Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
10K - 100K
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search.""" | |
import json | |
import os.path | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@article{pham2022PiC, | |
title={PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search}, | |
author={Pham, Thang M and Yoon, Seunghyun and Bui, Trung and Nguyen, Anh}, | |
journal={arXiv preprint arXiv:2207.09068}, | |
year={2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Phrase in Context is a curated benchmark for phrase understanding and semantic search, consisting of three tasks of increasing difficulty: Phrase Similarity (PS), Phrase Retrieval (PR) and Phrase Sense Disambiguation (PSD). The datasets are annotated by 13 linguistic experts on Upwork and verified by two groups: ~1000 AMT crowdworkers and another set of 5 linguistic experts. PiC benchmark is distributed under CC-BY-NC 4.0. | |
""" | |
_HOMEPAGE = "https://phrase-in-context.github.io/" | |
_LICENSE = "CC-BY-NC-4.0" | |
_URL = "https://auburn.edu/~tmp0038/PiC/" | |
_SPLITS = { | |
"train": "train-hard-v1.0.json", | |
"dev": "dev-hard-v1.0.json", | |
"test": "test-hard-v1.0.json", | |
} | |
_PS = "PS-hard" | |
class PSConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Phrase Similarity in PiC.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Phrase Similarity in PiC. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PSConfig, self).__init__(**kwargs) | |
class PhraseSimilarity(datasets.GeneratorBasedBuilder): | |
"""Phrase Similarity in PiC dataset. Version 1.0.""" | |
BUILDER_CONFIGS = [ | |
PSConfig( | |
name=_PS, | |
version=datasets.Version("1.0.5"), | |
description="The PiC Dataset for Phrase Similarity" | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"phrase1": datasets.Value("string"), | |
"phrase2": datasets.Value("string"), | |
"sentence1": datasets.Value("string"), | |
"sentence2": datasets.Value("string"), | |
"label": datasets.ClassLabel(num_classes=2, names=["negative", "positive"]), | |
"idx": datasets.Value("int32") | |
} | |
), | |
# No default supervised_keys (as we have to pass both question and context as input). | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls_to_download = { | |
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]), | |
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]), | |
"test": os.path.join(_URL, self.config.name, _SPLITS["test"]), | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
key = 0 | |
with open(filepath, encoding="utf-8") as f: | |
pic_ps = json.load(f) | |
for example in pic_ps["data"]: | |
yield key, { | |
"phrase1": example["phrase1"], | |
"phrase2": example["phrase2"], | |
"sentence1": example["sentence1"], | |
"sentence2": example["sentence2"], | |
"label": example["label"], | |
"idx": example["idx"] | |
} | |
key += 1 | |