lukawskikacper
commited on
Commit
•
d794b89
1
Parent(s):
fbcca91
First version of the dataset
Browse files- README.md +51 -0
- code/db_upload.py +36 -0
- code/geojson2qdrnt.py +118 -0
- code/main.py +77 -0
- code/make_embeddings_upload.py +76 -0
- code/payload2geojson.py +27 -0
- code/requirements.txt +79 -0
- id_payload_vector.json +3 -0
- original_download.zip +3 -0
- train_attribution_geo.json +3 -0
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pretty_name: Geo Coordinate Augmented Google-Landmarks
|
5 |
+
task_categories:
|
6 |
+
- image-classification
|
7 |
+
source_datasets:
|
8 |
+
- Google Landmarks V2
|
9 |
+
size_categories:
|
10 |
+
- < 50K
|
11 |
+
license: cc-by-4.0
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# Dataset Card for Geo Coordinate Augmented Google-Landmarks
|
16 |
+
|
17 |
+
Geo coordinates were added as data to a tar file's worth of images from the [Google Landmark V2](https://github.com/cvdfoundation/google-landmark). Not all of the
|
18 |
+
images could be geo-tagged due to lack of coordinates on the image's wikimedia page.
|
19 |
+
|
20 |
+
## Dataset Details
|
21 |
+
|
22 |
+
### Dataset Description
|
23 |
+
|
24 |
+
Geo coordinates were added as data to a tar file's worth of images from the [Google Landmark V2](https://github.com/cvdfoundation/google-landmark). There were many more images that could have
|
25 |
+
been downloaded but this dataset was found to be a good balance of data size and sample size.
|
26 |
+
|
27 |
+
The intended use for the dataset was to demonstrate using a geo-filter in Qdrant along with a image similarity search.
|
28 |
+
|
29 |
+
Not all of the images couuld be geo-tagged due to lack of coordinates on the image's wikimedia page.
|
30 |
+
We provide the raw geotagged file as a geojson document, train_attribution_geo.json.
|
31 |
+
We also provide a json file that includes the data above along with embedding vectors for the images, id_payload_vector.json.
|
32 |
+
|
33 |
+
Thingsvision was used as the library for creating the image embeddings with the following ThingVision model:
|
34 |
+
|
35 |
+
```python
|
36 |
+
model_name = 'clip'
|
37 |
+
model_parameters = {
|
38 |
+
'variant': 'ViT-B/32'
|
39 |
+
}
|
40 |
+
```
|
41 |
+
|
42 |
+
The code directory contains the Python code used to geotag the images as well as generated the vectors. It can also be used to upload the embeddings to a Qdrant DB instance. This code is NOT for production and was
|
43 |
+
more focused on quickly and correctly get the coordinates and embed the images.
|
44 |
+
|
45 |
+
The license for this data and code match the license of the original Google Landmarks V2 Dataset: CC BY 4.0 license.
|
46 |
+
|
47 |
+
## Uses
|
48 |
+
|
49 |
+
### Direct Use
|
50 |
+
|
51 |
+
The primary use is case is image similarity search with geographic filtering.
|
code/db_upload.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qdrant_client import QdrantClient
|
2 |
+
from qdrant_client.models import Distance, VectorParams
|
3 |
+
|
4 |
+
|
5 |
+
class DBUpload:
|
6 |
+
|
7 |
+
def __init__(self, vector_size: int, collection_name: str):
|
8 |
+
|
9 |
+
self.client = QdrantClient(host="localhost", port=6333)
|
10 |
+
|
11 |
+
self.vector_size = vector_size
|
12 |
+
self.collection_name = collection_name
|
13 |
+
|
14 |
+
self.client.recreate_collection(
|
15 |
+
collection_name=collection_name,
|
16 |
+
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE),
|
17 |
+
)
|
18 |
+
|
19 |
+
def upsert_vectors(self, ids, vectors, payloads):
|
20 |
+
self.client.upload_collection(
|
21 |
+
collection_name=self.collection_name,
|
22 |
+
ids=ids,
|
23 |
+
vectors=vectors,
|
24 |
+
payload=payloads
|
25 |
+
)
|
26 |
+
|
27 |
+
def query_vector(self, vector):
|
28 |
+
print(type(vector))
|
29 |
+
vector = vector[0]
|
30 |
+
search_result = self.client.search(
|
31 |
+
collection_name=self.collection_name,
|
32 |
+
query_vector=vector,
|
33 |
+
limit=5
|
34 |
+
|
35 |
+
)
|
36 |
+
return search_result
|
code/geojson2qdrnt.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import geojson
|
4 |
+
|
5 |
+
# This only accepts simple polygons NOT multipolygons
|
6 |
+
# This should actually have 2 methods
|
7 |
+
# 1 that returns the JSON needed a REST call
|
8 |
+
# 2 one that returns a valid GeoPolygon
|
9 |
+
# Maybe they are just static methods on the class and accept a JSON object as input
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def geoJSON2coord_list(geojson_input: geojson):
|
14 |
+
coord_array = geojson_input["geometry"]["coordinates"][0]
|
15 |
+
result_array = []
|
16 |
+
for coord_pair in coord_array:
|
17 |
+
coord_obj = {"lon": coord_pair[0], "lat": coord_pair[1]}
|
18 |
+
result_array.append(coord_obj)
|
19 |
+
return result_array
|
20 |
+
|
21 |
+
|
22 |
+
def geoJSON_string2qjson(geojson_input: geojson):
|
23 |
+
|
24 |
+
coord_array = geoJSON2coord_list((geojson_input))
|
25 |
+
poly_filter = {"filter": {"must": [{"geo_polygon": {"exterior": {"points": coord_array}}}]}}
|
26 |
+
return json.dumps(poly_filter)
|
27 |
+
print("should be done")
|
28 |
+
|
29 |
+
|
30 |
+
def geoJSON_string2qgeom(geojson_input: geojson):
|
31 |
+
coord_array = geoJSON2coord_list((geojson_input))
|
32 |
+
print("not yet")
|
33 |
+
|
34 |
+
if __name__ == '__main__':
|
35 |
+
with open("../germany.geojson", "r", encoding='utf_8') as content:
|
36 |
+
print(geoJSON_string2qjson(json.load(content)))
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# "geo_polygon": {
|
41 |
+
# "exterior": {
|
42 |
+
# "points": [
|
43 |
+
# { "lon": -70.0, "lat": -70.0 },
|
44 |
+
# { "lon": 60.0, "lat": -70.0 },
|
45 |
+
# { "lon": 60.0, "lat": 60.0 },
|
46 |
+
# { "lon": -70.0, "lat": 60.0 },
|
47 |
+
# { "lon": -70.0, "lat": -70.0 }
|
48 |
+
# ]
|
49 |
+
# },
|
50 |
+
# "interiors": [
|
51 |
+
# {
|
52 |
+
# "points": [
|
53 |
+
# { "lon": -65.0, "lat": -65.0 },
|
54 |
+
# { "lon": 0.0, "lat": -65.0 },
|
55 |
+
# { "lon": 0.0, "lat": 0.0 },
|
56 |
+
# { "lon": -65.0, "lat": 0.0 },
|
57 |
+
# { "lon": -65.0, "lat": -65.0 }
|
58 |
+
# ]
|
59 |
+
# }
|
60 |
+
# ]
|
61 |
+
# }
|
62 |
+
|
63 |
+
|
64 |
+
# models.FieldCondition(
|
65 |
+
# key="location",
|
66 |
+
# geo_polygon=models.GeoPolygon(
|
67 |
+
# exterior=models.GeoLineString(
|
68 |
+
# points=[
|
69 |
+
# models.GeoPoint(
|
70 |
+
# lon=-70.0,
|
71 |
+
# lat=-70.0,
|
72 |
+
# ),
|
73 |
+
# models.GeoPoint(
|
74 |
+
# lon=60.0,
|
75 |
+
# lat=-70.0,
|
76 |
+
# ),
|
77 |
+
# models.GeoPoint(
|
78 |
+
# lon=60.0,
|
79 |
+
# lat=60.0,
|
80 |
+
# ),
|
81 |
+
# models.GeoPoint(
|
82 |
+
# lon=-70.0,
|
83 |
+
# lat=60.0,
|
84 |
+
# ),
|
85 |
+
# models.GeoPoint(
|
86 |
+
# lon=-70.0,
|
87 |
+
# lat=-70.0,
|
88 |
+
# )
|
89 |
+
# ]
|
90 |
+
# ),
|
91 |
+
# interiors=[
|
92 |
+
# models.GeoLineString(
|
93 |
+
# points=[
|
94 |
+
# models.GeoPoint(
|
95 |
+
# lon=-65.0,
|
96 |
+
# lat=-65.0,
|
97 |
+
# ),
|
98 |
+
# models.GeoPoint(
|
99 |
+
# lon=0.0,
|
100 |
+
# lat=-65.0,
|
101 |
+
# ),
|
102 |
+
# models.GeoPoint(
|
103 |
+
# lon=0.0,
|
104 |
+
# lat=0.0,
|
105 |
+
# ),
|
106 |
+
# models.GeoPoint(
|
107 |
+
# lon=-65.0,
|
108 |
+
# lat=0.0,
|
109 |
+
# ),
|
110 |
+
# models.GeoPoint(
|
111 |
+
# lon=-65.0,
|
112 |
+
# lat=-65.0,
|
113 |
+
# )
|
114 |
+
# ]
|
115 |
+
# )
|
116 |
+
# ]
|
117 |
+
# )
|
118 |
+
# )
|
code/main.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
|
4 |
+
from csv import DictReader
|
5 |
+
from pathlib import Path
|
6 |
+
import re
|
7 |
+
import uuid
|
8 |
+
import json
|
9 |
+
|
10 |
+
import db_upload
|
11 |
+
import make_embeddings_upload
|
12 |
+
|
13 |
+
#TODO this is definitely not efficient as it generates vectors for all the images, not just the ones with geo
|
14 |
+
# to fix we would somehow copy all the original images in the payloads_non_list into the directory we want to use in the vector making
|
15 |
+
|
16 |
+
#TODO there is also repeated code everywhere
|
17 |
+
# And hard coded values for too many things
|
18 |
+
|
19 |
+
image_path = Path("../images_000")
|
20 |
+
|
21 |
+
metadata_path = "../train_attribution.csv"
|
22 |
+
image_names = {}
|
23 |
+
|
24 |
+
for path in image_path.rglob('*.*'):
|
25 |
+
match = re.search('.*(\w{16})\.jpg$', str(path))
|
26 |
+
image_names[match.group(1)] = path
|
27 |
+
|
28 |
+
csvfile = open(metadata_path, "r", encoding='utf-8')
|
29 |
+
csvlines = DictReader(csvfile)
|
30 |
+
|
31 |
+
payloads_non_list = {}
|
32 |
+
i= 1
|
33 |
+
for line in csvlines:
|
34 |
+
if line['id'] in image_names:
|
35 |
+
try:
|
36 |
+
page = requests.get(line['url'])
|
37 |
+
html = BeautifulSoup(page.text, features="html.parser")
|
38 |
+
our_tag = html.find('a', {"data-style": "osm-intl"})
|
39 |
+
if our_tag is not None:
|
40 |
+
if "data-lat" in our_tag.attrs and "data-lon" in our_tag.attrs:
|
41 |
+
lat = float(our_tag.attrs["data-lat"])
|
42 |
+
lon = float(our_tag.attrs["data-lon"])
|
43 |
+
|
44 |
+
# We have our payload at this point
|
45 |
+
print("found one " + line['id'] + " : " + line['url'] + " coords: " + str(lat) + ", " + str(lon))
|
46 |
+
payloads_non_list[line['id']] = {"picture": line['id'], "filename": str(image_names[line['id']]), "url": line['url'], "location": {"lon": lon, "lat": lat}}
|
47 |
+
except:
|
48 |
+
print("Threw an exception on: " + line['id'])
|
49 |
+
|
50 |
+
|
51 |
+
csvfile.close()
|
52 |
+
# Write our payloads out to file
|
53 |
+
|
54 |
+
with open('../train_attribution_geo.json', 'w') as out_file:
|
55 |
+
json.dump(payloads_non_list, out_file, sort_keys=True, indent=4,
|
56 |
+
ensure_ascii=False)
|
57 |
+
|
58 |
+
# now create our vector
|
59 |
+
vectors_non_list = make_embeddings_upload.get_features()
|
60 |
+
|
61 |
+
ids, vectors, payloads = [], [], []
|
62 |
+
# Put them together - need to do this because of the sorting problem - need to get them to line up
|
63 |
+
for key, payload in payloads_non_list.items():
|
64 |
+
payloads.append(payload)
|
65 |
+
vectors.append(vectors_non_list[key])
|
66 |
+
ids.append(str(uuid.uuid3(uuid.NAMESPACE_DNS,payload["url"])))
|
67 |
+
|
68 |
+
# now insert into the collection
|
69 |
+
uploader = db_upload.DBUpload(512, "images")
|
70 |
+
|
71 |
+
uploader.upsert_vectors(ids, vectors, payloads)
|
72 |
+
|
73 |
+
print("finished")
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
code/make_embeddings_upload.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from thingsvision import get_extractor
|
4 |
+
from thingsvision.utils.storing import save_features
|
5 |
+
from thingsvision.utils.data import ImageDataset, DataLoader
|
6 |
+
|
7 |
+
source = 'custom'
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
model_name = 'clip'
|
10 |
+
model_parameters = {
|
11 |
+
'variant': 'ViT-B/32'
|
12 |
+
# This model creates 512 length vectors
|
13 |
+
}
|
14 |
+
|
15 |
+
# This model is more accurate but takes longer to run and not sure we need it for the demo
|
16 |
+
# model_name = 'OpenCLIP'
|
17 |
+
# model_parameters = {
|
18 |
+
# 'variant': 'ViT-H-14',
|
19 |
+
# 'dataset': 'laion2b_s32b_b79k'
|
20 |
+
# # This model create 1024 length vectors
|
21 |
+
# }
|
22 |
+
|
23 |
+
extractor = get_extractor(
|
24 |
+
model_name=model_name,
|
25 |
+
source=source,
|
26 |
+
device=device,
|
27 |
+
pretrained=True,
|
28 |
+
model_parameters=model_parameters,
|
29 |
+
)
|
30 |
+
|
31 |
+
root='../images_000/' # (e.g., './images/)
|
32 |
+
batch_size = 32
|
33 |
+
|
34 |
+
dataset = ImageDataset(
|
35 |
+
root=root,
|
36 |
+
out_path='../test_vectors',
|
37 |
+
backend=extractor.get_backend(), # backend framework of model
|
38 |
+
transforms=extractor.get_transformations(resize_dim=256, crop_dim=224) # set the input dimensionality to whichever values are required for your pretrained model
|
39 |
+
)
|
40 |
+
|
41 |
+
batches = DataLoader(
|
42 |
+
dataset=dataset,
|
43 |
+
batch_size=batch_size,
|
44 |
+
backend=extractor.get_backend() # backend framework of model
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
module_name = 'visual'
|
49 |
+
|
50 |
+
def get_features():
|
51 |
+
# we are creating 512 length vectors
|
52 |
+
features = extractor.extract_features(
|
53 |
+
batches=batches,
|
54 |
+
module_name=module_name,
|
55 |
+
flatten_acts=True,
|
56 |
+
output_type="ndarray", # or "tensor" (only applicable to PyTorch models of which CLIP is one!)
|
57 |
+
)
|
58 |
+
|
59 |
+
# WE ARE NOT DOING THIS append the file names to the front of the vector matrix. We turn the file names into a 40 x 1
|
60 |
+
# np array #full_data = np.hstack((np.array(dataset.file_names).reshape(-1,1), features))
|
61 |
+
# The model returns the vectors in alphbetical order for the filenames. Our other code just reads through the directory
|
62 |
+
# without a sort. Therefore this needs to be a dict so we can do lookups
|
63 |
+
|
64 |
+
# save_features(features, out_path='../test_vectors', file_format='txt') # file_format can be set to "npy", "txt", "mat", "pt", or "hdf5"
|
65 |
+
|
66 |
+
vectors = {}
|
67 |
+
for i in range(len(dataset.file_names)):
|
68 |
+
vectors[dataset.file_names[i][0:16]] = features[i]
|
69 |
+
|
70 |
+
return vectors
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == '__main__':
|
74 |
+
result = get_features()
|
75 |
+
print(str(len(result)))
|
76 |
+
|
code/payload2geojson.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# >>> Feature(geometry=my_point, id=27) # doctest: +ELLIPSIS
|
2 |
+
# {"geometry": {"coordinates": [-3.68..., 40.4...], "type": "Point"}, "id": 27, "properties": {}, "type": "Feature"}
|
3 |
+
import json
|
4 |
+
from decimal import Decimal
|
5 |
+
|
6 |
+
import geojson
|
7 |
+
from geojson import Feature, Point
|
8 |
+
from qdrant_client.conversions.conversion import payload_to_grpc
|
9 |
+
|
10 |
+
geojson_array = []
|
11 |
+
|
12 |
+
|
13 |
+
# Load the payload JSON
|
14 |
+
with open("D:\data\google-landmarks\geo-google-landmark-payload.json") as jf:
|
15 |
+
input_json = json.load(jf)
|
16 |
+
|
17 |
+
# Now iterate through and make an array of features
|
18 |
+
for id, payload in input_json.items():
|
19 |
+
lon = float(payload["location"]["lon"])
|
20 |
+
lat = float(payload["location"]["lat"])
|
21 |
+
my_point = Point((lon, lat))
|
22 |
+
geojson_array.append(Feature(geometry=my_point, id=payload["picture"], properties={"url": payload["url"]}))
|
23 |
+
|
24 |
+
with open("D:\data\google-landmarks\geo-google-landmark.geojson", "w") as output:
|
25 |
+
geojson.dump(geojson_array, fp=output)
|
26 |
+
|
27 |
+
print("finished")
|
code/requirements.txt
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hpack~=4.0.0
|
2 |
+
hyperframe~=6.0.1
|
3 |
+
h2~=4.1.0
|
4 |
+
beautifulsoup4~=4.12.2
|
5 |
+
soupsieve~=2.5
|
6 |
+
h11~=0.14.0
|
7 |
+
Pillow~=10.0.1
|
8 |
+
pip~=21.3.1
|
9 |
+
wheel~=0.41.2
|
10 |
+
rsa~=4.9
|
11 |
+
pyasn1~=0.5.0
|
12 |
+
torch~=1.13.1
|
13 |
+
torchvision~=0.14.1
|
14 |
+
tqdm~=4.66.1
|
15 |
+
numpy~=1.25.2
|
16 |
+
clip~=1.0
|
17 |
+
ftfy~=6.1.1
|
18 |
+
regex~=2023.8.8
|
19 |
+
wcwidth~=0.2.7
|
20 |
+
gast~=0.4.0
|
21 |
+
h5py~=3.9.0
|
22 |
+
pytz~=2023.3.post1
|
23 |
+
scipy~=1.11.3
|
24 |
+
matplotlib~=3.8.0
|
25 |
+
tensorflow~=2.9.3
|
26 |
+
timm~=0.6.13
|
27 |
+
requests~=2.31.0
|
28 |
+
keras~=2.9.0
|
29 |
+
colorama~=0.4.5
|
30 |
+
exceptiongroup~=1.1.3
|
31 |
+
sniffio~=1.3.0
|
32 |
+
click~=8.1.3
|
33 |
+
httpcore~=0.18.0
|
34 |
+
idna~=3.4
|
35 |
+
certifi~=2023.7.22
|
36 |
+
pywin32~=306
|
37 |
+
six~=1.16.0
|
38 |
+
pandas~=2.1.1
|
39 |
+
wrapt~=1.14.1
|
40 |
+
numba~=0.58.0
|
41 |
+
llvmlite~=0.41.0
|
42 |
+
PyYAML~=6.0
|
43 |
+
setuptools~=68.2.2
|
44 |
+
Jinja2~=3.1.2
|
45 |
+
thingsvision~=2.4.1
|
46 |
+
imageio~=2.31.4
|
47 |
+
scikit-image~=0.21.0
|
48 |
+
astunparse~=1.6.3
|
49 |
+
tensorboard~=2.14.1
|
50 |
+
urllib3~=2.0.6
|
51 |
+
fsspec~=2023.9.2
|
52 |
+
cachetools~=5.3.1
|
53 |
+
packaging~=23.2
|
54 |
+
joblib~=1.3.2
|
55 |
+
MarkupSafe~=2.1.3
|
56 |
+
python-dateutil~=2.8.2
|
57 |
+
tifffile~=2023.9.26
|
58 |
+
networkx~=3.1
|
59 |
+
scikit-learn~=1.3.1
|
60 |
+
threadpoolctl~=3.2.0
|
61 |
+
anyio~=4.0.0
|
62 |
+
Markdown~=3.4.4
|
63 |
+
oauthlib~=3.2.2
|
64 |
+
pydantic~=2.4.2
|
65 |
+
werkzeug~=3.0.0
|
66 |
+
contourpy~=1.1.1
|
67 |
+
fonttools~=4.43.0
|
68 |
+
termcolor~=2.3.0
|
69 |
+
typeguard~=4.1.5
|
70 |
+
cycler~=0.12.0
|
71 |
+
pyparsing~=3.0.9
|
72 |
+
kiwisolver~=1.4.5
|
73 |
+
zipp~=3.17.0
|
74 |
+
torchtyping~=0.1.4
|
75 |
+
httpx~=0.25.0
|
76 |
+
portalocker~=2.8.2
|
77 |
+
filelock~=3.12.4
|
78 |
+
geojson~=3.0.1
|
79 |
+
flatbuffers~=1.12
|
id_payload_vector.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:699c647604a5831eab3be0b83bf00061798052084249dd798c922e1ffd5906a1
|
3 |
+
size 58657241
|
original_download.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6948e4c06fc0e828699519644f51c6eb570df7a58ae3484f529d2a25a3581585
|
3 |
+
size 1569291364
|
train_attribution_geo.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd75935c26bc1f5802705a1faaa283c9148261d01df6d2ed5fa093b9f1f5fc9
|
3 |
+
size 1121106
|