tRNA / predict_dir.py
QPromaQ's picture
Create predict_dir.py
b6d1ec8 verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
predict_models_dir.py
Predict for all models in models_dir on a folder of FASTA genomes.
Optionally annotate with ground truth from a TSV and compute the same metrics
as in your original script (overall + Isolate + MAG + AUC).
Inputs:
--genomes_dir Folder with FASTA files (.fna/.fa/.fasta)
--models_dir Folder with model_*.joblib + feature_columns_*.json
--outdir Output folder
--truth_tsv OPTIONAL: genomes-all_metadata_with_genetic_code_id_noNA.tsv
(must contain Genome, Genome_type, Genetic_code_ID)
Ground truth (if provided):
ALT = Genetic_code_ID != 11
STD = Genetic_code_ID == 11
Outputs:
- <outdir>/<model>__pred.csv (per model, per genome)
- <outdir>/all_models_predictions_long.csv (long: model x genome)
- <outdir>/prediction_summary.csv (ONLY if truth_tsv is provided)
- <outdir>/top_models_by_pr_auc.txt (ONLY if truth_tsv is provided)
Requires:
- aragorn in PATH (or pass --aragorn)
"""
import os
import re
import json
import time
import argparse
import subprocess
from pathlib import Path
from collections import Counter
import numpy as np
import pandas as pd
from joblib import load as joblib_load
from sklearn.metrics import (
confusion_matrix,
accuracy_score,
precision_score,
recall_score,
f1_score,
roc_auc_score,
average_precision_score,
)
from sklearn.base import BaseEstimator, ClassifierMixin, clone
# =========================
# PU class (for joblib load)
# =========================
class PUBaggingClassifier(BaseEstimator, ClassifierMixin):
def __init__(self, base_estimator, n_bags=15, u_ratio=3.0, random_state=42):
self.base_estimator = base_estimator
self.n_bags = int(n_bags)
self.u_ratio = float(u_ratio)
self.random_state = int(random_state)
self.models_ = None
self.classes_ = np.array([0, 1], dtype=int)
def fit(self, X, y, sample_weight=None):
y = np.asarray(y).astype(int)
pos_idx = np.where(y == 1)[0]
unl_idx = np.where(y == 0)[0]
if pos_idx.size == 0:
raise ValueError("PU training requires at least one positive sample (y==1).")
rng = np.random.RandomState(self.random_state)
self.models_ = []
if unl_idx.size == 0:
m = clone(self.base_estimator)
try:
if sample_weight is not None:
m.fit(X, y, sample_weight=np.asarray(sample_weight))
else:
m.fit(X, y)
except TypeError:
m.fit(X, y)
self.models_.append(m)
return self
k_u = int(min(unl_idx.size, max(1, round(self.u_ratio * pos_idx.size))))
for _ in range(self.n_bags):
u_b = rng.choice(unl_idx, size=k_u, replace=(k_u > unl_idx.size))
idx_b = np.concatenate([pos_idx, u_b])
X_b = X.iloc[idx_b] if hasattr(X, "iloc") else X[idx_b]
y_b = y[idx_b]
sw_b = None
if sample_weight is not None:
sw_b = np.asarray(sample_weight)[idx_b]
m = clone(self.base_estimator)
try:
if sw_b is not None:
m.fit(X_b, y_b, sample_weight=sw_b)
else:
m.fit(X_b, y_b)
except TypeError:
m.fit(X_b, y_b)
self.models_.append(m)
return self
def predict_proba(self, X):
if not self.models_:
raise RuntimeError("PUBaggingClassifier not fitted")
probs = [m.predict_proba(X) for m in self.models_]
return np.mean(np.stack(probs, axis=0), axis=0)
def predict(self, X):
return (self.predict_proba(X)[:, 1] >= 0.5).astype(int)
# =========================
# Feature extraction
# =========================
CODON_RE = re.compile(r"\(([ACGTUacgtu]{3})\)")
def set_single_thread_env():
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
def list_fasta_files(genomes_dir: str):
exts = (".fna", ".fa", ".fasta")
paths = []
for fn in os.listdir(genomes_dir):
p = os.path.join(genomes_dir, fn)
if not os.path.isfile(p):
continue
if fn.endswith(exts):
paths.append(p)
return sorted(paths)
def calc_gc_and_tetra(fasta_path):
bases = ["A", "C", "G", "T"]
all_kmers = ["".join([a, b, c, d]) for a in bases for b in bases for c in bases for d in bases]
tetra_counts = {k: 0 for k in all_kmers}
A = C = G = T = 0
tail = ""
with open(fasta_path, "r") as fh:
for line in fh:
if line.startswith(">"):
continue
s = line.strip().upper().replace("U", "T")
s = re.sub(r"[^ACGT]", "N", s)
if not s:
continue
seq = tail + s
for ch in s:
if ch == "A": A += 1
elif ch == "C": C += 1
elif ch == "G": G += 1
elif ch == "T": T += 1
for i in range(len(seq) - 3):
k = seq[i:i+4]
if "N" in k:
continue
tetra_counts[k] += 1
tail = seq[-3:] if len(seq) >= 3 else seq
total_acgt = A + C + G + T
gc_percent = (float(G + C) / float(total_acgt) * 100.0) if total_acgt > 0 else 0.0
windows_total = sum(tetra_counts.values())
denom = float(windows_total) if windows_total > 0 else 1.0
tetra_freq = {f"tetra_{k}": float(v) / denom for k, v in tetra_counts.items()}
features = {
"gc_percent": float(gc_percent),
"genome_length": float(total_acgt),
}
features.update(tetra_freq)
return features
def run_aragorn(aragorn_bin, fasta_path, out_txt):
cmd = [aragorn_bin, "-t", "-l", "-gc1", "-w", "-o", out_txt, fasta_path]
with open(os.devnull, "w") as devnull:
subprocess.run(cmd, stdout=devnull, stderr=devnull, check=False)
def parse_anticodons_from_aragorn(aragorn_txt):
counts = Counter()
if not os.path.isfile(aragorn_txt):
return counts
with open(aragorn_txt, "r") as fh:
for line in fh:
for m in CODON_RE.finditer(line):
cod = m.group(1).upper().replace("U", "T")
if re.fullmatch(r"[ACGT]{3}", cod):
counts[cod] += 1
return counts
def build_ac_features(anticodon_counts):
bases = ["A", "C", "G", "T"]
feats = {}
for a in bases:
for b in bases:
for c in bases:
cod = f"{a}{b}{c}"
feats[f"ac_{cod}"] = float(anticodon_counts.get(cod, 0))
return feats
def build_plr_features(ac_features, needed_plr_cols, eps=0.5):
plr_feats = {}
for col in needed_plr_cols:
core = col[len("plr_"):]
left, right = core.split("__")
a = ac_features.get(f"ac_{left}", 0.0)
b = ac_features.get(f"ac_{right}", 0.0)
plr_feats[col] = float(np.log((a + eps) / (b + eps)))
return plr_feats
def build_features_for_genome(fasta_path, aragorn_bin, feature_columns, reuse_aragorn=True):
acc = os.path.splitext(os.path.basename(fasta_path))[0]
feat_gc_tetra = calc_gc_and_tetra(fasta_path)
tmp_aragorn = fasta_path + ".aragorn.txt"
if reuse_aragorn and os.path.isfile(tmp_aragorn):
try:
if os.path.getmtime(tmp_aragorn) < os.path.getmtime(fasta_path):
run_aragorn(aragorn_bin, fasta_path, tmp_aragorn)
except Exception:
run_aragorn(aragorn_bin, fasta_path, tmp_aragorn)
else:
run_aragorn(aragorn_bin, fasta_path, tmp_aragorn)
anticodon_counts = parse_anticodons_from_aragorn(tmp_aragorn)
ac_feats = build_ac_features(anticodon_counts)
plr_cols = [c for c in feature_columns if c.startswith("plr_")]
plr_feats = build_plr_features(ac_feats, plr_cols) if plr_cols else {}
all_feats = {}
all_feats.update(ac_feats)
all_feats.update(plr_feats)
all_feats.update(feat_gc_tetra)
row = {col: float(all_feats.get(col, 0.0)) for col in feature_columns}
return acc, row
# =========================
# Ground truth from TSV (optional)
# =========================
def load_truth_tsv(tsv_path: str) -> pd.DataFrame:
df = pd.read_csv(tsv_path, sep="\t", dtype=str)
for col in ["Genome", "Genome_type", "Genetic_code_ID"]:
if col not in df.columns:
raise ValueError(f"TSV missing column '{col}'. Columns: {list(df.columns)}")
df["Genome"] = df["Genome"].astype(str)
df["Genome_type"] = df["Genome_type"].astype(str)
df["Genetic_code_ID"] = pd.to_numeric(df["Genetic_code_ID"], errors="coerce").astype("Int64")
# ALT ground truth: != 11
df["y_true_alt"] = df["Genetic_code_ID"].apply(lambda x: (pd.notna(x) and int(x) != 11)).astype(int)
df["true_label"] = df["y_true_alt"].map({0: "STD", 1: "ALT"})
return df[["Genome", "Genome_type", "Genetic_code_ID", "y_true_alt", "true_label"]]
# =========================
# Metrics (only if truth exists)
# =========================
def safe_confusion(y_true, y_pred):
cm = confusion_matrix(y_true, y_pred, labels=[0, 1])
tn, fp, fn, tp = int(cm[0,0]), int(cm[0,1]), int(cm[1,0]), int(cm[1,1])
return tn, fp, fn, tp
def compute_metrics_block(y_true, y_pred, y_score=None):
y_true = np.asarray(y_true, dtype=int)
y_pred = np.asarray(y_pred, dtype=int)
tn, fp, fn, tp = safe_confusion(y_true, y_pred)
n = int(len(y_true))
pos = int(np.sum(y_true == 1))
out = {
"n": n,
"positives": pos,
"tn": tn, "fp": fp, "fn": fn, "tp": tp,
"accuracy": float(accuracy_score(y_true, y_pred)) if n else np.nan,
"precision": float(precision_score(y_true, y_pred, zero_division=0)) if n else np.nan,
"recall": float(recall_score(y_true, y_pred, zero_division=0)) if n else np.nan,
"f1": float(f1_score(y_true, y_pred, zero_division=0)) if n else np.nan,
"specificity": float(tn / (tn + fp)) if (tn + fp) > 0 else np.nan,
"fn_rate": float(fn / (fn + tp)) if (fn + tp) > 0 else np.nan, # 1 - recall
"fp_rate": float(fp / (fp + tn)) if (fp + tn) > 0 else np.nan,
}
if y_score is not None:
y_score = np.asarray(y_score, dtype=float)
if n > 0 and len(np.unique(y_true)) == 2:
try:
out["roc_auc"] = float(roc_auc_score(y_true, y_score))
except Exception:
out["roc_auc"] = np.nan
try:
out["pr_auc"] = float(average_precision_score(y_true, y_score))
except Exception:
out["pr_auc"] = np.nan
else:
out["roc_auc"] = np.nan
out["pr_auc"] = np.nan
else:
out["roc_auc"] = np.nan
out["pr_auc"] = np.nan
return out
# =========================
# Model discovery
# =========================
def find_models(models_dir: Path):
return sorted(models_dir.glob("model_*.joblib"))
def pick_feature_cols(models_dir: Path, feature_cols_arg: str | None):
if feature_cols_arg:
return Path(feature_cols_arg)
p = models_dir / "feature_columns_64log_gc_tetra.json"
if p.exists():
return p
candidates = sorted(models_dir.glob("feature_columns_*.json"))
if not candidates:
raise FileNotFoundError(f"No feature_columns_*.json found in {models_dir}")
return candidates[0]
# =========================
# Main
# =========================
def main():
ap = argparse.ArgumentParser(
description="Predict for all models in a directory; optionally annotate truth from TSV and compute metrics."
)
ap.add_argument("--genomes_dir", required=True, help="Folder with FASTA genomes (.fna/.fa/.fasta).")
ap.add_argument("--models_dir", required=True, help="Folder with model_*.joblib + feature_columns_*.json.")
ap.add_argument("--outdir", required=True, help="Output folder for CSV predictions.")
ap.add_argument("--aragorn", default="aragorn", help="Path to ARAGORN binary.")
ap.add_argument("--feature_cols", default=None, help="Optional: force a specific feature_columns_*.json.")
ap.add_argument("--reuse_aragorn", action="store_true", help="Reuse *.aragorn.txt if it exists and is fresh.")
ap.add_argument(
"--truth_tsv",
default=None,
help="OPTIONAL: genomes-all_metadata_with_genetic_code_id_noNA.tsv (Genome, Genome_type, Genetic_code_ID).",
)
args = ap.parse_args()
set_single_thread_env()
genomes_dir = Path(args.genomes_dir)
models_dir = Path(args.models_dir)
outdir = Path(args.outdir)
outdir.mkdir(parents=True, exist_ok=True)
fasta_files = list_fasta_files(str(genomes_dir))
if not fasta_files:
raise SystemExit(f"No FASTA files found in {genomes_dir}")
models = find_models(models_dir)
if not models:
raise SystemExit(f"No model_*.joblib found in {models_dir}")
feat_cols_path = pick_feature_cols(models_dir, args.feature_cols)
print(f"[INFO] Genomes : {len(fasta_files)} in {genomes_dir}")
print(f"[INFO] Models : {len(models)} in {models_dir}")
print(f"[INFO] FeatCols: {feat_cols_path}")
print(f"[INFO] Truth : {args.truth_tsv if args.truth_tsv else '(none)'}")
# Load feature columns
with open(feat_cols_path, "r") as fh:
feature_columns = json.load(fh)
# Optional truth
truth = None
if args.truth_tsv:
truth = load_truth_tsv(args.truth_tsv)
# Build features once (shared across all models)
t_feat0 = time.time()
rows, accs = [], []
for i, fasta in enumerate(fasta_files, 1):
if i % 50 == 0 or i == 1 or i == len(fasta_files):
print(f"[FEAT] {i}/{len(fasta_files)} {os.path.basename(fasta)}")
acc, feats = build_features_for_genome(
fasta_path=fasta,
aragorn_bin=args.aragorn,
feature_columns=feature_columns,
reuse_aragorn=args.reuse_aragorn
)
accs.append(acc)
rows.append(feats)
X = pd.DataFrame(rows, index=accs)[feature_columns]
print(f"[FEAT] Built X={X.shape} in {(time.time()-t_feat0):.1f}s")
# Annotation base table (always exists)
ann = pd.DataFrame({"Genome": accs})
if truth is not None:
ann = ann.merge(truth, how="left", on="Genome")
n_annot = int(ann["y_true_alt"].notna().sum())
n_missing = int(len(ann) - n_annot)
print(f"[TRUTH] Annotated: {n_annot}/{len(ann)} Missing_in_TSV: {n_missing}")
else:
# Ensure columns exist for consistent outputs
ann["Genome_type"] = pd.NA
ann["Genetic_code_ID"] = pd.NA
ann["y_true_alt"] = pd.NA
ann["true_label"] = pd.NA
long_rows = []
summary_rows = []
for mi, model_path in enumerate(models, 1):
model_name = model_path.stem
print("\n" + "="*80)
print(f"[{mi}/{len(models)}] MODEL: {model_path.name}")
print("="*80)
t0 = time.time()
model = joblib_load(model_path)
# Probabilities (if possible)
proba = None
if hasattr(model, "predict_proba"):
try:
proba = model.predict_proba(X)[:, 1]
except Exception:
proba = None
# Pred class
if hasattr(model, "predict"):
try:
yhat = model.predict(X)
except Exception:
yhat = (proba >= 0.5).astype(int) if proba is not None else np.zeros(len(X), dtype=int)
else:
yhat = (proba >= 0.5).astype(int) if proba is not None else np.zeros(len(X), dtype=int)
elapsed = time.time() - t0
df_pred = ann.copy()
df_pred["model"] = model_name
df_pred["y_pred_alt"] = np.asarray(yhat).astype(int)
df_pred["pred_label"] = df_pred["y_pred_alt"].map({0: "STD", 1: "ALT"})
df_pred["proba_alt"] = np.asarray(proba, dtype=float) if proba is not None else np.nan
out_csv = outdir / f"{model_name}__pred.csv"
df_pred.to_csv(out_csv, index=False)
print(f"[WRITE] {out_csv} rows={len(df_pred)} time={(elapsed/60):.2f} min")
# Long output
keep_cols = ["model", "Genome", "Genome_type", "Genetic_code_ID", "y_true_alt", "y_pred_alt", "proba_alt"]
keep_cols = [c for c in keep_cols if c in df_pred.columns]
long_rows.extend(df_pred[keep_cols].to_dict(orient="records"))
# Metrics only if we have truth annotations
if truth is not None:
df_eval = df_pred[df_pred["y_true_alt"].notna()].copy()
if df_eval.shape[0] == 0:
print("[METRICS] No annotated genomes for this run (truth TSV did not match Genome names).")
continue
y_true = df_eval["y_true_alt"].astype(int).values
y_pred = df_eval["y_pred_alt"].astype(int).values
y_score = df_eval["proba_alt"].astype(float).values if proba is not None else None
overall = compute_metrics_block(y_true, y_pred, y_score=y_score)
def subset_metrics(gen_type: str):
sub = df_eval[df_eval["Genome_type"] == gen_type]
if sub.shape[0] == 0:
return None
yt = sub["y_true_alt"].astype(int).values
yp = sub["y_pred_alt"].astype(int).values
ys = sub["proba_alt"].astype(float).values if proba is not None else None
return compute_metrics_block(yt, yp, y_score=ys)
iso = subset_metrics("Isolate")
mag = subset_metrics("MAG")
srow = {
"model": model_name,
"model_file": str(model_path),
"feature_cols": str(feat_cols_path),
"n_genomes_total": int(len(df_pred)),
"n_annotated": int(df_eval.shape[0]),
"n_missing_truth": int(len(df_pred) - df_eval.shape[0]),
"elapsed_sec": float(elapsed),
"elapsed_min": float(elapsed/60.0),
}
for k, v in overall.items():
srow[f"overall_{k}"] = v
if iso is not None:
for k, v in iso.items():
srow[f"isolate_{k}"] = v
if mag is not None:
for k, v in mag.items():
srow[f"mag_{k}"] = v
summary_rows.append(srow)
# Write combined outputs
long_csv = outdir / "all_models_predictions_long.csv"
pd.DataFrame(long_rows).to_csv(long_csv, index=False)
print(f"\n[WRITE] {long_csv} rows={len(long_rows)}")
if truth is not None:
summary_csv = outdir / "prediction_summary.csv"
df_sum = pd.DataFrame(summary_rows)
df_sum.to_csv(summary_csv, index=False)
print(f"[WRITE] {summary_csv} rows={len(df_sum)}")
# Top models report
if not df_sum.empty and "overall_pr_auc" in df_sum.columns:
df_rank = df_sum.sort_values(["overall_pr_auc", "overall_roc_auc"], ascending=False, na_position="last")
report_path = outdir / "top_models_by_pr_auc.txt"
cols = [
"model",
"n_annotated",
"overall_positives",
"overall_precision",
"overall_recall",
"overall_f1",
"overall_pr_auc",
"overall_roc_auc",
"isolate_fn", "isolate_fp", "mag_fn", "mag_fp",
"elapsed_min",
]
cols = [c for c in cols if c in df_rank.columns]
with open(report_path, "w", encoding="utf-8") as f:
f.write("Top models by overall PR-AUC (ALT = Genetic_code_ID != 11)\n")
f.write(df_rank[cols].head(25).to_string(index=False))
f.write("\n")
print(f"[WRITE] {report_path}")
print("[DONE]")
if __name__ == "__main__":
main()