Quoron commited on
Commit
f0f148e
·
verified ·
1 Parent(s): ea2be88

Create EEG-semantic-text-relevance.py

Browse files
Files changed (1) hide show
  1. EEG-semantic-text-relevance.py +157 -0
EEG-semantic-text-relevance.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import numpy as np
3
+ import pandas as pd
4
+
5
+ # TODO: Add BibTeX citation
6
+ # Find for instance the citation on arxiv or on the dataset repo/website
7
+ _CITATION = """\
8
+ @InProceedings{Submitted to ICLR 2025,
9
+ title = {An EEG dataset of word-level brain responses for
10
+ semantic text relevance},
11
+ author={},
12
+ year={2024}
13
+ }
14
+ """
15
+
16
+ # You can copy an official description
17
+ _DESCRIPTION = """\
18
+ A dataset containing 23,270 time-locked (0.7s) word-level EEG
19
+ recordings acquired from participants who read both text that was
20
+ semantically relevant and irrelevant to self-selected topics.
21
+ """
22
+
23
+ _HOMEPAGE = "https://anonymous.4open.science/r/EEG-semantic-text-relevance-651D"
24
+
25
+ _LICENSE = "apache-2.0"
26
+
27
+ _URLS = {
28
+ "data": {
29
+ "eeg": "./data/cleanedEEG.npy",
30
+ "metadata": "./data/metadataForCleanedEEG.pkl"
31
+ }
32
+ }
33
+
34
+
35
+ class EEGSemanticTextRelevance(datasets.GeneratorBasedBuilder):
36
+ """
37
+ A dataset containing 23,270 time-locked (0.7s) word-level EEG
38
+ recordings acquired from 15 participants who read both text that was
39
+ semantically relevant and irrelevant to self-selected topics."""
40
+
41
+ VERSION = datasets.Version("1.1.0")
42
+
43
+ # This is an example of a dataset with multiple configurations.
44
+ # If you don't want/need to define several sub-sets in your dataset,
45
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
46
+
47
+ # If you need to make complex sub-parts in the datasets with configurable options
48
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
49
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
50
+
51
+ # You will be able to load one or the other configurations in the following list with
52
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
53
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
54
+ BUILDER_CONFIGS = [
55
+ datasets.BuilderConfig(name="data", version=VERSION,
56
+ description="Load the preprocessed (data) EEG data"),
57
+ ]
58
+
59
+ DEFAULT_CONFIG_NAME = "data" # It's not mandatory to have a default configuration. Just use one if it make sense.
60
+
61
+ def _info(self):
62
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
63
+ if self.config.name == "data": # This is the name of the configuration selected in BUILDER_CONFIGS above
64
+ features = datasets.Features(
65
+ {
66
+ "event": datasets.Value("int64"),
67
+ "word": datasets.Value("string"),
68
+ "topic": datasets.Value("string"),
69
+ "selected_topic": datasets.Value("string"),
70
+ "semantic_relevance": datasets.Value("int64"),
71
+ "interestingness": datasets.Value("int64"),
72
+ "pre-knowledge": datasets.Value("int64"),
73
+ "sentence_number": datasets.Value("int64"),
74
+ "participant": datasets.Value("string"),
75
+ "eeg": datasets.Array2D(shape=(32, 2001), dtype="float64"),
76
+ # These are the features of your dataset like images, labels ...
77
+ }
78
+ )
79
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
80
+ raise ValueError("Not implemented.")
81
+
82
+ return datasets.DatasetInfo(
83
+ # This is the description that will appear on the datasets page.
84
+ description=_DESCRIPTION,
85
+ # This defines the different columns of the dataset and their types
86
+ features=features,
87
+ # Here we define them above because they are different between the two configurations
88
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
89
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
90
+ # supervised_keys=("sentence", "label"),
91
+ # Homepage of the dataset for documentation
92
+ homepage=_HOMEPAGE,
93
+ # License for the dataset if available
94
+ license=_LICENSE,
95
+ # Citation for the dataset
96
+ citation=_CITATION,
97
+ )
98
+
99
+ def _split_generators(self, dl_manager):
100
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
101
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
102
+
103
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
104
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
105
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
106
+ urls = _URLS[self.config.name]
107
+ # data_dir = dl_manager.download_and_extract(urls)
108
+ return [
109
+ datasets.SplitGenerator(
110
+ name=datasets.Split.TRAIN,
111
+ # These kwargs will be passed to _generate_examples
112
+ gen_kwargs={
113
+ "filepath_eeg": urls["eeg"],
114
+ "filepath_metadata": urls["metadata"],
115
+ },
116
+ ),
117
+ # datasets.SplitGenerator(
118
+ # name=datasets.Split.VALIDATION,
119
+ # # These kwargs will be passed to _generate_examples
120
+ # gen_kwargs={
121
+ # "filepath": os.path.join(data_dir, "dev.jsonl"),
122
+ # "split": "dev",
123
+ # },
124
+ # ),
125
+ # datasets.SplitGenerator(
126
+ # name=datasets.Split.TEST,
127
+ # # These kwargs will be passed to _generate_examples
128
+ # gen_kwargs={
129
+ # "filepath": os.path.join(data_dir, "test.jsonl"),
130
+ # "split": "test"
131
+ # },
132
+ # ),
133
+ ]
134
+
135
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
136
+ def _generate_examples(self, filepath_eeg, filepath_metadata):
137
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
138
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
139
+ eeg_data = np.load(filepath_eeg)
140
+ metadata = pd.read_pickle(filepath_metadata)
141
+ for key, row in metadata.iterrows():
142
+ if self.config.name == "data":
143
+ # Yields examples as (key, example) tuples
144
+ yield key, {
145
+ "event": row["event"],
146
+ "word": row["word"],
147
+ "topic": row["topic"],
148
+ "selected_topic": row["selected_topic"],
149
+ "semantic_relevance": row["semantic_relevance"],
150
+ "interestingness": row["interestingness"],
151
+ "pre-knowledge": row["pre-knowledge"],
152
+ "sentence_number": row["sentence_number"],
153
+ "participant": row["participant"],
154
+ "eeg": eeg_data[key],
155
+ }
156
+ else:
157
+ raise ValueError("Not implemented.")