system HF staff commited on
Commit
ea8a129
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ en:
8
+ - en
9
+ de:
10
+ - de
11
+ it:
12
+ - it
13
+ de_en:
14
+ - en
15
+ - de
16
+ it_en:
17
+ - en
18
+ - it
19
+ licenses:
20
+ - unknown
21
+ multilinguality:
22
+ - monolingual
23
+ size_categories:
24
+ - 1K<n<10K
25
+ source_datasets:
26
+ - original
27
+ task_categories:
28
+ - sequence-modeling
29
+ - structure-prediction
30
+ - text-classification
31
+ task_ids:
32
+ - dialogue-modeling
33
+ - multi-class-classification
34
+ - parsing
35
+ ---
36
+
37
+ # Dataset Card Creation Guide
38
+
39
+ ## Table of Contents
40
+ - [Dataset Description](#dataset-description)
41
+ - [Dataset Summary](#dataset-summary)
42
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
43
+ - [Languages](#languages)
44
+ - [Dataset Structure](#dataset-structure)
45
+ - [Data Instances](#data-instances)
46
+ - [Data Fields](#data-instances)
47
+ - [Data Splits](#data-instances)
48
+ - [Dataset Creation](#dataset-creation)
49
+ - [Curation Rationale](#curation-rationale)
50
+ - [Source Data](#source-data)
51
+ - [Annotations](#annotations)
52
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
53
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
54
+ - [Social Impact of Dataset](#social-impact-of-dataset)
55
+ - [Discussion of Biases](#discussion-of-biases)
56
+ - [Other Known Limitations](#other-known-limitations)
57
+ - [Additional Information](#additional-information)
58
+ - [Dataset Curators](#dataset-curators)
59
+ - [Licensing Information](#licensing-information)
60
+ - [Citation Information](#citation-information)
61
+
62
+ ## Dataset Description
63
+
64
+ - **Homepage:** [More info needed]
65
+ - **Repository:** [GitHub](https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz)
66
+ - **Paper:** [A Network-based End-to-End Trainable Task-oriented Dialogue System](https://arxiv.org/abs/1604.04562)
67
+ - **Leaderboard:** [More info needed]
68
+ - **Point of Contact:** [More info needed]
69
+
70
+ ### Dataset Summary
71
+
72
+ [More Information Needed]
73
+
74
+ ### Supported Tasks and Leaderboards
75
+
76
+ [More Information Needed]
77
+
78
+ ### Languages
79
+
80
+ [More Information Needed]
81
+
82
+ ## Dataset Structure
83
+
84
+ ### Data Instances
85
+
86
+ [More Information Needed]
87
+
88
+ ### Data Fields
89
+
90
+ [More Information Needed]
91
+
92
+ ### Data Splits
93
+
94
+ [More Information Needed]
95
+ ## Dataset Creation
96
+
97
+ ### Curation Rationale
98
+
99
+ [More Information Needed]
100
+
101
+ ### Source Data
102
+
103
+ [More Information Needed]
104
+
105
+ #### Initial Data Collection and Normalization
106
+
107
+ [More Information Needed]
108
+
109
+ #### Who are the source language producers?
110
+
111
+ [More Information Needed]
112
+
113
+ ### Annotations
114
+
115
+ [More Information Needed]
116
+
117
+ #### Annotation process
118
+
119
+ [More Information Needed]
120
+
121
+ #### Who are the annotators?
122
+
123
+ [More Information Needed]
124
+
125
+ ### Personal and Sensitive Information
126
+
127
+ [More Information Needed]
128
+
129
+ ## Considerations for Using the Data
130
+
131
+ ### Social Impact of Dataset
132
+
133
+ [More Information Needed]
134
+
135
+ ### Discussion of Biases
136
+
137
+ [More Information Needed]
138
+
139
+ ### Other Known Limitations
140
+
141
+ [More Information Needed]
142
+
143
+ ## Additional Information
144
+
145
+ ### Dataset Curators
146
+
147
+ [More Information Needed]
148
+
149
+ ### Licensing Information
150
+
151
+ [More Information Needed]
152
+
153
+ ### Citation Information
154
+
155
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 827189, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 265684, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 537557, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_en.json": {"num_bytes": 3825261, "checksum": "7cd9e971553e5f3e80bb0c93164bf4c619c7f49f45d636a0512474cdeb074485"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_en.json": {"num_bytes": 1222746, "checksum": "ae1ea9067fd05c0179d349f140b38de1b2db587d5bfcb4f99ef0d77474ab00ad"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_en.json": {"num_bytes": 2481214, "checksum": "3673e433b21a6b0d74e9144bd059e64b29bc3e1c5dc0e18654a98ec597c0d72c"}}, "download_size": 7529221, "post_processing_size": null, "dataset_size": 1630430, "size_in_bytes": 9159651}, "de": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "de", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 881478, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 276758, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 569703, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_de.json": {"num_bytes": 3879554, "checksum": "5a45bf0aefd258dbd05fd178b0be04ea7bbd4594b245e381f4ffeaabe3fa3c8a"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_de.json": {"num_bytes": 1233820, "checksum": "d2c0086b86430b61eab7f816c6f34d52e79a403a46e9b45d5867b0fa912cfb48"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_de.json": {"num_bytes": 2513360, "checksum": "e40219302733703ae5beadccd7cc4079befdc720903b9ccf22b4a952c83bdbe6"}}, "download_size": 7626734, "post_processing_size": null, "dataset_size": 1727939, "size_in_bytes": 9354673}, "de_en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "de_en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 860151, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 269966, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 555841, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_de_en.json": {"num_bytes": 3858227, "checksum": "44354c8e09a060bc3bebd5900f735f0ce1789c2fca7dc4bcc7f014b13e43d797"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_de_en.json": {"num_bytes": 1227028, "checksum": "26a8d029456e82275d35adbc97e625dda481b79e50909b8bad0419f5be8f455a"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_de_en.json": {"num_bytes": 2499498, "checksum": "e6ec0cec49b363d4fb78f175cc57d28739032f4be51fab8188cc3e3938fbf1df"}}, "download_size": 7584753, "post_processing_size": null, "dataset_size": 1685958, "size_in_bytes": 9270711}, "it": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "it", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 842799, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 270258, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 547759, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_it.json": {"num_bytes": 3840879, "checksum": "233b8b473f1a5d65e576cdbcb86e282388b5035f93394f136375654ff1753b05"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_it.json": {"num_bytes": 1227320, "checksum": "81daa64a2969d181702332597e291c298156c1b2a9ce525c52889327dafe91e0"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_it.json": {"num_bytes": 2491416, "checksum": "5a86bd9fb3f86fde802dd5121f6b1e83e3f9b4925d5b7e0ee32fb574b3b2d28b"}}, "download_size": 7559615, "post_processing_size": null, "dataset_size": 1660816, "size_in_bytes": 9220431}, "it_en": {"description": "Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.\n", "citation": "@misc{wen2017networkbased,\n title={A Network-based End-to-End Trainable Task-oriented Dialogue System},\n author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},\n year={2017},\n eprint={1604.04562},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz", "license": "", "features": {"dialogue_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "dialogue": [{"turn_label": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "asr": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "system_transcript": {"dtype": "string", "id": null, "_type": "Value"}, "turn_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "belief_state": [{"slots": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "act": {"dtype": "string", "id": null, "_type": "Value"}}], "transcript": {"dtype": "string", "id": null, "_type": "Value"}, "system_acts": {"feature": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "woz_dialogue", "config_name": "it_en", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 845095, "num_examples": 600, "dataset_name": "woz_dialogue"}, "validation": {"name": "validation", "num_bytes": 270942, "num_examples": 200, "dataset_name": "woz_dialogue"}, "test": {"name": "test", "num_bytes": 548979, "num_examples": 400, "dataset_name": "woz_dialogue"}}, "download_checksums": {"https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_train_it_en.json": {"num_bytes": 3843175, "checksum": "f6e4ad713de33e1ede787ec3e548ca998e1abdfc538e4d2aa02f7edc7f5c8ac0"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_validate_it_en.json": {"num_bytes": 1228004, "checksum": "6711a531638a40fb6e875d0874b22ea35bd502b089480ef888e73d5f16605cb7"}, "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz/woz_test_it_en.json": {"num_bytes": 2492636, "checksum": "e86ca0d906a6017026077b173a3d753cb9c3461f585e6f8f68b5aaee8a8b4a78"}}, "download_size": 7563815, "post_processing_size": null, "dataset_size": 1665016, "size_in_bytes": 9228831}}
dummy/de/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4988d280de3887faf0fae0438e86d0c82a6a7472a19cfa1435c06ce99878c4
3
+ size 5642
dummy/de_en/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c82e3dfcff14f4758b1ecc0c2a13c3a3aa9ace35ff66d4759cd328f11a929c3f
3
+ size 5635
dummy/en/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdec4a1edb15de16eb3d3286e6fcf90aa98c4aff1a816ed2baebfdca45bd98a7
3
+ size 5212
dummy/it/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1858731915370dcb2a0afafc846ec18a1c34460f1698ca9ac0c19aeda0378f22
3
+ size 5582
dummy/it_en/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f71cb78de0688dfc34a6b7b0a1dacd03cf777349f2d1b00fcb00d926cfd7d821
3
+ size 5615
woz_dialogue.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """WozDialogue: a dataset for training task-oriented dialogue systems"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import json
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @misc{wen2017networkbased,
26
+ title={A Network-based End-to-End Trainable Task-oriented Dialogue System},
27
+ author={Tsung-Hsien Wen and David Vandyke and Nikola Mrksic and Milica Gasic and Lina M. Rojas-Barahona and Pei-Hao Su and Stefan Ultes and Steve Young},
28
+ year={2017},
29
+ eprint={1604.04562},
30
+ archivePrefix={arXiv},
31
+ primaryClass={cs.CL}
32
+ }
33
+ """
34
+
35
+ _DESCRIPTION = """\
36
+ Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the \
37
+ task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) \
38
+ that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) \
39
+ that the user can ask a value for once a restaurant has been offered.
40
+ """
41
+
42
+ _HOMEPAGE = "https://github.com/nmrksic/neural-belief-tracker/tree/master/data/woz"
43
+
44
+ _BASE_URL = "https://raw.githubusercontent.com/nmrksic/neural-belief-tracker/master/data/woz"
45
+
46
+
47
+ class WozDialogue(datasets.GeneratorBasedBuilder):
48
+ """WozDialogue: a dataset for training task-oriented dialogue systems"""
49
+
50
+ VERSION = datasets.Version("1.0.0")
51
+ BUILDER_CONFIGS = [
52
+ datasets.BuilderConfig(
53
+ name="en",
54
+ version=datasets.Version("1.0.0"),
55
+ description="WOZ English dataset",
56
+ ),
57
+ datasets.BuilderConfig(name="de", version=datasets.Version("1.0.0"), description="WOZ German dataset"),
58
+ datasets.BuilderConfig(
59
+ name="de_en",
60
+ version=datasets.Version("1.0.0"),
61
+ description="WOZ German-English dataset. For this config, the dialogues are in German and the labels in English ",
62
+ ),
63
+ datasets.BuilderConfig(name="it", version=datasets.Version("1.0.0"), description="WOZ Italian dataset"),
64
+ datasets.BuilderConfig(
65
+ name="it_en",
66
+ version=datasets.Version("1.0.0"),
67
+ description="WOZ Italian-English dataset. For this config, the dialogues are in Italian and the labels in English ",
68
+ ),
69
+ ]
70
+
71
+ def _info(self):
72
+ return datasets.DatasetInfo(
73
+ description=_DESCRIPTION,
74
+ features=datasets.Features(
75
+ {
76
+ "dialogue_idx": datasets.Value("int32"),
77
+ "dialogue": [
78
+ {
79
+ "turn_label": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
80
+ "asr": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
81
+ "system_transcript": datasets.Value("string"),
82
+ "turn_idx": datasets.Value("int32"),
83
+ "belief_state": [
84
+ {
85
+ "slots": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
86
+ "act": datasets.Value("string"),
87
+ }
88
+ ],
89
+ "transcript": datasets.Value("string"),
90
+ "system_acts": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
91
+ }
92
+ ],
93
+ }
94
+ ),
95
+ supervised_keys=None,
96
+ homepage=_HOMEPAGE,
97
+ citation=_CITATION,
98
+ )
99
+
100
+ def _split_generators(self, dl_manager):
101
+ urls = {
102
+ "train": f"{_BASE_URL}/woz_train_{self.config.name}.json",
103
+ "dev": f"{_BASE_URL}/woz_validate_{self.config.name}.json",
104
+ "test": f"{_BASE_URL}/woz_test_{self.config.name}.json",
105
+ }
106
+ downloaded_paths = dl_manager.download(urls)
107
+ return [
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TRAIN,
110
+ gen_kwargs={"filepath": downloaded_paths["train"]},
111
+ ),
112
+ datasets.SplitGenerator(
113
+ name=datasets.Split.VALIDATION,
114
+ gen_kwargs={"filepath": downloaded_paths["dev"]},
115
+ ),
116
+ datasets.SplitGenerator(
117
+ name=datasets.Split.TEST,
118
+ gen_kwargs={"filepath": downloaded_paths["test"]},
119
+ ),
120
+ ]
121
+
122
+ def _generate_examples(self, filepath):
123
+ with open(filepath, encoding="utf-8") as f:
124
+ examples = json.load(f)
125
+ for i, example in enumerate(examples):
126
+ for dialogue in example["dialogue"]:
127
+ # exclude the second element which is same for every instance and is of type int
128
+ dialogue["asr"] = [asr[:1] for asr in dialogue["asr"]]
129
+ # some system_acts is either to string or list of strings,
130
+ # converting all to list of strings
131
+ dialogue["system_acts"] = [
132
+ [act] if isinstance(act, str) else act for act in dialogue["system_acts"]
133
+ ]
134
+
135
+ yield example["dialogue_idx"], example