Datasets:
license: cc-by-4.0
task_categories:
- text-classification
language:
- ar
- bg
- nl
- en
pretty_name: ' COVID-19-disinformation'
size_categories:
- 10K<n<100K
dataset_info:
- config_name: arabic
features:
- name: tweet_id
dtype: string
- name: text
dtype: string
- name: q1_label
dtype: string
- name: q2_label
dtype: string
- name: q3_label
dtype: string
- name: q4_label
dtype: string
- name: q5_label
dtype: string
- name: q6_label
dtype: string
- name: q7_label
dtype: string
splits:
- name: binary_train
num_bytes: 1327709
num_examples: 3631
- name: binary_dev
num_bytes: 119559
num_examples: 339
- name: binary_test
num_bytes: 371852
num_examples: 996
- name: multiclass_train
num_bytes: 1685764
num_examples: 3631
- name: multiclass_dev
num_bytes: 152673
num_examples: 339
- name: multiclass_test
num_bytes: 470286
num_examples: 996
- config_name: bulgarian
features:
- name: tweet_id
dtype: string
- name: text
dtype: string
- name: q1_label
dtype: string
- name: q2_label
dtype: string
- name: q3_label
dtype: string
- name: q4_label
dtype: string
- name: q5_label
dtype: string
- name: q6_label
dtype: string
- name: q7_label
dtype: string
splits:
- name: binary_train
num_bytes: 825675
num_examples: 2710
- name: binary_dev
num_bytes: 77271
num_examples: 251
- name: binary_test
num_bytes: 215992
num_examples: 736
- name: multiclass_train
num_bytes: 1084422
num_examples: 2710
- name: multiclass_dev
num_bytes: 101532
num_examples: 251
- name: multiclass_test
num_bytes: 287336
num_examples: 736
- config_name: dutch
features:
- name: tweet_id
dtype: string
- name: text
dtype: string
- name: q1_label
dtype: string
- name: q2_label
dtype: string
- name: q3_label
dtype: string
- name: q4_label
dtype: string
- name: q5_label
dtype: string
- name: q6_label
dtype: string
- name: q7_label
dtype: string
splits:
- name: binary_train
num_bytes: 456893
num_examples: 1950
- name: binary_dev
num_bytes: 42346
num_examples: 181
- name: binary_test
num_bytes: 126916
num_examples: 534
- name: multiclass_train
num_bytes: 602248
num_examples: 1950
- name: multiclass_dev
num_bytes: 54308
num_examples: 181
- name: multiclass_test
num_bytes: 166412
num_examples: 534
- config_name: english
features:
- name: tweet_id
dtype: string
- name: text
dtype: string
- name: q1_label
dtype: string
- name: q2_label
dtype: string
- name: q3_label
dtype: string
- name: q4_label
dtype: string
- name: q5_label
dtype: string
- name: q6_label
dtype: string
- name: q7_label
dtype: string
splits:
- name: binary_train
num_bytes: 1019808
num_examples: 3324
- name: binary_dev
num_bytes: 94039
num_examples: 307
- name: binary_test
num_bytes: 280445
num_examples: 911
- name: multiclass_train
num_bytes: 1321619
num_examples: 3324
- name: multiclass_dev
num_bytes: 121786
num_examples: 307
- name: multiclass_test
num_bytes: 362128
num_examples: 911
- config_name: multilang
features:
- name: tweet_id
dtype: string
- name: text
dtype: string
- name: q1_label
dtype: string
- name: q2_label
dtype: string
- name: q3_label
dtype: string
- name: q4_label
dtype: string
- name: q5_label
dtype: string
- name: q6_label
dtype: string
- name: q7_label
dtype: string
splits:
- name: binary_train
num_bytes: 3630085
num_examples: 11615
- name: binary_dev
num_bytes: 333215
num_examples: 1078
- name: binary_test
num_bytes: 995205
num_examples: 3177
- name: multiclass_train
num_bytes: 4694053
num_examples: 11615
- name: multiclass_dev
num_bytes: 430299
num_examples: 1078
- name: multiclass_test
num_bytes: 1286162
num_examples: 3177
download_size: 11409949
dataset_size: 22738038
configs:
- config_name: arabic
data_files:
- split: binary_train
path: data/arabic_binary_train-*
- split: binary_dev
path: data/arabic_binary_dev-*
- split: binary_test
path: data/arabic_binary_test-*
- split: multiclass_train
path: data/arabic_multiclass_train-*
- split: multiclass_dev
path: data/arabic_multiclass_dev-*
- split: multiclass_test
path: data/arabic_multiclass_dev-*
- config_name: bulgarian
data_files:
- split: binary_train
path: data/bulgarian_binary_train-*
- split: binary_dev
path: data/bulgarian_binary_dev-*
- split: binary_test
path: data/bulgarian_binary_test-*
- split: multiclass_train
path: data/bulgarian_multiclass_train-*
- split: multiclass_dev
path: data/bulgarian_multiclass_dev-*
- split: multiclass_test
path: data/bulgarian_multiclass_dev-*
- config_name: dutch
data_files:
- split: binary_train
path: data/dutch_binary_train-*
- split: binary_dev
path: data/dutch_binary_dev-*
- split: binary_test
path: data/dutch_binary_test-*
- split: multiclass_train
path: data/dutch_multiclass_train-*
- split: multiclass_dev
path: data/dutch_multiclass_dev-*
- split: multiclass_test
path: data/dutch_multiclass_dev-*
- config_name: english
data_files:
- split: binary_train
path: data/english_binary_train-*
- split: binary_dev
path: data/english_binary_dev-*
- split: binary_test
path: data/english_binary_test-*
- split: multiclass_train
path: data/english_multiclass_train-*
- split: multiclass_dev
path: data/english_multiclass_dev-*
- split: multiclass_test
path: data/english_multiclass_dev-*
- config_name: multilang
data_files:
- split: binary_train
path: data/multilang_binary_train-*
- split: binary_dev
path: data/multilang_binary_dev-*
- split: binary_test
path: data/multilang_binary_test-*
- split: multiclass_train
path: data/multilang_multiclass_train-*
- split: multiclass_dev
path: data/multilang_multiclass_dev-*
- split: multiclass_test
path: data/multilang_multiclass_dev-*
COVID-19 Infodemic Multilingual Dataset
This repository contains a multilingual dataset related to the COVID-19 infodemic, annotated with fine-grained labels. The dataset is curated to address questions of interest to journalists, fact-checkers, social media platforms, policymakers, and the general public. The dataset includes tweets in Arabic, Bulgarian, Dutch, and English, focusing on both binary (misinformation detection) and multiclass classification (different types of infodemic content).
Table of Contents:
Dataset Overview
The dataset consists of tweets related to COVID-19, categorized under two tasks:
Binary Classification:
Detecting whether a tweet contains misinformation.Multiclass Classification:
Classifying the tweet into specific infodemic categories such as conspiracy theories, harmful content, or false cures.
Languages and Splits
The dataset includes the following languages, each with train, development (dev), and test splits:
- Arabic
- Bulgarian
- Dutch
- English
In addition to individual language datasets, a multilang directory contains a multilingual dataset where tweets from all the above languages are combined in the binary and multiclass formats.
File Formats
The dataset is provided in TSV (Tab-Separated Values) format. Each file contains tweet IDs, labels for seven questions (Q1-Q7), and binary/multiclass annotations. The actual tweet text and associated metadata are not included for privacy reasons.
Directory Structure
- Readme.md: This file
- arabic/, bulgarian/, dutch/, english/: Directories containing language-specific datasets for both binary and multiclass classification.
- multilang/: A directory containing the multilingual version of the dataset.
Each language and the multilingual directory include three sets:
train
dev
test
The *_binary_*
files correspond to binary classification, while the *_multiclass_*
files correspond to multiclass classification.
Annotations
The dataset contains labels for the following seven questions (Q1-Q7), each related to different aspects of the tweets:
Is the tweet understandable?
- Labels: Yes, No, Not sure
- This question evaluates whether the tweet's content is understandable.
Does the tweet contain false information?
- Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
- This question assesses the likelihood of false information in the tweet.
Will the tweet’s claim be of interest to the general public?
- Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
- Evaluates whether the tweet’s claim is relevant or interesting to the public.
Is the tweet harmful?
- Labels: Definitely no, Probably no, Not sure, Probably yes, Definitely yes
- Assesses if the tweet might cause harm to individuals, society, or businesses.
Should a professional fact-checker verify the claim?
- Labels: No need, Too trivial, Not urgent, Very urgent, Not sure
- Evaluates whether the tweet should be reviewed by fact-checkers.
Why might the tweet be harmful?
- Labels: No harm, Panic, Hate speech, Rumor, Conspiracy, etc.
- Categorizes the nature of potential harm the tweet might cause.
Should this tweet get the attention of a government entity?
- Labels: Not interesting, Calls for action, Blames authorities, etc.
- Determines if the tweet should be flagged for government attention.
Dataset Examples
An example from the dataset:
Tweet: "Please don’t take hydroxychloroquine (Plaquenil) plus Azithromycin for #COVID19 UNLESS your doctor prescribes it. Both drugs affect the QT interval of your heart and can lead to arrhythmias and sudden death, especially if you are taking other meds or have a heart condition."
Labels:
- Q1: Yes
- Q2: No, probably contains no false information
- Q3: Yes, definitely of interest
- Q4: No, probably not harmful
- Q5: Yes, very urgent
- Q6: No, not harmful
- Q7: Yes, calls for action
Data Statistics
- Arabic: 5,000 binary samples, 4,000 multiclass samples
- Bulgarian: 3,000 binary samples, 2,500 multiclass samples
- Dutch: 4,000 binary samples, 3,500 multiclass samples
- English: 6,000 binary samples, 5,000 multiclass samples
- Multilang: Combined data from all languages, provided in both binary and multiclass splits.
License
This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
Citation
If you use this dataset, please cite it as:
@inproceedings{alam-etal-2021-fighting-covid,
title = "Fighting the {COVID}-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society",
author = "Alam, Firoj and
Shaar, Shaden and
Dalvi, Fahim and
Sajjad, Hassan and
Nikolov, Alex and
Mubarak, Hamdy and
Da San Martino, Giovanni and
Abdelali, Ahmed and
Durrani, Nadir and
Darwish, Kareem and
Al-Homaid, Abdulaziz and
Zaghouani, Wajdi and
Caselli, Tommaso and
Danoe, Gijs and
Stolk, Friso and
Bruntink, Britt and
Nakov, Preslav",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.56",
doi = "10.18653/v1/2021.findings-emnlp.56",
pages = "611--649",
}
@inproceedings{alam2021fighting,
title={Fighting the COVID-19 infodemic in social media: A holistic perspective and a call to arms},
author={Alam, Firoj and Dalvi, Fahim and Shaar, Shaden and Durrani, Nadir and Mubarak, Hamdy and Nikolov, Alex and Da San Martino, Giovanni and Abdelali, Ahmed and Sajjad, Hassan and Darwish, Kareem and others},
booktitle={Proceedings of the International AAAI Conference on Web and Social Media},
volume={15},
pages={913--922},
year={2021}
}