RoboChallengeAI commited on
Commit
9b1d7fb
Β·
verified Β·
1 Parent(s): 4701daf

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +104 -5
README.md CHANGED
@@ -1,8 +1,107 @@
1
- # convert_to_lerobot
2
- This script generates a ready-to-use [LeRobot](https://github.com/huggingface/lerobot) dataset repository from RoboChallenge dataset.
3
 
4
- ## Prerequisites
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - Python 3.9+ with the following packages:
7
  - `lerobot`
8
  - `opencv-python`
@@ -14,7 +113,7 @@ pip install lerobot opencv-python numpy
14
  export LEROBOT_HOME="/path/to/lerobot_home"
15
  ```
16
 
17
- ## Usage
18
 
19
  Run the converter from the repository root (or provide an absolute path):
20
 
@@ -25,6 +124,6 @@ python convert_to_lerobot.py \
25
  --frame-interval 1
26
  ```
27
 
28
- ## Output
29
  - Frames and metadata are saved to $LEROBOT_HOME/<repo-name>.
30
  - At the end, the script calls dataset.consolidate(run_compute_stats=False). If you require aggregated statistics, run it with run_compute_stats=True or execute a separate stats job.
 
 
 
1
 
2
+ # RoboChallenge Dataset
3
 
4
+ ## Dataset Structure
5
+ ### Available Tasks
6
+
7
+ The dataset includes 30 diverse manipulation tasks (Table30):
8
+
9
+ - `arrange_flowers`
10
+ - `arrange_fruits_in_basket`
11
+ - `arrange_paper_cups`
12
+ - `clean_dining_table`
13
+ - `fold_dishcloth`
14
+ - `hang_toothbrush_cup`
15
+ - `make_vegetarian_sandwich`
16
+ - `move_objects_into_box`
17
+ - `open_the_drawer`
18
+ - `place_shoes_on_rack`
19
+ - `plug_in_network_cable`
20
+ - `pour_fries_into_plate`
21
+ - `press_three_buttons`
22
+ - `put_cup_on_coaster`
23
+ - `put_opener_in_drawer`
24
+ - `put_pen_into_pencil_case`
25
+ - `scan_QR_code`
26
+ - `search_green_boxes`
27
+ - `set_the_plates`
28
+ - `shred_scrap_paper`
29
+ - `sort_books`
30
+ - `sort_electronic_products`
31
+ - `stack_bowls`
32
+ - `stack_color_blocks`
33
+ - `stick_tape_to_box`
34
+ - `sweep_the_rubbish`
35
+ - `turn_on_faucet`
36
+ - `turn_on_light_switch`
37
+ - `water_potted_plant`
38
+ - `wipe_the_table`
39
+
40
+ ### Hierarchy
41
+ The dataset is organized by tasks, with each task containing multiple demonstration episodes:
42
+ ```
43
+ .
44
+ β”œβ”€β”€ <task_name>/ # e.g., arrange_flowers, fold_dishcloth
45
+ β”‚ β”œβ”€β”€ task_desc.json # Task description
46
+ β”‚ β”œβ”€β”€ meta/ # Task-level metadata
47
+ β”‚ β”‚ β”œβ”€β”€ task_info.json
48
+ β”‚ └── data/ # Episode data
49
+ β”‚ β”œβ”€β”€ episode_000000/ # Individual episode
50
+ β”‚ β”‚ β”œβ”€β”€ meta/
51
+ β”‚ β”‚ β”‚ └── episode_meta.json # Episode metadata
52
+ β”‚ β”‚ β”œβ”€β”€ states/
53
+ β”‚ β”‚ β”‚ └── states.jsonl # Robot states
54
+ β”‚ β”‚ └── videos/
55
+ β”‚ β”‚ β”œβ”€β”€ arm_realsense_rgb.mp4 # Arm-mounted camera
56
+ β”‚ β”‚ β”œβ”€β”€ global_realsense_rgb.mp4 # Global view camera
57
+ β”‚ β”‚ └── right_realsense_rgb.mp4 # Right-side camera (BEV)
58
+ β”‚ β”œβ”€β”€ episode_000001/
59
+ β”‚ └── ...
60
+ β”œβ”€β”€ convert_to_lerobot.py # Conversion script
61
+ └── README.md
62
+ ```
63
+ ### JSON File Format
64
+ `task_info.json`
65
+ ```json
66
+ {
67
+ "robot_id": "arx5_1", // Robot model identifier
68
+ "task_desc": {
69
+ "task_name": "arrange_flowers", // Task identifier
70
+ "prompt": "insert the three flowers on the table into the vase one by one",
71
+ "scoring": "...", // Scoring criteria
72
+ "task_tag": [ // Task characteristics
73
+ "repeated",
74
+ "single-arm",
75
+ "ARX5",
76
+ "precise3d"
77
+ ]
78
+ },
79
+ "video_info": {
80
+ "fps": 30, // Video frame rate
81
+ "ext": "mp4", // Video format
82
+ "encoding": {
83
+ "vcodec": "libx264", // Video codec
84
+ "pix_fmt": "yuv420p" // Pixel format
85
+ }
86
+ }
87
+ }
88
+ ```
89
+ `episode_meta.json`
90
+ ```json
91
+ {
92
+ "episode_index": 0, // Episode number
93
+ "start_time": 1750405586.3430033, // Unix timestamp (start)
94
+ "end_time": 1750405642.5247612, // Unix timestamp (end)
95
+ "frames": 1672 // Total video frames
96
+ }
97
+ ```
98
+
99
+
100
+ ## Convert to Lerobot
101
+ While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities.
102
+ The `convert_to_lerobot.py` script we provided generates a ready-to-use [LeRobot](https://github.com/huggingface/lerobot) dataset repository from RoboChallenge dataset.
103
+
104
+ ### Prerequisites
105
  - Python 3.9+ with the following packages:
106
  - `lerobot`
107
  - `opencv-python`
 
113
  export LEROBOT_HOME="/path/to/lerobot_home"
114
  ```
115
 
116
+ ### Usage
117
 
118
  Run the converter from the repository root (or provide an absolute path):
119
 
 
124
  --frame-interval 1
125
  ```
126
 
127
+ ### Output
128
  - Frames and metadata are saved to $LEROBOT_HOME/<repo-name>.
129
  - At the end, the script calls dataset.consolidate(run_compute_stats=False). If you require aggregated statistics, run it with run_compute_stats=True or execute a separate stats job.