Datasets:
Create EEG-semantic-text-relevance.py
Browse files- EEG-semantic-text-relevance.py +157 -0
EEG-semantic-text-relevance.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# TODO: Add BibTeX citation
|
6 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
7 |
+
_CITATION = """\
|
8 |
+
@InProceedings{Submitted to ICLR 2025,
|
9 |
+
title = {An EEG dataset of word-level brain responses for
|
10 |
+
semantic text relevance},
|
11 |
+
author={},
|
12 |
+
year={2024}
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
# You can copy an official description
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
A dataset containing 23,270 time-locked (0.7s) word-level EEG
|
19 |
+
recordings acquired from participants who read both text that was
|
20 |
+
semantically relevant and irrelevant to self-selected topics.
|
21 |
+
"""
|
22 |
+
|
23 |
+
_HOMEPAGE = "https://anonymous.4open.science/r/EEG-semantic-text-relevance-651D"
|
24 |
+
|
25 |
+
_LICENSE = "apache-2.0"
|
26 |
+
|
27 |
+
_URLS = {
|
28 |
+
"data": {
|
29 |
+
"eeg": "./data/cleanedEEG.npy",
|
30 |
+
"metadata": "./data/metadataForCleanedEEG.pkl"
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
class EEGSemanticTextRelevance(datasets.GeneratorBasedBuilder):
|
36 |
+
"""
|
37 |
+
A dataset containing 23,270 time-locked (0.7s) word-level EEG
|
38 |
+
recordings acquired from 15 participants who read both text that was
|
39 |
+
semantically relevant and irrelevant to self-selected topics."""
|
40 |
+
|
41 |
+
VERSION = datasets.Version("1.1.0")
|
42 |
+
|
43 |
+
# This is an example of a dataset with multiple configurations.
|
44 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
45 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
46 |
+
|
47 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
48 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
49 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
50 |
+
|
51 |
+
# You will be able to load one or the other configurations in the following list with
|
52 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
53 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
datasets.BuilderConfig(name="data", version=VERSION,
|
56 |
+
description="Load the preprocessed (data) EEG data"),
|
57 |
+
]
|
58 |
+
|
59 |
+
DEFAULT_CONFIG_NAME = "data" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
60 |
+
|
61 |
+
def _info(self):
|
62 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
63 |
+
if self.config.name == "data": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
64 |
+
features = datasets.Features(
|
65 |
+
{
|
66 |
+
"event": datasets.Value("int64"),
|
67 |
+
"word": datasets.Value("string"),
|
68 |
+
"topic": datasets.Value("string"),
|
69 |
+
"selected_topic": datasets.Value("string"),
|
70 |
+
"semantic_relevance": datasets.Value("int64"),
|
71 |
+
"interestingness": datasets.Value("int64"),
|
72 |
+
"pre-knowledge": datasets.Value("int64"),
|
73 |
+
"sentence_number": datasets.Value("int64"),
|
74 |
+
"participant": datasets.Value("string"),
|
75 |
+
"eeg": datasets.Array2D(shape=(32, 2001), dtype="float64"),
|
76 |
+
# These are the features of your dataset like images, labels ...
|
77 |
+
}
|
78 |
+
)
|
79 |
+
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
80 |
+
raise ValueError("Not implemented.")
|
81 |
+
|
82 |
+
return datasets.DatasetInfo(
|
83 |
+
# This is the description that will appear on the datasets page.
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
# This defines the different columns of the dataset and their types
|
86 |
+
features=features,
|
87 |
+
# Here we define them above because they are different between the two configurations
|
88 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
89 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
90 |
+
# supervised_keys=("sentence", "label"),
|
91 |
+
# Homepage of the dataset for documentation
|
92 |
+
homepage=_HOMEPAGE,
|
93 |
+
# License for the dataset if available
|
94 |
+
license=_LICENSE,
|
95 |
+
# Citation for the dataset
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager):
|
100 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
101 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
102 |
+
|
103 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
104 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
105 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
106 |
+
urls = _URLS[self.config.name]
|
107 |
+
# data_dir = dl_manager.download_and_extract(urls)
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TRAIN,
|
111 |
+
# These kwargs will be passed to _generate_examples
|
112 |
+
gen_kwargs={
|
113 |
+
"filepath_eeg": urls["eeg"],
|
114 |
+
"filepath_metadata": urls["metadata"],
|
115 |
+
},
|
116 |
+
),
|
117 |
+
# datasets.SplitGenerator(
|
118 |
+
# name=datasets.Split.VALIDATION,
|
119 |
+
# # These kwargs will be passed to _generate_examples
|
120 |
+
# gen_kwargs={
|
121 |
+
# "filepath": os.path.join(data_dir, "dev.jsonl"),
|
122 |
+
# "split": "dev",
|
123 |
+
# },
|
124 |
+
# ),
|
125 |
+
# datasets.SplitGenerator(
|
126 |
+
# name=datasets.Split.TEST,
|
127 |
+
# # These kwargs will be passed to _generate_examples
|
128 |
+
# gen_kwargs={
|
129 |
+
# "filepath": os.path.join(data_dir, "test.jsonl"),
|
130 |
+
# "split": "test"
|
131 |
+
# },
|
132 |
+
# ),
|
133 |
+
]
|
134 |
+
|
135 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
136 |
+
def _generate_examples(self, filepath_eeg, filepath_metadata):
|
137 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
138 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
139 |
+
eeg_data = np.load(filepath_eeg)
|
140 |
+
metadata = pd.read_pickle(filepath_metadata)
|
141 |
+
for key, row in metadata.iterrows():
|
142 |
+
if self.config.name == "data":
|
143 |
+
# Yields examples as (key, example) tuples
|
144 |
+
yield key, {
|
145 |
+
"event": row["event"],
|
146 |
+
"word": row["word"],
|
147 |
+
"topic": row["topic"],
|
148 |
+
"selected_topic": row["selected_topic"],
|
149 |
+
"semantic_relevance": row["semantic_relevance"],
|
150 |
+
"interestingness": row["interestingness"],
|
151 |
+
"pre-knowledge": row["pre-knowledge"],
|
152 |
+
"sentence_number": row["sentence_number"],
|
153 |
+
"participant": row["participant"],
|
154 |
+
"eeg": eeg_data[key],
|
155 |
+
}
|
156 |
+
else:
|
157 |
+
raise ValueError("Not implemented.")
|