id
stringlengths 14
15
| text
stringlengths 22
2.51k
| source
stringlengths 61
160
|
---|---|---|
a8f17721dc29-0 | langchain.document_loaders.youtube.GoogleApiYoutubeLoader¶
class langchain.document_loaders.youtube.GoogleApiYoutubeLoader(google_api_client: GoogleApiClient, channel_name: Optional[str] = None, video_ids: Optional[List[str]] = None, add_video_info: bool = True, captions_language: str = 'en', continue_on_failure: bool = False)[source]¶
Bases: BaseLoader
Loads all Videos from a Channel
To use, you should have the googleapiclient,youtube_transcript_api
python package installed.
As the service needs a google_api_client, you first have to initialize
the GoogleApiClient.
Additionally you have to either provide a channel name or a list of videoids
“https://developers.google.com/docs/api/quickstart/python”
Example
from langchain.document_loaders import GoogleApiClient
from langchain.document_loaders import GoogleApiYoutubeLoader
google_api_client = GoogleApiClient(
service_account_path=Path("path_to_your_sec_file.json")
)
loader = GoogleApiYoutubeLoader(
google_api_client=google_api_client,
channel_name = "CodeAesthetic"
)
load.load()
Methods
__init__(google_api_client[, channel_name, ...])
lazy_load()
A lazy loader for Documents.
load()
Load documents.
load_and_split([text_splitter])
Load Documents and split into chunks.
validate_channel_or_videoIds_is_set(values)
Validate that either folder_id or document_ids is set, but not both.
Attributes
add_video_info
captions_language
channel_name
continue_on_failure
video_ids
google_api_client
lazy_load() → Iterator[Document]¶
A lazy loader for Documents.
load() → List[Document][source]¶
Load documents. | https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.youtube.GoogleApiYoutubeLoader.html |
a8f17721dc29-1 | load() → List[Document][source]¶
Load documents.
load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
Load Documents and split into chunks. Chunks are returned as Documents.
Parameters
text_splitter – TextSplitter instance to use for splitting documents.
Defaults to RecursiveCharacterTextSplitter.
Returns
List of Documents.
classmethod validate_channel_or_videoIds_is_set(values: Dict[str, Any]) → Dict[str, Any][source]¶
Validate that either folder_id or document_ids is set, but not both.
add_video_info: bool = True¶
captions_language: str = 'en'¶
channel_name: Optional[str] = None¶
continue_on_failure: bool = False¶
google_api_client: langchain.document_loaders.youtube.GoogleApiClient¶
video_ids: Optional[List[str]] = None¶
Examples using GoogleApiYoutubeLoader¶
YouTube
YouTube transcripts | https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.youtube.GoogleApiYoutubeLoader.html |
2137d8f72009-0 | langchain.cache.GPTCache¶
class langchain.cache.GPTCache(init_func: Optional[Union[Callable[[Any, str], None], Callable[[Any], None]]] = None)[source]¶
Bases: BaseCache
Cache that uses GPTCache as a backend.
Initialize by passing in init function (default: None).
Parameters
init_func (Optional[Callable[[Any], None]]) – init GPTCache function
(default – None)
Example:
.. code-block:: python
# Initialize GPTCache with a custom init function
import gptcache
from gptcache.processor.pre import get_prompt
from gptcache.manager.factory import get_data_manager
# Avoid multiple caches using the same file,
causing different llm model caches to affect each other
def init_gptcache(cache_obj: gptcache.Cache, llm str):
cache_obj.init(pre_embedding_func=get_prompt,
data_manager=manager_factory(
manager=”map”,
data_dir=f”map_cache_{llm}”
),
)
langchain.llm_cache = GPTCache(init_gptcache)
Methods
__init__([init_func])
Initialize by passing in init function (default: None).
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up the cache data.
update(prompt, llm_string, return_val)
Update cache.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up the cache data.
First, retrieve the corresponding cache object using the llm_string parameter,
and then retrieve the data from the cache based on the prompt.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶ | https://api.python.langchain.com/en/latest/cache/langchain.cache.GPTCache.html |
2137d8f72009-1 | Update cache.
First, retrieve the corresponding cache object using the llm_string parameter,
and then store the prompt and return_val in the cache object.
Examples using GPTCache¶
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.GPTCache.html |
e06b4db97fe3-0 | langchain.cache.InMemoryCache¶
class langchain.cache.InMemoryCache[source]¶
Bases: BaseCache
Cache that stores things in memory.
Initialize with empty cache.
Methods
__init__()
Initialize with empty cache.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
Examples using InMemoryCache¶
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.InMemoryCache.html |
b9de6147537e-0 | langchain.cache.SQLiteCache¶
class langchain.cache.SQLiteCache(database_path: str = '.langchain.db')[source]¶
Bases: SQLAlchemyCache
Cache that uses SQLite as a backend.
Initialize by creating the engine and all tables.
Methods
__init__([database_path])
Initialize by creating the engine and all tables.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update based on prompt and llm_string.
clear(**kwargs: Any) → None¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None¶
Update based on prompt and llm_string.
Examples using SQLiteCache¶
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.SQLiteCache.html |
fe982ddb78e9-0 | langchain.cache.MomentoCache¶
class langchain.cache.MomentoCache(cache_client: momento.CacheClient, cache_name: str, *, ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True)[source]¶
Bases: BaseCache
Cache that uses Momento as a backend. See https://gomomento.com/
Instantiate a prompt cache using Momento as a backend.
Note: to instantiate the cache client passed to MomentoCache,
you must have a Momento account. See https://gomomento.com/.
Parameters
cache_client (CacheClient) – The Momento cache client.
cache_name (str) – The name of the cache to use to store the data.
ttl (Optional[timedelta], optional) – The time to live for the cache items.
Defaults to None, ie use the client default TTL.
ensure_cache_exists (bool, optional) – Create the cache if it doesn’t
exist. Defaults to True.
Raises
ImportError – Momento python package is not installed.
TypeError – cache_client is not of type momento.CacheClientObject
ValueError – ttl is non-null and non-negative
Methods
__init__(cache_client, cache_name, *[, ttl, ...])
Instantiate a prompt cache using Momento as a backend.
clear(**kwargs)
Clear the cache.
from_client_params(cache_name, ttl, *[, ...])
Construct cache from CacheClient parameters.
lookup(prompt, llm_string)
Lookup llm generations in cache by prompt and associated model and settings.
update(prompt, llm_string, return_val)
Store llm generations in cache.
clear(**kwargs: Any) → None[source]¶
Clear the cache.
Raises
SdkException – Momento service or network error | https://api.python.langchain.com/en/latest/cache/langchain.cache.MomentoCache.html |
fe982ddb78e9-1 | Clear the cache.
Raises
SdkException – Momento service or network error
classmethod from_client_params(cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any) → MomentoCache[source]¶
Construct cache from CacheClient parameters.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Lookup llm generations in cache by prompt and associated model and settings.
Parameters
prompt (str) – The prompt run through the language model.
llm_string (str) – The language model version and settings.
Raises
SdkException – Momento service or network error
Returns
A list of language model generations.
Return type
Optional[RETURN_VAL_TYPE]
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Store llm generations in cache.
Parameters
prompt (str) – The prompt run through the language model.
llm_string (str) – The language model string.
return_val (RETURN_VAL_TYPE) – A list of language model generations.
Raises
SdkException – Momento service or network error
Exception – Unexpected response
Examples using MomentoCache¶
Momento
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.MomentoCache.html |
8b641967a05a-0 | langchain.cache.SQLAlchemyCache¶
class langchain.cache.SQLAlchemyCache(engine: ~sqlalchemy.engine.base.Engine, cache_schema: ~typing.Type[~langchain.cache.FullLLMCache] = <class 'langchain.cache.FullLLMCache'>)[source]¶
Bases: BaseCache
Cache that uses SQAlchemy as a backend.
Initialize by creating all tables.
Methods
__init__(engine[, cache_schema])
Initialize by creating all tables.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update based on prompt and llm_string.
Examples using SQLAlchemyCache¶
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.SQLAlchemyCache.html |
3b5497102a85-0 | langchain.cache.RedisSemanticCache¶
class langchain.cache.RedisSemanticCache(redis_url: str, embedding: Embeddings, score_threshold: float = 0.2)[source]¶
Bases: BaseCache
Cache that uses Redis as a vector-store backend.
Initialize by passing in the init GPTCache func
Parameters
redis_url (str) – URL to connect to Redis.
embedding (Embedding) – Embedding provider for semantic encoding and search.
score_threshold (float, 0.2) –
Example:
import langchain
from langchain.cache import RedisSemanticCache
from langchain.embeddings import OpenAIEmbeddings
langchain.llm_cache = RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings()
)
Methods
__init__(redis_url, embedding[, score_threshold])
Initialize by passing in the init GPTCache func
clear(**kwargs)
Clear semantic cache for a given llm_string.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear semantic cache for a given llm_string.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
Examples using RedisSemanticCache¶
Redis
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.RedisSemanticCache.html |
c9a17ca56f2c-0 | langchain.cache.FullLLMCache¶
class langchain.cache.FullLLMCache(**kwargs)[source]¶
Bases: Base
SQLite table for full LLM Cache (all generations).
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and
values in kwargs.
Only keys that are present as
attributes of the instance’s class are allowed. These could be,
for example, any mapped columns or relationships.
Methods
__init__(**kwargs)
A simple constructor that allows initialization from kwargs.
Attributes
idx
llm
metadata
prompt
registry
response
idx¶
llm¶
metadata: MetaData = MetaData()¶
prompt¶
registry: RegistryType = <sqlalchemy.orm.decl_api.registry object>¶
response¶ | https://api.python.langchain.com/en/latest/cache/langchain.cache.FullLLMCache.html |
1cff89f57868-0 | langchain.cache.RedisCache¶
class langchain.cache.RedisCache(redis_: Any)[source]¶
Bases: BaseCache
Cache that uses Redis as a backend.
Initialize by passing in Redis instance.
Methods
__init__(redis_)
Initialize by passing in Redis instance.
clear(**kwargs)
Clear cache.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
clear(**kwargs: Any) → None[source]¶
Clear cache. If asynchronous is True, flush asynchronously.
lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string.
Examples using RedisCache¶
Redis
Caching integrations | https://api.python.langchain.com/en/latest/cache/langchain.cache.RedisCache.html |
96866ba5ccdc-0 | langchain.cache.BaseCache¶
class langchain.cache.BaseCache[source]¶
Bases: ABC
Base interface for cache.
Methods
__init__()
clear(**kwargs)
Clear cache that can take additional keyword arguments.
lookup(prompt, llm_string)
Look up based on prompt and llm_string.
update(prompt, llm_string, return_val)
Update cache based on prompt and llm_string.
abstract clear(**kwargs: Any) → None[source]¶
Clear cache that can take additional keyword arguments.
abstract lookup(prompt: str, llm_string: str) → Optional[Sequence[Generation]][source]¶
Look up based on prompt and llm_string.
abstract update(prompt: str, llm_string: str, return_val: Sequence[Generation]) → None[source]¶
Update cache based on prompt and llm_string. | https://api.python.langchain.com/en/latest/cache/langchain.cache.BaseCache.html |
927bfa5d92e5-0 | langchain.tools.playwright.base.BaseBrowserTool¶
class langchain.tools.playwright.base.BaseBrowserTool(*, name: str, description: str, args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseTool
Base class for browser tools.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool, | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.base.BaseBrowserTool.html |
927bfa5d92e5-1 | This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool[source]¶
Instantiate the tool. | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.base.BaseBrowserTool.html |
927bfa5d92e5-2 | Instantiate the tool.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_browser_provided » all fields[source]¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.base.BaseBrowserTool.html |
3c187d60d44f-0 | langchain.tools.playwright.utils.create_async_playwright_browser¶
langchain.tools.playwright.utils.create_async_playwright_browser(headless: bool = True) → AsyncBrowser[source]¶
Create an async playwright browser.
Parameters
headless – Whether to run the browser in headless mode. Defaults to True.
Returns
The playwright browser.
Return type
AsyncBrowser
Examples using create_async_playwright_browser¶
Metaphor Search
PlayWright Browser Toolkit | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.utils.create_async_playwright_browser.html |
dd40826b2345-0 | langchain.tools.playwright.get_elements.GetElementsTool¶
class langchain.tools.playwright.get_elements.GetElementsTool(*, name: str = 'get_elements', description: str = 'Retrieve elements in the current web page matching the given CSS selector', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.playwright.get_elements.GetElementsToolInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseBrowserTool
Tool for getting elements in the current web page matching a CSS selector.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[BaseModel] = <class 'langchain.tools.playwright.get_elements.GetElementsToolInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.get_elements.GetElementsTool.html |
dd40826b2345-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Retrieve elements in the current web page matching the given CSS selector'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'get_elements'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.get_elements.GetElementsTool.html |
dd40826b2345-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool¶
Instantiate the tool.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_browser_provided » all fields¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.get_elements.GetElementsTool.html |
086ad79290e9-0 | langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool¶
class langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool(*, name: str = 'GenerateImage', description: str = 'Useful for when you need to generate an image.Input: A detailed text-2-image prompt describing an imageOutput: the UUID of a generated image', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, model_name: ModelName, size: Optional[str] = '512x512', steamship: Steamship, return_urls: Optional[bool] = False)[source]¶
Bases: BaseTool
Tool used to generate images from a text-prompt.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Useful for when you need to generate an image.Input: A detailed text-2-image prompt describing an imageOutput: the UUID of a generated image'¶
Used to tell the model how/when/why to use the tool. | https://api.python.langchain.com/en/latest/tools/langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool.html |
086ad79290e9-1 | Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param model_name: ModelName [Required]¶
param name: str = 'GenerateImage'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param return_urls: Optional[bool] = False¶
param size: Optional[str] = '512x512'¶
param steamship: Steamship [Required]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool.html |
086ad79290e9-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_environment » all fields[source]¶
Validate that api key and python package exists in environment.
validator validate_size » all fields[source]¶
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using SteamshipImageGenerationTool¶
Multi-modal outputs: Image & Text | https://api.python.langchain.com/en/latest/tools/langchain.tools.steamship_image_generation.tool.SteamshipImageGenerationTool.html |
3f61dc06227c-0 | langchain.tools.gmail.utils.clean_email_body¶
langchain.tools.gmail.utils.clean_email_body(body: str) → str[source]¶
Clean email body. | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.utils.clean_email_body.html |
66e98661cd0b-0 | langchain.tools.gmail.send_message.SendMessageSchema¶
class langchain.tools.gmail.send_message.SendMessageSchema(*, message: str, to: Union[str, List[str]], subject: str, cc: Optional[Union[str, List[str]]] = None, bcc: Optional[Union[str, List[str]]] = None)[source]¶
Bases: BaseModel
Input for SendMessageTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param bcc: Optional[Union[str, List[str]]] = None¶
The list of BCC recipients.
param cc: Optional[Union[str, List[str]]] = None¶
The list of CC recipients.
param message: str [Required]¶
The message to send.
param subject: str [Required]¶
The subject of the message.
param to: Union[str, List[str]] [Required]¶
The list of recipients. | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.send_message.SendMessageSchema.html |
6389307f65a4-0 | langchain.tools.amadeus.closest_airport.ClosestAirportSchema¶
class langchain.tools.amadeus.closest_airport.ClosestAirportSchema(*, location: str)[source]¶
Bases: BaseModel
Schema for the AmadeusClosestAirport tool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param location: str [Required]¶
The location for which you would like to find the nearest airport along with optional details such as country, state, region, or province, allowing for easy processing and identification of the closest airport. Examples of the format are the following:
Cali, Colombia
Lincoln, Nebraska, United States
New York, United States
Sydney, New South Wales, Australia
Rome, Lazio, Italy
Toronto, Ontario, Canada | https://api.python.langchain.com/en/latest/tools/langchain.tools.amadeus.closest_airport.ClosestAirportSchema.html |
e364e137e1f1-0 | langchain.tools.file_management.delete.FileDeleteInput¶
class langchain.tools.file_management.delete.FileDeleteInput(*, file_path: str)[source]¶
Bases: BaseModel
Input for DeleteFileTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param file_path: str [Required]¶
Path of the file to delete | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.delete.FileDeleteInput.html |
172257e61fc5-0 | langchain.tools.openapi.utils.api_models.APIPropertyBase¶
class langchain.tools.openapi.utils.api_models.APIPropertyBase(*, name: str, required: bool, type: Union[str, Type, tuple, None, Enum] = None, default: Optional[Any] = None, description: Optional[str] = None)[source]¶
Bases: BaseModel
Base model for an API property.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param default: Optional[Any] = None¶
The default value of the property.
param description: Optional[str] = None¶
The description of the property.
param name: str [Required]¶
The name of the property.
param required: bool [Required]¶
Whether the property is required.
param type: Union[str, Type, tuple, None, enum.Enum] = None¶
The type of the property.
Either a primitive type, a component/parameter type,
or an array or ‘object’ (dict) of the above. | https://api.python.langchain.com/en/latest/tools/langchain.tools.openapi.utils.api_models.APIPropertyBase.html |
79693d18f2b3-0 | langchain.tools.file_management.utils.BaseFileToolMixin¶
class langchain.tools.file_management.utils.BaseFileToolMixin(*, root_dir: Optional[str] = None)[source]¶
Bases: BaseModel
Mixin for file system tools.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param root_dir: Optional[str] = None¶
The final path will be chosen relative to root_dir if specified.
get_relative_path(file_path: str) → Path[source]¶
Get the relative path, returning an error if unsupported. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.utils.BaseFileToolMixin.html |
8e721821aff2-0 | langchain.tools.google_places.tool.GooglePlacesTool¶
class langchain.tools.google_places.tool.GooglePlacesTool(*, name: str = 'google_places', description: str = 'A wrapper around Google Places. Useful for when you need to validate or discover addressed from ambiguous text. Input should be a search query.', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.google_places.tool.GooglePlacesSchema'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, api_wrapper: ~langchain.utilities.google_places_api.GooglePlacesAPIWrapper = None)[source]¶
Bases: BaseTool
Tool that queries the Google places API.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.google_places_api.GooglePlacesAPIWrapper [Optional]¶
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.google_places.tool.GooglePlacesSchema'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | https://api.python.langchain.com/en/latest/tools/langchain.tools.google_places.tool.GooglePlacesTool.html |
8e721821aff2-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Google Places. Useful for when you need to validate or discover addressed from ambiguous text. Input should be a search query.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'google_places'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.google_places.tool.GooglePlacesTool.html |
8e721821aff2-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using GooglePlacesTool¶
Google Places | https://api.python.langchain.com/en/latest/tools/langchain.tools.google_places.tool.GooglePlacesTool.html |
285f628ede4e-0 | langchain.tools.file_management.file_search.FileSearchTool¶
class langchain.tools.file_management.file_search.FileSearchTool(*, name: str = 'file_search', description: str = 'Recursively search for files in a subdirectory that match the regex pattern', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.file_management.file_search.FileSearchInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, root_dir: ~typing.Optional[str] = None)[source]¶
Bases: BaseFileToolMixin, BaseTool
Tool that searches for files in a subdirectory that match a regex pattern.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.file_management.file_search.FileSearchInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.file_search.FileSearchTool.html |
285f628ede4e-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Recursively search for files in a subdirectory that match the regex pattern'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'file_search'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param root_dir: Optional[str] = None¶
The final path will be chosen relative to root_dir if specified.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.file_search.FileSearchTool.html |
285f628ede4e-2 | Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
get_relative_path(file_path: str) → Path¶
Get the relative path, returning an error if unsupported.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.file_search.FileSearchTool.html |
3c4645c210e2-0 | langchain.tools.convert_to_openai.format_tool_to_openai_function¶
langchain.tools.convert_to_openai.format_tool_to_openai_function(tool: BaseTool) → FunctionDescription[source]¶
Format tool into the OpenAI function API.
Examples using format_tool_to_openai_function¶
Tools as OpenAI Functions | https://api.python.langchain.com/en/latest/tools/langchain.tools.convert_to_openai.format_tool_to_openai_function.html |
2ee4afdd4f60-0 | langchain.tools.vectorstore.tool.VectorStoreQATool¶
class langchain.tools.vectorstore.tool.VectorStoreQATool(*, name: str, description: str, args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, vectorstore: VectorStore, llm: BaseLanguageModel = None)[source]¶
Bases: BaseVectorStoreTool, BaseTool
Tool for the VectorDBQA chain. To be initialized with name and chain.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param llm: langchain.schema.language_model.BaseLanguageModel [Optional]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None | https://api.python.langchain.com/en/latest/tools/langchain.tools.vectorstore.tool.VectorStoreQATool.html |
2ee4afdd4f60-1 | Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
static get_description(name: str, description: str) → str[source]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.vectorstore.tool.VectorStoreQATool.html |
2ee4afdd4f60-2 | static get_description(name: str, description: str) → str[source]¶
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: Config
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.vectorstore.tool.VectorStoreQATool.html |
c8fc3279fa28-0 | langchain.tools.office365.utils.authenticate¶
langchain.tools.office365.utils.authenticate() → Account[source]¶
Authenticate using the Microsoft Grah API | https://api.python.langchain.com/en/latest/tools/langchain.tools.office365.utils.authenticate.html |
26839c2529ce-0 | langchain.tools.sql_database.tool.InfoSQLDatabaseTool¶
class langchain.tools.sql_database.tool.InfoSQLDatabaseTool(*, name: str = 'sql_db_schema', description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. \n\n Example Input: "table1, table2, table3"\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, db: SQLDatabase)[source]¶
Bases: BaseSQLDatabaseTool, BaseTool
Tool for getting metadata about a SQL database.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param db: langchain.utilities.sql_database.SQLDatabase [Required]¶
param description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables. \n\n Example Input: "table1, table2, table3"\n '¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.InfoSQLDatabaseTool.html |
26839c2529ce-1 | Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'sql_db_schema'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.InfoSQLDatabaseTool.html |
26839c2529ce-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: Config
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.InfoSQLDatabaseTool.html |
18d0a234a609-0 | langchain.tools.convert_to_openai.FunctionDescription¶
class langchain.tools.convert_to_openai.FunctionDescription[source]¶
Bases: TypedDict
Representation of a callable function to the OpenAI API.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
Attributes
name
The name of the function.
description
A description of the function.
parameters
The parameters of the function.
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.convert_to_openai.FunctionDescription.html |
18d0a234a609-1 | items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶
description: str¶
A description of the function.
name: str¶
The name of the function.
parameters: dict¶
The parameters of the function. | https://api.python.langchain.com/en/latest/tools/langchain.tools.convert_to_openai.FunctionDescription.html |
62f5e6f99c4d-0 | langchain.tools.spark_sql.tool.QueryCheckerTool¶
class langchain.tools.spark_sql.tool.QueryCheckerTool(*, name: str = 'query_checker_sql_db', description: str = '\n Use this tool to double check if your query is correct before executing it.\n Always use this tool before executing a query with query_sql_db!\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, db: SparkSQL, template: str = '\n{query}\nDouble check the Spark SQL query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.', llm: BaseLanguageModel, llm_chain: LLMChain)[source]¶
Bases: BaseSparkSQLTool, BaseTool
Use an LLM to check if a query is correct.
Adapted from https://www.patterns.app/blog/2023/01/18/crunchbot-sql-analyst-gpt/
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model. | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.QueryCheckerTool.html |
62f5e6f99c4d-1 | Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param db: SparkSQL [Required]¶
param description: str = '\n Use this tool to double check if your query is correct before executing it.\n Always use this tool before executing a query with query_sql_db!\n '¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param llm: langchain.schema.language_model.BaseLanguageModel [Required]¶
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'query_checker_sql_db'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.QueryCheckerTool.html |
62f5e6f99c4d-2 | Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param template: str = '\n{query}\nDouble check the Spark SQL query above for common mistakes, including:\n- Using NOT IN with NULL values\n- Using UNION when UNION ALL should have been used\n- Using BETWEEN for exclusive ranges\n- Data type mismatch in predicates\n- Properly quoting identifiers\n- Using the correct number of arguments for functions\n- Casting to the correct data type\n- Using the proper columns for joins\n\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.'¶
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
validator initialize_llm_chain » all fields[source]¶
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.QueryCheckerTool.html |
62f5e6f99c4d-3 | validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: Config
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.QueryCheckerTool.html |
5c79e3273ea4-0 | langchain.tools.playwright.navigate.NavigateTool¶
class langchain.tools.playwright.navigate.NavigateTool(*, name: str = 'navigate_browser', description: str = 'Navigate a browser to the specified URL', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.playwright.navigate.NavigateToolInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, sync_browser: Optional['SyncBrowser'] = None, async_browser: Optional['AsyncBrowser'] = None)[source]¶
Bases: BaseBrowserTool
Tool for navigating a browser to a URL.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[BaseModel] = <class 'langchain.tools.playwright.navigate.NavigateToolInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param async_browser: Optional['AsyncBrowser'] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Navigate a browser to the specified URL'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.navigate.NavigateTool.html |
5c79e3273ea4-1 | param description: str = 'Navigate a browser to the specified URL'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'navigate_browser'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param sync_browser: Optional['SyncBrowser'] = None¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.navigate.NavigateTool.html |
5c79e3273ea4-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_browser(sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None) → BaseBrowserTool¶
Instantiate the tool.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
validator validate_browser_provided » all fields¶
Check that the arguments are valid.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.navigate.NavigateTool.html |
b4c1703f24af-0 | langchain.tools.sql_database.tool.BaseSQLDatabaseTool¶
class langchain.tools.sql_database.tool.BaseSQLDatabaseTool(*, db: SQLDatabase)[source]¶
Bases: BaseModel
Base tool for interacting with a SQL database.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param db: langchain.utilities.sql_database.SQLDatabase [Required]¶
model Config[source]¶
Bases: Config
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.BaseSQLDatabaseTool.html |
3dfbe334e97e-0 | langchain.tools.file_management.move.MoveFileTool¶
class langchain.tools.file_management.move.MoveFileTool(*, name: str = 'move_file', description: str = 'Move or rename a file from one location to another', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.file_management.move.FileMoveInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, root_dir: ~typing.Optional[str] = None)[source]¶
Bases: BaseFileToolMixin, BaseTool
Tool that moves a file.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.file_management.move.FileMoveInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Move or rename a file from one location to another'¶
Used to tell the model how/when/why to use the tool. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.move.MoveFileTool.html |
3dfbe334e97e-1 | Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'move_file'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param root_dir: Optional[str] = None¶
The final path will be chosen relative to root_dir if specified.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.move.MoveFileTool.html |
3dfbe334e97e-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
get_relative_path(file_path: str) → Path¶
Get the relative path, returning an error if unsupported.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using MoveFileTool¶
File System Tools
Tools as OpenAI Functions | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.move.MoveFileTool.html |
312d1e2d7bea-0 | langchain.tools.file_management.utils.FileValidationError¶
class langchain.tools.file_management.utils.FileValidationError[source]¶
Bases: ValueError
Error for paths outside the root directory.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.utils.FileValidationError.html |
25870aaf1ff5-0 | langchain.tools.ddg_search.tool.DuckDuckGoSearchResults¶
class langchain.tools.ddg_search.tool.DuckDuckGoSearchResults(*, name: str = 'DuckDuckGo Results JSON', description: str = 'A wrapper around Duck Duck Go Search. Useful for when you need to answer questions about current events. Input should be a search query. Output is a JSON array of the query results', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, num_results: int = 4, api_wrapper: DuckDuckGoSearchAPIWrapper = None, backend: str = 'api')[source]¶
Bases: BaseTool
Tool that queries the DuckDuckGo search API and gets back json.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param backend: str = 'api'¶
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | https://api.python.langchain.com/en/latest/tools/langchain.tools.ddg_search.tool.DuckDuckGoSearchResults.html |
25870aaf1ff5-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Duck Duck Go Search. Useful for when you need to answer questions about current events. Input should be a search query. Output is a JSON array of the query results'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'DuckDuckGo Results JSON'¶
The unique name of the tool that clearly communicates its purpose.
param num_results: int = 4¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable. | https://api.python.langchain.com/en/latest/tools/langchain.tools.ddg_search.tool.DuckDuckGoSearchResults.html |
25870aaf1ff5-2 | Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using DuckDuckGoSearchResults¶
DuckDuckGo Search | https://api.python.langchain.com/en/latest/tools/langchain.tools.ddg_search.tool.DuckDuckGoSearchResults.html |
ff05480d1195-0 | langchain.tools.plugin.ApiConfig¶
class langchain.tools.plugin.ApiConfig(*, type: str, url: str, has_user_authentication: Optional[bool] = False)[source]¶
Bases: BaseModel
API Configuration.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param has_user_authentication: Optional[bool] = False¶
param type: str [Required]¶
param url: str [Required]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.plugin.ApiConfig.html |
2e7c2bede654-0 | langchain.tools.file_management.copy.FileCopyInput¶
class langchain.tools.file_management.copy.FileCopyInput(*, source_path: str, destination_path: str)[source]¶
Bases: BaseModel
Input for CopyFileTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param destination_path: str [Required]¶
Path to save the copied file
param source_path: str [Required]¶
Path of the file to copy | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.copy.FileCopyInput.html |
162fbe5f57bf-0 | langchain.tools.openapi.utils.api_models.APIOperation¶
class langchain.tools.openapi.utils.api_models.APIOperation(*, operation_id: str, description: Optional[str] = None, base_url: str, path: str, method: HTTPVerb, properties: Sequence[APIProperty], request_body: Optional[APIRequestBody] = None)[source]¶
Bases: BaseModel
A model for a single API operation.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param base_url: str [Required]¶
The base URL of the operation.
param description: Optional[str] = None¶
The description of the operation.
param method: langchain.utilities.openapi.HTTPVerb [Required]¶
The HTTP method of the operation.
param operation_id: str [Required]¶
The unique identifier of the operation.
param path: str [Required]¶
The path of the operation.
param properties: Sequence[langchain.tools.openapi.utils.api_models.APIProperty] [Required]¶
param request_body: Optional[langchain.tools.openapi.utils.api_models.APIRequestBody] = None¶
The request body of the operation.
classmethod from_openapi_spec(spec: OpenAPISpec, path: str, method: str) → APIOperation[source]¶
Create an APIOperation from an OpenAPI spec.
classmethod from_openapi_url(spec_url: str, path: str, method: str) → APIOperation[source]¶
Create an APIOperation from an OpenAPI URL.
to_typescript() → str[source]¶
Get typescript string representation of the operation.
static ts_type_from_python(type_: Union[str, Type, tuple, None, Enum]) → str[source]¶
property body_params: List[str]¶
property path_params: List[str]¶
property query_params: List[str]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.openapi.utils.api_models.APIOperation.html |
162fbe5f57bf-1 | property path_params: List[str]¶
property query_params: List[str]¶
Examples using APIOperation¶
Natural Language APIs
Evaluating an OpenAPI Chain
OpenAPI chain | https://api.python.langchain.com/en/latest/tools/langchain.tools.openapi.utils.api_models.APIOperation.html |
a3ce51c3f0dd-0 | langchain.tools.scenexplain.tool.SceneXplainTool¶
class langchain.tools.scenexplain.tool.SceneXplainTool(*, name: str = 'image_explainer', description: str = 'An Image Captioning Tool: Use this tool to generate a detailed caption for an image. The input can be an image file of any format, and the output will be a text description that covers every detail of the image.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: SceneXplainAPIWrapper = None)[source]¶
Bases: BaseTool
Tool that explains images.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.scenexplain.SceneXplainAPIWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'An Image Captioning Tool: Use this tool to generate a detailed caption for an image. The input can be an image file of any format, and the output will be a text description that covers every detail of the image.'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.scenexplain.tool.SceneXplainTool.html |
a3ce51c3f0dd-1 | Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'image_explainer'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.scenexplain.tool.SceneXplainTool.html |
a3ce51c3f0dd-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using SceneXplainTool¶
SceneXplain | https://api.python.langchain.com/en/latest/tools/langchain.tools.scenexplain.tool.SceneXplainTool.html |
b3014d502a29-0 | langchain.tools.gmail.send_message.GmailSendMessage¶
class langchain.tools.gmail.send_message.GmailSendMessage(*, name: str = 'send_gmail_message', description: str = 'Use this tool to send email messages. The input is the message, recipients', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_resource: Resource = None)[source]¶
Bases: GmailBaseTool
Tool that sends a message to Gmail.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_resource: Resource [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Use this tool to send email messages. The input is the message, recipients'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.send_message.GmailSendMessage.html |
b3014d502a29-1 | param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'send_gmail_message'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_api_resource(api_resource: Resource) → GmailBaseTool¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.send_message.GmailSendMessage.html |
b3014d502a29-2 | classmethod from_api_resource(api_resource: Resource) → GmailBaseTool¶
Create a tool from an api resource.
Parameters
api_resource – The api resource to use.
Returns
A tool.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.send_message.GmailSendMessage.html |
85e36e1677a7-0 | langchain.tools.playwright.utils.run_async¶
langchain.tools.playwright.utils.run_async(coro: Coroutine[Any, Any, T]) → T[source]¶
Run an async coroutine.
Parameters
coro – The coroutine to run. Coroutine[Any, Any, T]
Returns
The result of the coroutine.
Return type
T | https://api.python.langchain.com/en/latest/tools/langchain.tools.playwright.utils.run_async.html |
271988c5d83a-0 | langchain.tools.gmail.create_draft.CreateDraftSchema¶
class langchain.tools.gmail.create_draft.CreateDraftSchema(*, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None)[source]¶
Bases: BaseModel
Input for CreateDraftTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param bcc: Optional[List[str]] = None¶
The list of BCC recipients.
param cc: Optional[List[str]] = None¶
The list of CC recipients.
param message: str [Required]¶
The message to include in the draft.
param subject: str [Required]¶
The subject of the message.
param to: List[str] [Required]¶
The list of recipients. | https://api.python.langchain.com/en/latest/tools/langchain.tools.gmail.create_draft.CreateDraftSchema.html |
7954063a5e51-0 | langchain.tools.base.StructuredTool¶
class langchain.tools.base.StructuredTool(*, name: str, description: str = '', args_schema: Type[BaseModel], return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, func: Callable[[...], Any], coroutine: Optional[Callable[[...], Awaitable[Any]]] = None)[source]¶
Bases: BaseTool
Tool that can operate on any number of inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] [Required]¶
The input arguments’ schema.
The tool schema.
param callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Optional[Union[List[langchain.callbacks.base.BaseCallbackHandler], langchain.callbacks.base.BaseCallbackManager]] = None¶
Callbacks to be called during tool execution.
param coroutine: Optional[Callable[[...], Awaitable[Any]]] = None¶
The asynchronous version of the function.
param description: str = ''¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param func: Callable[[...], Any] [Required]¶
The function to run when the tool is called. | https://api.python.langchain.com/en/latest/tools/langchain.tools.base.StructuredTool.html |
7954063a5e51-1 | The function to run when the tool is called.
param handle_tool_error: Optional[Union[bool, str, Callable[[langchain.tools.base.ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any[source]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.base.StructuredTool.html |
7954063a5e51-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
classmethod from_function(func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any) → StructuredTool[source]¶
Create tool from a given function.
A classmethod that helps to create a tool from a function.
Parameters
func – The function from which to create a tool
name – The name of the tool. Defaults to the function name
description – The description of the tool. Defaults to the function docstring
return_direct – Whether to return the result directly or as a callback
args_schema – The schema of the tool’s input arguments
infer_schema – Whether to infer the schema from the function’s signature
**kwargs – Additional arguments to pass to the tool
Returns
The tool
Examples
… code-block:: python
def add(a: int, b: int) -> int:“””Add two numbers”””
return a + b
tool = StructuredTool.from_function(add)
tool.run(1, 2) # 3
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used. | https://api.python.langchain.com/en/latest/tools/langchain.tools.base.StructuredTool.html |
7954063a5e51-3 | Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
The tool’s input arguments.
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using StructuredTool¶
Multi-Input Tools
Defining Custom Tools | https://api.python.langchain.com/en/latest/tools/langchain.tools.base.StructuredTool.html |
dd25e63fbc55-0 | langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun¶
class langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun(*, name: str = 'dataforseo_api_search', description: str = 'A robust Google Search API provided by DataForSeo.This tool is handy when you need information about trending topics or current events.', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: DataForSeoAPIWrapper)[source]¶
Bases: BaseTool
Tool that queries the DataForSeo Google search API.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.dataforseo_api_search.DataForSeoAPIWrapper [Required]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A robust Google Search API provided by DataForSeo.This tool is handy when you need information about trending topics or current events.'¶
Used to tell the model how/when/why to use the tool. | https://api.python.langchain.com/en/latest/tools/langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun.html |
dd25e63fbc55-1 | Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'dataforseo_api_search'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun.html |
dd25e63fbc55-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.dataforseo_api_search.tool.DataForSeoAPISearchRun.html |
07c6419e8b6e-0 | langchain.tools.base.ToolException¶
class langchain.tools.base.ToolException[source]¶
Bases: Exception
An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶
Examples using ToolException¶
Defining Custom Tools | https://api.python.langchain.com/en/latest/tools/langchain.tools.base.ToolException.html |
ce925d6382e1-0 | langchain.tools.requests.tool.BaseRequestsTool¶
class langchain.tools.requests.tool.BaseRequestsTool(*, requests_wrapper: TextRequestsWrapper)[source]¶
Bases: BaseModel
Base class for requests tools.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param requests_wrapper: langchain.utilities.requests.TextRequestsWrapper [Required]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.requests.tool.BaseRequestsTool.html |
804776fac0b8-0 | langchain.tools.office365.utils.clean_body¶
langchain.tools.office365.utils.clean_body(body: str) → str[source]¶
Clean body of a message or event. | https://api.python.langchain.com/en/latest/tools/langchain.tools.office365.utils.clean_body.html |
f0cb884132d4-0 | langchain.tools.azure_cognitive_services.utils.detect_file_src_type¶
langchain.tools.azure_cognitive_services.utils.detect_file_src_type(file_path: str) → str[source]¶
Detect if the file is local or remote. | https://api.python.langchain.com/en/latest/tools/langchain.tools.azure_cognitive_services.utils.detect_file_src_type.html |
61d47ce82b83-0 | langchain.tools.spark_sql.tool.InfoSparkSQLTool¶
class langchain.tools.spark_sql.tool.InfoSparkSQLTool(*, name: str = 'schema_sql_db', description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n Be sure that the tables actually exist by calling list_tables_sql_db first!\n\n Example Input: "table1, table2, table3"\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, db: SparkSQL)[source]¶
Bases: BaseSparkSQLTool, BaseTool
Tool for getting metadata about a Spark SQL.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param db: langchain.utilities.spark_sql.SparkSQL [Required]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
61d47ce82b83-1 | param db: langchain.utilities.spark_sql.SparkSQL [Required]¶
param description: str = '\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\n Be sure that the tables actually exist by calling list_tables_sql_db first!\n\n Example Input: "table1, table2, table3"\n '¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'schema_sql_db'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
61d47ce82b83-2 | Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: Config
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
10b7268fa9ba-0 | langchain.tools.office365.events_search.SearchEventsInput¶
class langchain.tools.office365.events_search.SearchEventsInput(*, start_datetime: str, end_datetime: str, max_results: int = 10, truncate: bool = True)[source]¶
Bases: BaseModel
Input for SearchEmails Tool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param end_datetime: str [Required]¶
The end datetime for the search query in the following format: YYYY-MM-DDTHH:MM:SS±hh:mm, where “T” separates the date and time components, and the time zone offset is specified as ±hh:mm. For example: “2023-06-09T10:30:00+03:00” represents June 9th, 2023, at 10:30 AM in a time zone with a positive offset of 3 hours from Coordinated Universal Time (UTC).
param max_results: int = 10¶
The maximum number of results to return.
param start_datetime: str [Required]¶
The start datetime for the search query in the following format: YYYY-MM-DDTHH:MM:SS±hh:mm, where “T” separates the date and time components, and the time zone offset is specified as ±hh:mm. For example: “2023-06-09T10:30:00+03:00” represents June 9th, 2023, at 10:30 AM in a time zone with a positive offset of 3 hours from Coordinated Universal Time (UTC).
param truncate: bool = True¶
Whether the event’s body is truncated to meet token number limits. Set to False for searches that will retrieve very few results, otherwise, set to True. | https://api.python.langchain.com/en/latest/tools/langchain.tools.office365.events_search.SearchEventsInput.html |
7cb090d9f6b6-0 | langchain.tools.file_management.write.WriteFileTool¶
class langchain.tools.file_management.write.WriteFileTool(*, name: str = 'write_file', description: str = 'Write file to disk', args_schema: ~typing.Type[~pydantic.main.BaseModel] = <class 'langchain.tools.file_management.write.WriteFileInput'>, return_direct: bool = False, verbose: bool = False, callbacks: ~typing.Optional[~typing.Union[~typing.List[~langchain.callbacks.base.BaseCallbackHandler], ~langchain.callbacks.base.BaseCallbackManager]] = None, callback_manager: ~typing.Optional[~langchain.callbacks.base.BaseCallbackManager] = None, tags: ~typing.Optional[~typing.List[str]] = None, metadata: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, handle_tool_error: ~typing.Optional[~typing.Union[bool, str, ~typing.Callable[[~langchain.tools.base.ToolException], str]]] = False, root_dir: ~typing.Optional[str] = None)[source]¶
Bases: BaseFileToolMixin, BaseTool
Tool that writes a file to disk.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.file_management.write.WriteFileInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Write file to disk'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.write.WriteFileTool.html |
7cb090d9f6b6-1 | You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'write_file'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param root_dir: Optional[str] = None¶
The final path will be chosen relative to root_dir if specified.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.write.WriteFileTool.html |
7cb090d9f6b6-2 | async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
get_relative_path(file_path: str) → Path¶
Get the relative path, returning an error if unsupported.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using WriteFileTool¶
File System Tools
AutoGPT
!pip install bs4 | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.write.WriteFileTool.html |
fe3a2c00f27c-0 | langchain.tools.requests.tool.RequestsPatchTool¶
class langchain.tools.requests.tool.RequestsPatchTool(*, name: str = 'requests_patch', description: str = 'Use this when you want to PATCH to a website.\n Input should be a json string with two keys: "url" and "data".\n The value of "url" should be a string, and the value of "data" should be a dictionary of \n key-value pairs you want to PATCH to the url.\n Be careful to always use double quotes for strings in the json string\n The output will be the text response of the PATCH request.\n ', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, requests_wrapper: TextRequestsWrapper)[source]¶
Bases: BaseRequestsTool, BaseTool
Tool for making a PATCH request to an API endpoint.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | https://api.python.langchain.com/en/latest/tools/langchain.tools.requests.tool.RequestsPatchTool.html |
fe3a2c00f27c-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Use this when you want to PATCH to a website.\n Input should be a json string with two keys: "url" and "data".\n The value of "url" should be a string, and the value of "data" should be a dictionary of \n key-value pairs you want to PATCH to the url.\n Be careful to always use double quotes for strings in the json string\n The output will be the text response of the PATCH request.\n '¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'requests_patch'¶
The unique name of the tool that clearly communicates its purpose.
param requests_wrapper: langchain.utilities.requests.TextRequestsWrapper [Required]¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks. | https://api.python.langchain.com/en/latest/tools/langchain.tools.requests.tool.RequestsPatchTool.html |
fe3a2c00f27c-2 | and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Run the tool.
property args: dict¶
property is_single_input: bool¶
Whether the tool only accepts a single input.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.requests.tool.RequestsPatchTool.html |
fe3a2c00f27c-3 | Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.requests.tool.RequestsPatchTool.html |
fb64c85b8e5c-0 | langchain.tools.file_management.utils.get_validated_relative_path¶
langchain.tools.file_management.utils.get_validated_relative_path(root: Path, user_path: str) → Path[source]¶
Resolve a relative path, raising an error if not within the root directory. | https://api.python.langchain.com/en/latest/tools/langchain.tools.file_management.utils.get_validated_relative_path.html |
3b3fdb8471b4-0 | langchain.tools.openapi.utils.api_models.APIRequestBody¶
class langchain.tools.openapi.utils.api_models.APIRequestBody(*, description: Optional[str] = None, properties: List[APIRequestBodyProperty], media_type: str)[source]¶
Bases: BaseModel
A model for a request body.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param description: Optional[str] = None¶
The description of the request body.
param media_type: str [Required]¶
The media type of the request body.
param properties: List[langchain.tools.openapi.utils.api_models.APIRequestBodyProperty] [Required]¶
classmethod from_request_body(request_body: RequestBody, spec: OpenAPISpec) → APIRequestBody[source]¶
Instantiate from an OpenAPI RequestBody. | https://api.python.langchain.com/en/latest/tools/langchain.tools.openapi.utils.api_models.APIRequestBody.html |
507b0427204c-0 | langchain.tools.zapier.tool.ZapierNLARunAction¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLARunAction.html |
507b0427204c-1 | class langchain.tools.zapier.tool.ZapierNLARunAction(*, name: str = '', description: str = '', args_schema: Optional[Type[BaseModel]] = None, return_direct: bool = False, verbose: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False, api_wrapper: ZapierNLAWrapper = None, action_id: str, params: Optional[dict] = None, base_prompt: str = 'A wrapper around Zapier NLA actions. The input to this tool is a natural language instruction, for example "get the latest email from my bank" or "send a slack message to the #general channel". Each tool will have params associated with it that are specified as a list. You MUST take into account the params when creating the instruction. For example, if the params are [\'Message_Text\', \'Channel\'], your instruction should be something like \'send a slack message to the #general channel with the text hello world\'. Another example: if the params are [\'Calendar\', \'Search_Term\'], your instruction should be something like \'find the meeting in my personal calendar at 3pm\'. Do not make up params, they will be explicitly specified in the tool description. If you do not have enough information to fill in the params, just say \'not enough information provided in the instruction, missing <param>\'. If you get a none or null response, STOP EXECUTION, do not try to another tool!This tool specifically used for: {zapier_description}, and has params: {params}', zapier_description: str, params_schema: Dict[str, | https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLARunAction.html |
507b0427204c-2 | and has params: {params}', zapier_description: str, params_schema: Dict[str, str] = None)[source]¶ | https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLARunAction.html |
507b0427204c-3 | Bases: BaseTool
Executes an action that is identified by action_id, must be exposed(enabled) by the current user (associated with the set api_key). Change
your exposed actions here: https://nla.zapier.com/demo/start/
The return JSON is guaranteed to be less than ~500 words (350
tokens) making it safe to inject into the prompt of another LLM
call.
Parameters
action_id – a specific action ID (from list actions) of the action to execute
(the set api_key must be associated with the action owner)
instructions – a natural language instruction string for using the action
(eg. “get the latest email from Mike Knoop” for “Gmail: find email” action)
params – a dict, optional. Any params provided will override AI guesses
from instructions (see “understanding the AI guessing flow” here:
https://nla.zapier.com/docs/using-the-api#ai-guessing)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param action_id: str [Required]¶
param api_wrapper: langchain.utilities.zapier.ZapierNLAWrapper [Optional]¶
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments. | https://api.python.langchain.com/en/latest/tools/langchain.tools.zapier.tool.ZapierNLARunAction.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.