Datasets:

Sub-tasks:
extractive-qa
Languages:
Spanish
ArXiv:
License:
SQAC / README.md
mmarimon's picture
Update README.md
6d0c462
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - es
license:
  - cc-by-sa-4.0
multilinguality:
  - monolingual
pretty_name: Spanish Question Answering Corpus (SQAC)
source_datasets:
  - original
task_categories:
  - question-answering
task_ids:
  - extractive-qa

SQAC (Spanish Question-Answering Corpus)

Dataset Description

SQAC is an extractive QA dataset for the Spanish language.

Dataset Summary

Contains 6,247 contexts and 18,817 questions with their respective answers, 1 to 5 for each fragment.

The sources of the contexts are:

Supported Tasks

Extractive-QA

Languages

  • Spanish (es)

Directory Structure

  • README.md
  • SQAC.py
  • dev.json
  • test.json
  • train.json

Dataset Structure

Data Instances

{
    'id': '6cf3dcd6-b5a3-4516-8f9e-c5c1c6b66628', 
    'title': 'Historia de Japón', 
    'context': 'La historia de Japón (日本の歴史 o 日本史, Nihon no rekishi / Nihonshi?) es la sucesión de hechos acontecidos dentro del archipiélago japonés. Algunos de estos hechos aparecen aislados e influenciados por la naturaleza geográfica de Japón como nación insular, en tanto que otra serie de hechos, obedece a influencias foráneas como en el caso del Imperio chino, el cual definió su idioma, su escritura y, también, su cultura política. Asimismo, otra de las influencias foráneas fue la de origen occidental, lo que convirtió al país en una nación industrial, ejerciendo con ello una esfera de influencia y una expansión territorial sobre el área del Pacífico. No obstante, dicho expansionismo se detuvo tras la Segunda Guerra Mundial y el país se posicionó en un esquema de nación industrial con vínculos a su tradición cultural.', 
    'question': '¿Qué influencia convirtió Japón en una nación industrial?', 
    'answers': {
        'text': ['la de origen occidental'], 
        'answer_start': [473]
    }
}

Data Fields

{
  id: str
  title: str
  context: str
  question: str
  answers: {
    answer_start: [int]
    text: [str]
  }
}

Data Splits

Split Size
train 15,036
dev 1,864
test 1.910

Content analysis

Number of articles, paragraphs and questions

  • Number of articles: 3,834
  • Number of contexts: 6,247
  • Number of questions: 18,817
  • Number of sentences: 48,026
  • Questions/Context ratio: 3.01
  • Sentences/Context ratio: 7.70

Number of tokens

  • Total tokens in context: 1,561,616
  • Average tokens/context: 250
  • Total tokens in questions: 203,235
  • Average tokens/question: 10.80
  • Total tokens in answers: 90,307
  • Average tokens/answer: 4.80

Lexical variation

46.38% of the words in the Question can be found in the Context.

Question type

Question Count %
qué 6,381 33.91 %
quién/es 2,952 15.69 %
cuál/es 2,034 10.81 %
cómo 1,949 10.36 %
dónde 1,856 9.86 %
cuándo 1,639 8.71 %
cuánto 1,311 6.97 %
cuántos 495 2.63 %
adónde 100 0.53 %
cuánta 49 0.26 %
no question mark 43 0.23 %
cuántas 19 0.10 %

Dataset Creation

Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al.).

Source Data

Initial Data Collection and Normalization

The source data are scraped articles from Wikinews, the Spanish Wikipedia and the AnCora corpus.

Who are the source language producers?

Contributors to the aforementioned sites.

Annotations

Annotation process

We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 (Rajpurkar, Pranav et al.).

Who are the annotators?

Native language speakers.

Personal and Sensitive Information

No personal or sensitive information included.

Considerations for Using the Data

Social Impact of Dataset

This corpus contributes to the development of language models in Spanish.

Discussion of Biases

No postprocessing steps were applied to mitigate potential social biases.

Additional Information

Dataset Curators

Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es).

For further information, send an email to (plantl-gob-es@bsc.es).

This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.

Licensing information

This work is licensed under CC Attribution 4.0 International License.

Copyright by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) (2022)

Citation Information

@article{maria,
    author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas},
    title = {MarIA: Spanish Language Models},
    journal = {Procesamiento del Lenguaje Natural},
    volume = {68},
    number = {0},
    year = {2022},
    issn = {1989-7553},
    url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405},
    pages = {39--60}
}

Contributions

[N/A]