|
--- |
|
license: apache-2.0 |
|
tags: |
|
- natural-language-understanding |
|
language_creators: |
|
- expert-generated |
|
- machine-generated |
|
multilinguality: |
|
- multilingual |
|
pretty_name: Fact Completion Benchmark for Text Models |
|
size_categories: |
|
- 100K<n<1M |
|
task_categories: |
|
- text-generation |
|
- fill-mask |
|
- text2text-generation |
|
dataset_info: |
|
features: |
|
- name: dataset_id |
|
dtype: string |
|
- name: stem |
|
dtype: string |
|
- name: 'true' |
|
dtype: string |
|
- name: 'false' |
|
dtype: string |
|
- name: relation |
|
dtype: string |
|
- name: subject |
|
dtype: string |
|
- name: object |
|
dtype: string |
|
splits: |
|
- name: English |
|
num_bytes: 3474255 |
|
num_examples: 26254 |
|
- name: Spanish |
|
num_bytes: 3175733 |
|
num_examples: 18786 |
|
- name: French |
|
num_bytes: 3395566 |
|
num_examples: 18395 |
|
- name: Russian |
|
num_bytes: 659526 |
|
num_examples: 3289 |
|
- name: Portuguese |
|
num_bytes: 4158146 |
|
num_examples: 22974 |
|
- name: German |
|
num_bytes: 2611160 |
|
num_examples: 16287 |
|
- name: Italian |
|
num_bytes: 3709786 |
|
num_examples: 20448 |
|
- name: Ukrainian |
|
num_bytes: 1868358 |
|
num_examples: 7918 |
|
- name: Romanian |
|
num_bytes: 2846002 |
|
num_examples: 17568 |
|
- name: Czech |
|
num_bytes: 4248 |
|
num_examples: 32 |
|
- name: Bulgarian |
|
num_bytes: 4597410 |
|
num_examples: 20577 |
|
- name: Serbian |
|
num_bytes: 3048 |
|
num_examples: 16 |
|
- name: Hungarian |
|
num_bytes: 2251 |
|
num_examples: 14 |
|
- name: Croatian |
|
num_bytes: 2454 |
|
num_examples: 19 |
|
- name: Danish |
|
num_bytes: 11392 |
|
num_examples: 87 |
|
- name: Slovenian |
|
num_bytes: 3418 |
|
num_examples: 27 |
|
- name: Polish |
|
num_bytes: 4472 |
|
num_examples: 29 |
|
- name: Dutch |
|
num_bytes: 12067 |
|
num_examples: 81 |
|
- name: Catalan |
|
num_bytes: 11514 |
|
num_examples: 77 |
|
- name: Swedish |
|
num_bytes: 11015 |
|
num_examples: 87 |
|
download_size: 15672773 |
|
dataset_size: 30561821 |
|
language: |
|
- en |
|
- fr |
|
- es |
|
- de |
|
- uk |
|
- bg |
|
- ca |
|
- da |
|
- hr |
|
- hu |
|
- it |
|
- nl |
|
- pl |
|
- pt |
|
- ro |
|
- ru |
|
- sl |
|
- sr |
|
- sv |
|
- cs |
|
--- |
|
|
|
# Dataset Card for Fact_Completion |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** https://bit.ly/ischool-berkeley-capstone |
|
- **Repository:** https://github.com/daniel-furman/Capstone |
|
- **Paper:** |
|
- **Leaderboard:** |
|
- **Point of Contact:** daniel_furman@berkeley.edu |
|
|
|
### Dataset Summary |
|
|
|
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
[More Information Needed] |
|
|
|
### Languages |
|
|
|
[More Information Needed] |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
[More Information Needed] |
|
|
|
### Data Fields |
|
|
|
[More Information Needed] |
|
|
|
### Data Splits |
|
|
|
[More Information Needed] |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
[More Information Needed] |
|
|
|
### Citation Information |
|
|
|
``` |
|
@misc{calibragpt, |
|
author = {Shreshta Bhat and Daniel Furman and Tim Schott}, |
|
title = {CalibraGPT: The Search for (Mis)Information in Large Language Models}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/daniel-furman/Capstone}}, |
|
} |
|
``` |
|
|
|
``` |
|
@misc{dong2022calibrating, |
|
doi = {10.48550/arXiv.2210.03329}, |
|
title={Calibrating Factual Knowledge in Pretrained Language Models}, |
|
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li}, |
|
year={2022}, |
|
eprint={2210.03329}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
``` |
|
@misc{meng2022massediting, |
|
doi = {10.48550/arXiv.2210.07229}, |
|
title={Mass-Editing Memory in a Transformer}, |
|
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau}, |
|
year={2022}, |
|
eprint={2210.07229}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
``` |
|
@inproceedings{elsahar-etal-2018-rex, |
|
title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples", |
|
author = "Elsahar, Hady and |
|
Vougiouklis, Pavlos and |
|
Remaci, Arslen and |
|
Gravier, Christophe and |
|
Hare, Jonathon and |
|
Laforest, Frederique and |
|
Simperl, Elena", |
|
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)", |
|
month = may, |
|
year = "2018", |
|
address = "Miyazaki, Japan", |
|
publisher = "European Language Resources Association (ELRA)", |
|
url = "https://aclanthology.org/L18-1544", |
|
} |
|
|
|
``` |
|
|
|
### Contributions |
|
|
|
[More Information Needed] |