639, in make_train_dataset
raise ValueError(
ValueError: `--image_column` value 'image' not found in dataset columns. Dataset columns are: _data_files, _fingerprint, _format_columns, _format_kwargs, _format_type, _output_all_columns, _split
```
### Environment info
accelerate 1.1.1
huggingface-hub 0.26.2
python 3.11
torch 2.5.1
transformers 4.46.2
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7298/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7298/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/6857
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/6857/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/6857/comments
|
https://api.github.com/repos/huggingface/datasets/issues/6857/events
|
https://github.com/huggingface/datasets/pull/6857
| 2,274,849,730
|
PR_kwDODunzps5uUooF
| 6,857
|
Fix line-endings in tests on Windows
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6857). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005050 / 0.011353 (-0.006303) | 0.003400 / 0.011008 (-0.007609) | 0.063488 / 0.038508 (0.024980) | 0.029112 / 0.023109 (0.006002) | 0.245872 / 0.275898 (-0.030026) | 0.270682 / 0.323480 (-0.052798) | 0.003145 / 0.007986 (-0.004841) | 0.002671 / 0.004328 (-0.001658) | 0.048862 / 0.004250 (0.044612) | 0.044330 / 0.037052 (0.007278) | 0.269066 / 0.258489 (0.010577) | 0.294806 / 0.293841 (0.000965) | 0.027717 / 0.128546 (-0.100829) | 0.010189 / 0.075646 (-0.065458) | 0.206853 / 0.419271 (-0.212419) | 0.035655 / 0.043533 (-0.007877) | 0.254554 / 0.255139 (-0.000585) | 0.275104 / 0.283200 (-0.008095) | 0.018786 / 0.141683 (-0.122897) | 1.147165 / 1.452155 (-0.304989) | 1.202755 / 1.492716 (-0.289961) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094693 / 0.018006 (0.076687) | 0.303049 / 0.000490 (0.302559) | 0.000217 / 0.000200 (0.000017) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018375 / 0.037411 (-0.019036) | 0.061080 / 0.014526 (0.046554) | 0.082140 / 0.176557 (-0.094416) | 0.119962 / 0.737135 (-0.617173) | 0.074596 / 0.296338 (-0.221743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278483 / 0.215209 (0.063274) | 2.757734 / 2.077655 (0.680079) | 1.431875 / 1.504120 (-0.072245) | 1.320315 / 1.541195 (-0.220879) | 1.319433 / 1.468490 (-0.149058) | 0.566134 / 4.584777 (-4.018643) | 2.407416 / 3.745712 (-1.338296) | 2.765087 / 5.269862 (-2.504775) | 1.727335 / 4.565676 (-2.838341) | 0.065267 / 0.424275 (-0.359008) | 0.005466 / 0.007607 (-0.002141) | 0.336667 / 0.226044 (0.110622) | 3.311721 / 2.268929 (1.042792) | 1.768960 / 55.444624 (-53.675664) | 1.510854 / 6.876477 (-5.365623) | 1.499345 / 2.142072 (-0.642728) | 0.649205 / 4.805227 (-4.156022) | 0.118920 / 6.500664 (-6.381744) | 0.041570 / 0.075469 (-0.033899) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976127 / 1.841788 (-0.865660) | 11.646120 / 8.074308 (3.571812) | 9.710204 / 10.191392 (-0.481188) | 0.129081 / 0.680424 (-0.551342) | 0.013874 / 0.534201 (-0.520327) | 0.287044 / 0.579283 (-0.292239) | 0.268684 / 0.434364 (-0.165680) | 0.328465 / 0.540337 (-0.211872) | 0.420433 / 1.386936 (-0.966503) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005380 / 0.011353 (-0.005973) | 0.003582 / 0.011008 (-0.007427) | 0.049539 / 0.038508 (0.011031) | 0.032363 / 0.023109 (0.009253) | 0.277697 / 0.275898 (0.001799) | 0.303861 / 0.323480 (-0.019618) | 0.004226 / 0.007986 (-0.003759) | 0.002749 / 0.004328 (-0.001579) | 0.049404 / 0.004250 (0.045153) | 0.040602 / 0.037052 (0.003550) | 0.292995 / 0.258489 (0.034506) | 0.317958 / 0.293841 (0.024117) | 0.030052 / 0.128546 (-0.098494) | 0.010179 / 0.075646 (-0.065467) | 0.058600 / 0.419271 (-0.360672) | 0.033202 / 0.043533 (-0.010331) | 0.282474 / 0.255139 (0.027335) | 0.299330 / 0.283200 (0.016130) | 0.017612 / 0.141683 (-0.124071) | 1.160199 / 1.452155 (-0.291955) | 1.193248 / 1.492716 (-0.299468) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093450 / 0.018006 (0.075443) | 0.311391 / 0.000490 (0.310901) | 0.000208 / 0.000200 (0.000008) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022045 / 0.037411 (-0.015366) | 0.075238 / 0.014526 (0.060712) | 0.086648 / 0.176557 (-0.089908) | 0.128595 / 0.737135 (-0.608540) | 0.088785 / 0.296338 (-0.207553) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283928 / 0.215209 (0.068719) | 2.780663 / 2.077655 (0.703008) | 1.517870 / 1.504120 (0.013751) | 1.402606 / 1.541195 (-0.138588) | 1.408382 / 1.468490 (-0.060108) | 0.579216 / 4.584777 (-4.005560) | 0.979349 / 3.745712 (-2.766363) | 2.847551 / 5.269862 (-2.422311) | 1.774713 / 4.565676 (-2.790963) | 0.064635 / 0.424275 (-0.359640) | 0.005038 / 0.007607 (-0.002569) | 0.341763 / 0.226044 (0.115719) | 3.351240 / 2.268929 (1.082311) | 1.871082 / 55.444624 (-53.573542) | 1.592683 / 6.876477 (-5.283794) | 1.619814 / 2.142072 (-0.522259) | 0.661628 / 4.805227 (-4.143599) | 0.118287 / 6.500664 (-6.382377) | 0.041289 / 0.075469 (-0.034180) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.010075 / 1.841788 (-0.831712) | 11.949132 / 8.074308 (3.874824) | 10.004906 / 10.191392 (-0.186486) | 0.138622 / 0.680424 (-0.541802) | 0.015134 / 0.534201 (-0.519067) | 0.286300 / 0.579283 (-0.292984) | 0.125163 / 0.434364 (-0.309201) | 0.378641 / 0.540337 (-0.161696) | 0.422805 / 1.386936 (-0.964131) |\n\n</details>\n</details>\n\n\n"
] | 2024-05-02T07:49:15Z
| 2024-05-02T11:49:35Z
| 2024-05-02T11:43:00Z
|
MEMBER
| null | null | null |
EDIT:
~~Fix test_delete_from_hub on Windows by passing explicit encoding.~~
Fix test_delete_from_hub and test_xgetsize_private by uploading the README file content directly (encoding the string), instead of writing a local file and uploading it.
Note that local files created on Windows will have "\r\n" line endings, instead of "\n".
These are no longer transformed to "\n" by the Hub.
Fix #6856.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/6857/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/6857/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/6857.diff",
"html_url": "https://github.com/huggingface/datasets/pull/6857",
"merged_at": "2024-05-02T11:43:00Z",
"patch_url": "https://github.com/huggingface/datasets/pull/6857.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6857"
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.