Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
|
| 2 |
# RoboChallenge Dataset
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
## Dataset Structure
|
| 5 |
### Available Tasks
|
| 6 |
-
|
| 7 |
-
The dataset includes 30 diverse manipulation tasks (Table30):
|
| 8 |
-
|
| 9 |
- `arrange_flowers`
|
| 10 |
- `arrange_fruits_in_basket`
|
| 11 |
- `arrange_paper_cups`
|
|
@@ -36,7 +34,14 @@ The dataset includes 30 diverse manipulation tasks (Table30):
|
|
| 36 |
- `turn_on_light_switch`
|
| 37 |
- `water_potted_plant`
|
| 38 |
- `wipe_the_table`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
| 40 |
### Hierarchy
|
| 41 |
The dataset is organized by tasks, with each task containing multiple demonstration episodes:
|
| 42 |
```
|
|
@@ -50,17 +55,34 @@ The dataset is organized by tasks, with each task containing multiple demonstrat
|
|
| 50 |
β β βββ meta/
|
| 51 |
β β β βββ episode_meta.json # Episode metadata
|
| 52 |
β β βββ states/
|
| 53 |
-
β β β
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
β β βββ videos/
|
| 55 |
-
β β
|
| 56 |
-
β β
|
| 57 |
-
β β
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
β βββ episode_000001/
|
| 59 |
β βββ ...
|
| 60 |
βββ convert_to_lerobot.py # Conversion script
|
| 61 |
βββ README.md
|
| 62 |
```
|
| 63 |
-
###
|
| 64 |
`task_info.json`
|
| 65 |
```json
|
| 66 |
{
|
|
@@ -96,20 +118,68 @@ The dataset is organized by tasks, with each task containing multiple demonstrat
|
|
| 96 |
}
|
| 97 |
```
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
## Convert to Lerobot
|
| 101 |
While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities.
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
### Prerequisites
|
| 105 |
- Python 3.9+ with the following packages:
|
| 106 |
-
- `lerobot`
|
| 107 |
- `opencv-python`
|
| 108 |
- `numpy`
|
| 109 |
- Configure `$LEROBOT_HOME` (defaults to `~/.lerobot` if unset).
|
| 110 |
|
| 111 |
```bash
|
| 112 |
-
pip install lerobot opencv-python numpy
|
| 113 |
export LEROBOT_HOME="/path/to/lerobot_home"
|
| 114 |
```
|
| 115 |
|
|
@@ -125,5 +195,5 @@ python convert_to_lerobot.py \
|
|
| 125 |
```
|
| 126 |
|
| 127 |
### Output
|
| 128 |
-
- Frames and metadata are saved to
|
| 129 |
-
- At the end, the script calls dataset.consolidate(run_compute_stats=False)
|
|
|
|
| 1 |
|
| 2 |
# RoboChallenge Dataset
|
| 3 |
+
## Tasks and Embodiments
|
| 4 |
+
The dataset includes 30 diverse manipulation tasks (Table30) across 4 embodiments:
|
| 5 |
|
|
|
|
| 6 |
### Available Tasks
|
|
|
|
|
|
|
|
|
|
| 7 |
- `arrange_flowers`
|
| 8 |
- `arrange_fruits_in_basket`
|
| 9 |
- `arrange_paper_cups`
|
|
|
|
| 34 |
- `turn_on_light_switch`
|
| 35 |
- `water_potted_plant`
|
| 36 |
- `wipe_the_table`
|
| 37 |
+
### Embodiments
|
| 38 |
+
- **ARX5** - Single-arm with triple camera setup (wrist + global + right-side views)
|
| 39 |
+
- **UR5** - Single-arm with dual camera setup (wrist + global views)
|
| 40 |
+
- **FRANKA** - Single-arm with triple perspective setup (wrist + main + side views)
|
| 41 |
+
- **ALOHA** - Dual-arm with triple wrist camera setup (left wrist + right wrist + global views)
|
| 42 |
+
|
| 43 |
|
| 44 |
+
## Dataset Structure
|
| 45 |
### Hierarchy
|
| 46 |
The dataset is organized by tasks, with each task containing multiple demonstration episodes:
|
| 47 |
```
|
|
|
|
| 55 |
β β βββ meta/
|
| 56 |
β β β βββ episode_meta.json # Episode metadata
|
| 57 |
β β βββ states/
|
| 58 |
+
β β β # for single-arm (ARX5, UR5, Franka)
|
| 59 |
+
β β β βββ states.jsonl # Single-arm robot states
|
| 60 |
+
β β β # for dual-arm (ALOHA)
|
| 61 |
+
β β β βββ left_states.jsonl # Left arm states
|
| 62 |
+
β β β βββ right_states.jsonl # Right arm states
|
| 63 |
β β βββ videos/
|
| 64 |
+
β β # Video configurations vary by robot model:
|
| 65 |
+
β β # ARX5
|
| 66 |
+
β β βββ arm_realsense_rgb.mp4 # Wrist view
|
| 67 |
+
β β βββ global_realsense_rgb.mp4 # Global view
|
| 68 |
+
β β βββ right_realsense_rgb.mp4 # Side view
|
| 69 |
+
β β # UR5
|
| 70 |
+
β β βββ global_realsense_rgb.mp4 # Global view
|
| 71 |
+
β β βββ handeye_realsense_rgb.mp4 # Wrist view
|
| 72 |
+
β β # Franka
|
| 73 |
+
β β βββ handeye_realsense_rgb.mp4 # Wrist view
|
| 74 |
+
β β βββ main_realsense_rgb.mp4 # Global view
|
| 75 |
+
β β βββ side_realsense_rgb.mp4 # Side view
|
| 76 |
+
β β # ALOHA
|
| 77 |
+
β β βββ cam_high_rgb.mp4 # Global view
|
| 78 |
+
β β βββ cam_wrist_left_rgb.mp4 # Left wrist view
|
| 79 |
+
β β βββ cam_wrist_right_rgb.mp4 # Right wrist view
|
| 80 |
β βββ episode_000001/
|
| 81 |
β βββ ...
|
| 82 |
βββ convert_to_lerobot.py # Conversion script
|
| 83 |
βββ README.md
|
| 84 |
```
|
| 85 |
+
### Metadata Schema
|
| 86 |
`task_info.json`
|
| 87 |
```json
|
| 88 |
{
|
|
|
|
| 118 |
}
|
| 119 |
```
|
| 120 |
|
| 121 |
+
### Robot States Schema
|
| 122 |
+
Each episode contains states data stored in JSONL format. Depending on the embodiment, the structure differs slightly:
|
| 123 |
+
- **Single-arm robots (ARX5, UR5, Franka)** β `states.jsonl`
|
| 124 |
+
- **Dual-arm robots (ALOHA)** β `left_states.jsonl` and `right_states.jsonl`
|
| 125 |
+
|
| 126 |
+
Each file records the robotβs proprioceptive signals per frame, including joint angles,
|
| 127 |
+
end-effector poses, gripper states, and timestamps. The exact field definitions and coordinate conventions vary by platform,
|
| 128 |
+
as summarized below.
|
| 129 |
+
|
| 130 |
+
#### ARX5
|
| 131 |
+
| Data Name | Data Key |Shape | Semantics |
|
| 132 |
+
|:---------:|:-----:|:----:|:----:|
|
| 133 |
+
| Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
|
| 134 |
+
| Pose control | ee_positions | (6,) | End effector pose (tx, ty, tz, roll, pitch, yaw), where (roll, pitch, yaw) is relative euler angles from the arm base coordinate. X : back to front; Y: right to left; Z: down to up. |
|
| 135 |
+
| Gripper control |gripper | (1,) | Actual gripper width measurement in meter. |
|
| 136 |
+
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
|
| 137 |
+
|
| 138 |
+
#### UR5
|
| 139 |
+
| Data Name | Data Key |Shape | Semantics |
|
| 140 |
+
|:---------:|:-----:|:----:|:----:|
|
| 141 |
+
| Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
|
| 142 |
+
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : front to back; Y: left to right; Z: down to up. |
|
| 143 |
+
| Gripper control |gripper | (1,) | Gripper closing angle, 0 for fully open, 255 for fully closed. |
|
| 144 |
+
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
|
| 145 |
+
|
| 146 |
+
#### Franka
|
| 147 |
+
| Data Name | Data Key |Shape | Semantics |
|
| 148 |
+
|:---------:|:-----:|:----:|:----:|
|
| 149 |
+
| Joint control |joint_positions | (7,) | Joint angle (in radians) from the base to the end effector. |
|
| 150 |
+
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left; Z: down to up. |
|
| 151 |
+
| Gripper control |gripper | (2,) | Gripper trigger signals in the (close_button, open_button) order. |
|
| 152 |
+
| Gripper width |gripper_width | (1,) | Actual gripper width measurement |
|
| 153 |
+
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
#### ALOHA
|
| 157 |
+
| Data Name | Data Key |Shape | Semantics |
|
| 158 |
+
|:---------:|:-----:|:----:|:----:|
|
| 159 |
+
| Master joint control |joint_positions | (6,) | Maste joint angle (in radians) from the base to the end effector. |
|
| 160 |
+
|Joint velocity| joint_vel | (7,) | Speed of 6 joint and gripper |
|
| 161 |
+
| Puppet joint control |qpos | (6,) | Puppet joint angle (in radians) from the base to the end effector. |
|
| 162 |
+
| Puppet pose control | ee_pose_quaternion | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left ; Z: down to up. |
|
| 163 |
+
| Puppet pose control | ee_pose_rpy | (6,) | End effector pose (tx, ty, tz, rr, rp, ry), where (tx, ty, tz) is relative position from the arm base coordinate , (rr, rp, ry) is euler (in radians). X : back to front; Y: right to left ; Z: down to up. |
|
| 164 |
+
| Gripper control |gripper | (1,) | Actual gripper width measurement in meter.|
|
| 165 |
+
| Time stamp |timestamp | (1,) | Floating point timestamp (in mileseconds) of each frame. |
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
## Convert to LeRobot
|
| 169 |
|
|
|
|
| 170 |
While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities.
|
| 171 |
+
|
| 172 |
+
The example script **`convert_to_lerobot.py`** converts **ARX5** data to the LeRobot dataset as a example. For other robot embodiments (UR5, Franka, ALOHA), you can adapt the script accordingly.
|
| 173 |
|
| 174 |
### Prerequisites
|
| 175 |
- Python 3.9+ with the following packages:
|
| 176 |
+
- `lerobot==0.1.0`
|
| 177 |
- `opencv-python`
|
| 178 |
- `numpy`
|
| 179 |
- Configure `$LEROBOT_HOME` (defaults to `~/.lerobot` if unset).
|
| 180 |
|
| 181 |
```bash
|
| 182 |
+
pip install lerobot==0.1.0 opencv-python numpy
|
| 183 |
export LEROBOT_HOME="/path/to/lerobot_home"
|
| 184 |
```
|
| 185 |
|
|
|
|
| 195 |
```
|
| 196 |
|
| 197 |
### Output
|
| 198 |
+
- Frames and metadata are saved to `$LEROBOT_HOME/<repo-name>`.
|
| 199 |
+
- At the end, the script calls `dataset.consolidate(run_compute_stats=False)`. If you require aggregated statistics, run it with `run_compute_stats=True` or execute a separate stats job.
|