|
import requests |
|
from bs4 import BeautifulSoup |
|
|
|
from csv import DictReader |
|
from pathlib import Path |
|
import re |
|
import uuid |
|
import json |
|
|
|
import db_upload |
|
import make_embeddings_upload |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_path = Path("../images_000") |
|
|
|
metadata_path = "../train_attribution.csv" |
|
image_names = {} |
|
|
|
for path in image_path.rglob('*.*'): |
|
match = re.search('.*(\w{16})\.jpg$', str(path)) |
|
image_names[match.group(1)] = path |
|
|
|
csvfile = open(metadata_path, "r", encoding='utf-8') |
|
csvlines = DictReader(csvfile) |
|
|
|
payloads_non_list = {} |
|
i= 1 |
|
for line in csvlines: |
|
if line['id'] in image_names: |
|
try: |
|
page = requests.get(line['url']) |
|
html = BeautifulSoup(page.text, features="html.parser") |
|
our_tag = html.find('a', {"data-style": "osm-intl"}) |
|
if our_tag is not None: |
|
if "data-lat" in our_tag.attrs and "data-lon" in our_tag.attrs: |
|
lat = float(our_tag.attrs["data-lat"]) |
|
lon = float(our_tag.attrs["data-lon"]) |
|
|
|
|
|
print("found one " + line['id'] + " : " + line['url'] + " coords: " + str(lat) + ", " + str(lon)) |
|
payloads_non_list[line['id']] = {"picture": line['id'], "filename": str(image_names[line['id']]), "url": line['url'], "location": {"lon": lon, "lat": lat}} |
|
except: |
|
print("Threw an exception on: " + line['id']) |
|
|
|
|
|
csvfile.close() |
|
|
|
|
|
with open('../train_attribution_geo.json', 'w') as out_file: |
|
json.dump(payloads_non_list, out_file, sort_keys=True, indent=4, |
|
ensure_ascii=False) |
|
|
|
|
|
vectors_non_list = make_embeddings_upload.get_features() |
|
|
|
ids, vectors, payloads = [], [], [] |
|
|
|
for key, payload in payloads_non_list.items(): |
|
payloads.append(payload) |
|
vectors.append(vectors_non_list[key]) |
|
ids.append(str(uuid.uuid3(uuid.NAMESPACE_DNS,payload["url"]))) |
|
|
|
|
|
uploader = db_upload.DBUpload(512, "images") |
|
|
|
uploader.upsert_vectors(ids, vectors, payloads) |
|
|
|
print("finished") |
|
|
|
|
|
|
|
|
|
|