id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
160
daa986cf684e-1
environment variable MAX_COMPUTE_ACCESS_ID. secret_access_key – MaxCompute secret access key. Should be passed in directly or set as the environment variable MAX_COMPUTE_SECRET_ACCESS_KEY. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MaxComputeLoader¶ Alibaba Cloud MaxCompute
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.max_compute.MaxComputeLoader.html
38c8f3d5460e-0
langchain.document_loaders.gutenberg.GutenbergLoader¶ class langchain.document_loaders.gutenberg.GutenbergLoader(file_path: str)[source]¶ Bases: BaseLoader Loader that uses urllib to load .txt web files. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GutenbergLoader¶ Gutenberg
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gutenberg.GutenbergLoader.html
d57dc4121a11-0
langchain.document_loaders.psychic.PsychicLoader¶ class langchain.document_loaders.psychic.PsychicLoader(api_key: str, account_id: str, connector_id: Optional[str] = None)[source]¶ Bases: BaseLoader Loads documents from Psychic.dev. Initialize with API key, connector id, and account id. Parameters api_key – The Psychic API key. account_id – The Psychic account id. connector_id – The Psychic connector id. Methods __init__(api_key, account_id[, connector_id]) Initialize with API key, connector id, and account id. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using PsychicLoader¶ Psychic
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.psychic.PsychicLoader.html
400c115c6f25-0
langchain.document_loaders.larksuite.LarkSuiteDocLoader¶ class langchain.document_loaders.larksuite.LarkSuiteDocLoader(domain: str, access_token: str, document_id: str)[source]¶ Bases: BaseLoader Loads LarkSuite (FeiShu) document. Initialize with domain, access_token (tenant / user), and document_id. Parameters domain – The domain to load the LarkSuite. access_token – The access_token to use. document_id – The document_id to load. Methods __init__(domain, access_token, document_id) Initialize with domain, access_token (tenant / user), and document_id. lazy_load() Lazy load LarkSuite (FeiShu) document. load() Load LarkSuite (FeiShu) document. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load LarkSuite (FeiShu) document. load() → List[Document][source]¶ Load LarkSuite (FeiShu) document. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using LarkSuiteDocLoader¶ LarkSuite (FeiShu)
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.larksuite.LarkSuiteDocLoader.html
beb5feb4fb9e-0
langchain.document_loaders.parsers.pdf.PyMuPDFParser¶ class langchain.document_loaders.parsers.pdf.PyMuPDFParser(text_kwargs: Optional[Mapping[str, Any]] = None)[source]¶ Bases: BaseBlobParser Parse PDFs with PyMuPDF. Initialize the parser. Parameters text_kwargs – Keyword arguments to pass to fitz.Page.get_text(). Methods __init__([text_kwargs]) Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyMuPDFParser.html
fa06ec6f3b61-0
langchain.document_loaders.pdf.MathpixPDFLoader¶ class langchain.document_loaders.pdf.MathpixPDFLoader(file_path: str, processed_file_format: str = 'mmd', max_wait_time_seconds: int = 500, should_clean_pdf: bool = False, **kwargs: Any)[source]¶ Bases: BasePDFLoader This class uses Mathpix service to load PDF files. Initialize with a file path. Parameters file_path – a file for loading. processed_file_format – a format of the processed file. Default is “mmd”. max_wait_time_seconds – a maximum time to wait for the response from the server. Default is 500. should_clean_pdf – a flag to clean the PDF file. Default is False. **kwargs – additional keyword arguments. Methods __init__(file_path[, processed_file_format, ...]) Initialize with a file path. clean_pdf(contents) Clean the PDF file. get_processed_pdf(pdf_id) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. send_pdf() wait_for_processing(pdf_id) Wait for processing to complete. Attributes data headers source url clean_pdf(contents: str) → str[source]¶ Clean the PDF file. Parameters contents – a PDF file contents. Returns: get_processed_pdf(pdf_id: str) → str[source]¶ lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.MathpixPDFLoader.html
fa06ec6f3b61-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. send_pdf() → str[source]¶ wait_for_processing(pdf_id: str) → None[source]¶ Wait for processing to complete. Parameters pdf_id – a PDF id. Returns: None property data: dict¶ property headers: dict¶ property source: str¶ property url: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.MathpixPDFLoader.html
6cec8286fa29-0
langchain.document_loaders.base.BaseLoader¶ class langchain.document_loaders.base.BaseLoader[source]¶ Bases: ABC Interface for loading Documents. Implementations should implement the lazy-loading method using generators to avoid loading all Documents into memory at once. The load method will remain as is for backwards compatibility, but its implementation should be just list(self.lazy_load()). Methods __init__() lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. abstract load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document][source]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.base.BaseLoader.html
fadf06db1b86-0
langchain.document_loaders.bibtex.BibtexLoader¶ class langchain.document_loaders.bibtex.BibtexLoader(file_path: str, *, parser: Optional[BibtexparserWrapper] = None, max_docs: Optional[int] = None, max_content_chars: Optional[int] = 4000, load_extra_metadata: bool = False, file_pattern: str = '[^:]+\\.pdf')[source]¶ Bases: BaseLoader Loads a bibtex file into a list of Documents. Each document represents one entry from the bibtex file. If a PDF file is present in the file bibtex field, the original PDF is loaded into the document text. If no such file entry is present, the abstract field is used instead. Initialize the BibtexLoader. Parameters file_path – Path to the bibtex file. parser – The parser to use. If None, a default parser is used. max_docs – Max number of associated documents to load. Use -1 means no limit. max_content_chars – Maximum number of characters to load from the PDF. load_extra_metadata – Whether to load extra metadata from the PDF. file_pattern – Regex pattern to match the file name in the bibtex. Methods __init__(file_path, *[, parser, max_docs, ...]) Initialize the BibtexLoader. lazy_load() Load bibtex file using bibtexparser and get the article texts plus the article metadata. load() Load bibtex file documents from the given bibtex file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Load bibtex file using bibtexparser and get the article texts plus the article metadata.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.bibtex.BibtexLoader.html
fadf06db1b86-1
article metadata. See https://bibtexparser.readthedocs.io/en/master/ Returns a list of documents with the document.page_content in text format load() → List[Document][source]¶ Load bibtex file documents from the given bibtex file path. See https://bibtexparser.readthedocs.io/en/master/ Parameters file_path – the path to the bibtex file Returns a list of documents with the document.page_content in text format load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using BibtexLoader¶ BibTeX
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.bibtex.BibtexLoader.html
1ccc78609dfb-0
langchain.document_loaders.helpers.detect_file_encodings¶ langchain.document_loaders.helpers.detect_file_encodings(file_path: str, timeout: int = 5) → List[FileEncoding][source]¶ Try to detect the file encoding. Returns a list of FileEncoding tuples with the detected encodings ordered by confidence. Parameters file_path – The path to the file to detect the encoding for. timeout – The timeout in seconds for the encoding detection.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.helpers.detect_file_encodings.html
4240fc200845-0
langchain.document_loaders.arxiv.ArxivLoader¶ class langchain.document_loaders.arxiv.ArxivLoader(query: str, load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False)[source]¶ Bases: BaseLoader Loads a query result from arxiv.org into a list of Documents. Each document represents one Document. The loader converts the original PDF format into the text. Methods __init__(query[, load_max_docs, ...]) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes query The query to be passed to the arxiv.org API. load_max_docs The maximum number of documents to load. load_all_available_meta Whether to load all available metadata. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. load_all_available_meta¶ Whether to load all available metadata. load_max_docs¶ The maximum number of documents to load. query¶ The query to be passed to the arxiv.org API. Examples using ArxivLoader¶ Arxiv
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.arxiv.ArxivLoader.html
44642d94b52e-0
langchain.document_loaders.chatgpt.ChatGPTLoader¶ class langchain.document_loaders.chatgpt.ChatGPTLoader(log_file: str, num_logs: int = - 1)[source]¶ Bases: BaseLoader Load conversations from exported ChatGPT data. Initialize a class object. Parameters log_file – Path to the log file num_logs – Number of logs to load. If 0, load all logs. Methods __init__(log_file[, num_logs]) Initialize a class object. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ChatGPTLoader¶ OpenAI ChatGPT Data
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.chatgpt.ChatGPTLoader.html
04e3eaf25037-0
langchain.document_loaders.xml.UnstructuredXMLLoader¶ class langchain.document_loaders.xml.UnstructuredXMLLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load XML files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredXMLLoader loader = UnstructuredXMLLoader(“example.xml”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-xml Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredXMLLoader¶ XML
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.xml.UnstructuredXMLLoader.html
5eb4c5ae9858-0
langchain.document_loaders.diffbot.DiffbotLoader¶ class langchain.document_loaders.diffbot.DiffbotLoader(api_token: str, urls: List[str], continue_on_failure: bool = True)[source]¶ Bases: BaseLoader Loads Diffbot file json. Initialize with API token, ids, and key. Parameters api_token – Diffbot API token. urls – List of URLs to load. continue_on_failure – Whether to continue loading other URLs if one fails. Defaults to True. Methods __init__(api_token, urls[, continue_on_failure]) Initialize with API token, ids, and key. lazy_load() A lazy loader for Documents. load() Extract text from Diffbot on all the URLs and return Documents load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Extract text from Diffbot on all the URLs and return Documents load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using DiffbotLoader¶ Diffbot
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.diffbot.DiffbotLoader.html
aa10a4580668-0
langchain.document_loaders.helpers.FileEncoding¶ class langchain.document_loaders.helpers.FileEncoding(encoding: Optional[str], confidence: float, language: Optional[str])[source]¶ Bases: NamedTuple A file encoding as the NamedTuple. Create new instance of FileEncoding(encoding, confidence, language) Methods __init__() count(value, /) Return number of occurrences of value. index(value[, start, stop]) Return first index of value. Attributes confidence The confidence of the encoding. encoding The encoding of the file. language The language of the file. count(value, /)¶ Return number of occurrences of value. index(value, start=0, stop=9223372036854775807, /)¶ Return first index of value. Raises ValueError if the value is not present. confidence: float¶ The confidence of the encoding. encoding: Optional[str]¶ The encoding of the file. language: Optional[str]¶ The language of the file.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.helpers.FileEncoding.html
51b7243b878a-0
langchain.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader¶ class langchain.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(conn_str: str, container: str, blob_name: str)[source]¶ Bases: BaseLoader Loading Documents from Azure Blob Storage. Initialize with connection string, container and blob name. Methods __init__(conn_str, container, blob_name) Initialize with connection string, container and blob name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes conn_str Connection string for Azure Blob Storage. container Container name. blob Blob name. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. blob¶ Blob name. conn_str¶ Connection string for Azure Blob Storage. container¶ Container name. Examples using AzureBlobStorageFileLoader¶ Azure Blob Storage Azure Blob Storage File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader.html
87c4af31bbac-0
langchain.document_loaders.pdf.OnlinePDFLoader¶ class langchain.document_loaders.pdf.OnlinePDFLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loads online PDFs. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.OnlinePDFLoader.html
7bc56e6debaf-0
langchain.document_loaders.cube_semantic.CubeSemanticLoader¶ class langchain.document_loaders.cube_semantic.CubeSemanticLoader(cube_api_url: str, cube_api_token: str, load_dimension_values: bool = True, dimension_values_limit: int = 10000, dimension_values_max_retries: int = 10, dimension_values_retry_delay: int = 3)[source]¶ Bases: BaseLoader Load Cube semantic layer metadata. Parameters cube_api_url – REST API endpoint. Use the REST API of your Cube’s deployment. Please find out more information here: https://cube.dev/docs/http-api/rest#configuration-base-path cube_api_token – Cube API token. Authentication tokens are generated based on your Cube’s API secret. Please find out more information here: https://cube.dev/docs/security#generating-json-web-tokens-jwt load_dimension_values – Whether to load dimension values for every string dimension or not. dimension_values_limit – Maximum number of dimension values to load. dimension_values_max_retries – Maximum number of retries to load dimension values. dimension_values_retry_delay – Delay between retries to load dimension values. Methods __init__(cube_api_url, cube_api_token[, ...]) lazy_load() A lazy loader for Documents. load() Makes a call to Cube's REST API metadata endpoint. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Makes a call to Cube’s REST API metadata endpoint. Returns page_content=column_title + column_description metadata table_name column_name column_data_type column_member_type column_title column_description column_values Return type A list of documents with attributes
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.cube_semantic.CubeSemanticLoader.html
7bc56e6debaf-1
column_title column_description column_values Return type A list of documents with attributes load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using CubeSemanticLoader¶ Cube Semantic Layer
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.cube_semantic.CubeSemanticLoader.html
20b2398bdb52-0
langchain.document_loaders.parsers.pdf.PyPDFParser¶ class langchain.document_loaders.parsers.pdf.PyPDFParser(password: Optional[Union[str, bytes]] = None)[source]¶ Bases: BaseBlobParser Loads a PDF with pypdf and chunks at character level. Methods __init__([password]) lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFParser.html
be4c87e56b27-0
langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters¶ class langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters[source]¶ Bases: TypedDict Parameters for the embaas document extraction API. Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() Attributes mime_type The mime type of the document. file_extension The file extension of the document. file_name The file name of the document. should_chunk Whether to chunk the document into pages. chunk_size The maximum size of the text chunks. chunk_overlap The maximum overlap allowed between chunks. chunk_splitter The text splitter class name for creating chunks. separators The separators for chunks. should_embed Whether to create embeddings for the document in the response. model
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
be4c87e56b27-1
should_embed Whether to create embeddings for the document in the response. model The model to pass to the Embaas document extraction API. instruction The instruction to pass to the Embaas document extraction API. clear() → None.  Remove all items from D.¶ copy() → a shallow copy of D¶ fromkeys(value=None, /)¶ Create a new dictionary with keys from iterable and values set to value. get(key, default=None, /)¶ Return the value for key if key is in the dictionary, else default. items() → a set-like object providing a view on D's items¶ keys() → a set-like object providing a view on D's keys¶ pop(k[, d]) → v, remove specified key and return the corresponding value.¶ If the key is not found, return the default if given; otherwise, raise a KeyError. popitem()¶ Remove and return a (key, value) pair as a 2-tuple. Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty. setdefault(key, default=None, /)¶ Insert key with a value of default if key is not in the dictionary. Return the value for key if key is in the dictionary, else default. update([E, ]**F) → None.  Update D from dict/iterable E and F.¶ If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
be4c87e56b27-2
values() → an object providing a view on D's values¶ chunk_overlap: int¶ The maximum overlap allowed between chunks. chunk_size: int¶ The maximum size of the text chunks. chunk_splitter: str¶ The text splitter class name for creating chunks. file_extension: str¶ The file extension of the document. file_name: str¶ The file name of the document. instruction: str¶ The instruction to pass to the Embaas document extraction API. mime_type: str¶ The mime type of the document. model: str¶ The model to pass to the Embaas document extraction API. separators: List[str]¶ The separators for chunks. should_chunk: bool¶ Whether to chunk the document into pages. should_embed: bool¶ Whether to create embeddings for the document in the response.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html
89788040dd7e-0
langchain.document_loaders.notebook.remove_newlines¶ langchain.document_loaders.notebook.remove_newlines(x: Any) → Any[source]¶ Recursively removes newlines, no matter the data structure they are stored in.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notebook.remove_newlines.html
c49a4e94f724-0
langchain.document_loaders.pdf.BasePDFLoader¶ class langchain.document_loaders.pdf.BasePDFLoader(file_path: str)[source]¶ Bases: BaseLoader, ABC Base loader class for PDF files. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, use it, then clean up the temporary file after completion Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. abstract load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.BasePDFLoader.html
69f465d537e4-0
langchain.document_loaders.brave_search.BraveSearchLoader¶ class langchain.document_loaders.brave_search.BraveSearchLoader(query: str, api_key: str, search_kwargs: Optional[dict] = None)[source]¶ Bases: BaseLoader Loads a query result from Brave Search engine into a list of Documents. Initializes the BraveLoader. Parameters query – The query to search for. api_key – The API key to use. search_kwargs – The search kwargs to use. Methods __init__(query, api_key[, search_kwargs]) Initializes the BraveLoader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using BraveSearchLoader¶ Brave Search
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.brave_search.BraveSearchLoader.html
c4243449bb68-0
langchain.document_loaders.discord.DiscordChatLoader¶ class langchain.document_loaders.discord.DiscordChatLoader(chat_log: pd.DataFrame, user_id_col: str = 'ID')[source]¶ Bases: BaseLoader Load Discord chat logs. Initialize with a Pandas DataFrame containing chat logs. Parameters chat_log – Pandas DataFrame containing chat logs. user_id_col – Name of the column containing the user ID. Defaults to “ID”. Methods __init__(chat_log[, user_id_col]) Initialize with a Pandas DataFrame containing chat logs. lazy_load() A lazy loader for Documents. load() Load all chat messages. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load all chat messages. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using DiscordChatLoader¶ Discord
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.discord.DiscordChatLoader.html
d485978611e8-0
langchain.document_loaders.rst.UnstructuredRSTLoader¶ class langchain.document_loaders.rst.UnstructuredRSTLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load RST files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredRSTLoader loader = UnstructuredRSTLoader(“example.rst”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-rst Initialize with a file path. Parameters file_path – The path to the file to load. mode – The mode to use for partitioning. See unstructured for details. Defaults to “single”. **unstructured_kwargs – Additional keyword arguments to pass to unstructured. Methods __init__(file_path[, mode]) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rst.UnstructuredRSTLoader.html
d485978611e8-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredRSTLoader¶ RST
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rst.UnstructuredRSTLoader.html
47835b6253e3-0
langchain.document_loaders.merge.MergedDataLoader¶ class langchain.document_loaders.merge.MergedDataLoader(loaders: List)[source]¶ Bases: BaseLoader Merge documents from a list of loaders Initialize with a list of loaders Methods __init__(loaders) Initialize with a list of loaders lazy_load() Lazy load docs from each individual loader. load() Load docs. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load docs from each individual loader. load() → List[Document][source]¶ Load docs. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MergedDataLoader¶ MergeDocLoader
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.merge.MergedDataLoader.html
7abb9c52cec3-0
langchain.document_loaders.acreom.AcreomLoader¶ class langchain.document_loaders.acreom.AcreomLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]¶ Bases: BaseLoader Loader that loads acreom vault from a directory. Methods __init__(path[, encoding, collect_metadata]) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes FRONT_MATTER_REGEX Regex to match front matter metadata in markdown files. file_path Path to the directory containing the markdown files. encoding Encoding to use when reading the files. collect_metadata Whether to collect metadata from the front matter. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. FRONT_MATTER_REGEX = re.compile('^---\\n(.*?)\\n---\\n', re.MULTILINE|re.DOTALL)¶ Regex to match front matter metadata in markdown files. collect_metadata¶ Whether to collect metadata from the front matter. encoding¶ Encoding to use when reading the files. file_path¶ Path to the directory containing the markdown files. Examples using AcreomLoader¶ acreom
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.acreom.AcreomLoader.html
efad8d7390d9-0
langchain.document_loaders.sitemap.SitemapLoader¶ class langchain.document_loaders.sitemap.SitemapLoader(web_path: str, filter_urls: Optional[List[str]] = None, parsing_function: Optional[Callable] = None, blocksize: Optional[int] = None, blocknum: int = 0, meta_function: Optional[Callable] = None, is_local: bool = False)[source]¶ Bases: WebBaseLoader Loader that fetches a sitemap and loads those URLs. Initialize with webpage path and optional filter URLs. Parameters web_path – url of the sitemap. can also be a local path filter_urls – list of strings or regexes that will be applied to filter the urls that are parsed and loaded parsing_function – Function to parse bs4.Soup output blocksize – number of sitemap locations per block blocknum – the number of the block that should be loaded - zero indexed. Default: 0 meta_function – Function to parse bs4.Soup output for metadata remember when setting this method to also copy metadata[“loc”] to metadata[“source”] if you are using this field is_local – whether the sitemap is a local file. Default: False Methods __init__(web_path[, filter_urls, ...]) Initialize with webpage path and optional filter URLs. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load sitemap. load_and_split([text_splitter]) Load Documents and split into chunks. parse_sitemap(soup) Parse sitemap xml and load into a list of dicts. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
efad8d7390d9-1
scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load sitemap. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_sitemap(soup: Any) → List[dict][source]¶ Parse sitemap xml and load into a list of dicts. Parameters soup – BeautifulSoup object. Returns List of dicts. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
efad8d7390d9-2
kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using SitemapLoader¶ Sitemap
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
f38c86240414-0
langchain.document_loaders.pdf.PDFMinerPDFasHTMLLoader¶ class langchain.document_loaders.pdf.PDFMinerPDFasHTMLLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that uses PDFMiner to load PDF files as HTML content. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PDFMinerPDFasHTMLLoader.html
989dc15904f4-0
langchain.document_loaders.parsers.grobid.GrobidParser¶ class langchain.document_loaders.parsers.grobid.GrobidParser(segment_sentences: bool, grobid_server: str = 'http://localhost:8070/api/processFulltextDocument')[source]¶ Bases: BaseBlobParser Loader that uses Grobid to load article PDF files. Methods __init__(segment_sentences[, grobid_server]) lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. process_xml(file_path, xml_data, ...) Process the XML file from Grobin. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents process_xml(file_path: str, xml_data: str, segment_sentences: bool) → Iterator[Document][source]¶ Process the XML file from Grobin. Examples using GrobidParser¶ Grobid
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.grobid.GrobidParser.html
f69645bc5ca8-0
langchain.document_loaders.reddit.RedditPostsLoader¶ class langchain.document_loaders.reddit.RedditPostsLoader(client_id: str, client_secret: str, user_agent: str, search_queries: Sequence[str], mode: str, categories: Sequence[str] = ['new'], number_posts: Optional[int] = 10)[source]¶ Bases: BaseLoader Reddit posts loader. Read posts on a subreddit. First, you need to go to https://www.reddit.com/prefs/apps/ and create your application Initialize with client_id, client_secret, user_agent, search_queries, mode,categories, number_posts. Example: https://www.reddit.com/r/learnpython/ Parameters client_id – Reddit client id. client_secret – Reddit client secret. user_agent – Reddit user agent. search_queries – The search queries. mode – The mode. categories – The categories. Default: [“new”] number_posts – The number of posts. Default: 10 Methods __init__(client_id, client_secret, ...[, ...]) Initialize with client_id, client_secret, user_agent, search_queries, mode, lazy_load() A lazy loader for Documents. load() Load reddits. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load reddits. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using RedditPostsLoader¶ Reddit
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.reddit.RedditPostsLoader.html
6c8497487cec-0
langchain.document_loaders.image.UnstructuredImageLoader¶ class langchain.document_loaders.image.UnstructuredImageLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses Unstructured to load PNG and JPG files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredImageLoader loader = UnstructuredImageLoader(“example.png”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-image Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredImageLoader¶ Images
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.image.UnstructuredImageLoader.html
7b57cac78a2e-0
langchain.document_loaders.url_playwright.PlaywrightURLLoader¶ class langchain.document_loaders.url_playwright.PlaywrightURLLoader(urls: List[str], continue_on_failure: bool = True, headless: bool = True, remove_selectors: Optional[List[str]] = None)[source]¶ Bases: BaseLoader Loader that uses Playwright and to load a page and unstructured to load the html. This is useful for loading pages that require javascript to render. urls¶ List of URLs to load. Type List[str] continue_on_failure¶ If True, continue loading other URLs on failure. Type bool headless¶ If True, the browser will run in headless mode. Type bool Load a list of URLs using Playwright and unstructured. Methods __init__(urls[, continue_on_failure, ...]) Load a list of URLs using Playwright and unstructured. aload() Load the specified URLs with Playwright and create Documents asynchronously. lazy_load() A lazy loader for Documents. load() Load the specified URLs using Playwright and create Document instances. load_and_split([text_splitter]) Load Documents and split into chunks. async aload() → List[Document][source]¶ Load the specified URLs with Playwright and create Documents asynchronously. Use this function when in a jupyter notebook environment. Returns A list of Document instances with loaded content. Return type List[Document] lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load the specified URLs using Playwright and create Document instances. Returns A list of Document instances with loaded content. Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url_playwright.PlaywrightURLLoader.html
7b57cac78a2e-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using PlaywrightURLLoader¶ URL
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url_playwright.PlaywrightURLLoader.html
34a35c89b4e6-0
langchain.document_loaders.word_document.UnstructuredWordDocumentLoader¶ class langchain.document_loaders.word_document.UnstructuredWordDocumentLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load word documents. Works with both .docx and .doc files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader(“example.docx”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-docx Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.word_document.UnstructuredWordDocumentLoader.html
34a35c89b4e6-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredWordDocumentLoader¶ Microsoft Word
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.word_document.UnstructuredWordDocumentLoader.html
72136a66d224-0
langchain.document_loaders.confluence.ConfluenceLoader¶ class langchain.document_loaders.confluence.ConfluenceLoader(url: str, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None, cloud: Optional[bool] = True, number_of_retries: Optional[int] = 3, min_retry_seconds: Optional[int] = 2, max_retry_seconds: Optional[int] = 10, confluence_kwargs: Optional[dict] = None)[source]¶ Bases: BaseLoader Load Confluence pages. Port of https://llamahub.ai/l/confluence This currently supports username/api_key, Oauth2 login or personal access token authentication. Specify a list page_ids and/or space_key to load in the corresponding pages into Document objects, if both are specified the union of both sets will be returned. You can also specify a boolean include_attachments to include attachments, this is set to False by default, if set to True all attachments will be downloaded and ConfluenceReader will extract the text from the attachments and add it to the Document object. Currently supported attachment types are: PDF, PNG, JPEG/JPG, SVG, Word and Excel. Confluence API supports difference format of page content. The storage format is the raw XML representation for storage. The view format is the HTML representation for viewing with macros are rendered as though it is viewed by users. You can pass a enum content_format argument to load() to specify the content format, this is set to ContentFormat.STORAGE by default. Hint: space_key and page_id can both be found in the URL of a page in Confluence - https://yoursite.atlassian.com/wiki/spaces/<space_key>/pages/<page_id> Example
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
72136a66d224-1
Example from langchain.document_loaders import ConfluenceLoader loader = ConfluenceLoader( url="https://yoursite.atlassian.com/wiki", username="me", api_key="12345" ) documents = loader.load(space_key="SPACE",limit=50) Parameters url (str) – _description_ api_key (str, optional) – _description_, defaults to None username (str, optional) – _description_, defaults to None oauth2 (dict, optional) – _description_, defaults to {} token (str, optional) – _description_, defaults to None cloud (bool, optional) – _description_, defaults to True number_of_retries (Optional[int], optional) – How many times to retry, defaults to 3 min_retry_seconds (Optional[int], optional) – defaults to 2 max_retry_seconds (Optional[int], optional) – defaults to 10 confluence_kwargs (dict, optional) – additional kwargs to initialize confluence with Raises ValueError – Errors while validating input ImportError – Required dependencies not installed. Methods __init__(url[, api_key, username, oauth2, ...]) is_public_page(page) Check if a page is publicly accessible. lazy_load() A lazy loader for Documents. load([space_key, page_ids, label, cql, ...]) param space_key Space key retrieved from a confluence URL, defaults to None load_and_split([text_splitter]) Load Documents and split into chunks. paginate_request(retrieval_method, **kwargs) Paginate the various methods to retrieve groups of pages. process_attachment(page_id[, ocr_languages]) process_doc(link) process_image(link[, ocr_languages]) process_page(page, include_attachments, ...)
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
72136a66d224-2
process_image(link[, ocr_languages]) process_page(page, include_attachments, ...) process_pages(pages, ...[, ocr_languages, ...]) Process a list of pages into a list of documents. process_pdf(link[, ocr_languages]) process_svg(link[, ocr_languages]) process_xls(link) validate_init_args([url, api_key, username, ...]) Validates proper combinations of init arguments is_public_page(page: dict) → bool[source]¶ Check if a page is publicly accessible. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(space_key: Optional[str] = None, page_ids: Optional[List[str]] = None, label: Optional[str] = None, cql: Optional[str] = None, include_restricted_content: bool = False, include_archived_content: bool = False, include_attachments: bool = False, include_comments: bool = False, content_format: ContentFormat = ContentFormat.STORAGE, limit: Optional[int] = 50, max_pages: Optional[int] = 1000, ocr_languages: Optional[str] = None, keep_markdown_format: bool = False) → List[Document][source]¶ Parameters space_key (Optional[str], optional) – Space key retrieved from a confluence URL, defaults to None page_ids (Optional[List[str]], optional) – List of specific page IDs to load, defaults to None label (Optional[str], optional) – Get all pages with this label, defaults to None cql (Optional[str], optional) – CQL Expression, defaults to None include_restricted_content (bool, optional) – defaults to False include_archived_content (bool, optional) – Whether to include archived content, defaults to False include_attachments (bool, optional) – defaults to False
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
72136a66d224-3
defaults to False include_attachments (bool, optional) – defaults to False include_comments (bool, optional) – defaults to False content_format (ContentFormat) – Specify content format, defaults to ContentFormat.STORAGE limit (int, optional) – Maximum number of pages to retrieve per request, defaults to 50 max_pages (int, optional) – Maximum number of pages to retrieve in total, defaults 1000 ocr_languages (str, optional) – The languages to use for the Tesseract agent. To use a language, you’ll first need to install the appropriate Tesseract language pack. keep_markdown_format (bool) – Whether to keep the markdown format, defaults to False Raises ValueError – _description_ ImportError – _description_ Returns _description_ Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. paginate_request(retrieval_method: Callable, **kwargs: Any) → List[source]¶ Paginate the various methods to retrieve groups of pages. Unfortunately, due to page size, sometimes the Confluence API doesn’t match the limit value. If limit is >100 confluence seems to cap the response to 100. Also, due to the Atlassian Python package, we don’t get the “next” values from the “_links” key because they only return the value from the result key. So here, the pagination starts from 0 and goes until the max_pages, getting the limit number of pages with each request. We have to manually check if there
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
72136a66d224-4
of pages with each request. We have to manually check if there are more docs based on the length of the returned list of pages, rather than just checking for the presence of a next key in the response like this page would have you do: https://developer.atlassian.com/server/confluence/pagination-in-the-rest-api/ Parameters retrieval_method (callable) – Function used to retrieve docs Returns List of documents Return type List process_attachment(page_id: str, ocr_languages: Optional[str] = None) → List[str][source]¶ process_doc(link: str) → str[source]¶ process_image(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_page(page: dict, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None, keep_markdown_format: Optional[bool] = False) → Document[source]¶ process_pages(pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, content_format: ContentFormat, ocr_languages: Optional[str] = None, keep_markdown_format: Optional[bool] = False) → List[Document][source]¶ Process a list of pages into a list of documents. process_pdf(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_svg(link: str, ocr_languages: Optional[str] = None) → str[source]¶ process_xls(link: str) → str[source]¶ static validate_init_args(url: Optional[str] = None, api_key: Optional[str] = None, username: Optional[str] = None, oauth2: Optional[dict] = None, token: Optional[str] = None) → Optional[List][source]¶ Validates proper combinations of init arguments
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
72136a66d224-5
Validates proper combinations of init arguments Examples using ConfluenceLoader¶ Confluence
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.confluence.ConfluenceLoader.html
835d1f35f32a-0
langchain.document_loaders.docugami.DocugamiLoader¶ class langchain.document_loaders.docugami.DocugamiLoader(*, api: str = 'https://api.docugami.com/v1preview1', access_token: Optional[str] = None, docset_id: Optional[str] = None, document_ids: Optional[Sequence[str]] = None, file_paths: Optional[Sequence[Union[Path, str]]] = None, min_chunk_size: int = 32)[source]¶ Bases: BaseLoader, BaseModel Loads processed docs from Docugami. To use, you should have the lxml python package installed. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: Optional[str] = None¶ The Docugami API access token to use. param api: str = 'https://api.docugami.com/v1preview1'¶ The Docugami API endpoint to use. param docset_id: Optional[str] = None¶ The Docugami API docset ID to use. param document_ids: Optional[Sequence[str]] = None¶ The Docugami API document IDs to use. param file_paths: Optional[Sequence[Union[pathlib.Path, str]]] = None¶ The local file paths to use. param min_chunk_size: int = 32¶ The minimum chunk size to use when parsing DGML. Defaults to 32. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docugami.DocugamiLoader.html
835d1f35f32a-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_local_or_remote  »  all fields[source]¶ Validate that either local file paths are given, or remote API docset ID. Parameters values – The values to validate. Returns The validated values. Examples using DocugamiLoader¶ Docugami
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docugami.DocugamiLoader.html
dfce24623b7a-0
langchain.document_loaders.pdf.PyPDFium2Loader¶ class langchain.document_loaders.pdf.PyPDFium2Loader(file_path: str)[source]¶ Bases: BasePDFLoader Loads a PDF with pypdfium2 and chunks at character level. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() Lazy load given path as pages. load() Load given path as pages. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document][source]¶ Lazy load given path as pages. load() → List[Document][source]¶ Load given path as pages. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyPDFium2Loader.html
95d1c698bad7-0
langchain.document_loaders.evernote.EverNoteLoader¶ class langchain.document_loaders.evernote.EverNoteLoader(file_path: str, load_single_document: bool = True)[source]¶ Bases: BaseLoader EverNote Loader. Loads an EverNote notebook export file e.g. my_notebook.enex into Documents. Instructions on producing this file can be found at https://help.evernote.com/hc/en-us/articles/209005557-Export-notes-and-notebooks-as-ENEX-or-HTML Currently only the plain text in the note is extracted and stored as the contents of the Document, any non content metadata (e.g. ‘author’, ‘created’, ‘updated’ etc. but not ‘content-raw’ or ‘resource’) tags on the note will be extracted and stored as metadata on the Document. Parameters file_path (str) – The path to the notebook export with a .enex extension load_single_document (bool) – Whether or not to concatenate the content of all notes into a single long Document. True (If this is set to) – the ‘source’ which contains the file name of the export. Initialize with file path. Methods __init__(file_path[, load_single_document]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load documents from EverNote export file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents from EverNote export file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.evernote.EverNoteLoader.html
95d1c698bad7-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using EverNoteLoader¶ EverNote
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.evernote.EverNoteLoader.html
f13fcb42e802-0
langchain.document_loaders.blockchain.BlockchainType¶ class langchain.document_loaders.blockchain.BlockchainType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: Enum Enumerator of the supported blockchains. Attributes ETH_MAINNET ETH_GOERLI POLYGON_MAINNET POLYGON_MUMBAI ETH_GOERLI = 'eth-goerli'¶ ETH_MAINNET = 'eth-mainnet'¶ POLYGON_MAINNET = 'polygon-mainnet'¶ POLYGON_MUMBAI = 'polygon-mumbai'¶ Examples using BlockchainType¶ Blockchain
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blockchain.BlockchainType.html
7abfc5157393-0
langchain.document_loaders.pdf.PyMuPDFLoader¶ class langchain.document_loaders.pdf.PyMuPDFLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that uses PyMuPDF to load PDF files. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load(**kwargs) Load file. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(**kwargs: Optional[Any]) → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyMuPDFLoader.html
d2bf7a1d3d4d-0
langchain.document_loaders.parsers.language.python.PythonSegmenter¶ class langchain.document_loaders.parsers.language.python.PythonSegmenter(code: str)[source]¶ Bases: CodeSegmenter The code segmenter for Python. Methods __init__(code) extract_functions_classes() is_valid() simplify_code() extract_functions_classes() → List[str][source]¶ is_valid() → bool[source]¶ simplify_code() → str[source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.python.PythonSegmenter.html
8f03f779a579-0
langchain.document_loaders.mastodon.MastodonTootsLoader¶ class langchain.document_loaders.mastodon.MastodonTootsLoader(mastodon_accounts: Sequence[str], number_toots: Optional[int] = 100, exclude_replies: bool = False, access_token: Optional[str] = None, api_base_url: str = 'https://mastodon.social')[source]¶ Bases: BaseLoader Mastodon toots loader. Instantiate Mastodon toots loader. Parameters mastodon_accounts – The list of Mastodon accounts to query. number_toots – How many toots to pull for each account. Defaults to 100. exclude_replies – Whether to exclude reply toots from the load. Defaults to False. access_token – An access token if toots are loaded as a Mastodon app. Can also be specified via the environment variables “MASTODON_ACCESS_TOKEN”. api_base_url – A Mastodon API base URL to talk to, if not using the default. Defaults to “https://mastodon.social”. Methods __init__(mastodon_accounts[, number_toots, ...]) Instantiate Mastodon toots loader. lazy_load() A lazy loader for Documents. load() Load toots into documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load toots into documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mastodon.MastodonTootsLoader.html
8f03f779a579-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using MastodonTootsLoader¶ Mastodon
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mastodon.MastodonTootsLoader.html
7ab57476ad4d-0
langchain.document_loaders.weather.WeatherDataLoader¶ class langchain.document_loaders.weather.WeatherDataLoader(client: OpenWeatherMapAPIWrapper, places: Sequence[str])[source]¶ Bases: BaseLoader Weather Reader. Reads the forecast & current weather of any location using OpenWeatherMap’s free API. Checkout ‘https://openweathermap.org/appid’ for more on how to generate a free OpenWeatherMap API. Initialize with parameters. Methods __init__(client, places) Initialize with parameters. from_params(places, *[, openweathermap_api_key]) lazy_load() Lazily load weather data for the given locations. load() Load weather data for the given locations. load_and_split([text_splitter]) Load Documents and split into chunks. classmethod from_params(places: Sequence[str], *, openweathermap_api_key: Optional[str] = None) → WeatherDataLoader[source]¶ lazy_load() → Iterator[Document][source]¶ Lazily load weather data for the given locations. load() → List[Document][source]¶ Load weather data for the given locations. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WeatherDataLoader¶ Weather
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.weather.WeatherDataLoader.html
4757795d315f-0
langchain.document_loaders.blackboard.BlackboardLoader¶ class langchain.document_loaders.blackboard.BlackboardLoader(blackboard_course_url: str, bbrouter: str, load_all_recursively: bool = True, basic_auth: Optional[Tuple[str, str]] = None, cookies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loads all documents from a Blackboard course. This loader is not compatible with all Blackboard courses. It is only compatible with courses that use the new Blackboard interface. To use this loader, you must have the BbRouter cookie. You can get this cookie by logging into the course and then copying the value of the BbRouter cookie from the browser’s developer tools. Example from langchain.document_loaders import BlackboardLoader loader = BlackboardLoader( blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1", bbrouter="expires:12345...", ) documents = loader.load() Initialize with blackboard course url. The BbRouter cookie is required for most blackboard courses. Parameters blackboard_course_url – Blackboard course url. bbrouter – BbRouter cookie. load_all_recursively – If True, load all documents recursively. basic_auth – Basic auth credentials. cookies – Cookies. Raises ValueError – If blackboard course url is invalid. Methods __init__(blackboard_course_url, bbrouter[, ...]) Initialize with blackboard course url. aload() Load text from the urls in web_path async into Documents. check_bs4() Check if BeautifulSoup4 is installed. download(path) Download a file from an url. fetch_all(urls)
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
4757795d315f-1
download(path) Download a file from an url. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. parse_filename(url) Parse the filename from an url. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path base_url Base url of the blackboard course. folder_path Path to the folder containing the documents. load_all_recursively If True, load all documents recursively. aload() → List[Document]¶ Load text from the urls in web_path async into Documents. check_bs4() → None[source]¶ Check if BeautifulSoup4 is installed. Raises ImportError – If BeautifulSoup4 is not installed. download(path: str) → None[source]¶ Download a file from an url. Parameters path – Path to the file. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load data into Document objects. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
4757795d315f-2
Load data into Document objects. Returns List of Documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_filename(url: str) → str[source]¶ Parse the filename from an url. Parameters url – Url to parse the filename from. Returns The filename. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. base_url: str¶ Base url of the blackboard course. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. folder_path: str¶ Path to the folder containing the documents. load_all_recursively: bool¶ If True, load all documents recursively. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using BlackboardLoader¶ Blackboard
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
a390451e74a2-0
langchain.document_loaders.markdown.UnstructuredMarkdownLoader¶ class langchain.document_loaders.markdown.UnstructuredMarkdownLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses Unstructured to load markdown files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredMarkdownLoader loader = UnstructuredMarkdownLoader(“example.md”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-md Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredMarkdownLoader¶ StarRocks
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.markdown.UnstructuredMarkdownLoader.html
fab5950dc53e-0
langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader¶ class langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load PowerPoint files. Works with both .ppt and .pptx files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader(“example.pptx”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-pptx Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader.html
fab5950dc53e-1
Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredPowerPointLoader¶ Microsoft PowerPoint
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.powerpoint.UnstructuredPowerPointLoader.html
b1af2e8aa432-0
langchain.document_loaders.json_loader.JSONLoader¶ class langchain.document_loaders.json_loader.JSONLoader(file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False)[source]¶ Bases: BaseLoader Loads a JSON file using a jq schema. Example [{“text”: …}, {“text”: …}, {“text”: …}] -> schema = .[].text {“key”: [{“text”: …}, {“text”: …}, {“text”: …}]} -> schema = .key[].text [“”, “”, “”] -> schema = .[] Initialize the JSONLoader. Parameters file_path (Union[str, Path]) – The path to the JSON or JSON Lines file. jq_schema (str) – The jq schema to use to extract the data or text from the JSON. content_key (str) – The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). metadata_func (Callable[Dict, Dict]) – A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool) – Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool) – Boolean flag to indicate whether the input is in JSON Lines format. Methods __init__(file_path, jq_schema[, ...]) Initialize the JSONLoader. lazy_load() A lazy loader for Documents. load() Load and return documents from the JSON file. load_and_split([text_splitter]) Load Documents and split into chunks.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
b1af2e8aa432-1
load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load and return documents from the JSON file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
8ca7b0db928e-0
langchain.document_loaders.chatgpt.concatenate_rows¶ langchain.document_loaders.chatgpt.concatenate_rows(message: dict, title: str) → str[source]¶ Combine message information in a readable format ready to be used. :param message: Message to be concatenated :param title: Title of the conversation Returns Concatenated message
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.chatgpt.concatenate_rows.html
a26a0848d830-0
langchain.document_loaders.parsers.audio.OpenAIWhisperParser¶ class langchain.document_loaders.parsers.audio.OpenAIWhisperParser(api_key: Optional[str] = None)[source]¶ Bases: BaseBlobParser Transcribe and parse audio files. Audio transcription is with OpenAI Whisper model. Methods __init__([api_key]) lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents Examples using OpenAIWhisperParser¶ Loading documents from a YouTube url
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.audio.OpenAIWhisperParser.html
b03829a5b86b-0
langchain.document_loaders.snowflake_loader.SnowflakeLoader¶ class langchain.document_loaders.snowflake_loader.SnowflakeLoader(query: str, user: str, password: str, account: str, warehouse: str, role: str, database: str, schema: str, parameters: Optional[Dict[str, Any]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]¶ Bases: BaseLoader Loads a query result from Snowflake into a list of documents. Each document represents one row of the result. The page_content_columns are written into the page_content of the document. The metadata_columns are written into the metadata of the document. By default, all columns are written into the page_content and none into the metadata. Initialize Snowflake document loader. Parameters query – The query to run in Snowflake. user – Snowflake user. password – Snowflake password. account – Snowflake account. warehouse – Snowflake warehouse. role – Snowflake role. database – Snowflake database schema – Snowflake schema parameters – Optional. Parameters to pass to the query. page_content_columns – Optional. Columns written to Document page_content. metadata_columns – Optional. Columns written to Document metadata. Methods __init__(query, user, password, account, ...) Initialize Snowflake document loader. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
b03829a5b86b-1
load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using SnowflakeLoader¶ Snowflake
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
c4aae80d58b9-0
langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader¶ class langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader(path: str)[source]¶ Bases: BaseLoader Loads WhatsApp messages text file. Initialize with path. Methods __init__(path) Initialize with path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using WhatsAppChatLoader¶ WhatsApp WhatsApp Chat
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.WhatsAppChatLoader.html
e6c952d16221-0
langchain.document_loaders.tencent_cos_file.TencentCOSFileLoader¶ class langchain.document_loaders.tencent_cos_file.TencentCOSFileLoader(conf: Any, bucket: str, key: str)[source]¶ Bases: BaseLoader Loader for Tencent Cloud COS file. Initialize with COS config, bucket and key name. :param conf(CosConfig): COS config. :param bucket(str): COS bucket. :param key(str): COS file key. Methods __init__(conf, bucket, key) Initialize with COS config, bucket and key name. lazy_load() Load documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Load documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using TencentCOSFileLoader¶ Tencent COS File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tencent_cos_file.TencentCOSFileLoader.html
27809e0ca56a-0
langchain.document_loaders.unstructured.get_elements_from_api¶ langchain.document_loaders.unstructured.get_elements_from_api(file_path: Optional[Union[str, List[str]]] = None, file: Optional[Union[IO, Sequence[IO]]] = None, api_url: str = 'https://api.unstructured.io/general/v0/general', api_key: str = '', **unstructured_kwargs: Any) → List[source]¶ Retrieves a list of elements from the Unstructured API.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.get_elements_from_api.html
6aabf28b7c47-0
langchain.document_loaders.open_city_data.OpenCityDataLoader¶ class langchain.document_loaders.open_city_data.OpenCityDataLoader(city_id: str, dataset_id: str, limit: int)[source]¶ Bases: BaseLoader Loads Open City data. Initialize with dataset_id. Example: https://dev.socrata.com/foundry/data.sfgov.org/vw6y-z8j6 e.g., city_id = data.sfgov.org e.g., dataset_id = vw6y-z8j6 Parameters city_id – The Open City city identifier. dataset_id – The Open City dataset identifier. limit – The maximum number of documents to load. Methods __init__(city_id, dataset_id, limit) Initialize with dataset_id. lazy_load() Lazy load records. load() Load records. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load records. load() → List[Document][source]¶ Load records. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using OpenCityDataLoader¶ Geopandas Open City Data
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.open_city_data.OpenCityDataLoader.html
29a8d6dbfdbb-0
langchain.document_loaders.geodataframe.GeoDataFrameLoader¶ class langchain.document_loaders.geodataframe.GeoDataFrameLoader(data_frame: Any, page_content_column: str = 'geometry')[source]¶ Bases: BaseLoader Load geopandas Dataframe. Initialize with geopandas Dataframe. Parameters data_frame – geopandas DataFrame object. page_content_column – Name of the column containing the page content. Defaults to “geometry”. Methods __init__(data_frame[, page_content_column]) Initialize with geopandas Dataframe. lazy_load() Lazy load records from dataframe. load() Load full dataframe. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load records from dataframe. load() → List[Document][source]¶ Load full dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GeoDataFrameLoader¶ Geopandas
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.geodataframe.GeoDataFrameLoader.html
83eaae737ba6-0
langchain.document_loaders.image_captions.ImageCaptionLoader¶ class langchain.document_loaders.image_captions.ImageCaptionLoader(path_images: Union[str, List[str]], blip_processor: str = 'Salesforce/blip-image-captioning-base', blip_model: str = 'Salesforce/blip-image-captioning-base')[source]¶ Bases: BaseLoader Loads the captions of an image Initialize with a list of image paths Parameters path_images – A list of image paths. blip_processor – The name of the pre-trained BLIP processor. blip_model – The name of the pre-trained BLIP model. Methods __init__(path_images[, blip_processor, ...]) Initialize with a list of image paths lazy_load() A lazy loader for Documents. load() Load from a list of image files load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from a list of image files load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using ImageCaptionLoader¶ Image captions
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.image_captions.ImageCaptionLoader.html
5aecf6192008-0
langchain.document_loaders.unstructured.UnstructuredAPIFileLoader¶ class langchain.document_loaders.unstructured.UnstructuredAPIFileLoader(file_path: Union[str, List[str]] = '', mode: str = 'single', url: str = 'https://api.unstructured.io/general/v0/general', api_key: str = '', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses the Unstructured API to load files. By default, the loader makes a call to the hosted Unstructured API. If you are running the unstructured API locally, you can change the API rule by passing in the url parameter when you initialize the loader. The hosted Unstructured API requires an API key. See https://www.unstructured.io/api-key/ if you need to generate a key. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples ```python from langchain.document_loaders import UnstructuredAPIFileLoader loader = UnstructuredFileAPILoader(“example.pdf”, mode=”elements”, strategy=”fast”, api_key=”MY_API_KEY”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition https://www.unstructured.io/api-key/ https://github.com/Unstructured-IO/unstructured-api Initialize with file path. Methods __init__([file_path, mode, url, api_key]) Initialize with file path. lazy_load() A lazy loader for Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileLoader.html
5aecf6192008-1
Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredAPIFileLoader¶ Unstructured File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileLoader.html
46e722de4248-0
langchain.document_loaders.telegram.text_to_docs¶ langchain.document_loaders.telegram.text_to_docs(text: Union[str, List[str]]) → List[Document][source]¶ Converts a string or list of strings to a list of Documents with metadata.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.text_to_docs.html
73e5e897c3b2-0
langchain.document_loaders.notebook.NotebookLoader¶ class langchain.document_loaders.notebook.NotebookLoader(path: str, include_outputs: bool = False, max_output_length: int = 10, remove_newline: bool = False, traceback: bool = False)[source]¶ Bases: BaseLoader Loads .ipynb notebook files. Initialize with path. Parameters path – The path to load the notebook from. include_outputs – Whether to include the outputs of the cell. Defaults to False. max_output_length – Maximum length of the output to be displayed. Defaults to 10. remove_newline – Whether to remove newlines from the notebook. Defaults to False. traceback – Whether to return a traceback of the error. Defaults to False. Methods __init__(path[, include_outputs, ...]) Initialize with path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using NotebookLoader¶ Jupyter Notebook Notebook
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notebook.NotebookLoader.html
964bba5fc936-0
langchain.document_loaders.unstructured.validate_unstructured_version¶ langchain.document_loaders.unstructured.validate_unstructured_version(min_unstructured_version: str) → None[source]¶ Raises an error if the unstructured version does not exceed the specified minimum.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.validate_unstructured_version.html
b79831e9666a-0
langchain.document_loaders.pdf.PDFMinerLoader¶ class langchain.document_loaders.pdf.PDFMinerLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that uses PDFMiner to load PDF files. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() Lazily load documents. load() Eagerly load the content. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document][source]¶ Lazily load documents. load() → List[Document][source]¶ Eagerly load the content. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PDFMinerLoader.html
4ac4a930bf03-0
langchain.document_loaders.unstructured.UnstructuredBaseLoader¶ class langchain.document_loaders.unstructured.UnstructuredBaseLoader(mode: str = 'single', post_processors: List[Callable] = [], **unstructured_kwargs: Any)[source]¶ Bases: BaseLoader, ABC Loader that uses Unstructured to load files. Initialize with file path. Methods __init__([mode, post_processors]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredBaseLoader.html
48e969bfbfe9-0
langchain.document_loaders.airbyte_json.AirbyteJSONLoader¶ class langchain.document_loaders.airbyte_json.AirbyteJSONLoader(file_path: str)[source]¶ Bases: BaseLoader Loads local airbyte json files. Initialize with a file path. This should start with ‘/tmp/airbyte_local/’. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes file_path Path to the directory containing the json files. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. file_path¶ Path to the directory containing the json files. Examples using AirbyteJSONLoader¶ Airbyte Airbyte JSON
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte_json.AirbyteJSONLoader.html
9553a5684aac-0
langchain.document_loaders.github.BaseGitHubLoader¶ class langchain.document_loaders.github.BaseGitHubLoader(*, repo: str, access_token: str)[source]¶ Bases: BaseLoader, BaseModel, ABC Load issues of a GitHub repository. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: str [Required]¶ Personal access token - see https://github.com/settings/tokens?type=beta param repo: str [Required]¶ Name of repository lazy_load() → Iterator[Document]¶ A lazy loader for Documents. abstract load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_environment  »  all fields[source]¶ Validate that access token exists in environment. property headers: Dict[str, str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.BaseGitHubLoader.html
58038dde5ee6-0
langchain.document_loaders.gcs_file.GCSFileLoader¶ class langchain.document_loaders.gcs_file.GCSFileLoader(project_name: str, bucket: str, blob: str)[source]¶ Bases: BaseLoader Load Documents from a GCS file. Initialize with bucket and key name. Parameters project_name – The name of the project to load bucket – The name of the GCS bucket. blob – The name of the GCS blob to load. Methods __init__(project_name, bucket, blob) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using GCSFileLoader¶ Google Cloud Storage Google Cloud Storage File
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gcs_file.GCSFileLoader.html
219b316f8449-0
langchain.document_loaders.xorbits.XorbitsLoader¶ class langchain.document_loaders.xorbits.XorbitsLoader(data_frame: Any, page_content_column: str = 'text')[source]¶ Bases: BaseLoader Load Xorbits DataFrame. Initialize with dataframe object. Requirements:Must have xorbits installed. You can install with pip install xorbits. Parameters data_frame – Xorbits DataFrame object. page_content_column – Name of the column containing the page content. Defaults to “text”. Methods __init__(data_frame[, page_content_column]) Initialize with dataframe object. lazy_load() Lazy load records from dataframe. load() Load full dataframe. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load records from dataframe. load() → List[Document][source]¶ Load full dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using XorbitsLoader¶ Xorbits Pandas DataFrame
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.xorbits.XorbitsLoader.html
3b105e1b9326-0
langchain.document_loaders.pdf.PDFPlumberLoader¶ class langchain.document_loaders.pdf.PDFPlumberLoader(file_path: str, text_kwargs: Optional[Mapping[str, Any]] = None)[source]¶ Bases: BasePDFLoader Loader that uses pdfplumber to load PDF files. Initialize with a file path. Methods __init__(file_path[, text_kwargs]) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PDFPlumberLoader.html
54be95756594-0
langchain.document_loaders.college_confidential.CollegeConfidentialLoader¶ class langchain.document_loaders.college_confidential.CollegeConfidentialLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loads College Confidential webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpages as Documents. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpages as Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.college_confidential.CollegeConfidentialLoader.html
54be95756594-1
load() → List[Document][source]¶ Load webpages as Documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶ Examples using CollegeConfidentialLoader¶ College Confidential
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.college_confidential.CollegeConfidentialLoader.html
c660a6e92f7b-0
langchain.document_loaders.rocksetdb.default_joiner¶ langchain.document_loaders.rocksetdb.default_joiner(docs: List[Tuple[str, Any]]) → str[source]¶ Default joiner for content columns.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rocksetdb.default_joiner.html
ba73e3be17fe-0
langchain.document_loaders.html.UnstructuredHTMLLoader¶ class langchain.document_loaders.html.UnstructuredHTMLLoader(file_path: Union[str, List[str]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses Unstructured to load HTML files. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples from langchain.document_loaders import UnstructuredHTMLLoader loader = UnstructuredHTMLLoader(“example.html”, mode=”elements”, strategy=”fast”, ) docs = loader.load() References https://unstructured-io.github.io/unstructured/bricks.html#partition-html Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.html.UnstructuredHTMLLoader.html
3717ed138c19-0
langchain.document_loaders.s3_directory.S3DirectoryLoader¶ class langchain.document_loaders.s3_directory.S3DirectoryLoader(bucket: str, prefix: str = '')[source]¶ Bases: BaseLoader Loading logic for loading documents from an AWS S3. Initialize with bucket and key name. Parameters bucket – The name of the S3 bucket. prefix – The prefix of the S3 key. Defaults to “”. Methods __init__(bucket[, prefix]) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using S3DirectoryLoader¶ AWS S3 Directory
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.s3_directory.S3DirectoryLoader.html
8aeecf0674eb-0
langchain.document_loaders.word_document.Docx2txtLoader¶ class langchain.document_loaders.word_document.Docx2txtLoader(file_path: str)[source]¶ Bases: BaseLoader, ABC Loads a DOCX with docx2txt and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load given path as single page. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load given path as single page. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using Docx2txtLoader¶ Microsoft Word
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.word_document.Docx2txtLoader.html
c9c0ab714553-0
langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader¶ class langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(conn_str: str, container: str, prefix: str = '')[source]¶ Bases: BaseLoader Loading Documents from Azure Blob Storage. Initialize with connection string, container and blob prefix. Methods __init__(conn_str, container[, prefix]) Initialize with connection string, container and blob prefix. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes conn_str Connection string for Azure Blob Storage. container Container name. prefix Prefix for blob names. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. conn_str¶ Connection string for Azure Blob Storage. container¶ Container name. prefix¶ Prefix for blob names. Examples using AzureBlobStorageContainerLoader¶ Azure Blob Storage Azure Blob Storage Container
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader.html
44db4ac426ba-0
langchain.document_loaders.excel.UnstructuredExcelLoader¶ class langchain.document_loaders.excel.UnstructuredExcelLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load Excel files. Like other Unstructured loaders, UnstructuredExcelLoader can be used in both “single” and “elements” mode. If you use the loader in “elements” mode, each sheet in the Excel file will be a an Unstructured Table element. If you use the loader in “elements” mode, an HTML representation of the table will be available in the “text_as_html” key in the document metadata. Examples from langchain.document_loaders.excel import UnstructuredExcelLoader loader = UnstructuredExcelLoader(“stanley-cups.xlsd”, mode=”elements”) docs = loader.load() Parameters file_path – The path to the Microsoft Excel file. mode – The mode to use when partitioning the file. See unstructured docs for more info. Optional. Defaults to “single”. **unstructured_kwargs – Keyword arguments to pass to unstructured. Methods __init__(file_path[, mode]) param file_path The path to the Microsoft Excel file. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.excel.UnstructuredExcelLoader.html
44db4ac426ba-1
Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using UnstructuredExcelLoader¶ Microsoft Excel
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.excel.UnstructuredExcelLoader.html
23c9ecb19961-0
langchain.document_loaders.fauna.FaunaLoader¶ class langchain.document_loaders.fauna.FaunaLoader(query: str, page_content_field: str, secret: str, metadata_fields: Optional[Sequence[str]] = None)[source]¶ Bases: BaseLoader FaunaDB Loader. query¶ The FQL query string to execute. Type str page_content_field¶ The field that contains the content of each page. Type str secret¶ The secret key for authenticating to FaunaDB. Type str metadata_fields¶ Optional list of field names to include in metadata. Type Optional[Sequence[str]] Methods __init__(query, page_content_field, secret) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. Examples using FaunaLoader¶ Fauna
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.fauna.FaunaLoader.html