|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{siripragada-etal-2020-multilingual, |
|
title = "A Multilingual Parallel Corpora Collection Effort for {I}ndian Languages", |
|
author = "Siripragada, Shashank and |
|
Philip, Jerin and |
|
Namboodiri, Vinay P. and |
|
Jawahar, C V", |
|
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", |
|
month = may, |
|
year = "2020", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2020.lrec-1.462", |
|
pages = "3743--3751", |
|
language = "English", |
|
ISBN = "979-10-95546-34-4", |
|
} |
|
@article{2020, |
|
title={Revisiting Low Resource Status of Indian Languages in Machine Translation}, |
|
url={http://dx.doi.org/10.1145/3430984.3431026}, |
|
DOI={10.1145/3430984.3431026}, |
|
journal={8th ACM IKDD CODS and 26th COMAD}, |
|
publisher={ACM}, |
|
author={Philip, Jerin and Siripragada, Shashank and Namboodiri, Vinay P. and Jawahar, C. V.}, |
|
year={2020}, |
|
month={Dec} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Sentence aligned parallel corpus between 11 Indian Languages, crawled and extracted from the press information bureau |
|
website. |
|
""" |
|
|
|
_HOMEPAGE = "http://preon.iiit.ac.in/~jerin/bhasha/" |
|
|
|
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International" |
|
|
|
_URL = { |
|
"0.0.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar", |
|
"1.3.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib_v1.3.tar.gz", |
|
} |
|
_ROOT_DIR = { |
|
"0.0.0": "pib", |
|
"1.3.0": "pib-v1.3", |
|
} |
|
|
|
_LanguagePairs = [ |
|
"or-ur", |
|
"ml-or", |
|
"bn-ta", |
|
"gu-mr", |
|
"hi-or", |
|
"en-or", |
|
"mr-ur", |
|
"en-ta", |
|
"hi-ta", |
|
"bn-en", |
|
"bn-or", |
|
"ml-ta", |
|
"gu-ur", |
|
"bn-ml", |
|
"ml-pa", |
|
"en-pa", |
|
"bn-hi", |
|
"hi-pa", |
|
"gu-te", |
|
"pa-ta", |
|
"hi-ml", |
|
"or-te", |
|
"en-ml", |
|
"en-hi", |
|
"bn-pa", |
|
"mr-te", |
|
"mr-pa", |
|
"bn-te", |
|
"gu-hi", |
|
"ta-ur", |
|
"te-ur", |
|
"or-pa", |
|
"gu-ml", |
|
"gu-pa", |
|
"hi-te", |
|
"en-te", |
|
"ml-te", |
|
"pa-ur", |
|
"hi-ur", |
|
"mr-or", |
|
"en-ur", |
|
"ml-ur", |
|
"bn-mr", |
|
"gu-ta", |
|
"pa-te", |
|
"bn-gu", |
|
"bn-ur", |
|
"ml-mr", |
|
"or-ta", |
|
"ta-te", |
|
"gu-or", |
|
"en-gu", |
|
"hi-mr", |
|
"mr-ta", |
|
"en-mr" |
|
"as-or", |
|
] |
|
|
|
|
|
class PibConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PIB""" |
|
|
|
def __init__(self, language_pair, version=datasets.Version("1.3.0"), **kwargs): |
|
super().__init__(version=version, **kwargs) |
|
""" |
|
Args: |
|
language_pair: language pair, you want to load |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.src, self.tgt = language_pair.split("-") |
|
|
|
|
|
class Pib(datasets.GeneratorBasedBuilder): |
|
"""This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. |
|
CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. |
|
""" |
|
|
|
BUILDER_CONFIG_CLASS = PibConfig |
|
BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=[self.config.src, self.config.tgt])} |
|
), |
|
supervised_keys=(self.config.src, self.config.tgt), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive = dl_manager.download(_URL[str(self.config.version)]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive): |
|
root_dir = _ROOT_DIR[str(self.config.version)] |
|
data_dir = f"{root_dir}/{self.config.src}-{self.config.tgt}" |
|
src = tgt = None |
|
for path, file in archive: |
|
if data_dir in path: |
|
if f"{data_dir}/train.{self.config.src}" in path: |
|
src = file.read().decode("utf-8").split("\n")[:-1] |
|
if f"{data_dir}/train.{self.config.tgt}" in path: |
|
tgt = file.read().decode("utf-8").split("\n")[:-1] |
|
if src and tgt: |
|
break |
|
for idx, (s, t) in enumerate(zip(src, tgt)): |
|
yield idx, {"translation": {self.config.src: s, self.config.tgt: t}} |