Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Fact-Completion / README.md
dfurman's picture
Upload README.md with huggingface_hub
a1c47d8
|
raw
history blame
5.28 kB
---
license: apache-2.0
tags:
- natural-language-understanding
language_creators:
- expert-generated
- machine-generated
multilinguality:
- multilingual
pretty_name: Fact Completion Benchmark for Text Models
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text2text-generation
dataset_info:
features:
- name: dataset_id
dtype: string
- name: stem
dtype: string
- name: 'true'
dtype: string
- name: 'false'
dtype: string
- name: relation
dtype: string
- name: subject
dtype: string
- name: object
dtype: string
splits:
- name: English
num_bytes: 3474255
num_examples: 26254
- name: Spanish
num_bytes: 3175733
num_examples: 18786
- name: French
num_bytes: 3395566
num_examples: 18395
- name: Russian
num_bytes: 659526
num_examples: 3289
- name: Portuguese
num_bytes: 4158146
num_examples: 22974
- name: German
num_bytes: 2611160
num_examples: 16287
- name: Italian
num_bytes: 3709786
num_examples: 20448
- name: Ukrainian
num_bytes: 1868358
num_examples: 7918
- name: Romanian
num_bytes: 2846002
num_examples: 17568
- name: Czech
num_bytes: 4248
num_examples: 32
- name: Bulgarian
num_bytes: 4597410
num_examples: 20577
- name: Serbian
num_bytes: 3048
num_examples: 16
- name: Hungarian
num_bytes: 2251
num_examples: 14
- name: Croatian
num_bytes: 2454
num_examples: 19
- name: Danish
num_bytes: 11392
num_examples: 87
- name: Slovenian
num_bytes: 3418
num_examples: 27
- name: Polish
num_bytes: 4472
num_examples: 29
- name: Dutch
num_bytes: 12067
num_examples: 81
- name: Catalan
num_bytes: 11514
num_examples: 77
- name: Swedish
num_bytes: 11015
num_examples: 87
download_size: 15672773
dataset_size: 30561821
language:
- en
- fr
- es
- de
- uk
- bg
- ca
- da
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- cs
---
# Dataset Card for Fact_Completion
## Dataset Description
- **Homepage:** https://bit.ly/ischool-berkeley-capstone
- **Repository:** https://github.com/daniel-furman/Capstone
- **Paper:**
- **Leaderboard:**
- **Point of Contact:** daniel_furman@berkeley.edu
### Dataset Summary
This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@misc{calibragpt,
author = {Shreshta Bhat and Daniel Furman and Tim Schott},
title = {CalibraGPT: The Search for (Mis)Information in Large Language Models},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/daniel-furman/Capstone}},
}
```
```
@misc{dong2022calibrating,
doi = {10.48550/arXiv.2210.03329},
title={Calibrating Factual Knowledge in Pretrained Language Models},
author={Qingxiu Dong and Damai Dai and Yifan Song and Jingjing Xu and Zhifang Sui and Lei Li},
year={2022},
eprint={2210.03329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{meng2022massediting,
doi = {10.48550/arXiv.2210.07229},
title={Mass-Editing Memory in a Transformer},
author={Kevin Meng and Arnab Sen Sharma and Alex Andonian and Yonatan Belinkov and David Bau},
year={2022},
eprint={2210.07229},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@inproceedings{elsahar-etal-2018-rex,
title = "{T}-{RE}x: A Large Scale Alignment of Natural Language with Knowledge Base Triples",
author = "Elsahar, Hady and
Vougiouklis, Pavlos and
Remaci, Arslen and
Gravier, Christophe and
Hare, Jonathon and
Laforest, Frederique and
Simperl, Elena",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1544",
}
```
### Contributions
[More Information Needed]