|
import numpy as np
|
|
import pickle
|
|
|
|
|
|
result=[]
|
|
pad=[-1000]*52
|
|
loacl_gap=10000
|
|
|
|
def process_time(timestamp):
|
|
t = timestamp.split()
|
|
|
|
t = t[-1].split(":")
|
|
h = float(t[0])
|
|
m = float(t[1])
|
|
t = t[-1].split(".")
|
|
s = float(t[0])
|
|
ms = float(t[1])
|
|
|
|
return h * 60 * 60 * 100 + m * 60 * 100 + s * 100 + ms
|
|
|
|
|
|
with open("./csi_data.pkl", 'rb') as f:
|
|
csi = pickle.load(f)
|
|
|
|
for data in csi:
|
|
csi_time=data['csi_time']
|
|
local_time=data['csi_local_time']
|
|
magnitude=data['magnitude']
|
|
phase=data['phase']
|
|
people=data['people']
|
|
|
|
last_local=None
|
|
last_glob=None
|
|
current_magnitude=[]
|
|
current_phase=[]
|
|
current_timestamp=[]
|
|
global_timestamp=[]
|
|
for i in range(len(csi_time)):
|
|
if last_local is None:
|
|
last_local=local_time[i]
|
|
last_glob=process_time(csi_time[i])
|
|
current_magnitude.append(magnitude[i])
|
|
current_phase.append(phase[i])
|
|
current_timestamp.append(local_time[i])
|
|
else:
|
|
local = local_time[i]
|
|
glob = process_time(csi_time[i])
|
|
num=round((local-last_local-loacl_gap)/loacl_gap)
|
|
if num>0:
|
|
delta=(local-last_local)/(num+1)
|
|
delta_glob=(glob-last_glob)/(num+1)
|
|
for j in range(num):
|
|
current_magnitude.append(pad)
|
|
current_phase.append(pad)
|
|
current_timestamp.append(current_timestamp[-1] + delta)
|
|
global_timestamp.append(global_timestamp[-1]+delta_glob)
|
|
current_magnitude.append(magnitude[i])
|
|
current_phase.append(phase[i])
|
|
current_timestamp.append(local)
|
|
global_timestamp.append(glob)
|
|
last_local = local
|
|
last_glob = glob
|
|
|
|
print(len(current_magnitude))
|
|
|
|
result.append({
|
|
'time': np.array(current_timestamp),
|
|
'global_time': np.array(global_timestamp),
|
|
'people': people,
|
|
'magnitude': np.array(current_magnitude),
|
|
'phase': np.array(current_phase)
|
|
})
|
|
|
|
output_file = './data_sequence.pkl'
|
|
with open(output_file, 'wb') as f:
|
|
pickle.dump(result, f) |