id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
160
fac7a986c558-1
DocArrayHnswSearch MyScale ClickHouse Vector Search Qdrant Tigris AwaDB Supabase (Postgres) OpenSearch Pinecone Azure Cognitive Search Cassandra Milvus ElasticSearch Marqo DocArrayInMemorySearch pg_embedding FAISS AnalyticDB Hologres MongoDB Atlas Meilisearch Question Answering Benchmarking: State of the Union Address QA Generation Question Answering Benchmarking: Paul Graham Essay Data Augmented Question Answering Agent VectorDB Question Answering Benchmarking Question answering over a group chat messages using Activeloop’s DeepLake Structure answers with OpenAI functions QA using Activeloop’s DeepLake Graph QA Analysis of Twitter the-algorithm source code with LangChain, GPT4 and Activeloop’s Deep Lake Use LangChain, GPT and Activeloop’s Deep Lake to work with code base Combine agents and vector stores Loading from LangChainHub Retrieval QA using OpenAI functions
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.text.TextLoader.html
f18508267cd7-0
langchain.document_loaders.slack_directory.SlackDirectoryLoader¶ class langchain.document_loaders.slack_directory.SlackDirectoryLoader(zip_path: str, workspace_url: Optional[str] = None)[source]¶ Bases: BaseLoader Loads documents from a Slack directory dump. Initialize the SlackDirectoryLoader. Parameters zip_path (str) – The path to the Slack directory dump zip file. workspace_url (Optional[str]) – The Slack workspace URL. Including the URL will turn sources into links. Defaults to None. Methods __init__(zip_path[, workspace_url]) Initialize the SlackDirectoryLoader. lazy_load() A lazy loader for Documents. load() Load and return documents from the Slack directory dump. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load and return documents from the Slack directory dump. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SlackDirectoryLoader¶ Slack
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.slack_directory.SlackDirectoryLoader.html
24506fc4a6cc-0
langchain.document_loaders.trello.TrelloLoader¶ class langchain.document_loaders.trello.TrelloLoader(client: TrelloClient, board_name: str, *, include_card_name: bool = True, include_comments: bool = True, include_checklist: bool = True, card_filter: Literal['closed', 'open', 'all'] = 'all', extra_metadata: Tuple[str, ...] = ('due_date', 'labels', 'list', 'closed'))[source]¶ Bases: BaseLoader Trello loader. Reads all cards from a Trello board. Initialize Trello loader. Parameters client – Trello API client. board_name – The name of the Trello board. include_card_name – Whether to include the name of the card in the document. include_comments – Whether to include the comments on the card in the document. include_checklist – Whether to include the checklist on the card in the document. card_filter – Filter on card status. Valid values are “closed”, “open”, “all”. extra_metadata – List of additional metadata fields to include as document metadata.Valid values are “due_date”, “labels”, “list”, “closed”. Methods __init__(client, board_name, *[, ...]) Initialize Trello loader. from_credentials(board_name, *[, api_key, token]) Convenience constructor that builds TrelloClient init param for you. lazy_load() A lazy loader for Documents. load() Loads all cards from the specified Trello board. load_and_split([text_splitter]) Load Documents and split into chunks. classmethod from_credentials(board_name: str, *, api_key: Optional[str] = None, token: Optional[str] = None, **kwargs: Any) → TrelloLoader[source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.trello.TrelloLoader.html
24506fc4a6cc-1
Convenience constructor that builds TrelloClient init param for you. Parameters board_name – The name of the Trello board. api_key – Trello API key. Can also be specified as environment variable TRELLO_API_KEY. token – Trello token. Can also be specified as environment variable TRELLO_TOKEN. include_card_name – Whether to include the name of the card in the document. include_comments – Whether to include the comments on the card in the document. include_checklist – Whether to include the checklist on the card in the document. card_filter – Filter on card status. Valid values are “closed”, “open”, “all”. extra_metadata – List of additional metadata fields to include as document metadata.Valid values are “due_date”, “labels”, “list”, “closed”. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Loads all cards from the specified Trello board. You can filter the cards, metadata and text included by using the optional parameters. Returns:A list of documents, one for each card in the board. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TrelloLoader¶ Trello
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.trello.TrelloLoader.html
f6f6381b243d-0
langchain.document_loaders.rocksetdb.ColumnNotFoundError¶ class langchain.document_loaders.rocksetdb.ColumnNotFoundError(missing_key: str, query: str)[source]¶ Bases: Exception Column not found error. add_note()¶ Exception.add_note(note) – add a note to the exception with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. args¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rocksetdb.ColumnNotFoundError.html
1ae2e102faf7-0
langchain.document_loaders.blockchain.BlockchainDocumentLoader¶ class langchain.document_loaders.blockchain.BlockchainDocumentLoader(contract_address: str, blockchainType: BlockchainType = BlockchainType.ETH_MAINNET, api_key: str = 'docs-demo', startToken: str = '', get_all_tokens: bool = False, max_execution_time: Optional[int] = None)[source]¶ Bases: BaseLoader Loads elements from a blockchain smart contract into Langchain documents. The supported blockchains are: Ethereum mainnet, Ethereum Goerli testnet, Polygon mainnet, and Polygon Mumbai testnet. If no BlockchainType is specified, the default is Ethereum mainnet. The Loader uses the Alchemy API to interact with the blockchain. ALCHEMY_API_KEY environment variable must be set to use this loader. The API returns 100 NFTs per request and can be paginated using the startToken parameter. If get_all_tokens is set to True, the loader will get all tokens on the contract. Note that for contracts with a large number of tokens, this may take a long time (e.g. 10k tokens is 100 requests). Default value is false for this reason. The max_execution_time (sec) can be set to limit the execution time of the loader. Future versions of this loader can: Support additional Alchemy APIs (e.g. getTransactions, etc.) Support additional blockain APIs (e.g. Infura, Opensea, etc.) Parameters contract_address – The address of the smart contract. blockchainType – The blockchain type. api_key – The Alchemy API key. startToken – The start token for pagination. get_all_tokens – Whether to get all tokens on the contract. max_execution_time – The maximum execution time (sec). Methods
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blockchain.BlockchainDocumentLoader.html
1ae2e102faf7-1
max_execution_time – The maximum execution time (sec). Methods __init__(contract_address[, blockchainType, ...]) param contract_address The address of the smart contract. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using BlockchainDocumentLoader¶ Blockchain
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blockchain.BlockchainDocumentLoader.html
04192ba04bd8-0
langchain.document_loaders.parsers.pdf.PyPDFium2Parser¶ class langchain.document_loaders.parsers.pdf.PyPDFium2Parser[source]¶ Bases: BaseBlobParser Parse PDFs with PyPDFium2. Initialize the parser. Methods __init__() Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFium2Parser.html
e7974ed6230e-0
langchain.document_loaders.blob_loaders.schema.BlobLoader¶ class langchain.document_loaders.blob_loaders.schema.BlobLoader[source]¶ Bases: ABC Abstract interface for blob loaders implementation. Implementer should be able to load raw content from a storage system according to some criteria and return the raw content lazily as a stream of blobs. Methods __init__() yield_blobs() A lazy loader for raw data represented by LangChain's Blob object. abstract yield_blobs() → Iterable[Blob][source]¶ A lazy loader for raw data represented by LangChain’s Blob object. Returns A generator over blobs
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.BlobLoader.html
f8825bbd2b51-0
langchain.document_loaders.unstructured.UnstructuredFileLoader¶ class langchain.document_loaders.unstructured.UnstructuredFileLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredBaseLoader Loader that uses Unstructured to load files. The file loader uses the unstructured partition function and will automatically detect the file type. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader(“example.pdf”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileLoader.html
f8825bbd2b51-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredFileLoader¶ Unstructured Unstructured File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileLoader.html
6b16ee2a8086-0
langchain.document_loaders.toml.TomlLoader¶ class langchain.document_loaders.toml.TomlLoader(source: Union[str, Path])[source]¶ Bases: BaseLoader A TOML document loader that inherits from the BaseLoader class. This class can be initialized with either a single source file or a source directory containing TOML files. Initialize the TomlLoader with a source file or directory. Methods __init__(source) Initialize the TomlLoader with a source file or directory. lazy_load() Lazily load the TOML documents from the source file or directory. load() Load and return all documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazily load the TOML documents from the source file or directory. load() → List[Document][source]¶ Load and return all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TomlLoader¶ TOML
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.toml.TomlLoader.html
226819b1e5a0-0
langchain.document_loaders.mediawikidump.MWDumpLoader¶ class langchain.document_loaders.mediawikidump.MWDumpLoader(file_path: Union[str, Path], encoding: Optional[str] = 'utf8', namespaces: Optional[Sequence[int]] = None, skip_redirects: Optional[bool] = False, stop_on_error: Optional[bool] = True)[source]¶ Bases: BaseLoader Load MediaWiki dump from XML file .. rubric:: Example from langchain.document_loaders import MWDumpLoader loader = MWDumpLoader( file_path="myWiki.xml", encoding="utf8" ) docs = loader.load() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=0 ) texts = text_splitter.split_documents(docs) Parameters file_path (str) – XML local file path encoding (str, optional) – Charset encoding, defaults to “utf8” namespaces (List[int],optional) – The namespace of pages you want to parse. See https://www.mediawiki.org/wiki/Help:Namespaces#Localisation for a list of all common namespaces skip_redirects (bool, optional) – TR=rue to skip pages that redirect to other pages, False to keep them. False by default stop_on_error (bool, optional) – False to skip over pages that cause parsing errors, True to stop. True by default Methods __init__(file_path[, encoding, namespaces, ...]) lazy_load() A lazy loader for Documents. load() Load from a file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mediawikidump.MWDumpLoader.html
226819b1e5a0-1
Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from a file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MWDumpLoader¶ MediaWikiDump
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mediawikidump.MWDumpLoader.html
62dc4337a660-0
langchain.document_loaders.concurrent.ConcurrentLoader¶ class langchain.document_loaders.concurrent.ConcurrentLoader(blob_loader: BlobLoader, blob_parser: BaseBlobParser, num_workers: int = 4)[source]¶ Bases: GenericLoader A generic document loader that loads and parses documents concurrently. A generic document loader. Parameters blob_loader – A blob loader which knows how to yield blobs blob_parser – A blob parser which knows how to parse blobs into documents Methods __init__(blob_loader, blob_parser[, num_workers]) A generic document loader. from_filesystem(path, *[, glob, suffixes, ...]) Create a concurrent generic document loader using a filesystem blob loader. lazy_load() Load documents lazily with concurrent parsing. load() Load all documents. load_and_split([text_splitter]) Load all documents and split them into sentences. classmethod from_filesystem(path: Union[str, Path], *, glob: str = '**/[!.]*', suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[Literal['default'], BaseBlobParser] = 'default', num_workers: int = 4) → ConcurrentLoader[source]¶ Create a concurrent generic document loader using a filesystem blob loader. lazy_load() → Iterator[Document][source]¶ Load documents lazily with concurrent parsing. load() → List[Document]¶ Load all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load all documents and split them into sentences.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.concurrent.ConcurrentLoader.html
1b9ab07552ee-0
langchain.document_loaders.parsers.registry.get_parser¶ langchain.document_loaders.parsers.registry.get_parser(parser_name: str) → BaseBlobParser[source]¶ Get a parser by parser name.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.registry.get_parser.html
2bf57a96f283-0
langchain.document_loaders.telegram.TelegramChatFileLoader¶ class langchain.document_loaders.telegram.TelegramChatFileLoader(path: str)[source]¶ Bases: BaseLoader Loads Telegram chat json directory dump. Initialize with a path. Methods __init__(path) Initialize with a path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TelegramChatFileLoader¶ Telegram
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.TelegramChatFileLoader.html
80b091511bfe-0
langchain.document_loaders.pdf.UnstructuredPDFLoader¶ class langchain.document_loaders.pdf.UnstructuredPDFLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load PDF files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredPDFLoader loader = UnstructuredPDFLoader(“example.pdf”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-pdf Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.UnstructuredPDFLoader.html
98ff803b8707-0
langchain.document_loaders.gcs_directory.GCSDirectoryLoader¶ class langchain.document_loaders.gcs_directory.GCSDirectoryLoader(project_name: str, bucket: str, prefix: str = '')[source]¶ Bases: BaseLoader Loads Documents from GCS. Initialize with bucket and key name. Parameters project_name – The name of the project for the GCS bucket. bucket – The name of the GCS bucket. prefix – The prefix of the GCS bucket. Methods __init__(project_name, bucket[, prefix]) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GCSDirectoryLoader¶ Google Cloud Storage Google Cloud Storage Directory
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gcs_directory.GCSDirectoryLoader.html
6afcb191a673-0
langchain.document_loaders.parsers.pdf.PDFPlumberParser¶ class langchain.document_loaders.parsers.pdf.PDFPlumberParser(text_kwargs: Optional[Mapping[str, Any]] = None)[source]¶ Bases: BaseBlobParser Parse PDFs with PDFPlumber. Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to pdfplumber.Page.extract_text() Methods __init__([text_kwargs]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PDFPlumberParser.html
6783235dd84c-0
langchain.document_loaders.conllu.CoNLLULoader¶ class langchain.document_loaders.conllu.CoNLLULoader(file_path: str)[source]¶ Bases: BaseLoader Load CoNLL-U files. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load from a file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from a file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using CoNLLULoader¶ CoNLL-U
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.conllu.CoNLLULoader.html
b3de32334995-0
langchain.document_loaders.spreedly.SpreedlyLoader¶ class langchain.document_loaders.spreedly.SpreedlyLoader(access_token: str, resource: str)[source]¶ Bases: BaseLoader Loader that fetches data from Spreedly API. Initialize with an access token and a resource. Parameters access_token – The access token. resource – The resource. Methods __init__(access_token, resource) Initialize with an access token and a resource. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SpreedlyLoader¶ Spreedly
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.spreedly.SpreedlyLoader.html
f1cd07cdd4f7-0
langchain.document_loaders.airtable.AirtableLoader¶ class langchain.document_loaders.airtable.AirtableLoader(api_token: str, table_id: str, base_id: str)[source]¶ Bases: BaseLoader Loader for Airtable tables. Initialize with API token and the IDs for table and base Methods __init__(api_token, table_id, base_id) Initialize with API token and the IDs for table and base lazy_load() Lazy load Documents from table. load() Load Documents from table. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes api_token Airtable API token. table_id Airtable table ID. base_id Airtable base ID. lazy_load() → Iterator[Document][source]¶ Lazy load Documents from table. load() → List[Document][source]¶ Load Documents from table. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. api_token¶ Airtable API token. base_id¶ Airtable base ID. table_id¶ Airtable table ID. Examples using AirtableLoader¶ Airtable
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airtable.AirtableLoader.html
633a0ce067d6-0
langchain.document_loaders.iugu.IuguLoader¶ class langchain.document_loaders.iugu.IuguLoader(resource: str, api_token: Optional[str] = None)[source]¶ Bases: BaseLoader Loader that fetches data from IUGU. Initialize the IUGU resource. Parameters resource – The name of the resource to fetch. api_token – The IUGU API token to use. Methods __init__(resource[, api_token]) Initialize the IUGU resource. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using IuguLoader¶ Iugu
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.iugu.IuguLoader.html
a5c1a256ac09-0
langchain.document_loaders.whatsapp_chat.concatenate_rows¶ langchain.document_loaders.whatsapp_chat.concatenate_rows(date: str, sender: str, text: str) → str[source]¶ Combine message information in a readable format ready to be used.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.concatenate_rows.html
0a9d60c84111-0
langchain.document_loaders.html_bs.BSHTMLLoader¶ class langchain.document_loaders.html_bs.BSHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]¶ Bases: BaseLoader Loader that uses beautiful soup to parse HTML files. Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – The path to the file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – Any kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when calling get_text on the soup. Methods __init__(file_path[, open_encoding, ...]) Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. lazy_load() A lazy loader for Documents. load() Load HTML document into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load HTML document into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.html_bs.BSHTMLLoader.html
f1601092e92a-0
langchain.document_loaders.obs_file.OBSFileLoader¶ class langchain.document_loaders.obs_file.OBSFileLoader(bucket: str, key: str, client: Any = None, endpoint: str = '', config: Optional[dict] = None)[source]¶ Bases: BaseLoader Loader for Huawei OBS file. Initialize the OBSFileLoader with the specified settings. Parameters bucket (str) – The name of the OBS bucket to be used. key (str) – The name of the object in the OBS bucket. client (ObsClient, optional) – An instance of the ObsClient to connect to OBS. endpoint (str, optional) – The endpoint URL of your OBS bucket. This parameter is mandatory if client is not provided. config (dict, optional) – The parameters for connecting to OBS, provided as a dictionary. This parameter is ignored if client is provided. The dictionary could have the following keys: - “ak” (str, optional): Your OBS access key (required if get_token_from_ecs is False and bucket policy is not public read). - “sk” (str, optional): Your OBS secret key (required if get_token_from_ecs is False and bucket policy is not public read). - “token” (str, optional): Your security token (required if using temporary credentials). - “get_token_from_ecs” (bool, optional): Whether to retrieve the security token from ECS. Defaults to False if not provided. If set to True, ak, sk, and token will be ignored. Raises ValueError – If the esdk-obs-python package is not installed. TypeError – If the provided client is not an instance of ObsClient. ValueError – If client is not provided, but endpoint is missing. Note
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obs_file.OBSFileLoader.html
f1601092e92a-1
ValueError – If client is not provided, but endpoint is missing. Note Before using this class, make sure you have registered with OBS and have the necessary credentials. The ak, sk, and endpoint values are mandatory unless get_token_from_ecs is True or the bucket policy is public read. token is required when using temporary credentials. Example To create a new OBSFileLoader with a new client: ``` config = { “ak”: “your-access-key”, “sk”: “your-secret-key” } obs_loader = OBSFileLoader(“your-bucket-name”, “your-object-key”, config=config) ``` To create a new OBSFileLoader with an existing client: ``` from obs import ObsClient # Assuming you have an existing ObsClient object ‘obs_client’ obs_loader = OBSFileLoader(“your-bucket-name”, “your-object-key”, client=obs_client) ``` To create a new OBSFileLoader without an existing client: ` obs_loader = OBSFileLoader("your-bucket-name", "your-object-key", endpoint="your-endpoint-url") ` Methods __init__(bucket, key[, client, endpoint, config]) Initialize the OBSFileLoader with the specified settings. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obs_file.OBSFileLoader.html
f1601092e92a-2
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obs_file.OBSFileLoader.html
80b129e1bfb5-0
langchain.document_loaders.web_base.WebBaseLoader¶ class langchain.document_loaders.web_base.WebBaseLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: BaseLoader Loader that uses urllib and beautiful soup to load webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load text from the url(s) in web_path. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path web_paths aload() → List[Document][source]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any[source]¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document][source]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load text from the url(s) in web_path.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.web_base.WebBaseLoader.html
80b129e1bfb5-1
Load text from the url(s) in web_path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any[source]¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any][source]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using WebBaseLoader¶ Vectorstore Agent WebBaseLoader MergeDocLoader QA over Documents Running LLMs locally Use local LLMs MultiQueryRetriever Combine agents and vector stores
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.web_base.WebBaseLoader.html
5d8efba16a32-0
langchain.document_loaders.parsers.language.language_parser.LanguageParser¶ class langchain.document_loaders.parsers.language.language_parser.LanguageParser(language: Optional[Language] = None, parser_threshold: int = 0)[source]¶ Bases: BaseBlobParser Language parser that split code using the respective language syntax. Each top-level function and class in the code is loaded into separate documents. Furthermore, an extra document is generated, containing the remaining top-level code that excludes the already segmented functions and classes. This approach can potentially improve the accuracy of QA models over source code. Currently, the supported languages for code parsing are Python and JavaScript. The language used for parsing can be configured, along with the minimum number of lines required to activate the splitting based on syntax. Examples from langchain.text_splitter.Language from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import LanguageParser loader = GenericLoader.from_filesystem( "./code", glob="**/*", suffixes=[".py", ".js"], parser=LanguageParser() ) docs = loader.load() Example instantiations to manually select the language: … code-block:: python from langchain.text_splitter import Language loader = GenericLoader.from_filesystem(“./code”, glob=”**/*”, suffixes=[“.py”], parser=LanguageParser(language=Language.PYTHON) ) Example instantiations to set number of lines threshold: … code-block:: python loader = GenericLoader.from_filesystem(“./code”, glob=”**/*”, suffixes=[“.py”], parser=LanguageParser(parser_threshold=200) ) Language parser that split code using the respective language syntax. Parameters language – If None (default), it will try to infer language from source.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.language_parser.LanguageParser.html
5d8efba16a32-1
Parameters language – If None (default), it will try to infer language from source. parser_threshold – Minimum lines needed to activate parsing (0 by default). Methods __init__([language, parser_threshold]) Language parser that split code using the respective language syntax. lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents Examples using LanguageParser¶ Source Code
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.language_parser.LanguageParser.html
9302d4edfc9d-0
langchain.document_loaders.parsers.language.javascript.JavaScriptSegmenter¶ class langchain.document_loaders.parsers.language.javascript.JavaScriptSegmenter(code: str)[source]¶ Bases: CodeSegmenter The code segmenter for JavaScript. Methods __init__(code) extract_functions_classes() is_valid() simplify_code() extract_functions_classes() → List[str][source]¶ is_valid() → bool[source]¶ simplify_code() → str[source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.javascript.JavaScriptSegmenter.html
5668e97e88fc-0
langchain.document_loaders.dropbox.DropboxLoader¶ class langchain.document_loaders.dropbox.DropboxLoader(*, dropbox_access_token: str, dropbox_folder_path: Optional[str] = None, dropbox_file_paths: Optional[List[str]] = None, recursive: bool = False)[source]¶ Bases: BaseLoader, BaseModel Loads files from Dropbox. In addition to common files such as text and PDF files, it also supports Dropbox Paper files. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param dropbox_access_token: str [Required]¶ Dropbox access token. param dropbox_file_paths: Optional[List[str]] = None¶ The file paths to load from. param dropbox_folder_path: Optional[str] = None¶ The folder path to load from. param recursive: bool = False¶ Flag to indicate whether to load files recursively from subfolders. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_inputs  »  all fields[source]¶ Validate that either folder_path or file_paths is set, but not both. Examples using DropboxLoader¶ Dropbox
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.dropbox.DropboxLoader.html
fb7f6cab016d-0
langchain.document_loaders.s3_file.S3FileLoader¶ class langchain.document_loaders.s3_file.S3FileLoader(bucket: str, key: str)[source]¶ Bases: BaseLoader Loading logic for loading documents from an AWS S3 file. Initialize with bucket and key name. Parameters bucket – The name of the S3 bucket. key – The key of the S3 object. Methods __init__(bucket, key) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using S3FileLoader¶ AWS S3 Directory AWS S3 File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.s3_file.S3FileLoader.html
5f7afd3428e0-0
langchain.document_loaders.azlyrics.AZLyricsLoader¶ class langchain.document_loaders.azlyrics.AZLyricsLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loads AZLyrics webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpages into Documents. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpages into Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
5f7afd3428e0-1
load() → List[Document][source]¶ Load webpages into Documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using AZLyricsLoader¶ AZLyrics
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
9151f7ce3219-0
langchain.document_loaders.stripe.StripeLoader¶ class langchain.document_loaders.stripe.StripeLoader(resource: str, access_token: Optional[str] = None)[source]¶ Bases: BaseLoader Loader that fetches data from Stripe. Initialize with a resource and an access token. Parameters resource – The resource. access_token – The access token. Methods __init__(resource[, access_token]) Initialize with a resource and an access token. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using StripeLoader¶ Stripe
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.stripe.StripeLoader.html
a88ef1fe8827-0
langchain.document_loaders.obs_directory.OBSDirectoryLoader¶ class langchain.document_loaders.obs_directory.OBSDirectoryLoader(bucket: str, endpoint: str, config: Optional[dict] = None, prefix: str = '')[source]¶ Bases: BaseLoader Loading logic for loading documents from Huawei OBS. Initialize the OBSDirectoryLoader with the specified settings. Parameters bucket (str) – The name of the OBS bucket to be used. endpoint (str) – The endpoint URL of your OBS bucket. config (dict) – The parameters for connecting to OBS, provided as a dictionary. The dictionary could have the following keys: - “ak” (str, optional): Your OBS access key (required if get_token_from_ecs is False and bucket policy is not public read). - “sk” (str, optional): Your OBS secret key (required if get_token_from_ecs is False and bucket policy is not public read). - “token” (str, optional): Your security token (required if using temporary credentials). - “get_token_from_ecs” (bool, optional): Whether to retrieve the security token from ECS. Defaults to False if not provided. If set to True, ak, sk, and token will be ignored. prefix (str, optional) – The prefix to be added to the OBS key. Defaults to “”. Note Before using this class, make sure you have registered with OBS and have the necessary credentials. The ak, sk, and endpoint values are mandatory unless get_token_from_ecs is True or the bucket policy is public read. token is required when using temporary credentials. Example To create a new OBSDirectoryLoader: ``` config = { “ak”: “your-access-key”, “sk”: “your-secret-key”
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obs_directory.OBSDirectoryLoader.html
a88ef1fe8827-1
“ak”: “your-access-key”, “sk”: “your-secret-key” directory_loader = OBSDirectoryLoader(“your-bucket-name”, “your-end-endpoint”, config, “your-prefix”) Methods __init__(bucket, endpoint[, config, prefix]) Initialize the OBSDirectoryLoader with the specified settings. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obs_directory.OBSDirectoryLoader.html
322b6fa96170-0
langchain.document_loaders.blob_loaders.schema.Blob¶ class langchain.document_loaders.blob_loaders.schema.Blob(*, data: Optional[Union[bytes, str]] = None, mimetype: Optional[str] = None, encoding: str = 'utf-8', path: Optional[Union[str, PurePath]] = None)[source]¶ Bases: BaseModel A blob is used to represent raw data by either reference or value. Provides an interface to materialize the blob in different representations, and help to decouple the development of data loaders from the downstream parsing of the raw data. Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param data: Optional[Union[bytes, str]] = None¶ param encoding: str = 'utf-8'¶ param mimetype: Optional[str] = None¶ param path: Optional[Union[str, pathlib.PurePath]] = None¶ as_bytes() → bytes[source]¶ Read data as bytes. as_bytes_io() → Generator[Union[BytesIO, BufferedReader], None, None][source]¶ Read data as a byte stream. as_string() → str[source]¶ Read data as a string. validator check_blob_is_valid  »  all fields[source]¶ Verify that either data or path is provided. classmethod from_data(data: Union[str, bytes], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, path: Optional[str] = None) → Blob[source]¶ Initialize the blob from in-memory data. Parameters data – the in-memory data associated with the blob encoding – Encoding to use if decoding the bytes into a string
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
322b6fa96170-1
encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data path – if provided, will be set as the source from which the data came Returns Blob instance classmethod from_path(path: Union[str, PurePath], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, guess_type: bool = True) → Blob[source]¶ Load the blob from a path like object. Parameters path – path like object to file to be read encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data guess_type – If True, the mimetype will be guessed from the file extension, if a mime-type was not provided Returns Blob instance property source: Optional[str]¶ The source location of the blob as string if known otherwise none. model Config[source]¶ Bases: object arbitrary_types_allowed = True¶ frozen = True¶ Examples using Blob¶ Embaas
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
f45e60ca83ee-0
langchain.document_loaders.generic.GenericLoader¶ class langchain.document_loaders.generic.GenericLoader(blob_loader: BlobLoader, blob_parser: BaseBlobParser)[source]¶ Bases: BaseLoader A generic document loader. A generic document loader that allows combining an arbitrary blob loader with a blob parser. Examples from langchain.document_loaders import GenericLoader from langchain.document_loaders.blob_loaders import FileSystemBlobLoader loader = GenericLoader.from_filesystem(path=”path/to/directory”, glob=”**/[!.]*”, suffixes=[“.pdf”], show_progress=True, ) docs = loader.lazy_load() next(docs) Example instantiations to change which files are loaded: … code-block:: python # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”**/*.txt”) # Recursively load all non-hidden files in a directory. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”**/[!.]*”) # Load all files in a directory without recursion. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”*”) Example instantiations to change which parser is used: … code-block:: python from langchain.document_loaders.parsers.pdf import PyPDFParser # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem( “/path/to/dir”, glob=”**/*.pdf”, parser=PyPDFParser() ) A generic document loader. Parameters blob_loader – A blob loader which knows how to yield blobs blob_parser – A blob parser which knows how to parse blobs into documents Methods __init__(blob_loader, blob_parser) A generic document loader.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.generic.GenericLoader.html
f45e60ca83ee-1
Methods __init__(blob_loader, blob_parser) A generic document loader. from_filesystem(path, *[, glob, suffixes, ...]) Create a generic document loader using a filesystem blob loader. lazy_load() Load documents lazily. load() Load all documents. load_and_split([text_splitter]) Load all documents and split them into sentences. classmethod from_filesystem(path: Union[str, Path], *, glob: str = '**/[!.]*', suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[Literal['default'], BaseBlobParser] = 'default') → GenericLoader[source]¶ Create a generic document loader using a filesystem blob loader. Parameters path – The path to the directory to load documents from. glob – The glob pattern to use to find documents. suffixes – The suffixes to use to filter documents. If None, all files matching the glob will be loaded. show_progress – Whether to show a progress bar or not (requires tqdm). Proxies to the file system loader. parser – A blob parser which knows how to parse blobs into documents Returns A generic document loader. lazy_load() → Iterator[Document][source]¶ Load documents lazily. Use this when working at a large scale. load() → List[Document][source]¶ Load all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document][source]¶ Load all documents and split them into sentences. Examples using GenericLoader¶ Grobid Loading documents from a YouTube url Source Code
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.generic.GenericLoader.html
7eef2e24499e-0
langchain.document_loaders.joplin.JoplinLoader¶ class langchain.document_loaders.joplin.JoplinLoader(access_token: Optional[str] = None, port: int = 41184, host: str = 'localhost')[source]¶ Bases: BaseLoader Loader that fetches notes from Joplin. In order to use this loader, you need to have Joplin running with the Web Clipper enabled (look for “Web Clipper” in the app settings). To get the access token, you need to go to the Web Clipper options and under “Advanced Options” you will find the access token. You can find more information about the Web Clipper service here: https://joplinapp.org/clipper/ Parameters access_token – The access token to use. port – The port where the Web Clipper service is running. Default is 41184. host – The host where the Web Clipper service is running. Default is localhost. Methods __init__([access_token, port, host]) param access_token The access token to use. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using JoplinLoader¶ Joplin
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.joplin.JoplinLoader.html
83e94832b6fd-0
langchain.document_loaders.readthedocs.ReadTheDocsLoader¶ class langchain.document_loaders.readthedocs.ReadTheDocsLoader(path: Union[str, Path], encoding: Optional[str] = None, errors: Optional[str] = None, custom_html_tag: Optional[Tuple[str, dict]] = None, **kwargs: Optional[Any])[source]¶ Bases: BaseLoader Loads ReadTheDocs documentation directory dump. Initialize ReadTheDocsLoader The loader loops over all files under path and extracts the actual content of the files by retrieving main html tags. Default main html tags include <main id=”main-content>, <div role=”main>, and <article role=”main”>. You can also define your own html tags by passing custom_html_tag, e.g. (“div”, “class=main”). The loader iterates html tags with the order of custom html tags (if exists) and default html tags. If any of the tags is not empty, the loop will break and retrieve the content out of that tag. Parameters path – The location of pulled readthedocs folder. encoding – The encoding with which to open the documents. errors – Specify how encoding and decoding errors are to be handled—this cannot be used in binary mode. custom_html_tag – Optional custom html tag to retrieve the content from files. Methods __init__(path[, encoding, errors, ...]) Initialize ReadTheDocsLoader lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html
83e94832b6fd-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ReadTheDocsLoader¶ ReadTheDocs Documentation
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.readthedocs.ReadTheDocsLoader.html
172e44db0f00-0
langchain.document_loaders.python.PythonLoader¶ class langchain.document_loaders.python.PythonLoader(file_path: str)[source]¶ Bases: TextLoader Load Python files, respecting any non-default encoding if specified. Initialize with a file path. Parameters file_path – The path to the file to load. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load from file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load from file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.python.PythonLoader.html
01331b6cb241-0
langchain.document_loaders.odt.UnstructuredODTLoader¶ class langchain.document_loaders.odt.UnstructuredODTLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load OpenOffice ODT files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredODTLoader loader = UnstructuredODTLoader(“example.odt”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-odt Parameters file_path – The path to the file to load. mode – The mode to use when loading the file. Can be one of “single”, “multi”, or “all”. Default is “single”. **unstructured_kwargs – Any kwargs to pass to the unstructured. Methods __init__(file_path[, mode]) param file_path The path to the file to load. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.odt.UnstructuredODTLoader.html
01331b6cb241-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredODTLoader¶ Open Document Format (ODT)
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.odt.UnstructuredODTLoader.html
fbb08f6bb3a1-0
langchain.document_loaders.blob_loaders.file_system.FileSystemBlobLoader¶ class langchain.document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path: Union[str, Path], *, glob: str = '**/[!.]*', suffixes: Optional[Sequence[str]] = None, show_progress: bool = False)[source]¶ Bases: BlobLoader Blob loader for the local file system. Example: from langchain.document_loaders.blob_loaders import FileSystemBlobLoader loader = FileSystemBlobLoader("/path/to/directory") for blob in loader.yield_blobs(): print(blob) Initialize with path to directory and how to glob over it. Parameters path – Path to directory to load from glob – Glob pattern relative to the specified path by default set to pick up all non-hidden files suffixes – Provide to keep only files with these suffixes Useful when wanting to keep files with different suffixes Suffixes must include the dot, e.g. “.txt” show_progress – If true, will show a progress bar as the files are loaded. This forces an iteration through all matching files to count them prior to loading them. Examples: … code-block:: python # Recursively load all text files in a directory. loader = FileSystemBlobLoader(“/path/to/directory”, glob=”**/*.txt”) # Recursively load all non-hidden files in a directory. loader = FileSystemBlobLoader(“/path/to/directory”, glob=”**/[!.]*”) # Load all files in a directory without recursion. loader = FileSystemBlobLoader(“/path/to/directory”, glob=”*”) Methods __init__(path, *[, glob, suffixes, ...]) Initialize with path to directory and how to glob over it. count_matching_files()
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.file_system.FileSystemBlobLoader.html
fbb08f6bb3a1-1
Initialize with path to directory and how to glob over it. count_matching_files() Count files that match the pattern without loading them. yield_blobs() Yield blobs that match the requested pattern. count_matching_files() → int[source]¶ Count files that match the pattern without loading them. yield_blobs() → Iterable[Blob][source]¶ Yield blobs that match the requested pattern.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.file_system.FileSystemBlobLoader.html
747097d741d1-0
langchain.document_loaders.wikipedia.WikipediaLoader¶ class langchain.document_loaders.wikipedia.WikipediaLoader(query: str, lang: str = 'en', load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False, doc_content_chars_max: Optional[int] = 4000)[source]¶ Bases: BaseLoader Loads a query result from www.wikipedia.org into a list of Documents. The hard limit on the number of downloaded Documents is 300 for now. Each wiki page represents one Document. Initializes a new instance of the WikipediaLoader class. Parameters query (str) – The query string to search on Wikipedia. lang (str, optional) – The language code for the Wikipedia language edition. Defaults to “en”. load_max_docs (int, optional) – The maximum number of documents to load. Defaults to 100. load_all_available_meta (bool, optional) – Indicates whether to load all available metadata for each document. Defaults to False. doc_content_chars_max (int, optional) – The maximum number of characters for the document content. Defaults to 4000. Methods __init__(query[, lang, load_max_docs, ...]) Initializes a new instance of the WikipediaLoader class. lazy_load() A lazy loader for Documents. load() Loads the query result from Wikipedia into a list of Documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Loads the query result from Wikipedia into a list of Documents. Returns A list of Document objects representing the loadedWikipedia pages. Return type List[Document]
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.wikipedia.WikipediaLoader.html
747097d741d1-1
Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WikipediaLoader¶ Wikipedia
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.wikipedia.WikipediaLoader.html
8eb50fcd1dac-0
langchain.document_loaders.facebook_chat.concatenate_rows¶ langchain.document_loaders.facebook_chat.concatenate_rows(row: dict) → str[source]¶ Combine message information in a readable format ready to be used. Parameters row – dictionary containing message information.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.facebook_chat.concatenate_rows.html
49d8cc9116e6-0
langchain.document_loaders.email.UnstructuredEmailLoader¶ class langchain.document_loaders.email.UnstructuredEmailLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load email files. Works with both .eml and .msg files. You can process attachments in addition to the e-mail message itself by passing process_attachments=True into the constructor for the loader. By default, attachments will be processed with the unstructured partition function. If you already know the document types of the attachments, you can specify another partitioning function with the attachment partitioner kwarg. Example from langchain.document_loaders import UnstructuredEmailLoader loader = UnstructuredEmailLoader(“example_data/fake-email.eml”, mode=”elements”) loader.load() Example from langchain.document_loaders import UnstructuredEmailLoader loader = UnstructuredEmailLoader(“example_data/fake-email-attachment.eml”, mode=”elements”, process_attachments=True, ) loader.load() Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredEmailLoader¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.email.UnstructuredEmailLoader.html
49d8cc9116e6-1
Returns List of Documents. Examples using UnstructuredEmailLoader¶ Email
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.email.UnstructuredEmailLoader.html
d2b27009107d-0
langchain.document_loaders.telegram.concatenate_rows¶ langchain.document_loaders.telegram.concatenate_rows(row: dict) → str[source]¶ Combine message information in a readable format ready to be used.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.concatenate_rows.html
46ed66a31890-0
langchain.document_loaders.email.OutlookMessageLoader¶ class langchain.document_loaders.email.OutlookMessageLoader(file_path: str)[source]¶ Bases: BaseLoader Loads Outlook Message files using extract_msg. https://github.com/TeamMsgExtractor/msg-extractor Initialize with a file path. Parameters file_path – The path to the Outlook Message file. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using OutlookMessageLoader¶ Email
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.email.OutlookMessageLoader.html
85f73d0e2f13-0
langchain.document_loaders.tsv.UnstructuredTSVLoader¶ class langchain.document_loaders.tsv.UnstructuredTSVLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load TSV files. Like other Unstructured loaders, UnstructuredTSVLoader can be used in both “single” and “elements” mode. If you use the loader in “elements” mode, the TSV file will be a single Unstructured Table element. If you use the loader in “elements” mode, an HTML representation of the table will be available in the “text_as_html” key in the document metadata. Examples from langchain.document_loaders.tsv import UnstructuredTSVLoader loader = UnstructuredTSVLoader(“stanley-cups.tsv”, mode=”elements”) docs = loader.load() Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredTSVLoader¶ TSV
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tsv.UnstructuredTSVLoader.html
bc5c17b12f4f-0
langchain.document_loaders.duckdb_loader.DuckDBLoader¶ class langchain.document_loaders.duckdb_loader.DuckDBLoader(query: str, database: str = ':memory:', read_only: bool = False, config: Optional[Dict[str, str]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]¶ Bases: BaseLoader Loads a query result from DuckDB into a list of documents. Each document represents one row of the result. The page_content_columns are written into the page_content of the document. The metadata_columns are written into the metadata of the document. By default, all columns are written into the page_content and none into the metadata. Parameters query – The query to execute. database – The database to connect to. Defaults to “:memory:”. read_only – Whether to open the database in read-only mode. Defaults to False. config – A dictionary of configuration options to pass to the database. Optional. page_content_columns – The columns to write into the page_content of the document. Optional. metadata_columns – The columns to write into the metadata of the document. Optional. Methods __init__(query[, database, read_only, ...]) param query The query to execute. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.duckdb_loader.DuckDBLoader.html
bc5c17b12f4f-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using DuckDBLoader¶ DuckDB
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.duckdb_loader.DuckDBLoader.html
6f99e7428987-0
langchain.document_loaders.tomarkdown.ToMarkdownLoader¶ class langchain.document_loaders.tomarkdown.ToMarkdownLoader(url: str, api_key: str)[source]¶ Bases: BaseLoader Loads HTML to markdown using 2markdown. Initialize with url and api key. Methods __init__(url, api_key) Initialize with url and api key. lazy_load() Lazily load the file. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazily load the file. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ToMarkdownLoader¶ 2Markdown
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tomarkdown.ToMarkdownLoader.html
4322b8addc2e-0
langchain.document_loaders.onedrive_file.OneDriveFileLoader¶ class langchain.document_loaders.onedrive_file.OneDriveFileLoader(*, file: File)[source]¶ Bases: BaseLoader, BaseModel Loads a file from OneDrive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param file: File [Required]¶ The file to load. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load Documents load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. model Config[source]¶ Bases: object arbitrary_types_allowed = True¶ Allow arbitrary types. This is needed for the File type. Default is True. See https://pydantic-docs.helpmanual.io/usage/types/#arbitrary-types-allowed
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive_file.OneDriveFileLoader.html
c748f5504ca0-0
langchain.document_loaders.mhtml.MHTMLLoader¶ class langchain.document_loaders.mhtml.MHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]¶ Bases: BaseLoader Loader that uses beautiful soup to parse HTML files. Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – Path to file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – Any kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when getting the text from the soup. Methods __init__(file_path[, open_encoding, ...]) Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MHTMLLoader¶ mhtml
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mhtml.MHTMLLoader.html
2568fe589987-0
langchain.document_loaders.confluence.ContentFormat¶ class langchain.document_loaders.confluence.ContentFormat(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: str, Enum Enumerator of the content formats of Confluence page. Methods get_content(page) __init__(*args, **kwds) capitalize() Return a capitalized version of the string. casefold() Return a version of the string suitable for caseless comparisons. center(width[, fillchar]) Return a centered string of length width. count(sub[, start[, end]]) Return the number of non-overlapping occurrences of substring sub in string S[start:end]. encode([encoding, errors]) Encode the string using the codec registered for encoding. endswith(suffix[, start[, end]]) Return True if S ends with the specified suffix, False otherwise. expandtabs([tabsize]) Return a copy where all tab characters are expanded using spaces. find(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. format(*args, **kwargs) Return a formatted version of S, using substitutions from args and kwargs. format_map(mapping) Return a formatted version of S, using substitutions from mapping. index(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. isalnum() Return True if the string is an alpha-numeric string, False otherwise. isalpha() Return True if the string is an alphabetic string, False otherwise. isascii() Return True if all characters in the string are ASCII, False otherwise. isdecimal()
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-1
Return True if all characters in the string are ASCII, False otherwise. isdecimal() Return True if the string is a decimal string, False otherwise. isdigit() Return True if the string is a digit string, False otherwise. isidentifier() Return True if the string is a valid Python identifier, False otherwise. islower() Return True if the string is a lowercase string, False otherwise. isnumeric() Return True if the string is a numeric string, False otherwise. isprintable() Return True if the string is printable, False otherwise. isspace() Return True if the string is a whitespace string, False otherwise. istitle() Return True if the string is a title-cased string, False otherwise. isupper() Return True if the string is an uppercase string, False otherwise. join(iterable, /) Concatenate any number of strings. ljust(width[, fillchar]) Return a left-justified string of length width. lower() Return a copy of the string converted to lowercase. lstrip([chars]) Return a copy of the string with leading whitespace removed. maketrans Return a translation table usable for str.translate(). partition(sep, /) Partition the string into three parts using the given separator. removeprefix(prefix, /) Return a str with the given prefix string removed if present. removesuffix(suffix, /) Return a str with the given suffix string removed if present. replace(old, new[, count]) Return a copy with all occurrences of substring old replaced by new. rfind(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. rindex(sub[, start[, end]])
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-2
rindex(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. rjust(width[, fillchar]) Return a right-justified string of length width. rpartition(sep, /) Partition the string into three parts using the given separator. rsplit([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. rstrip([chars]) Return a copy of the string with trailing whitespace removed. split([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. splitlines([keepends]) Return a list of the lines in the string, breaking at line boundaries. startswith(prefix[, start[, end]]) Return True if S starts with the specified prefix, False otherwise. strip([chars]) Return a copy of the string with leading and trailing whitespace removed. swapcase() Convert uppercase characters to lowercase and lowercase characters to uppercase. title() Return a version of the string where each word is titlecased. translate(table, /) Replace each character in the string using the given translation table. upper() Return a copy of the string converted to uppercase. zfill(width, /) Pad a numeric string with zeros on the left, to fill a field of the given width. Attributes STORAGE VIEW capitalize()¶ Return a capitalized version of the string. More specifically, make the first character have upper case and the rest lower case. casefold()¶ Return a version of the string suitable for caseless comparisons. center(width, fillchar=' ', /)¶ Return a centered string of length width. Padding is done using the specified fill character (default is a space).
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-3
Padding is done using the specified fill character (default is a space). count(sub[, start[, end]]) → int¶ Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation. encode(encoding='utf-8', errors='strict')¶ Encode the string using the codec registered for encoding. encodingThe encoding in which to encode the string. errorsThe error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors. endswith(suffix[, start[, end]]) → bool¶ Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try. expandtabs(tabsize=8)¶ Return a copy where all tab characters are expanded using spaces. If tabsize is not given, a tab size of 8 characters is assumed. find(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. format(*args, **kwargs) → str¶ Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’). format_map(mapping) → str¶ Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’).
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-4
The substitutions are identified by braces (‘{’ and ‘}’). get_content(page: dict) → str[source]¶ index(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. isalnum()¶ Return True if the string is an alpha-numeric string, False otherwise. A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string. isalpha()¶ Return True if the string is an alphabetic string, False otherwise. A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string. isascii()¶ Return True if all characters in the string are ASCII, False otherwise. ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too. isdecimal()¶ Return True if the string is a decimal string, False otherwise. A string is a decimal string if all characters in the string are decimal and there is at least one character in the string. isdigit()¶ Return True if the string is a digit string, False otherwise. A string is a digit string if all characters in the string are digits and there is at least one character in the string. isidentifier()¶ Return True if the string is a valid Python identifier, False otherwise. Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”. islower()¶ Return True if the string is a lowercase string, False otherwise.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-5
islower()¶ Return True if the string is a lowercase string, False otherwise. A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string. isnumeric()¶ Return True if the string is a numeric string, False otherwise. A string is numeric if all characters in the string are numeric and there is at least one character in the string. isprintable()¶ Return True if the string is printable, False otherwise. A string is printable if all of its characters are considered printable in repr() or if it is empty. isspace()¶ Return True if the string is a whitespace string, False otherwise. A string is whitespace if all characters in the string are whitespace and there is at least one character in the string. istitle()¶ Return True if the string is a title-cased string, False otherwise. In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones. isupper()¶ Return True if the string is an uppercase string, False otherwise. A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string. join(iterable, /)¶ Concatenate any number of strings. The string whose method is called is inserted in between each given string. The result is returned as a new string. Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’ ljust(width, fillchar=' ', /)¶ Return a left-justified string of length width. Padding is done using the specified fill character (default is a space). lower()¶ Return a copy of the string converted to lowercase.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-6
lower()¶ Return a copy of the string converted to lowercase. lstrip(chars=None, /)¶ Return a copy of the string with leading whitespace removed. If chars is given and not None, remove characters in chars instead. static maketrans()¶ Return a translation table usable for str.translate(). If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to None in the result. partition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing the original string and two empty strings. removeprefix(prefix, /)¶ Return a str with the given prefix string removed if present. If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string. removesuffix(suffix, /)¶ Return a str with the given suffix string removed if present. If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string. replace(old, new, count=- 1, /)¶ Return a copy with all occurrences of substring old replaced by new.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-7
Return a copy with all occurrences of substring old replaced by new. countMaximum number of occurrences to replace. -1 (the default value) means replace all occurrences. If the optional argument count is given, only the first count occurrences are replaced. rfind(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. rindex(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. rjust(width, fillchar=' ', /)¶ Return a right-justified string of length width. Padding is done using the specified fill character (default is a space). rpartition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing two empty strings and the original string. rsplit(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left).
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-8
empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit. Splitting starts at the end of the string and works to the front. rstrip(chars=None, /)¶ Return a copy of the string with trailing whitespace removed. If chars is given and not None, remove characters in chars instead. split(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit. Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module. splitlines(keepends=False)¶ Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true. startswith(prefix[, start[, end]]) → bool¶ Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try. strip(chars=None, /)¶ Return a copy of the string with leading and trailing whitespace removed. If chars is given and not None, remove characters in chars instead. swapcase()¶ Convert uppercase characters to lowercase and lowercase characters to uppercase. title()¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
2568fe589987-9
Convert uppercase characters to lowercase and lowercase characters to uppercase. title()¶ Return a version of the string where each word is titlecased. More specifically, words start with uppercased characters and all remaining cased characters have lower case. translate(table, /)¶ Replace each character in the string using the given translation table. tableTranslation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None. The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted. upper()¶ Return a copy of the string converted to uppercase. zfill(width, /)¶ Pad a numeric string with zeros on the left, to fill a field of the given width. The string is never truncated. STORAGE = 'body.storage'¶ VIEW = 'body.view'¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ContentFormat.html
66b087532d38-0
langchain.document_loaders.hn.HNLoader¶ class langchain.document_loaders.hn.HNLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Load Hacker News data from either main page results or the comments page. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Get important HN webpage information. load_and_split([text_splitter]) Load Documents and split into chunks. load_comments(soup_info) Load comments from a HN post. load_results(soup) Load items from an HN page. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hn.HNLoader.html
66b087532d38-1
Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Get important HN webpage information. HN webpage components are: title content source url, time of post author of the post number of comments rank of the post load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. load_comments(soup_info: Any) → List[Document][source]¶ Load comments from a HN post. load_results(soup: Any) → List[Document][source]¶ Load items from an HN page. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using HNLoader¶ Hacker News
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hn.HNLoader.html
2ea39afc0cfe-0
langchain.document_loaders.figma.FigmaFileLoader¶ class langchain.document_loaders.figma.FigmaFileLoader(access_token: str, ids: str, key: str)[source]¶ Bases: BaseLoader Loads Figma file json. Initialize with access token, ids, and key. Parameters access_token – The access token for the Figma REST API. ids – The ids of the Figma file. key – The key for the Figma file Methods __init__(access_token, ids, key) Initialize with access token, ids, and key. lazy_load() A lazy loader for Documents. load() Load file load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using FigmaFileLoader¶ Figma
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.figma.FigmaFileLoader.html
8644a61e14eb-0
langchain.document_loaders.rtf.UnstructuredRTFLoader¶ class langchain.document_loaders.rtf.UnstructuredRTFLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load RTF files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredRTFLoader loader = UnstructuredRTFLoader(“example.rtf”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-rtf Initialize with a file path. Parameters file_path – The path to the file to load. mode – The mode to use for partitioning. See unstructured for details. Defaults to “single”. **unstructured_kwargs – Additional keyword arguments to pass to unstructured. Methods __init__(file_path[, mode]) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rtf.UnstructuredRTFLoader.html
8644a61e14eb-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rtf.UnstructuredRTFLoader.html
4327698e3954-0
langchain.document_loaders.datadog_logs.DatadogLogsLoader¶ class langchain.document_loaders.datadog_logs.DatadogLogsLoader(query: str, api_key: str, app_key: str, from_time: Optional[int] = None, to_time: Optional[int] = None, limit: int = 100)[source]¶ Bases: BaseLoader Loads a query result from Datadog into a list of documents. Logs are written into the page_content and into the metadata. Initialize Datadog document loader. Requirements: Must have datadog_api_client installed. Install with pip install datadog_api_client. Parameters query – The query to run in Datadog. api_key – The Datadog API key. app_key – The Datadog APP key. from_time – Optional. The start of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to 20 minutes ago. to_time – Optional. The end of the time range to query. Supports date math and regular timestamps (milliseconds) like ‘1688732708951’ Defaults to now. limit – The maximum number of logs to return. Defaults to 100. Methods __init__(query, api_key, app_key[, ...]) Initialize Datadog document loader. lazy_load() A lazy loader for Documents. load() Get logs from Datadog. load_and_split([text_splitter]) Load Documents and split into chunks. parse_log(log) Create Document objects from Datadog log items. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Get logs from Datadog. Returns
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.datadog_logs.DatadogLogsLoader.html
4327698e3954-1
Get logs from Datadog. Returns A list of Document objects. page_content metadata id service status tags timestamp load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_log(log: dict) → Document[source]¶ Create Document objects from Datadog log items. Examples using DatadogLogsLoader¶ Datadog Logs
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.datadog_logs.DatadogLogsLoader.html
2f72b2fab2dc-0
langchain.document_loaders.onedrive.OneDriveLoader¶ class langchain.document_loaders.onedrive.OneDriveLoader(*, settings: _OneDriveSettings = None, drive_id: str, folder_path: Optional[str] = None, object_ids: Optional[List[str]] = None, auth_with_token: bool = False)[source]¶ Bases: BaseLoader, BaseModel Loads data from OneDrive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param auth_with_token: bool = False¶ Whether to authenticate with a token or not. Defaults to False. param drive_id: str [Required]¶ The ID of the OneDrive drive to load data from. param folder_path: Optional[str] = None¶ The path to the folder to load data from. param object_ids: Optional[List[str]] = None¶ The IDs of the objects to load data from. param settings: langchain.document_loaders.onedrive._OneDriveSettings [Optional]¶ The settings for the OneDrive API client. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Loads all supported document files from the specified OneDrive drive and return a list of Document objects. Returns A list of Document objects representing the loaded documents. Return type List[Document] Raises ValueError – If the specified drive ID does not correspond to a drive in the OneDrive storage. – load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive.OneDriveLoader.html
2f72b2fab2dc-1
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using OneDriveLoader¶ Microsoft OneDrive
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.onedrive.OneDriveLoader.html
0017f2dcb01c-0
langchain.document_loaders.srt.SRTLoader¶ class langchain.document_loaders.srt.SRTLoader(file_path: str)[source]¶ Bases: BaseLoader Loader for .srt (subtitle) files. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load using pysrt file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load using pysrt file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SRTLoader¶ Subtitle
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.srt.SRTLoader.html
4ed8ee54d8f0-0
langchain.document_loaders.git.GitLoader¶ class langchain.document_loaders.git.GitLoader(repo_path: str, clone_url: Optional[str] = None, branch: Optional[str] = 'main', file_filter: Optional[Callable[[str], bool]] = None)[source]¶ Bases: BaseLoader Loads files from a Git repository into a list of documents. The Repository can be local on disk available at repo_path, or remote at clone_url that will be cloned to repo_path. Currently, supports only text files. Each document represents one file in the repository. The path points to the local Git repository, and the branch specifies the branch to load files from. By default, it loads from the main branch. Parameters repo_path – The path to the Git repository. clone_url – Optional. The URL to clone the repository from. branch – Optional. The branch to load files from. Defaults to main. file_filter – Optional. A function that takes a file path and returns a boolean indicating whether to load the file. Defaults to None. Methods __init__(repo_path[, clone_url, branch, ...]) param repo_path The path to the Git repository. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.git.GitLoader.html
4ed8ee54d8f0-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GitLoader¶ Git
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.git.GitLoader.html
b7e652fb0e0e-0
langchain.document_loaders.unstructured.UnstructuredFileIOLoader¶ class langchain.document_loaders.unstructured.UnstructuredFileIOLoader(file: Union[IO, Sequence[IO]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredBaseLoader Loader that uses Unstructured to load files. The file loader uses the unstructured partition function and will automatically detect the file type. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredFileIOLoader with open(“example.pdf”, “rb”) as f: loader = UnstructuredFileIOLoader(f, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition Initialize with file path. Methods __init__(file[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileIOLoader.html
b7e652fb0e0e-1
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredFileIOLoader¶ Google Drive
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileIOLoader.html
e5f65089d8cc-0
langchain.document_loaders.embaas.EmbaasDocumentExtractionPayload¶ class langchain.document_loaders.embaas.EmbaasDocumentExtractionPayload[source]¶ Bases: EmbaasDocumentExtractionParameters Payload for the Embaas document extraction API. Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() Attributes bytes The base64 encoded bytes of the document to extract text from. clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionPayload.html
e5f65089d8cc-1
items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() → an object providing a view on D's values¶ bytes: str¶ The base64 encoded bytes of the document to extract text from. chunk_overlap: int¶ chunk_size: int¶ chunk_splitter: str¶ file_extension: str¶ file_name: str¶ instruction: str¶ mime_type: str¶ model: str¶ separators: List[str]¶ should_chunk: bool¶ should_embed: bool¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionPayload.html
451a1a04e741-0
langchain.document_loaders.pdf.PyPDFDirectoryLoader¶ class langchain.document_loaders.pdf.PyPDFDirectoryLoader(path: str, glob: str = '**/[!.]*.pdf', silent_errors: bool = False, load_hidden: bool = False, recursive: bool = False)[source]¶ Bases: BaseLoader Loads a directory with PDF files with pypdf and chunks at character level. Loader also stores page numbers in metadata. Methods __init__(path[, glob, silent_errors, ...]) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyPDFDirectoryLoader.html
60e2d933815d-0
langchain.document_loaders.base.BaseBlobParser¶ class langchain.document_loaders.base.BaseBlobParser[source]¶ Bases: ABC Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to re-use a parser independent of how the blob was originally loaded. Methods __init__() lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. abstract lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document][source]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.base.BaseBlobParser.html
b5e566abdcf1-0
langchain.document_loaders.url.UnstructuredURLLoader¶ class langchain.document_loaders.url.UnstructuredURLLoader(urls: List[str], continue_on_failure: bool = True, mode: str = 'single', show_progress_bar: bool = False, **unstructured_kwargs: Any)[source]¶ Bases: BaseLoader Loader that use Unstructured to load files from remote URLs. Use the unstructured partition function to detect the MIME type and route the file to the appropriate partitioner. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredURLLoader loader = UnstructuredURLLoader(ursl=[“<url-1>”, “<url-2>”], mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition Initialize with file path. Methods __init__(urls[, continue_on_failure, mode, ...]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url.UnstructuredURLLoader.html
b5e566abdcf1-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredURLLoader¶ URL
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url.UnstructuredURLLoader.html
1864e625c00c-0
langchain.document_loaders.youtube.YoutubeLoader¶ class langchain.document_loaders.youtube.YoutubeLoader(video_id: str, add_video_info: bool = False, language: Union[str, Sequence[str]] = 'en', translation: str = 'en', continue_on_failure: bool = False)[source]¶ Bases: BaseLoader Loads Youtube transcripts. Initialize with YouTube video ID. Methods __init__(video_id[, add_video_info, ...]) Initialize with YouTube video ID. extract_video_id(youtube_url) Extract video id from common YT urls. from_youtube_url(youtube_url, **kwargs) Given youtube URL, load video. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. static extract_video_id(youtube_url: str) → str[source]¶ Extract video id from common YT urls. classmethod from_youtube_url(youtube_url: str, **kwargs: Any) → YoutubeLoader[source]¶ Given youtube URL, load video. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using YoutubeLoader¶ YouTube YouTube transcripts
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.youtube.YoutubeLoader.html
348d86259dc3-0
langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader¶ class langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader(file: Union[IO, Sequence[IO]], mode: str = 'single', url: str = 'https://api.unstructured.io/general/v0/general', api_key: str = '', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileIOLoader Loader that uses the Unstructured API to load files. By default, the loader makes a call to the hosted Unstructured API. If you are running the unstructured API locally, you can change the API rule by passing in the url parameter when you initialize the loader. The hosted Unstructured API requires an API key. See https://www.unstructured.io/api-key/ if you need to generate a key. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredAPIFileLoader with open(“example.pdf”, “rb”) as f: loader = UnstructuredFileAPILoader(f, mode=”elements”, strategy=”fast”, api_key=”MY_API_KEY”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition https://www.unstructured.io/api-key/ https://github.com/Unstructured-IO/unstructured-api Initialize with file path. Methods __init__(file[, mode, url, api_key]) Initialize with file path.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader.html
348d86259dc3-1
Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader.html
daa986cf684e-0
langchain.document_loaders.max_compute.MaxComputeLoader¶ class langchain.document_loaders.max_compute.MaxComputeLoader(query: str, api_wrapper: MaxComputeAPIWrapper, *, page_content_columns: Optional[Sequence[str]] = None, metadata_columns: Optional[Sequence[str]] = None)[source]¶ Bases: BaseLoader Loads a query result from Alibaba Cloud MaxCompute table into documents. Initialize Alibaba Cloud MaxCompute document loader. Parameters query – SQL query to execute. api_wrapper – MaxCompute API wrapper. page_content_columns – The columns to write into the page_content of the Document. If unspecified, all columns will be written to page_content. metadata_columns – The columns to write into the metadata of the Document. If unspecified, all columns not added to page_content will be written. Methods __init__(query, api_wrapper, *[, ...]) Initialize Alibaba Cloud MaxCompute document loader. from_params(query, endpoint, project, *[, ...]) Convenience constructor that builds the MaxCompute API wrapper from lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. classmethod from_params(query: str, endpoint: str, project: str, *, access_id: Optional[str] = None, secret_access_key: Optional[str] = None, **kwargs: Any) → MaxComputeLoader[source]¶ Convenience constructor that builds the MaxCompute API wrapper fromgiven parameters. Parameters query – SQL query to execute. endpoint – MaxCompute endpoint. project – A project is a basic organizational unit of MaxCompute, which is similar to a database. access_id – MaxCompute access ID. Should be passed in directly or set as the environment variable MAX_COMPUTE_ACCESS_ID.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.max_compute.MaxComputeLoader.html