hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
db6290b8e8faaa6a4872ab53de8a80eed6f7d72f
6,057
py
Python
nettests/launch_nodes.py
harrywong/evt
95985384619e0f5ff4021e8838d421ac4b4b946d
[ "BSD-3-Clause" ]
1
2019-04-30T13:28:42.000Z
2019-04-30T13:28:42.000Z
nettests/launch_nodes.py
harrywong/evt
95985384619e0f5ff4021e8838d421ac4b4b946d
[ "BSD-3-Clause" ]
null
null
null
nettests/launch_nodes.py
harrywong/evt
95985384619e0f5ff4021e8838d421ac4b4b946d
[ "BSD-3-Clause" ]
null
null
null
import json import os import sys import time import click import docker class command(): """docstring for command.""" def __init__(self, cmd): self.content = cmd def add_option(self, option): self.content += ' ' self.content += option def get_arguments(self): return self.content # free the container def free_container(name, client): i = -1 while(True): try: i += 1 container = client.containers.get(name+str(i)) container.stop() container.remove() print('free {}{} succeed'.format(name, i)) except docker.errors.NotFound: if(i >= 10): break # free the dir def free_the_dir(dir): list = os.listdir(dir) print('remove the files in {}'.format(dir)) for name in list: print(name) os.removedirs(os.path.join(dir, name)) if(not os.path.exists(dir)): os.mkdir(dir, 0o755) @click.group() def run(): pass @click.command() @click.option('--config', help='the config of nodes', default='launch.config') def create(config): f = open('launch.config', 'r') text = f.read() f.close() paras = json.loads(text) producer_number = paras['producer_number'] # the number of the producer nodes_number = paras['nodes_number'] # the number of nodes we run evtd_port_http = paras['evtd_port_http'] # the begin port of nodes port,port+1 .... evtd_port_p2p = paras['evtd_port_p2p'] # the begin port of nodes port,port+1 .... evtd_dir = paras['evtd_dir'] # the data directory of the evtd use_tmpfs = paras['use_tmpfs'] # use the tmpfs or not tmpfs_size = paras['tmpfs_size'] # the memory usage per node client = docker.from_env() print('check and free the container before') free_container('evtd_', client) # network=client.networks.create("evt-net",driver="bridge") # begin the nodes one by one print('begin open the evtd') for i in range(0, nodes_number): # create files in evtd_dir if(not os.path.exists(evtd_dir)): os.mkdir(evtd_dir, 0o755) file = os.path.join(evtd_dir, 'dir_'+str(i)) if(os.path.exists(file)): print("Warning: the file before didn't freed ") else: os.mkdir(file, 0o755) # make the command cmd = command('evtd.sh') cmd.add_option('--delete-all-blocks') if(i < producer_number): cmd.add_option('--enable-stale-production') cmd.add_option('--producer-name=evt') else: cmd.add_option('--producer-name=evt.'+str(i)) cmd.add_option('--http-server-address=evtd_'+str(i)+':'+str(8888+i)) cmd.add_option('--p2p-listen-endpoint=evtd_'+str(i)+':'+str(9876+i)) for j in range(0, nodes_number): if(i == j): continue cmd.add_option(('--p2p-peer-address=evtd_'+str(j)+':'+str(9876+j))) # run the image evtd in container if(not use_tmpfs): print('********evtd {} **************'.format(i)) print('name: evtd_{}'.format(i)) print('nework: evt-net') print('http port: {} /tcp: {}'.format(evtd_port_http+i, 8888+i)) print('p2p port: {} /tcp: {}'.format(evtd_port_p2p+i, 9876+i)) print('mount location: {}'.format(file)) print('****************************') container = client.containers.run(image='everitoken/evt:latest', name='evtd_'+str(i), command=cmd.get_arguments(), network='evt-net', ports={ str(evtd_port_http+i): 8888+i, str(evtd_port_p2p+i)+'/tcp': 9876+i}, detach=True, volumes={ file: {'bind': '/opt/evtd/data', 'mode': 'rw'}} ) else: print('********evtd {} **************'.format(i)) print('name: evtd_{}'.format(i)) print('nework: evt-net') print('http port: {} /tcp: {}'.format(evtd_port_http+i, 8888+i)) print('p2p port: {} /tcp: {}'.format(evtd_port_p2p+i, 9876+i)) print('tmpfs use size: {} M'.format(tmpfs_size)) print('****************************') container = client.containers.run(image='everitoken/evt:latest', name='evtd_'+str(i), command=cmd.get_arguments(), network='evt-net', ports={ str(evtd_port_http+i): 8888+i, str(evtd_port_p2p+i)+'/tcp': 9876+i}, detach=True, tmpfs={ '/opt/evtd/data': 'size='+str(tmpfs_size)+'M'} # ) # format with the click @click.command() @click.option('--config', help='the config of nodes', default='launch.config') def free(config): f = open('launch.config', 'r') text = f.read() f.close() paras = json.loads(text) free_dir = paras['free_dir'] # delete the directory of the evtd evtd_dir = paras['evtd_dir'] # the data directory of the evtd client = docker.from_env() print('free the container') free_container('evtd_', client) if(free_dir): print(evtd_dir) free_the_dir(evtd_dir) if __name__ == '__main__': run.add_command(create) run.add_command(free) run()
36.487952
118
0.490507
d2e082acab7754c5d1f35daccedb3f8c04f6a7b3
5,693
py
Python
scripts/main.py
harrivle/Mirai
ea2d4839f1f8b9f881798b819b2192ce2795bd5d
[ "MIT" ]
37
2021-01-28T06:00:34.000Z
2022-03-29T21:14:12.000Z
scripts/main.py
NkwamPhilip/Mirai
70413de690da36c5878e2e6006711476e166bb1d
[ "MIT" ]
null
null
null
scripts/main.py
NkwamPhilip/Mirai
70413de690da36c5878e2e6006711476e166bb1d
[ "MIT" ]
14
2021-02-02T09:42:18.000Z
2022-03-23T00:36:41.000Z
import pickle from os.path import dirname, realpath import sys import git sys.path.append(dirname(dirname(realpath(__file__)))) import torch import onconet.datasets.factory as dataset_factory import onconet.models.factory as model_factory from onconet.learn import train import onconet.transformers.factory as transformer_factory import onconet.visualize as visualize import onconet.utils.parsing as parsing import warnings import onconet.learn.state_keeper as state from onconet.utils.get_dataset_stats import get_dataset_stats import onconet.utils.stats as stats import pdb import csv #Constants DATE_FORMAT_STR = "%Y-%m-%d:%H-%M-%S" if __name__ == '__main__': args = parsing.parse_args() if args.ignore_warnings: warnings.simplefilter('ignore') repo = git.Repo(search_parent_directories=True) commit = repo.head.object args.commit = commit.hexsha print("OncoNet main running from commit: \n\n{}\n{}author: {}, date: {}".format( commit.hexsha, commit.message, commit.author, commit.committed_date)) if args.get_dataset_stats: print("\nComputing image mean and std...") args.img_mean, args.img_std = get_dataset_stats(args) print('Mean: {}'.format(args.img_mean)) print('Std: {}'.format(args.img_std)) print("\nLoading data-augmentation scheme...") transformers = transformer_factory.get_transformers( args.image_transformers, args.tensor_transformers, args) test_transformers = transformer_factory.get_transformers( args.test_image_transformers, args.test_tensor_transformers, args) # Load dataset and add dataset specific information to args print("\nLoading data...") train_data, dev_data, test_data = dataset_factory.get_dataset(args, transformers, test_transformers) # Load model and add model specific information to args if args.snapshot is None: model = model_factory.get_model(args) else: model = model_factory.load_model(args.snapshot, args) if args.replace_snapshot_pool: non_trained_model = model_factory.get_model(args) model._model.pool = non_trained_model._model.pool model._model.args = non_trained_model._model.args print(model) # Load run parameters if resuming that run. args.model_path = state.get_model_path(args) print('Trained model will be saved to [%s]' % args.model_path) if args.resume: try: state_keeper = state.StateKeeper(args) model, optimizer_state, epoch, lr, epoch_stats = state_keeper.load() args.optimizer_state = optimizer_state args.current_epoch = epoch args.lr = lr args.epoch_stats = epoch_stats except: args.optimizer_state = None args.current_epoch = None args.lr = None args.epoch_stats = None print("\n Error loading previous state. \n Starting run from scratch.") else: print("\n Restarting run from scratch.") print("\nParameters:") for attr, value in sorted(args.__dict__.items()): if attr not in ['optimizer_state', 'patient_to_partition_dict', 'path_to_hidden_dict', 'exam_to_year_dict', 'exam_to_device_dict']: print("\t{}={}".format(attr.upper(), value)) save_path = args.results_path print() if args.train: epoch_stats, model = train.train_model(train_data, dev_data, model, args) args.epoch_stats = epoch_stats if args.plot_losses: visualize.viz_utils.plot_losses(epoch_stats) print("Save train/dev results to {}".format(save_path)) args_dict = vars(args) pickle.dump(args_dict, open(save_path, 'wb')) print() if args.dev: print("-------------\nDev") args.dev_stats = train.compute_threshold_and_dev_stats(dev_data, model, args) print("Save dev results to {}".format(save_path)) args_dict = vars(args) pickle.dump(args_dict, open(save_path, 'wb')) if args.test: print("-------------\nTest") args.test_stats = train.eval_model(test_data, model, args) print("Save test results to {}".format(save_path)) args_dict = vars(args) pickle.dump(args_dict, open(save_path, 'wb')) if (args.dev or args.test) and args.prediction_save_path is not None: exams, probs = [], [] if args.dev: exams.extend( args.dev_stats['exams']) probs.extend( args.dev_stats['probs']) if args.test: exams.extend( args.test_stats['exams']) probs.extend( args.test_stats['probs']) legend = ['patient_exam_id'] if args.callibrator_snapshot is not None: callibrator = pickle.load(open(args.callibrator_snapshot,'rb')) for i in range(args.max_followup): legend.append("{}_year_risk".format(i+1)) export = {} with open(args.prediction_save_path,'w') as out_file: writer = csv.DictWriter(out_file, fieldnames=legend) writer.writeheader() for exam, arr in zip(exams, probs): export['patient_exam_id'] = exam for i in range(args.max_followup): key = "{}_year_risk".format(i+1) raw_val = arr[i] if args.callibrator_snapshot is not None: val = callibrator[i].predict_proba([[raw_val]])[0,1] else: val = raw_val export[key] = val writer.writerow(export) print("Exported predictions to {}".format(args.prediction_save_path))
39.262069
139
0.64711
5fd697d0a8702558d62ea13300b2ef20b5173732
1,126
py
Python
app/admin/forms.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
app/admin/forms.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
app/admin/forms.py
chenke91/ihaveablog
64000723589d3f5a074bd09f045cb5d6c3daf6dd
[ "MIT" ]
null
null
null
from flask.ext.wtf import Form from wtforms import StringField, SubmitField, TextAreaField, SelectField, FileField, SubmitField from wtforms.validators import Required, Length, Email from app import db from app.models import Category def get_category(): categories = db.session.query(Category.id, Category.name).all() res = map(lambda x: (str(x[0]),x[1]), categories) return list(res) class EditBlogForm(Form): title = StringField('标题', validators=[Required('请输入标题')]) category = SelectField('栏目', choices=get_category()) summary = TextAreaField('摘要', validators=[Required('请输入摘要'), Length(1, 600)]) blog_body = TextAreaField('文章', validators=[Required('请输入文章正文')]) submit = SubmitField('Submit') class BlogForm(Form): title = StringField('标题', validators=[Required('请输入标题')]) category = SelectField('栏目', choices=get_category()) avatars = FileField('选择图片', validators=[Required('请上传图片')]) summary = TextAreaField('摘要', validators=[Required('请输入摘要'), Length(1, 600)]) blog_body = TextAreaField('文章', validators=[Required('请输入文章正文')]) submit = SubmitField('Submit')
40.214286
96
0.71048
310beb7556e620e2e20fa143acb610fb6b182456
3,316
py
Python
app/app/settings.py
Moudreaux/recipe-app-api
e70489b9afa0129b8d2560961ca4aea4f14bc11f
[ "MIT" ]
null
null
null
app/app/settings.py
Moudreaux/recipe-app-api
e70489b9afa0129b8d2560961ca4aea4f14bc11f
[ "MIT" ]
null
null
null
app/app/settings.py
Moudreaux/recipe-app-api
e70489b9afa0129b8d2560961ca4aea4f14bc11f
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.11. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '_mu2j0g9=t$gvvz)%oh#-z0ctt%9@9&+dew0lho_$ctph8!ig3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'core', 'user', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'core.User'
25.121212
91
0.686671
917729824d43f7037894f31d16d4b0fbcbb01d54
1,505
py
Python
cumulusci/tasks/github/tag.py
jdominiczak/CumulusCI
f706c1906f9eb6d604c571a9dd16f5d0ed38599f
[ "BSD-3-Clause" ]
1
2020-12-04T10:29:31.000Z
2020-12-04T10:29:31.000Z
cumulusci/tasks/github/tag.py
jdominiczak/CumulusCI
f706c1906f9eb6d604c571a9dd16f5d0ed38599f
[ "BSD-3-Clause" ]
157
2021-07-07T19:06:58.000Z
2022-03-30T19:08:27.000Z
cumulusci/tasks/github/tag.py
jdominiczak/CumulusCI
f706c1906f9eb6d604c571a9dd16f5d0ed38599f
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime import github3.exceptions from cumulusci.core.exceptions import GithubException from cumulusci.tasks.github.base import BaseGithubTask class CloneTag(BaseGithubTask): task_options = { "src_tag": { "description": "The source tag to clone. Ex: beta/1.0-Beta_2", "required": True, }, "tag": { "description": "The new tag to create by cloning the src tag. Ex: release/1.0", "required": True, }, } def _run_task(self): repo = self.get_repo() ref = repo.ref("tags/{}".format(self.options["src_tag"])) try: src_tag = repo.tag(ref.object.sha) except github3.exceptions.NotFoundError: message = "Tag {} not found".format(self.options["src_tag"]) self.logger.error(message) raise GithubException(message) tag = repo.create_tag( tag=self.options["tag"], message="Cloned from {}".format(self.options["src_tag"]), sha=src_tag.sha, obj_type="commit", tagger={ "name": self.github_config.username, "email": self.github_config.email, "date": "{}Z".format(datetime.utcnow().isoformat()), }, ) self.logger.info( "Tag {} created by cloning {}".format( self.options["tag"], self.options["src_tag"] ) ) return tag
30.1
92
0.546844
8a90634e34c67ada1ddddb90b45b4a77e096b0f2
1,971
py
Python
bin/install.py
JulienPalard/cloudmesh
1759b88daef3a13917492d028fdabe08f03ca996
[ "Apache-2.0" ]
null
null
null
bin/install.py
JulienPalard/cloudmesh
1759b88daef3a13917492d028fdabe08f03ca996
[ "Apache-2.0" ]
4
2021-06-08T20:20:08.000Z
2022-03-11T23:30:22.000Z
bin/install.py
JulienPalard/cloudmesh
1759b88daef3a13917492d028fdabe08f03ca996
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python """ Usage: cm-install -h | --help cm-install --version cm-install create OS cm-install list cm-install veewee Arguments: OS The operating system. [default: ubuntu] Options: Description: start the install shell with cm-install cm-install> vagrant create ubuntu creates an ubuntu 14.04 image with veewee and includes it in the base box list cm-install> vagrant list lists the base boxes in vagrant """ from docopt import docopt import os try: from sh import ls except: os.system("pip install sh") from sh import vagrant def not_implemented(): print "ERROR: not yet implemented" def get_boxes(kind): lines = vagrant("box", "list") boxes = [] for line in lines: (OS, KIND) = line.split("(") OS = OS.strip() (KIND, rest) = KIND.split(")") if kind == KIND: boxes.append(OS) return boxes def list_boxes(): # print vagrant("box","list") print get_boxes("virtualbox") def exec_script(name): if name is "veewee": os.system("./bin/install-veewee.sh") elif name is "ubuntu64": os.system("./bin/install-ubuntu64.sh") def cm_install_command(arguments): print arguments if arguments["create"]: print "cm-install create" operating_system = arguments['OS'] boxes = get_boxes("virtualbox") if operating_system not in boxes: print "The OS '%s' was not found in vagrant" % (operating_system) exec_script('./bin/install-ubuntu64.sh') else: print "The OS '%s' was found in vagrant" % (operating_system) exec_script('ubuntu64') elif arguments["veewee"]: exec_script('veewee') elif arguments["list"]: # cm-install vagrant list print "list" list_boxes() if __name__ == '__main__': arguments = docopt(__doc__) cm_install_command(arguments)
20.319588
85
0.616438
0a524cb2046fc91eddfbf76c9538b210b0c97002
242
py
Python
manage.py
Gomax-07/news07
063124b818543d26cb6e1e7fddf7bf81d9c59057
[ "MIT" ]
null
null
null
manage.py
Gomax-07/news07
063124b818543d26cb6e1e7fddf7bf81d9c59057
[ "MIT" ]
null
null
null
manage.py
Gomax-07/news07
063124b818543d26cb6e1e7fddf7bf81d9c59057
[ "MIT" ]
null
null
null
from app import create_app from flask_script import Manager,Server #creating app instance app = create_app('development') manager = Manager(app) manager.add_command('server', Server) if __name__ == '__main__': manager.run()
17.285714
39
0.727273
fc3a7b45bd26c74e52e47af4a918eaca1f512c2d
1,268
py
Python
populationsim/tests/test_tracing.py
psrc/populationsim
91615025726175a99c94963188ac38c045570d26
[ "BSD-3-Clause" ]
1
2019-06-12T21:35:39.000Z
2019-06-12T21:35:39.000Z
populationsim/tests/test_tracing.py
BayAreaMetro/populationsim
8307c5a53a4d84994a224058a201b8c4f42543b8
[ "BSD-3-Clause" ]
4
2018-11-06T20:54:46.000Z
2018-11-06T21:01:52.000Z
populationsim/tests/test_tracing.py
BayAreaMetro/populationsim
8307c5a53a4d84994a224058a201b8c4f42543b8
[ "BSD-3-Clause" ]
null
null
null
# ActivitySim # See full license in LICENSE.txt. import os.path import logging import pytest import orca import pandas as pd import activitysim.core.tracing as tracing def add_canonical_dirs(): configs_dir = os.path.join(os.path.dirname(__file__), 'configs') orca.add_injectable("configs_dir", configs_dir) output_dir = os.path.join(os.path.dirname(__file__), 'output') orca.add_injectable("output_dir", output_dir) def test_config_logger(capsys): add_canonical_dirs() tracing.config_logger() logger = logging.getLogger('popsim') file_handlers = [h for h in logger.handlers if type(h) is logging.FileHandler] assert len(file_handlers) == 1 asim_logger_baseFilename = file_handlers[0].baseFilename print "handlers:", logger.handlers logger.info('test_config_logger') logger.info('log_info') logger.warn('log_warn1') out, err = capsys.readouterr() # don't consume output print out assert "could not find conf file" not in out assert 'log_warn1' in out assert 'log_info' not in out with open(asim_logger_baseFilename, 'r') as content_file: content = content_file.read() print content assert 'log_warn1' in content assert 'log_info' in content
22.642857
82
0.712145
40e8c588c248af2891aca527b6ac7af2360a9834
4,174
py
Python
Apache-Beam-Dataflow-Streaming-Pipeline/Dataflow-Streaming-Pubsub-to-BQTable.py
vibwipro/GCP-Python
f97741efe0b0a96d2c69279d3cf6c404f4f0ca20
[ "MIT" ]
null
null
null
Apache-Beam-Dataflow-Streaming-Pipeline/Dataflow-Streaming-Pubsub-to-BQTable.py
vibwipro/GCP-Python
f97741efe0b0a96d2c69279d3cf6c404f4f0ca20
[ "MIT" ]
null
null
null
Apache-Beam-Dataflow-Streaming-Pipeline/Dataflow-Streaming-Pubsub-to-BQTable.py
vibwipro/GCP-Python
f97741efe0b0a96d2c69279d3cf6c404f4f0ca20
[ "MIT" ]
null
null
null
#------------Import Lib-----------------------# import apache_beam as beam from apache_beam import window from apache_beam.options.pipeline_options import PipelineOptions, StandardOptions import os, sys, time import argparse import logging from apache_beam.options.pipeline_options import SetupOptions from datetime import datetime #------------Set up BQ parameters-----------------------# # Replace with Project Id project = 'xxxxxxxxxxx' Pubsub_subscription='projects/xxxxxxxxxxx/subscriptions/Pubsubdemo_subscription' #plitting Of Records----------------------# class Transaction_ECOM(beam.DoFn): def process(self, element): logging.info(element) result = json.loads(element) data_bkt = result.get('_bkt','null') data_cd=result.get('_cd','null') data_indextime=result.get('_indextime','0') data_kv=result.get('_kv','null') data_raw=result['_raw'] data_raw1=data_raw.replace("\n", "") data_serial=result.get('_serial','null') data_si = str(result.get('_si','null')) data_sourcetype =result.get('_sourcetype','null') data_subsecond = result.get('_subsecond','null') data_time=result.get('_time','null') data_host=result.get('host','null') data_index=result.get('index','null') data_linecount=result.get('linecount','null') data_source=result.get('source','null') data_sourcetype1=result.get('sourcetype','null') data_splunk_server=result.get('splunk_server','null') return [{"datetime_indextime": time.strftime('%Y-%m-%dT%H:%M:%S', time.localtime(int(data_indextime))), "_bkt": data_bkt, "_cd": data_cd, "_indextime": data_indextime, "_kv": data_kv, "_raw": data_raw1, "_serial": data_serial, "_si": data_si, "_sourcetype": data_sourcetype, "_subsecond": data_subsecond, "_time": data_time, "host": data_host, "index": data_index, "linecount": data_linecount, "source": data_source, "sourcetype": data_sourcetype1, "splunk_server": data_splunk_server}] def run(argv=None, save_main_session=True): parser = argparse.ArgumentParser() known_args, pipeline_args = parser.parse_known_args(argv) pipeline_options = PipelineOptions(pipeline_args, streaming=True) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session p1 = beam.Pipeline(options=pipeline_options) data_loading = ( p1 | "Read Pub/Sub Messages" >> beam.io.ReadFromPubSub(subscription=Pubsub_subscription) ) project_id = "xxxxxxxxxxx" dataset_id = 'test123' table_schema_ECOM = ('datetime_indextime:DATETIME, _bkt:STRING, _cd:STRING, _indextime:STRING, _kv:STRING, _raw:STRING, _serial:STRING, _si:STRING, _sourcetype:STRING, _subsecond:STRING, _time:STRING, host:STRING, index:STRING, linecount:STRING, source:STRING, sourcetype:STRING, splunk_server:STRING') # Persist to BigQuery # WriteToBigQuery accepts the data as list of JSON objects #---------------------Index = ITF---------------------------------------------------------------------------------------------------------------------- result = ( data_loading | 'Clean-ITF' >> beam.ParDo(Transaction_ECOM()) | 'Write-ITF' >> beam.io.WriteToBigQuery( table='CFF_ABC', dataset=dataset_id, project=project_id, schema=table_schema_ECOM, create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND )) result = p1.run() result.wait_until_finish() if __name__ == '__main__': path_service_account = '/home/vibhg/Splunk/CFF/xxxxxxxxxxx-abcder125.json' os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = path_service_account run()
45.369565
500
0.602779
bc56d7e072ed6fb255c5d1193466c747235867fc
3,093
py
Python
isaactest/tests/numeric_q_incorrect_value.py
jsharkey13/isaac-selenium-testing
fc57ec57179cf7d9f0bb5ef46d759792b2af3bc8
[ "MIT" ]
null
null
null
isaactest/tests/numeric_q_incorrect_value.py
jsharkey13/isaac-selenium-testing
fc57ec57179cf7d9f0bb5ef46d759792b2af3bc8
[ "MIT" ]
1
2016-01-15T11:28:06.000Z
2016-01-25T17:09:18.000Z
isaactest/tests/numeric_q_incorrect_value.py
jsharkey13/isaac-selenium-testing
fc57ec57179cf7d9f0bb5ef46d759792b2af3bc8
[ "MIT" ]
1
2019-05-14T16:53:49.000Z
2019-05-14T16:53:49.000Z
import time from ..utils.log import log, INFO, ERROR, PASS from ..utils.isaac import answer_numeric_q, open_accordion_section from ..utils.i_selenium import assert_tab, image_div from ..utils.i_selenium import wait_for_xpath_element from ..tests import TestWithDependency from selenium.common.exceptions import TimeoutException, NoSuchElementException __all__ = ["numeric_q_incorrect_value"] ##### # Test : Numeric Questions Correct Unit, Incorrect Value ##### @TestWithDependency("NUMERIC_Q_INCORRECT_VALUE", ["NUMERIC_Q_ANSWER_CHANGE"]) def numeric_q_incorrect_value(driver, ISAAC_WEB, WAIT_DUR, **kwargs): """Test numeric question behaviour on incorrect value. - 'driver' should be a Selenium WebDriver. - 'ISAAC_WEB' is the string URL of the Isaac website to be tested. - 'WAIT_DUR' is the time in seconds to wait for JavaScript to run/load. """ assert_tab(driver, ISAAC_WEB + "/questions/_regression_test_") time.sleep(WAIT_DUR) try: open_accordion_section(driver, 3) num_question = driver.find_element_by_xpath("//div[@ng-switch-when='isaacNumericQuestion']") except NoSuchElementException: log(ERROR, "Can't find the numeric question; can't continue!") return False log(INFO, "Attempt to enter unknown incorrect value, to correct sig figs and correct units.") if not answer_numeric_q(num_question, "4.33", "\units{ m\,s^{-1} }", wait_dur=WAIT_DUR): log(ERROR, "Couldn't answer Numeric Question; can't continue!") return False time.sleep(WAIT_DUR) try: wait_for_xpath_element(driver, "//div[@ng-switch-when='isaacNumericQuestion']//h2[text()='Incorrect']") log(INFO, "An 'Incorrect' message was displayed as expected.") wait_for_xpath_element(driver, "(//div[@ng-switch-when='isaacNumericQuestion']//p[text()='Check your working.'])[1]") log(INFO, "The 'Check your working.' message was correctly shown.") wait_for_xpath_element(driver, "//div[@ng-switch-when='isaacNumericQuestion']//h5[text()='Please try again.']") log(INFO, "The 'Please try again.' message was correctly shown.") bg_colour = num_question.find_element_by_xpath("(.//div[@class='ru-answer-block-panel'])[1]").value_of_css_property('background-color') assert bg_colour in ['#be4c4c', 'rgba(190, 76, 76, 1)', 'rgb(190, 76, 76)'] log(INFO, "Red highlighting shown around value box.") log(INFO, "Avoid rate limiting: wait 1 minute.") time.sleep(60) log(PASS, "Numeric Question 'correct unit, incorrect value' behavior as expected.") return True except TimeoutException: image_div(driver, "ERROR_numeric_q_incorrect_value") log(ERROR, "The messages shown for an incorrect value were not all displayed; see 'ERROR_numeric_q_incorrect_value.png'!") return False except AssertionError: image_div(driver, "ERROR_numeric_q_incorrect_value") log(ERROR, "The units box was not highlighted red; see 'ERROR_numeric_q_incorrect_value.png'!") return False
51.55
143
0.705787
42d86b89d7b46dbaaeeaa6ec08dbcfca55d674cf
755
py
Python
np/reference/ch2code/record.py
focusunsink/study_python
322326642db54df8725793d70a95d21ac40b6507
[ "MIT" ]
null
null
null
np/reference/ch2code/record.py
focusunsink/study_python
322326642db54df8725793d70a95d21ac40b6507
[ "MIT" ]
null
null
null
np/reference/ch2code/record.py
focusunsink/study_python
322326642db54df8725793d70a95d21ac40b6507
[ "MIT" ]
null
null
null
import numpy as np # Chapter 2 Beginning with NumPy fundamentals # # Demonstrates the NumPy record data type. # # Run from the commandline with # # python record.py print "In: t = dtype([('name', numpy.str_, 40), ('numitems', numpy.int32), ('price', numpy.float32)])" t = np.dtype([('name', np.str_, 40), ('numitems', np.int32), ('price', np.float32)]) print t #Out: dtype([('name', '|S40'), ('numitems', '<i4'), ('price', '<f4')]) print "In: t['name']" print t['name'] #Out: dtype('|S40') print "In: itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 2.72)], dtype=t)" itemz = np.array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 2.72)], dtype=t) print "In: itemz[1]" print itemz[1] #Out: ('Butter', 13, 2.7200000286102295)
26.964286
102
0.617219
7844dc96f8ba2da02aa3c07830801e0725f49dea
599
py
Python
leonardo_module_gdpr/__init__.py
dresl/leonardo-module-gdpr
8b5c74d5709dd96d7b45e2f91f90166237cc503b
[ "BSD-3-Clause" ]
1
2019-01-27T23:42:06.000Z
2019-01-27T23:42:06.000Z
leonardo_module_gdpr/__init__.py
dresl/leonardo-module-gdpr
8b5c74d5709dd96d7b45e2f91f90166237cc503b
[ "BSD-3-Clause" ]
null
null
null
leonardo_module_gdpr/__init__.py
dresl/leonardo-module-gdpr
8b5c74d5709dd96d7b45e2f91f90166237cc503b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ default_app_config = 'leonardo_module_gdpr.Config' class Default(object): optgroup = 'GDPR' apps = [ 'leonardo_module_gdpr' ] widgets = [ 'leonardo_module_gdpr.widget.gdpr.models.GDPRWidget' ] config = { 'GOOGLE_ANALYTICS_INFO': (True, u"Display google analytics info"), } public = True class Config(AppConfig, Default): name = 'leonardo_module_gdpr' verbose_name = u"GDPR module" default = Default()
17.617647
60
0.657763
b2b5e41fe792700a9109d11518495711c718ee88
5,131
py
Python
src/infi/storagemodel/vendor/infinidat/predicates/__init__.py
Infinidat/infi.storagemodel
81740970b5b1c0a691472f2e360d3a6e5c4d0875
[ "Python-2.0", "BSD-3-Clause" ]
6
2015-07-29T11:22:36.000Z
2019-01-22T19:07:42.000Z
src/infi/storagemodel/vendor/infinidat/predicates/__init__.py
Infinidat/infi.storagemodel
81740970b5b1c0a691472f2e360d3a6e5c4d0875
[ "Python-2.0", "BSD-3-Clause" ]
null
null
null
src/infi/storagemodel/vendor/infinidat/predicates/__init__.py
Infinidat/infi.storagemodel
81740970b5b1c0a691472f2e360d3a6e5c4d0875
[ "Python-2.0", "BSD-3-Clause" ]
3
2015-01-05T13:55:38.000Z
2018-07-07T05:05:36.000Z
from infi.storagemodel.predicates import FiberChannelMappingExists, FiberChannelMappingNotExists from logging import getLogger log = getLogger(__name__) def compare_device_system_and_id(device, system_serial, volume_id): ''' checks if given device is from a specific volume from a specific system ''' from infi.storagemodel.base.multipath import MultipathBlockDevice from infi.storagemodel.vendor.infinidat.infinibox.connectivity import get_system_serial_from_path vendor = device.get_vendor() log_msg = "checking if device {} from system serial {} and volume id {} is from system serial {} with volume id {}" log.debug(log_msg.format(device.get_display_name(), vendor.get_system_serial(), vendor.get_volume_id(), system_serial, volume_id)) if vendor.get_replication_type() == 'ACTIVE_ACTIVE' and isinstance(device, MultipathBlockDevice): replication_mapping = vendor.get_replication_mapping() log.debug("device is A/A replicated. mapping={}".format(replication_mapping)) if (system_serial in replication_mapping and replication_mapping[system_serial].id == volume_id): # device is replicated to system_serial with volume_id but may not be mapped to the host return any(get_system_serial_from_path(path) == system_serial for path in device.get_paths()) # if the device is single-path or not under A/A replication it's ok to check by SCSI inquiry # because we'll always inquire the same, single system elif (volume_id == vendor.get_volume_id() and system_serial == vendor.get_system_serial()): return True return False class InfinidatVolumeExists(object): """A predicate that checks if an Infinidat volume exists""" def __init__(self, system_serial, volume_id): self.system_serial = system_serial self.volume_id = volume_id def __call__(self): from ..shortcuts import get_infinidat_block_devices from infi.instruct.errors import InstructError from infi.asi.errors import AsiException devices_to_query = get_infinidat_block_devices() log.debug("Looking for Infinidat volume id {} from system id {}".format(self.volume_id, self.system_serial)) for device in devices_to_query: device.get_scsi_test_unit_ready() try: # As some vendors seem to be inconsistent with the designators passed within the pages, using # vendor-specifc pages seems more safe: if 0xc6 not in device.get_scsi_inquiry_pages(): log.debug("No vendor-specific page 0xc6 for device {!r}, returning False now as this should be fixed by rescan".format(device)) return False except (AsiException, InstructError): log.exception("failed to identify INFINIDAT volume, returning False now as this should be fixed by rescan") return False return any(compare_device_system_and_id(device, self.system_serial, self.volume_id) for device in devices_to_query) def __repr__(self): return "<{}(system_serial={!r}, volume_id={!r})>".format(self.__class__.__name__, self.system_serial, self.volume_id) class InfinidatVolumeDoesNotExist(InfinidatVolumeExists): """A predicate that checks if an Infinidat volume does not exist""" def __call__(self): return not super(InfinidatVolumeDoesNotExist, self).__call__() class FiberChannelMappingExistsUsingLinuxSG(FiberChannelMappingExists): def _get_chain_of_devices(self, model): from itertools import chain return chain(model.get_scsi().get_all_linux_scsi_generic_disk_devices(), model.get_scsi().get_all_storage_controller_devices()) def __repr__(self): return "<{}: {!r}>".format(self.__class__.__name__, self.connectivity) class FiberChannelMappingNotExistsUsingLinuxSG(FiberChannelMappingExistsUsingLinuxSG): def __call__(self): return not super(FiberChannelMappingNotExistsUsingLinuxSG, self).__call__() def get_predicate_for_checking_non_zero_host_id(system_serial, cluster_id=False): def all_storage_devices_on_logical_unit_0_of_specific_box_show_non_zero_host_id(): from infi.storagemodel.vendor.infinidat.shortcuts import get_infinidat_block_devices_and_controllers__mapped_to_lun0 from infi.storagemodel.errors import RescanIsNeeded devices = [] try: devices.extend(get_infinidat_block_devices_and_controllers__mapped_to_lun0()) except RescanIsNeeded: pass for device in devices: if cluster_id: if device.get_vendor().get_system_serial() == system_serial and device.get_vendor().get_cluster_id() == 0: return False else: if device.get_vendor().get_system_serial() == system_serial and device.get_vendor().get_host_id() == 0: return False return True return all_storage_devices_on_logical_unit_0_of_specific_box_show_non_zero_host_id
50.303922
147
0.714286
677b7b89f53764838bbfe32f803526c0d0b7009f
2,225
py
Python
test/visuals/runner.py
ruohoruotsi/coldtype
13993e5a4fa3f99c6800fed2496bd5a374e4f53f
[ "Apache-2.0" ]
null
null
null
test/visuals/runner.py
ruohoruotsi/coldtype
13993e5a4fa3f99c6800fed2496bd5a374e4f53f
[ "Apache-2.0" ]
null
null
null
test/visuals/runner.py
ruohoruotsi/coldtype
13993e5a4fa3f99c6800fed2496bd5a374e4f53f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os from coldtype import * from coldtype.renderer import Renderer import glfw all_tests = [] sources = list(Path("test/visuals").glob("test_*.py")) sources.extend(list(Path("test/visuals").glob("test_*.md"))) for p in sources: if not p.name.startswith("_"): all_tests.append(p) all_tests = sorted(all_tests) class TestRunner(Renderer): def before_start(self): if self.args.test: self.test_index = all_tests.index(Path(self.args.test)) else: self.test_index = 0 self.load_test(0, rerender=False) def on_message(self, message, action): if action == "next_test": self.load_test(+1) elif action == "prev_test": self.load_test(-1) else: super().on_message(message, action) def shortcuts(self): xs = super().shortcuts() xs["prev_test"] = [[[glfw.MOD_SUPER], glfw.KEY_B]] xs["next_test"] = [[[], glfw.KEY_N]] return xs def shortcut_to_action(self, shortcut): if shortcut == "prev_test": return self.load_test(-1) elif shortcut == "next_test": return self.load_test(+1) else: return super().shortcut_to_action(shortcut) def load_test(self, inc, rerender=True): self.test_index = cycle_idx(all_tests, self.test_index + inc) test_path = all_tests[self.test_index] print("---" * 20) print(">>>", test_path) self.reset_filepath(str(test_path)) if rerender: self.reload_and_render(Action.PreviewStoryboard) self.set_title(str(test_path)) return -1 def restart(self): print("----------------------------") args = sys.argv test_path = str(all_tests[self.test_index]) if len(args) > 1: args[-1] = test_path else: args.append(test_path) print(sys.executable, ["-m"]+args) os.execl(sys.executable, *(["-m"]+args)) def main(): pargs, parser = Renderer.Argparser(name="pb.py", file=False, nargs=[["test", None]]) TestRunner(parser).main() if __name__ == "__main__": main()
29.276316
88
0.576629
bc0fc170ae765be681aadab73297915b8fbe2bc4
3,799
py
Python
cloudvolume/provenance.py
SridharJagannathan/cloud-volume
ae4e5d8f245aacf451404e91f75e6da5182ac090
[ "BSD-3-Clause" ]
94
2017-09-03T16:18:34.000Z
2022-03-31T14:49:14.000Z
cloudvolume/provenance.py
SridharJagannathan/cloud-volume
ae4e5d8f245aacf451404e91f75e6da5182ac090
[ "BSD-3-Clause" ]
378
2017-08-30T17:46:45.000Z
2022-03-31T00:15:04.000Z
cloudvolume/provenance.py
SridharJagannathan/cloud-volume
ae4e5d8f245aacf451404e91f75e6da5182ac090
[ "BSD-3-Clause" ]
40
2018-03-01T09:12:02.000Z
2022-02-08T17:57:37.000Z
import python_jsonschema_objects as pjs import json import json5 __all__ = [ 'DatasetProvenance', 'DataLayerProvenance' ] dataset_provenance_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "title": "Dataset Provenance", "description": "Represents a dataset and its derived data layers.", "required": [ "dataset_name", "dataset_description", "organism", "imaged_date", "imaged_by", "owners" ], "properties": { 'dataset_name': { 'type': 'string' }, 'dataset_description': { 'type': 'string' }, 'organism': { 'type': 'string', 'description': 'Species, sex, strain identifier', }, 'imaged_date': { 'type': 'string' }, 'imaged_by': { 'type': 'string' }, 'references': { # e.g. dois, urls, titles "type": "array", "items": { "type": "string" }, "minItems": 0, "uniqueItems": True, # e.g. email addresses }, 'owners': { "type": "array", "items": { "type": "string" }, "minItems": 1, "uniqueItems": True, # e.g. email addresses } } } builder = pjs.ObjectBuilder(dataset_provenance_schema) classes = builder.build_classes() DatasetProvenance = classes.DatasetProvenance layer_provenance_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "title": "Data Layer Provenance", "description": "Represents a data layer within a dataset. e.g. image, segmentation, etc", "required": [ 'description', 'sources', 'processing', 'owners' ], "properties": { 'description': { 'type': 'string' }, 'sources': { # e.g. [ 'gs://neuroglancer/pinky40_v11/image' "type": "array", "items": { "type": "string" }, "minItems": 0, "uniqueItems": True, }, 'processing': { "type": "array", "items": { "type": "object" }, "minItems": 0, }, # e.g. processing = [ # { 'method': 'inceptionnet', 'by': 'example@princeton.edu' }, # { 'method': 'downsample', 'by': 'example2@princeton.edu', 'description': 'demo of countless downsampling' } # { 'method': 'meshing', 'by': 'example2@princeton.edu', 'description': '512x512x512 mip 3 simplification factor 30' } # ] 'owners': { "type": "array", "items": { "type": "string" }, "minItems": 0, "uniqueItems": True, }, } } builder = pjs.ObjectBuilder(layer_provenance_schema) classes = builder.build_classes() DataLayerProvenanceValidation = classes.DataLayerProvenance class DataLayerProvenance(dict): def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) if 'description' not in self: self['description'] = '' if 'owners' not in self: self['owners'] = [] if 'processing' not in self: self['processing'] = [] if 'sources' not in self: self['sources'] = '' def validate(self): DataLayerProvenanceValidation(**self).validate() def serialize(self): return json.dumps(self) def from_json(self, data): data = json5.loads(data) self.update(data) return self @classmethod def create(cls, mydict): return DatasetProvenance(**mydict) @property def description(self): return self['description'] @description.setter def description(self, val): self['description'] = val @property def owners(self): return self['owners'] @owners.setter def owners(self, val): self['owners'] = val @property def processing(self): return self['processing'] @processing.setter def processing(self, val): self['processing'] = val @property def sources(self): return self['sources'] @sources.setter def sources(self, val): self['sources'] = val
24.044304
125
0.59621
f14ab93ef7821278c1d5db3574d58d8956117da7
1,015
py
Python
usuarios/migrations/0016_auto_20180201_2122.py
WFPColombia/nutrifami-users
9441aada0f185442f9b14311f78111eb8d377463
[ "MIT" ]
null
null
null
usuarios/migrations/0016_auto_20180201_2122.py
WFPColombia/nutrifami-users
9441aada0f185442f9b14311f78111eb8d377463
[ "MIT" ]
null
null
null
usuarios/migrations/0016_auto_20180201_2122.py
WFPColombia/nutrifami-users
9441aada0f185442f9b14311f78111eb8d377463
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-02-01 21:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('usuarios', '0015_auto_20180123_2350'), ] operations = [ migrations.AlterModelOptions( name='trainee', options={'verbose_name_plural': 'Trainees'}, ), migrations.AlterModelOptions( name='traineeadvance', options={'verbose_name_plural': 'Trainees Advances'}, ), migrations.AddField( model_name='trainee', name='date', field=models.DateTimeField( auto_now_add=True, default='2018-02-01'), preserve_default=False, ), migrations.AlterField( model_name='trainee', name='name', field=models.CharField(default=1, max_length=45), preserve_default=False, ), ]
27.432432
65
0.576355
38501c0d0171c698b38f44caf2693de7e572b121
25,820
py
Python
.venv/lib/python3.8/site-packages/yapf/yapflib/unwrapped_line.py
eo1989/VectorBTanalysis
bea3deaf2ee3fc114b308146f2af3e4f35f70197
[ "MIT" ]
5
2018-07-02T19:10:39.000Z
2021-09-27T04:05:10.000Z
.venv/lib/python3.8/site-packages/yapf/yapflib/unwrapped_line.py
eo1989/VectorBTanalysis
bea3deaf2ee3fc114b308146f2af3e4f35f70197
[ "MIT" ]
3
2018-06-10T06:28:06.000Z
2021-09-24T13:54:19.000Z
.venv/lib/python3.8/site-packages/yapf/yapflib/unwrapped_line.py
eo1989/VectorBTanalysis
bea3deaf2ee3fc114b308146f2af3e4f35f70197
[ "MIT" ]
1
2021-12-25T16:03:43.000Z
2021-12-25T16:03:43.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UnwrappedLine primitive for formatting. An unwrapped line is the containing data structure produced by the parser. It collects all nodes (stored in FormatToken objects) that could appear on a single line if there were no line length restrictions. It's then used by the parser to perform the wrapping required to comply with the style guide. """ from yapf.yapflib import format_token from yapf.yapflib import py3compat from yapf.yapflib import pytree_utils from yapf.yapflib import split_penalty from yapf.yapflib import style from lib2to3.fixer_util import syms as python_symbols class UnwrappedLine(object): """Represents a single unwrapped line in the output. Attributes: depth: indentation depth of this line. This is just a numeric value used to distinguish lines that are more deeply nested than others. It is not the actual amount of spaces, which is style-dependent. """ def __init__(self, depth, tokens=None): """Constructor. Creates a new unwrapped line with the given depth an initial list of tokens. Constructs the doubly-linked lists for format tokens using their built-in next_token and previous_token attributes. Arguments: depth: indentation depth of this line tokens: initial list of tokens """ self.depth = depth self._tokens = tokens or [] self.disable = False if self._tokens: # Set up a doubly linked list. for index, tok in enumerate(self._tokens[1:]): # Note, 'index' is the index to the previous token. tok.previous_token = self._tokens[index] self._tokens[index].next_token = tok def CalculateFormattingInformation(self): """Calculate the split penalty and total length for the tokens.""" # Say that the first token in the line should have a space before it. This # means only that if this unwrapped line is joined with a predecessor line, # then there will be a space between them. self.first.spaces_required_before = 1 self.first.total_length = len(self.first.value) prev_token = self.first prev_length = self.first.total_length for token in self._tokens[1:]: if (token.spaces_required_before == 0 and _SpaceRequiredBetween(prev_token, token, self.disable)): token.spaces_required_before = 1 tok_len = len(token.value) if not token.is_pseudo_paren else 0 spaces_required_before = token.spaces_required_before if isinstance(spaces_required_before, list): assert token.is_comment, token # If here, we are looking at a comment token that appears on a line # with other tokens (but because it is a comment, it is always the last # token). Rather than specifying the actual number of spaces here, # hard code a value of 0 and then set it later. This logic only works # because this comment token is guaranteed to be the last token in the # list. spaces_required_before = 0 token.total_length = prev_length + tok_len + spaces_required_before # The split penalty has to be computed before {must|can}_break_before, # because these may use it for their decision. token.split_penalty += _SplitPenalty(prev_token, token) token.must_break_before = _MustBreakBefore(prev_token, token) token.can_break_before = ( token.must_break_before or _CanBreakBefore(prev_token, token)) prev_length = token.total_length prev_token = token def Split(self): """Split the line at semicolons.""" if not self.has_semicolon or self.disable: return [self] uwlines = [] uwline = UnwrappedLine(self.depth) for tok in self._tokens: if tok.value == ';': uwlines.append(uwline) uwline = UnwrappedLine(self.depth) else: uwline.AppendToken(tok) if uwline.tokens: uwlines.append(uwline) for uwline in uwlines: pytree_utils.SetNodeAnnotation(uwline.first.node, pytree_utils.Annotation.MUST_SPLIT, True) uwline.first.previous_token = None uwline.last.next_token = None return uwlines ############################################################################ # Token Access and Manipulation Methods # ############################################################################ def AppendToken(self, token): """Append a new FormatToken to the tokens contained in this line.""" if self._tokens: token.previous_token = self.last self.last.next_token = token self._tokens.append(token) def AppendNode(self, node): """Convenience method to append a pytree node directly. Wraps the node with a FormatToken. Arguments: node: the node to append """ self.AppendToken(format_token.FormatToken(node)) @property def first(self): """Returns the first non-whitespace token.""" return self._tokens[0] @property def last(self): """Returns the last non-whitespace token.""" return self._tokens[-1] ############################################################################ # Token -> String Methods # ############################################################################ def AsCode(self, indent_per_depth=2): """Return a "code" representation of this line. The code representation shows how the line would be printed out as code. TODO(eliben): for now this is rudimentary for debugging - once we add formatting capabilities, this method will have other uses (not all tokens have spaces around them, for example). Arguments: indent_per_depth: how much spaces to indend per depth level. Returns: A string representing the line as code. """ indent = ' ' * indent_per_depth * self.depth tokens_str = ' '.join(tok.value for tok in self._tokens) return indent + tokens_str def __str__(self): # pragma: no cover return self.AsCode() def __repr__(self): # pragma: no cover tokens_repr = ','.join( ['{0}({1!r})'.format(tok.name, tok.value) for tok in self._tokens]) return 'UnwrappedLine(depth={0}, tokens=[{1}])'.format( self.depth, tokens_repr) ############################################################################ # Properties # ############################################################################ @property def tokens(self): """Access the tokens contained within this line. The caller must not modify the tokens list returned by this method. Returns: List of tokens in this line. """ return self._tokens @property def lineno(self): """Return the line number of this unwrapped line. Returns: The line number of the first token in this unwrapped line. """ return self.first.lineno @property def is_comment(self): return self.first.is_comment @property def has_semicolon(self): return any(tok.value == ';' for tok in self._tokens) def _IsIdNumberStringToken(tok): return tok.is_keyword or tok.is_name or tok.is_number or tok.is_string def _IsUnaryOperator(tok): return format_token.Subtype.UNARY_OPERATOR in tok.subtypes def _HasPrecedence(tok): """Whether a binary operation has precedence within its context.""" node = tok.node # We let ancestor be the statement surrounding the operation that tok is the # operator in. ancestor = node.parent.parent while ancestor is not None: # Search through the ancestor nodes in the parse tree for operators with # lower precedence. predecessor_type = pytree_utils.NodeName(ancestor) if predecessor_type in ['arith_expr', 'term']: # An ancestor "arith_expr" or "term" means we have found an operator # with lower precedence than our tok. return True if predecessor_type != 'atom': # We understand the context to look for precedence within as an # arbitrary nesting of "arith_expr", "term", and "atom" nodes. If we # leave this context we have not found a lower precedence operator. return False # Under normal usage we expect a complete parse tree to be available and # we will return before we get an AttributeError from the root. ancestor = ancestor.parent def _PriorityIndicatingNoSpace(tok): """Whether to remove spaces around an operator due to precedence.""" if not tok.is_arithmetic_op or not tok.is_simple_expr: # Limit space removal to highest priority arithmetic operators return False return _HasPrecedence(tok) def _IsSubscriptColonAndValuePair(token1, token2): return (token1.is_number or token1.is_name) and token2.is_subscript_colon def _SpaceRequiredBetween(left, right, is_line_disabled): """Return True if a space is required between the left and right token.""" lval = left.value rval = right.value if (left.is_pseudo_paren and _IsIdNumberStringToken(right) and left.previous_token and _IsIdNumberStringToken(left.previous_token)): # Space between keyword... tokens and pseudo parens. return True if left.is_pseudo_paren or right.is_pseudo_paren: # There should be a space after the ':' in a dictionary. if left.OpensScope(): return True # The closing pseudo-paren shouldn't affect spacing. return False if left.is_continuation or right.is_continuation: # The continuation node's value has all of the spaces it needs. return False if right.name in pytree_utils.NONSEMANTIC_TOKENS: # No space before a non-semantic token. return False if _IsIdNumberStringToken(left) and _IsIdNumberStringToken(right): # Spaces between keyword, string, number, and identifier tokens. return True if lval == ',' and rval == ':': # We do want a space between a comma and colon. return True if style.Get('SPACE_INSIDE_BRACKETS'): # Supersede the "no space before a colon or comma" check. if lval in pytree_utils.OPENING_BRACKETS and rval == ':': return True if rval in pytree_utils.CLOSING_BRACKETS and lval == ':': return True if (style.Get('SPACES_AROUND_SUBSCRIPT_COLON') and (_IsSubscriptColonAndValuePair(left, right) or _IsSubscriptColonAndValuePair(right, left))): # Supersede the "never want a space before a colon or comma" check. return True if rval in ':,': # Otherwise, we never want a space before a colon or comma. return False if lval == ',' and rval in ']})': # Add a space between ending ',' and closing bracket if requested. return style.Get('SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET') if lval == ',': # We want a space after a comma. return True if lval == 'from' and rval == '.': # Space before the '.' in an import statement. return True if lval == '.' and rval == 'import': # Space after the '.' in an import statement. return True if (lval == '=' and rval == '.' and format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN not in left.subtypes): # Space between equal and '.' as in "X = ...". return True if ((right.is_keyword or right.is_name) and (left.is_keyword or left.is_name)): # Don't merge two keywords/identifiers. return True if (format_token.Subtype.SUBSCRIPT_COLON in left.subtypes or format_token.Subtype.SUBSCRIPT_COLON in right.subtypes): # A subscript shouldn't have spaces separating its colons. return False if (format_token.Subtype.TYPED_NAME in left.subtypes or format_token.Subtype.TYPED_NAME in right.subtypes): # A typed argument should have a space after the colon. return True if left.is_string: if (rval == '=' and format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN_ARG_LIST in right.subtypes): # If there is a type hint, then we don't want to add a space between the # equal sign and the hint. return False if rval not in '[)]}.' and not right.is_binary_op: # A string followed by something other than a subscript, closing bracket, # dot, or a binary op should have a space after it. return True if rval in pytree_utils.CLOSING_BRACKETS: # A string followed by closing brackets should have a space after it # depending on SPACE_INSIDE_BRACKETS. A string followed by opening # brackets, however, should not. return style.Get('SPACE_INSIDE_BRACKETS') if format_token.Subtype.SUBSCRIPT_BRACKET in right.subtypes: # It's legal to do this in Python: 'hello'[a] return False if left.is_binary_op and lval != '**' and _IsUnaryOperator(right): # Space between the binary operator and the unary operator. return True if left.is_keyword and _IsUnaryOperator(right): # Handle things like "not -3 < x". return True if _IsUnaryOperator(left) and _IsUnaryOperator(right): # No space between two unary operators. return False if left.is_binary_op or right.is_binary_op: if lval == '**' or rval == '**': # Space around the "power" operator. return style.Get('SPACES_AROUND_POWER_OPERATOR') # Enforce spaces around binary operators except the blacklisted ones. blacklist = style.Get('NO_SPACES_AROUND_SELECTED_BINARY_OPERATORS') if lval in blacklist or rval in blacklist: return False if style.Get('ARITHMETIC_PRECEDENCE_INDICATION'): if _PriorityIndicatingNoSpace(left) or _PriorityIndicatingNoSpace(right): return False else: return True else: return True if (_IsUnaryOperator(left) and lval != 'not' and (right.is_name or right.is_number or rval == '(')): # The previous token was a unary op. No space is desired between it and # the current token. return False if (format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in left.subtypes and format_token.Subtype.TYPED_NAME not in right.subtypes): # A named argument or default parameter shouldn't have spaces around it. return style.Get('SPACES_AROUND_DEFAULT_OR_NAMED_ASSIGN') if (format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in right.subtypes and format_token.Subtype.TYPED_NAME not in left.subtypes): # A named argument or default parameter shouldn't have spaces around it. return style.Get('SPACES_AROUND_DEFAULT_OR_NAMED_ASSIGN') if (format_token.Subtype.VARARGS_LIST in left.subtypes or format_token.Subtype.VARARGS_LIST in right.subtypes): return False if (format_token.Subtype.VARARGS_STAR in left.subtypes or format_token.Subtype.KWARGS_STAR_STAR in left.subtypes): # Don't add a space after a vararg's star or a keyword's star-star. return False if lval == '@' and format_token.Subtype.DECORATOR in left.subtypes: # Decorators shouldn't be separated from the 'at' sign. return False if left.is_keyword and rval == '.': # Add space between keywords and dots. return lval != 'None' and lval != 'print' if lval == '.' and right.is_keyword: # Add space between keywords and dots. return rval != 'None' and rval != 'print' if lval == '.' or rval == '.': # Don't place spaces between dots. return False if ((lval == '(' and rval == ')') or (lval == '[' and rval == ']') or (lval == '{' and rval == '}')): # Empty objects shouldn't be separated by spaces. return False if not is_line_disabled and (left.OpensScope() or right.ClosesScope()): if (style.GetOrDefault('SPACES_AROUND_DICT_DELIMITERS', False) and ( (lval == '{' and _IsDictListTupleDelimiterTok(left, is_opening=True)) or (rval == '}' and _IsDictListTupleDelimiterTok(right, is_opening=False)))): return True if (style.GetOrDefault('SPACES_AROUND_LIST_DELIMITERS', False) and ( (lval == '[' and _IsDictListTupleDelimiterTok(left, is_opening=True)) or (rval == ']' and _IsDictListTupleDelimiterTok(right, is_opening=False)))): return True if (style.GetOrDefault('SPACES_AROUND_TUPLE_DELIMITERS', False) and ( (lval == '(' and _IsDictListTupleDelimiterTok(left, is_opening=True)) or (rval == ')' and _IsDictListTupleDelimiterTok(right, is_opening=False)))): return True if (lval in pytree_utils.OPENING_BRACKETS and rval in pytree_utils.OPENING_BRACKETS): # Nested objects' opening brackets shouldn't be separated, unless enabled # by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') if (lval in pytree_utils.CLOSING_BRACKETS and rval in pytree_utils.CLOSING_BRACKETS): # Nested objects' closing brackets shouldn't be separated, unless enabled # by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') if lval in pytree_utils.CLOSING_BRACKETS and rval in '([': # A call, set, dictionary, or subscript that has a call or subscript after # it shouldn't have a space between them. return False if lval in pytree_utils.OPENING_BRACKETS and _IsIdNumberStringToken(right): # Don't separate the opening bracket from the first item, unless enabled # by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') if left.is_name and rval in '([': # Don't separate a call or array access from the name. return False if rval in pytree_utils.CLOSING_BRACKETS: # Don't separate the closing bracket from the last item, unless enabled # by SPACE_INSIDE_BRACKETS. # FIXME(morbo): This might be too permissive. return style.Get('SPACE_INSIDE_BRACKETS') if lval == 'print' and rval == '(': # Special support for the 'print' function. return False if lval in pytree_utils.OPENING_BRACKETS and _IsUnaryOperator(right): # Don't separate a unary operator from the opening bracket, unless enabled # by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') if (lval in pytree_utils.OPENING_BRACKETS and (format_token.Subtype.VARARGS_STAR in right.subtypes or format_token.Subtype.KWARGS_STAR_STAR in right.subtypes)): # Don't separate a '*' or '**' from the opening bracket, unless enabled # by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') if rval == ';': # Avoid spaces before a semicolon. (Why is there a semicolon?!) return False if lval == '(' and rval == 'await': # Special support for the 'await' keyword. Don't separate the 'await' # keyword from an opening paren, unless enabled by SPACE_INSIDE_BRACKETS. return style.Get('SPACE_INSIDE_BRACKETS') return True def _MustBreakBefore(prev_token, cur_token): """Return True if a line break is required before the current token.""" if prev_token.is_comment or (prev_token.previous_token and prev_token.is_pseudo_paren and prev_token.previous_token.is_comment): # Must break if the previous token was a comment. return True if (cur_token.is_string and prev_token.is_string and IsSurroundedByBrackets(cur_token)): # We want consecutive strings to be on separate lines. This is a # reasonable assumption, because otherwise they should have written them # all on the same line, or with a '+'. return True return pytree_utils.GetNodeAnnotation( cur_token.node, pytree_utils.Annotation.MUST_SPLIT, default=False) def _CanBreakBefore(prev_token, cur_token): """Return True if a line break may occur before the current token.""" pval = prev_token.value cval = cur_token.value if py3compat.PY3: if pval == 'yield' and cval == 'from': # Don't break before a yield argument. return False if pval in {'async', 'await'} and cval in {'def', 'with', 'for'}: # Don't break after sync keywords. return False if cur_token.split_penalty >= split_penalty.UNBREAKABLE: return False if pval == '@': # Don't break right after the beginning of a decorator. return False if cval == ':': # Don't break before the start of a block of code. return False if cval == ',': # Don't break before a comma. return False if prev_token.is_name and cval == '(': # Don't break in the middle of a function definition or call. return False if prev_token.is_name and cval == '[': # Don't break in the middle of an array dereference. return False if cur_token.is_comment and prev_token.lineno == cur_token.lineno: # Don't break a comment at the end of the line. return False if format_token.Subtype.UNARY_OPERATOR in prev_token.subtypes: # Don't break after a unary token. return False if not style.Get('ALLOW_SPLIT_BEFORE_DEFAULT_OR_NAMED_ASSIGNS'): if (format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in cur_token.subtypes or format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in prev_token.subtypes): return False return True def IsSurroundedByBrackets(tok): """Return True if the token is surrounded by brackets.""" paren_count = 0 brace_count = 0 sq_bracket_count = 0 previous_token = tok.previous_token while previous_token: if previous_token.value == ')': paren_count -= 1 elif previous_token.value == '}': brace_count -= 1 elif previous_token.value == ']': sq_bracket_count -= 1 if previous_token.value == '(': if paren_count == 0: return previous_token paren_count += 1 elif previous_token.value == '{': if brace_count == 0: return previous_token brace_count += 1 elif previous_token.value == '[': if sq_bracket_count == 0: return previous_token sq_bracket_count += 1 previous_token = previous_token.previous_token return None def _IsDictListTupleDelimiterTok(tok, is_opening): assert tok if tok.matching_bracket is None: return False if is_opening: open_tok = tok close_tok = tok.matching_bracket else: open_tok = tok.matching_bracket close_tok = tok # There must be something in between the tokens if open_tok.next_token == close_tok: return False assert open_tok.next_token.node assert open_tok.next_token.node.parent return open_tok.next_token.node.parent.type in [ python_symbols.dictsetmaker, python_symbols.listmaker, python_symbols.testlist_gexp, ] _LOGICAL_OPERATORS = frozenset({'and', 'or'}) _BITWISE_OPERATORS = frozenset({'&', '|', '^'}) _ARITHMETIC_OPERATORS = frozenset({'+', '-', '*', '/', '%', '//', '@'}) def _SplitPenalty(prev_token, cur_token): """Return the penalty for breaking the line before the current token.""" pval = prev_token.value cval = cur_token.value if pval == 'not': return split_penalty.UNBREAKABLE if cur_token.node_split_penalty > 0: return cur_token.node_split_penalty if style.Get('SPLIT_BEFORE_LOGICAL_OPERATOR'): # Prefer to split before 'and' and 'or'. if pval in _LOGICAL_OPERATORS: return style.Get('SPLIT_PENALTY_LOGICAL_OPERATOR') if cval in _LOGICAL_OPERATORS: return 0 else: # Prefer to split after 'and' and 'or'. if pval in _LOGICAL_OPERATORS: return 0 if cval in _LOGICAL_OPERATORS: return style.Get('SPLIT_PENALTY_LOGICAL_OPERATOR') if style.Get('SPLIT_BEFORE_BITWISE_OPERATOR'): # Prefer to split before '&', '|', and '^'. if pval in _BITWISE_OPERATORS: return style.Get('SPLIT_PENALTY_BITWISE_OPERATOR') if cval in _BITWISE_OPERATORS: return 0 else: # Prefer to split after '&', '|', and '^'. if pval in _BITWISE_OPERATORS: return 0 if cval in _BITWISE_OPERATORS: return style.Get('SPLIT_PENALTY_BITWISE_OPERATOR') if (format_token.Subtype.COMP_FOR in cur_token.subtypes or format_token.Subtype.COMP_IF in cur_token.subtypes): # We don't mind breaking before the 'for' or 'if' of a list comprehension. return 0 if format_token.Subtype.UNARY_OPERATOR in prev_token.subtypes: # Try not to break after a unary operator. return style.Get('SPLIT_PENALTY_AFTER_UNARY_OPERATOR') if pval == ',': # Breaking after a comma is fine, if need be. return 0 if pval == '**' or cval == '**': return split_penalty.STRONGLY_CONNECTED if (format_token.Subtype.VARARGS_STAR in prev_token.subtypes or format_token.Subtype.KWARGS_STAR_STAR in prev_token.subtypes): # Don't split after a varargs * or kwargs **. return split_penalty.UNBREAKABLE if prev_token.OpensScope() and cval != '(': # Slightly prefer return style.Get('SPLIT_PENALTY_AFTER_OPENING_BRACKET') if cval == ':': # Don't split before a colon. return split_penalty.UNBREAKABLE if cval == '=': # Don't split before an assignment. return split_penalty.UNBREAKABLE if (format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in prev_token.subtypes or format_token.Subtype.DEFAULT_OR_NAMED_ASSIGN in cur_token.subtypes): # Don't break before or after an default or named assignment. return split_penalty.UNBREAKABLE if cval == '==': # We would rather not split before an equality operator. return split_penalty.STRONGLY_CONNECTED if cur_token.ClosesScope(): # Give a slight penalty for splitting before the closing scope. return 100 return 0
38.308605
80
0.686406
002fefcc9bfa81253af761d811a8f270e64827ca
449
py
Python
setup.py
Chive/divio-django-jet
61526a4146f2535a7c71dd848be398d4755c08f2
[ "BSD-2-Clause" ]
null
null
null
setup.py
Chive/divio-django-jet
61526a4146f2535a7c71dd848be398d4755c08f2
[ "BSD-2-Clause" ]
null
null
null
setup.py
Chive/divio-django-jet
61526a4146f2535a7c71dd848be398d4755c08f2
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup, find_packages from divio_django_jet import __version__ setup( name='divio-django-jet', version=__version__, description=open('README.rst').read(), author='Divio AG', author_email='info@divio.com', packages=find_packages(), platforms=['OS Independent'], install_requires=[ 'django-jet==1.0.4', ], include_package_data=True, zip_safe=False, )
22.45
43
0.665924
c0b33e9a04a493e27f702d90145a7ac134b36c85
5,755
py
Python
autogoal/contrib/__init__.py
gmijenes/autogoal
916b0eb4d1aa1a222d0ff1b0f6f202bf56458ef5
[ "MIT" ]
null
null
null
autogoal/contrib/__init__.py
gmijenes/autogoal
916b0eb4d1aa1a222d0ff1b0f6f202bf56458ef5
[ "MIT" ]
null
null
null
autogoal/contrib/__init__.py
gmijenes/autogoal
916b0eb4d1aa1a222d0ff1b0f6f202bf56458ef5
[ "MIT" ]
null
null
null
def find_classes(include=None, exclude=None, modules=None, input=None, output=None): import inspect import re result = [] if include: include = f".*({include}).*" else: include = r".*" if exclude: exclude = f".*({exclude}).*" if input: input = f".*({input}).*" if output: output = f".*({output}).*" if modules is None: modules = [] try: from autogoal.contrib import sklearn modules.append(sklearn) except ImportError as e: pass try: from autogoal.contrib import nltk modules.append(nltk) except ImportError as e: pass try: from autogoal.contrib import gensim modules.append(gensim) except ImportError as e: pass try: from autogoal.contrib import keras modules.append(keras) except ImportError as e: pass try: from autogoal.contrib import transformers modules.append(transformers) except ImportError as e: pass try: from autogoal.contrib import spacy modules.append(spacy) except ImportError as e: pass try: from autogoal.contrib import wikipedia modules.append(wikipedia) except ImportError as e: pass from autogoal.contrib import wrappers modules.append(wrappers) from autogoal.contrib import regex modules.append(regex) for module in modules: for _, cls in inspect.getmembers(module, inspect.isclass): if not hasattr(cls, "run"): continue if cls.__name__.startswith("_"): continue if not re.match(include, repr(cls)): continue if exclude is not None and re.match(exclude, repr(cls)): continue if not cls.__module__.startswith("autogoal.contrib"): continue sig = inspect.signature(cls.run) if input and not re.match(input, str(sig.parameters["input"].annotation)): continue if output and not re.match(output, str(sig.return_annotation)): continue result.append(cls) return result import enum class ContribStatus(enum.Enum): RequiresDependency = enum.auto() RequiresDownload = enum.auto() Ready = enum.auto() def status(): status = {} modules = [] try: from autogoal.contrib import sklearn modules.append(sklearn) except ImportError as e: status["autogoal.contrib.sklearn"] = ContribStatus.RequiresDependency try: from autogoal.contrib import nltk modules.append(nltk) except ImportError as e: status["autogoal.contrib.nltk"] = ContribStatus.RequiresDependency try: from autogoal.contrib import gensim modules.append(gensim) except ImportError as e: status["autogoal.contrib.gensim"] = ContribStatus.RequiresDependency try: from autogoal.contrib import keras modules.append(keras) except ImportError as e: status["autogoal.contrib.keras"] = ContribStatus.RequiresDependency try: from autogoal.contrib import transformers modules.append(transformers) except ImportError as e: status["autogoal.contrib.transformers"] = ContribStatus.RequiresDependency try: from autogoal.contrib import spacy modules.append(spacy) except ImportError as e: status["autogoal.contrib.spacy"] = ContribStatus.RequiresDependency try: from autogoal.contrib import wikipedia modules.append(wikipedia) except ImportError as e: status["autogoal.contrib.wikipedia"] = ContribStatus.RequiresDependency modules.sort(key=lambda m: m.__name__) for module in modules: if hasattr(module, "status"): status[module.__name__] = module.status() else: status[module.__name__] = ContribStatus.Ready return status def download(contrib: str): modules = {} try: from autogoal.contrib import sklearn modules["sklearn"] = sklearn except ImportError as e: pass try: from autogoal.contrib import nltk modules["nltk"] = nltk except ImportError as e: pass try: from autogoal.contrib import gensim modules["gensim"] = gensim except ImportError as e: pass try: from autogoal.contrib import keras modules["keras"] = keras except ImportError as e: pass try: from autogoal.contrib import transformers modules["transformers"] = transformers except ImportError as e: pass try: from autogoal.contrib import spacy modules["spacy"] = spacy except ImportError as e: pass try: from autogoal.contrib import wikipedia modules["wikipedia"] = wikipedia except ImportError as e: pass if contrib not in modules: raise ValueError(f"Contrib `{contrib}` cannot be imported.") contrib = modules[contrib] if not hasattr(contrib, "download"): return False return contrib.download() __all__ = ["find_classes", "status", "download"]
23.205645
87
0.56907
fbe047c31eac8f1fff8528a952f537cc6a2c89b6
3,473
py
Python
letterparser/zip_lib.py
elifesciences/decision-letter-parser
afe2b72a7d8697e5e8cfec96c531d7bef843908d
[ "MIT" ]
null
null
null
letterparser/zip_lib.py
elifesciences/decision-letter-parser
afe2b72a7d8697e5e8cfec96c531d7bef843908d
[ "MIT" ]
52
2018-11-29T01:45:48.000Z
2022-02-22T18:05:22.000Z
letterparser/zip_lib.py
elifesciences/decision-letter-parser
afe2b72a7d8697e5e8cfec96c531d7bef843908d
[ "MIT" ]
null
null
null
# coding=utf-8 import zipfile import os import shutil from letterparser import utils def profile_zip(file_name): """open the zip and get zip file info based on the filename""" zip_docx_info = None zip_asset_infos = [] with zipfile.ZipFile(file_name, "r") as open_zipfile: for zipfile_info in open_zipfile.infolist(): # ignore files in subfolders like __MACOSX zipfile_file = zipfile_info.filename if "/" in zipfile_file: continue if zipfile_file.endswith(".docx"): zip_docx_info = zipfile_info else: # assume figure or video file zip_asset_infos.append(zipfile_info) # sort by file name zip_asset_infos = sorted(zip_asset_infos, key=lambda asset: asset.filename) return zip_docx_info, zip_asset_infos def unzip_file(open_zipfile, zip_file_info, output_path): "read the zip_file_info from the open_zipfile and write to output_path" with open_zipfile.open(zip_file_info) as zip_content: with open(output_path, "wb") as output_file: output_file.write(zip_content.read()) def unzip_zip(file_name, temp_dir): "unzip certain files and return the local paths" docx_file_name = None asset_file_names = [] zip_docx_info, zip_asset_infos = profile_zip(file_name) # extract the files with zipfile.ZipFile(file_name, "r") as open_zipfile: if zip_docx_info: docx_file_name = os.path.join(temp_dir, zip_docx_info.filename) unzip_file(open_zipfile, zip_docx_info, docx_file_name) for zip_asset_info in zip_asset_infos: asset_file_name = os.path.join(temp_dir, zip_asset_info.filename) unzip_file(open_zipfile, zip_asset_info, asset_file_name) asset_file_names.append(asset_file_name) return docx_file_name, asset_file_names def fix_complex_scripts_styles(file_name, temp_dir="tmp"): """copy the docx file and fix complex scripts style tags""" new_zip_file_name = os.path.join(temp_dir, "temp.docx") new_file_name = os.path.join(temp_dir, utils.get_file_name_file(file_name)) # create a new zip file with altered word/document.xml file contents with zipfile.ZipFile( file_name, "r", zipfile.ZIP_DEFLATED, allowZip64=True ) as open_zip: with zipfile.ZipFile( new_zip_file_name, "w", zipfile.ZIP_DEFLATED, allowZip64=True ) as new_open_zip: complex_scripts_styles_rewrite(open_zip, new_open_zip) # copy the new zip overtop of existing docx, if present shutil.move(new_zip_file_name, new_file_name) return new_file_name def complex_scripts_styles_rewrite(from_zip, to_zip): """ given two open zipfile.Zipfile objects from docx files, read items from from_zip, write them to to_zip and remove complex script styles from the document.xml file """ for zip_file_name in from_zip.namelist(): if zip_file_name == "word/document.xml": with from_zip.open(zip_file_name) as open_file: document_xml = open_file.read() document_xml = utils.remove_complex_scripts_styles(document_xml) # write the altered string to the new zip file to_zip.writestr(zip_file_name, document_xml) else: # copy the file into the new zip to_zip.writestr(zip_file_name, from_zip.read(zip_file_name))
40.383721
84
0.691621
82909e1be62adc8dea3ac17adaabdfeba5896eca
592
py
Python
LAB1/roof14.py
Anastasia-Paliy/VisualGeometry
3c7c08f126e7f64793402f0e3e8f07f9bb653505
[ "MIT" ]
null
null
null
LAB1/roof14.py
Anastasia-Paliy/VisualGeometry
3c7c08f126e7f64793402f0e3e8f07f9bb653505
[ "MIT" ]
null
null
null
LAB1/roof14.py
Anastasia-Paliy/VisualGeometry
3c7c08f126e7f64793402f0e3e8f07f9bb653505
[ "MIT" ]
null
null
null
import random from PIL import Image, ImageDraw image = Image.open("roof.jpg") draw = ImageDraw.Draw(image) width = image.size[0] height = image.size[1] pix = image.load() for x in range(0, width, 100): for y in range(height // 4, 3 * height // 4): for i in range(50): draw.point((x + i, y), (128, 255, 0)) draw.ellipse((width // 2 - height // 4, height // 4, width // 2 + height // 4, 3 * height // 4), (255, 128, 0), (255, 128, 0)) image.show() del draw
25.73913
61
0.481419
51f90c8a57c06911ec23a565c4a9752a1182a7e1
7,378
py
Python
src/database.py
rwarnking/image-sorter
821ec2b89126ea95d6d801a995d05dfa2205918d
[ "MIT" ]
null
null
null
src/database.py
rwarnking/image-sorter
821ec2b89126ea95d6d801a995d05dfa2205918d
[ "MIT" ]
21
2021-03-22T15:14:17.000Z
2021-03-31T15:32:34.000Z
src/database.py
rwarnking/image-sorter
821ec2b89126ea95d6d801a995d05dfa2205918d
[ "MIT" ]
null
null
null
import json import sqlite3 class Database: def __init__(self, path="database.db"): self.conn = sqlite3.connect(path) self.conn.execute( "CREATE TABLE IF NOT EXISTS events (title STRING, s_year INT, s_month INT, \ s_day INT, e_year INT, e_month INT, e_day INTT)" ) self.conn.execute( "CREATE TABLE IF NOT EXISTS artists (name STRING, make STRING, model STRING)" ) self.conn.commit() def clean_all(self): self.clean_events() self.clean_artists() self.conn.execute("DROP TABLE IF EXISTS events") self.conn.execute("DROP TABLE IF EXISTS artists") self.conn.execute( "CREATE TABLE IF NOT EXISTS events (title STRING, s_year INT, s_month INT, \ s_day INT, e_year INT, e_month INT, e_day INTT)" ) self.conn.execute( "CREATE TABLE IF NOT EXISTS artists (name STRING, make STRING, model STRING)" ) print("All table entrys were deleted.") ###################### # Generell functions # ###################### def has_elem(self, table, attr, var): query = f"SELECT * FROM {table} WHERE {attr}=?" cur = self.conn.execute(query, (var,)) result = cur.fetchall() cur.close() return len(result) > 0 def delete_one(self, table, attr, var): if self.has_elem(table, attr, var): query = f"DELETE FROM {table} WHERE {attr}=?" self.conn.execute(query, (var,)) self.conn.commit() print("From table " + table + ", " + var + " was deleted.") else: print("In table " + table + ", " + var + " was not found.") def get_all_from_table(self, table): cur = self.conn.execute(f"SELECT * FROM {table}") result = cur.fetchall() cur.close() return result def print_table(self, table): cur = self.conn.execute(f"SELECT * FROM {table}") result = cur.fetchall() cur.close() for r in result: print(r) ################# # Event related # ################# def insert_event_from_date(self, title, start_date, end_date): # TODO if end_date < start_date: print("Could not add Event: end date < start date!") return if title == "": print("Could not add Event: Missing titel!") return self.insert_event( title, start_date.year, start_date.month, start_date.day, end_date.year, end_date.month, end_date.day, ) def insert_event(self, title, s_year, s_month, s_day, e_year, e_month, e_day): if not self.has_elem("events", "title", title): title = title.replace(" ", "") self.conn.execute( "INSERT INTO events (title, s_year, s_month, s_day, e_year, e_month, e_day) \ VALUES (?, ?, ?, ?, ?, ?, ?)", (title, s_year, s_month, s_day, e_year, e_month, e_day), ) self.conn.commit() print("Event " + title + " was added.") else: print("Event " + title + " was already there, could NOT add.") def insert_events(self, file): with open(file) as json_file: data = json.load(json_file) for event in data["events"]: self.insert_event( event["title"], event["start"]["year"], event["start"]["month"], event["start"]["day"], event["end"]["year"], event["end"]["month"], event["end"]["day"], ) def delete_event(self, title): title = title.replace(" ", "") self.delete_one("events", "title", title) def clean_events(self): self.conn.execute("DROP TABLE IF EXISTS events") self.conn.execute( "CREATE TABLE IF NOT EXISTS events (title STRING, s_year INT, s_month INT, \ s_day INT, e_year INT, e_month INT, e_day INTT)" ) print("All event entrys were deleted.") def save_events(self, file): data = self.get_all_from_table("events") json_data = {"events": []} for elem in data: json_data["events"].append( { "title": elem[0], "start": { "year": elem[1], "month": elem[2], "day": elem[3], }, "end": { "year": elem[4], "month": elem[5], "day": elem[6], }, } ) with open(file, "w") as outfile: json.dump(json_data, outfile, indent=4) print("Events were saved to file " + file + ".") def get_event(self, year, month, day): cur = self.conn.execute( "SELECT title FROM events WHERE s_year<=? AND s_month<=? AND s_day<=? AND e_year>=? \ AND e_month>=? AND e_day>=?", (year, month, day, year, month, day), ) result = cur.fetchall() cur.close() return result def print_events(self): self.print_table("events") ################## # Artist related # ################## def insert_artist(self, name, make, model): if not self.has_elem("artists", "name", name): self.conn.execute( "INSERT INTO artists (name, make, model) VALUES (?, ?, ?)", (name, make, model) ) self.conn.commit() print("Artist " + name + " was added.") else: print("Artist " + name + " was already there, could NOT add.") def insert_artists(self, file): with open(file) as json_file: data = json.load(json_file) for artist in data["artists"]: self.insert_artist( artist["name"], artist["make"], artist["model"], ) def delete_artist(self, name): self.delete_one("artists", "name", name) def clean_artists(self): self.conn.execute("DROP TABLE IF EXISTS artists") self.conn.execute( "CREATE TABLE IF NOT EXISTS artists (name STRING, make STRING, model STRING)" ) print("All artist entrys were deleted.") def save_artists(self, file): data = self.get_all_from_table("artists") json_data = {"artists": []} for elem in data: json_data["artists"].append( { "name": elem[0], "make": elem[1], "model": elem[2], } ) with open(file, "w") as outfile: json.dump(json_data, outfile, indent=4) print("Artists were saved to file " + file + ".") def get_artist(self, make, model): cur = self.conn.execute("SELECT name FROM artists WHERE make=? AND model=?", (make, model)) result = cur.fetchall() cur.close() return result def print_artists(self): self.print_table("artists")
32.646018
99
0.495798
4dad85d74272c16d4adbb3ebd62f0de6bf94a5bd
3,222
py
Python
models/modules/sparse_ops.py
yanivbl6/convNet.pytorch
a75807611991d867e752bf25eaf8c311a416d8b5
[ "MIT" ]
null
null
null
models/modules/sparse_ops.py
yanivbl6/convNet.pytorch
a75807611991d867e752bf25eaf8c311a416d8b5
[ "MIT" ]
null
null
null
models/modules/sparse_ops.py
yanivbl6/convNet.pytorch
a75807611991d867e752bf25eaf8c311a416d8b5
[ "MIT" ]
null
null
null
import torch from torch import autograd, nn import torch.nn.functional as F from itertools import repeat from torch._six import container_abcs class Sparse(autograd.Function): """" Prune the unimprotant weight for the forwards phase but pass the gradient to dense weight using SR-STE in the backwards phase""" @staticmethod def forward(ctx, weight, N, M, decay = 0.0002): ctx.save_for_backward(weight) output = weight.clone() length = weight.numel() group = int(length/M) weight_temp = weight.detach().abs().reshape(group, M) index = torch.argsort(weight_temp, dim=1)[:, :int(M-N)] w_b = torch.ones(weight_temp.shape, device=weight_temp.device) w_b = w_b.scatter_(dim=1, index=index, value=0).reshape(weight.shape) ctx.mask = w_b ctx.decay = decay return output*w_b @staticmethod def backward(ctx, grad_output): weight, = ctx.saved_tensors return grad_output + ctx.decay * (1-ctx.mask) * weight, None, None class Sparse_NHWC(autograd.Function): """" Prune the unimprotant edges for the forwards phase but pass the gradient to dense weight using STE in the backwards phase""" @staticmethod def forward(ctx, weight, N, M, decay = 0.0002): ctx.save_for_backward(weight) output = weight.clone() length = weight.numel() group = int(length/M) weight_temp = weight.detach().abs().permute(0,2,3,1).reshape(group, M) index = torch.argsort(weight_temp, dim=1)[:, :int(M-N)] w_b = torch.ones(weight_temp.shape, device=weight_temp.device) w_b = w_b.scatter_(dim=1, index=index, value=0).reshape(weight.permute(0,2,3,1).shape) w_b = w_b.permute(0,3,1,2) ctx.mask = w_b ctx.decay = decay return output*w_b @staticmethod def backward(ctx, grad_output): weight, = ctx.saved_tensors return grad_output + ctx.decay * (1-ctx.mask) * weight, None, None class SparseConv(nn.Conv2d): """" implement N:M sparse convolution layer """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', N=2, M=4, **kwargs): self.N = N self.M = M super(SparseConv, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, **kwargs) def get_sparse_weights(self): return Sparse_NHWC.apply(self.weight, self.N, self.M) def forward(self, x): w = self.get_sparse_weights() x = F.conv2d( x, w, self.bias, self.stride, self.padding, self.dilation, self.groups ) return x class SparseLinear(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, N=2, M=2, decay = 0.0002, **kwargs): self.N = N self.M = M super(SparseLinear, self).__init__(in_features, out_features, bias = True) def get_sparse_weights(self): return Sparse.apply(self.weight, self.N, self.M) def forward(self, x): w = self.get_sparse_weights() x = F.linear(x, w) return x
30.11215
159
0.639665
8c502a99fad3b1cfd8a5f6a18484b8dff0f03826
1,559
py
Python
src/features/build_features.py
jindongyang94/sample_luigipipeline
397afd6debc546ea4c9760b475aca4806927e091
[ "FTL" ]
null
null
null
src/features/build_features.py
jindongyang94/sample_luigipipeline
397afd6debc546ea4c9760b475aca4806927e091
[ "FTL" ]
null
null
null
src/features/build_features.py
jindongyang94/sample_luigipipeline
397afd6debc546ea4c9760b475aca4806927e091
[ "FTL" ]
null
null
null
""" author: atreya desc: """ import datetime import pandas class FeatureBuilder(): def __init__(self, dataframe,training=True): self.dataframe = dataframe self.continuous_features = ["CompetitionDistance","Date"] self.categorical_features = ["StoreType"] self.target = ["Sales"] self.training=training def featurize(self): print "Subsetting Dataframe" self.subset_dataframe() print "Feature Engineering" dataframe = self.feature_engineering(self.dataframe) self.handle_missing_value() dataframe = pandas.get_dummies(dataframe) print dataframe.head() return dataframe def feature_engineering(self, dataframe=None): date1 = [datetime.datetime.strptime(i, '%Y-%m-%d') for i in dataframe.Date] dataframe['Day'] = [i.day for i in date1] self.continuous_features.append("Day") dataframe['Month'] = [i.month for i in date1] self.continuous_features.append("Month") dataframe['Year'] = [i.year for i in date1] self.continuous_features.append("Year") dataframe.drop("Date",axis=1,inplace=True) return dataframe def subset_dataframe(self): if self.training: self.dataframe = self.dataframe[self.continuous_features+self.categorical_features+self.target] else: self.dataframe = self.dataframe[self.continuous_features + self.categorical_features] def handle_missing_value(self): self.dataframe.fillna(0, inplace=True)
33.170213
107
0.662604
5abaf9161f0664aff104b33c3aed04faf4806040
1,280
py
Python
jrnl/plugins/json_exporter.py
jprof/jrnl
04811405dc0007dcf1184b885b89bc5c965ddaac
[ "MIT" ]
2
2017-12-08T19:06:55.000Z
2017-12-09T00:45:20.000Z
jrnl/plugins/json_exporter.py
jprof/jrnl
04811405dc0007dcf1184b885b89bc5c965ddaac
[ "MIT" ]
2
2017-12-24T01:37:08.000Z
2021-05-08T02:23:30.000Z
jrnl/plugins/json_exporter.py
jprof/jrnl
04811405dc0007dcf1184b885b89bc5c965ddaac
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 from __future__ import absolute_import, unicode_literals from .text_exporter import TextExporter import json from .util import get_tags_count class JSONExporter(TextExporter): """This Exporter can convert entries and journals into json.""" names = ["json"] extension = "json" @classmethod def entry_to_dict(cls, entry): entry_dict = { 'title': entry.title, 'body': entry.body, 'date': entry.date.strftime("%Y-%m-%d"), 'time': entry.date.strftime("%H:%M"), 'starred': entry.starred } if hasattr(entry, "uuid"): entry_dict['uuid'] = entry.uuid return entry_dict @classmethod def export_entry(cls, entry): """Returns a json representation of a single entry.""" return json.dumps(cls.entry_to_dict(entry), indent=2) + "\n" @classmethod def export_journal(cls, journal): """Returns a json representation of an entire journal.""" tags = get_tags_count(journal) result = { "tags": dict((tag, count) for count, tag in tags), "entries": [cls.entry_to_dict(e) for e in journal.entries] } return json.dumps(result, indent=2)
30.47619
70
0.610156
27ccf399a1acb58595da8c9680252ffaedd18a8b
14,332
py
Python
test/functional/mempool_accept.py
TheBurningSavage/TheBurningSavage
dfc00e6c5acc192b4d8a6e8a8ded2efb1252c861
[ "MIT" ]
1
2021-04-23T20:46:00.000Z
2021-04-23T20:46:00.000Z
test/functional/mempool_accept.py
TheBurningSavage/TheBurningSavage
dfc00e6c5acc192b4d8a6e8a8ded2efb1252c861
[ "MIT" ]
null
null
null
test/functional/mempool_accept.py
TheBurningSavage/TheBurningSavage
dfc00e6c5acc192b4d8a6e8a8ded2efb1252c861
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The TheBurningSavage Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from io import BytesIO from test_framework.test_framework import TheBurningSavageTestFramework from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_BASE_SIZE, ) from test_framework.script import ( hash160, CScript, OP_0, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, bytes_to_hex_str, hex_str_to_bytes, wait_until, ) class MempoolAcceptanceTest(TheBurningSavageTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex', '-reindex', # Need reindex for txindex '-acceptnonstdtxn=0', # Try to mimic main-net ]] * self.num_nodes def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 wait_until(lambda: node.getblockcount() == 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = node.listunspent()[0] # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, allowhighfees=True) node.generate(1) self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = 0.00000700 raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): 0.3 - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size = 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=bytes_to_hex_str(tx.serialize()), allowhighfees=True) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, allowhighfees=True) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, allowhighfees=True) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * (MAX_BLOCK_BASE_SIZE // len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = 21000000 * COIN + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = 21000000 * COIN self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
48.914676
154
0.644781
9a267e59d815cf9e30da2c1132ff8f1188d066ab
6,601
py
Python
tests/unittest/benchmark_runner/common/template_operations/golden_files.py
bbenshab/benchmark-runner
6f541c03c9dca5ee775de93ce62cbeffbc3b10fc
[ "Apache-2.0" ]
null
null
null
tests/unittest/benchmark_runner/common/template_operations/golden_files.py
bbenshab/benchmark-runner
6f541c03c9dca5ee775de93ce62cbeffbc3b10fc
[ "Apache-2.0" ]
null
null
null
tests/unittest/benchmark_runner/common/template_operations/golden_files.py
bbenshab/benchmark-runner
6f541c03c9dca5ee775de93ce62cbeffbc3b10fc
[ "Apache-2.0" ]
null
null
null
import difflib import filecmp import os import shutil import tempfile from benchmark_runner.main.environment_variables import environment_variables from benchmark_runner.common.template_operations.template_operations import TemplateOperations from tests.unittest.benchmark_runner.common.template_operations.golden_files_exceptions import GoldenFileCheckFailed class GoldenFiles: """Generate golden files for regression testing""" def __init__(self): self.__file_path = os.path.join(f'{os.path.dirname(os.path.realpath(__file__))}', 'golden_files') environment_variables.environment_variables_dict['system_metrics'] = 'True' environment_variables.environment_variables_dict['elasticsearch'] = 'elasticsearch.example.com' environment_variables.environment_variables_dict['elasticsearch_port'] = '9999' environment_variables.environment_variables_dict['elasticsearch_url'] = 'http://elasticsearch.example.com:gol9999' environment_variables.environment_variables_dict['pin'] = 'True' environment_variables.environment_variables_dict['pin_node1'] = 'pin-node-1' environment_variables.environment_variables_dict['pin_node2'] = 'pin-node-2' environment_variables.environment_variables_dict['prom_token_override'] = 'fake_prom_token' environment_variables.environment_variables_dict['uuid'] = 'deadbeef-0123-3210-cdef-01234567890abcdef' environment_variables.environment_variables_dict['trunc_uuid'] = environment_variables.environment_variables_dict['uuid'].split('-')[0] def __clear_directory_yaml(self, dir): if os.path.isdir(dir): for file in os.listdir(dir): if file.endswith('.yaml'): os.remove(os.path.join(dir, file)) def __generate_yaml_dir_name(self, run_type: str, workload: str, odf_pvc: str, dest: str=None): if dest is None: dest = self.__file_path return os.path.join(dest, f'{run_type}_{workload}_ODF_PVC_{odf_pvc}') def __copy_yaml_files_to_dir(self, src: str, dest: str): if os.path.isdir(dest): shutil.rmtree(dest) os.mkdir(dest) if os.path.isdir(src): for file in os.listdir(src): if file.endswith('.yaml'): with open(os.path.join(src, file), 'r') as r: with open(os.path.join(dest, file), 'w') as w: w.write(r.read()) def __generate_golden_yaml_files__(self, dest: str=None): if not dest: dest = self.__file_path if os.path.isdir(dest): shutil.rmtree(dest) os.mkdir(dest) for odf_pvc in 'True', 'False': environment_variables.environment_variables_dict['odf_pvc'] = odf_pvc for run_type in environment_variables.run_types_list: environment_variables.environment_variables_dict['run_type'] = run_type for workload in environment_variables.workloads_list: environment_variables.environment_variables_dict['namespace'] = environment_variables.get_workload_namespace(workload) template = TemplateOperations(workload) srcdir = template.get_current_run_path() self.__clear_directory_yaml(srcdir) destdir = self.__generate_yaml_dir_name(run_type=run_type, workload=workload, odf_pvc=odf_pvc, dest=dest) template.generate_yamls() self.__copy_yaml_files_to_dir(src=srcdir, dest=destdir) self.__clear_directory_yaml(srcdir) # From https://stackoverflow.com/questions/4187564/recursively-compare-two-directories-to-ensure-they-have-the-same-files-and-subdi def __compare_tree__(self, root1, root2, subdir: str): """ Compare two directories recursively. Files in each directory are considered to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: [left_only, right_only, diff_files, funny_files] """ def canon_list(subdir: str, files: list): return list(map(lambda f: os.path.join(subdir, f), files)) dir1 = os.path.join(root1, subdir) dir2 = os.path.join(root2, subdir) dirs_cmp = filecmp.dircmp(dir1, dir2) left_only = canon_list(subdir, dirs_cmp.left_only) right_only = canon_list(subdir, dirs_cmp.right_only) diff_files = [] funny_files = [] (_, mismatch, errors) = filecmp.cmpfiles(dir1, dir2, dirs_cmp.common_files, shallow=False) diff_files.extend(canon_list(subdir, mismatch)) funny_files.extend(canon_list(subdir, errors)) for common_dir in dirs_cmp.common_dirs: new_subdir = os.path.join(subdir, common_dir) (sub_left_only, sub_right_only, sub_diff_files, sub_funny_files) = self.__compare_tree__(root1, root2, new_subdir) left_only.extend(sub_left_only) right_only.extend(sub_right_only) diff_files.extend(sub_diff_files) funny_files.extend(sub_funny_files) return (left_only, right_only, diff_files, funny_files) def __compare_golden_yaml_files__(self): with tempfile.TemporaryDirectory() as tmpdir: self.__generate_golden_yaml_files__(dest=tmpdir) (left_only, right_only, diff_files, funny_files) = self.__compare_tree__(self.__file_path, tmpdir, '.') for filename in diff_files: print(f'\n{filename}:') golden_file = os.path.join(self.__file_path, filename) comparison_file = os.path.join(tmpdir, filename) with open(golden_file) as golden: golden_text = golden.readlines() with open(comparison_file) as comparison: comparison_text = comparison.readlines() for line in difflib.unified_diff(golden_text, comparison_text, fromfile=golden_file, tofile=comparison_file, lineterm=''): print(line, end='') if len(left_only) > 0 or len(right_only) > 0 or len(diff_files) > 0 or len(funny_files) > 0: raise GoldenFileCheckFailed(miscompare=diff_files, missing=left_only, unexpected=right_only, cannot_compare=funny_files) return True def generate_golden_files(self): self.__generate_golden_yaml_files__() def compare_golden_files(self): return self.__compare_golden_yaml_files__()
51.170543
143
0.675049
1303ffdd964d03df83f636553af54b264ca69e0d
987
py
Python
public_tool/solve_on_outlier.py
mapicccy/Stock-Market-Trend-Analysis-Using-HMM-LSTM
5be0f294208d727d5a3e28b0e99496d056102b4c
[ "MIT" ]
147
2018-08-27T09:05:07.000Z
2022-03-27T13:06:16.000Z
public_tool/solve_on_outlier.py
mapicccy/Stock-Market-Trend-Analysis-Using-HMM-LSTM
5be0f294208d727d5a3e28b0e99496d056102b4c
[ "MIT" ]
null
null
null
public_tool/solve_on_outlier.py
mapicccy/Stock-Market-Trend-Analysis-Using-HMM-LSTM
5be0f294208d727d5a3e28b0e99496d056102b4c
[ "MIT" ]
70
2018-09-10T03:12:54.000Z
2022-03-26T06:46:48.000Z
from public_tool.form_index import form_index import numpy as np from dataset_code.process_on_raw_data import fill_na def solve_on_outlier(dataset, lengths): """ find the outlier data, and replace then by fill_na function input: dataset, array lengths, list, record the length of chains output: dataset, array """ n = 3 # 如果是比均值相差了n个单位的标准差,那么判断为outlier result = np.zeros(dataset.shape) for i in range(len(lengths)): begin_index, end_index = form_index(lengths, i) for j in range(dataset.shape[1]): temp = dataset[begin_index:end_index, j].copy() if max(temp) > 4.5: flag = 1 mean = np.mean(temp) std = np.std(temp) temp[np.logical_or(temp >= mean+n*std, temp <= mean-n*std)] = np.mean(temp) # temp = fill_na(temp, 100) result[begin_index:end_index, j] = temp return result
31.83871
88
0.590679
f3989a04d403db4c62c0a70222e2fcd630d86e31
4,498
py
Python
DRS-Calculate/component/analyse_weigh_ratio.py
monettoCoffee/DormRecommendSys
d5cf10827729f75056da20de0100bcf5c1414d41
[ "Apache-2.0" ]
1
2020-01-16T05:11:02.000Z
2020-01-16T05:11:02.000Z
DRS-Calculate/component/analyse_weigh_ratio.py
Happy-hacker0/DormRecommendSys
a3d9c356afd70f1a49aa7eb632d0d8970f7da135
[ "Apache-2.0" ]
null
null
null
DRS-Calculate/component/analyse_weigh_ratio.py
Happy-hacker0/DormRecommendSys
a3d9c356afd70f1a49aa7eb632d0d8970f7da135
[ "Apache-2.0" ]
2
2020-01-11T03:04:00.000Z
2020-01-16T05:16:22.000Z
# coding=utf-8 from weigh.cosine_similarity import CosineSimilarity import component.section_calculator as section_calculator # 分析向量平均相似度 def direct_analyse(all_cluster_vector, question_info): weight_ratio = {} analyse_one_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio) analyse_multi_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio) analyse_section_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio) for qid in weight_ratio: weight_ratio[qid] = 1 - weight_ratio[qid] return weight_ratio def get_auto_analyse_question_qid(example_all_cluster_vector_element, question_info, chosen_key): chosen_qid_list = [] for person_one_chosen_qid in example_all_cluster_vector_element[chosen_key]: if question_info[person_one_chosen_qid]["auto_weight"] == 1: chosen_qid_list.append(person_one_chosen_qid) return chosen_qid_list def analyse_one_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio): one_chosen_qid_list = get_auto_analyse_question_qid(all_cluster_vector[0], question_info, "one_chosen") for one_chosen_question_qid in one_chosen_qid_list: one_chosen_qid_radio_max_number = -1 one_chosen_question_radio_dict = weight_ratio.get(one_chosen_question_qid, None) if not one_chosen_question_radio_dict: one_chosen_question_radio_dict = {} weight_ratio[one_chosen_question_qid] = one_chosen_question_radio_dict for cluster_vector in all_cluster_vector: radio_index = cluster_vector["one_chosen"][one_chosen_question_qid] radio_choice_times = one_chosen_question_radio_dict.get(radio_index, None) if not radio_choice_times: radio_choice_times = 0 radio_choice_times += 1 one_chosen_question_radio_dict[radio_index] = radio_choice_times one_chosen_qid_radio_max_number = max(one_chosen_qid_radio_max_number, radio_choice_times) weight_ratio[one_chosen_question_qid] = one_chosen_qid_radio_max_number / len(all_cluster_vector) def analyse_multi_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio): multi_chosen_qid_list = get_auto_analyse_question_qid(all_cluster_vector[0], question_info, "multi_chosen") for multi_chosen_question_qid in multi_chosen_qid_list: for cluster_vector in all_cluster_vector: chosen_list = weight_ratio.get(multi_chosen_question_qid, None) if not chosen_list: chosen_list = [] weight_ratio[multi_chosen_question_qid] = chosen_list chosen_list.append(cluster_vector["multi_chosen"][multi_chosen_question_qid]) for multi_chosen_question_qid in multi_chosen_qid_list: distance = 0 calculate_count = 0 all_qid_chosen_vector = weight_ratio[multi_chosen_question_qid] chosen_outside_index = len(all_qid_chosen_vector) - 1 while chosen_outside_index > 0: chosen_inside_index = chosen_outside_index - 1 while chosen_inside_index > -1: calculate_count += 1 distance += CosineSimilarity.distance(all_qid_chosen_vector[chosen_inside_index][0], all_qid_chosen_vector[chosen_outside_index][0]) chosen_inside_index -= 1 chosen_outside_index -= 1 weight_ratio[multi_chosen_question_qid] = distance / calculate_count def analyse_section_chosen_weight_ratio(all_cluster_vector, question_info, weight_ratio): section_chosen_qid_list = get_auto_analyse_question_qid(all_cluster_vector[0], question_info, "section_chosen") cluster_outside_index = len(all_cluster_vector) - 1 while cluster_outside_index > 0: cluster_outside_section_chosen = all_cluster_vector[cluster_outside_index]["section_chosen"] cluster_inside_index = cluster_outside_index - 1 while cluster_inside_index > -1: cluster_inside_section_chosen = all_cluster_vector[cluster_inside_index]["section_chosen"] for section_chosen_question_qid in section_chosen_qid_list: section_calculator.time_section_coincide_calculate( cluster_outside_section_chosen[section_chosen_question_qid], cluster_inside_section_chosen[section_chosen_question_qid]) cluster_inside_index -= 1 cluster_outside_index -= 1
51.701149
115
0.747666
583bb6aed3f54c1165960fdc3233b6ff61225a98
357
py
Python
projects/Digital-Clock-GUI/code.py
Kranthi-Guribilli/Python-Projects
73059ba06079c14b022b0c80fbc6d031cddfbecb
[ "MIT" ]
54
2021-11-03T08:54:50.000Z
2022-01-09T19:16:52.000Z
projects/Digital-Clock-GUI/code.py
LeoLivs/Python-Projects
b681deba7220278ea8e37ec2865f8e1fb8ad4755
[ "MIT" ]
13
2021-10-31T05:01:01.000Z
2022-01-08T13:48:07.000Z
projects/Digital-Clock-GUI/code.py
LeoLivs/Python-Projects
b681deba7220278ea8e37ec2865f8e1fb8ad4755
[ "MIT" ]
14
2021-10-30T20:17:50.000Z
2022-01-09T14:15:13.000Z
from tkinter import * from tkinter.ttk import * from time import strftime root = Tk() root.title("Clock") def time(): string = strftime("%H:%M:%S %p") label.config(text=string) label.after(100, time) label = tk.Label(root, font=("JetBrains Mono", 80), background="white", foreground="black") label.pack(anchor="center") time() mainloop()
17
91
0.672269
cf3c4a11c49b31036af305c8fced93f927003dd4
3,124
py
Python
tools/debugging/matrix/load_with_generate_messages.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
null
null
null
tools/debugging/matrix/load_with_generate_messages.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
69
2020-07-21T05:49:21.000Z
2022-03-08T18:09:44.000Z
tools/debugging/matrix/load_with_generate_messages.py
luehrsFred/raiden
a1b118ebe14badb1acd0744b2d7f2b39f8ba5313
[ "MIT" ]
null
null
null
#!/usr/bin/env python from gevent import monkey # isort:skip monkey.patch_all() # isort:skip import argparse import os import time from dataclasses import dataclass from typing import Iterator, List from raiden.utils.nursery import Janitor, Nursery CWD = os.path.dirname(os.path.abspath(__file__)) GENERATE_MESSAGES_SCRIPT = os.path.join(CWD, "generate_messages.py") @dataclass class Config: logdir: str sender_matrix_server_url: str receiver_matrix_server_url: str target_qty_of_chat_rooms: int qty_of_new_rooms_per_iteration: int concurrent_messages_per_room: int wait_before_next_iteration: float def batch_size(target: int, step: int) -> Iterator[int]: iterations = target // step for _ in range(iterations): yield step rest = target % step if rest: yield rest def run(config: Config, nursery: Nursery) -> None: for i, qty_of_rooms in enumerate( batch_size(config.target_qty_of_chat_rooms, config.qty_of_new_rooms_per_iteration) ): log_file = os.path.join(config.logdir, str(i)) script_args: List[str] = [ GENERATE_MESSAGES_SCRIPT, "--concurrent-messages", str(config.concurrent_messages_per_room), "--chat-rooms", str(qty_of_rooms), log_file, config.sender_matrix_server_url, config.receiver_matrix_server_url, ] nursery.exec_under_watch(script_args) time.sleep(config.wait_before_next_iteration) def main() -> None: parser = argparse.ArgumentParser() parser.add_argument("--wait-before-next-iteration", type=int, default=60) parser.add_argument("target_qty_of_chat_rooms", type=int, default=500) parser.add_argument("qty_of_new_rooms_per_iteration", type=int, default=10) parser.add_argument("concurrent_messages_per_room", type=int, default=50) parser.add_argument("logdir", help="Directory used to save the script logs.") parser.add_argument("server", help="Matrix server used by the sender user.") parser.add_argument( "server2", help=( "If provided, the server used by the receiever, otherwise the same " "server as the sender is used." ), default=None, nargs="?", ) args = parser.parse_args() logdir = args.logdir os.makedirs(logdir, exist_ok=True) sender_matrix_server_url = args.server receiver_matrix_server_url = args.server2 or args.server config = Config( logdir=logdir, sender_matrix_server_url=sender_matrix_server_url, receiver_matrix_server_url=receiver_matrix_server_url, target_qty_of_chat_rooms=args.target_qty_of_chat_rooms, qty_of_new_rooms_per_iteration=args.qty_of_new_rooms_per_iteration, concurrent_messages_per_room=args.concurrent_messages_per_room, wait_before_next_iteration=args.wait_before_next_iteration, ) with Janitor() as nursery: nursery.spawn_under_watch(run, config, nursery) nursery.wait(timeout=None) if __name__ == "__main__": main()
30.330097
90
0.700384
319e456d46ea84cb7d42c5f77b036366de327390
152
py
Python
yc199/730.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
yc199/730.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
yc199/730.py
c-yan/yukicoder
cdbbd65402177225dd989df7fe01f67908484a69
[ "MIT" ]
null
null
null
S = input() d = {} for c in S: d.setdefault(c, 0) d[c] += 1 if all(map(lambda x: x == 1, d.values())): print('YES') else: print('NO')
12.666667
42
0.480263
663bfb7d16ff6a6250ffa8ec27bcb7d5e409cee7
249
py
Python
flapp/ext/cli/__init__.py
ernane/flapp
b31eff9accce5d150a3b852dfb8c5394ed9f589a
[ "MIT" ]
null
null
null
flapp/ext/cli/__init__.py
ernane/flapp
b31eff9accce5d150a3b852dfb8c5394ed9f589a
[ "MIT" ]
1
2020-08-30T20:48:05.000Z
2020-08-30T20:48:57.000Z
flapp/ext/cli/__init__.py
ernane/flapp
b31eff9accce5d150a3b852dfb8c5394ed9f589a
[ "MIT" ]
null
null
null
from flapp.ext.db.commands import create_db, drop_db, populate_db def init_app(app): app.cli.add_command(app.cli.command()(create_db)) app.cli.add_command(app.cli.command()(drop_db)) app.cli.add_command(app.cli.command()(populate_db))
31.125
65
0.746988
b3b68a51645515acb249a0f8e9db72155f96984a
8,185
py
Python
lib/python3.8/site-packages/ansible_collections/community/general/plugins/connection/lxc.py
cjsteel/python3-venv-ansible-2.10.5
c95395c4cae844dc66fddde9b4343966f4b2ecd5
[ "Apache-1.1" ]
5
2020-12-16T21:42:09.000Z
2022-03-28T16:04:32.000Z
.ansible/collections/ansible_collections/community/general/plugins/connection/lxc.py
chronicc/proving-ground
3e392122a05fb8383a3700954baebb0df330e9e3
[ "MIT" ]
null
null
null
.ansible/collections/ansible_collections/community/general/plugins/connection/lxc.py
chronicc/proving-ground
3e392122a05fb8383a3700954baebb0df330e9e3
[ "MIT" ]
null
null
null
# (c) 2015, Joerg Thalheim <joerg@higgsboson.tk> # Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' author: Joerg Thalheim (!UNKNOWN) <joerg@higgsboson.tk> connection: lxc short_description: Run tasks in lxc containers via lxc python library description: - Run commands or put/fetch files to an existing lxc container using lxc python library options: remote_addr: description: - Container identifier default: inventory_hostname vars: - name: ansible_host - name: ansible_lxc_host executable: default: /bin/sh description: - Shell executable vars: - name: ansible_executable - name: ansible_lxc_executable ''' import os import shutil import traceback import select import fcntl import errno HAS_LIBLXC = False try: import lxc as _lxc HAS_LIBLXC = True except ImportError: pass from ansible import constants as C from ansible import errors from ansible.module_utils._text import to_bytes, to_native from ansible.plugins.connection import ConnectionBase class Connection(ConnectionBase): ''' Local lxc based connections ''' transport = 'community.general.lxc' has_pipelining = True default_user = 'root' def __init__(self, play_context, new_stdin, *args, **kwargs): super(Connection, self).__init__(play_context, new_stdin, *args, **kwargs) self.container_name = self._play_context.remote_addr self.container = None def _connect(self): ''' connect to the lxc; nothing to do here ''' super(Connection, self)._connect() if not HAS_LIBLXC: msg = "lxc bindings for python2 are not installed" raise errors.AnsibleError(msg) if self.container: return self._display.vvv("THIS IS A LOCAL LXC DIR", host=self.container_name) self.container = _lxc.Container(self.container_name) if self.container.state == "STOPPED": raise errors.AnsibleError("%s is not running" % self.container_name) def _communicate(self, pid, in_data, stdin, stdout, stderr): buf = {stdout: [], stderr: []} read_fds = [stdout, stderr] if in_data: write_fds = [stdin] else: write_fds = [] while len(read_fds) > 0 or len(write_fds) > 0: try: ready_reads, ready_writes, _ = select.select(read_fds, write_fds, []) except select.error as e: if e.args[0] == errno.EINTR: continue raise for fd in ready_writes: in_data = in_data[os.write(fd, in_data):] if len(in_data) == 0: write_fds.remove(fd) for fd in ready_reads: data = os.read(fd, 32768) if not data: read_fds.remove(fd) buf[fd].append(data) (pid, returncode) = os.waitpid(pid, 0) return returncode, b"".join(buf[stdout]), b"".join(buf[stderr]) def _set_nonblocking(self, fd): flags = fcntl.fcntl(fd, fcntl.F_GETFL) | os.O_NONBLOCK fcntl.fcntl(fd, fcntl.F_SETFL, flags) return fd def exec_command(self, cmd, in_data=None, sudoable=False): ''' run a command on the chroot ''' super(Connection, self).exec_command(cmd, in_data=in_data, sudoable=sudoable) # python2-lxc needs bytes. python3-lxc needs text. executable = to_native(self._play_context.executable, errors='surrogate_or_strict') local_cmd = [executable, '-c', to_native(cmd, errors='surrogate_or_strict')] read_stdout, write_stdout = None, None read_stderr, write_stderr = None, None read_stdin, write_stdin = None, None try: read_stdout, write_stdout = os.pipe() read_stderr, write_stderr = os.pipe() kwargs = { 'stdout': self._set_nonblocking(write_stdout), 'stderr': self._set_nonblocking(write_stderr), 'env_policy': _lxc.LXC_ATTACH_CLEAR_ENV } if in_data: read_stdin, write_stdin = os.pipe() kwargs['stdin'] = self._set_nonblocking(read_stdin) self._display.vvv("EXEC %s" % (local_cmd), host=self.container_name) pid = self.container.attach(_lxc.attach_run_command, local_cmd, **kwargs) if pid == -1: msg = "failed to attach to container %s" % self.container_name raise errors.AnsibleError(msg) write_stdout = os.close(write_stdout) write_stderr = os.close(write_stderr) if read_stdin: read_stdin = os.close(read_stdin) return self._communicate(pid, in_data, write_stdin, read_stdout, read_stderr) finally: fds = [read_stdout, write_stdout, read_stderr, write_stderr, read_stdin, write_stdin] for fd in fds: if fd: os.close(fd) def put_file(self, in_path, out_path): ''' transfer a file from local to lxc ''' super(Connection, self).put_file(in_path, out_path) self._display.vvv("PUT %s TO %s" % (in_path, out_path), host=self.container_name) in_path = to_bytes(in_path, errors='surrogate_or_strict') out_path = to_bytes(out_path, errors='surrogate_or_strict') if not os.path.exists(in_path): msg = "file or module does not exist: %s" % in_path raise errors.AnsibleFileNotFound(msg) try: src_file = open(in_path, "rb") except IOError: traceback.print_exc() raise errors.AnsibleError("failed to open input file to %s" % in_path) try: def write_file(args): with open(out_path, 'wb+') as dst_file: shutil.copyfileobj(src_file, dst_file) try: self.container.attach_wait(write_file, None) except IOError: traceback.print_exc() msg = "failed to transfer file to %s" % out_path raise errors.AnsibleError(msg) finally: src_file.close() def fetch_file(self, in_path, out_path): ''' fetch a file from lxc to local ''' super(Connection, self).fetch_file(in_path, out_path) self._display.vvv("FETCH %s TO %s" % (in_path, out_path), host=self.container_name) in_path = to_bytes(in_path, errors='surrogate_or_strict') out_path = to_bytes(out_path, errors='surrogate_or_strict') try: dst_file = open(out_path, "wb") except IOError: traceback.print_exc() msg = "failed to open output file %s" % out_path raise errors.AnsibleError(msg) try: def write_file(args): try: with open(in_path, 'rb') as src_file: shutil.copyfileobj(src_file, dst_file) finally: # this is needed in the lxc child process # to flush internal python buffers dst_file.close() try: self.container.attach_wait(write_file, None) except IOError: traceback.print_exc() msg = "failed to transfer file from %s to %s" % (in_path, out_path) raise errors.AnsibleError(msg) finally: dst_file.close() def close(self): ''' terminate the connection; nothing to do here ''' super(Connection, self).close() self._connected = False
35.742358
95
0.575809
4a10291c430e69e2696c7a5be61e579fe8f8b483
4,176
py
Python
glomeruli_segmentation/api_interface.py
theodore-evans/hubmap-kidney-segmentation
7842655d49080be28682a9cf0394bcbe53172ddc
[ "MIT" ]
null
null
null
glomeruli_segmentation/api_interface.py
theodore-evans/hubmap-kidney-segmentation
7842655d49080be28682a9cf0394bcbe53172ddc
[ "MIT" ]
null
null
null
glomeruli_segmentation/api_interface.py
theodore-evans/hubmap-kidney-segmentation
7842655d49080be28682a9cf0394bcbe53172ddc
[ "MIT" ]
null
null
null
from io import BytesIO from logging import Logger from typing import Tuple, Type, Union import desert from aiohttp import ClientSession, TCPConnector from marshmallow import EXCLUDE from PIL import Image from glomeruli_segmentation.aiohttp_hooks import get_logging_hooks from glomeruli_segmentation.data_classes import Rect, Tile, Wsi from glomeruli_segmentation.logging_tools import get_logger API_VERSION = "v0" class LoggingClientSession(ClientSession): def __init__(self, logger: dict, get_hooks: Tuple = get_logging_hooks, **kwargs): super().__init__(**kwargs) self.hooks = {"response": [get_hook(logger) for get_hook in get_hooks]} async def _request(self, method, str_or_url, **kwargs): r = await super()._request(method, str_or_url, **kwargs) for hook in self.hooks["response"]: await hook(r) return r # TODO: add methods for getting from /configuration and post/putting to /failure class ApiInterface: def __init__(self, api_url: str, job_id: str, headers: dict, logger: Logger = get_logger()): self.logger = logger self.api_url = api_url self.job_id = job_id self.headers = headers self.session: LoggingClientSession = None async def __aenter__(self): self.session = LoggingClientSession( connector=TCPConnector(keepalive_timeout=5, ssl=False, limit=10), headers=self.headers, logger=self.logger, ) await self.session.__aenter__() return self async def __aexit__(self, exc_type, exc_val, exc_tb): if self.session: return await self.session.__aexit__(exc_type, exc_val, exc_tb) async def check_alive(self) -> dict: """ check if API is alive """ url = f"{self.api_url}/alive" r = await self.session.get(url) return await r.json() async def get_input(self, key: str, input_type: Type) -> Union[Rect, Wsi]: """ fetch an input from API """ url = f"{self.api_url}/{API_VERSION}/{self.job_id}/inputs/{key}" r = await self.session.get(url) schema = desert.schema(input_type, meta={"unknown": EXCLUDE}) response = await r.json() return schema.load(response) async def post_output(self, key: str, data: dict) -> dict: """ post output data by key as defined in EAD """ url = f"{self.api_url}/{API_VERSION}/{self.job_id}/outputs/{key}" r = await self.session.post(url, json=data) return await r.json() async def post_items_to_collection(self, collection: dict, items: list) -> dict: """ add items to an existing output collection Parameters: items: list of data elements """ url = f"{self.api_url}/{API_VERSION}/{self.job_id}/collections/{collection['id']}/items" r = await self.session.post(url, json={"items": items}) items = await r.json() return items["items"] async def get_wsi_tile(self, slide: Wsi, rect: Rect) -> Tile: """ get a WSI tile on level 0 Parameters: wsi_slide: Wsi object with WSI id (and meta data) rectangle: Rectangle describing tile position """ x, y = rect.upper_left url = f"{self.api_url}/{API_VERSION}/{self.job_id}/regions/{slide.id}/level/{rect.level}/start/{x}/{y}/size/{rect.width}/{rect.height}" r = await self.session.get(url) content = await r.read() return Tile(image=Image.open(BytesIO(content)), rect=rect) async def put_finalize(self) -> dict: """ finalize job, such that no more data can be added and to inform EMPAIA infrastructure about job state """ url = f"{self.api_url}/{API_VERSION}/{self.job_id}/finalize" r = await self.session.put(url) return await r.json() async def put_failure(self, message: str) -> dict: url = f"{self.api_url}/{API_VERSION}/{self.job_id}/failure" r = await self.session.put(url, json={"user_message": message.replace('"', "'")}) return await r.json()
34.8
143
0.633142
76c317dbbe83727d9f87ff338b8c386e0e7f70c9
3,154
py
Python
tests/test_read_edges.py
genimind/graphene
51d571fbbca19b3675b5f870c00c059912cd4f38
[ "Apache-2.0" ]
null
null
null
tests/test_read_edges.py
genimind/graphene
51d571fbbca19b3675b5f870c00c059912cd4f38
[ "Apache-2.0" ]
null
null
null
tests/test_read_edges.py
genimind/graphene
51d571fbbca19b3675b5f870c00c059912cd4f38
[ "Apache-2.0" ]
null
null
null
import os import unittest import json import networkx as nx from graphene import graphgen node_mapper_filename = './node_mapper.json' edge_mapper_filename = './edge_mapper.json' data_filename = './test_data.txt' class TestReadEdges(unittest.TestCase): def setUp(self): self.node_mapper = None self.edge_mapper = None self.data = [] with open(node_mapper_filename) as f: self.node_mapper = json.load(f) with open(edge_mapper_filename) as f: self.edge_mapper = json.load(f) with open(data_filename) as f: for item in f: self.data.append(json.loads(item)) def test_genEdges(self): g = nx.Graph() g = graphgen.create_graph(g, graph_mapper = self.edge_mapper, data_provider = self.data, add_type_to_key = True) # print('\nNODES1:', list(g.nodes(data = True))) self.assertEqual(nx.number_of_nodes(g), 15) self.assertEqual(nx.number_of_edges(g), 10) # get node with key. key1 = ('TypeA', 'a_val2_1') key2 = ('TypeB', 'b_val2_1', 'b_val1_1') key3 = ('TypeB', 'b_val2_3', 'b_val1_3') key4 = ('TypeC', 'c_val1_3') self.assertTrue(key1 in g.nodes) self.assertTrue(key2 in g.nodes) # print(g.node[key1]) # print(g.node[key2]) # check eges with data self.assertTrue(g.has_edge(key1, key2)) edge_data = g.get_edge_data(key1, key2) self.assertTrue(edge_data != {}) # print('e1:', edge_data) self.assertTrue(g.has_edge(key3, key4)) edge_data = g.get_edge_data(key3, key4) self.assertTrue(edge_data != {}) # print('e2:', edge_data) key5 = ('TypeC', 'ABCDEF') # invalid node key self.assertFalse(key5 in g) self.assertFalse(g.has_edge(key2, key5)) def test_genNodesAndEdges(self): g = nx.Graph() g = graphgen.create_graph(g, graph_mapper = self.node_mapper, data_provider = self.data, add_type_to_key = True) g = graphgen.create_graph(g, graph_mapper= self.edge_mapper, data_provider= self.data, add_type_to_key= True) # print('\nNODES2:', list(g.nodes(data = True))) self.assertEqual(nx.number_of_nodes(g), 15) self.assertEqual(nx.number_of_edges(g), 10) # locate an edge key1 = ('TypeA', 'a_val2_3') key2 = ('TypeB', 'b_val2_3', 'b_val1_3') self.assertTrue(g.has_node(key1)) self.assertTrue(g.has_node(key2)) self.assertTrue(key2 in g) self.assertTrue(g.has_edge(key1, key2)) # check node data node_data = g.nodes[key1] self.assertTrue(node_data != {}) # print('node_data:', node_data) # check edge data edge_data = g.get_edge_data(key1, key2) self.assertTrue(edge_data != {}) # the graph is bidirectional self.assertTrue(g.has_edge(key2, key1)) # print('edge:', g.edges[(key2, key1)]) # if __name__ == '__main__': # unittest.main()
36.252874
71
0.588776
76cbef243ec37973752412aaebf5b21a477af1b0
4,018
py
Python
sector/protocols/pool_protocol.py
bithadder/sector-blockchain
ce63d162cd8c0c7c85ae64d6d6e8bede0a8675e6
[ "Apache-2.0" ]
13
2021-07-06T12:45:25.000Z
2021-09-10T22:24:52.000Z
sector/protocols/pool_protocol.py
bithadder/sector-blockchain
ce63d162cd8c0c7c85ae64d6d6e8bede0a8675e6
[ "Apache-2.0" ]
null
null
null
sector/protocols/pool_protocol.py
bithadder/sector-blockchain
ce63d162cd8c0c7c85ae64d6d6e8bede0a8675e6
[ "Apache-2.0" ]
6
2021-07-06T01:14:53.000Z
2021-07-18T05:33:02.000Z
from dataclasses import dataclass from enum import Enum import time from typing import Optional from blspy import G1Element, G2Element from sector.types.blockchain_format.proof_of_space import ProofOfSpace from sector.types.blockchain_format.sized_bytes import bytes32 from sector.util.ints import uint8, uint16, uint32, uint64 from sector.util.streamable import Streamable, streamable POOL_PROTOCOL_VERSION = uint8(1) class PoolErrorCode(Enum): REVERTED_SIGNAGE_POINT = 1 TOO_LATE = 2 NOT_FOUND = 3 INVALID_PROOF = 4 PROOF_NOT_GOOD_ENOUGH = 5 INVALID_DIFFICULTY = 6 INVALID_SIGNATURE = 7 SERVER_EXCEPTION = 8 INVALID_P2_SINGLETON_PUZZLE_HASH = 9 FARMER_NOT_KNOWN = 10 FARMER_ALREADY_KNOWN = 11 INVALID_AUTHENTICATION_TOKEN = 12 INVALID_PAYOUT_INSTRUCTIONS = 13 INVALID_SINGLETON = 14 DELAY_TIME_TOO_SHORT = 15 REQUEST_FAILED = 16 # Used to verify GET /farmer and GET /login @dataclass(frozen=True) @streamable class AuthenticationPayload(Streamable): method_name: str launcher_id: bytes32 target_puzzle_hash: bytes32 authentication_token: uint64 # GET /pool_info @dataclass(frozen=True) @streamable class GetPoolInfoResponse(Streamable): name: str logo_url: str minimum_difficulty: uint64 relative_lock_height: uint32 protocol_version: uint8 fee: str description: str target_puzzle_hash: bytes32 authentication_token_timeout: uint8 # POST /partial @dataclass(frozen=True) @streamable class PostPartialPayload(Streamable): launcher_id: bytes32 authentication_token: uint64 proof_of_space: ProofOfSpace sp_hash: bytes32 end_of_sub_slot: bool harvester_id: bytes32 @dataclass(frozen=True) @streamable class PostPartialRequest(Streamable): payload: PostPartialPayload aggregate_signature: G2Element # Response in success case @dataclass(frozen=True) @streamable class PostPartialResponse(Streamable): new_difficulty: uint64 # GET /farmer # Response in success case @dataclass(frozen=True) @streamable class GetFarmerResponse(Streamable): authentication_public_key: G1Element payout_instructions: str current_difficulty: uint64 current_points: uint64 # POST /farmer @dataclass(frozen=True) @streamable class PostFarmerPayload(Streamable): launcher_id: bytes32 authentication_token: uint64 authentication_public_key: G1Element payout_instructions: str suggested_difficulty: Optional[uint64] @dataclass(frozen=True) @streamable class PostFarmerRequest(Streamable): payload: PostFarmerPayload signature: G2Element # Response in success case @dataclass(frozen=True) @streamable class PostFarmerResponse(Streamable): welcome_message: str # PUT /farmer @dataclass(frozen=True) @streamable class PutFarmerPayload(Streamable): launcher_id: bytes32 authentication_token: uint64 authentication_public_key: Optional[G1Element] payout_instructions: Optional[str] suggested_difficulty: Optional[uint64] @dataclass(frozen=True) @streamable class PutFarmerRequest(Streamable): payload: PutFarmerPayload signature: G2Element # Response in success case @dataclass(frozen=True) @streamable class PutFarmerResponse(Streamable): authentication_public_key: Optional[bool] payout_instructions: Optional[bool] suggested_difficulty: Optional[bool] # Misc # Response in error case for all endpoints of the pool protocol @dataclass(frozen=True) @streamable class ErrorResponse(Streamable): error_code: uint16 error_message: Optional[str] # Get the current authentication toke according "Farmer authentication" in SPECIFICATION.md def get_current_authentication_token(timeout: uint8) -> uint64: return uint64(int(int(time.time() / 60) / timeout)) # Validate a given authentication token against our local time def validate_authentication_token(token: uint64, timeout: uint8): return abs(token - get_current_authentication_token(timeout)) <= timeout
22.96
91
0.777501
5306769155050ba032364650daeecaa1581e609b
4,209
py
Python
build/android/pylib/base_test_sharder.py
junmin-zhu/chromium-rivertrail
eb1a57aca71fe68d96e48af8998dcfbe45171ee1
[ "BSD-3-Clause" ]
5
2018-03-10T13:08:42.000Z
2021-07-26T15:02:11.000Z
build/android/pylib/base_test_sharder.py
sanyaade-mobiledev/chromium.src
d496dfeebb0f282468827654c2b3769b3378c087
[ "BSD-3-Clause" ]
1
2015-07-21T08:02:01.000Z
2015-07-21T08:02:01.000Z
build/android/pylib/base_test_sharder.py
jianglong0156/chromium.src
d496dfeebb0f282468827654c2b3769b3378c087
[ "BSD-3-Clause" ]
6
2016-11-14T10:13:35.000Z
2021-01-23T15:29:53.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import android_commands import logging import multiprocessing from test_result import TestResults def _ShardedTestRunnable(test): """Standalone function needed by multiprocessing.Pool.""" log_format = '[' + test.device + '] # %(asctime)-15s: %(message)s' if logging.getLogger().handlers: logging.getLogger().handlers[0].setFormatter(logging.Formatter(log_format)) else: logging.basicConfig(format=log_format) # Handle SystemExit here since python has a bug to exit current process try: return test.Run() except SystemExit: return TestResults() def SetTestsContainer(tests_container): """Sets tests container. multiprocessing.Queue can't be pickled across processes, so we need to set this as a 'global', per process, via multiprocessing.Pool. """ BaseTestSharder.tests_container = tests_container class BaseTestSharder(object): """Base class for sharding tests across multiple devices. Args: attached_devices: A list of attached devices. """ # See more in SetTestsContainer. tests_container = None def __init__(self, attached_devices): self.attached_devices = attached_devices self.retries = 1 self.tests = [] def CreateShardedTestRunner(self, device, index): """Factory function to create a suite-specific test runner. Args: device: Device serial where this shard will run index: Index of this device in the pool. Returns: An object of BaseTestRunner type (that can provide a "Run()" method). """ pass def SetupSharding(self, tests): """Called before starting the shards.""" pass def OnTestsCompleted(self, test_runners, test_results): """Notifies that we completed the tests.""" pass def RunShardedTests(self): """Runs the tests in all connected devices. Returns: A TestResults object. """ logging.warning('*' * 80) logging.warning('Sharding in ' + str(len(self.attached_devices)) + ' devices.') logging.warning('Note that the output is not synchronized.') logging.warning('Look for the "Final result" banner in the end.') logging.warning('*' * 80) final_results = TestResults() for retry in xrange(self.retries): logging.warning('Try %d of %d', retry + 1, self.retries) self.SetupSharding(self.tests) test_runners = [] for index, device in enumerate(self.attached_devices): logging.warning('*' * 80) logging.warning('Creating shard %d for %s', index, device) logging.warning('*' * 80) test_runner = self.CreateShardedTestRunner(device, index) test_runners += [test_runner] logging.warning('Starting...') pool = multiprocessing.Pool(len(self.attached_devices), SetTestsContainer, [BaseTestSharder.tests_container]) # map can't handle KeyboardInterrupt exception. It's a python bug. # So use map_async instead. async_results = pool.map_async(_ShardedTestRunnable, test_runners) results_lists = async_results.get(999999) test_results = TestResults.FromTestResults(results_lists) # Re-check the attached devices for some devices may # become offline retry_devices = set(android_commands.GetAttachedDevices()) # Remove devices that had exceptions. retry_devices -= TestResults.DeviceExceptions(results_lists) # Retry on devices that didn't have any exception. self.attached_devices = list(retry_devices) if (retry == self.retries - 1 or len(self.attached_devices) == 0): all_passed = final_results.ok + test_results.ok final_results = test_results final_results.ok = all_passed break else: final_results.ok += test_results.ok self.tests = [] for t in test_results.GetAllBroken(): self.tests += [t.name] if not self.tests: break self.OnTestsCompleted(test_runners, final_results) return final_results
33.943548
79
0.680209
6b4657d6104da5a8c7933b5450c48d240c01eec3
718
py
Python
incubation-python/screenmanager/screen_manager.py
yk0242/incubation
f714ed8172aa290d3f13ff8b7f09f888a5b33640
[ "MIT" ]
1
2018-01-15T09:21:29.000Z
2018-01-15T09:21:29.000Z
incubation-python/screenmanager/screen_manager.py
FredCoder/incubation
93e2aba555e3d3a9c71739201f2ea0eb475c31dd
[ "MIT" ]
19
2015-04-14T15:41:58.000Z
2017-09-23T08:08:31.000Z
incubation-python/screenmanager/screen_manager.py
FredCoder/incubation
93e2aba555e3d3a9c71739201f2ea0eb475c31dd
[ "MIT" ]
2
2016-01-05T09:21:28.000Z
2019-03-20T11:41:45.000Z
# -*- coding: utf-8 -*- # test using kivy to transition between different screens # cf https://kivy.org/docs/api-kivy.uix.screenmanager.html from kivy.app import App from kivy.uix.screenmanager import ScreenManager, NoTransition # --- import screens for tops of subsystems to be used here --- import b_system_screen import shutdown_screen # --- # --- add screens to sm, the first being the top screen --- sm = ScreenManager(transition=NoTransition()) sm.add_widget(b_system_screen.SystemScreen(name="sys-top")) sm.add_widget(shutdown_screen.ShutdownScreen(name="sys-shutdown")) # --- class ShutdownScreenApp(App): def build(self): return sm if __name__ == "__main__": ShutdownScreenApp().run()
25.642857
66
0.735376
e77d2d15b328cdfd106ff6ac61f7933b60f2e580
12,506
py
Python
object_detection_metrics/category.py
tetutaro/object_detection_metrics
b0b003ff3752bfd98b24614bb485cee652a1e863
[ "MIT" ]
2
2021-03-21T10:57:36.000Z
2021-06-09T11:34:59.000Z
object_detection_metrics/category.py
tetutaro/object_detection_metrics
b0b003ff3752bfd98b24614bb485cee652a1e863
[ "MIT" ]
null
null
null
object_detection_metrics/category.py
tetutaro/object_detection_metrics
b0b003ff3752bfd98b24614bb485cee652a1e863
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import annotations from collections import defaultdict import numpy as np class Category(object): '''the basis of evaluation per category id Attributes: category_id (int): category id of detected object n_true (int): the number of ground truth bounding boxes n_pred (int): the number of predicted bounding boxes n_img (int): the number of images which has bouding box of the category id (either ground truth or prediction) tps (Dict[int, List[np.ndarray]]): True-Positives (True-Positives and confidence score) per IoU threshold. the values of key are int(threshold * 100). value 100 of key means IoU=0.50:0.95:0.05 aps (Dict[int, float]): Average Precisions per IoU threshold. the values of key are int(threshold * 100). value 100 of key means IoU=0.50:0.95:0.05 ''' def __init__( self: Category, category_id: int, ) -> None: '''initialize function of Category Args: category_id (int): category id of detected object ''' # store given values self.category_id = category_id # initialize internal attributes self.n_true = 0 self.n_pred = 0 self.n_img = 0 self.tps = defaultdict(list) self.aps = defaultdict(float) return @staticmethod def calc_iou(true: np.ndarray, pred: np.ndarray) -> np.ndarray: '''calculate IoU (Intersection of Union) * calc IoU of bounding boxes (ground truth and prediction) at once * If number of prediction is N and number of ground truth is M, this function produces N x M matrix (IoU matrix) * bounding boxes must be written as (min_x, min_y, width, height) Args: true (np.ndarray): bounding boxes of ground truth (M x 4) pred (np.ndarray): bounding boxes of prediction (N x 4) Returns: np.ndarray: IoU matrix (N x M) ''' assert len(true.shape) == len(pred.shape) == 2 assert true.shape[1] == pred.shape[1] == 4 # convert xywh -> xyxy true_xyxy = true.copy() true_xyxy[:, 2:4] += true[:, 0:2] pred_xyxy = pred.copy() pred_xyxy[:, 2:4] += pred[:, 0:2] # expand bouding boxes to N x M x 4 ex_like = np.zeros((pred.shape[0], true.shape[0], pred.shape[1])) ex_true = np.full_like( ex_like, true_xyxy[np.newaxis, :, :], dtype=np.float ) ex_pred = np.full_like( ex_like, pred_xyxy[:, np.newaxis, :], dtype=np.float ) # calc the area of bouding boxes area_true = ( ex_true[:, :, 2] - ex_true[:, :, 0] ) * ( ex_true[:, :, 3] - ex_true[:, :, 1] ) area_pred = ( ex_pred[:, :, 2] - ex_pred[:, :, 0] ) * ( ex_pred[:, :, 3] - ex_pred[:, :, 1] ) # calc intersections between ground truths and predictions left_ups = np.maximum(ex_true[:, :, :2], ex_pred[:, :, :2]) right_downs = np.minimum(ex_true[:, :, 2:], ex_pred[:, :, 2:]) intersections = np.maximum(right_downs - left_ups, 0.0) # calc area of intersection and union area_inter = intersections[:, :, 0] * intersections[:, :, 1] area_union = area_true + area_pred - area_inter # calc IoU and return it return np.maximum( 1.0 * area_inter / area_union, np.finfo(np.float).eps ) @staticmethod def calc_tp(iou: np.ndarray, threshold: float) -> np.ndarray: '''calculate True-Positives from IoU matrix * iou matrix represents IoU between ground truths and predictions * the shape of iou matrix (N x M) shows # of prediction is N and # of ground truth is M * predictions of iou matrix has been sorted in descending order of confidence score * this function produces N x 1 matrix and its values are 0 or 1 * 1 means that its prediction is True-Positive and 0 means that its prediction is False-Positive * threshold is the minimum IoU that the prediction considers to be true * the ground truth is assigned from the prediction which has higher confidence score * the ground truth which has the highest IoU (and >= threshold) among all (the rest) ground truths is assigned to the prediction * the ground truth once assigned to the prediction is not assigned to other predictions * therefore, sum of # of True-Positives is less than or equal to # of ground truths Args: iou (np.ndarray): IoU matrix (N x M) threshold (float): IoU threshold Returns: np.ndarray: True-Positives (N x 1) ''' masked = np.where(iou >= threshold, iou, 0) for i in range(iou.shape[0]): if masked[i, :].max() <= 0: continue ind = np.argmax(masked[i, :]) masked[i, :] = 0 masked[:, ind] = 0 masked[i, ind] = 1 return np.where(masked > 0, 1, 0).sum(axis=1)[:, np.newaxis] def append( self: Category, true: np.ndarray, pred: np.ndarray ) -> None: '''calc the basis of evaluation for each category id * store # of ground truths, predictions * calc IoU between ground truths and predictions * calc True-Positives for each IoU threshold * store it to self.tps * bouding boxes of prediction are sorted in descending order of confidence score at Prediction.to_ndarray() Args: true (np.ndarray): bounding boxes of ground truth (M x 4) pred (np.ndarray): bounding boxes of prediction (N x 5) (pred[:, 4] is a list of confidence scores) ''' assert true.shape[0] > 0 or pred.shape[0] > 0 # store # of ground truths, predictions self.n_true += true.shape[0] self.n_pred += pred.shape[0] self.n_img += 1 # if # of predictions == 0, just count up # of ground truth if pred.shape[0] == 0: return # if # of ground truth == 0, all predictions are False-Positive if true.shape[0] == 0: for i in range(10): th_ind = 50 + (i * 5) tp = np.zeros((pred.shape[0], 1), dtype=np.int) tp = np.concatenate([tp, pred[:, 4:5]], axis=1) self.tps[th_ind].append(tp) return # calc IoU between ground truths and predictions iou = self.calc_iou(true=true[:, :4], pred=pred[:, :4]) # calc True-Positives for each IoU threshold for i in range(10): threshold = 0.5 + (i * 0.05) th_ind = 50 + (i * 5) # calc True-Positives at the IoU threshold tp = self.calc_tp(iou=iou, threshold=threshold) ntp = tp.sum() assert ntp <= true.shape[0] # unite True-Positives and confidence score tp = np.concatenate([tp, pred[:, 4:5]], axis=1) # store it self.tps[th_ind].append(tp) return @staticmethod def calc_auc(x: np.ndarray, y: np.ndarray) -> float: '''calculate the area of interpolated curve Args: x (np.ndarray): x-axis of interpolated curve. to calc Average Precision, x is Recall. to calc Average Recall, x is Precision. y (np.ndarray): y-axis of interpolated curve. to calc Average Precision, y is Precision. to calc Average Recall, y is Recall. ''' area_points = list() tmp_points = list(zip(x, y)) key_point = tmp_points[0] # select the points to calc the area(area_points) from all points # == interpolating the Precision-Recall/Recall-Precision curve if len(tmp_points) == 1: area_points.append(key_point) else: for i, tmp_point in enumerate(tmp_points[1:]): if tmp_point[1] > key_point[1]: # tmp_y > key_y if tmp_point[0] < key_point[0]: # tmp_x < key_x and tmp_y > key_y # add key_point area_points.append(key_point) # update key_point = tmp_point if i == len(tmp_points) - 2: # the last tmp_point # add key_point area_points.append(key_point) # calc the area under the interpolated curve auc = 0 base_x = 0 for area_point in area_points[::-1]: auc += (area_point[0] - base_x) * area_point[1] base_x = area_point[0] return auc def calc_ap(self: Category, tps: np.ndarray) -> float: '''calculate Average Precision Args: tps (np.ndarray): True-Positives and confidence score (N x 2). tps[:, 0] is True-Positive. tps[:, 1] is confidence score. it is just a concatenated value from multiple images and so it has not been sorted by confidence score. Returns: float: Average Precision ''' # sort in descending order of confidence score tps = tps[np.argsort(tps[:, 1])[::-1]] # calc accumulated True-Positives acc_tp = np.cumsum(tps[:, 0]) # calc Precision and Recall precision = acc_tp / np.array(list(range(1, self.n_pred + 1))) recall = acc_tp / self.n_true # calc Average Precision and Average Recall ap = self.calc_auc(x=recall[::-1], y=precision[::-1]) return ap def accumulate(self: Category) -> None: '''calc Average Precision of each IoU threshold for each category id * calc Average Precisions for each IoU threshold * store it to self.aps * calc Average Precision of IoU=0.50:0.95:0.05 * store it to self.aps, too ''' # if # of ground truths == 0, Average Precision is 0 obviously if self.n_true == 0: for i in range(10): th_ind = 50 + (i * 5) self.aps[th_ind] = 0.0 self.aps[100] = 0.0 return aps_all = list() # calc Average Precision for each IoU threshold for i in range(10): # get tps(True-Positives and confidence score) th_ind = 50 + (i * 5) tps = self.tps[th_ind] # if # of predictions == 0, Average Precision is 0 obviously if len(tps) == 0: self.aps[th_ind] = 0.0 aps_all.append(0.0) continue # unite tps(True-Positives and confidence score) of all images tps = np.concatenate(tps, axis=0) # calc Average Precision ap = self.calc_ap(tps=tps) # store it self.aps[th_ind] = ap aps_all.append(ap) # calc Average Precision of IoU=0.50:0.95:0.05 and store it self.aps[100] = np.array(aps_all).mean() return class CategoryTotal(Category): '''class to calc micro mean Average Precision Attributes: n_true (int): the number of ground truth bounding boxes n_pred (int): the number of predicted bounding boxes n_img (int): the number of images tps (Dict[int, List[np.ndarray]]): True-Positives (True-Positives and confidence score) per IoU threshold. the values of key are int(threshold * 100). value 100 of key means IoU=0.50:0.95:0.05 aps (Dict[int, float]): micro mean Average Precisions per IoU threshold. the values of key are int(threshold * 100). value 100 of key means IoU=0.50:0.95:0.05 ''' def __init__(self: CategoryTotal): '''initialize function of TotalCategories class ''' self.n_true = 0 self.n_pred = 0 self.n_img = 0 self.tps = defaultdict(list) self.aps = defaultdict(float) return
38.361963
76
0.551655
c5be495fc1db83f6003233042814e93e6d6f115f
2,609
py
Python
ppfa/selenium_tests/management/commands/runtests.py
Goldcap/django-selenium-testing
ad6fc09eb4fd8a54d0532c4478add0753ead1d96
[ "MIT" ]
null
null
null
ppfa/selenium_tests/management/commands/runtests.py
Goldcap/django-selenium-testing
ad6fc09eb4fd8a54d0532c4478add0753ead1d96
[ "MIT" ]
null
null
null
ppfa/selenium_tests/management/commands/runtests.py
Goldcap/django-selenium-testing
ad6fc09eb4fd8a54d0532c4478add0753ead1d96
[ "MIT" ]
null
null
null
import sys import os.path import importlib from inspect import getmembers, isclass from collections import defaultdict from optparse import make_option from django.utils import timezone from django.core.management.base import BaseCommand, CommandError from django.contrib.contenttypes.models import ContentType from django.conf import settings from django.db.models.base import ModelBase from selenium import webdriver from selenium.webdriver.common.keys import Keys from operis.log import log from selenium_tests.models import PpfaTest, PpfaTestRun #This command takes an input table of artifacts, of a specific format, #And ensures that image attatchments for each artifact in the table are created #Then sets those images up to be parsed by the IKGEN.py class Command(BaseCommand): help = 'Selenium Test Runner' logger = None """ option_list = BaseCommand.option_list + ( make_option('--regenerate', action='store_true', dest='regenerate', default=False, help='Wipe Prior instances'), ) """ def handle(self, *args, **options): self.logger = log( self ) self.logger.log("Starting Tests for %s",["Python"],"info") tests = PpfaTest.objects.all() for test in tests: self.logger.log("Found Test %s",[test.name],"debug") run = PpfaTestRun.objects.create(ppfa_test=test, date_created=timezone.now() ) thetest = "selenium_tests.tests.%s" % test.location module = importlib.import_module(thetest) for name, obj in getmembers(module, lambda member: isclass(member) and member.__module__ == thetest): self.logger.log("Found Test Class %s",[name],"notice") try: aclass = getattr(module,name) object = aclass() object.logger = self.logger object.testObject = test object.runObject = run object.test() except: pass self.logger.log("Had Errors: %s",[len(object.errors)],"notice") if (len(object.errors) == 0): test.status = True run.status = True run.save() test.last_run = run.date_created test.save() #self.logger.log("No Test Found in %s",[name],"error")
35.739726
113
0.576466
ceea16883e15eaaf54c1f69452cbe348041c8964
13,113
py
Python
dataloader/pc_dataset.py
msc9533/Cylinder3D
4441da83df3e897dd78a89383684c87f9644ed8d
[ "Apache-2.0" ]
2
2021-02-15T12:25:33.000Z
2021-04-13T13:11:38.000Z
dataloader/pc_dataset.py
msc9533/Cylinder3D
4441da83df3e897dd78a89383684c87f9644ed8d
[ "Apache-2.0" ]
1
2022-03-11T10:27:20.000Z
2022-03-11T11:52:29.000Z
dataloader/pc_dataset.py
msc9533/Cylinder3D
4441da83df3e897dd78a89383684c87f9644ed8d
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # author: Xinge # @file: pc_dataset.py import os import numpy as np from torch.utils import data import yaml import pickle REGISTERED_PC_DATASET_CLASSES = {} def register_dataset(cls, name=None): global REGISTERED_PC_DATASET_CLASSES if name is None: name = cls.__name__ assert name not in REGISTERED_PC_DATASET_CLASSES, f"exist class: {REGISTERED_PC_DATASET_CLASSES}" REGISTERED_PC_DATASET_CLASSES[name] = cls return cls def get_pc_model_class(name): global REGISTERED_PC_DATASET_CLASSES assert name in REGISTERED_PC_DATASET_CLASSES, f"available class: {REGISTERED_PC_DATASET_CLASSES}" return REGISTERED_PC_DATASET_CLASSES[name] @register_dataset class SemKITTI_demo(data.Dataset): def __init__(self, data_path, imageset='demo', return_ref=True, label_mapping="semantic-kitti.yaml", demo_label_path=None): with open(label_mapping, 'r') as stream: semkittiyaml = yaml.safe_load(stream) self.learning_map = semkittiyaml['learning_map'] self.imageset = imageset self.return_ref = return_ref self.im_idx = [] self.im_idx += absoluteFilePaths(data_path) self.label_idx = [] if self.imageset == 'val': print(demo_label_path) self.label_idx += absoluteFilePaths(demo_label_path) def __len__(self): 'Denotes the total number of samples' return len(self.im_idx) def __getitem__(self, index): raw_data = np.fromfile(self.im_idx[index], dtype=np.float32).reshape((-1, 4)) if self.imageset == 'demo': annotated_data = np.expand_dims(np.zeros_like(raw_data[:, 0], dtype=int), axis=1) elif self.imageset == 'val': annotated_data = np.fromfile(self.label_idx[index], dtype=np.uint32).reshape((-1, 1)) annotated_data = annotated_data & 0xFFFF # delete high 16 digits binary annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) data_tuple = (raw_data[:, :3], annotated_data.astype(np.uint8)) if self.return_ref: data_tuple += (raw_data[:, 3],) return data_tuple @register_dataset class SemKITTI_sk(data.Dataset): def __init__(self, data_path, imageset='train', return_ref=False, label_mapping="semantic-kitti.yaml", nusc=None): self.return_ref = return_ref with open(label_mapping, 'r') as stream: semkittiyaml = yaml.safe_load(stream) self.learning_map = semkittiyaml['learning_map'] self.imageset = imageset if imageset == 'train': split = semkittiyaml['split']['train'] elif imageset == 'val': split = semkittiyaml['split']['valid'] elif imageset == 'test': split = semkittiyaml['split']['test'] else: raise Exception('Split must be train/val/test') self.im_idx = [] for i_folder in split: self.im_idx += absoluteFilePaths('/'.join([data_path, str(i_folder).zfill(2), 'velodyne'])) def __len__(self): 'Denotes the total number of samples' return len(self.im_idx) def __getitem__(self, index): raw_data = np.fromfile(self.im_idx[index], dtype=np.float32).reshape((-1, 4)) if self.imageset == 'test': annotated_data = np.expand_dims(np.zeros_like(raw_data[:, 0], dtype=int), axis=1) else: annotated_data = np.fromfile(self.im_idx[index].replace('velodyne', 'labels')[:-3] + 'label', dtype=np.uint32).reshape((-1, 1)) annotated_data = annotated_data & 0xFFFF # delete high 16 digits binary annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) data_tuple = (raw_data[:, :3], annotated_data.astype(np.uint8)) if self.return_ref: data_tuple += (raw_data[:, 3],) return data_tuple @register_dataset class SemKITTI_nusc(data.Dataset): def __init__(self, data_path, imageset='train', return_ref=False, label_mapping="nuscenes.yaml", nusc=None): self.return_ref = return_ref with open(imageset, 'rb') as f: data = pickle.load(f) with open(label_mapping, 'r') as stream: nuscenesyaml = yaml.safe_load(stream) self.learning_map = nuscenesyaml['learning_map'] self.nusc_infos = data['infos'] self.data_path = data_path self.nusc = nusc def __len__(self): 'Denotes the total number of samples' return len(self.nusc_infos) def __getitem__(self, index): info = self.nusc_infos[index] lidar_path = info['lidar_path'][16:] lidar_sd_token = self.nusc.get('sample', info['token'])['data']['LIDAR_TOP'] lidarseg_labels_filename = os.path.join(self.nusc.dataroot, self.nusc.get('lidarseg', lidar_sd_token)['filename']) points_label = np.fromfile(lidarseg_labels_filename, dtype=np.uint8).reshape([-1, 1]) points_label = np.vectorize(self.learning_map.__getitem__)(points_label) points = np.fromfile(os.path.join(self.data_path, lidar_path), dtype=np.float32, count=-1).reshape([-1, 5]) data_tuple = (points[:, :3], points_label.astype(np.uint8)) if self.return_ref: data_tuple += (points[:, 3],) return data_tuple def absoluteFilePaths(directory): for dirpath, _, filenames in os.walk(directory): filenames.sort() for f in filenames: yield os.path.abspath(os.path.join(dirpath, f)) def SemKITTI2train(label): if isinstance(label, list): return [SemKITTI2train_single(a) for a in label] else: return SemKITTI2train_single(label) def SemKITTI2train_single(label): remove_ind = label == 0 label -= 1 label[remove_ind] = 255 return label from os.path import join @register_dataset class SemKITTI_sk_multiscan(data.Dataset): def __init__(self, data_path, imageset='train',return_ref=False, label_mapping="semantic-kitti-multiscan.yaml"): self.return_ref = return_ref with open(label_mapping, 'r') as stream: semkittiyaml = yaml.safe_load(stream) self.learning_map = semkittiyaml['learning_map'] self.imageset = imageset self.data_path = data_path if imageset == 'train': split = semkittiyaml['split']['train'] elif imageset == 'val': split = semkittiyaml['split']['valid'] elif imageset == 'test': split = semkittiyaml['split']['test'] else: raise Exception('Split must be train/val/test') multiscan = 2 # additional two frames are fused with target-frame. Hence, 3 point clouds in total self.multiscan = multiscan self.im_idx = [] self.calibrations = [] self.times = [] self.poses = [] self.load_calib_poses() for i_folder in split: self.im_idx += absoluteFilePaths('/'.join([data_path, str(i_folder).zfill(2), 'velodyne'])) def __len__(self): 'Denotes the total number of samples' return len(self.im_idx) def load_calib_poses(self): """ load calib poses and times. """ ########### # Load data ########### self.calibrations = [] self.times = [] self.poses = [] for seq in range(0, 22): seq_folder = join(self.data_path, str(seq).zfill(2)) # Read Calib self.calibrations.append(self.parse_calibration(join(seq_folder, "calib.txt"))) # Read times self.times.append(np.loadtxt(join(seq_folder, 'times.txt'), dtype=np.float32)) # Read poses poses_f64 = self.parse_poses(join(seq_folder, 'poses.txt'), self.calibrations[-1]) self.poses.append([pose.astype(np.float32) for pose in poses_f64]) def parse_calibration(self, filename): """ read calibration file with given filename Returns ------- dict Calibration matrices as 4x4 numpy arrays. """ calib = {} calib_file = open(filename) for line in calib_file: key, content = line.strip().split(":") values = [float(v) for v in content.strip().split()] pose = np.zeros((4, 4)) pose[0, 0:4] = values[0:4] pose[1, 0:4] = values[4:8] pose[2, 0:4] = values[8:12] pose[3, 3] = 1.0 calib[key] = pose calib_file.close() return calib def parse_poses(self, filename, calibration): """ read poses file with per-scan poses from given filename Returns ------- list list of poses as 4x4 numpy arrays. """ file = open(filename) poses = [] Tr = calibration["Tr"] Tr_inv = np.linalg.inv(Tr) for line in file: values = [float(v) for v in line.strip().split()] pose = np.zeros((4, 4)) pose[0, 0:4] = values[0:4] pose[1, 0:4] = values[4:8] pose[2, 0:4] = values[8:12] pose[3, 3] = 1.0 poses.append(np.matmul(Tr_inv, np.matmul(pose, Tr))) return poses def fuse_multi_scan(self, points, pose0, pose): # pose = poses[0][idx] hpoints = np.hstack((points[:, :3], np.ones_like(points[:, :1]))) # new_points = hpoints.dot(pose.T) new_points = np.sum(np.expand_dims(hpoints, 2) * pose.T, axis=1) new_points = new_points[:, :3] new_coords = new_points - pose0[:3, 3] # new_coords = new_coords.dot(pose0[:3, :3]) new_coords = np.sum(np.expand_dims(new_coords, 2) * pose0[:3, :3], axis=1) new_coords = np.hstack((new_coords, points[:, 3:])) return new_coords def __getitem__(self, index): raw_data = np.fromfile(self.im_idx[index], dtype=np.float32).reshape((-1, 4)) origin_len = len(raw_data) if self.imageset == 'test': annotated_data = np.expand_dims(np.zeros_like(raw_data[:, 0], dtype=int), axis=1) else: annotated_data = np.fromfile(self.im_idx[index].replace('velodyne', 'labels')[:-3] + 'label', dtype=np.int32).reshape((-1, 1)) annotated_data = annotated_data & 0xFFFF # delete high 16 digits binary # annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) number_idx = int(self.im_idx[index][-10:-4]) dir_idx = int(self.im_idx[index][-22:-20]) pose0 = self.poses[dir_idx][number_idx] if number_idx - self.multiscan >= 0: for fuse_idx in range(self.multiscan): plus_idx = fuse_idx + 1 pose = self.poses[dir_idx][number_idx - plus_idx] newpath2 = self.im_idx[index][:-10] + str(number_idx - plus_idx).zfill(6) + self.im_idx[index][-4:] raw_data2 = np.fromfile(newpath2, dtype=np.float32).reshape((-1, 4)) if self.imageset == 'test': annotated_data2 = np.expand_dims(np.zeros_like(raw_data2[:, 0], dtype=int), axis=1) else: annotated_data2 = np.fromfile(newpath2.replace('velodyne', 'labels')[:-3] + 'label', dtype=np.int32).reshape((-1, 1)) annotated_data2 = annotated_data2 & 0xFFFF # delete high 16 digits binary raw_data2 = self.fuse_multi_scan(raw_data2, pose0, pose) if len(raw_data2) != 0: raw_data = np.concatenate((raw_data, raw_data2), 0) annotated_data = np.concatenate((annotated_data, annotated_data2), 0) annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) data_tuple = (raw_data[:, :3], annotated_data.astype(np.uint8)) if self.return_ref: data_tuple += (raw_data[:, 3], origin_len) # origin_len is used to indicate the length of target-scan return data_tuple # load Semantic KITTI class info def get_SemKITTI_label_name(label_mapping): with open(label_mapping, 'r') as stream: semkittiyaml = yaml.safe_load(stream) SemKITTI_label_name = dict() for i in sorted(list(semkittiyaml['learning_map'].keys()))[::-1]: SemKITTI_label_name[semkittiyaml['learning_map'][i]] = semkittiyaml['labels'][i] return SemKITTI_label_name def get_nuScenes_label_name(label_mapping): with open(label_mapping, 'r') as stream: nuScenesyaml = yaml.safe_load(stream) nuScenes_label_name = dict() for i in sorted(list(nuScenesyaml['learning_map'].keys()))[::-1]: val_ = nuScenesyaml['learning_map'][i] nuScenes_label_name[val_] = nuScenesyaml['labels_16'][val_] return nuScenes_label_name
35.633152
116
0.603371
e4609305a33f4cbe54e4d101234c42087475214b
1,091
py
Python
setup.py
eyeseast/wumb-to-sqlite
c8ea909b4bf90cadc6ef60b3cd548246a97933c7
[ "Apache-2.0" ]
2
2020-10-15T20:58:00.000Z
2020-10-16T13:35:13.000Z
setup.py
eyeseast/wumb-to-sqlite
c8ea909b4bf90cadc6ef60b3cd548246a97933c7
[ "Apache-2.0" ]
4
2020-10-12T15:45:28.000Z
2020-10-16T14:00:37.000Z
setup.py
eyeseast/wumb-to-sqlite
c8ea909b4bf90cadc6ef60b3cd548246a97933c7
[ "Apache-2.0" ]
null
null
null
from setuptools import setup import os VERSION = "0.1" def get_long_description(): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "README.md"), ) as fp: return fp.read() setup( name="wumb-to-sqlite", description="Scrape WUMB playlists to SQLite", long_description=get_long_description(), long_description_content_type="text/markdown", author="Chris Amico", url="https://github.com/eyeseast/wumb-to-sqlite", project_urls={ "Issues": "https://github.com/eyeseast/wumb-to-sqlite/issues", "CI": "https://github.com/eyeseast/wumb-to-sqlite/actions", "Changelog": "https://github.com/eyeseast/wumb-to-sqlite/releases", }, license="Apache License, Version 2.0", version=VERSION, packages=["wumb_to_sqlite"], entry_points=""" [console_scripts] wumb-to-sqlite=wumb_to_sqlite.cli:cli """, install_requires=["click", "beautifulsoup4", "httpx", "pytz", "sqlite-utils"], extras_require={"test": ["pytest"]}, tests_require=["wumb-to-sqlite[test]"], )
29.486486
82
0.654445
0f88066befb88ec5f7060c44b0d2dfbf2b36b17c
188
py
Python
Examples/FactorialExample.py
SymmetricChaos/FiniteFields
65258e06b7f04ce15223c1bc0c2384ef5e9cec1a
[ "MIT" ]
1
2021-08-22T15:03:59.000Z
2021-08-22T15:03:59.000Z
Examples/FactorialExample.py
SymmetricChaos/NumberTheory
65258e06b7f04ce15223c1bc0c2384ef5e9cec1a
[ "MIT" ]
null
null
null
Examples/FactorialExample.py
SymmetricChaos/NumberTheory
65258e06b7f04ce15223c1bc0c2384ef5e9cec1a
[ "MIT" ]
null
null
null
from Combinatorics import falling_factorial, rising_factorial x = 5 n = 5 print(f"falling_fac({x},{n}) = {falling_factorial(x,n)}") print(f"rising_fac({x},{n}) = {rising_factorial(x,n)}")
31.333333
61
0.712766
1d656fad86ca3d019c99b4bea726e6df3734ec85
8,527
py
Python
src/confluent/azext_confluent/vendored_sdks/confluent/aio/operations/_marketplace_agreement_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
2
2021-06-05T17:51:26.000Z
2021-11-17T11:17:56.000Z
src/confluent/azext_confluent/vendored_sdks/confluent/aio/operations/_marketplace_agreement_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
3
2020-05-27T20:16:26.000Z
2020-07-23T19:46:49.000Z
src/confluent/azext_confluent/vendored_sdks/confluent/aio/operations/_marketplace_agreement_operations.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
5
2020-09-08T22:46:48.000Z
2020-11-08T14:54:35.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class MarketplaceAgreementOperations: """MarketplaceAgreementOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~confluent_management_client.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs ) -> AsyncIterable["models.ConfluentAgreementResourceListResponse"]: """List Confluent marketplace agreements in the subscription. List Confluent marketplace agreements in the subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ConfluentAgreementResourceListResponse or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~confluent_management_client.models.ConfluentAgreementResourceListResponse] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ConfluentAgreementResourceListResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ConfluentAgreementResourceListResponse', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ResourceProviderDefaultErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Confluent/agreements'} # type: ignore async def create( self, properties: Optional["models.ConfluentAgreementProperties"] = None, **kwargs ) -> "models.ConfluentAgreementResource": """Create Confluent Marketplace agreement in the subscription. Create Confluent Marketplace agreement in the subscription. :param properties: Represents the properties of the resource. :type properties: ~confluent_management_client.models.ConfluentAgreementProperties :keyword callable cls: A custom type or function that will be passed the direct response :return: ConfluentAgreementResource, or the result of cls(response) :rtype: ~confluent_management_client.models.ConfluentAgreementResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ConfluentAgreementResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) body = models.ConfluentAgreementResource(properties=properties) api_version = "2020-03-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if body is not None: body_content = self._serialize.body(body, 'ConfluentAgreementResource') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ResourceProviderDefaultErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('ConfluentAgreementResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Confluent/agreements/default'} # type: ignore
47.904494
133
0.677495
383197e41e6220f2efe2beb00311ff0dae2083a5
5,059
bzl
Python
tools/ts-api-guardian/index.bzl
ddeka2910/angular
39573769c698409b6a4279acec1a86e0686740a4
[ "MIT" ]
2
2018-02-26T04:06:30.000Z
2020-02-12T21:59:09.000Z
tools/ts-api-guardian/index.bzl
ddeka2910/angular
39573769c698409b6a4279acec1a86e0686740a4
[ "MIT" ]
369
2021-01-20T05:54:20.000Z
2022-03-25T21:49:16.000Z
tools/ts-api-guardian/index.bzl
ddeka2910/angular
39573769c698409b6a4279acec1a86e0686740a4
[ "MIT" ]
1
2017-02-21T00:57:05.000Z
2017-02-21T00:57:05.000Z
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs ts_api_guardian """ load("@build_bazel_rules_nodejs//:index.bzl", "nodejs_binary", "nodejs_test") COMMON_MODULE_IDENTIFIERS = ["angular", "jasmine", "protractor", "Symbol"] def ts_api_guardian_test( name, golden, actual, data = [], strip_export_pattern = [], allow_module_identifiers = COMMON_MODULE_IDENTIFIERS, use_angular_tag_rules = True, **kwargs): """Runs ts_api_guardian """ data += [ # Locally we need to add the TS build target # But it will replaced to @npm//ts-api-guardian when publishing "@angular//tools/ts-api-guardian:lib", # BEGIN-INTERNAL "@angular//tools/ts-api-guardian:bin", # END-INTERNAL # The below are required during runtime "@npm//chalk", "@npm//diff", "@npm//minimist", "@npm//typescript", ] args = [ # Needed so that node doesn't walk back to the source directory. # From there, the relative imports would point to .ts files. "--node_options=--preserve-symlinks", # Since version 3, monkey-patch the implementation of require() in NodeJS is opt-in # https://github.com/bazelbuild/rules_nodejs/wiki#--bazel_patch_module_resolver-now-defaults-to-false-2324 "--bazel_patch_module_resolver", ] for i in strip_export_pattern: # Quote the regexp before passing it via the command line. quoted_pattern = "\"%s\"" % i args += ["--stripExportPattern", quoted_pattern] for i in allow_module_identifiers: args += ["--allowModuleIdentifiers", i] if use_angular_tag_rules: args += ["--useAngularTagRules"] nodejs_test( name = name, data = data, entry_point = Label("@angular//tools/ts-api-guardian:bin/ts-api-guardian"), tags = kwargs.pop("tags", []) + ["api_guard"], templated_args = args + ["--verify", golden, actual], **kwargs ) nodejs_binary( name = name + ".accept", testonly = True, data = data, entry_point = Label("@angular//tools/ts-api-guardian:bin/ts-api-guardian"), tags = kwargs.pop("tags", []) + ["api_guard"], templated_args = args + ["--out", golden, actual], **kwargs ) def ts_api_guardian_test_npm_package( name, goldenDir, actualDir, data = [], strip_export_pattern = ["^ɵ(?!ɵdefineInjectable|ɵinject|ɵInjectableDef)"], allow_module_identifiers = COMMON_MODULE_IDENTIFIERS, use_angular_tag_rules = True, **kwargs): """Runs ts_api_guardian """ data += [ # Locally we need to add the TS build target # But it will replaced to @npm//ts-api-guardian when publishing "@angular//tools/ts-api-guardian:lib", "@angular//tools/ts-api-guardian:bin", # The below are required during runtime "@npm//chalk", "@npm//diff", "@npm//minimist", "@npm//typescript", ] args = [ # Needed so that node doesn't walk back to the source directory. # From there, the relative imports would point to .ts files. "--node_options=--preserve-symlinks", # We automatically discover the enpoints for our NPM package. "--autoDiscoverEntrypoints", ] for i in strip_export_pattern: # Quote the regexp before passing it via the command line. quoted_pattern = "\"%s\"" % i args += ["--stripExportPattern", quoted_pattern] for i in allow_module_identifiers: args += ["--allowModuleIdentifiers", i] if use_angular_tag_rules: args += ["--useAngularTagRules"] nodejs_test( name = name, data = data, entry_point = "@angular//tools/ts-api-guardian:bin/ts-api-guardian", tags = kwargs.pop("tags", []) + ["api_guard"], templated_args = args + ["--autoDiscoverEntrypoints", "--verifyDir", goldenDir, "--rootDir", "$(rlocation %s)" % actualDir], **kwargs ) nodejs_binary( name = name + ".accept", testonly = True, data = data, entry_point = "@angular//tools/ts-api-guardian:bin/ts-api-guardian", tags = kwargs.pop("tags", []) + ["api_guard"], templated_args = args + ["--autoDiscoverEntrypoints", "--outDir", goldenDir, "--rootDir", "$(rlocation %s)" % actualDir], **kwargs )
34.650685
132
0.616723
12a65c3450b774bf2f2dd40aa1ef080a980e4d82
6,822
py
Python
py/test/selenium/webdriver/common/w3c_interaction_tests.py
stevepiercy/selenium
4464ac4f8230150824f6bf2e4075cd1f53a648c7
[ "Apache-2.0" ]
4
2021-07-04T00:18:58.000Z
2021-11-17T11:10:02.000Z
py/test/selenium/webdriver/common/w3c_interaction_tests.py
stevepiercy/selenium
4464ac4f8230150824f6bf2e4075cd1f53a648c7
[ "Apache-2.0" ]
5
2021-08-21T19:28:26.000Z
2022-02-27T16:03:09.000Z
py/test/selenium/webdriver/common/w3c_interaction_tests.py
stevepiercy/selenium
4464ac4f8230150824f6bf2e4075cd1f53a648c7
[ "Apache-2.0" ]
3
2017-10-19T04:57:07.000Z
2020-12-08T19:57:45.000Z
# Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.actions.action_builder import ActionBuilder from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait def test_should_be_able_to_get_pointer_and_keyboard_inputs(driver, pages): actions = ActionBuilder(driver) pointers = actions.pointer_inputs keyboards = actions.key_inputs assert pointers is not None assert keyboards is not None @pytest.mark.xfail_firefox @pytest.mark.xfail_safari @pytest.mark.xfail_remote def testSendingKeysToActiveElementWithModifier(driver, pages): pages.load("formPage.html") e = driver.find_element(By.ID, "working") e.click() actions = ActionBuilder(driver) key_action = actions.key_action key_action.key_down(Keys.SHIFT) \ .send_keys("abc") \ .key_up(Keys.SHIFT) actions.perform() assert "ABC" == e.get_attribute('value') @pytest.mark.xfail_firefox @pytest.mark.xfail_remote def test_can_create_pause_action_on_keyboard(driver, pages): # If we don't get an error and takes less than 3 seconds to run, we are good import datetime start = datetime.datetime.now() actions1 = ActionBuilder(driver) key_actions = actions1.key_action key_actions.pause(1) actions1.perform() finish = datetime.datetime.now() assert (finish - start).seconds <= 3 # Add a filler step actions2 = ActionBuilder(driver) key_action = actions2.key_action key_action.pause() actions2.perform() @pytest.mark.xfail_firefox def test_can_create_pause_action_on_pointer(driver, pages): # If we don't get an error and takes less than 3 seconds to run, we are good import datetime start = datetime.datetime.now() actions1 = ActionBuilder(driver) key_actions = actions1.pointer_action key_actions.pause(1) actions1.perform() finish = datetime.datetime.now() assert (finish - start).seconds <= 3 # Add a filler step actions2 = ActionBuilder(driver) key_action = actions2.pointer_action key_action.pause() actions2.perform() @pytest.mark.xfail_firefox def test_can_clear_actions(driver, pages): actions = ActionBuilder(driver) actions.clear_actions() @pytest.mark.xfail_firefox def test_move_and_click(driver, pages): pages.load("javascriptPage.html") toClick = driver.find_element(By.ID, "clickField") actions = ActionBuilder(driver) pointer = actions.pointer_action pointer.move_to(toClick) \ .click() actions.perform() assert "Clicked" == toClick.get_attribute('value') @pytest.mark.xfail_firefox def testDragAndDrop(driver, pages): """Copied from org.openqa.selenium.interactions.TestBasicMouseInterface.""" element_available_timeout = 15 wait = WebDriverWait(driver, element_available_timeout) pages.load("droppableItems.html") wait.until(lambda dr: _isElementAvailable(driver, "draggable")) if not _isElementAvailable(driver, "draggable"): raise AssertionError("Could not find draggable element after 15 seconds.") toDrag = driver.find_element(By.ID, "draggable") dropInto = driver.find_element(By.ID, "droppable") actions = ActionBuilder(driver) pointer = actions.pointer_action pointer.click_and_hold(toDrag) \ .move_to(dropInto)\ .release() actions.perform() dropInto = driver.find_element(By.ID, "droppable") text = dropInto.find_element(By.TAG_NAME, "p").text assert "Dropped!" == text @pytest.mark.xfail_firefox def test_context_click(driver, pages): pages.load("javascriptPage.html") toContextClick = driver.find_element(By.ID, "doubleClickField") actions = ActionBuilder(driver) pointer = actions.pointer_action pointer.context_click(toContextClick) actions.perform() assert "ContextClicked" == toContextClick.get_attribute('value') @pytest.mark.xfail_firefox @pytest.mark.xfail_safari @pytest.mark.xfail_remote(reason="Fails on Travis") @pytest.mark.xfail_chrome(reason="Fails on Travis") def test_double_click(driver, pages): """Copied from org.openqa.selenium.interactions.TestBasicMouseInterface.""" pages.load("javascriptPage.html") toDoubleClick = driver.find_element(By.ID, "doubleClickField") actions = ActionBuilder(driver) pointer = actions.pointer_action pointer.double_click(toDoubleClick) actions.perform() assert "DoubleClicked" == toDoubleClick.get_attribute('value') @pytest.mark.xfail_firefox def test_dragging_element_with_mouse_moves_it_to_another_list(driver, pages): _performDragAndDropWithMouse(driver, pages) dragInto = driver.find_element(By.ID, "sortable1") assert 6 == len(dragInto.find_elements(By.TAG_NAME, "li")) @pytest.mark.xfail_firefox def test_dragging_element_with_mouse_fires_events(driver, pages): _performDragAndDropWithMouse(driver, pages) dragReporter = driver.find_element(By.ID, "dragging_reports") assert "Nothing happened. DragOut DropIn RightItem 3" == dragReporter.text def _performDragAndDropWithMouse(driver, pages): """Copied from org.openqa.selenium.interactions.TestBasicMouseInterface.""" pages.load("draggableLists.html") dragReporter = driver.find_element(By.ID, "dragging_reports") toDrag = driver.find_element(By.ID, "rightitem-3") dragInto = driver.find_element(By.ID, "sortable1") actions = ActionBuilder(driver) pointer = actions.pointer_action pointer.click_and_hold(toDrag) \ .move_to(driver.find_element(By.ID, "leftitem-4")) \ .move_to(dragInto) \ .release() assert "Nothing happened." == dragReporter.text actions.perform() assert "Nothing happened. DragOut" in dragReporter.text def _isElementAvailable(driver, id): """Copied from org.openqa.selenium.interactions.TestBasicMouseInterface.""" try: driver.find_element(By.ID, id) return True except Exception: return False
32.028169
82
0.737614
122036a741ff1da37293d7a35167c0a2862422de
3,638
py
Python
Python/matplotlib/plots.py
lcbendall/numerical_computing
565cde92525ea44c55abe933c6419c1543f9800b
[ "CC-BY-3.0" ]
null
null
null
Python/matplotlib/plots.py
lcbendall/numerical_computing
565cde92525ea44c55abe933c6419c1543f9800b
[ "CC-BY-3.0" ]
null
null
null
Python/matplotlib/plots.py
lcbendall/numerical_computing
565cde92525ea44c55abe933c6419c1543f9800b
[ "CC-BY-3.0" ]
1
2020-12-08T01:19:23.000Z
2020-12-08T01:19:23.000Z
import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') import matplotlib.pyplot as plt import matplotlib.widgets as wg from mpl_toolkits.mplot3d import Axes3D import numpy as np from mayavi import mlab import solutions png_size = (1024, 768) def exp_plot(): x = np.linspace(-2, 3, 501) y = np.exp(x) plt.plot(x, y) plt.savefig("exp_plot.pdf") plt.clf() def statemachine(): x = np.linspace(1, 10, 10) y = np.random.rand(10, 10) plt.cla() for n in y: plt.plot(x, n) plt.savefig("statemachine.pdf") plt.clf() def subplots(): x = np.linspace(-np.pi, np.pi, 400) y1 = np.sin(x) y2 = np.cos(x) plt.subplot(211) plt.plot(x, y1) plt.subplot(212) plt.plot(x, y2) plt.savefig("subplots.pdf") plt.clf() def sinxsiny(): n = 401 x = np.linspace(-6, 6, n) y = np.linspace(-6, 6, n) X, Y = np.meshgrid(x, y) # returns a coordinate matrix given coordinate vectors. C = np.sin(X) * np.sin(Y) plt.pcolormesh(X, Y, C, edgecolors='face', shading='flat') plt.savefig("sinxsiny.png", size=png_size) plt.clf() def pcolor2(): R = np.linspace(0, 2, 401) I = R.copy() R, I = np.meshgrid(R, I) X = R + complex(0,1)*I f = np.poly1d([1, 2, -1, 3]) Y = np.absolute(f(X)) plt.pcolormesh(R, I, Y, edgecolors='face', shading='flat') plt.savefig('pcolor2.png', size=png_size) plt.clf() def three_d_plot(): fig = plt.figure() ax = fig.gca(projection='3d') x = np.linspace(-6, 6, 301) y = x.copy() X, Y = np.meshgrid(x, y) Z = np.sin(X)*np.sin(Y) ax.plot_surface(X, Y, Z) plt.savefig("3dplot.pdf") plt.clf() def interact(): ax = plt.subplot(111) plt.subplots_adjust(bottom=.25) t = np.arange(0, 1, .001) a0, f0 = 5, 3 s = a0*np.sin(2*np.pi*f0*t) l = plt.plot(t, s)[0] plt.axis([0, 1, -10, 10]) axfreq = plt.axes([.25, .05, .65, .03]) axamp = plt.axes([.25, .1, .65, .03]) sfreq = wg.Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0) samp = wg.Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0) def update(val): amp = samp.val freq = sfreq.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) plt.draw() sfreq.on_changed(update) samp.on_changed(update) plt.savefig("interact.pdf") plt.clf() def plot3d(): num = np.pi/1000 pts = np.arange(0, 2*np.pi + num, num) x = np.cos(pts) * (1 + np.cos(pts*6)) y = np.sin(pts) * (1 + np.cos(pts*6)) z = np.sin(pts*6/11) mlab.plot3d(x, y, z) mlab.savefig("plot3d.png", size=png_size) mlab.clf() def points3d(): pts = np.linspace(0, 4 * np.pi, 30) x = np.sin(2 * pts) y = np.cos(pts) z = np.cos(2 * pts) s = 2+np.sin(pts) mlab.points3d(x, y, z, s, colormap="cool", scale_factor=.15) mlab.savefig("points3d.png", size=png_size) mlab.clf() def GrandCanyon(): f = solutions.problem8() mlab.savefig("GrandCanyon.png", size=png_size) mlab.clf() def fancymesh(): mlab.savefig('fancymesh.png', size=png_size, figure=mlab.test_fancy_mesh()) mlab.clf() def prob3_solution(): f = solutions.problem3() plt.savefig('soln3.pdf') plt.clf() def prob2_solution(): f = solutions.problem2() plt.savefig('soln2.pdf') plt.clf() if __name__ == "__main__": exp_plot() statemachine() subplots() interact() three_d_plot() sinxsiny() pcolor2() plot3d() points3d() fancymesh() GrandCanyon() prob3_solution() prob2_solution()
23.320513
85
0.575591
26f0914af0d99d6abe19ffa0702c74d57292d5e9
15,804
py
Python
urwid/treetools.py
DarkPurpleShadow/ConnectFour
af766cb0f6324c735c8c7f5f9161574859edbcdb
[ "BSD-3-Clause" ]
39
2015-04-09T12:55:25.000Z
2022-01-09T17:56:39.000Z
urwid/treetools.py
DarkPurpleShadow/ConnectFour
af766cb0f6324c735c8c7f5f9161574859edbcdb
[ "BSD-3-Clause" ]
null
null
null
urwid/treetools.py
DarkPurpleShadow/ConnectFour
af766cb0f6324c735c8c7f5f9161574859edbcdb
[ "BSD-3-Clause" ]
13
2015-12-17T21:56:26.000Z
2019-06-01T18:22:02.000Z
#!/usr/bin/python # # Generic TreeWidget/TreeWalker class # Copyright (c) 2010 Rob Lanphier # Copyright (C) 2004-2010 Ian Ward # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Urwid web site: http://excess.org/urwid/ """ Urwid tree view Features: - custom selectable widgets for trees - custom list walker for displaying widgets in a tree fashion """ import urwid from urwid.wimp import SelectableIcon class TreeWidgetError(RuntimeError): pass class TreeWidget(urwid.WidgetWrap): """A widget representing something in a nested tree display.""" indent_cols = 3 unexpanded_icon = SelectableIcon('+', 0) expanded_icon = SelectableIcon('-', 0) def __init__(self, node): self._node = node self._innerwidget = None self.is_leaf = not hasattr(node, 'get_first_child') self.expanded = True widget = self.get_indented_widget() self.__super.__init__(widget) def selectable(self): """ Allow selection of non-leaf nodes so children may be (un)expanded """ return not self.is_leaf def get_indented_widget(self): widget = self.get_inner_widget() if not self.is_leaf: widget = urwid.Columns([('fixed', 1, [self.unexpanded_icon, self.expanded_icon][self.expanded]), widget], dividechars=1) indent_cols = self.get_indent_cols() return urwid.Padding(widget, width=('relative', 100), left=indent_cols) def update_expanded_icon(self): """Update display widget text for parent widgets""" # icon is first element in columns indented widget self._w.base_widget.widget_list[0] = [ self.unexpanded_icon, self.expanded_icon][self.expanded] def get_indent_cols(self): return self.indent_cols * self.get_node().get_depth() def get_inner_widget(self): if self._innerwidget is None: self._innerwidget = self.load_inner_widget() return self._innerwidget def load_inner_widget(self): return urwid.Text(self.get_display_text()) def get_node(self): return self._node def get_display_text(self): return (self.get_node().get_key() + ": " + str(self.get_node().get_value())) def next_inorder(self): """Return the next TreeWidget depth first from this one.""" # first check if there's a child widget firstchild = self.first_child() if firstchild is not None: return firstchild # now we need to hunt for the next sibling thisnode = self.get_node() nextnode = thisnode.next_sibling() depth = thisnode.get_depth() while nextnode is None and depth > 0: # keep going up the tree until we find an ancestor next sibling thisnode = thisnode.get_parent() nextnode = thisnode.next_sibling() depth -= 1 assert depth == thisnode.get_depth() if nextnode is None: # we're at the end of the tree return None else: return nextnode.get_widget() def prev_inorder(self): """Return the previous TreeWidget depth first from this one.""" thisnode = self._node prevnode = thisnode.prev_sibling() if prevnode is not None: # we need to find the last child of the previous widget if its # expanded prevwidget = prevnode.get_widget() lastchild = prevwidget.last_child() if lastchild is None: return prevwidget else: return lastchild else: # need to hunt for the parent depth = thisnode.get_depth() if prevnode is None and depth == 0: return None elif prevnode is None: prevnode = thisnode.get_parent() return prevnode.get_widget() def keypress(self, size, key): """Handle expand & collapse requests (non-leaf nodes)""" if self.is_leaf: return key if key in ("+", "right"): self.expanded = True self.update_expanded_icon() elif key == "-": self.expanded = False self.update_expanded_icon() elif self._w.selectable(): return self.__super.keypress(size, key) else: return key def mouse_event(self, size, event, button, col, row, focus): if self.is_leaf or event != 'mouse press' or button!=1: return False if row == 0 and col == self.get_indent_cols(): self.expanded = not self.expanded self.update_expanded_icon() return True return False def first_child(self): """Return first child if expanded.""" if self.is_leaf or not self.expanded: return None else: if self._node.has_children(): firstnode = self._node.get_first_child() return firstnode.get_widget() else: return None def last_child(self): """Return last child if expanded.""" if self.is_leaf or not self.expanded: return None else: if self._node.has_children(): lastchild = self._node.get_last_child().get_widget() else: return None # recursively search down for the last descendant lastdescendant = lastchild.last_child() if lastdescendant is None: return lastchild else: return lastdescendant class TreeNode(object): """ Store tree contents and cache TreeWidget objects. A TreeNode consists of the following elements: * key: accessor token for parent nodes * value: subclass-specific data * parent: a TreeNode which contains a pointer back to this object * widget: The widget used to render the object """ def __init__(self, value, parent=None, key=None, depth=None): self._key = key self._parent = parent self._value = value self._depth = depth self._widget = None def get_widget(self, reload=False): """ Return the widget for this node.""" if self._widget is None or reload == True: self._widget = self.load_widget() return self._widget def load_widget(self): return TreeWidget(self) def get_depth(self): if self._depth is None and self._parent is None: self._depth = 0 elif self._depth is None: self._depth = self._parent.get_depth() + 1 return self._depth def get_index(self): if self.get_depth() == 0: return None else: key = self.get_key() parent = self.get_parent() return parent.get_child_index(key) def get_key(self): return self._key def set_key(self, key): self._key = key def change_key(self, key): self.get_parent().change_child_key(self._key, key) def get_parent(self): if self._parent == None and self.get_depth() > 0: self._parent = self.load_parent() return self._parent def load_parent(self): """Provide TreeNode with a parent for the current node. This function is only required if the tree was instantiated from a child node (virtual function)""" raise TreeWidgetError("virtual function. Implement in subclass") def get_value(self): return self._value def is_root(self): return self.get_depth() == 0 def next_sibling(self): if self.get_depth() > 0: return self.get_parent().next_child(self.get_key()) else: return None def prev_sibling(self): if self.get_depth() > 0: return self.get_parent().prev_child(self.get_key()) else: return None def get_root(self): root = self while root.get_parent() is not None: root = root.get_parent() return root class ParentNode(TreeNode): """Maintain sort order for TreeNodes.""" def __init__(self, value, parent=None, key=None, depth=None): TreeNode.__init__(self, value, parent=parent, key=key, depth=depth) self._child_keys = None self._children = {} def get_child_keys(self, reload=False): """Return a possibly ordered list of child keys""" if self._child_keys is None or reload == True: self._child_keys = self.load_child_keys() return self._child_keys def load_child_keys(self): """Provide ParentNode with an ordered list of child keys (virtual function)""" raise TreeWidgetError("virtual function. Implement in subclass") def get_child_widget(self, key): """Return the widget for a given key. Create if necessary.""" child = self.get_child_node(key) return child.get_widget() def get_child_node(self, key, reload=False): """Return the child node for a given key. Create if necessary.""" if key not in self._children or reload == True: self._children[key] = self.load_child_node(key) return self._children[key] def load_child_node(self, key): """Load the child node for a given key (virtual function)""" raise TreeWidgetError("virtual function. Implement in subclass") def set_child_node(self, key, node): """Set the child node for a given key. Useful for bottom-up, lazy population of a tree..""" self._children[key]=node def change_child_key(self, oldkey, newkey): if newkey in self._children: raise TreeWidgetError("%s is already in use" % newkey) self._children[newkey] = self._children.pop(oldkey) self._children[newkey].set_key(newkey) def get_child_index(self, key): try: return self.get_child_keys().index(key) except ValueError: errorstring = ("Can't find key %s in ParentNode %s\n" + "ParentNode items: %s") raise TreeWidgetError(errorstring % (key, self.get_key(), str(self.get_child_keys()))) def next_child(self, key): """Return the next child node in index order from the given key.""" index = self.get_child_index(key) # the given node may have just been deleted if index is None: return None index += 1 child_keys = self.get_child_keys() if index < len(child_keys): # get the next item at same level return self.get_child_node(child_keys[index]) else: return None def prev_child(self, key): """Return the previous child node in index order from the given key.""" index = self.get_child_index(key) if index is None: return None child_keys = self.get_child_keys() index -= 1 if index >= 0: # get the previous item at same level return self.get_child_node(child_keys[index]) else: return None def get_first_child(self): """Return the first TreeNode in the directory.""" child_keys = self.get_child_keys() return self.get_child_node(child_keys[0]) def get_last_child(self): """Return the last TreeNode in the directory.""" child_keys = self.get_child_keys() return self.get_child_node(child_keys[-1]) def has_children(self): """Does this node have any children?""" return len(self.get_child_keys())>0 class TreeWalker(urwid.ListWalker): """ListWalker-compatible class for displaying TreeWidgets positions are TreeNodes.""" def __init__(self, start_from): """start_from: TreeNode with the initial focus.""" self.focus = start_from def get_focus(self): widget = self.focus.get_widget() return widget, self.focus def set_focus(self, focus): self.focus = focus self._modified() def get_next(self, start_from): widget = start_from.get_widget() target = widget.next_inorder() if target is None: return None, None else: return target, target.get_node() def get_prev(self, start_from): widget = start_from.get_widget() target = widget.prev_inorder() if target is None: return None, None else: return target, target.get_node() class TreeListBox(urwid.ListBox): """A ListBox with special handling for navigation and collapsing of TreeWidgets""" def keypress(self, size, key): key = self.__super.keypress(size, key) return self.unhandled_input(size, key) def unhandled_input(self, size, input): """Handle macro-navigation keys""" if input == 'left': self.move_focus_to_parent(size) elif input == '-': self.collapse_focus_parent(size) elif input == 'home': self.focus_home(size) elif input == 'end': self.focus_end(size) else: return input def collapse_focus_parent(self, size): """Collapse parent directory.""" widget, pos = self.body.get_focus() self.move_focus_to_parent(size) pwidget, ppos = self.body.get_focus() if pos != ppos: self.keypress(size, "-") def move_focus_to_parent(self, size): """Move focus to parent of widget in focus.""" widget, pos = self.body.get_focus() parentpos = pos.get_parent() if parentpos is None: return middle, top, bottom = self.calculate_visible( size ) row_offset, focus_widget, focus_pos, focus_rows, cursor = middle trim_top, fill_above = top for widget, pos, rows in fill_above: row_offset -= rows if pos == parentpos: self.change_focus(size, pos, row_offset) return self.change_focus(size, pos.get_parent()) def focus_home(self, size): """Move focus to very top.""" widget, pos = self.body.get_focus() rootnode = pos.get_root() self.change_focus(size, rootnode) def focus_end( self, size ): """Move focus to far bottom.""" maxrow, maxcol = size widget, pos = self.body.get_focus() rootnode = pos.get_root() rootwidget = rootnode.get_widget() lastwidget = rootwidget.last_child() lastnode = lastwidget.get_node() self.change_focus(size, lastnode, maxrow-1)
32.451745
79
0.596495
64f76a02eaf50bf1783dac86a25d6f8ec431e9eb
2,316
py
Python
setup.py
atlascope/atlascope-api
8738d20836d3a4f449896215b5fee7c3cf2c7356
[ "Apache-2.0" ]
1
2022-01-11T22:47:36.000Z
2022-01-11T22:47:36.000Z
setup.py
atlascope/atlascope
8738d20836d3a4f449896215b5fee7c3cf2c7356
[ "Apache-2.0" ]
80
2021-12-08T22:18:44.000Z
2022-03-31T22:56:48.000Z
setup.py
atlascope/atlascope-api
8738d20836d3a4f449896215b5fee7c3cf2c7356
[ "Apache-2.0" ]
1
2021-12-13T19:30:57.000Z
2021-12-13T19:30:57.000Z
from pathlib import Path from setuptools import find_packages, setup readme_file = Path(__file__).parent / 'README.md' if readme_file.exists(): with readme_file.open() as f: long_description = f.read() else: # When this is first installed in development Docker, README.md is not available long_description = '' setup( name='atlascope', version='0.1.0', description='', long_description=long_description, long_description_content_type='text/markdown', license='Apache 2.0', author='Kitware, Inc.', author_email='kitware@kitware.com', keywords='', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Framework :: Django :: 3.0', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python', ], python_requires='>=3.8', packages=find_packages(), include_package_data=True, install_requires=[ 'aiohttp', 'celery', 'django>=3.2,<4.0', 'django-allauth', 'django-configurations[database,email]', 'django-extensions', 'django-filter', 'django-oauth-toolkit', 'djangorestframework', 'drf-yasg', 'django-click', 'importlib_metadata>=3.6', 'jsonschema', 'large-image[gdal,ometiff,pil]>=1.14', 'django-large-image>=0.5.2', 'scikit-learn', 'imagecodecs', 'matplotlib', # Production-only 'django-composed-configuration[prod]>=0.18', 'gunicorn', 'numpy', 'pillow', 'requests', # manual override until https://github.com/girder/large_image/pull/799 'pylibtiff', # pylibtiff depends on this but it is not listed in its dependencies 'bitarray', ], extras_require={ 'dev': [ 'pooch', 'tqdm', # for progress bar in pooch 'django-composed-configuration[dev]>=0.18', 'django-debug-toolbar', 'ipython', 'tox', ] }, )
29.316456
84
0.576425
ad34a8993a59e9bc5fe3f8eaab295ceeee4fe906
4,505
py
Python
util/git-pre-commit.py
Jihaoyun/gem5
c52195e8304b5571008eab050fc9cc38ba91107c
[ "BSD-3-Clause" ]
3
2017-04-09T07:35:57.000Z
2018-12-12T07:30:13.000Z
util/git-pre-commit.py
Jihaoyun/gem5
c52195e8304b5571008eab050fc9cc38ba91107c
[ "BSD-3-Clause" ]
null
null
null
util/git-pre-commit.py
Jihaoyun/gem5
c52195e8304b5571008eab050fc9cc38ba91107c
[ "BSD-3-Clause" ]
3
2018-03-04T18:01:33.000Z
2019-08-23T22:30:37.000Z
#!/usr/bin/env python # # Copyright (c) 2016 ARM Limited # All rights reserved # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andreas Sandberg from tempfile import TemporaryFile import os import subprocess import sys from style.repo import GitRepo from style.verifiers import all_verifiers, all_regions from style.style import StdioUI, check_ignores import argparse parser = argparse.ArgumentParser( description="gem5 git style checker hook") parser.add_argument("--verbose", "-v", action="store_true", help="Produce verbose output") args = parser.parse_args() git = GitRepo() opts = {} repo_base = git.repo_base() ui = StdioUI() os.chdir(repo_base) failing_files = set() staged_mismatch = set() for status, fname in git.status(filter="MA", cached=True): if args.verbose: print "Checking %s..." % fname if check_ignores(fname): continue if status == "M": regions = git.staged_regions(fname) else: regions = all_regions # Show they appropriate object and dump it to a file status = git.file_from_index(fname) f = TemporaryFile() f.write(status) verifiers = [ v(ui, opts, base=repo_base) for v in all_verifiers ] for v in verifiers: f.seek(0) # It is prefered that the first check is silent as it is in the # staged file. If the check fails, then we will do it non-silently # on the current file, reporting meaningful shortcomings if not v.skip(fname) and v.check(fname, regions, fobj=f, silent=True): failing_files.add(fname) if not v.check(fname, regions): staged_mismatch.add(fname) f.close() if not failing_files: if len(failing_files) > len(staged_mismatch): print >> sys.stderr print >> sys.stderr, "Style checker failed for the following files:" for f in failing_files: if f not in staged_mismatch: print >> sys.stderr, "\t%s" % f print >> sys.stderr print >> sys.stderr, \ "Please run the style checker manually to fix the offending files.\n" \ "To check your modifications, run: util/style.py -m" print >> sys.stderr if staged_mismatch: print >> sys.stderr, \ "It looks like you have forgotten to stage your fixes for commit in\n"\ "the following files: " for f in staged_mismatch: print >> sys.stderr, "\t%s" % f print >> sys.stderr, "Please `git --add' them" sys.exit(1)
38.504274
79
0.71343
0ae7d6f69f737627718c8adefd7864a1311752cb
359
py
Python
mlbase/utils/images.py
n-kats/mlbase
7d69f259dcaf9608a921523083458fa6d0d6914b
[ "MIT" ]
null
null
null
mlbase/utils/images.py
n-kats/mlbase
7d69f259dcaf9608a921523083458fa6d0d6914b
[ "MIT" ]
2
2018-09-23T18:39:01.000Z
2018-09-24T18:02:21.000Z
mlbase/utils/images.py
n-kats/mlbase
7d69f259dcaf9608a921523083458fa6d0d6914b
[ "MIT" ]
null
null
null
from mlbase.lazy import numpy as np def tiled_image(images: "np.ndarray"): n, h, w, ch = images.shape sq = int(np.ceil(np.sqrt(n))) output = np.zeros([sq * h, sq * w, ch], dtype=np.uint8) for i, image in enumerate(images): x = i % sq y = i // sq output[h * y:h * (y + 1), w * x:w * (x + 1)] = image return output
27.615385
60
0.534819
7024cf9d9bbe851dfd74e9528b9e4a9d7391870e
3,337
py
Python
xskillscore/tests/test_skipna_functionality.py
blackary/xskillscore
2754d60a87dd0d5d3b2e1c727873520754391389
[ "Apache-2.0" ]
null
null
null
xskillscore/tests/test_skipna_functionality.py
blackary/xskillscore
2754d60a87dd0d5d3b2e1c727873520754391389
[ "Apache-2.0" ]
null
null
null
xskillscore/tests/test_skipna_functionality.py
blackary/xskillscore
2754d60a87dd0d5d3b2e1c727873520754391389
[ "Apache-2.0" ]
null
null
null
import dask import numpy as np import pytest from xarray.tests import CountingScheduler, assert_allclose, raise_if_dask_computes from xskillscore.core.deterministic import ( linslope, mae, mape, me, median_absolute_error, mse, pearson_r, pearson_r_p_value, r2, rmse, smape, spearman_r, spearman_r_p_value, ) WEIGHTED_METRICS = [ linslope, pearson_r, pearson_r_p_value, spearman_r, spearman_r_p_value, mae, mse, mape, smape, me, rmse, r2, ] NON_WEIGHTED_METRICS = [median_absolute_error] def drop_nans(a, b, weights=None, dim="time"): """ Masks a and b where they have pairwise nans. """ a = a.where(b.notnull()) b = b.where(a.notnull()) if weights is not None: weights = weights.where(a.notnull()) weights = weights.dropna(dim) return a.dropna(dim), b.dropna(dim), weights @pytest.mark.parametrize("metric", WEIGHTED_METRICS + NON_WEIGHTED_METRICS) def test_skipna_returns_same_value_as_dropped_pairwise_nans( a_1d_fixed_nan, b_1d_fixed_nan, metric ): """Tests that DataArrays with pairwise nans return the same result as the same two with those nans dropped.""" a_dropped, b_dropped, _ = drop_nans(a_1d_fixed_nan, b_1d_fixed_nan) with raise_if_dask_computes(): res_with_nans = metric(a_1d_fixed_nan, b_1d_fixed_nan, "time", skipna=True) res_dropped_nans = metric(a_dropped, b_dropped, "time") assert_allclose(res_with_nans, res_dropped_nans) @pytest.mark.parametrize("metric", WEIGHTED_METRICS) def test_skipna_returns_same_value_as_dropped_pairwise_nans_with_weights( a_1d_fixed_nan, b_1d_fixed_nan, weights_time, metric ): """Tests that DataArrays with pairwise nans return the same result as the same two with those nans dropped.""" a_dropped, b_dropped, weights_time_dropped = drop_nans( a_1d_fixed_nan, b_1d_fixed_nan, weights_time ) with raise_if_dask_computes(): res_with_nans = metric( a_1d_fixed_nan, b_1d_fixed_nan, "time", skipna=True, weights=weights_time ) res_dropped_nans = metric( a_dropped, b_dropped, "time", weights=weights_time_dropped ) assert_allclose(res_with_nans, res_dropped_nans) @pytest.mark.parametrize("metric", WEIGHTED_METRICS + NON_WEIGHTED_METRICS) def test_skipna_returns_nan_when_false(a_1d_fixed_nan, b_1d_fixed_nan, metric): """Tests that nan is returned if there's any nans in the time series and skipna is False.""" with raise_if_dask_computes(): res = metric(a_1d_fixed_nan, b_1d_fixed_nan, "time", skipna=False) assert np.isnan(res).all() @pytest.mark.parametrize("metric", WEIGHTED_METRICS) def test_skipna_broadcast_weights_assignment_destination( a_rand_nan, b_rand_nan, weights_lonlat, metric ): """Tests that 'assignment destination is read-only' is not raised https://github.com/xarray-contrib/xskillscore/issues/79""" with raise_if_dask_computes(): metric( a_rand_nan, b_rand_nan, ["lat", "lon"], weights=weights_lonlat, skipna=True ) def test_nan_skipna(a, b): # Randomly add some nans to a a = a.where(np.random.random(a.shape) < 0.5) with raise_if_dask_computes(): pearson_r(a, b, dim="lat", skipna=True)
30.336364
87
0.709919
485a00eabbbc1256405a8684f6b790ba53930abc
3,265
py
Python
dcodex_bible/plot.py
rbturnbull/dcodex_bible
7745726867bdc556b3de5505601bbb881d420477
[ "Apache-2.0" ]
null
null
null
dcodex_bible/plot.py
rbturnbull/dcodex_bible
7745726867bdc556b3de5505601bbb881d420477
[ "Apache-2.0" ]
9
2021-04-08T20:32:39.000Z
2022-03-12T01:06:09.000Z
dcodex_bible/plot.py
rbturnbull/dcodex_bible
7745726867bdc556b3de5505601bbb881d420477
[ "Apache-2.0" ]
null
null
null
from dcodex.models import * from .models import * def plot_affiliation_matrix( family, manuscripts, verses, force_compute=False, matrix_filename=None, figsize=(12, 7), major_chapter_markers=10, minor_chapter_markers=1, labels=None, output_filename=None, colors=['#007AFF'], ): import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import FixedLocator from os.path import isfile from os import access, R_OK if not force_compute and matrix_filename and isfile( matrix_filename ) and access(matrix_filename, R_OK): matrix = np.load(matrix_filename) else: matrix = family.affiliation_matrix( manuscripts, verses ) if matrix_filename: np.save(matrix_filename, matrix) print(matrix) fig, ax = plt.subplots(figsize=figsize) ###### Major Grid Lines ###### verse_min = verses[0] verse_max = verses[-1] chapter_beginnings = BibleVerse.objects.filter( id__gt=verse_min.id, id__lt=verse_max.id, verse=1 ) major_tick_locations = [0] major_tick_annotations = [verse_min.reference_abbreviation().replace(" ","\n")] for chapter_beginning in chapter_beginnings: if chapter_beginning.chapter % major_chapter_markers == 0 or chapter_beginning.chapter == 1: major_tick_locations.append( chapter_beginning.id - verse_min.id ) ref = "%d:%d" % (chapter_beginning.chapter, chapter_beginning.verse) if chapter_beginning.chapter > 1 else chapter_beginning.reference_abbreviation().replace(" ","\n") major_tick_annotations.append( ref ) major_tick_locations.append( verse_max.id - verse_min.id ) major_tick_annotations.append( verse_max.reference_abbreviation().replace(" ","\n") ) plt.xticks(major_tick_locations, major_tick_annotations ) linewidth = 2 if major_chapter_markers > minor_chapter_markers else 1 ax.xaxis.grid(True, which='major', color='#666666', linestyle='-', alpha=0.4, linewidth=linewidth) ###### Minor Grid Lines ###### minor_ticks = [x.id - verse_min.id for x in chapter_beginnings if x.id not in major_tick_locations and x.chapter % minor_chapter_markers == 0] ax.xaxis.set_minor_locator(FixedLocator(minor_ticks)) ax.xaxis.grid(True, which='minor', color='#666666', linestyle='-', alpha=0.2, linewidth=1,) x_values = np.arange( len(verses) ) alpha = 0.4 for manuscript_index, manuscript in enumerate(manuscripts): color = colors[manuscript_index % len(colors)] ax.fill_between(x_values, manuscript_index + alpha * matrix[manuscript_index], manuscript_index - alpha * matrix[manuscript_index], color=color) if labels is None: labels = [ms.short_name() for ms in manuscripts] plt.yticks(np.arange(len(manuscripts)), labels) plt.show() distinct_verses = matrix.any(axis=0).sum() proportion = distinct_verses/len(verses) * 100.0 print(f"Distinct verses {distinct_verses} ({proportion}\%)" ) if output_filename: fig.tight_layout() fig.savefig(output_filename) print(f"Saved to {output_filename}")
41.329114
179
0.672588
28b1475ab82af1e110f0939c358c91678fd6ddce
915
py
Python
relay-demo.py
jkaplon/rpi-utils
ad8ef8a4803c4086560345d23a07c70ee40cc7fe
[ "MIT" ]
null
null
null
relay-demo.py
jkaplon/rpi-utils
ad8ef8a4803c4086560345d23a07c70ee40cc7fe
[ "MIT" ]
null
null
null
relay-demo.py
jkaplon/rpi-utils
ad8ef8a4803c4086560345d23a07c70ee40cc7fe
[ "MIT" ]
null
null
null
import RPi.GPIO as GPIO import time in1 = 16 in2 = 18 GPIO.setmode(GPIO.BOARD) GPIO.setup(in1, GPIO.OUT) GPIO.setup(in2, GPIO.OUT) GPIO.output(in1, False) GPIO.output(in2, False) try: while True: for x in range(5): GPIO.output(in1, True) time.sleep(0.1) GPIO.output(in1, False) GPIO.output(in2, True) time.sleep(0.1) GPIO.output(in2, False) GPIO.output(in1, True) GPIO.output(in2, True) for x in range(4): GPIO.output(in1, True) time.sleep(0.05) GPIO.output(in1, False) time.sleep(0.05) GPIO.output(in1, True) for x in range(4): GPIO.output(in2, True) time.sleep(0.05) GPIO.output(in2, False) time.sleep(0.05) GPIO.output(in2, True) except KeyboardInterrupt: GPIO.cleanup()
20.795455
35
0.538798
1674aaa376a14ec89ada3760babc194611763702
174
py
Python
test_files/encoding_test.py
haiyanghe/rednose
8a280ce9e7d02a563e252098661f79cfb3011971
[ "MIT" ]
30
2016-04-15T21:19:30.000Z
2021-03-25T11:30:36.000Z
test_files/encoding_test.py
haiyanghe/rednose
8a280ce9e7d02a563e252098661f79cfb3011971
[ "MIT" ]
20
2016-04-18T14:56:02.000Z
2021-09-21T14:58:04.000Z
test_files/encoding_test.py
haiyanghe/rednose
8a280ce9e7d02a563e252098661f79cfb3011971
[ "MIT" ]
11
2016-07-22T08:58:20.000Z
2020-06-01T14:47:44.000Z
# vim: fileencoding=utf-8: # NOTE: this file does *not* import unicode_literals, # so the assertion message is actually just utf-8 bytes def test(): assert False, "ä"
19.333333
55
0.706897
b3516f2ea9950aed50cce2ba19891a0f46cf3a68
71
py
Python
manage/const.py
augustand/kervice
ccbda8196805a542a9324b404e02d83cc130926e
[ "MIT" ]
1
2017-12-24T07:59:25.000Z
2017-12-24T07:59:25.000Z
manage/const.py
augustand/kervice
ccbda8196805a542a9324b404e02d83cc130926e
[ "MIT" ]
null
null
null
manage/const.py
augustand/kervice
ccbda8196805a542a9324b404e02d83cc130926e
[ "MIT" ]
null
null
null
class ENV(object): dev = "dev" stage = "stage" pro = "pro"
14.2
19
0.507042
e56efa20703c30dfadc089701d275413297aa25b
2,718
py
Python
tests/instrumentation/django_tests/template_tests.py
ellisvalentiner/apm-agent-python
89e2579a7b05433733909632127fd34770bc93ef
[ "BSD-3-Clause" ]
null
null
null
tests/instrumentation/django_tests/template_tests.py
ellisvalentiner/apm-agent-python
89e2579a7b05433733909632127fd34770bc93ef
[ "BSD-3-Clause" ]
null
null
null
tests/instrumentation/django_tests/template_tests.py
ellisvalentiner/apm-agent-python
89e2579a7b05433733909632127fd34770bc93ef
[ "BSD-3-Clause" ]
null
null
null
import pytest # isort:skip pytest.importorskip("django") # isort:skip from os.path import join import django from django.test.utils import override_settings import mock import pytest from conftest import BASE_TEMPLATE_DIR from elasticapm.conf.constants import TRANSACTION from tests.utils.compat import middleware_setting try: # Django 1.10+ from django.urls import reverse except ImportError: from django.core.urlresolvers import reverse # Testing Django 1.8+ backends TEMPLATES = ( {"BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [BASE_TEMPLATE_DIR]}, {"BACKEND": "django.template.backends.jinja2.Jinja2", "DIRS": [join(BASE_TEMPLATE_DIR, "jinja2")]}, ) def test_template_rendering(instrument, django_elasticapm_client, client): with override_settings( **middleware_setting(django.VERSION, ["elasticapm.contrib.django.middleware.TracingMiddleware"]) ): client.get(reverse("render-heavy-template")) client.get(reverse("render-heavy-template")) client.get(reverse("render-heavy-template")) transactions = django_elasticapm_client.events[TRANSACTION] assert len(transactions) == 3 spans = django_elasticapm_client.spans_for_transaction(transactions[0]) assert len(spans) == 2, [t["name"] for t in spans] kinds = ["code", "template.django"] assert set([t["type"] for t in spans]) == set(kinds) assert spans[0]["type"] == "code" assert spans[0]["name"] == "something_expensive" assert spans[0]["parent_id"] == spans[1]["id"] assert spans[1]["type"] == "template.django" assert spans[1]["name"] == "list_users.html" assert spans[1]["parent_id"] == transactions[0]["id"] @pytest.mark.skipif(django.VERSION < (1, 8), reason="Jinja2 support introduced with Django 1.8") def test_template_rendering_django18_jinja2(instrument, django_elasticapm_client, client): with override_settings( TEMPLATES=TEMPLATES, **middleware_setting(django.VERSION, ["elasticapm.contrib.django.middleware.TracingMiddleware"]) ): client.get(reverse("render-jinja2-template")) client.get(reverse("render-jinja2-template")) client.get(reverse("render-jinja2-template")) transactions = django_elasticapm_client.events[TRANSACTION] assert len(transactions) == 3 spans = django_elasticapm_client.spans_for_transaction(transactions[0]) assert len(spans) == 1, [t["name"] for t in spans] kinds = ["template.jinja2"] assert set([t["type"] for t in spans]) == set(kinds) assert spans[0]["type"] == "template.jinja2" assert spans[0]["name"] == "jinja2_template.html" assert spans[0]["parent_id"] == transactions[0]["id"]
34.405063
104
0.708241
ae04f17c8315e6f05c54082c47b22ad1d78c7732
252
py
Python
0349_IntersectionOfTwoArrays.py
taro-masuda/leetcode
39739e9fec7c66513b114c740ef982ccc09dc39f
[ "MIT" ]
null
null
null
0349_IntersectionOfTwoArrays.py
taro-masuda/leetcode
39739e9fec7c66513b114c740ef982ccc09dc39f
[ "MIT" ]
null
null
null
0349_IntersectionOfTwoArrays.py
taro-masuda/leetcode
39739e9fec7c66513b114c740ef982ccc09dc39f
[ "MIT" ]
1
2020-03-18T05:23:40.000Z
2020-03-18T05:23:40.000Z
class Solution: def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]: n1 = set(nums1) n2 = set(nums2) out = [] for n in n1: if n in n2: out.append(n) return out
25.2
76
0.47619
b2ff4b1ef09cbffbdaa86db828a6cd4a33a7a70a
819
py
Python
utils/img_tools.py
snu-mllab/Deep-Hash-Table-CVPR19
62c811c37001302e6759a18d6143b8ad657e4910
[ "MIT" ]
12
2019-05-20T10:26:01.000Z
2020-05-07T02:19:05.000Z
utils/img_tools.py
maestrojeong/Deep-Hash-Table-CVPR19
62c811c37001302e6759a18d6143b8ad657e4910
[ "MIT" ]
1
2019-06-21T11:50:15.000Z
2019-06-24T05:38:27.000Z
utils/img_tools.py
snu-mllab/Deep-Hash-Table-CVPR19
62c811c37001302e6759a18d6143b8ad657e4910
[ "MIT" ]
2
2019-03-21T01:54:11.000Z
2019-05-08T10:38:46.000Z
import numpy as np import os def jpg2png(str_): ''' Args: str_ - .jpg ''' return os.path.splitext(str_)[0]+'.png' def rgb2gray(rgb_img): ''' Args: rgb_img - Numpy 3D array [nrow, ncol ,3] Return: gray_img - Numpy 3D array [nrow, ncol ,1] ''' gray_img = np.mean(rgb_img, axis=-1, keepdims=True) assert len(gray_img.shape)==3, 'Wrong operations' return gray_img def gray2rgb(gray_img): ''' Args: gray_img - Numpy 2D array [nrow, ncol] Return: rgb_img - Numpy 3D array [nrow, ncol ,3] ''' w, h = gray_img.shape rgb_img = np.empty((w, h, 3), dtype=np.uint8) rgb_img[:, :, 0] = rgb_img[:, :, 1] = rgb_img[:, :, 2] = gray_img return rgb_img
21.552632
69
0.518926
04c9afb6fd96ce6354af8cf372d0372ecf7b46f5
67
py
Python
tests/__init__.py
sturmianseq/yamicache
be6400a5742f3f01c5ada01b3ca74c72ce0108e2
[ "MIT" ]
null
null
null
tests/__init__.py
sturmianseq/yamicache
be6400a5742f3f01c5ada01b3ca74c72ce0108e2
[ "MIT" ]
10
2017-09-01T17:12:20.000Z
2021-08-28T17:34:46.000Z
tests/__init__.py
sturmianseq/yamicache
be6400a5742f3f01c5ada01b3ca74c72ce0108e2
[ "MIT" ]
3
2018-08-08T15:49:35.000Z
2021-11-04T17:21:10.000Z
# -*- coding: utf-8 -*- """Unit test package for yamicache."""
16.75
39
0.552239
e0b51dfaae70adf829ce3b45c27f52f7fdc9822d
1,313
py
Python
entities/client.py
wolfryan97/Project_0
27c1608833b04f067b5bceaeed99e7ed2b164a58
[ "MIT" ]
null
null
null
entities/client.py
wolfryan97/Project_0
27c1608833b04f067b5bceaeed99e7ed2b164a58
[ "MIT" ]
null
null
null
entities/client.py
wolfryan97/Project_0
27c1608833b04f067b5bceaeed99e7ed2b164a58
[ "MIT" ]
null
null
null
class Client: def __init__(self, client_id: int, client_firstname: str, client_lastname: str, address: str, city: str, state: str, zip_code: int): self.client_id = client_id self.client_firstname = client_firstname self.client_lastname = client_lastname self.address = address self.city = city self.state = state self.zip_code = zip_code def __str__(self): return f"Client ID: {self.client_id}\nName: {self.client_firstname} {self.client_lastname}" def json(self): return {'clientID': self.client_id, 'firstname': self.client_firstname, 'lastname': self.client_lastname, 'address': self.address, 'city': self.city, 'state': self.state, 'zip': self.zip_code } @staticmethod def json_deserialize(json): client = Client(0, '', '', '', '', '', '') client.client_id = json['clientID'] client.client_firstname = json['firstname'] client.client_lastname = json['lastname'] client.address = json['address'] client.city = json['city'] client.state = json['state'] client.zip_code = json['zip'] return client
34.552632
99
0.566641
cc0cab8a718af7a8b0437ff869c4ab6adc7f1fb8
170
py
Python
tulius/forum/threads/__init__.py
kozzztik/tulius
81b8f6484eefdc453047f62173a08f5e6f640cd6
[ "MIT" ]
1
2020-04-21T15:09:18.000Z
2020-04-21T15:09:18.000Z
tulius/forum/threads/__init__.py
kozzztik/tulius
81b8f6484eefdc453047f62173a08f5e6f640cd6
[ "MIT" ]
70
2019-04-10T22:32:32.000Z
2022-03-11T23:12:54.000Z
tulius/forum/threads/__init__.py
kozzztik/tulius
81b8f6484eefdc453047f62173a08f5e6f640cd6
[ "MIT" ]
1
2019-04-12T14:55:39.000Z
2019-04-12T14:55:39.000Z
from django.apps import AppConfig class ForumThreadsConfig(AppConfig): name = 'tulius.forum.threads' label = 'forum_threads' verbose_name = 'Forum threads'
21.25
36
0.735294
cd1fa0a5072c0bf3b1247a4eabd1258fc86aa576
3,279
py
Python
tests/test_i2c.py
jakiee3y/luma.core
713de8e4e397493dd196e8e7653268877135ffe9
[ "MIT" ]
null
null
null
tests/test_i2c.py
jakiee3y/luma.core
713de8e4e397493dd196e8e7653268877135ffe9
[ "MIT" ]
null
null
null
tests/test_i2c.py
jakiee3y/luma.core
713de8e4e397493dd196e8e7653268877135ffe9
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2017-18 Richard Hull and contributors # See LICENSE.rst for details. """ Tests for the :py:class:`luma.core.interface.serial.i2c` class. """ import errno import pytest import smbus2 from unittest.mock import Mock, patch, call from luma.core.interface.serial import i2c import luma.core.error from helpers import i2c_error, fib smbus = Mock(unsafe=True) def setup_function(function): smbus.reset_mock() def test_init_device_not_found(): port = 200 address = 0x710 path_name = '/dev/i2c-{}'.format(port) fake_open = i2c_error(path_name, errno.ENOENT) with patch('os.open', fake_open): with pytest.raises(luma.core.error.DeviceNotFoundError) as ex: i2c(port=port, address=address) assert str(ex.value) == 'I2C device not found: {}'.format(path_name) def test_init_device_permission_error(): port = 1 path_name = '/dev/i2c-{}'.format(port) fake_open = i2c_error(path_name, errno.EACCES) with patch('os.open', fake_open): try: i2c(port=port) except luma.core.error.DevicePermissionError as ex: # permission error: device exists but no permission assert str(ex) == 'I2C device permission denied: {}'.format( path_name) def test_init_device_address_error(): address = 'foo' with pytest.raises(luma.core.error.DeviceAddressError) as ex: i2c(address=address) assert str(ex.value) == 'I2C device address invalid: {}'.format(address) def test_init_no_bus(): with patch.object(smbus2.SMBus, 'open') as mock: i2c(port=2, address=0x71) mock.assert_called_once_with(2) def test_init_bus_provided(): i2c(bus=smbus, address=0x71) smbus.open.assert_not_called() def test_command(): cmds = [3, 1, 4, 2] serial = i2c(bus=smbus, address=0x83) serial.command(*cmds) smbus.write_i2c_block_data.assert_called_once_with(0x83, 0x00, cmds) def test_i2c_command_device_not_found_error(): errorbus = Mock(unsafe=True) address = 0x71 cmds = [3, 1, 4, 2] expected_error = OSError() try: for error_code in [errno.EREMOTEIO, errno.EIO]: expected_error.errno = error_code errorbus.write_i2c_block_data.side_effect = expected_error serial = i2c(bus=errorbus, address=address) with pytest.raises(luma.core.error.DeviceNotFoundError) as ex: serial.command(*cmds) assert str(ex.value) == 'I2C device not found on address: 0x{0:02X}'.format( address) except AttributeError as e: # osx pytest.skip(str(e)) def test_i2c_data(): data = list(fib(10)) serial = i2c(bus=smbus, address=0x21) serial.data(data) smbus.write_i2c_block_data.assert_called_once_with(0x21, 0x40, data) def test_i2c_data_chunked(): data = list(fib(100)) serial = i2c(bus=smbus, address=0x66) serial.data(data) calls = [call(0x66, 0x40, data[i:i + 32]) for i in range(0, 100, 32)] smbus.write_i2c_block_data.assert_has_calls(calls) def test_cleanup(): serial = i2c(bus=smbus, address=0x9F) serial._managed = True serial.cleanup() smbus.close.assert_called_once_with()
27.325
88
0.668801
3ff105eebd7b312c178dda11b75eab545ce3aae8
3,002
py
Python
official/mnist/mnist_eager_test.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
1
2019-09-11T09:41:11.000Z
2019-09-11T09:41:11.000Z
official/mnist/mnist_eager_test.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
official/mnist/mnist_eager_test.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import tensorflow as tf # pylint: disable=g-bad-import-order from tensorflow.python import eager as tfe # pylint: disable=g-bad-import-order from official.mnist import mnist from official.mnist import mnist_eager from official.utils.misc import keras_utils def device(): return '/device:GPU:0' if tfe.context.num_gpus() else '/device:CPU:0' def data_format(): return 'channels_first' if tfe.context.num_gpus() else 'channels_last' def random_dataset(): batch_size = 64 images = tf.random_normal([batch_size, 784]) labels = tf.random_uniform([batch_size], minval=0, maxval=10, dtype=tf.int32) return tf.data.Dataset.from_tensors((images, labels)) def train(defun=False): model = mnist.create_model(data_format()) if defun: model.call = tf.function(model.call) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) dataset = random_dataset() with tf.device(device()): mnist_eager.train(model, optimizer, dataset, step_counter=tf.train.get_or_create_global_step()) def evaluate(defun=False): model = mnist.create_model(data_format()) dataset = random_dataset() if defun: model.call = tf.function(model.call) with tf.device(device()): mnist_eager.test(model, dataset) class MNISTTest(tf.test.TestCase): """Run tests for MNIST eager loop. MNIST eager uses contrib and will not work with TF 2.0. All tests are disabled if using TF 2.0. """ def setUp(self): if not keras_utils.is_v2_0(): tf.compat.v1.enable_v2_behavior() super(MNISTTest, self).setUp() @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_train(self): train(defun=False) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_evaluate(self): evaluate(defun=False) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_train_with_defun(self): train(defun=True) @unittest.skipIf(keras_utils.is_v2_0(), 'TF 1.0 only test.') def test_evaluate_with_defun(self): evaluate(defun=True) if __name__ == '__main__': tf.test.main()
31.270833
81
0.691872
e86925d31e9ecdfbab2851c4e21d398b9d74e0e0
1,199
py
Python
src/app/halftone.py
telegnom/labello
bb9349909758bebfd03fd96f7a911d61ce29478a
[ "MIT" ]
2
2019-04-07T04:17:28.000Z
2021-02-25T01:11:33.000Z
src/app/halftone.py
telegnom/labello
bb9349909758bebfd03fd96f7a911d61ce29478a
[ "MIT" ]
10
2019-01-10T06:32:37.000Z
2020-06-18T00:06:28.000Z
src/app/halftone.py
telegnom/labello
bb9349909758bebfd03fd96f7a911d61ce29478a
[ "MIT" ]
4
2018-04-13T17:15:43.000Z
2019-10-31T20:09:13.000Z
from PIL import Image, ImageDraw, ImageStat def halftone(img, sample, scale, angle=45): img_grey = img.convert('L') channel = img_grey.split()[0] channel = channel.rotate(angle, expand=1) size = channel.size[0]*scale, channel.size[1]*scale new_img = Image.new('1', size) draw = ImageDraw.Draw(new_img) for x in range(0, channel.size[0], sample): for y in range(0, channel.size[1], sample): box = channel.crop((x, y, x+sample, y+sample)) mean = ImageStat.Stat(box).mean[0] diameter = (mean/255) ** 0.5 edge = 0.5 * (1-diameter) x_pos, y_pos = (x+edge) * scale, (y+edge) * scale box_edge = sample * diameter * scale draw.ellipse((x_pos, y_pos, x_pos+box_edge, y_pos+box_edge), fill=255) new_img = new_img.rotate(-angle, expand=1) width_half, height_half = new_img.size half_x = (width_half - img.size[0]*scale) / 2 half_y = (height_half - img.size[1]*scale) / 2 new_img = new_img.crop((half_x, half_y, half_x + img.size[0]*scale, half_y + img.size[1]*scale)) return Image.merge('1', [new_img])
39.966667
72
0.581318
a35db153cca5c2b10bfdaf05a26756c0125d93da
2,324
py
Python
python3/koans/about_comprehension.py
polarization/python_koans
bd0f78a66d7fa60272d21bb24202ebff87e73e41
[ "MIT" ]
null
null
null
python3/koans/about_comprehension.py
polarization/python_koans
bd0f78a66d7fa60272d21bb24202ebff87e73e41
[ "MIT" ]
null
null
null
python3/koans/about_comprehension.py
polarization/python_koans
bd0f78a66d7fa60272d21bb24202ebff87e73e41
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * class AboutComprehension(Koan): def test_creating_lists_with_list_comprehensions(self): feast = ['lambs', 'sloths', 'orangutans', 'breakfast cereals', 'fruit bats'] comprehension = [delicacy.capitalize() for delicacy in feast] self.assertEqual(__, comprehension[0]) self.assertEqual(__, comprehension[2]) def test_filtering_lists_with_list_comprehensions(self): feast = ['spam', 'sloths', 'orangutans', 'breakfast cereals', 'fruit bats'] comprehension = [delicacy for delicacy in feast if len(delicacy) > 6] self.assertEqual(__, len(feast)) self.assertEqual(__, len(comprehension)) def test_unpacking_tuples_in_list_comprehensions(self): list_of_tuples = [(1, 'lumberjack'), (2, 'inquisition'), (4, 'spam')] comprehension = [skit * number for number, skit in list_of_tuples] self.assertEqual(__, comprehension[0]) self.assertEqual(__, comprehension[2]) def test_double_list_comprehension(self): list_of_eggs = ['poached egg', 'fried egg'] list_of_meats = ['lite spam', 'ham spam', 'fried spam'] comprehension = [ '{0} and {1}'.format( egg, meat) for egg in list_of_eggs for meat in list_of_meats] self.assertEqual(__, comprehension[0]) self.assertEqual(__, len(comprehension)) def test_creating_a_set_with_set_comprehension(self): comprehension = {x for x in 'aabbbcccc'} # remember that set members are unique self.assertEqual(__, comprehension) def test_creating_a_dictionary_with_dictionary_comprehension(self): dict_of_weapons = { 'first': 'fear', 'second': 'surprise', 'third': 'ruthless efficiency', 'fourth': 'fanatical devotion', 'fifth': None} dict_comprehension = { k.upper(): weapon for k, weapon in dict_of_weapons.items() if weapon} self.assertEqual(__, 'first' in dict_comprehension) self.assertEqual(__, 'FIRST' in dict_comprehension) self.assertEqual(__, len(dict_of_weapons)) self.assertEqual(__, len(dict_comprehension))
34.176471
77
0.63167
81c6f04fabba0621d129cf3f1ba15a9725317db7
916
py
Python
connect/serializer.py
lizKimita/Mshauri-Connect
24f6f67017eebf5ee1d2e08c9bf249108dee28a2
[ "MIT" ]
1
2019-06-20T08:23:22.000Z
2019-06-20T08:23:22.000Z
connect/serializer.py
lizKimita/Mshauri-Connect
24f6f67017eebf5ee1d2e08c9bf249108dee28a2
[ "MIT" ]
16
2019-06-11T14:55:14.000Z
2021-09-08T01:02:58.000Z
connect/serializer.py
lizKimita/Mshauri-Connect
24f6f67017eebf5ee1d2e08c9bf249108dee28a2
[ "MIT" ]
null
null
null
from rest_framework import serializers from .models import Foundation, Awareness, Forums, Profile, Comment class FoundationSerializer(serializers.ModelSerializer): class Meta: model=Foundation fields=('image','name','location', 'contact', 'website_link', 'description') class AwarenessSerializer(serializers.ModelSerializer): class Meta: model=Awareness fields=('article_title','article','date', 'foundation') class ForumsSerializer(serializers.ModelSerializer): class Meta: model=Forums fields=('forum_title','forum_post','post_date','post_user') class ProfileSerializer(serializers.ModelSerializer): class Meta: model=Profile fields=('username','tel_no','email','user_location') class CommentSerializer(serializers.ModelSerializer): class Meta: model=Comment fields=('user_comment','comment','comment_id')
29.548387
84
0.713974
18ffcb40a0b1bd2a9b11e0f8365d81e2864d0fbb
934
py
Python
venv/lib/python3.8/site-packages/matplotlib/tests/test_backend_tk.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
15
2020-06-29T08:33:39.000Z
2022-02-12T00:28:51.000Z
venv/lib/python3.8/site-packages/matplotlib/tests/test_backend_tk.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
30
2020-04-15T19:37:40.000Z
2020-04-22T21:19:35.000Z
venv/lib/python3.8/site-packages/matplotlib/tests/test_backend_tk.py
willBear/willBear-Fundamental_Analysis
bc67eb1e69dcf6765c0b77314d37f7f165a7318f
[ "MIT" ]
11
2020-06-29T08:40:24.000Z
2022-02-24T17:39:16.000Z
import pytest import numpy as np from matplotlib import pyplot as plt @pytest.mark.backend('TkAgg', skip_on_importerror=True) def test_blit(): from matplotlib.backends import _tkagg def evil_blit(photoimage, aggimage, offsets, bboxptr): data = np.asarray(aggimage) height, width = data.shape[:2] dataptr = (height, width, data.ctypes.data) _tkagg.blit( photoimage.tk.interpaddr(), str(photoimage), dataptr, offsets, bboxptr) fig, ax = plt.subplots() for bad_boxes in ((-1, 2, 0, 2), (2, 0, 0, 2), (1, 6, 0, 2), (0, 2, -1, 2), (0, 2, 2, 0), (0, 2, 1, 6)): with pytest.raises(ValueError): evil_blit(fig.canvas._tkphoto, np.ones((4, 4, 4)), (0, 1, 2, 3), bad_boxes)
32.206897
74
0.493576
137ca232e9ce8d6913600a4978a0a45707c4320a
2,909
py
Python
src/olympia/reviews/templatetags/jinja_helpers.py
Osmose/olympia
774c3b927ec05ef971e4206e2669b4291b8b4f17
[ "BSD-3-Clause" ]
null
null
null
src/olympia/reviews/templatetags/jinja_helpers.py
Osmose/olympia
774c3b927ec05ef971e4206e2669b4291b8b4f17
[ "BSD-3-Clause" ]
null
null
null
src/olympia/reviews/templatetags/jinja_helpers.py
Osmose/olympia
774c3b927ec05ef971e4206e2669b4291b8b4f17
[ "BSD-3-Clause" ]
null
null
null
import jinja2 from django_jinja import library from django.template.loader import get_template from django.utils.translation import ugettext from olympia import amo from olympia.access import acl from olympia.reviews.models import ReviewFlag from .. import forms @library.filter def stars(num, large=False): # check for 0.0 incase None was cast to a float. Should # be safe since lowest rating you can give is 1.0 if num is None or num == 0.0: return ugettext('Not yet rated') else: num = min(5, int(round(num))) t = get_template('reviews/impala/reviews_rating.html') # These are getting renamed for contextual sense in the template. return jinja2.Markup(t.render({'rating': num, 'detailpage': large})) @library.global_function def reviews_link(addon, collection_uuid=None, link_to_list=False): t = get_template('reviews/reviews_link.html') return jinja2.Markup(t.render({'addon': addon, 'link_to_list': link_to_list, 'collection_uuid': collection_uuid})) @library.global_function def impala_reviews_link(addon, collection_uuid=None, link_to_list=False): t = get_template('reviews/impala/reviews_link.html') return jinja2.Markup(t.render({'addon': addon, 'link_to_list': link_to_list, 'collection_uuid': collection_uuid})) @library.global_function @library.render_with('reviews/report_review.html') def report_review_popup(): return {'ReviewFlag': ReviewFlag, 'flag_form': forms.ReviewFlagForm()} @library.global_function @library.render_with('reviews/edit_review.html') def edit_review_form(): return {'form': forms.ReviewForm()} @library.global_function @library.render_with('reviews/edit_review.html') def edit_review_reply_form(): return {'form': forms.ReviewReplyForm()} def user_can_delete_review(request, review): """Return whether or not the request.user can delete reviews. People who can delete reviews: * The original review author. * Editors, but only if they aren't listed as an author of the add-on and the add-on is flagged for moderation * Users in a group with "Users:Edit" privileges. * Users in a group with "Addons:Edit" privileges. Persona editors can't delete addons reviews. """ is_author = review.addon.has_author(request.user) return ( review.user_id == request.user.id or not is_author and ( (acl.is_editor(request, review.addon) and review.editorreview) or acl.action_allowed(request, amo.permissions.USERS_EDIT) or acl.action_allowed(request, amo.permissions.ADDONS_EDIT))) @library.global_function @jinja2.contextfunction def check_review_delete(context, review): return user_can_delete_review(context['request'], review)
33.436782
77
0.696116
ab3e250f158b4ed0173fe7715ee2559fe186d522
1,879
py
Python
qurator/sbb_ned/embeddings/bert.py
qurator-spk/sbb_ned
d4cfe249f72e48913f254a58fbe0dbe6e47bd168
[ "Apache-2.0" ]
6
2020-09-05T16:08:59.000Z
2022-03-05T00:54:47.000Z
qurator/sbb_ned/embeddings/bert.py
qurator-spk/sbb_ned
d4cfe249f72e48913f254a58fbe0dbe6e47bd168
[ "Apache-2.0" ]
6
2020-09-23T17:58:37.000Z
2022-03-10T14:02:09.000Z
qurator/sbb_ned/embeddings/bert.py
qurator-spk/sbb_ned
d4cfe249f72e48913f254a58fbe0dbe6e47bd168
[ "Apache-2.0" ]
2
2021-03-22T00:12:51.000Z
2022-01-31T10:04:08.000Z
from ..embeddings.base import Embeddings from flair.data import Sentence class BertEmbeddings(Embeddings): def __init__(self, model_path, layers="-1, -2, -3, -4", pooling_operation='first', use_scalar_mix=True, no_cuda=False, *args, **kwargs): super(BertEmbeddings, self).__init__(*args, **kwargs) self._path = model_path self._embeddings = None self._layers = layers self._pooling_operation = pooling_operation self._use_scalar_mix = use_scalar_mix self._no_cuda = no_cuda def get(self, keys): if self._embeddings is None: if self._no_cuda: import flair import torch flair.device = torch.device('cpu') from .flair_bert import BertEmbeddings self._embeddings = BertEmbeddings(bert_model_or_path=self._path, layers=self._layers, pooling_operation=self._pooling_operation, use_scalar_mix=self._use_scalar_mix) sentences = [Sentence(key) for key in keys] # noinspection PyUnresolvedReferences self._embeddings.embed(sentences) for s_idx, sentence in enumerate(sentences): for t_idx, token in enumerate(sentence): emb = token.embedding.cpu().numpy() yield token.text, emb del token del sentence def config(self): return {'description': self.description()} def description(self): layer_str = self._layers layer_str = layer_str.replace(' ', '') layer_str = layer_str.replace(',', '_') return "bert-layers_{}-pooling_{}-scalarmix_{}".format(layer_str, self._pooling_operation, self._use_scalar_mix)
29.359375
122
0.585418
ebb8400c4a5e99a1aed5f9a3da92162ef02f6bef
59,835
py
Python
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_06_01/operations/_blob_containers_operations.py
hurtn/azure-sdk-for-python
64cc053e589691da22fed7a47611199818c99b2b
[ "MIT" ]
1
2020-12-10T03:17:51.000Z
2020-12-10T03:17:51.000Z
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_06_01/operations/_blob_containers_operations.py
hurtn/azure-sdk-for-python
64cc053e589691da22fed7a47611199818c99b2b
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_06_01/operations/_blob_containers_operations.py
hurtn/azure-sdk-for-python
64cc053e589691da22fed7a47611199818c99b2b
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class BlobContainersOperations(object): """BlobContainersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.storage.v2019_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str account_name, # type: str maxpagesize=None, # type: Optional[str] filter=None, # type: Optional[str] include="deleted", # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["models.ListContainerItems"] """Lists all containers and does not support a prefix like data plane. Also SRP today does not return continuation token. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param maxpagesize: Optional. Specified maximum number of containers that can be included in the list. :type maxpagesize: str :param filter: Optional. When specified, only container names starting with the filter will be listed. :type filter: str :param include: Optional, used to include the properties for soft deleted blob containers. :type include: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListContainerItems or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.storage.v2019_06_01.models.ListContainerItems] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ListContainerItems"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if maxpagesize is not None: query_parameters['$maxpagesize'] = self._serialize.query("maxpagesize", maxpagesize, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if include is not None: query_parameters['$include'] = self._serialize.query("include", include, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ListContainerItems', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers'} # type: ignore def create( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str blob_container, # type: "models.BlobContainer" **kwargs # type: Any ): # type: (...) -> "models.BlobContainer" """Creates a new container under the specified account as described by request body. The container resource includes metadata and properties for that container. It does not include a list of the blobs contained by the container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param blob_container: Properties of the blob container to create. :type blob_container: ~azure.mgmt.storage.v2019_06_01.models.BlobContainer :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.BlobContainer"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.create.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(blob_container, 'BlobContainer') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('BlobContainer', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore def update( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str blob_container, # type: "models.BlobContainer" **kwargs # type: Any ): # type: (...) -> "models.BlobContainer" """Updates container properties as specified in request body. Properties not mentioned in the request will be unchanged. Update fails if the specified container doesn't already exist. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param blob_container: Properties to update for the blob container. :type blob_container: ~azure.mgmt.storage.v2019_06_01.models.BlobContainer :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.BlobContainer"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(blob_container, 'BlobContainer') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore def get( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.BlobContainer" """Gets properties of a specified container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BlobContainer, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.BlobContainer :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.BlobContainer"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('BlobContainer', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore def delete( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str **kwargs # type: Any ): # type: (...) -> None """Deletes specified container under its account. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}'} # type: ignore def set_legal_hold( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str legal_hold, # type: "models.LegalHold" **kwargs # type: Any ): # type: (...) -> "models.LegalHold" """Sets legal hold tags. Setting the same tag results in an idempotent operation. SetLegalHold follows an append pattern and does not clear out the existing tags that are not specified in the request. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param legal_hold: The LegalHold property that will be set to a blob container. :type legal_hold: ~azure.mgmt.storage.v2019_06_01.models.LegalHold :keyword callable cls: A custom type or function that will be passed the direct response :return: LegalHold, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.LegalHold :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LegalHold"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.set_legal_hold.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(legal_hold, 'LegalHold') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LegalHold', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized set_legal_hold.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/setLegalHold'} # type: ignore def clear_legal_hold( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str legal_hold, # type: "models.LegalHold" **kwargs # type: Any ): # type: (...) -> "models.LegalHold" """Clears legal hold tags. Clearing the same or non-existent tag results in an idempotent operation. ClearLegalHold clears out only the specified tags in the request. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param legal_hold: The LegalHold property that will be clear from a blob container. :type legal_hold: ~azure.mgmt.storage.v2019_06_01.models.LegalHold :keyword callable cls: A custom type or function that will be passed the direct response :return: LegalHold, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.LegalHold :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LegalHold"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.clear_legal_hold.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(legal_hold, 'LegalHold') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LegalHold', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clear_legal_hold.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/clearLegalHold'} # type: ignore def create_or_update_immutability_policy( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str if_match=None, # type: Optional[str] parameters=None, # type: Optional["models.ImmutabilityPolicy"] **kwargs # type: Any ): # type: (...) -> "models.ImmutabilityPolicy" """Creates or updates an unlocked immutability policy. ETag in If-Match is honored if given but not required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :param parameters: The ImmutabilityPolicy Properties that will be created or updated to a blob container. :type parameters: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ImmutabilityPolicy"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) immutability_policy_name = "default" api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.create_or_update_immutability_policy.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'immutabilityPolicyName': self._serialize.url("immutability_policy_name", immutability_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'ImmutabilityPolicy') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_update_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore def get_immutability_policy( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.ImmutabilityPolicy" """Gets the existing immutability policy along with the corresponding ETag in response headers and body. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ImmutabilityPolicy"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) immutability_policy_name = "default" api_version = "2019-06-01" # Construct URL url = self.get_immutability_policy.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'immutabilityPolicyName': self._serialize.url("immutability_policy_name", immutability_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore def delete_immutability_policy( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str if_match, # type: str **kwargs # type: Any ): # type: (...) -> "models.ImmutabilityPolicy" """Aborts an unlocked immutability policy. The response of delete has immutabilityPeriodSinceCreationInDays set to 0. ETag in If-Match is required for this operation. Deleting a locked immutability policy is not allowed, only way is to delete the container after deleting all blobs inside the container. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ImmutabilityPolicy"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) immutability_policy_name = "default" api_version = "2019-06-01" # Construct URL url = self.delete_immutability_policy.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'immutabilityPolicyName': self._serialize.url("immutability_policy_name", immutability_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized delete_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/{immutabilityPolicyName}'} # type: ignore def lock_immutability_policy( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str if_match, # type: str **kwargs # type: Any ): # type: (...) -> "models.ImmutabilityPolicy" """Sets the ImmutabilityPolicy to Locked state. The only action allowed on a Locked policy is ExtendImmutabilityPolicy action. ETag in If-Match is required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ImmutabilityPolicy"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" # Construct URL url = self.lock_immutability_policy.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized lock_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/default/lock'} # type: ignore def extend_immutability_policy( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str if_match, # type: str parameters=None, # type: Optional["models.ImmutabilityPolicy"] **kwargs # type: Any ): # type: (...) -> "models.ImmutabilityPolicy" """Extends the immutabilityPeriodSinceCreationInDays of a locked immutabilityPolicy. The only action allowed on a Locked policy will be this action. ETag in If-Match is required for this operation. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param if_match: The entity state (ETag) version of the immutability policy to update. A value of "*" can be used to apply the operation only if the immutability policy already exists. If omitted, this operation will always be applied. :type if_match: str :param parameters: The ImmutabilityPolicy Properties that will be extended for a blob container. :type parameters: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :keyword callable cls: A custom type or function that will be passed the direct response :return: ImmutabilityPolicy, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.ImmutabilityPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ImmutabilityPolicy"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.extend_immutability_policy.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'ImmutabilityPolicy') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ImmutabilityPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized extend_immutability_policy.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/immutabilityPolicies/default/extend'} # type: ignore def lease( self, resource_group_name, # type: str account_name, # type: str container_name, # type: str parameters=None, # type: Optional["models.LeaseContainerRequest"] **kwargs # type: Any ): # type: (...) -> "models.LeaseContainerResponse" """The Lease Container operation establishes and manages a lock on a container for delete operations. The lock duration can be 15 to 60 seconds, or can be infinite. :param resource_group_name: The name of the resource group within the user's subscription. The name is case insensitive. :type resource_group_name: str :param account_name: The name of the storage account within the specified resource group. Storage account names must be between 3 and 24 characters in length and use numbers and lower- case letters only. :type account_name: str :param container_name: The name of the blob container within the specified storage account. Blob container names must be between 3 and 63 characters in length and use numbers, lower-case letters and dash (-) only. Every dash (-) character must be immediately preceded and followed by a letter or number. :type container_name: str :param parameters: Lease Container request body. :type parameters: ~azure.mgmt.storage.v2019_06_01.models.LeaseContainerRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: LeaseContainerResponse, or the result of cls(response) :rtype: ~azure.mgmt.storage.v2019_06_01.models.LeaseContainerResponse :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LeaseContainerResponse"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self.lease.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3), 'containerName': self._serialize.url("container_name", container_name, 'str', max_length=63, min_length=3), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] if parameters is not None: body_content = self._serialize.body(parameters, 'LeaseContainerRequest') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LeaseContainerResponse', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized lease.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Storage/storageAccounts/{accountName}/blobServices/default/containers/{containerName}/lease'} # type: ignore
55.30037
297
0.68134
4efa8710121979d46fd0cdfe7a7d5cd6ec54bb3a
2,016
py
Python
venv/lib/python3.8/site-packages/vsts/build/v4_0/models/build_definition_revision.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/build/v4_0/models/build_definition_revision.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/build/v4_0/models/build_definition_revision.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class BuildDefinitionRevision(Model): """BuildDefinitionRevision. :param changed_by: :type changed_by: :class:`IdentityRef <build.v4_0.models.IdentityRef>` :param changed_date: :type changed_date: datetime :param change_type: :type change_type: object :param comment: :type comment: str :param definition_url: :type definition_url: str :param name: :type name: str :param revision: :type revision: int """ _attribute_map = { 'changed_by': {'key': 'changedBy', 'type': 'IdentityRef'}, 'changed_date': {'key': 'changedDate', 'type': 'iso-8601'}, 'change_type': {'key': 'changeType', 'type': 'object'}, 'comment': {'key': 'comment', 'type': 'str'}, 'definition_url': {'key': 'definitionUrl', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'revision': {'key': 'revision', 'type': 'int'} } def __init__(self, changed_by=None, changed_date=None, change_type=None, comment=None, definition_url=None, name=None, revision=None): super(BuildDefinitionRevision, self).__init__() self.changed_by = changed_by self.changed_date = changed_date self.change_type = change_type self.comment = comment self.definition_url = definition_url self.name = name self.revision = revision
40.32
139
0.546131
3c41903c33289a8376f7df339b1faec5eddc1b2b
2,587
py
Python
projects/models.py
rkprajapat/construction-crm
ae70238862f3048e4b1b849f9c16bf1bdf867a28
[ "MIT" ]
null
null
null
projects/models.py
rkprajapat/construction-crm
ae70238862f3048e4b1b849f9c16bf1bdf867a28
[ "MIT" ]
11
2020-02-12T00:51:32.000Z
2022-03-11T23:57:22.000Z
projects/models.py
rkprajapat/construction-crm
ae70238862f3048e4b1b849f9c16bf1bdf867a28
[ "MIT" ]
null
null
null
from django.db import models from django.urls import reverse from django_countries.fields import CountryField from django.utils.text import slugify from mdm.models import ProjectStatus, UnitStatus from users.models import CustomUser class Project(models.Model): name = models.CharField(max_length=100, blank=False) slug = models.SlugField(unique=True) status = models.ForeignKey(ProjectStatus, blank=False, null=True, on_delete=models.SET_NULL) address1 = models.CharField('Address Line 1', max_length=254, blank=False) address2 = models.CharField('Address Line 2', max_length=254, blank=True) city = models.CharField(max_length=50, blank=False) zip_code = models.PositiveSmallIntegerField('ZIP/Postal Code') country = CountryField() image = models.ImageField(blank=True, ) def save(self, *args, **kwargs): self.slug = slugify(self.name) super(Project, self).save(*args, **kwargs) def get_absolute_url(self): return reverse('project_details', args=[str(self.slug)]) @property def address(self): return ', '.join(str(x) for x in [self.address1, self.address2, self.city, self.zip_code, self.country.name] if x) def __str__(self): return self.name class Tower(models.Model): name = models.CharField(max_length=20, blank=True) project = models.ForeignKey(Project, on_delete=models.CASCADE) def __str__(self): if self.name: return ' '.join([self.project.name, '-', self.name]) else: return self.project.name class Unit(models.Model): unit = models.PositiveSmallIntegerField(blank=False) project_tower = models.ForeignKey(Tower, on_delete=models.CASCADE) status = models.ForeignKey(UnitStatus, blank=False, null=True, on_delete=models.SET_NULL) slug = models.SlugField(unique=True) owner = models.ManyToManyField(CustomUser, blank=True, related_name="owned_unit") class Meta: ordering = ['project_tower', 'unit'] def save(self, *args, **kwargs): self.slug = slugify('-'.join([self.project_tower.project.name, self.project_tower.name, str(self.unit)])) super(Unit, self).save(*args, **kwargs) def get_absolute_url(self): return reverse('unit_details', args=[str(self.slug)]) @property def address(self): return self.project_tower.project.address @property def project(self): return self.project_tower.project def __str__(self): return ' '.join([self.project_tower.project.name, self.project_tower.name, str(self.unit)])
35.438356
122
0.696946
15828be88e0e2efba05f5228f676397dc953ef50
5,291
py
Python
ITHACA_SEM_code/Nektar_data.py
Mopolino8/ITHACA-SEM
5ffdc13c9ecf14a51a6d044d567d3ec5f220efa0
[ "MIT" ]
null
null
null
ITHACA_SEM_code/Nektar_data.py
Mopolino8/ITHACA-SEM
5ffdc13c9ecf14a51a6d044d567d3ec5f220efa0
[ "MIT" ]
null
null
null
ITHACA_SEM_code/Nektar_data.py
Mopolino8/ITHACA-SEM
5ffdc13c9ecf14a51a6d044d567d3ec5f220efa0
[ "MIT" ]
1
2019-11-24T17:24:26.000Z
2019-11-24T17:24:26.000Z
import numpy as np """ runs using 1) python/3.3.2 2) numpy/1.11.1/python/3.3 3) scipy/0.17.1/python/3.3 module load python3/3.3.2 /scratch/mhess/py3p3/3.3 """ def convert(): print("Generating Parameter-independent terms.") f_IP = open('Nektar_data/IP.txt', 'r') f_IPp = open('Nektar_data/IPp.txt', 'r') f_cartmap0 = open('Nektar_data/cartmap0.txt', 'r') f_cartmap1 = open('Nektar_data/cartmap1.txt', 'r') IP = np.loadtxt(f_IP) IPp = np.loadtxt(f_IPp) cartmap0 = np.loadtxt(f_cartmap0) cartmap1 = np.loadtxt(f_cartmap1) np.save('ITHACA_SEM_data/IP', IP) np.save('ITHACA_SEM_data/IPp', IPp) np.save('ITHACA_SEM_data/cartmap0', cartmap0) np.save('ITHACA_SEM_data/cartmap1', cartmap1) nphys = cartmap0.shape[1] npc = IP.shape[0] num_elem = npc // nphys for i in range(0,num_elem): HM_str = 'Nektar_data/HelmMat_' + str(i) + '.txt' f_HM = open(HM_str) HM = np.loadtxt(f_HM) HM_str = 'ITHACA_SEM_data/HM_' + str(i) np.save(HM_str, HM) f_bmap = open('Nektar_data/bmap.txt', 'r') f_imap = open('Nektar_data/imap.txt', 'r') bmap = np.loadtxt(f_bmap) np.save('ITHACA_SEM_data/bmap', bmap) imap = np.loadtxt(f_imap) np.save('ITHACA_SEM_data/imap', imap) f_bwdtrans = open('Nektar_data/bwdtrans.txt', 'r') f_LocGloBndMap = open('Nektar_data/LocGloBndMap.txt', 'r') f_LocGloBndSign = open('Nektar_data/LocGloBndSign.txt', 'r') f_BndCondCoeffsToGlobalCoeffsMap = open('Nektar_data/BndCondCoeffsToGlobalCoeffsMap.txt', 'r') f_LocGloMap = open('Nektar_data/LocGloMap.txt', 'r') f_LocGloSign = open('Nektar_data/LocGloSign.txt', 'r') f_glodofphys = open('Nektar_data/glo_dof_phys.txt', 'r') f_numDirBnd = open('Nektar_data/NumGlobalDirBndCoeffs.txt', 'r') f_LocGloMapMatA = open('Nektar_data/LocGloMapMatA.txt', 'r') f_forcing0 = open('Nektar_data/forcing0.txt', 'r') f_forcing1 = open('Nektar_data/forcing1.txt', 'r') f_bndcond_k0_i_0 = open('Nektar_data/bndcond_k0_i_0.txt', 'r') f_bndcond_k0_i_1 = open('Nektar_data/bndcond_k0_i_1.txt', 'r') f_bndcond_k0_i_2 = open('Nektar_data/bndcond_k0_i_2.txt', 'r') f_bndcond_k1_i_0 = open('Nektar_data/bndcond_k1_i_0.txt', 'r') f_bndcond_k1_i_1 = open('Nektar_data/bndcond_k1_i_1.txt', 'r') f_bndcond_k1_i_2 = open('Nektar_data/bndcond_k1_i_2.txt', 'r') # f_LocGloMapA = open('LocGloMapA.txt', 'r') # f_LocGloSignA = open('LocGloSignA.txt', 'r') bwdtrans = np.loadtxt(f_bwdtrans) LocGloBndMap = np.loadtxt(f_LocGloBndMap) LocGloBndSign = np.loadtxt(f_LocGloBndSign) BndCondCoeffsToGlobalCoeffsMap = np.loadtxt(f_BndCondCoeffsToGlobalCoeffsMap) LocGloMap = np.loadtxt(f_LocGloMap) LocGloSign = np.loadtxt(f_LocGloSign) glodofphys = np.loadtxt(f_glodofphys) numDirBnd = np.loadtxt(f_numDirBnd) LocGloMapMatA = np.loadtxt(f_LocGloMapMatA) forcing0 = np.loadtxt(f_forcing0) forcing1 = np.loadtxt(f_forcing1) bndcond_k0_i_0 = np.loadtxt(f_bndcond_k0_i_0) bndcond_k0_i_1 = np.loadtxt(f_bndcond_k0_i_1) bndcond_k0_i_2 = np.loadtxt(f_bndcond_k0_i_2) bndcond_k1_i_0 = np.loadtxt(f_bndcond_k1_i_0) bndcond_k1_i_1 = np.loadtxt(f_bndcond_k1_i_1) bndcond_k1_i_2 = np.loadtxt(f_bndcond_k1_i_2) np.save('ITHACA_SEM_data/bwdtrans', bwdtrans) np.save('ITHACA_SEM_data/LocGloBndMap', LocGloBndMap) np.save('ITHACA_SEM_data/LocGloBndSign', LocGloBndSign) np.save('ITHACA_SEM_data/BndCondCoeffsToGlobalCoeffsMap', BndCondCoeffsToGlobalCoeffsMap) np.save('ITHACA_SEM_data/LocGloMap', LocGloMap) np.save('ITHACA_SEM_data/LocGloSign', LocGloSign) np.save('ITHACA_SEM_data/glodofphys', glodofphys) np.save('ITHACA_SEM_data/numDirBnd', numDirBnd) np.save('ITHACA_SEM_data/LocGloMapMatA', LocGloMapMatA) np.save('ITHACA_SEM_data/forcing0', forcing0) np.save('ITHACA_SEM_data/forcing1', forcing1) np.save('ITHACA_SEM_data/bndcond_k0_i_0', bndcond_k0_i_0) np.save('ITHACA_SEM_data/bndcond_k0_i_1', bndcond_k0_i_1) np.save('ITHACA_SEM_data/bndcond_k0_i_2', bndcond_k0_i_2) np.save('ITHACA_SEM_data/bndcond_k1_i_0', bndcond_k1_i_0) np.save('ITHACA_SEM_data/bndcond_k1_i_1', bndcond_k1_i_1) np.save('ITHACA_SEM_data/bndcond_k1_i_2', bndcond_k1_i_2) # f_filetxt = open('Nektar_data/cavity_poi_Oseen_ROM.txt', 'r') # f_filetxt = open('Nektar_data/testsimu.txt', 'r') # np.save('ITHACA_SEM_data/testsimu', filetxt) # f_filetxt = open('Nektar_data/cavity_poi_Oseen_nD.txt', 'r') # filetxt = np.loadtxt(f_filetxt) # np.save('ITHACA_SEM_data/testsimu_nD', filetxt) # f_filetxt = open('Nektar_data/cavity_poi_Oseen_D.txt', 'r') # filetxt = np.loadtxt(f_filetxt) # np.save('ITHACA_SEM_data/testsimu_D', filetxt) # f_filetxt = open('Nektar_data/cav_tt_corr_D.txt', 'r') # filetxt = np.loadtxt(f_filetxt) # np.save('ITHACA_SEM_data/testsimu_time_D', filetxt) # f_filetxt = open('Nektar_data/cav_tt_corr_nD.txt', 'r') # filetxt = np.loadtxt(f_filetxt) #s np.save('ITHACA_SEM_data/testsimu_time_nD', filetxt) # f_physglodof = open('phys_glo_dof.txt', 'r') # physglodof = np.loadtxt(f_physglodof) # np.save('physglodof', physglodof) # f_f0 = open('forcing0.txt', 'r') # force0 = np.loadtxt(f_f0) # np.save('force0', force0) # f_f1 = open('forcing1.txt', 'r') # force1 = np.loadtxt(f_f1) # np.save('force1', force1) # LocGloMapA = np.loadtxt(f_LocGloMapA) # LocGloSignA = np.loadtxt(f_LocGloSignA) # np.save('LocGloSignA', LocGloSignA) # np.save('LocGloMapA', LocGloMapA)
36.239726
95
0.749008
1afba788cf6dd5a30ffab348eeb5a47653d384f9
274
py
Python
tests/artificial/transf_Integration/trend_MovingAverage/cycle_5/ar_12/test_artificial_32_Integration_MovingAverage_5_12_0.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/artificial/transf_Integration/trend_MovingAverage/cycle_5/ar_12/test_artificial_32_Integration_MovingAverage_5_12_0.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/artificial/transf_Integration/trend_MovingAverage/cycle_5/ar_12/test_artificial_32_Integration_MovingAverage_5_12_0.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 5, transform = "Integration", sigma = 0.0, exog_count = 0, ar_order = 12);
39.142857
169
0.737226
72a12b17c30ad937907bbfe48a27937878657ea1
705
py
Python
operators/sampling/random_sampling.py
f4nku4n/MOENAS-TF-PSI
5e25df9143a09ffdcfbb4d03851b919aed60003a
[ "MIT" ]
null
null
null
operators/sampling/random_sampling.py
f4nku4n/MOENAS-TF-PSI
5e25df9143a09ffdcfbb4d03851b919aed60003a
[ "MIT" ]
null
null
null
operators/sampling/random_sampling.py
f4nku4n/MOENAS-TF-PSI
5e25df9143a09ffdcfbb4d03851b919aed60003a
[ "MIT" ]
null
null
null
from model.population import Population from utils import get_hashKey class RandomSampling: def __init__(self, nSamples=0): self.nSamples = nSamples def do(self, problem, **kwargs): problem_name = problem.name P = Population(self.nSamples) n = 0 P_hash_key = [] while n < self.nSamples: X = problem.sample_a_compact_architecture() if problem.isValid(X): hashKey = get_hashKey(X, problem_name) if hashKey not in P_hash_key: P[n].set('X', X) P[n].set('hashKey', hashKey) n += 1 return P if __name__ == '__main__': pass
27.115385
55
0.550355
580b8e37127e85e0caffc1105fc0229b3044289f
4,415
py
Python
moderngl_window/meta/program.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
142
2019-11-11T23:14:28.000Z
2022-03-29T08:37:03.000Z
moderngl_window/meta/program.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
107
2019-10-31T20:31:45.000Z
2022-03-23T15:01:41.000Z
moderngl_window/meta/program.py
DavideRuzza/moderngl-window
e9debc6ed4a1899aa83c0da2320e03b0c2922b80
[ "MIT" ]
36
2019-12-12T16:14:10.000Z
2022-01-18T22:58:21.000Z
from typing import List from moderngl_window.meta.base import ResourceDescription class ProgramDescription(ResourceDescription): """Describes a program to load By default a program can be loaded in the following ways: - By supplying a `path` to s single glsl file containing all shaders - By supplying several paths to separate files containing each shader type. For example ``vertex_shader``, ``fragment_shader`` .. etc. .. code:: python # Single glsl file containing all shaders ProgramDescription(path='programs/myprogram.glsl') # Multiple shader files ProgramDescription( vertex_shader='programs/myprogram_vs.glsl'. fragment_shader='programs/myprogram_fs.glsl'. geometry_shader='programs/myprogram_gs.glsl'. ) """ default_kind = None resource_type = "programs" def __init__( self, path: str = None, kind: str = None, reloadable=False, vertex_shader: str = None, geometry_shader: str = None, fragment_shader: str = None, tess_control_shader: str = None, tess_evaluation_shader: str = None, compute_shader: str = None, defines: dict = None, varyings: List = None, **kwargs ): """Create a program description Keyword Args: path (str): path to the resource relative to search directories kind (str): The kind of loader to use reloadable (bool): Should this program be reloadable vertex_shader (str): Path to vertex shader file geometry_shader (str): Path to geometry shader fragment_shader (str): Path to fragmet shader tess_control_shader (str) Path to tess control shader tess_evaluation_shader (str): Path to tess eval shader compute_shader (str): Path to compute shader defines (dict): Dictionary with define values to replace in the source varyings (List): List of varying names for transform shader **kwargs: Optional custom attributes """ kwargs.update( { "path": path, "kind": kind, "reloadable": reloadable, "vertex_shader": vertex_shader, "geometry_shader": geometry_shader, "fragment_shader": fragment_shader, "tess_control_shader": tess_control_shader, "tess_evaluation_shader": tess_evaluation_shader, "compute_shader": compute_shader, "defines": defines, "varyings": varyings, } ) super().__init__(**kwargs) @property def reloadable(self) -> bool: """bool: if this program is reloadable""" return self._kwargs.get("reloadable") @reloadable.setter def reloadable(self, value): self._kwargs["reloadable"] = value @property def vertex_shader(self) -> str: """str: Relative path to vertex shader""" return self._kwargs.get("vertex_shader") @property def geometry_shader(self) -> str: """str: Relative path to geometry shader""" return self._kwargs.get("geometry_shader") @property def fragment_shader(self) -> str: """str: Relative path to fragment shader""" return self._kwargs.get("fragment_shader") @property def tess_control_shader(self) -> str: """str: Relative path to tess control shader""" return self._kwargs.get("tess_control_shader") @property def tess_evaluation_shader(self) -> str: """str: Relative path to tessellation evaluation shader""" return self._kwargs.get("tess_evaluation_shader") @property def compute_shader(self) -> str: """str: Relative path to compute shader""" return self._kwargs.get("compute_shader") @property def defines(self) -> dict: """dict: Dictionary with define values to replace in the source""" return self._kwargs.get("defines", {}) @property def varyings(self) -> List: """List: List of varying names for transform shaders""" return self._kwargs.get("varyings", [])
35.039683
83
0.598641
6b6275971c2c2c93ef056ea14daf1275cb7b38e2
11,053
py
Python
zoo/analytics/tasks/utils.py
aexvir/the-zoo
7816afb9a0a26c6058b030b4a987c73e952d92bd
[ "MIT" ]
90
2018-11-20T10:58:24.000Z
2022-02-19T16:12:46.000Z
zoo/analytics/tasks/utils.py
kiwicom/the-zoo
fee0108ea7b65112e5b572a146cff4b1c54033fd
[ "MIT" ]
348
2018-11-21T09:22:31.000Z
2021-11-03T13:45:08.000Z
zoo/analytics/tasks/utils.py
aexvir/the-zoo
7816afb9a0a26c6058b030b4a987c73e952d92bd
[ "MIT" ]
11
2018-12-08T18:42:07.000Z
2021-02-21T06:27:58.000Z
import re from typing import Optional import structlog log = structlog.get_logger() def parse_version(raw_version: str) -> str: """Resolve semantic versioning used in javascript packages.""" try: validate_version(raw_version) except ValueError: log.exception("analytics.utils.parse_version.error", raw_version=raw_version) return None if "=" in raw_version: return raw_version.split("=")[1] if raw_version.startswith("^"): return resolve_caret_version(raw_version) if raw_version.startswith("~"): return resolve_tilde_version(raw_version) return resolve_unknown_format(raw_version) def validate_version(version: str) -> bool: # Ignore RadonBear if not version: raise ValueError("Version given is an empty string?!?!¿!?") if version.count(".") > 2: raise ValueError(f"Version {version} has too many dots") if not any(True for char in version if char.isdigit()): raise ValueError(f"Version {version} has no digits in it") if " " in version or "||" in version or "#" in version: raise ValueError(f"Version {version} has unsupported version specifiers") if ("<" in version or ">" in version) and "=" not in version: raise ValueError(f"Version {version} has unsupported version specifiers") def resolve_caret_version(version: str) -> str: temp_version = "" for version_digit in version[1:].split("."): temp_version += version_digit if version_digit.isdigit() and int(version_digit) != 0: break temp_version += "." return temp_version def resolve_tilde_version(version: str) -> str: version = version[1:].split(".") if any(True for version_digit in version[:~0] if int(version_digit) != 0): del version[~0] return ".".join(version) def resolve_unknown_format(version: str) -> str: temp_version = [] for version_digit in version.split("."): if version_digit.isdigit(): temp_version.append(version_digit) else: break return ".".join(temp_version) class DockerImageId: """Represents parsed docker image id.""" # pylint: disable=too-many-instance-attributes # Ignore PyCommentedCodeBear def __init__(self, image: str): # Ignore RadonBear self.__full_image_id = " ".join(image.split()) self.__registry = None self.__registry_host_name = None self.__registry_port = None self.__full_image_name = None self.__full_image_name_no_tag = None self.__username = None self.__full_repository_name = None self.__repository_name = None self.__namespaces = None self.__tag = None self.__version = None self.__full_os = None self.__os = None self.__os_version = None self.__alias = None @property def full_image_id(self) -> str: """Full provided image identifier.""" return self.__full_image_id @property def registry(self) -> str: """Docker registry. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ Docker registry is recognised as: a) "localhost" present before first "/" of the full docker id. b) "." present before first "/" of the full docker id. """ if "/" in self.full_image_id: registry_part, _, _ = self.full_image_id.partition("/") if "localhost" in registry_part or "." in registry_part: # This really is a registry string. self.__registry, _, _ = self.full_image_id.partition("/") return self.__registry @property def registry_host_name(self) -> str: """Docker registry host name. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ self.__registry_host_name = self.registry if self.registry and ":" in self.registry: self.__registry_host_name, _, _ = self.registry.partition(":") return self.__registry_host_name @property def registry_port(self) -> str: """Docker registry port. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾ """ if self.registry and ":" in self.registry: _, _, self.__registry_port = self.registry.partition(":") return self.__registry_port @property def full_image_name(self) -> str: """Whole name of the image without the registry. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ self.__full_image_name = self.full_image_id if self.registry: _, _, self.__full_image_name = self.full_image_id.partition("/") return self.__full_image_name @property def tag(self) -> str: """Tag. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ if ":" in self.full_image_name: _, _, self.__tag = self.full_image_name.partition(":") if " as " in self.__tag: self.__tag, _, _ = self.__tag.partition(" as ") return self.__tag @property def full_image_name_no_tag(self) -> str: """Full image name without the tag and alias. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ self.__full_image_name_no_tag, _, _ = self.full_image_name.partition(":") self.__full_image_name_no_tag, _, _ = self.__full_image_name_no_tag.partition( " as " ) return self.__full_image_name_no_tag @property def username(self) -> str: """Username (first part of the image path by convention). my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾ """ if "/" in self.full_image_name_no_tag: self.__username, _, _ = self.full_image_name_no_tag.partition("/") return self.__username @property def full_repository_name(self) -> str: """Full repository name without "username". my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ self.__full_repository_name = self.full_image_name_no_tag if "/" in self.__full_repository_name: _, _, self.__full_repository_name = self.__full_repository_name.partition( "/" ) return self.__full_repository_name @property def repository_name(self) -> str: """First part of the full repository name path (repository name by convention). my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾ """ self.__repository_name = self.full_repository_name if "/" in self.__repository_name: # Take the first part as repo name if there still are more slashes present. self.__repository_name, _, _ = self.__repository_name.partition("/") return self.__repository_name @property def namespaces(self) -> []: """Namespaces" - all path parts after username and image name as a list. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ """ if "/" in self.full_repository_name: _, _, namespaces = self.full_repository_name.partition("/") self.__namespaces = namespaces.split("/") return self.__namespaces @property def alias(self) -> str: """Image identifier alias. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾‾ """ if " as " in self.full_image_id: _, _, self.__alias = self.full_image_id.partition(" as ") return self.__alias @property def version(self) -> str: """Version of the image. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾ """ self.__version = self.tag if self.__version and "-" in self.__version: self.__version, _, _ = self.tag.partition("-") return self.__version @property def full_os(self) -> str: """OS part - parsed from tag when "-" is present. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾‾‾‾ """ if self.tag and "-" in self.tag: _, _, self.__full_os = self.tag.partition("-") return self.__full_os @property def os(self) -> str: """OS without version. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾‾‾‾ """ self.__os = self.__full_os if self.full_os: os_version = self.__parse_semantic_version(self.__full_os) if os_version: self.__os = self.__full_os.replace(os_version, "") return self.__os @property def os_version(self) -> str: """OS version. my.registry.com:5005/special-name/my-image/namespace/another-namespace:0.1.1-alpine3.9 as base-image ‾‾‾ """ self.__os_version = self.__parse_semantic_version(self.__full_os) return self.__os_version @staticmethod def __parse_semantic_version(string: Optional[str]) -> Optional[str]: """Parse semantic version from provided input.""" if string: match = re.search(r"\d+[\d|\.]*\d", string) if match: return match.group() return None def __str__(self): return str(self.__dict__)
35.088889
108
0.570252
fe9d3e970caa858bc4e75aa0dab31c4140a120ca
3,626
py
Python
tests/unit/test_sink/test_rdf_sink.py
kevinschaper/kgx
4c129428131047af4506a93fe8dc54fb92a7c702
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_sink/test_rdf_sink.py
kevinschaper/kgx
4c129428131047af4506a93fe8dc54fb92a7c702
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_sink/test_rdf_sink.py
kevinschaper/kgx
4c129428131047af4506a93fe8dc54fb92a7c702
[ "BSD-3-Clause" ]
null
null
null
import os import pytest import rdflib from kgx.sink import RdfSink from tests import TARGET_DIR from tests.unit.test_sink import get_graph def test_write_rdf1(): """ Write a graph as RDF N-Triples using RdfSink. """ graph = get_graph() filename = os.path.join(TARGET_DIR, 'test_graph1.nt') s = RdfSink(filename=filename) for n, data in graph.nodes(data=True): s.write_node(data) for u, v, k, data in graph.edges(data=True, keys=True): s.write_edge(data) s.finalize() assert os.path.exists(filename) lines = open(filename, 'r').readlines() assert len(lines) == 18 def test_write_rdf2(): """ Write a graph as a compressed RDF N-Triples using RdfSink. """ graph = get_graph() filename = os.path.join(TARGET_DIR, 'test_graph2.nt.gz') s = RdfSink(filename=filename, compression=True) for n, data in graph.nodes(data=True): s.write_node(data) for u, v, k, data in graph.edges(data=True, keys=True): s.write_edge(data) s.finalize() assert os.path.exists(filename) lines = open(filename, 'r').readlines() assert len(lines) == 18 def test_write_rdf3(): """ Write a graph as RDF N-Triples using RdfSink, where all edges are reified. """ graph = get_graph() filename = os.path.join(TARGET_DIR, 'test_graph3.nt') s = RdfSink(filename=filename, reify_all_edges=True) for n, data in graph.nodes(data=True): s.write_node(data) for u, v, k, data in graph.edges(data=True, keys=True): s.write_edge(data) s.finalize() assert os.path.exists(filename) lines = open(filename, 'r').readlines() assert len(lines) == 42 @pytest.mark.parametrize( "query", [ ('id', 'uriorcurie', 'MONDO:000001', 'URIRef', None), ( 'name', 'xsd:string', 'Test concept name', 'Literal', rdflib.term.URIRef('http://www.w3.org/2001/XMLSchema#string'), ), ('predicate', 'uriorcurie', 'biolink:related_to', 'URIRef', None), ('relation', 'uriorcurie', 'RO:000000', 'URIRef', None), ('custom_property1', 'uriorcurie', 'X:123', 'URIRef', None), ( 'custom_property2', 'xsd:float', '480.213', 'Literal', rdflib.term.URIRef('http://www.w3.org/2001/XMLSchema#float'), ), ], ) def test_prepare_object(query): """ Test internal _prepare_object method. """ sink = RdfSink(os.path.join(TARGET_DIR, 'test_graph3.nt')) o = sink._prepare_object(query[0], query[1], query[2]) assert type(o).__name__ == query[3] if query[4]: assert o.datatype == query[4] @pytest.mark.parametrize( "query", [('name', 'xsd:string'), ('predicate', 'uriorcurie'), ('xyz', 'xsd:string')] ) def test_get_property_type(query): """ Test to ensure that get_property_type returns the appropriate type for a given property. """ sink = RdfSink(os.path.join(TARGET_DIR, 'test_graph3.nt')) assert sink._get_property_type(query[0]) == query[1] @pytest.mark.parametrize( "query", [ ('MONDO:000001', 'URIRef', 'http://purl.obolibrary.org/obo/MONDO_000001'), ('urn:uuid:12345', 'URIRef', 'urn:uuid:12345'), (':new_prop', 'URIRef', 'https://www.example.org/UNKNOWN/new_prop'), ], ) def test_uriref(query): """ Test for uriref method. """ sink = RdfSink(os.path.join(TARGET_DIR, 'test_graph3.nt')) x = sink.uriref(query[0]) assert type(x).__name__ == query[1] assert str(x) == query[2]
27.263158
89
0.608384
200f5625d034013153bc777bbedae61457a783c6
4,626
py
Python
render_swap_matrix.py
EdwardJTL/Edit3D
bbb6364aeb5ea17c12c0c23578268641c066ebca
[ "MIT" ]
null
null
null
render_swap_matrix.py
EdwardJTL/Edit3D
bbb6364aeb5ea17c12c0c23578268641c066ebca
[ "MIT" ]
null
null
null
render_swap_matrix.py
EdwardJTL/Edit3D
bbb6364aeb5ea17c12c0c23578268641c066ebca
[ "MIT" ]
null
null
null
import math import numpy as np import os import torch from torch_ema import ExponentialMovingAverage from torchvision.utils import save_image from PIL import Image, ImageDraw, ImageFont import curriculums import network_config device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def generate_image(generator, z, return_aux_img=True, **kwargs): def transform(img): img_min = img.min() img_max = img.max() img = (img - img_min) / (img_max - img_min) * 256 img = img.permute(0, 2, 3, 1).squeeze().cpu().numpy() return img with torch.no_grad(): imgs = generator(z, forward_points=256**2, return_aux_img=return_aux_img, **kwargs)[0] img = imgs[0, :, :, :].unsqueeze(dim=0) aux_img = imgs[1, :, :, :].unsqueeze(dim=0) img = transform(img) aux_img = transform(aux_img) return img, aux_img def make_curriculum(curriculum): curriculum = getattr(curriculums, curriculum, None) if curriculum is None: raise ValueError(f"{curriculum} is not a valid curriculum") curriculum["num_steps"] = curriculum[0]["num_steps"] curriculum["psi"] = 1 curriculum["v_stddev"] = 0 curriculum["h_stddev"] = 0 curriculum["nerf_noise"] = 0 curriculum = {key: value for key, value in curriculum.items() if type(key) is str} return curriculum def make_gen_args(curriculum): gen_args = { "img_size": curriculum["img_size"], "fov": curriculum["fov"], "ray_start": curriculum["ray_start"], "ray_end": curriculum["ray_end"], "num_steps": curriculum["num_steps"], "h_mean": curriculum["h_mean"], "v_mean": curriculum["v_mean"], "h_stddev": 0, "v_stddev": 0, "hierarchical_sample": curriculum["hierarchical_sample"], "psi": curriculum["psi"], "sample_dist": curriculum["sample_dist"], "nerf_noise": curriculum["nerf_noise"] } return gen_args def load_generator(model_path): generator = torch.load( os.path.join(model_path, "generator.pth"), map_location=torch.device(device) ) ema_dict = torch.load( os.path.join(model_path, "ema.pth"), map_location=torch.device(device) ) ema = ExponentialMovingAverage(generator.parameters(), decay=0.999) ema.load_state_dict(ema_dict) ema.copy_to(generator.parameters()) generator.set_device(device) generator.eval() return generator def main(): img_size = 128 # model_path = "/checkpoint/edwardl/6774980/DELAYEDPURGE/" # curriculum = "CelebA" model_path = "/h/edwardl/scratch/edit3d/output/6754083/DELAYEDPURGE/" curriculum = "LSUN" curriculum = make_curriculum(curriculum) curriculum["img_size"] = img_size curriculum["h_mean"] = math.pi * 0.5 + 0.7 curriculum["v_mean"] = math.pi / 2 - 0.5 gen_args = make_gen_args(curriculum) # make z's generator = load_generator(model_path) # seeds = [0, 30, 37, 44, 58] seeds = [51, 68, 285, 4363, 1996, 314233, 314418, 314344, 314381] z_s = [] for seed in seeds: torch.manual_seed(seed) z_s.append(generator.get_zs(b=1, dist=curriculum['z_dist'])) canvas = Image.new( # channels "RGBA", ( # width img_size * len(seeds), # height img_size * len(seeds) ), # fill color (255, 255, 255, 255), ) canvas_aux = Image.new( # channels "RGBA", ( # width img_size * len(seeds), # height img_size * len(seeds) ), # fill color (255, 255, 255, 255), ) for i, z_a in enumerate(z_s): for j, z_b in enumerate(z_s): print("i {} {}; j {} {}".format(i, np.linalg.norm(z_a["z_nerf"].cpu()), j, np.linalg.norm(z_b["z_inr"].cpu()))) z = { "z_nerf": z_a["z_nerf"], # "z_inr": torch.zeros(z_b["z_inr"].shape, device=device), "z_inr": z_b["z_inr"] } img, aux_img = generate_image(generator, z, **gen_args) PIL_image = Image.fromarray(np.uint8(img)).convert("RGB") canvas.paste( PIL_image, (img_size * i, img_size * j) ) PIL_image_aux = Image.fromarray(np.uint8(aux_img)).convert("RGB") canvas_aux.paste( PIL_image_aux, (img_size * i, img_size * j) ) canvas.save("./test.png") canvas_aux.save("./test_aux.png") return if __name__ == "__main__": main()
30.235294
123
0.591224
54b12a6122c9dff8d73d6a2e803697e4ecfab3d5
19,926
py
Python
panel/interact.py
ahuang11/panel
a0e38316701cac5293da6de3441010c0ff5719da
[ "BSD-3-Clause" ]
null
null
null
panel/interact.py
ahuang11/panel
a0e38316701cac5293da6de3441010c0ff5719da
[ "BSD-3-Clause" ]
null
null
null
panel/interact.py
ahuang11/panel
a0e38316701cac5293da6de3441010c0ff5719da
[ "BSD-3-Clause" ]
null
null
null
""" Interact with functions using widgets. The interact Pane implemented in this module mirrors ipywidgets.interact in its API and implementation. Large parts of the code were copied directly from ipywidgets: Copyright (c) Jupyter Development Team and PyViz Development Team. Distributed under the terms of the Modified BSD License. """ from __future__ import absolute_import, division, unicode_literals import types from collections import OrderedDict from inspect import getcallargs from numbers import Real, Integral from six import string_types try: # Python >= 3.3 from inspect import signature, Parameter from collections.abc import Iterable, Mapping empty = Parameter.empty except ImportError: from collections import Iterable, Mapping try: from IPython.utils.signatures import signature, Parameter empty = Parameter.empty except Exception: signature, Parameter, empty = None, None, None try: from inspect import getfullargspec as check_argspec except ImportError: from inspect import getargspec as check_argspec # py2 import param from .layout import Panel, Column, Row from .pane import PaneBase, HTML, panel from .pane.base import ReplacementPane from .util import as_unicode from .viewable import Viewable from .widgets import (Checkbox, TextInput, Widget, IntSlider, FloatSlider, Select, DiscreteSlider, Button) def _get_min_max_value(min, max, value=None, step=None): """Return min, max, value given input values with possible None.""" # Either min and max need to be given, or value needs to be given if value is None: if min is None or max is None: raise ValueError('unable to infer range, value from: ({0}, {1}, {2})'.format(min, max, value)) diff = max - min value = min + (diff / 2) # Ensure that value has the same type as diff if not isinstance(value, type(diff)): value = min + (diff // 2) else: # value is not None if not isinstance(value, Real): raise TypeError('expected a real number, got: %r' % value) # Infer min/max from value if value == 0: # This gives (0, 1) of the correct type vrange = (value, value + 1) elif value > 0: vrange = (-value, 3*value) else: vrange = (3*value, -value) if min is None: min = vrange[0] if max is None: max = vrange[1] if step is not None: # ensure value is on a step tick = int((value - min) / step) value = min + tick * step if not min <= value <= max: raise ValueError('value must be between min and max (min={0}, value={1}, max={2})'.format(min, value, max)) return min, max, value def _yield_abbreviations_for_parameter(parameter, kwargs): """Get an abbreviation for a function parameter.""" name = parameter.name kind = parameter.kind ann = parameter.annotation default = parameter.default not_found = (name, empty, empty) if kind in (Parameter.POSITIONAL_OR_KEYWORD, Parameter.KEYWORD_ONLY): if name in kwargs: value = kwargs.pop(name) elif ann is not empty: param.main.warning("Using function annotations to implicitly specify interactive controls is deprecated. " "Use an explicit keyword argument for the parameter instead.", DeprecationWarning) value = ann elif default is not empty: value = default if isinstance(value, (Iterable, Mapping)): value = fixed(value) else: yield not_found yield (name, value, default) elif kind == Parameter.VAR_KEYWORD: # In this case name=kwargs and we yield the items in kwargs with their keys. for k, v in kwargs.copy().items(): kwargs.pop(k) yield k, v, empty def _matches(o, pattern): """Match a pattern of types in a sequence.""" if not len(o) == len(pattern): return False comps = zip(o,pattern) return all(isinstance(obj,kind) for obj,kind in comps) class interactive(PaneBase): default_layout = param.ClassSelector(default=Column, class_=(Panel), is_instance=False) manual_update = param.Boolean(default=False, doc=""" Whether to update manually by clicking on button.""") manual_name = param.String(default='Run Interact') def __init__(self, object, params={}, **kwargs): if signature is None: raise ImportError('interact requires either recent Python version ' '(>=3.3 or IPython to inspect function signatures.') super(interactive, self).__init__(object, **params) new_kwargs = self.find_abbreviations(kwargs) # Before we proceed, let's make sure that the user has passed a set of args+kwargs # that will lead to a valid call of the function. This protects against unspecified # and doubly-specified arguments. try: check_argspec(object) except TypeError: # if we can't inspect, we can't validate pass else: getcallargs(object, **{n:v for n,v,_ in new_kwargs}) widgets = self.widgets_from_abbreviations(new_kwargs) if self.manual_update: widgets.append(('manual', Button(name=self.manual_name))) self._widgets = OrderedDict(widgets) pane = self.object(**self.kwargs) if isinstance(pane, Viewable): self._pane = pane self._internal = False else: self._pane = panel(pane, name=self.name) self._internal = True self._inner_layout = Row(self._pane) widgets = [widget for _, widget in widgets if isinstance(widget, Widget)] if 'name' in params: widgets.insert(0, HTML('<h2>%s</h2>' % self.name)) self.widget_box = Column(*widgets) self.layout.objects = [self.widget_box, self._inner_layout] self._link_widgets() #---------------------------------------------------------------- # Model API #---------------------------------------------------------------- def _get_model(self, doc, root=None, parent=None, comm=None): return self._inner_layout._get_model(doc, root, parent, comm) #---------------------------------------------------------------- # Callback API #---------------------------------------------------------------- def _synced_params(self): return [] def _link_widgets(self): if self.manual_update: widgets = [('manual', self._widgets['manual'])] else: widgets = self._widgets.items() for name, widget in widgets: def update_pane(change): # Try updating existing pane new_object = self.object(**self.kwargs) new_pane, internal = ReplacementPane._update_from_object( new_object, self._pane, self._internal ) if new_pane is None: return # Replace pane entirely self._pane = new_pane self._inner_layout[0] = new_pane self._internal = internal pname = 'clicks' if name == 'manual' else 'value' watcher = widget.param.watch(update_pane, pname) self._callbacks.append(watcher) def _cleanup(self, root): self._inner_layout._cleanup(root) super(interactive, self)._cleanup(root) #---------------------------------------------------------------- # Public API #---------------------------------------------------------------- @property def kwargs(self): return {k: widget.value for k, widget in self._widgets.items() if k != 'manual'} def signature(self): return signature(self.object) def find_abbreviations(self, kwargs): """Find the abbreviations for the given function and kwargs. Return (name, abbrev, default) tuples. """ new_kwargs = [] try: sig = self.signature() except (ValueError, TypeError): # can't inspect, no info from function; only use kwargs return [ (key, value, value) for key, value in kwargs.items() ] for parameter in sig.parameters.values(): for name, value, default in _yield_abbreviations_for_parameter(parameter, kwargs): if value is empty: raise ValueError('cannot find widget or abbreviation for argument: {!r}'.format(name)) new_kwargs.append((name, value, default)) return new_kwargs def widgets_from_abbreviations(self, seq): """Given a sequence of (name, abbrev, default) tuples, return a sequence of Widgets.""" result = [] for name, abbrev, default in seq: if isinstance(abbrev, fixed): widget = abbrev else: widget = self.widget_from_abbrev(abbrev, name, default) if not (isinstance(widget, Widget) or isinstance(widget, fixed)): if widget is None: continue else: raise TypeError("{!r} is not a ValueWidget".format(widget)) result.append((name, widget)) return result @classmethod def applies(cls, object): return isinstance(object, types.FunctionType) @classmethod def widget_from_abbrev(cls, abbrev, name, default=empty): """Build a ValueWidget instance given an abbreviation or Widget.""" if isinstance(abbrev, Widget): return abbrev if isinstance(abbrev, tuple): widget = cls.widget_from_tuple(abbrev, name, default) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # Try single value widget = cls.widget_from_single_value(abbrev, name) if widget is not None: return widget # Something iterable (list, dict, generator, ...). Note that str and # tuple should be handled before, that is why we check this case last. if isinstance(abbrev, Iterable): widget = cls.widget_from_iterable(abbrev, name) if default is not empty: try: widget.value = default except Exception: # ignore failure to set default pass return widget # No idea... return fixed(abbrev) @staticmethod def widget_from_single_value(o, name): """Make widgets from single values, which can be used as parameter defaults.""" if isinstance(o, string_types): return TextInput(value=as_unicode(o), name=name) elif isinstance(o, bool): return Checkbox(value=o, name=name) elif isinstance(o, Integral): min, max, value = _get_min_max_value(None, None, o) return IntSlider(value=o, start=min, end=max, name=name) elif isinstance(o, Real): min, max, value = _get_min_max_value(None, None, o) return FloatSlider(value=o, start=min, end=max, name=name) else: return None @staticmethod def widget_from_tuple(o, name, default=empty): """Make widgets from a tuple abbreviation.""" int_default = (default is empty or isinstance(default, int)) if _matches(o, (Real, Real)): min, max, value = _get_min_max_value(o[0], o[1]) if all(isinstance(_, Integral) for _ in o) and int_default: cls = IntSlider else: cls = FloatSlider return cls(value=value, start=min, end=max, name=name) elif _matches(o, (Real, Real, Real)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], step=step) if all(isinstance(_, Integral) for _ in o) and int_default: cls = IntSlider else: cls = FloatSlider return cls(value=value, start=min, end=max, step=step, name=name) elif _matches(o, (Real, Real, Real, Real)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], value=o[3], step=step) if all(isinstance(_, Integral) for _ in o): cls = IntSlider else: cls = FloatSlider return cls(value=value, start=min, end=max, step=step, name=name) elif len(o) == 4: min, max, value = _get_min_max_value(o[0], o[1], value=o[3]) if all(isinstance(_, Integral) for _ in [o[0], o[1], o[3]]): cls = IntSlider else: cls = FloatSlider return cls(value=value, start=min, end=max, name=name) @staticmethod def widget_from_iterable(o, name): """Make widgets from an iterable. This should not be done for a string or tuple.""" # Select expects a dict or list, so we convert an arbitrary # iterable to either of those. values = list(o.values()) if isinstance(o, Mapping) else list(o) widget_type = DiscreteSlider if all(param._is_number(v) for v in values) else Select if isinstance(o, (list, dict)): return widget_type(options=o, name=name) elif isinstance(o, Mapping): return widget_type(options=list(o.items()), name=name) else: return widget_type(options=list(o), name=name) # Return a factory for interactive functions @classmethod def factory(cls): options = dict(manual_update=False, manual_name="Run Interact") return _InteractFactory(cls, options) class _InteractFactory(object): """ Factory for instances of :class:`interactive`. Arguments --------- cls: class The subclass of :class:`interactive` to construct. options: dict A dict of options used to construct the interactive function. By default, this is returned by ``cls.default_options()``. kwargs: dict A dict of **kwargs to use for widgets. """ def __init__(self, cls, options, kwargs=None): self.cls = cls self.opts = options self.kwargs = kwargs or {} def widget(self, f): """ Return an interactive function widget for the given function. The widget is only constructed, not displayed nor attached to the function. Returns ------- An instance of ``self.cls`` (typically :class:`interactive`). Parameters ---------- f : function The function to which the interactive widgets are tied. """ return self.cls(f, self.opts, **self.kwargs) def __call__(self, __interact_f=None, **kwargs): """ Make the given function interactive by adding and displaying the corresponding :class:`interactive` widget. Expects the first argument to be a function. Parameters to this function are widget abbreviations passed in as keyword arguments (``**kwargs``). Can be used as a decorator (see examples). Returns ------- f : __interact_f with interactive widget attached to it. Parameters ---------- __interact_f : function The function to which the interactive widgets are tied. The `**kwargs` should match the function signature. Passed to :func:`interactive()` **kwargs : various, optional An interactive widget is created for each keyword argument that is a valid widget abbreviation. Passed to :func:`interactive()` Examples -------- Render an interactive text field that shows the greeting with the passed in text:: # 1. Using interact as a function def greeting(text="World"): print("Hello {}".format(text)) interact(greeting, text="IPython Widgets") # 2. Using interact as a decorator @interact def greeting(text="World"): print("Hello {}".format(text)) # 3. Using interact as a decorator with named parameters @interact(text="IPython Widgets") def greeting(text="World"): print("Hello {}".format(text)) Render an interactive slider widget and prints square of number:: # 1. Using interact as a function def square(num=1): print("{} squared is {}".format(num, num*num)) interact(square, num=5) # 2. Using interact as a decorator @interact def square(num=2): print("{} squared is {}".format(num, num*num)) # 3. Using interact as a decorator with named parameters @interact(num=5) def square(num=2): print("{} squared is {}".format(num, num*num)) """ # If kwargs are given, replace self by a new # _InteractFactory with the updated kwargs if kwargs: params = list(interactive.param) kw = dict(self.kwargs) kw.update({k: v for k, v in kwargs.items() if k not in params}) opts = dict(self.opts, **{k: v for k, v in kwargs.items() if k in params}) self = type(self)(self.cls, opts, kw) f = __interact_f if f is None: # This branch handles the case 3 # @interact(a=30, b=40) # def f(*args, **kwargs): # ... # # Simply return the new factory return self # positional arg support in: https://gist.github.com/8851331 # Handle the cases 1 and 2 # 1. interact(f, **kwargs) # 2. @interact # def f(*args, **kwargs): # ... w = self.widget(f) try: f.widget = w except AttributeError: # some things (instancemethods) can't have attributes attached, # so wrap in a lambda f = lambda *args, **kwargs: __interact_f(*args, **kwargs) f.widget = w return w.layout def options(self, **kwds): """ Change options for interactive functions. Returns ------- A new :class:`_InteractFactory` which will apply the options when called. """ opts = dict(self.opts) for k in kwds: if k not in opts: raise ValueError("invalid option {!r}".format(k)) opts[k] = kwds[k] return type(self)(self.cls, opts, self.kwargs) interact = interactive.factory() interact_manual = interact.options(manual_update=True, manual_name="Run Interact") class fixed(param.Parameterized): """A pseudo-widget whose value is fixed and never synced to the client.""" value = param.Parameter(doc="Any Python object") description = param.String(default='') def __init__(self, value, **kwargs): super(fixed, self).__init__(value=value, **kwargs) def get_interact_value(self): """Return the value for this widget which should be passed to interactive functions. Custom widgets can change this method to process the raw value ``self.value``. """ return self.value
37.954286
118
0.576383
700b6392a8bc4a75f74dacf5b43148ec6f4de8b3
521
py
Python
DDQN/FRED/a5.py
liu1355/dl_fin
9a4be858127be0daa96cc8bb5cfed9d14f7912b8
[ "MIT" ]
null
null
null
DDQN/FRED/a5.py
liu1355/dl_fin
9a4be858127be0daa96cc8bb5cfed9d14f7912b8
[ "MIT" ]
null
null
null
DDQN/FRED/a5.py
liu1355/dl_fin
9a4be858127be0daa96cc8bb5cfed9d14f7912b8
[ "MIT" ]
1
2018-04-11T06:15:00.000Z
2018-04-11T06:15:00.000Z
import csv import requests import pandas as pd FRED_CPILFESL = 'https://www.quandl.com/api/v3/datasets/FRED/CPILFESL/data.csv?api_key=6CbgFEPrywyyFy1yNywC' with requests.Session() as s: download = s.get(FRED_CPILFESL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter = ',') CPILFESL_list = list(cr) for row in CPILFESL_list: print(row) CPILFESL_list = pd.DataFrame(CPILFESL_list) CPILFESL_list.to_csv('a5.csv', encoding = 'utf-8')
28.944444
108
0.731286
98761324df43b471ebdc74daef2d700e940612e6
9,689
py
Python
homeassistant/components/deconz/light.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
1
2022-02-21T05:50:41.000Z
2022-02-21T05:50:41.000Z
homeassistant/components/deconz/light.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
12
2021-12-16T06:18:49.000Z
2022-03-31T06:25:54.000Z
homeassistant/components/deconz/light.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
1
2022-02-24T16:07:32.000Z
2022-02-24T16:07:32.000Z
"""Support for deCONZ lights.""" from __future__ import annotations from typing import Any from pydeconz.group import Group from pydeconz.light import ( ALERT_LONG, ALERT_SHORT, EFFECT_COLOR_LOOP, EFFECT_NONE, Light, ) from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_FLASH, ATTR_HS_COLOR, ATTR_TRANSITION, ATTR_XY_COLOR, COLOR_MODE_BRIGHTNESS, COLOR_MODE_COLOR_TEMP, COLOR_MODE_HS, COLOR_MODE_ONOFF, COLOR_MODE_XY, DOMAIN, EFFECT_COLORLOOP, FLASH_LONG, FLASH_SHORT, LightEntity, LightEntityFeature, ) from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.util.color import color_hs_to_xy from .const import DOMAIN as DECONZ_DOMAIN, POWER_PLUGS from .deconz_device import DeconzDevice from .gateway import DeconzGateway, get_gateway_from_config_entry DECONZ_GROUP = "is_deconz_group" EFFECT_TO_DECONZ = {EFFECT_COLORLOOP: EFFECT_COLOR_LOOP, "None": EFFECT_NONE} FLASH_TO_DECONZ = {FLASH_SHORT: ALERT_SHORT, FLASH_LONG: ALERT_LONG} async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the deCONZ lights and groups from a config entry.""" gateway = get_gateway_from_config_entry(hass, config_entry) gateway.entities[DOMAIN] = set() @callback def async_add_light(lights: list[Light] | None = None) -> None: """Add light from deCONZ.""" entities = [] if lights is None: lights = gateway.api.lights.values() for light in lights: if ( isinstance(light, Light) and light.type not in POWER_PLUGS and light.unique_id not in gateway.entities[DOMAIN] ): entities.append(DeconzLight(light, gateway)) if entities: async_add_entities(entities) config_entry.async_on_unload( async_dispatcher_connect( hass, gateway.signal_new_light, async_add_light, ) ) @callback def async_add_group(groups: list[Group] | None = None) -> None: """Add group from deCONZ.""" if not gateway.option_allow_deconz_groups: return entities = [] if groups is None: groups = list(gateway.api.groups.values()) for group in groups: if not group.lights: continue known_groups = set(gateway.entities[DOMAIN]) new_group = DeconzGroup(group, gateway) if new_group.unique_id not in known_groups: entities.append(new_group) if entities: async_add_entities(entities) config_entry.async_on_unload( async_dispatcher_connect( hass, gateway.signal_new_group, async_add_group, ) ) async_add_light() async_add_group() class DeconzBaseLight(DeconzDevice, LightEntity): """Representation of a deCONZ light.""" TYPE = DOMAIN def __init__(self, device: Group | Light, gateway: DeconzGateway) -> None: """Set up light.""" super().__init__(device, gateway) self._attr_supported_color_modes: set[str] = set() if device.color_temp is not None: self._attr_supported_color_modes.add(COLOR_MODE_COLOR_TEMP) if device.hue is not None and device.saturation is not None: self._attr_supported_color_modes.add(COLOR_MODE_HS) if device.xy is not None: self._attr_supported_color_modes.add(COLOR_MODE_XY) if not self._attr_supported_color_modes and device.brightness is not None: self._attr_supported_color_modes.add(COLOR_MODE_BRIGHTNESS) if not self._attr_supported_color_modes: self._attr_supported_color_modes.add(COLOR_MODE_ONOFF) if device.brightness is not None: self._attr_supported_features |= LightEntityFeature.FLASH self._attr_supported_features |= LightEntityFeature.TRANSITION if device.effect is not None: self._attr_supported_features |= LightEntityFeature.EFFECT self._attr_effect_list = [EFFECT_COLORLOOP] @property def color_mode(self) -> str: """Return the color mode of the light.""" if self._device.color_mode == "ct": color_mode = COLOR_MODE_COLOR_TEMP elif self._device.color_mode == "hs": color_mode = COLOR_MODE_HS elif self._device.color_mode == "xy": color_mode = COLOR_MODE_XY elif self._device.brightness is not None: color_mode = COLOR_MODE_BRIGHTNESS else: color_mode = COLOR_MODE_ONOFF return color_mode @property def brightness(self) -> int | None: """Return the brightness of this light between 0..255.""" return self._device.brightness # type: ignore[no-any-return] @property def color_temp(self) -> int: """Return the CT color value.""" return self._device.color_temp # type: ignore[no-any-return] @property def hs_color(self) -> tuple[float, float]: """Return the hs color value.""" return (self._device.hue / 65535 * 360, self._device.saturation / 255 * 100) @property def xy_color(self) -> tuple[float, float] | None: """Return the XY color value.""" return self._device.xy # type: ignore[no-any-return] @property def is_on(self) -> bool: """Return true if light is on.""" return self._device.state # type: ignore[no-any-return] async def async_turn_on(self, **kwargs: Any) -> None: """Turn on light.""" data: dict[str, bool | float | int | str | tuple[float, float]] = {"on": True} if (attr_brightness := kwargs.get(ATTR_BRIGHTNESS)) is not None: data["brightness"] = attr_brightness if attr_color_temp := kwargs.get(ATTR_COLOR_TEMP): data["color_temperature"] = attr_color_temp if attr_hs_color := kwargs.get(ATTR_HS_COLOR): if COLOR_MODE_XY in self._attr_supported_color_modes: data["xy"] = color_hs_to_xy(*attr_hs_color) else: data["hue"] = int(attr_hs_color[0] / 360 * 65535) data["saturation"] = int(attr_hs_color[1] / 100 * 255) if ATTR_XY_COLOR in kwargs: data["xy"] = kwargs[ATTR_XY_COLOR] if (attr_transition := kwargs.get(ATTR_TRANSITION)) is not None: data["transition_time"] = int(attr_transition * 10) elif "IKEA" in self._device.manufacturer: data["transition_time"] = 0 if (alert := FLASH_TO_DECONZ.get(kwargs.get(ATTR_FLASH, ""))) is not None: data["alert"] = alert del data["on"] if (effect := EFFECT_TO_DECONZ.get(kwargs.get(ATTR_EFFECT, ""))) is not None: data["effect"] = effect await self._device.set_state(**data) async def async_turn_off(self, **kwargs: Any) -> None: """Turn off light.""" if not self._device.state: return data: dict[str, bool | int | str] = {"on": False} if (attr_transition := kwargs.get(ATTR_TRANSITION)) is not None: data["brightness"] = 0 data["transition_time"] = int(attr_transition * 10) if (alert := FLASH_TO_DECONZ.get(kwargs.get(ATTR_FLASH, ""))) is not None: data["alert"] = alert del data["on"] await self._device.set_state(**data) @property def extra_state_attributes(self) -> dict[str, bool]: """Return the device state attributes.""" return {DECONZ_GROUP: isinstance(self._device, Group)} class DeconzLight(DeconzBaseLight): """Representation of a deCONZ light.""" _device: Light @property def max_mireds(self) -> int: """Return the warmest color_temp that this light supports.""" return self._device.max_color_temp or super().max_mireds @property def min_mireds(self) -> int: """Return the coldest color_temp that this light supports.""" return self._device.min_color_temp or super().min_mireds class DeconzGroup(DeconzBaseLight): """Representation of a deCONZ group.""" _device: Group def __init__(self, device: Group, gateway: DeconzGateway) -> None: """Set up group and create an unique id.""" self._unique_id = f"{gateway.bridgeid}-{device.deconz_id}" super().__init__(device, gateway) @property def unique_id(self) -> str: """Return a unique identifier for this device.""" return self._unique_id @property def device_info(self) -> DeviceInfo: """Return a device description for device registry.""" return DeviceInfo( identifiers={(DECONZ_DOMAIN, self.unique_id)}, manufacturer="Dresden Elektronik", model="deCONZ group", name=self._device.name, via_device=(DECONZ_DOMAIN, self.gateway.api.config.bridge_id), ) @property def extra_state_attributes(self) -> dict[str, bool]: """Return the device state attributes.""" attributes = dict(super().extra_state_attributes) attributes["all_on"] = self._device.all_on return attributes
32.082781
86
0.642068
e3822edef58c9c1b83da3c56eeef242e031e0b17
1,917
py
Python
results/lmg_different_spinnumbers_20190228/script_lmg_doublebang_powell_150spins.py
lucainnocenti/ultrafast-critical-ground-state-preparation-2007.07381
29f80dcf914096555cee9bc2e18249a2c95d6a50
[ "MIT" ]
1
2020-07-21T02:31:41.000Z
2020-07-21T02:31:41.000Z
results/lmg_different_spinnumbers_20190228/script_lmg_doublebang_powell_150spins.py
lucainnocenti/ultrafast-critical-ground-state-preparation-2007.07381
29f80dcf914096555cee9bc2e18249a2c95d6a50
[ "MIT" ]
null
null
null
results/lmg_different_spinnumbers_20190228/script_lmg_doublebang_powell_150spins.py
lucainnocenti/ultrafast-critical-ground-state-preparation-2007.07381
29f80dcf914096555cee9bc2e18249a2c95d6a50
[ "MIT" ]
null
null
null
import os import sys import numpy as np import pandas as pd import logging if '../../' not in sys.path: sys.path.append('../../') import src.optimization as optimization model = 'lmg' model_parameters = dict(num_spins=150) protocol = 'doublebang' optimization_method = 'Powell' # ------ build and check name for output file additional_file_name_qualifiers = '150spins' output_file_name = (model + '_' + protocol + '_' + optimization_method.replace('-', '').lower()) if additional_file_name_qualifiers is not None: output_file_name += '_' + additional_file_name_qualifiers filenum = 1 _output_file_name = output_file_name while os.path.isfile(_output_file_name + '.csv'): _output_file_name = output_file_name + '({:02})'.format(filenum) filenum += 1 output_file_name = _output_file_name + '.csv' # ------ set up logger logFormatter = logging.Formatter("%(asctime)s [%(threadName)-12.12s]" "[%(levelname)-5.5s] %(message)s") rootLogger = logging.getLogger() rootLogger.setLevel(logging.DEBUG) # consoleHandler = logging.StreamHandler() # consoleHandler.setFormatter(logFormatter) # rootLogger.addHandler(consoleHandler) fileHandler = logging.FileHandler(output_file_name[:-4] + '.log') fileHandler.setFormatter(logFormatter) fileHandler.setLevel(logging.DEBUG) rootLogger.addHandler(fileHandler) logging.info('Output file name will be "{}"'.format(output_file_name)) # ------ start optimization results = optimization.find_best_protocol( problem_specification=dict( model=model, model_parameters=model_parameters, task='critical point state generation' ), optimization_specs=dict( protocol=protocol, optimization_method=optimization_method ), other_options=dict( scan_times=np.linspace(0.1, 2, 100) ) ) # ------ save results to file results.to_csv(output_file_name)
29.045455
70
0.708399
a19ecaa9abeb8d066fa8d0ddcc3af644e28e747b
13,958
py
Python
PyCommon/modules/Motion/ysBipedAnalysis.py
snumrl/DataDrivenBipedController
68ecaa17790ebf3039ae8c0b91d21fab4829bb8c
[ "Apache-2.0", "MIT" ]
7
2018-08-17T10:25:56.000Z
2021-09-01T11:28:56.000Z
PyCommon/modules/Motion/ysBipedAnalysis.py
snumrl/DataDrivenBipedController
68ecaa17790ebf3039ae8c0b91d21fab4829bb8c
[ "Apache-2.0", "MIT" ]
null
null
null
PyCommon/modules/Motion/ysBipedAnalysis.py
snumrl/DataDrivenBipedController
68ecaa17790ebf3039ae8c0b91d21fab4829bb8c
[ "Apache-2.0", "MIT" ]
5
2017-01-05T09:22:58.000Z
2021-07-26T15:13:19.000Z
# +------------------------------------------------------------------------- # | ysBipedAnalysis.py # | # | Author: Yoonsang Lee # +------------------------------------------------------------------------- # | COPYRIGHT: # | Copyright Yoonsang Lee 2013 # | See the included COPYRIGHT.txt file for further details. # | # | This file is part of the DataDrivenBipedController. # | DataDrivenBipedController is free software: you can redistribute it and/or modify # | it under the terms of the MIT License. # | # | You should have received a copy of the MIT License # | along with DataDrivenBipedController. If not, see <mit-license.org>. # +------------------------------------------------------------------------- import math import sys if '..' not in sys.path: sys.path.append('..') import Util.ysPythonEx as ype import Motion.ysMotionAnalysis as yma class GaitState: STOP = 0 LSWING = 1 RSWING = 2 JUMP = 3 text = ype.getReverseDict(locals()) # return interval def getWalkingCycle(jointMotion, one_contactStates, endZoneSize = 10): intervals, types = yma.states2intervals(one_contactStates) half1stIndex = (len(intervals)-1)/2 - 1 half2ndIndex = half1stIndex + 1 # print half1stIndex, half2ndIndex, intervals[half1stIndex], intervals[half2ndIndex] # startFrame = intervals[half1stIndex][0] # endFrame = intervals[half2ndIndex][-1] startFrame = int(math.ceil(intervals[half1stIndex][0])) endFrame = int(math.floor(intervals[half2ndIndex][-1])) minDistance = sys.maxint minFrame = 0 for i in range(endFrame-endZoneSize, endFrame+endZoneSize): d = yma.distanceByRelPos(jointMotion[startFrame], jointMotion[i]) # print i, d if d < minDistance: # print 'min', i, d minDistance = d minFrame = i endFrame = minFrame return [startFrame, endFrame] def getWalkingCycle2(jointMotion, one_contactStates, endZoneSize = 10): intervals, types = yma.states2intervals(one_contactStates) half1stIndex = (len(intervals)-1)/2 - 1 half2ndIndex = half1stIndex + 1 # print half1stIndex, half2ndIndex, intervals[half1stIndex], intervals[half2ndIndex] # startFrame = intervals[half1stIndex][0] # endFrame = intervals[half2ndIndex][-1] startFrame = int(math.ceil(intervals[half1stIndex][0])) endFrame = int(math.floor(intervals[half2ndIndex][-1])) minDistance = sys.maxint minFrame = 0 for i in range(endFrame-endZoneSize, endFrame+endZoneSize): d = yma.distanceByRelPos2(jointMotion[startFrame], jointMotion[i]) # print i, d if d < minDistance: # print 'min', i, d minDistance = d minFrame = i endFrame = minFrame return [startFrame, endFrame] # depreciate def getWalkingSteps(left_contactStates, right_contactStates, includeFirstLastSteps=False, overlap=True): l_taking, l_landing = yma.getTakingLandingFrames(left_contactStates) r_taking, r_landing = yma.getTakingLandingFrames(right_contactStates) landing = l_landing + r_landing landing.sort() if includeFirstLastSteps: # landing.insert(0, min(l_taking[0], r_taking[0])) landing.insert(0, 0) else: del landing[-1] return yma.borders2intervals(landing, overlap) def getBipedGaitStates(lFootContactStates, rFootContactStates, jumpThreshold = 0, jumpBias = .5, stopThreshold = 0, stopBias = .5): gaitStates = [None]*len(lFootContactStates) for i in range(len(lFootContactStates)): if lFootContactStates[i] and not rFootContactStates[i]: gaitStates[i] = GaitState.RSWING elif not lFootContactStates[i] and rFootContactStates[i]: gaitStates[i] = GaitState.LSWING elif lFootContactStates[i] and rFootContactStates[i]: gaitStates[i] = GaitState.STOP elif not lFootContactStates[i] and not rFootContactStates[i]: gaitStates[i] = GaitState.JUMP # check thresholds # intervals, types = getBipedGaitIntervalsTypes(gaitStates) # stopIntervals = getSpecifiedTypeIntervals(GaitState.STOP, intervals, types) # jumpIntervals = getSpecifiedTypeIntervals(GaitState.JUMP, intervals, types) intervals, types = yma.states2intervals(gaitStates) intervals = [yma.intIntervalInner(interval) for interval in intervals] stopIntervals = yma.getIntervalsWithState(GaitState.STOP, intervals, types) jumpIntervals = yma.getIntervalsWithState(GaitState.JUMP, intervals, types) total = [stopIntervals, jumpIntervals] thresholds = [stopThreshold, jumpThreshold] biases = [stopBias, jumpBias] for b in range(len(total)): intervals = total[b] threshold = thresholds[b] bias = biases[b] for interval in intervals: if interval[0] == 0 or interval[1] == len(gaitStates)-1: continue prevState = gaitStates[interval[0]-1] nextState = gaitStates[interval[1]+1] if interval[1] - interval[0] < threshold: mid = (interval[1] + interval[0])*bias for i in range(interval[0], interval[1]+1): if i < mid: gaitStates[i] = prevState else: gaitStates[i] = nextState return gaitStates def getBipedGaitIntervals(lFootContactStates, rFootContactStates, jumpThreshold = 0, jumpBias = .5, stopThreshold = 0, stopBias = .5): states = getBipedGaitStates(lFootContactStates, rFootContactStates, jumpThreshold, jumpBias, stopThreshold, stopBias) intervals, states = yma.states2intervals(states) return [yma.intIntervalUp(interval) for interval in intervals], states def getBipedGaitStates2(lFootContactStates, rFootContactStates, jumpThreshold = 0, jumpBias = .5, stopThreshold = 0, stopBias = .5): gaitStates = [None]*len(lFootContactStates) for i in range(len(lFootContactStates)): if lFootContactStates[i] and not rFootContactStates[i]: gaitStates[i] = GaitState.RSWING elif not lFootContactStates[i] and rFootContactStates[i]: gaitStates[i] = GaitState.LSWING elif lFootContactStates[i] and rFootContactStates[i]: gaitStates[i] = GaitState.STOP elif not lFootContactStates[i] and not rFootContactStates[i]: gaitStates[i] = GaitState.JUMP # check thresholds # intervals, types = getBipedGaitIntervalsTypes(gaitStates) # stopIntervals = getSpecifiedTypeIntervals(GaitState.STOP, intervals, types) # jumpIntervals = getSpecifiedTypeIntervals(GaitState.JUMP, intervals, types) intervals, types = yma.states2intervals(gaitStates) intervals = [yma.intIntervalInner(interval) for interval in intervals] stopIntervals = yma.getIntervalsWithState(GaitState.STOP, intervals, types) jumpIntervals = yma.getIntervalsWithState(GaitState.JUMP, intervals, types) total = [stopIntervals, jumpIntervals] thresholds = [stopThreshold, jumpThreshold] biases = [stopBias, jumpBias] for b in range(len(total)): intervals = total[b] threshold = thresholds[b] bias = biases[b] for interval in intervals: # if interval[0] == 0 or interval[1] == len(gaitStates)-1: # continue # prevState = gaitStates[interval[0]-1] # nextState = gaitStates[interval[1]+1] # temp - to be fixed if interval[0] == 0: prevState = gaitStates[interval[1]+1] nextState = gaitStates[interval[1]+1] elif interval[1] == len(gaitStates)-1: prevState = gaitStates[interval[0]-1] nextState = gaitStates[interval[0]-1] else: prevState = gaitStates[interval[0]-1] nextState = gaitStates[interval[1]+1] if interval[1] - interval[0] < threshold: mid = (interval[1] + interval[0])*bias for i in range(interval[0], interval[1]+1): if i < mid: gaitStates[i] = prevState else: gaitStates[i] = nextState return gaitStates def getBipedGaitIntervals2(lFootContactStates, rFootContactStates, jumpThreshold = 0, jumpBias = .5, stopThreshold = 0, stopBias = .5): states = getBipedGaitStates2(lFootContactStates, rFootContactStates, jumpThreshold, jumpBias, stopThreshold, stopBias) intervals, states = yma.states2intervals(states) return [yma.intIntervalUp(interval) for interval in intervals], states if __name__ == '__main__': import psyco; psyco.full() import copy, numpy from fltk import * import Resource.ysMotionLoader as yf import Motion.ysMotionConverter as ymc import Util.ysMatplotEx as ymp import GUI.ysSimpleViewer as ysv import Renderer.ysRenderer as yr import Motion.ysMotion as ym def test_getWalkingCycle(): bvhFilePath = '../samples/wd2_WalkSameSame00.bvh' jointMotion = yf.readBvhFile(bvhFilePath, .01) lFoot = jointMotion[0].skeleton.getElementIndex('LeftFoot') rFoot = jointMotion[0].skeleton.getElementIndex('RightFoot') hRef = .1; vRef = .3 lc = yma.getElementContactStates(jointMotion, lFoot, hRef, vRef) # rc = getElementContactStates(jointMotion, rFoot, hRef, vRef) interval = getWalkingCycle(jointMotion, lc) cycleMotion = jointMotion[interval[0]:interval[-1]+1] startMotion = cycleMotion[:1] endMotion = cycleMotion[-1:] viewer = ysv.SimpleViewer() viewer.record(False) viewer.doc.addRenderer('jointMotion', yr.JointMotionRenderer(jointMotion, (0,0,255), yr.LINK_LINE)) viewer.doc.addObject('jointMotion', jointMotion) viewer.doc.addRenderer('startMotion', yr.JointMotionRenderer(startMotion, (0,255,0), yr.LINK_LINE)) viewer.doc.addObject('startMotion', startMotion) viewer.doc.addRenderer('endMotion', yr.JointMotionRenderer(endMotion, (0,255,0), yr.LINK_LINE)) viewer.doc.addObject('endMotion', endMotion) viewer.startTimer(1/30.) viewer.show() Fl.run() def test_getWalkingSteps(): bvhFilePath = '../samples/wd2_WalkSameSame00.bvh' motion = yf.readBvhFile(bvhFilePath, .01) motion = motion[:-10] lFoot = motion[0].skeleton.getElementIndex('LeftFoot') rFoot = motion[0].skeleton.getElementIndex('RightFoot') hRef = .1; vRef = .3 lc = yma.getElementContactStates(motion, lFoot, hRef, vRef) rc = yma.getElementContactStates(motion, rFoot, hRef, vRef) t, l_landing = yma.getTakingLandingFrames(lc) t, r_landing = yma.getTakingLandingFrames(rc) landing = l_landing + r_landing landing.sort() print 'landingFrames', landing # steps = getWalkingSteps(lc, rc, True) steps = getWalkingSteps(lc, rc, True, False) # steps = getWalkingSteps(lc, rc, False) print 'steps', steps print stepMotions = yma.splitMotionIntoSegments(motion, steps) for i in range(len(steps)): print 'stepMotions[%d]: motion[%d]~motion[%d], len %d'%(i, steps[i][0], steps[i][1], len(stepMotions[i])) viewer = ysv.SimpleViewer() viewer.record(False) viewer.doc.addRenderer('motion', yr.JointMotionRenderer(motion, (0,100,255), yr.LINK_LINE, 3.)) viewer.doc.addObject('motion', motion) for i in range(len(steps)): viewer.doc.addRenderer('stepMotions[%d]'%i, yr.JointMotionRenderer(stepMotions[i], (0,255,0), yr.LINK_LINE, 3.)) viewer.doc.addObject('stepMotions[%d]', stepMotions[i]) viewer.startTimer(1/30.) viewer.show() Fl.run() def test_getBipedGaitStates(): bvhFilePath = '../samples/wd2_WalkSameSame00.bvh' motion = yf.readBvhFile(bvhFilePath, .01) hRef = .1; vRef = .3 lc = yma.getElementContactStates(motion, motion[0].skeleton.getElementIndex('LeftFoot'), hRef, vRef) rc = yma.getElementContactStates(motion, motion[0].skeleton.getElementIndex('RightFoot'), hRef, vRef) rawStateList = getBipedGaitStates(lc, rc) cookedStateList = getBipedGaitStates(lc, rc, 10, 1.) intervals, types = yma.states2intervals(cookedStateList) for i in range(len(intervals)): print intervals[i], GaitState.text[types[i]] print print [yma.intIntervalUp(int) for int in intervals] print getWalkingSteps(lc, rc, True) print getBipedGaitIntervals(lc, rc, 10, 1.) plot = ymp.SmartPlot() plot.setXdata('frame', range(len(motion))) plot.addYdata('rawState', rawStateList) plot.addYdata('cookedState', cookedStateList) plot.showModeless() viewer = ysv.SimpleViewer() viewer.record(False) viewer.doc.addRenderer('motion', yr.JointMotionRenderer(motion, (0,0,255), yr.LINK_LINE)) viewer.doc.addObject('motion', motion) viewer.startTimer(1/30.) viewer.show() Fl.run() pass # test_getWalkingCycle() # test_getWalkingSteps() test_getBipedGaitStates()
42.042169
136
0.616707
1c22fb8e6b7882a97f0d08c0dc1552022758f3a3
3,644
py
Python
vsgia_model/models/gazenet.py
nkuhzx/VSG-IA
075b58c2bf89562cc197e721f050396589861c6a
[ "Apache-2.0" ]
null
null
null
vsgia_model/models/gazenet.py
nkuhzx/VSG-IA
075b58c2bf89562cc197e721f050396589861c6a
[ "Apache-2.0" ]
null
null
null
vsgia_model/models/gazenet.py
nkuhzx/VSG-IA
075b58c2bf89562cc197e721f050396589861c6a
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from vsgia_model.models.scenepathway import SceneNet from vsgia_model.models.headpathway import HeadNet from vsgia_model.models.vsgat import GraphDealModule from vsgia_model.models.decoder import HeatmapDecoder,InoutDecoder from vsgia_model.models.utils.transformer import build_transformer from vsgia_model.models.utils.position_encoding import PositionEmbeddingLearned from vsgia_model.models.utils.misc import NestedTensor class VSGIANet(nn.Module): def __init__(self, transformer,vsgraph, hidden_dim=256, num_queries=16,output_size=64, pretrained=False,inout_branch=False): super(VSGIANet, self).__init__() self.hidden_dim = hidden_dim self.output_size = output_size self.inout_branch=inout_branch self.query_embed = nn.Embedding(num_queries, hidden_dim) self.vsgraph=vsgraph self.scene_backbone=SceneNet(pretrained) self.head_backbone=HeadNet() self.input_proj = nn.Conv2d(3072, hidden_dim, kernel_size=1) self.encoder = transformer self.posembedding = PositionEmbeddingLearned(hidden_dim // 2) self.heatmap_decoder=HeatmapDecoder() if self.inout_branch: self.inout_decoder=InoutDecoder() def forward(self, simg: NestedTensor, face: NestedTensor, head_loc:NestedTensor, mask,nodenum,v_feat,s_feat): # batch_size bs = simg.tensors.size(0) wei, hei = simg.tensors.size(2), simg.tensors.size(3) # infer the interactive probability inter_prob=self.vsgraph(nodenum,v_feat,s_feat) inter_prob=inter_prob.unsqueeze(1) # infer the interactive attention map according to interactive mask=mask.unsqueeze(3) mask = mask.reshape(-1, 224 * 224, 1) max_value=torch.max(mask.detach(), dim=1)[0].reshape(-1,1,1) max_value[max_value==0]=1 mask=mask/max_value interatt = torch.matmul(mask, inter_prob) interatt = interatt.reshape(-1, 224, 224) split_index = (np.array(nodenum) - 1).tolist() interatt_tuple = interatt.split(split_index, dim=0) batch_interatt = torch.stack([torch.mean(i, dim=0) for i in interatt_tuple], dim=0) batch_interatt=batch_interatt.unsqueeze(1) # obtain the saliency with interactive attention feat scene_feats = self.scene_backbone(torch.cat((simg.tensors, head_loc.tensors,batch_interatt), dim=1)) scene_mask = F.interpolate(simg.mask[None].float(), size=scene_feats.shape[-2:]).to(torch.bool)[0] head_feats = self.head_backbone(face.tensors) head_mask=F.interpolate(face.mask[None].float(),size=head_feats.shape[-2:]).to(torch.bool)[0] # fed into the encoder builted by transformer input_src=torch.cat((scene_feats,head_feats),dim=1) input_mask=torch.bitwise_or(scene_mask,head_mask) input_features = NestedTensor(input_src, input_mask) input_pos = self.posembedding(input_features) query_embed= self.query_embed.weight.unsqueeze(0).repeat(bs, 1, 1) global_memory = self.encoder(self.input_proj(input_src), input_mask, query_embed, input_pos)[0] # predicte the heatmap and inout heatmap = self.heatmap_decoder(global_memory) if self.inout_branch: inout=self.inout_decoder(global_memory) else: inout=None outs = { 'heatmap': heatmap, 'inout':inout, 'inter_prob':inter_prob, "inter_att":batch_interatt } return outs
33.127273
128
0.692371
e406cab11849df8fe2ebeee1593d7edcf9771c35
10,127
py
Python
teafacto/scripts/atis/atisseqtrans.py
lukovnikov/teafacto
5e863df8d061106ad705c0837f2d2ca4e08db0e4
[ "MIT" ]
2
2016-06-28T23:41:42.000Z
2017-01-14T12:41:36.000Z
teafacto/scripts/atis/atisseqtrans.py
lukovnikov/teafacto
5e863df8d061106ad705c0837f2d2ca4e08db0e4
[ "MIT" ]
1
2016-04-20T20:09:20.000Z
2016-08-17T19:02:47.000Z
teafacto/scripts/atis/atisseqtrans.py
lukovnikov/teafacto
5e863df8d061106ad705c0837f2d2ca4e08db0e4
[ "MIT" ]
5
2016-07-18T17:05:18.000Z
2018-10-13T05:40:05.000Z
import pickle import numpy as np import os import theano from theano import tensor as TT from teafacto.blocks.seq.trans import SimpleSeqTrans #from teafacto.blocks.seq.oldseqproc import SimpleSeqTransducer as SimpleSeqTrans from teafacto.blocks.seq.rnu import GRU from teafacto.blocks.basic import Softmax from teafacto.core.base import Block, param, tensorops as T from teafacto.util import argprun from teafacto.procutil import * def getdatamatrix(lot, maxlen, k, offset=1): data = np.zeros((len(lot), maxlen)) i = 0 while i < len(lot): x = lot[i][k] j = 0 while j < x.shape[0]: data[i, j] = x[j] + offset j += 1 i += 1 return data def tup2text(tup, word2idx, table2idx, label2idx): word2idxrev = {v: k for k, v in word2idx.items()} table2idxrev = {v: k for k, v in table2idx.items()} label2idxrev = {v: k for k, v in label2idx.items()} i = 0 words = " ".join(map(lambda x: word2idxrev[tup[0][x]], range(len(tup[0])))) labels = " ".join(map(lambda x: label2idxrev[tup[2][x]], range(len(tup[0])))) print words print labels def atiseval(preds, golds, revdic): """ computes accuracy, precision, recall and f-score on recognized slots""" assert(preds.shape[0] == golds.shape[0]) i = 0 tp = 0 fp = 0 fn = 0 while i < preds.shape[0]: predslots = getslots(preds[i], revdic=revdic) goldslots = getslots(golds[i], revdic=revdic) for predslot in predslots: if predslot in goldslots: tp += 1 else: fp += 1 for goldslot in goldslots: if goldslot not in predslots: # FN fn += 1 i += 1 precision = 1.0* tp / (tp + fp) if (tp + fp) > 0 else 0. recall = 1.0* tp / (tp + fn) if (tp + fp) > 0 else 0. fscore = 2.0 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0. return fscore, {"p": precision, "r": recall}, {"tp": tp, "fp": fp, "fn": fn} def getslots(x, revdic): y = np.vectorize(lambda a: revdic[a] if a in revdic else "_" )(x) slots = [] currentslot = None i = 0 sumtingwong = False while i < len(y): ye = y[i] if ye == "O": # no slot/finalize slot if currentslot is not None: #finalize slot slots.append(currentslot) currentslot = None else: # do nothing pass elif ye[0] == "B": # slot starting if currentslot is not None: #finalize slot slots.append(currentslot) else: # do nothing pass currentslot = (ye[2:], [i]) # start new slot elif ye[0] == "I": # slot continuing if currentslot is not None: if currentslot[0] == ye[2:]: currentslot[1].append(i) else: # wrong continuation --> finalize slot? slots.append(currentslot) currentslot = None else: # something wrong print "sum ting wong" sumtingwong = True i += 1 if sumtingwong: print y return slots class StupidAtis(Block): def __init__(self, indim=100, inpembdim=50, outdim=100, **kw): self.E = param((indim, inpembdim), name="emb").uniform() self.W = param((inpembdim, outdim), name="W").uniform() super(StupidAtis, self).__init__(**kw) def apply(self, x): # x: (batsize, seqlen) emb = self.E[x] # (batsize, seqlen, inpembdim) outs = T.tensordot(emb, self.W, 1) # (batsize, seqlen, outdim) outsf = outs.reshape((outs.shape[0] * outs.shape[1], outs.shape[2])) # (batsize*seqlen, outdim) outsfsm = Softmax()(outsf) ret = outsfsm.reshape(outs.shape) # (batsize, seqlen, outdim) return ret class StupidAtisNative(Block): def __init__(self, indim=100, inpembdim=50, outdim=100, **kw): super(StupidAtisNative, self).__init__(**kw) self.E = self.add_param(param((indim, inpembdim), name="emb").uniform()) self.W = self.add_param(param((inpembdim, outdim), name="W").uniform()) def _apply(self, x): emb = self.E.d[x] outs = TT.tensordot(emb, self.W.d, 1) outsf = outs.reshape((outs.shape[0] * outs.shape[1], outs.shape[2])) outsfsm = TT.nnet.softmax(outsf) ret = outsfsm.reshape(outs.shape) return ret class StupidAtisScanMod(StupidAtis): scanemb = False scanout = True scansm = True def apply(self, x): emb = self.recembed(x) if self.scanemb else self.E[x] # (batsize, seqlen, inpembdim) outs = self.recout(emb) if self.scanout else T.tensordot(emb, self.W, 1) ret = self.recret(outs) if self.scansm else Softmax()(outs.reshape((outs.shape[0] * outs.shape[1], outs.shape[2]))).reshape(outs.shape) # (batsize*seqlen, outdim) return ret def recembed(self, x): E = self.E def rec(x_t): return E[x_t] return T.scan(fn=rec, sequences=x.dimshuffle(1, 0), outputs_info=None).dimshuffle(1, 0, 2) def recout(self, x): W = self.W def rec(x_t): return T.dot(x_t, W) return T.scan(fn=rec, sequences=x.dimshuffle(1, 0, 2), outputs_info=None).dimshuffle(1, 0, 2) def recret(self, x): sm = T.nnet.softmax def rec(x_t): return sm(x_t) return T.scan(fn=rec, sequences=x.dimshuffle(1, 0, 2), outputs_info=None).dimshuffle(1, 0, 2) class StupidAtisScanModNative(StupidAtisNative): scanemb = True scanout = False scansm = False def _apply(self, x): emb = self.recembed(x) if self.scanemb else self.E.d[x] # (batsize, seqlen, inpembdim) outs = self.recout(emb) if self.scanout else TT.tensordot(emb, self.W.d, 1) ret = self.recret(outs) if self.scansm else TT.nnet.softmax(outs.reshape((outs.shape[0] * outs.shape[1], outs.shape[2]))).reshape(outs.shape) # (batsize*seqlen, outdim) return ret def recembed(self, x): E = self.E.d def rec(x_t): return E[x_t] return theano.scan(fn=rec, sequences=x.dimshuffle(1, 0), outputs_info=None)[0].dimshuffle(1, 0, 2) def recout(self, x): W = self.W.d def rec(x_t): return TT.dot(x_t, W) return theano.scan(fn=rec, sequences=x.dimshuffle(1, 0, 2), outputs_info=None)[0].dimshuffle(1, 0, 2) def recret(self, x): sm = TT.nnet.softmax def rec(x_t): return sm(x_t) return theano.scan(fn=rec, sequences=x.dimshuffle(1, 0, 2), outputs_info=None)[0].dimshuffle(1, 0, 2) class StupidAtisScan(StupidAtis): def apply(self, x): E = self.E W = self.W sm = Softmax() def rec(x_t): emb = E[x_t] outs = T.dot(emb, W) return sm(outs) o = T.scan(fn=rec, sequences=x.dimshuffle(1, 0), outputs_info=None) return o.dimshuffle(1, 0, 2) class StupidAtisScanNative(StupidAtisNative): def _apply(self, x): E = self.E.d W = self.W.d sm = TT.nnet.softmax def rec(x_t): emb = E[x_t] outs = TT.dot(emb, W) return sm(outs) o = theano.scan(fn=rec, sequences=x.dimshuffle(1, 0, 2), outputs_info=None) return o.dimshuffle(1, 0, 2) def run(p="../../../data/atis/atis.pkl", wordembdim=100, innerdim=200, lr=1., numbats=100, epochs=20, validinter=1, wreg=0.00003, depth=1): p = os.path.join(os.path.dirname(__file__), p) train, test, dics = pickle.load(open(p)) word2idx = dics["words2idx"] table2idx = dics["tables2idx"] label2idx = dics["labels2idx"] label2idxrev = {v: k for k, v in label2idx.items()} train = zip(*train) test = zip(*test) print "%d training examples, %d test examples" % (len(train), len(test)) #tup2text(train[0], word2idx, table2idx, label2idx) maxlen = 0 for tup in train + test: maxlen = max(len(tup[0]), maxlen) numwords = max(word2idx.values()) + 2 numlabels = max(label2idx.values()) + 2 # get training data traindata = getdatamatrix(train, maxlen, 0).astype("int32") traingold = getdatamatrix(train, maxlen, 2).astype("int32") trainmask = (traindata > 0).astype("float32") # test data testdata = getdatamatrix(test, maxlen, 0).astype("int32") testgold = getdatamatrix(test, maxlen, 2).astype("int32") testmask = (testdata > 0).astype("float32") res = atiseval(testgold-1, testgold-1, label2idxrev); print res#; exit() # define model innerdim = [innerdim] * depth m = SimpleSeqTrans(indim=numwords, embdim=wordembdim, rnu=GRU, innerdim=innerdim, outdim=numlabels) '''m = StupidAtis(inpembdim = wordembdim, indim = numwords, outdim = numlabels) m = StupidAtisNative(inpembdim=wordembdim, indim=numwords, outdim=numlabels)''' #m = StupidAtisScanMod(inpembdim=wordembdim, indim=numwords, outdim=numlabels) #m = StupidAtisScanModNative(inpembdim=wordembdim, indim=numwords, outdim=numlabels) # training '''m.train([traindata, trainmask], traingold).adagrad(lr=lr).grad_total_norm(5.0).seq_cross_entropy().l2(wreg)\ .split_validate(splits=5, random=True).seq_cross_entropy().seq_accuracy().validinter(validinter)\ .train(numbats, epochs)''' m.train([traindata], traingold).adagrad(lr=lr).seq_cross_entropy().l2(wreg).grad_total_norm(1.)\ .split_validate(splits=5, random=True).seq_cross_entropy().seq_accuracy().validinter(validinter)\ .train(numbats, epochs) # predict after training testpredprobs = m.predict(testdata, testmask) testpred = np.argmax(testpredprobs, axis=2)-1 #testpred = testpred * testmask #print np.vectorize(lambda x: label2idxrev[x] if x > -1 else " ")(testpred) evalres = atiseval(testpred, testgold-1, label2idxrev); print evalres if __name__ == "__main__": argprun(run)
35.533333
179
0.59761
f9c40a9173e451d4d42765eb25e7ade7ff3c26fc
294
py
Python
output/models/nist_data/atomic/unsigned_int/schema_instance/nistschema_sv_iv_atomic_unsigned_int_max_inclusive_5_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/unsigned_int/schema_instance/nistschema_sv_iv_atomic_unsigned_int_max_inclusive_5_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/unsigned_int/schema_instance/nistschema_sv_iv_atomic_unsigned_int_max_inclusive_5_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.atomic.unsigned_int.schema_instance.nistschema_sv_iv_atomic_unsigned_int_max_inclusive_5_xsd.nistschema_sv_iv_atomic_unsigned_int_max_inclusive_5 import NistschemaSvIvAtomicUnsignedIntMaxInclusive5 __all__ = [ "NistschemaSvIvAtomicUnsignedIntMaxInclusive5", ]
49
226
0.908163
112bfdbc296142da194e58ddc0600b4aeb452536
25,093
py
Python
selfdrive/car/honda/interface.py
TMORI135/openpilot
bc986477eb34f554933caafeac71538c57fb6838
[ "MIT" ]
65
2019-07-27T11:27:02.000Z
2022-02-03T09:10:38.000Z
selfdrive/car/honda/interface.py
TMORI135/openpilot
bc986477eb34f554933caafeac71538c57fb6838
[ "MIT" ]
41
2018-08-01T17:36:08.000Z
2020-12-16T02:42:57.000Z
selfdrive/car/honda/interface.py
TMORI135/openpilot
bc986477eb34f554933caafeac71538c57fb6838
[ "MIT" ]
229
2019-07-27T20:31:02.000Z
2021-09-21T11:02:49.000Z
#!/usr/bin/env python3 import numpy as np from cereal import car from common.numpy_fast import clip, interp from common.realtime import DT_CTRL from selfdrive.swaglog import cloudlog from selfdrive.config import Conversions as CV from selfdrive.controls.lib.events import ET from selfdrive.car.honda.values import CruiseButtons, CAR, HONDA_BOSCH from selfdrive.car import STD_CARGO_KG, CivicParams, scale_rot_inertia, scale_tire_stiffness, gen_empty_fingerprint from selfdrive.controls.lib.longitudinal_planner import _A_CRUISE_MAX_V_FOLLOWING from selfdrive.car.interfaces import CarInterfaceBase A_ACC_MAX = max(_A_CRUISE_MAX_V_FOLLOWING) ButtonType = car.CarState.ButtonEvent.Type EventName = car.CarEvent.EventName def compute_gb_honda(accel, speed): creep_brake = 0.0 creep_speed = 2.3 creep_brake_value = 0.15 if speed < creep_speed: creep_brake = (creep_speed - speed) / creep_speed * creep_brake_value return float(accel) / 4.8 - creep_brake def get_compute_gb_acura(): # generate a function that takes in [desired_accel, current_speed] -> [-1.0, 1.0] # where -1.0 is max brake and 1.0 is max gas # see debug/dump_accel_from_fiber.py to see how those parameters were generated w0 = np.array([[ 1.22056961, -0.39625418, 0.67952657], [ 1.03691769, 0.78210306, -0.41343188]]) b0 = np.array([ 0.01536703, -0.14335321, -0.26932889]) w2 = np.array([[-0.59124422, 0.42899439, 0.38660881], [ 0.79973811, 0.13178682, 0.08550351], [-0.15651935, -0.44360259, 0.76910877]]) b2 = np.array([ 0.15624429, 0.02294923, -0.0341086 ]) w4 = np.array([[-0.31521443], [-0.38626176], [ 0.52667892]]) b4 = np.array([-0.02922216]) def compute_output(dat, w0, b0, w2, b2, w4, b4): m0 = np.dot(dat, w0) + b0 m0 = leakyrelu(m0, 0.1) m2 = np.dot(m0, w2) + b2 m2 = leakyrelu(m2, 0.1) m4 = np.dot(m2, w4) + b4 return m4 def leakyrelu(x, alpha): return np.maximum(x, alpha * x) def _compute_gb_acura(accel, speed): # linearly extrap below v1 using v1 and v2 data v1 = 5. v2 = 10. dat = np.array([accel, speed]) if speed > 5.: m4 = compute_output(dat, w0, b0, w2, b2, w4, b4) else: dat[1] = v1 m4v1 = compute_output(dat, w0, b0, w2, b2, w4, b4) dat[1] = v2 m4v2 = compute_output(dat, w0, b0, w2, b2, w4, b4) m4 = (speed - v1) * (m4v2 - m4v1) / (v2 - v1) + m4v1 return float(m4) return _compute_gb_acura class CarInterface(CarInterfaceBase): def __init__(self, CP, CarController, CarState): super().__init__(CP, CarController, CarState) self.last_enable_pressed = 0 self.last_enable_sent = 0 if self.CS.CP.carFingerprint == CAR.ACURA_ILX: self.compute_gb = get_compute_gb_acura() else: self.compute_gb = compute_gb_honda @staticmethod def compute_gb(accel, speed): # pylint: disable=method-hidden raise NotImplementedError @staticmethod def calc_accel_override(a_ego, a_target, v_ego, v_target): # normalized max accel. Allowing max accel at low speed causes speed overshoots max_accel_bp = [10, 20] # m/s max_accel_v = [0.714, 1.0] # unit of max accel max_accel = interp(v_ego, max_accel_bp, max_accel_v) # limit the pcm accel cmd if: # - v_ego exceeds v_target, or # - a_ego exceeds a_target and v_ego is close to v_target eA = a_ego - a_target valuesA = [1.0, 0.1] bpA = [0.3, 1.1] eV = v_ego - v_target valuesV = [1.0, 0.1] bpV = [0.0, 0.5] valuesRangeV = [1., 0.] bpRangeV = [-1., 0.] # only limit if v_ego is close to v_target speedLimiter = interp(eV, bpV, valuesV) accelLimiter = max(interp(eA, bpA, valuesA), interp(eV, bpRangeV, valuesRangeV)) # accelOverride is more or less the max throttle allowed to pcm: usually set to a constant # unless aTargetMax is very high and then we scale with it; this help in quicker restart return float(max(max_accel, a_target / A_ACC_MAX)) * min(speedLimiter, accelLimiter) @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), car_fw=[]): # pylint: disable=dangerous-default-value ret = CarInterfaceBase.get_std_params(candidate, fingerprint) ret.carName = "honda" if candidate in HONDA_BOSCH: ret.safetyModel = car.CarParams.SafetyModel.hondaBoschHarness ret.enableCamera = True ret.radarOffCan = True ret.openpilotLongitudinalControl = False else: ret.safetyModel = car.CarParams.SafetyModel.hondaNidec ret.enableCamera = True ret.enableGasInterceptor = 0x201 in fingerprint[0] ret.openpilotLongitudinalControl = ret.enableCamera cloudlog.warning("ECU Camera Simulated: %r", ret.enableCamera) cloudlog.warning("ECU Gas Interceptor: %r", ret.enableGasInterceptor) ret.enableCruise = not ret.enableGasInterceptor ret.communityFeature = ret.enableGasInterceptor # Certain Hondas have an extra steering sensor at the bottom of the steering rack, # which improves controls quality as it removes the steering column torsion from feedback. # Tire stiffness factor fictitiously lower if it includes the steering column torsion effect. # For modeling details, see p.198-200 in "The Science of Vehicle Dynamics (2014), M. Guiggiani" ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0], [0]] ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] ret.lateralTuning.pid.kf = 0.00006 # conservative feed-forward eps_modified = False for fw in car_fw: if fw.ecu == "eps" and b"," in fw.fwVersion: eps_modified = True if candidate == CAR.CIVIC: stop_and_go = True ret.mass = CivicParams.MASS ret.wheelbase = CivicParams.WHEELBASE ret.centerToFront = CivicParams.CENTER_TO_FRONT ret.steerRatio = 15.38 # 10.93 is end-to-end spec if eps_modified: # stock request input values: 0x0000, 0x00DE, 0x014D, 0x01EF, 0x0290, 0x0377, 0x0454, 0x0610, 0x06EE # stock request output values: 0x0000, 0x0917, 0x0DC5, 0x1017, 0x119F, 0x140B, 0x1680, 0x1680, 0x1680 # modified request output values: 0x0000, 0x0917, 0x0DC5, 0x1017, 0x119F, 0x140B, 0x1680, 0x2880, 0x3180 # stock filter output values: 0x009F, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108 # modified filter output values: 0x009F, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0108, 0x0400, 0x0480 # note: max request allowed is 4096, but request is capped at 3840 in firmware, so modifications result in 2x max ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 8000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.1]] else: ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560], [0, 2560]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[1.1], [0.33]] tire_stiffness_factor = 1. ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [3.6, 2.4, 1.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.54, 0.36] elif candidate in (CAR.CIVIC_BOSCH, CAR.CIVIC_BOSCH_DIESEL): stop_and_go = True ret.mass = CivicParams.MASS ret.wheelbase = CivicParams.WHEELBASE ret.centerToFront = CivicParams.CENTER_TO_FRONT ret.steerRatio = 15.38 # 10.93 is end-to-end spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 1. ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate in (CAR.ACCORD, CAR.ACCORD_15, CAR.ACCORDH): stop_and_go = True if not candidate == CAR.ACCORDH: # Hybrid uses same brake msg as hatch ret.safetyParam = 1 # Accord(ICE), CRV 5G, and RDX 3G use an alternate user brake msg ret.mass = 3279. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.83 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 16.33 # 11.82 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.8467 ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] if eps_modified: ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.09]] else: ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] elif candidate == CAR.ACURA_ILX: stop_and_go = False ret.mass = 3095. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.67 ret.centerToFront = ret.wheelbase * 0.37 ret.steerRatio = 18.61 # 15.3 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.72 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate in (CAR.CRV, CAR.CRV_EU): stop_and_go = False ret.mass = 3572. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.62 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.89 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 1000], [0, 1000]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.CRV_5G: stop_and_go = True ret.safetyParam = 1 # Accord(ICE), CRV 5G, and RDX 3G use an alternate user brake msg ret.mass = 3410. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.66 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.0 # 12.3 is spec end-to-end if eps_modified: # stock request input values: 0x0000, 0x00DB, 0x01BB, 0x0296, 0x0377, 0x0454, 0x0532, 0x0610, 0x067F # stock request output values: 0x0000, 0x0500, 0x0A15, 0x0E6D, 0x1100, 0x1200, 0x129A, 0x134D, 0x1400 # modified request output values: 0x0000, 0x0500, 0x0A15, 0x0E6D, 0x1100, 0x1200, 0x1ACD, 0x239A, 0x2800 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 2560, 10000], [0, 2560, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.21], [0.07]] else: ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.64], [0.192]] tire_stiffness_factor = 0.677 ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.CRV_HYBRID: stop_and_go = True ret.safetyParam = 1 # Accord(ICE), CRV 5G, and RDX 3G use an alternate user brake msg ret.mass = 1667. + STD_CARGO_KG # mean of 4 models in kg ret.wheelbase = 2.66 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 16.0 # 12.3 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.677 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.FIT: stop_and_go = False ret.mass = 2644. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.53 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 13.06 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.75 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.HRV: stop_and_go = False ret.mass = 3125 * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.61 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 15.2 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] tire_stiffness_factor = 0.5 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.16], [0.025]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.ACURA_RDX: stop_and_go = False ret.mass = 3935. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.68 ret.centerToFront = ret.wheelbase * 0.38 ret.steerRatio = 15.0 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 1000], [0, 1000]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.8], [0.24]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.ACURA_RDX_3G: stop_and_go = True ret.safetyParam = 1 # Accord(ICE), CRV 5G, and RDX 3G use an alternate user brake msg ret.mass = 4068. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.75 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 11.95 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 3840], [0, 3840]] ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] tire_stiffness_factor = 0.677 ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.ODYSSEY: stop_and_go = False ret.mass = 4471. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 3.00 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 14.35 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.28], [0.08]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.ODYSSEY_CHN: stop_and_go = False ret.mass = 1849.2 + STD_CARGO_KG # mean of 4 models in kg ret.wheelbase = 2.90 ret.centerToFront = ret.wheelbase * 0.41 # from CAR.ODYSSEY ret.steerRatio = 14.35 ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 32767], [0, 32767]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.28], [0.08]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate in (CAR.PILOT, CAR.PILOT_2019): stop_and_go = False ret.mass = 4204. * CV.LB_TO_KG + STD_CARGO_KG # average weight ret.wheelbase = 2.82 ret.centerToFront = ret.wheelbase * 0.428 ret.steerRatio = 17.25 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.RIDGELINE: stop_and_go = False ret.mass = 4515. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 3.18 ret.centerToFront = ret.wheelbase * 0.41 ret.steerRatio = 15.59 # as spec ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.444 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.38], [0.11]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] elif candidate == CAR.INSIGHT: stop_and_go = True ret.mass = 2987. * CV.LB_TO_KG + STD_CARGO_KG ret.wheelbase = 2.7 ret.centerToFront = ret.wheelbase * 0.39 ret.steerRatio = 15.0 # 12.58 is spec end-to-end ret.lateralParams.torqueBP, ret.lateralParams.torqueV = [[0, 4096], [0, 4096]] # TODO: determine if there is a dead zone at the top end tire_stiffness_factor = 0.82 ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.18]] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiBP = [0., 35.] ret.longitudinalTuning.kiV = [0.18, 0.12] else: raise ValueError("unsupported car %s" % candidate) # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. Otherwise, add 0.5 mph margin to not # conflict with PCM acc ret.minEnableSpeed = -1. if (stop_and_go or ret.enableGasInterceptor) else 25.5 * CV.MPH_TO_MS # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, tire_stiffness_factor=tire_stiffness_factor) ret.gasMaxBP = [0.] # m/s ret.gasMaxV = [0.6] if ret.enableGasInterceptor else [0.] # max gas allowed ret.brakeMaxBP = [5., 20.] # m/s ret.brakeMaxV = [1., 0.8] # max brake allowed ret.stoppingControl = True ret.startAccel = 0.5 ret.steerActuatorDelay = 0.1 ret.steerRateCost = 0.5 ret.steerLimitTimer = 0.8 return ret # returns a car.CarState def update(self, c, can_strings): # ******************* do can recv ******************* self.cp.update_strings(can_strings) self.cp_cam.update_strings(can_strings) if self.cp_body: self.cp_body.update_strings(can_strings) ret = self.CS.update(self.cp, self.cp_cam, self.cp_body) ret.canValid = self.cp.can_valid and self.cp_cam.can_valid and (self.cp_body is None or self.cp_body.can_valid) ret.yawRate = self.VM.yaw_rate(ret.steeringAngleDeg * CV.DEG_TO_RAD, ret.vEgo) # FIXME: read sendcan for brakelights brakelights_threshold = 0.02 if self.CS.CP.carFingerprint == CAR.CIVIC else 0.1 ret.brakeLights = bool(self.CS.brake_switch or c.actuators.brake > brakelights_threshold) buttonEvents = [] if self.CS.cruise_buttons != self.CS.prev_cruise_buttons: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.unknown if self.CS.cruise_buttons != 0: be.pressed = True but = self.CS.cruise_buttons else: be.pressed = False but = self.CS.prev_cruise_buttons if but == CruiseButtons.RES_ACCEL: be.type = ButtonType.accelCruise elif but == CruiseButtons.DECEL_SET: be.type = ButtonType.decelCruise elif but == CruiseButtons.CANCEL: be.type = ButtonType.cancel elif but == CruiseButtons.MAIN: be.type = ButtonType.altButton3 buttonEvents.append(be) if self.CS.cruise_setting != self.CS.prev_cruise_setting: be = car.CarState.ButtonEvent.new_message() be.type = ButtonType.unknown if self.CS.cruise_setting != 0: be.pressed = True but = self.CS.cruise_setting else: be.pressed = False but = self.CS.prev_cruise_setting if but == 1: be.type = ButtonType.altButton1 # TODO: more buttons? buttonEvents.append(be) ret.buttonEvents = buttonEvents # events events = self.create_common_events(ret, pcm_enable=False) if self.CS.brake_error: events.add(EventName.brakeUnavailable) if self.CS.brake_hold and self.CS.CP.openpilotLongitudinalControl: events.add(EventName.brakeHold) if self.CS.park_brake: events.add(EventName.parkBrake) if self.CP.enableCruise and ret.vEgo < self.CP.minEnableSpeed: events.add(EventName.belowEngageSpeed) # it can happen that car cruise disables while comma system is enabled: need to # keep braking if needed or if the speed is very low if self.CP.enableCruise and not ret.cruiseState.enabled \ and (c.actuators.brake <= 0. or not self.CP.openpilotLongitudinalControl): # non loud alert if cruise disables below 25mph as expected (+ a little margin) if ret.vEgo < self.CP.minEnableSpeed + 2.: events.add(EventName.speedTooLow) else: events.add(EventName.cruiseDisabled) if self.CS.CP.minEnableSpeed > 0 and ret.vEgo < 0.001: events.add(EventName.manualRestart) cur_time = self.frame * DT_CTRL enable_pressed = False # handle button presses for b in ret.buttonEvents: # do enable on both accel and decel buttons if b.type in [ButtonType.accelCruise, ButtonType.decelCruise] and not b.pressed: self.last_enable_pressed = cur_time enable_pressed = True # do disable on button down if b.type == "cancel" and b.pressed: events.add(EventName.buttonCancel) if self.CP.enableCruise: # KEEP THIS EVENT LAST! send enable event if button is pressed and there are # NO_ENTRY events, so controlsd will display alerts. Also not send enable events # too close in time, so a no_entry will not be followed by another one. # TODO: button press should be the only thing that triggers enable if ((cur_time - self.last_enable_pressed) < 0.2 and (cur_time - self.last_enable_sent) > 0.2 and ret.cruiseState.enabled) or \ (enable_pressed and events.any(ET.NO_ENTRY)): events.add(EventName.buttonEnable) self.last_enable_sent = cur_time elif enable_pressed: events.add(EventName.buttonEnable) ret.events = events.to_msg() self.CS.out = ret.as_reader() return self.CS.out # pass in a car.CarControl # to be called @ 100hz def apply(self, c): if c.hudControl.speedVisible: hud_v_cruise = c.hudControl.setSpeed * CV.MS_TO_KPH else: hud_v_cruise = 255 pcm_accel = int(clip(c.cruiseControl.accelOverride, 0, 1) * 0xc6) can_sends = self.CC.update(c.enabled, self.CS, self.frame, c.actuators, c.cruiseControl.speedOverride, c.cruiseControl.override, c.cruiseControl.cancel, pcm_accel, hud_v_cruise, c.hudControl.lanesVisible, hud_show_car=c.hudControl.leadVisible, hud_alert=c.hudControl.visualAlert) self.frame += 1 return can_sends
43.868881
144
0.654724
f4eb7eab9ac7d24a5769c0e2c707eee23cf45891
16,588
py
Python
access_course/views.py
monishnarwani/access_course
0f262f381768fbe8f1a77ca861d1c2efd57c76f7
[ "CNRI-Python", "RSA-MD", "OML" ]
null
null
null
access_course/views.py
monishnarwani/access_course
0f262f381768fbe8f1a77ca861d1c2efd57c76f7
[ "CNRI-Python", "RSA-MD", "OML" ]
null
null
null
access_course/views.py
monishnarwani/access_course
0f262f381768fbe8f1a77ca861d1c2efd57c76f7
[ "CNRI-Python", "RSA-MD", "OML" ]
null
null
null
import json import logging from django.conf import settings from django.http import HttpResponse from django.contrib.auth.models import User from django.contrib.auth import login as django_login, backends from django.shortcuts import redirect from django.views import View from .validations import get_course_key,get_course_enrollment,get_usage_key from courseware.access import has_access from courseware.courses import get_course from courseware.access_response import StartDateError from enrollment.data import create_course_enrollment from .utils import verify_usertoken,create_edx_user,check_subscription from rest_framework.authentication import SessionAuthentication from rest_framework_oauth.authentication import OAuth2Authentication from rest_framework.generics import ListAPIView from edx_rest_framework_extensions.paginators import NamespacedPageNumberPagination from openedx.core.lib.api.view_utils import DeveloperErrorViewMixin, view_auth_classes from django.core.exceptions import ValidationError from openedx.features.course_experience.utils import get_course_outline_block_tree from .api import list_units from .forms import UnitListGetForm from .serializers import CourseSerializer from rest_framework.views import APIView # from rest_framework.response import Response from django.http import JsonResponse from django.db import transaction from openedx.core.djangoapps.user_api.models import UserRetirementStatus from social_django.models import UserSocialAuth from student.models import get_retired_email_by_email, Registration from openedx.core.djangolib.oauth2_retirement_utils import retire_dot_oauth2_models, retire_dop_oauth2_models from rest_framework import status, permissions from six import text_type from .models import userdetails import requests log=logging.getLogger("test") def accesscompetition(request,course_id,usage_id): return _redirect_to_url(request,course_id,usage_id,1) def accesstraining(request,course_id,usage_id): return _redirect_to_url(request,course_id,usage_id,0) def accesscourse(request,course_id): return _redirect_to_url(request,course_id,None,0) def _get_session_token(request): token=None session_cookie_name = settings.BOP_CONFIGURATION.get('WRDPRS_COOKIE_NAME', '') if session_cookie_name != '': if request.COOKIES.has_key(session_cookie_name): token = request.COOKIES[session_cookie_name] return token def _redirect_to_url(request, course_id,block_id,competition=0 ): # try: # print(request.session) # print(request.session.accessed) # print(request.session.modified) # print(request.session.is_empty()) # print(request.session.session_key) # except: # print("inside except") # pass uuid="" if course_id is None or course_id == "": return HttpResponse("Course is mandatory input") token=_get_session_token(request) if token is None: return HttpResponse("Token doesnot exist") try: course_key = get_course_key(course_id) except Exception as e: return HttpResponse("Course '{}' is not a valid course ".format(course_id), e) if block_id: try: usage_key = get_usage_key(block_id) except Exception as e: return HttpResponse("Block '{}' is not a valid course ".format(block_id), e) result= verify_usertoken(token) print(result) if result.has_key('error'): return HttpResponse(result['error']) #save photourl and display name if 'profile_image' in result['user'].keys(): profileurl= result['user']['profile_image'] else: profileurl="" if result['user'].has_key('uuid'): external_ref_id=result['user']['uuid'] # validate if user has subscribed/purchased the course/training for non competition courses if not competition and result['user'].has_key('uuid'): valid_subscription = check_subscription(result['user']['uuid'],course_id,block_id); if valid_subscription.has_key('error'): return HttpResponse(valid_subscription['error']) if result['user'].has_key('email') and result['user'].has_key('first_name') and result['user'].has_key('last_name'): email=result['user']['email'] firstname=(result['user']['first_name'])[:29] lastname=result['user']['last_name'][:29] displayname = result['user']['first_name'] +" "+ result['user']['last_name'] else: return HttpResponse("The information received from login service doesnot contain firstname lastname or email.\n"+str(result)) #if request.session.session_key: log.info(profileurl) log.info(displayname) try: user = User.objects.get(email=email) status=True except User.DoesNotExist: status=create_edx_user(email,firstname,lastname) if status: try: user = User.objects.get(email=email) except: return HttpResponse("The user in not able to create") else: return HttpResponse("Error in account creation") if user: try: details=userdetails.objects.get(student=user) with transaction.atomic(): details.photourl=profileurl # details.displayname= unicode(displayname) details.displayname= displayname details.external_ref_id = external_ref_id details.save() except Exception as e: try: log.info("befoe calling") with transaction.atomic(): # details = userdetails(student=user,photourl=profileurl,displayname=unicode(displayname)) details = userdetails(student=user,photourl=profileurl,displayname=displayname,external_ref_id=external_ref_id) details.save() log.info("calling after saver") except Exception as e: log.info("Error in adding-updating userdetails",e) pass try: #log.info(request.session.session_key) if request.session.session_key is None: django_login(request, user, backends.ModelBackend) except Exception as exc: return HttpResponse("Error in login"+str(exc)) if user.is_authenticated: enrol_data=get_course_enrollment(user,course_key) if not enrol_data: try: create_course_enrollment(user.username,course_id,None,True) except Exception as e: return HttpResponse('User {} was not enrolled to the course {} '.format(user.username,course_id)+ str(e)) else: return HttpResponse('User {} is not logged in '.format(request.user.username)) print("before redirect") if block_id == None: return redirect( '/courses/'+course_id) else: return redirect('/courses/'+course_id+'/jump_to/'+block_id) # return HttpResponse("hi") @view_auth_classes(is_authenticated=True) class UnitListView(DeveloperErrorViewMixin, ListAPIView): """ **Use Case** Returns the units for a course **Example requests**: GET /access_course/v1/units/<course_id>/ GET /access_course/v1/units/<course_id>/type/<unit_type>/ **Parameters**: * course_id: course id for which units to be returned. * unit_type: 'training' if training then only units with assessment type as training will be returned. **Response Values** { "pagination":{"count":7,"previous":null,"num_pages":2,"next":"http://localhost:18000/access_course/v1/units/course-v1:org1+cn1+cr1/?page=2"}, "results":[ {"id":<<id>>, "course_id":<<course_id>>, "block_id":<<block_id>>, "block_name":<<block_name>>, "block_type":<<block_type>> }, ... ] } The following fields are returned with a successful response. * id: (string) The ID of the unit block. * course_id: (string) The usage ID of the course for which unit list was requested. * block_id: (string) The usage ID of the unit block. * block_name: (string) The display name of unit block. * block_type: (string) The assessment type of unit block if assessment xblock else 'General'. Possible values are: 'General', 'Training', 'Deep Learning', 'Knowledge Acquisition' **Example** For all units within a course: http://foo.localhost:18000/access_course/v1/units/course-v1:org1+cn1+cr1/ { "pagination":{"count":7,"previous":null,"num_pages":2,"next":"http://localhost:18000/access_course/v1/units/course-v1:org1+cn1+cr1/?page=2"}, "results":[ {"id":"bffd97d59b604a54af96151814c6d33c", "course_id":"course-v1:org1+cn1+cr1", "block_id":"block-v1:org1+cn1+cr1+type@vertical+block@bffd97d59b604a54af96151814c6d33c", "block_name":"Unit1", "block_type":"Knowledge Acquisition" }, {"id":"fc52aca52c2d491f87fa918a86dbf2f0", "course_id":"course-v1:org1+cn1+cr1", "block_id":"block-v1:org1+cn1+cr1+type@vertical+block@fc52aca52c2d491f87fa918a86dbf2f0", "block_name":"Unit2", "block_type":"Knowledge Acquisition" }, ... ] } For training units within a course: http://foo.localhost:18000/access_course/v1/units/course-v1:org1+cn1+cr1/type/training/ { "pagination":{"count":3,"previous":null,"num_pages":1,"next":null}, "results":[ {"id":"bd3d26675bd6482c9fd13930c3c6f239", "course_id":"course-v1:org1+cn1+cr1", "block_id":"block-v1:org1+cn1+cr1+type@vertical+block@bd3d26675bd6482c9fd13930c3c6f239", "block_name":"Unit1Training", "block_type":"Training" }, {"id":"0d0279f5a87d4e05b33112030a885c3f", "course_id":"course-v1:org1+cn1+cr1", "block_id":"block-v1:org1+cn1+cr1+type@vertical+block@0d0279f5a87d4e05b33112030a885c3f", "block_name":"Unit11", "block_type":"Training" }, ... ] } """ pagination_class = NamespacedPageNumberPagination pagination_class.max_page_size = 100 serializer_class = CourseSerializer # authentication_classes = (OAuth2Authentication, # SessionAuthentication,) def get_queryset(self): """ Return a list of course verticals/units(training/all) visible to the user. """ if not self.request.user.is_superuser: raise ValidationError("You don't have authority to perform this action") requested_params = self.request.query_params.copy() requested_params.update({'course_key': self.kwargs['course_key_string']}) # Passing unit_type as 'all' to retrieve all units if unit_type is not already set through endpoint URL. requested_params.update({'unit_type': self.kwargs.setdefault('unit_type', 'all')}) form = UnitListGetForm(requested_params) if not form.is_valid(): raise ValidationError(form.errors) units_list = list_units( self.request, form.cleaned_data['course_key'], form.cleaned_data['unit_type'], ) return [unit for unit in units_list] class DeactivateAccountView(APIView): """ POST /access_course/user/v1/account/deactivate/ { "email": "test@test.com", } **POST Parameters** A POST request must include the following parameter. * email: Required. The email of the user being deactivated. **POST Response Values** If the request does not specify any access token, then request returns below response: { 'detail': 'Authentication credentials were not provided.' } If the request does specify invalid access token, then request returns below response: { 'detail': 'Invalid token' } If the request does not specify an email then request returns below response: { 'status': 403, 'message': 'Mandatory parameter is missing.' } If the request submits an email for a non-existent user, then request returns below response: { 'status': 404, 'message': 'Could not verify user email: test@test.com not found.' } If the specified user is successfully deactivated, the request returns below response: { 'status': 200, 'message': 'User deleted successfully.' } If an unanticipated error occurs, the request returns below response: { 'status': 500, 'message': error description } Allows user with valid access token to take the following actions: - Change the user's password permanently to Django's unusable password - User's exact personal data is vitiated so that it is unusable - Removes the activation keys sent by email to the user for account activation. - Deletes OAuth tokens associated with the user - Create a row in the retirement table for that user so as to indicate the user is no longer active """ authentication_classes = (SessionAuthentication, OAuth2Authentication ) permission_classes = (permissions.IsAuthenticated, ) def post(self, request): """ POST /access_course/user/v1/account/deactivate/ Marks the user as having no password set for deactivation purposes. """ if request.POST.get('email', '') == '': return JsonResponse( { 'status': status.HTTP_403_FORBIDDEN, 'message': 'Mandatory parameter is missing.'} ) email = request.POST.get('email') try: # Get the user from the email user = User.objects.get(email=email) with transaction.atomic(): UserRetirementStatus.create_retirement(user) # Unlink LMS social auth accounts UserSocialAuth.objects.filter(user_id=user.id).delete() # Change LMS password & email user_email = user.email user.email = get_retired_email_by_email(user_email) user.save() user.set_unusable_password() user.save() # TODO: Unlink social accounts & change password on each IDA. # Remove the activation keys sent by email to the user for account activation. Registration.objects.filter(user=user).delete() # Add user to retirement queue. # Delete OAuth tokens associated with the user. retire_dop_oauth2_models(user) retire_dot_oauth2_models(user) # TODO: send notification to user if needed. return JsonResponse( { 'status': status.HTTP_200_OK, 'message': 'User deleted successfully.'} ) except User.DoesNotExist as err: # pylint: disable=broad-except return JsonResponse( { 'status': status.HTTP_404_NOT_FOUND, 'message': 'Could not verify user email: {} not found.'.format(email)} ) except KeyError: return JsonResponse( { 'status': status.HTTP_400_BAD_REQUEST, 'message': 'User email not specified.'} ) except Exception as exc: # pylint: disable=broad-except return JsonResponse( { 'status': status.HTTP_500_INTERNAL_SERVER_ERROR, 'message': text_type(exc)} )
39.779376
155
0.619122
6a0802ab38d61c8e4b6bd25e75e43996ffd2df58
809
py
Python
suorganizer/manage.py
jmcevoy1984/Django-Unleashed
8c9014ee3bf271dcd86727c131184f7348af75d8
[ "MIT" ]
null
null
null
suorganizer/manage.py
jmcevoy1984/Django-Unleashed
8c9014ee3bf271dcd86727c131184f7348af75d8
[ "MIT" ]
null
null
null
suorganizer/manage.py
jmcevoy1984/Django-Unleashed
8c9014ee3bf271dcd86727c131184f7348af75d8
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "suorganizer.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35.173913
77
0.644005
82615d7b86bdb7e4883c5908d1a5476f75819c2c
79,331
py
Python
Lab6_python/ssd.py
kmodrick/pynq_v0
f4a1a71f76f5d3b1fe0aefca0ed3a9e37c21879d
[ "BSD-3-Clause" ]
null
null
null
Lab6_python/ssd.py
kmodrick/pynq_v0
f4a1a71f76f5d3b1fe0aefca0ed3a9e37c21879d
[ "BSD-3-Clause" ]
null
null
null
Lab6_python/ssd.py
kmodrick/pynq_v0
f4a1a71f76f5d3b1fe0aefca0ed3a9e37c21879d
[ "BSD-3-Clause" ]
null
null
null
""" The code module ssd.py was developed to accompany the book Signals and Systems for Dummies published by Wiley Publishing. Copyright 2012, 2013 Mark Wickert, mwickert@uccs.edu v 1.0 Notes ----- The primary purpose of this function library is to support the book Signals and Systems for Dummies. Beyond that it should be useful to anyone who wants to use Pylab for general signals and systems modeling and simulation. There is a good collection of digital communication simulation primitives included in the library. More enhancements are planned over time. The formatted docstrings for the library follow. Click index in the upper right to get an alphabetical listing of the library functions. In all of the example code given it is assumed that ssd has been imported into your workspace. See the examples below for import options. Examples -------- >>> import ssd >>> # Commands then need to be prefixed with ssd., i.e., >>> ssd.tri(t,tau) >>> # A full import of the module, to avoid the the need to prefix with ssd, is: >>> from ssd import * Function Catalog ---------------- """ """ This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from matplotlib import pylab from matplotlib import mlab import numpy as np from numpy import fft import matplotlib.pyplot as plt from scipy import signal from scipy.io import wavfile def ten_band_eq_filt(x,GdB,Q=3.5): """ Filter the input signal x with a ten-band equalizer having octave gain values in ndarray GdB. The signal x is filtered using octave-spaced peaking filters starting at 31.25 Hz and stopping at 16 kHz. The Q of each filter is 3.5, but can be changed. The sampling rate is assumed to be 44.1 kHz. Parameters ---------- x : ndarray of the input signal samples GdB : ndarray containing ten octave band gain values [G0dB,...,G9dB] Q : Quality factor vector for each of the NB peaking filters Returns ------- y : ndarray of output signal samples Examples -------- >>> # Test with white noise >>> w = randn(100000) >>> y = ten_band_eq_filt(x,GdB) >>> psd(y,2**10,44.1) """ fs = 44100.0 # Hz NB = len(GdB) Fc = 31.25*2**np.arange(10) B = np.zeros((NB,3)) A = np.zeros((NB,3)) # Create matrix of cascade coefficients for k in range(NB): [b,a] = peaking(GdB[k],Fc[k],Q) B[k,:] = b A[k,:] = a #Pass signal x through the cascade of ten filters y = np.zeros(len(x)) for k in range(NB): if k == 0: y = signal.lfilter(B[k,:],A[k,:],x) else: y = signal.lfilter(B[k,:],A[k,:],y) return y def ten_band_eq_resp(GdB,Q=3.5): """ Create a frequency response magnitude plot in dB of a ten band equalizer using a semilogplot (semilogx()) type plot Parameters ---------- GdB : Gain vector for 10 peaking filters [G0,...,G9] Q : Quality factor for each peaking filter (default 3.5) Returns ------- Nothing : two plots are created Examples -------- >>> ten_band_eq_resp([0,10.0,0,0,-1,0,5,0,-4,0]) """ fs = 44100.0 # Hz Fc = 31.25*2**np.arange(10) NB = len(GdB) B = np.zeros((NB,3)); A = np.zeros((NB,3)); # Create matrix of cascade coefficients for k in range(NB): b,a = peaking(GdB[k],Fc[k],Q,fs) B[k,:] = b A[k,:] = a # Create the cascade frequency response F = np.logspace(1,np.log10(20e3),1000) H = np.ones(len(F))*np.complex(1.0,0.0) for k in range(NB): w,Htemp = signal.freqz(B[k,:],A[k,:],2*np.pi*F/fs) H *= Htemp plt.figure(figsize=(6,4)) plt.subplot(211) plt.semilogx(F,20*np.log10(abs(H))) plt.axis([10, fs/2, -12, 12]) plt.grid() plt.title('Ten-Band Equalizer Frequency Response') plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.subplot(212) plt.stem(np.arange(NB),GdB,'b','bs') #plt.bar(np.arange(NB)-.1,GdB,0.2) plt.axis([0, NB-1, -12, 12]) plt.xlabel('Equalizer Band Number') plt.ylabel('Gain Set (dB)') plt.grid() def peaking(GdB, fc, Q=3.5, fs=44100.): """ A second-order peaking filter having GdB gain at fc and approximately and 0 dB otherwise. The filter coefficients returns correspond to a biquadratic system function containing five parameters. Parameters ---------- GdB : Lowpass gain in dB fc : Center frequency in Hz Q : Filter Q which is inversely proportional to bandwidth fs : Sampling frquency in Hz Returns ------- b : ndarray containing the numerator filter coefficients a : ndarray containing the denominator filter coefficients Examples -------- >>> from scipy import signal >>> b,a = peaking(2.0,500) >>> b,a = peaking(-5.0,500,4) >>> # Assuming pylab imported >>> f = logspace(1,5,400) >>> .w,H = signal.freqz(b,a,2*pi*f/44100) >>> semilogx(f,20*log10(abs(H))) """ mu = 10**(GdB/20.) kq = 4/(1 + mu)*np.tan(2*np.pi*fc/fs/(2*Q)) Cpk = (1 + kq *mu)/(1 + kq) b1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq*mu) b2 = (1 - kq*mu)/(1 + kq*mu) a1 = -2*np.cos(2*np.pi*fc/fs)/(1 + kq) a2 = (1 - kq)/(1 + kq) b = Cpk*np.array([1, b1, b2]) a = np.array([1, a1, a2]) return b,a def ex6_2(n): """ Generate a triangle pulse as described in Example 6-2 of Chapter 6. You need to supply an index array n that covers at least [-2, 5]. The function returns the hard-coded signal of the example. Parameters ---------- n : time index ndarray covering at least -2 to +5. Returns ------- x : ndarray of signal samples in x Examples -------- >>> n = arange(-5,8) >>> x = ex6_2(n) >>> stem(n,x) # creates a stem plot of x vs n """ x = np.zeros(len(n)) for k, nn in enumerate(n): if nn >= -2 and nn <= 5: x[k] = 8 - nn return x def position_CD(Ka,out_type = 'fb_exact'): """ CD sled position control case study of Chapter 18. The function returns the closed-loop and open-loop system function for a CD/DVD sled position control system. The loop amplifier gain is the only variable that may be changed. The returned system function can however be changed. Parameters ---------- Ka : loop amplifier gain, start with 50. out_type : 'open_loop' for open loop system function out_type : 'fb_approx' for closed-loop approximation out_type : 'fb_exact' for closed-loop exact Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Notes ----- With the exception of the loop amplifier gain, all other parameters are hard-coded from Case Study example. Examples ------ >>> b,a = position_CD(Ka,'fb_approx') >>> b,a = position_CD(Ka,'fb_exact') """ rs = 10/(2*np.pi) # Load b and a ndarrays with the coefficients if out_type.lower() == 'open_loop': b = np.array([Ka*4000*rs]) a = np.array([1,1275,31250,0]) elif out_type.lower() == 'fb_approx': b = np.array([3.2*Ka*rs]) a = np.array([1, 25, 3.2*Ka*rs]) elif out_type.lower() == 'fb_exact': b = np.array([4000*Ka*rs]) a = np.array([1, 1250+25, 25*1250, 4000*Ka*rs]) else: print('out_type must be: open_loop, fb_approx, or fc_exact') return 1 return b, a def cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H'): """ Cruise control with PI controller and hill disturbance. This function returns various system function configurations for a the cruise control Case Study example found in the supplementary article. The plant model is obtained by the linearizing the equations of motion and the controller contains a proportional and integral gain term set via the closed-loop parameters natuarl frequency wn (rad/s) and damping zeta. Parameters ---------- wn : closed-loop natural frequency in rad/s, nominally 0.1 zeta : closed-loop damping factor, nominally 1.0 T : vehicle time constant, nominally 10 s vcruise : cruise velocity set point, nominally 75 mph vmax : maximum vehicle velocity, nominally 120 mph tf_mode : 'H', 'HE', 'HVW', or 'HED' controls the system function returned by the function 'H' : closed-loop system function V(s)/R(s) 'HE' : closed-loop system function E(s)/R(s) 'HVW' : closed-loop system function V(s)/W(s) 'HED' : closed-loop system function E(s)/D(s), where D is the hill disturbance input Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Examples -------- >>> # return the closed-loop system function output/input velocity >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='H') >>> # return the closed-loop system function loop error/hill disturbance >>> b,a = cruise_control(wn,zeta,T,vcruise,vmax,tf_mode='HED') """ tau = T/2.*vmax/vcruise g = 9.8 g *= 3*60**2/5280. # m/s to mph conversion Kp = T/vmax*(2*zeta*wn-1/tau) Ki = T/vmax*wn**2 K = Kp*vmax/T print('wn = ', np.sqrt(K/(Kp/Ki))) print('zeta = ', (K + 1/tau)/(2*wn)) a = np.array([1, 2*zeta*wn, wn**2]) if tf_mode == 'H': b = np.array([K, wn**2]) elif tf_mode == 'HE': b = np.array([1, 2*zeta*wn-K, 0.]) elif tf_mode == 'HVW': b = np.array([ 1, wn**2/K+1/tau, wn**2/(K*tau)]) b *= Kp elif tf_mode == 'HED': b = np.array([g, 0]) else: print('tf_mode must be: H, HE, HVU, or HED') return 1 return b, a def splane(b,a,auto_scale=True,size=[-1,1,-1,1]): """ Create an s-plane pole-zero plot. As input the function uses the numerator and denominator s-domain system function coefficient ndarrays b and a respectively. Assumed to be stored in descending powers of s. Parameters ---------- b : numerator coefficient ndarray. a : denominator coefficient ndarray. auto_scale : True size : [xmin,xmax,ymin,ymax] plot scaling when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> splane(b,a) >>> # Here the plot is generated using manual scaling >>> splane(b,a,False,[-10,1,-10,10]) """ M = len(b) - 1 N = len(a) - 1 plt.figure(figsize=(5,5)) #plt.axis('equal') N_roots = np.array([0.0]) if M > 0: N_roots = np.roots(b) D_roots = np.array([0.0]) if N > 0: D_roots = np.roots(a) if auto_scale: size[0] = min(np.min(np.real(N_roots)),np.min(np.real(D_roots)))-0.5 size[1] = max(np.max(np.real(N_roots)),np.max(np.real(D_roots)))+0.5 size[1] = max(size[1],0.5) size[2] = min(np.min(np.imag(N_roots)),np.min(np.imag(D_roots)))-0.5 size[3] = max(np.max(np.imag(N_roots)),np.max(np.imag(D_roots)))+0.5 plt.plot([size[0],size[1]],[0,0],'k--') plt.plot([0,0],[size[2],size[3]],'r--') # Plot labels if multiplicity greater than 1 x_scale = size[1]-size[0] y_scale = size[3]-size[2] x_off = 0.03 y_off = 0.01 if M > 0: #N_roots = np.roots(b) N_uniq, N_mult=signal.unique_roots(N_roots,tol=1e-3, rtype='avg') plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8) idx_N_mult = mlab.find(N_mult>1) for k in range(len(idx_N_mult)): x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]),ha='center',va='bottom',fontsize=10) if N > 0: #D_roots = np.roots(a) D_uniq, D_mult=signal.unique_roots(D_roots,tol=1e-3, rtype='avg') plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8) idx_D_mult = mlab.find(D_mult>1) for k in range(len(idx_D_mult)): x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]),ha='center',va='bottom',fontsize=10) plt.xlabel('Real Part') plt.ylabel('Imaginary Part') plt.title('Pole-Zero Plot') #plt.grid() plt.axis(np.array(size)) return M,N def OS_filter(x,h,N,mode=0): """ Overlap and save transform domain FIR filtering. This function implements the classical overlap and save method of transform domain filtering using a length P FIR filter. Parameters ---------- x : input signal to be filtered as an ndarray h : FIR filter coefficients as an ndarray of length P N : FFT size > P, typically a power of two mode : 0 or 1, when 1 returns a diagnostic matrix Returns ------- y : the filtered output as an ndarray y_mat : an ndarray whose rows are the individual overlap outputs. Notes ----- y_mat is used for diagnostics and to gain understanding of the algorithm. Examples -------- >>> n = arange(0,100) >>> x cos(2*pi*0.05*n) >>> b = ones(10) >>> y = OS_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = OS_filter(x,h,N,1) """ P = len(h) # zero pad start of x so first frame can recover first true samples of x x = np.hstack((np.zeros(P-1),x)) L = N - P + 1 Nx = len(x) Nframe = int(np.ceil(Nx/float(L))) # zero pad end of x to full number of frames needed x = np.hstack((x,np.zeros(Nframe*L-Nx))) y = np.zeros(Nframe*N) # create an instrumentation matrix to observe the overlap and save behavior y_mat = np.zeros((Nframe,Nframe*N)) H = fft.fft(h,N) # begin the filtering operation for k in range(Nframe): xk = x[k*L:k*L+N] Xk = fft.fft(xk,N) Yk = H*Xk yk = np.real(fft.ifft(Yk)) # imag part should be zero y[k*L+P-1:k*L+N] = yk[P-1:] y_mat[k,k*L:k*L+N] = yk if mode == 1: return y[P-1:Nx], y_mat[:,P-1:Nx] else: return y[P-1:Nx] def OA_filter(x,h,N,mode=0): """ Overlap and add transform domain FIR filtering. This function implements the classical overlap and add method of transform domain filtering using a length P FIR filter. Parameters ---------- x : input signal to be filtered as an ndarray h : FIR filter coefficients as an ndarray of length P N : FFT size > P, typically a power of two mode : 0 or 1, when 1 returns a diagnostic matrix Returns ------- y : the filtered output as an ndarray y_mat : an ndarray whose rows are the individual overlap outputs. Notes ----- y_mat is used for diagnostics and to gain understanding of the algorithm. Examples -------- >>> n = arange(0,100) >>> x cos(2*pi*0.05*n) >>> b = ones(10) >>> y = OA_filter(x,h,N) >>> # set mode = 1 >>> y, y_mat = OA_filter(x,h,N,1) """ P = len(h) L = N - P + 1 # need N >= L + P -1 Nx = len(x) Nframe = int(np.ceil(Nx/float(L))) # zero pad to full number of frames needed x = np.hstack((x,np.zeros(Nframe*L-Nx))) y = np.zeros(Nframe*N) # create an instrumentation matrix to observe the overlap and add behavior y_mat = np.zeros((Nframe,Nframe*N)) H = fft.fft(h,N) # begin the filtering operation for k in range(Nframe): xk = x[k*L:(k+1)*L] Xk = fft.fft(xk,N) Yk = H*Xk yk = np.real(fft.ifft(Yk)) y[k*L:k*L+N] += yk y_mat[k,k*L:k*L+N] = yk if mode == 1: return y[0:Nx], y_mat[:,0:Nx] else: return y[0:Nx] def lp_samp(fb,fs,fmax,N,shape='tri',fsize=(6,4)): """ Lowpass sampling theorem plotting function. Display the spectrum of a sampled signal after setting the bandwidth, sampling frequency, maximum display frequency, and spectral shape. Parameters ---------- fb : spectrum lowpass bandwidth in Hz fs : sampling frequency in Hz fmax : plot over [-fmax,fmax] shape : 'tri' or 'line' N : number of translates, N positive and N negative fsize : the size of the figure window, default (6,4) Returns ------- Nothing : A plot window opens containing the spectrum plot Examples -------- >>> # No aliasing as 10 < 25/2 >>> lp_samp(10,25,50,10) >>> # Aliasing as 15 > 25/2 >>> lp_samp(15,25,50,10) """ plt.figure(figsize=fsize) # define the plot interval f = np.arange(-fmax,fmax+fmax/200.,fmax/200.) A = 1.0; line_ampl = A/2.*np.array([0, 1]) # plot the lowpass spectrum in black if shape.lower() == 'tri': plt.plot(f,lp_tri(f,fb)) elif shape.lower() == 'line': plt.plot([fb, fb],line_ampl,'b', linewidth=2) plt.plot([-fb, -fb],line_ampl,'b', linewidth=2) else: print('shape must be tri or line') # overlay positive and negative frequency translates for n in range(N): if shape.lower() == 'tri': plt.plot(f,lp_tri(f-(n+1)*fs,fb),'--r') plt.plot(f,lp_tri(f+(n+1)*fs,fb),'--g') elif shape.lower() == 'line': plt.plot([fb+(n+1)*fs, fb+(n+1)*fs],line_ampl,'--r', linewidth=2) plt.plot([-fb+(n+1)*fs, -fb+(n+1)*fs],line_ampl,'--r', linewidth=2) plt.plot([fb-(n+1)*fs, fb-(n+1)*fs],line_ampl,'--g', linewidth=2) plt.plot([-fb-(n+1)*fs, -fb-(n+1)*fs],line_ampl,'--g', linewidth=2) else: print('shape must be tri or line') #plt.title('Lowpass Sampling Theorem for a Real Signal: Blk = orig, dotted = translates') plt.ylabel('Spectrum Magnitude') plt.xlabel('Frequency in Hz') plt.axis([-fmax,fmax,0,1]) plt.grid() def lp_tri(f, fb): """ Triangle spectral shape function used by lp_spec. This is a support function for the lowpass spectrum plotting function lp_spec(). Parameters ---------- f : ndarray containing frequency samples fb : the bandwidth as a float constant Returns ------- x : ndarray of spectrum samples for a single triangle shape Examples -------- >>> x = lp_tri(f, fb) """ x = np.zeros(len(f)) for k in range(len(f)): if abs(f[k]) <= fb: x[k] = 1 - abs(f[k])/float(fb) return x def sinusoidAWGN(x,SNRdB): """ Add white Gaussian noise to a single real sinusoid. Input a single sinusoid to this function and it returns a noisy sinusoid at a specific SNR value in dB. Sinusoid power is calculated using np.var. Parameters ---------- x : Input signal as ndarray consisting of a single sinusoid SNRdB : SNR in dB for output sinusoid Returns ------- y : Noisy sinusoid return vector Examples -------- >>> # set the SNR to 10 dB >>> n = arange(0,10000) >>> x = cos(2*pi*0.04*n) >>> y = sinusoidAWGN(x,10.0) """ # Estimate signal power x_pwr = np.var(x) # Create noise vector noise = np.sqrt(x_pwr/10**(SNRdB/10.))*np.random.randn(len(x)); return x + noise def simpleQuant(x,Btot,Xmax,Limit): """ A simple rounding quantizer for bipolar signals having Btot = B + 1 bits. This function models a quantizer that employs Btot bits that has one of three selectable limiting types: saturation, overflow, and none. The quantizer is bipolar and implements rounding. Parameters ---------- x : input signal ndarray to be quantized Btot : total number of bits in the quantizer, e.g. 16 Xmax : quantizer full-scale dynamic range is [-Xmax, Xmax] Limit = Limiting of the form 'sat', 'over', 'none' Returns ------- xq : quantized output ndarray Notes ----- The quantization can be formed as e = xq - x Examples -------- >>> n = arange(0,10000) >>> x = cos(2*pi*0.211*n) >>> y = sinusoidAWGN(x,90) >>> yq = simpleQuant(y,12,1,sat) >>> psd(y,2**10,Fs=1); >>> psd(yq,2**10,Fs=1) """ B = Btot-1 x = x/Xmax if Limit.lower() == 'over': xq = (np.mod(np.round(x*2**B)+2**B,2**Btot)-2**B)/2**B elif Limit.lower() == 'sat': xq = np.round(x*2**B)+2**B s1 = mlab.find(xq >= 2**Btot-1) s2 = mlab.find(xq < 0) xq[s1] = (2**Btot - 1)*np.ones(len(s1)) xq[s2] = np.zeros(len(s2)) xq = (xq - 2**B)/2**B elif Limit.lower() == 'none': xq = np.round(x*2**B)/2**B else: print('limit must be the string over, sat, or none') return xq*Xmax def prin_alias(f_in,fs): """ Calculate the principle alias frequencies. Given an array of input frequencies the function returns an array of principle alias frequencies. Parameters ---------- f_in : ndarray of input frequencies fs : sampling frequency Returns ------- f_out : ndarray of principle alias frequencies Examples -------- >>> # Linear frequency sweep from 0 to 50 Hz >>> f_in = arange(0,50,0.1) >>> # Calculate principle alias with fs = 10 Hz >>> f_out = prin_alias(f_in,10) """ return abs(np.rint(f_in/fs)*fs - f_in) """ Principle alias via recursion f_out = np.copy(f_in) for k in range(len(f_out)): while f_out[k] > fs/2.: f_out[k] = abs(f_out[k] - fs) return f_out """ def cascade_filters(b1,a1,b2,a2): """ Cascade two IIR digital filters into a single (b,a) coefficient set. To cascade two digital filters (system functions) given their numerator and denominator coefficients you simply convolve the coefficient arrays. Parameters ---------- b1 : ndarray of numerator coefficients for filter 1 a1 : ndarray of denominator coefficients for filter 1 b2 : ndarray of numerator coefficients for filter 2 a2 : ndarray of denominator coefficients for filter 2 Returns ------- b : ndarray of numerator coefficients for the cascade a : ndarray of denominator coefficients for the cascade Examples -------- >>> from scipy import signal >>> b1,a1 = signal.butter(3, 0.1) >>> b2,a2 = signal.butter(3, 0.15) >>> b,a = cascade_filters(b1,a1,b2,a2) """ return signal.convolve(b1,b2), signal.convolve(a1,a2) def soi_snoi_gen(s,SIR_dB,N,fi,fs = 8000): """ Add an interfering sinusoidal tone to the input signal at a given SIR_dB. The input is the signal of interest (SOI) and number of sinsuoid signals not of interest (SNOI) are addedto the SOI at a prescribed signal-to- intereference SIR level in dB. Parameters ---------- s : ndarray of signal of SOI SIR_dB : interference level in dB N : Trim input signal s to length N + 1 samples fi : ndarray of intereference frequencies in Hz fs : sampling rate in Hz, default is 8000 Hz Returns ------- r : ndarray of combined signal plus intereference of length N+1 samples Examples -------- >>> # load a speech ndarray and trim to 5*8000 + 1 samples >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) """ n = np.arange(0,N+1) K = len(fi) si = np.zeros(N+1) for k in range(K): si += np.cos(2*np.pi*fi[k]/fs*n); s = s[:N+1] Ps = np.var(s) Psi = np.var(si) r = s + np.sqrt(Ps/Psi*10**(-SIR_dB/10))*si return r def lms_ic(r,M,mu,delta=1): """ Least mean square (LMS) interference canceller adaptive filter. A complete LMS adaptive filter simulation function for the case of interference cancellation. Used in the digital filtering case study. Parameters ---------- M : FIR Filter length (order M-1) delta : Delay used to generate the reference signal mu : LMS step-size delta : decorrelation delay between input and FIR filter input Returns ------- n : ndarray Index vector r : ndarray noisy (with interference) input signal r_hat : ndarray filtered output (NB_hat[n]) e : ndarray error sequence (WB_hat[n]) ao : ndarray final value of weight vector F : ndarray frequency response axis vector Ao : ndarray frequency response of filter Examples ---------- >>> # import a speech signal >>> fs,s = from_wav('OSR_us_000_0030_8k.wav') >>> # add interference at 1kHz and 1.5 kHz and >>> # truncate to 5 seconds >>> r = soi_snoi_gen(s,10,5*8000,[1000, 1500]) >>> # simulate with a 64 tap FIR and mu = 0.005 >>> n,r,r_hat,e,ao,F,Ao = lms_ic(r,64,0.005) """ N = len(r)-1; # Form the reference signal y via delay delta y = signal.lfilter(np.hstack((np.zeros(delta), np.array([1]))),1,r) # Initialize output vector x_hat to zero r_hat = np.zeros(N+1) # Initialize error vector e to zero e = np.zeros(N+1) # Initialize weight vector to zero ao = np.zeros(M+1) # Initialize filter memory to zero z = np.zeros(M) # Initialize a vector for holding ym of length M+1 ym = np.zeros(M+1) for k in range(N+1): # Filter one sample at a time r_hat[k],z = signal.lfilter(ao,np.array([1]),np.array([y[k]]),zi=z) # Form the error sequence e[k] = r[k] - r_hat[k] # Update the weight vector ao = ao + 2*mu*e[k]*ym # Update vector used for correlation with e(k) ym = np.hstack((np.array([y[k]]), ym[:-1])) # Create filter frequency response F, Ao = signal.freqz(ao,1,1024) F/= (2*np.pi) Ao = 20*np.log10(abs(Ao)) return np.arange(0,N+1), r, r_hat, e, ao, F, Ao def fir_iir_notch(fi,fs,r=0.95): """ Design a second-order FIR or IIR notch filter. A second-order FIR notch filter is created by placing conjugate zeros on the unit circle at angle corresponidng to the notch center frequency. The IIR notch variation places a pair of conjugate poles at the same angle, but with radius r < 1 (typically 0.9 to 0.95). Parameters ---------- fi : notch frequency is Hz relative to fs fs : the sampling frequency in Hz, e.g. 8000 r : pole radius for IIR version, default = 0.95 Returns ------- b : numerator coefficient ndarray a : denominator coefficient ndarray Notes ----- If the pole radius is 0 then an FIR version is created, that is there are no poles except at z = 0. Examples -------- >>> b_FIR, a_FIR = fir_iir_notch(1000,8000,0) >>> b_IIR, a_IIR = fir_iir_notch(1000,8000) """ w0 = 2*np.pi*fi/float(fs) if r >= 1: print('Poles on or outside unit circle.') if r == 0: a = np.array([1.0]) else: a = np.array([1, -2*r*np.cos(w0), r**2]) b = np.array([1, -2*np.cos(w0), 1]) return b, a def simple_SA(x,NS,NFFT,fs,NAVG=1,window='boxcar'): """ Spectral estimation using windowing and averaging. This function implements averaged periodogram spectral estimation estimation similar to the NumPy's psd() function, but more specialized for the the windowing case study of Chapter 16. Parameters ---------- x : ndarray containing the input signal NS : The subrecord length less zero padding, e.g. NS < NFFT NFFT : FFT length, e.g., 1024 = 2**10 fs : sampling rate in Hz NAVG : the number of averages, e.g., 1 for deterministic signals window : hardcoded window 'boxcar' (default) or 'hanning' Returns ------- f : ndarray frequency axis in Hz on [0, fs/2] Sx : ndarray the power spectrum estimate Notes ----- The function also prints the maximum number of averages K possible for the input data record. Examples -------- >>> n = arange(0,2048) >>> x = cos(2*pi*1000/10000*n) + 0.01*cos(2*pi*3000/10000*n) >>> f, Sx = simple_SA(x,128,512,10000) >>> f, Sx = simple_SA(x,256,1024,10000,window='hanning') >>> plot(f, 10*log10(Sx)) """ Nx = len(x) K = Nx/NS print('K = ', K) if NAVG > K: print('NAVG exceeds number of available subrecords') return 0,0 if window.lower() == 'boxcar' or window.lower() == 'rectangle': w = signal.boxcar(NS) elif window.lower() == 'hanning': w = signal.hanning(NS) xsw = np.zeros((K,NS)) + 1j*np.zeros((K,NS)) for k in range(NAVG): xsw[k,] = w*x[k*NS:(k+1)*NS] Sx = np.zeros(NFFT) for k in range(NAVG): X = fft.fft(xsw[k,],NFFT) Sx += abs(X)**2 Sx /= float(NAVG) Sx /= float(NFFT**2) if x.dtype != 'complex128': n = np.arange(NFFT/2) f = fs*n/float(NFFT) Sx = Sx[0:NFFT/2] else: n = np.arange(NFFT/2) f = fs*np.hstack((np.arange(-NFFT/2,0),np.arange(NFFT/2)))/float(NFFT) Sx = np.hstack((Sx[NFFT/2:],Sx[0:NFFT/2])) return f, Sx def line_spectra(fk,Xk,mode,sides=2,linetype='b',lwidth=2,floor_dB=-100,fsize=(6,4)): """ Plot the Fouier series line spectral given the coefficients. This function plots two-sided and one-sided line spectra of a periodic signal given the complex exponential Fourier series coefficients and the corresponding harmonic frequencies. Parameters ---------- fk : vector of real sinusoid frequencies Xk : magnitude and phase at each positive frequency in fk mode : 'mag' => magnitude plot, 'magdB' => magnitude in dB plot, mode cont : 'magdBn' => magnitude in dB normalized, 'phase' => a phase plot in radians sides : 2; 2-sided or 1-sided linetype : line type per Matplotlib definitions, e.g., 'b'; lwidth : 2; linewidth in points fsize : optional figure size in inches, default = (6,4) inches Returns ------- Nothing : A plot window opens containing the line spectrum plot Notes ----- Since real signals are assumed the frequencies of fk are 0 and/or positive numbers. The supplied Fourier coefficients correspond. Examples -------- >>> n = arange(0,25) >>> # a pulse train with 10 Hz fundamental and 20% duty cycle >>> fk = n*10 >>> Xk = sinc(n*10*.02)*exp(-1j*2*pi*n*10*.01) # 1j = sqrt(-1) >>> line_spectra(fk,Xk,'mag') >>> line_spectra(fk,Xk,'phase') """ plt.figure(figsize=fsize) # Eliminate zero valued coefficients idx = pylab.find(Xk != 0) Xk = Xk[idx] fk = fk[idx] if mode == 'mag': for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[0, np.abs(Xk[k])],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, 2.*np.abs(Xk[k])],linetype, linewidth=lwidth) else: print('Invalid sides type') plt.grid() if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), 0, 1.05*max(abs(Xk))]) elif sides == 1: plt.axis([0, 1.2*max(fk), 0, 1.05*2*max(abs(Xk))]) else: print('Invalid sides type') plt.ylabel('Magnitude') plt.xlabel('Frequency (Hz)') elif mode == 'magdB': Xk_dB = 20*np.log10(np.abs(Xk)) for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]+6.02],linetype, linewidth=lwidth) else: print('Invalid sides type') plt.grid() max_dB = np.ceil(max(Xk_dB/10.))*10 min_dB = max(floor_dB,np.floor(min(Xk_dB/10.))*10) if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), min_dB, max_dB]) elif sides == 1: plt.axis([0, 1.2*max(fk), min_dB, max_dB]) else: print('Invalid sides type') plt.ylabel('Magnitude (dB)') plt.xlabel('Frequency (Hz)') elif mode == 'magdBn': Xk_dB = 20*np.log10(np.abs(Xk)/max(np.abs(Xk))) for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[floor_dB, Xk_dB[k]],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[floor_dB, Xk_dB[k]+6.02],linetype, linewidth=lwidth) else: print('Invalid sides type') plt.grid() max_dB = np.ceil(max(Xk_dB/10.))*10 min_dB = max(floor_dB,np.floor(min(Xk_dB/10.))*10) if sides == 2: plt.axis([-1.2*max(fk), 1.2*max(fk), min_dB, max_dB]) elif sides == 1: plt.axis([0, 1.2*max(fk), min_dB, max_dB]) else: print('Invalid sides type') plt.ylabel('Normalized Magnitude (dB)') plt.xlabel('Frequency (Hz)') elif mode == 'phase': for k in range(len(fk)): if fk[k] == 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) elif fk[k] == 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=2*lwidth) elif fk[k] > 0 and sides == 2: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) plt.plot([-fk[k], -fk[k]],[0, -np.angle(Xk[k])],linetype, linewidth=lwidth) elif fk[k] > 0 and sides == 1: plt.plot([fk[k], fk[k]],[0, np.angle(Xk[k])],linetype, linewidth=lwidth) else: print('Invalid sides type') plt.grid() if sides == 2: plt.plot([-1.2*max(fk), 1.2*max(fk)], [0, 0],'k') plt.axis([-1.2*max(fk), 1.2*max(fk), -1.1*max(np.abs(np.angle(Xk))), 1.1*max(np.abs(np.angle(Xk)))]) elif sides == 1: plt.plot([0, 1.2*max(fk)], [0, 0],'k') plt.axis([0, 1.2*max(fk), -1.1*max(np.abs(np.angle(Xk))), 1.1*max(np.abs(np.angle(Xk)))]) else: print('Invalid sides type') plt.ylabel('Phase (rad)') plt.xlabel('Frequency (Hz)') else: print('Invalid mode type') def fs_coeff(xp,N,f0,one_side=True): """ Numerically approximate the Fourier series coefficients given periodic x(t). The input is assummed to represent one period of the waveform x(t) that has been uniformly sampled. The number of samples supplied to represent one period of the waveform sets the sampling rate. Parameters ---------- xp : ndarray of one period of the waveform x(t) N : maximum Fourier series coefficient, [0,...,N] f0 : fundamental frequency used to form fk. Returns ------- Xk : ndarray of the coefficients over indices [0,1,...,N] fk : ndarray of the harmonic frequencies [0, f0,2f0,...,Nf0] Notes ----- len(xp) >= 2*N+1 as len(xp) is the fft length. Examples -------- >>> t = arange(0,1,1/1024.) >>> # a 20% duty cycle pulse starting at t = 0 >>> x_rect = rect(t-.1,0.2) >>> Xk, fk = fs_coeff(x_rect,25,10) >>> # plot the spectral lines >>> line_spectra(fk,Xk,'mag') """ Nint = len(xp) if Nint < 2*N+1: print('Number of samples in xp insufficient for requested N.') return 0,0 Xp = fft.fft(xp,Nint)/float(Nint) # To interface with the line_spectra function use one_side mode if one_side: Xk = Xp[0:N+1] fk = f0*np.arange(0,N+1) else: Xk = np.hstack((Xp[-N:],Xp[0:N+1])) fk = f0*np.arange(-N,N+1) return Xk, fk def fs_approx(Xk,fk,t): """ Synthesize periodic signal x(t) using Fourier series coefficients at harmonic frequencies Assume the signal is real so coefficients Xk are supplied for nonnegative indicies. The negative index coefficients are assumed to be complex conjugates. Parameters ---------- Xk : ndarray of complex Fourier series coefficients fk : ndarray of harmonic frequencies in Hz t : ndarray time axis corresponding to output signal array x_approx Returns ------- x_approx : ndarray of periodic waveform approximation over time span t Examples -------- >>> t = arange(0,2,.002) >>> # a 20% duty cycle pulse train >>> n = arange(0,20,1) # 0 to 19th harmonic >>> fk = 1*n # period = 1s >>> Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) >>> x_approx = fs_approx(Xk,fk,t) >>> plot(t,x_approx) """ x_approx = np.zeros(len(t)) for k,Xkk in enumerate(Xk): if fk[k] == 0: x_approx += np.real(Xkk)*np.ones(len(t)) # assume signal is real so DC is real else: x_approx += 2*np.abs(Xkk)*np.cos(2*np.pi*fk[k]*t+np.angle(Xkk)) return x_approx def conv_sum(x1,nx1,x2,nx2,extent=('f','f')): """ Discrete convolution of x1 and x2 with proper tracking of the output time axis. Convolve two discrete-time signals using the SciPy function signal.convolution. The time (sequence axis) are managed from input to output. y[n] = x1[n]*x2[n]. Parameters ---------- x1 : ndarray of signal x1 corresponding to nx1 nx1 : ndarray time axis for x1 x2 : ndarray of signal x2 corresponding to nx2 nx2 : ndarray time axis for x2 extent : ('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided Returns ------- y : ndarray of output values y ny : ndarray of the corresponding sequence index n Notes ----- The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The default extents of ('f','f') are used for signals that are active (have support) on or within n1 and n2 respectively. A right-sided signal such as a^n*u[n] is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. Examples -------- >>> nx = arange(-5,10) >>> x = drect(nx,4) >>> y,ny = conv_sum(x,nx,x,nx) >>> stem(ny,y) >>> # Consider a pulse convolved with an exponential ('r' type extent) >>> h = 0.5**nx*dstep(nx) >>> y,ny = conv_sum(x,nx,h,nx,('f','r')) # note extents set >>> stem(ny,y) # expect a pulse charge and discharge sequence """ nnx1 = np.arange(0,len(nx1)) nnx2 = np.arange(0,len(nx2)) n1 = nnx1[0] n2 = nnx1[-1] n3 = nnx2[0] n4 = nnx2[-1] # Start by finding the valid output support or extent interval to insure that # for no finite extent signals ambiquous results are not returned. # Valid extents are f (finite), r (right-sided), and l (left-sided) if extent[0] == 'f' and extent[1] == 'f': nny = np.arange(n1+n3,n2+1+n4+1-1) ny = np.arange(0,len(x1)+len(x2)-1) + nx1[0]+nx2[0] elif extent[0] == 'f' and extent[1] == 'r': nny = np.arange(n1+n3,n1+1+n4+1-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'r' and extent[1] == 'f': nny = np.arange(n1+n3,n2+1+n3+1-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'f' and extent[1] == 'l': nny = np.arange(n2+n3,n2+1+n4+1-1) ny = nny + nx1[-1]+nx2[0] elif extent[0] == 'l' and extent[1] == 'f': nny = np.arange(n1+n4,n2+1+n4+1-1) ny = nny + tx1[0]+tx2[-1] elif extent[0] == 'r' and extent[1] == 'r': nny = np.arange(n1+n3,min(n1+1+n4+1,n2+1+n3+1)-1) ny = nny + nx1[0]+nx2[0] elif extent[0] == 'l' and extent[1] == 'l': nny = np.arange(max(n1+n4,n2+n3),n2+1+n4+1-1) ny = nny + max(nx1[0]+nx2[-1],nx1[-1]+nx2[0]) else: print('Invalid x1 x2 extents specified or valid extent not found!') return 0,0 # Finally convolve the sequences y = signal.convolve(x1, x2) print("Output support: (%+d, %+d)" % (ny[0],ny[-1])) return y[nny], ny def conv_integral(x1,tx1,x2,tx2,extent = ('f','f')): """ Continuous-time convolution of x1 and x2 with proper tracking of the output time axis. Appromimate the convolution integral for the convolution of two continuous-time signals using the SciPy function signal. The time (sequence axis) are managed from input to output. y(t) = x1(t)*x2(t). Parameters ---------- x1 : ndarray of signal x1 corresponding to tx1 tx1 : ndarray time axis for x1 x2 : ndarray of signal x2 corresponding to tx2 tx2 : ndarray time axis for x2 extent : ('e1','e2') where 'e1', 'e2' may be 'f' finite, 'r' right-sided, or 'l' left-sided Returns ------- y : ndarray of output values y ty : ndarray of the corresponding time axis for y Notes ----- The output time axis starts at the sum of the starting values in x1 and x2 and ends at the sum of the two ending values in x1 and x2. The time steps used in x1(t) and x2(t) must match. The default extents of ('f','f') are used for signals that are active (have support) on or within t1 and t2 respectively. A right-sided signal such as exp(-a*t)*u(t) is semi-infinite, so it has extent 'r' and the convolution output will be truncated to display only the valid results. Examples -------- >>> tx = arange(-5,10,.01) >>> x = rect(tx-2,4) # pulse starts at t = 0 >>> y,ty = conv_integral(x,tx,x,tx) >>> plot(ty,y) # expect a triangle on [0,8] >>> # Consider a pulse convolved with an exponential ('r' type extent) >>> h = 4*exp(-4*tx)*step(tx) >>> y,ty = conv_integral(x,tx,h,tx,extent=('f','r')) # note extents set >>> plot(ty,y) # expect a pulse charge and discharge waveform """ dt = tx1[1] - tx1[0] nx1 = np.arange(0,len(tx1)) nx2 = np.arange(0,len(tx2)) n1 = nx1[0] n2 = nx1[-1] n3 = nx2[0] n4 = nx2[-1] # Start by finding the valid output support or extent interval to insure that # for no finite extent signals ambiquous results are not returned. # Valid extents are f (finite), r (right-sided), and l (left-sided) if extent[0] == 'f' and extent[1] == 'f': ny = np.arange(n1+n3,n2+1+n4+1-1) ty = np.arange(0,len(x1)+len(x2)-1)*dt + tx1[0]+tx2[0] elif extent[0] == 'f' and extent[1] == 'r': ny = np.arange(n1+n3,n1+1+n4+1-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'r' and extent[1] == 'f': ny = np.arange(n1+n3,n2+1+n3+1-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'f' and extent[1] == 'l': ny = np.arange(n2+n3,n2+1+n4+1-1) ty = ny*dt + tx1[-1]+tx2[0] elif extent[0] == 'l' and extent[1] == 'f': ny = np.arange(n1+n4,n2+1+n4+1-1) ty = ny*dt + tx1[0]+tx2[-1] elif extent[0] == 'r' and extent[1] == 'r': ny = np.arange(n1+n3,min(n1+1+n4+1,n2+1+n3+1)-1) ty = ny*dt + tx1[0]+tx2[0] elif extent[0] == 'l' and extent[1] == 'l': ny = np.arange(max(n1+n4,n2+n3),n2+1+n4+1-1) ty = ny*dt + max(tx1[0]+tx2[-1],tx1[-1]+tx2[0]) else: print('Invalid x1 x2 extents specified or valid extent not found!') return 0,0 # Finally convolve the sampled sequences and scale by dt y = signal.convolve(x1, x2)*dt print("Output support: (%+2.2f, %+2.2f)" % (ty[0],ty[-1])) return y[ny], ty def delta_eps(t,eps): """ Rectangular pulse approximation to impulse function. Parameters ---------- t : ndarray of time axis eps : pulse width Returns ------- d : ndarray containing the impulse approximation Examples -------- >>> t = arange(-2,2,.001) >>> d = delta_eps(t,.1) >>> plot(t,d) """ d = np.zeros(len(t)) for k,tt in enumerate(t): if abs(tt) <= eps/2.: d[k] = 1/float(eps) return d def step(t): """ Approximation to step function signal u(t). In this numerical version of u(t) the step turns on at t = 0. Parameters ---------- t : ndarray of the time axis Returns ------- x : ndarray of the step function signal u(t) Examples -------- >>> t = arange(-1,5,.01) >>> x = step(t) >>> plot(t,x) >>> # to turn on at t = 1 shift t >>> x = step(t - 1.0) >>> plot(t,x) """ x = np.zeros(len(t)) for k,tt in enumerate(t): if tt >= 0: x[k] = 1.0 return x def rect(t,tau): """ Approximation to the rectangle pulse Pi(t/tau). In this numerical version of Pi(t/tau) the pulse is active over -tau/2 <= t <= tau/2. Parameters ---------- t : ndarray of the time axis tau : the pulse width Returns ------- x : ndarray of the signal Pi(t/tau) Examples -------- >>> t = arange(-1,5,.01) >>> x = rect(t,1.0) >>> plot(t,x) >>> # to turn on at t = 1 shift t >>> x = rect(t - 1.0,1.0) >>> plot(t,x) """ x = np.zeros(len(t)) for k,tk in enumerate(t): if np.abs(tk) > tau/2.: x[k] = 0 else: x[k] = 1 return x def tri(t,tau): """ Approximation to the triangle pulse Lambda(t/tau). In this numerical version of Lambda(t/tau) the pulse is active over -tau <= t <= tau. Parameters ---------- t : ndarray of the time axis tau : one half the triangle base width Returns ------- x : ndarray of the signal Lambda(t/tau) Examples -------- >>> t = arange(-1,5,.01) >>> x = tri(t,1.0) >>> plot(t,x) >>> # to turn on at t = 1 shift t >>> x = tri(t - 1.0,1.0) >>> plot(t,x) """ x = np.zeros(len(t)) for k,tk in enumerate(t): if np.abs(tk) > tau/1.: x[k] = 0 else: x[k] = 1 - np.abs(tk)/tau return x def dimpulse(n): """ Discrete impulse function delta[n]. Parameters ---------- n : ndarray of the time axis Returns ------- x : ndarray of the signal delta[n] Examples -------- >>> n = arange(-5,5) >>> x = dimpulse(n) >>> stem(n,x) >>> # shift the delta left by 2 >>> x = dimpulse(n+2) >>> stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn == 0: x[k] = 1.0 return x def dstep(n): """ Discrete step function u[n]. Parameters ---------- n : ndarray of the time axis Returns ------- x : ndarray of the signal u[n] Examples -------- >>> n = arange(-5,5) >>> x = dstep(n) >>> stem(n,x) >>> # shift the delta left by 2 >>> x = dstep(n+2) >>> stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn >= 0: x[k] = 1.0 return x def drect(n,N): """ Discrete rectangle function of duration N samples. The signal is active on the interval 0 <= n <= N-1. Also known as the rectangular window function, which is available in scipy.signal. Parameters ---------- n : ndarray of the time axis N : the pulse duration Returns ------- x : ndarray of the signal Notes ----- The discrete rectangle turns on at n = 0, off at n = N-1 and has duration of exactly N samples. Examples -------- >>> n = arange(-5,5) >>> x = drect(n) >>> stem(n,x) >>> # shift the delta left by 2 >>> x = drect(n+2) >>> stem(n,x) """ x = np.zeros(len(n)) for k,nn in enumerate(n): if nn >= 0 and nn < N: x[k] = 1.0 return x def rc_imp(Ns,alpha,M=6): """ A truncated raised cosine pulse used in digital communications. The pulse shaping factor 0< alpha < 1 is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. Parameters ---------- Ns : number of samples per symbol alpha : excess bandwidth factor on (0, 1), e.g., 0.35 M : equals RC one-sided symbol truncation factor Returns ------- b : ndarray containing the pulse shape Notes ----- The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. Examples -------- >>> # ten samples per symbol and alpha = 0.35 >>> b = rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> stem(n,b) """ # Design the filter n = np.arange(-M*Ns,M*Ns+1) b = np.zeros(len(n)); a = alpha; Ns *= 1.0 for i in range(len(n)): if (1 - 4*(a*n[i]/Ns)**2) == 0: b[i] = np.pi/4*np.sinc(1/(2.*a)) else: b[i] = np.sinc(n[i]/Ns)*np.cos(np.pi*a*n[i]/Ns)/(1 - 4*(a*n[i]/Ns)**2) return b def sqrt_rc_imp(Ns,alpha,M=6): """ A truncated square root raised cosine pulse used in digital communications. The pulse shaping factor 0< alpha < 1 is required as well as the truncation factor M which sets the pulse duration to be 2*M*Tsymbol. Parameters ---------- Ns : number of samples per symbol alpha : excess bandwidth factor on (0, 1), e.g., 0.35 M : equals RC one-sided symbol truncation factor Returns ------- b : ndarray containing the pulse shape Notes ----- The pulse shape b is typically used as the FIR filter coefficients when forming a pulse shaped digital communications waveform. When square root raised cosine (SRC) pulse is used generate Tx signals and at the receiver used as a matched filter (receiver FIR filter), the received signal is now raised cosine shaped, this having zero intersymbol interference and the optimum removal of additive white noise if present at the receiver input. Examples -------- >>> # ten samples per symbol and alpha = 0.35 >>> b = sqrt_rc_imp(10,0.35) >>> n = arange(-10*6,10*6+1) >>> stem(n,b) """ # Design the filter n = np.arange(-M*Ns,M*Ns+1) b = np.zeros(len(n)) Ns *= 1.0 a = alpha for i in range(len(n)): if abs(1 - 16*a**2*(n[i]/Ns)**2) <= np.finfo(np.float).eps/2: b[i] = 1/2.*((1+a)*np.sin((1+a)*np.pi/(4.*a))-(1-a)*np.cos((1-a)*np.pi/(4.*a))+(4*a)/np.pi*np.sin((1-a)*np.pi/(4.*a))) else: b[i] = 4*a/(np.pi*(1 - 16*a**2*(n[i]/Ns)**2)) b[i] = b[i]*(np.cos((1+a)*np.pi*n[i]/Ns) + np.sinc((1-a)*n[i]/Ns)*(1-a)*np.pi/(4.*a)) return b def PN_gen(N_bits,m=5): """ Maximal length sequence signal generator. Generates a sequence 0/1 bits of N_bit duration. The bits themselves are obtained from an m-sequence of length m. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. Parameters ---------- N_bits : the number of bits to generate m : the number of shift registers. 2,3, .., 12, & 16 Returns ------- PN : ndarray of the generator output over N_bits Notes ----- The sequence is periodic having period 2**m - 1 (2^m - 1). Examples -------- >>> # A 15 bit period signal nover 50 bits >>> PN = PN_gen(50,4) """ c = m_seq(m) Q = len(c) max_periods = int(np.ceil(N_bits/float(Q))) PN = np.zeros(max_periods*Q) for k in range(max_periods): PN[k*Q:(k+1)*Q] = c PN = np.resize(PN, (1,N_bits)) return PN.flatten() def m_seq(m): """ Generate an m-sequence ndarray using an all-ones initialization. Available m-sequence (PN generators) include m = 2,3,...,12, & 16. Parameters ---------- m : the number of shift registers. 2,3, .., 12, & 16 Returns ------- c : ndarray of one period of the m-sequence Notes ----- The sequence period is 2**m - 1 (2^m - 1). Examples -------- >>> c = m_seq(5) """ # Load shift register with all ones to start sr = np.ones(m) # M-squence length is: Q = 2**m - 1 c = np.zeros(Q) if m == 2: taps = np.array([1, 1, 1]) elif m == 3: taps = np.array([1, 0, 1, 1]) elif m == 4: taps = np.array([1, 0, 0, 1, 1]) elif m == 5: taps = np.array([1, 0, 0, 1, 0, 1]) elif m == 6: taps = np.array([1, 0, 0, 0, 0, 1, 1]) elif m == 7: taps = np.array([1, 0, 0, 0, 1, 0, 0, 1]) elif m == 8: taps = np.array([1, 0, 0, 0, 1, 1, 1, 0, 1]) elif m == 9: taps = np.array([1, 0, 0, 0, 0, 1, 0, 0, 0, 1]) elif m == 10: taps = np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]) elif m == 11: taps = np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]) elif m == 12: taps = np.array([1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1]) elif m == 16: taps = np.array([1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1]) else: print('Invalid length specified') for n in range(Q): tap_xor = 0 c[n] = sr[-1] for k in range(1,m): if taps[k] == 1: tap_xor = np.bitwise_xor(tap_xor,np.bitwise_xor(int(sr[-1]),int(sr[m-1-k]))) sr[1:] = sr[:-1] sr[0] = tap_xor return c def BPSK_tx(N_bits,Ns,ach_fc=2.0,ach_lvl_dB=-100,pulse='rect',alpha = 0.25,M=6): """ Genrates biphase shift keyed (BPSK) transmitter with adjacent channel interference. Generates three BPSK signals with rectangular or square root raised cosine (SRC) pulse shaping of duration N_bits and Ns samples per bit. The desired signal is centered on f = 0, which the adjacent channel signals to the left and right are also generated at dB level relative to the desired signal. Used in the digital communications Case Study supplement. Parameters ---------- N_bits : the number of bits to simulate Ns : the number of samples per bit ach_fc : the frequency offset of the adjacent channel signals (default 2.0) ach_lvl_dB : the level of the adjacent channel signals in dB (default -100) pulse :the pulse shape 'rect' or 'src' alpha : square root raised cosine pulse shape factor (default = 0.25) M : square root raised cosine pulse truncation factor (default = 6) Returns ------- x : ndarray of the composite signal x0 + ach_lvl*(x1p + x1m) b : the transmit pulse shape data0 : the data bits used to form the desired signal; used for error checking Notes ----- Examples -------- >>> x,b,data0 = BPSK_tx(1000,10,'src') """ x0,b,data0 = NRZ_bits(N_bits,Ns,pulse,alpha,M) x1p,b,data1p = NRZ_bits(N_bits,Ns,pulse,alpha,M) x1m,b,data1m = NRZ_bits(N_bits,Ns,pulse,alpha,M) n = np.arange(len(x0)) x1p = x1p*np.exp(1j*2*np.pi*ach_fc/float(Ns)*n) x1m = x1m*np.exp(-1j*2*np.pi*ach_fc/float(Ns)*n) ach_lvl = 10**(ach_lvl_dB/20.) return x0 + ach_lvl*(x1p + x1m), b, data0 #def BPSK_rx(r,b,): def NRZ_bits(N_bits,Ns,pulse='rect',alpha = 0.25,M=6): """ Generate non-return-to-zero (NRZ) data bits with pulse shaping. A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. Parameters ---------- N_bits : number of NRZ +/-1 data bits to produce Ns : the number of samples per bit, pulse_type : 'rect' , 'rc', 'src' (default 'rect') alpha : excess bandwidth factor(default 0.25) M : single sided pulse duration (default = 6) Returns ------- x : ndarray of the NRZ signal values b : ndarray of the pulse shape data : ndarray of the underlying data bits Notes ----- Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. This function is used by BPSK_tx in the Case Study article. Examples -------- >>> x,b,data = NRZ_bits(100,10) >>> t = arange(len(x)) >>> plot(t,x) """ data = np.random.randint(0,2,N_bits) x = np.hstack((2*data.reshape(N_bits,1)-1,np.zeros((N_bits,Ns-1)))) x =x.flatten() if pulse.lower() == 'rect': b = np.ones(Ns) elif pulse.lower() == 'rc': b = rc_imp(Ns,alpha,M) elif pulse.lower() == 'src': b = sqrt_rc_imp(Ns,alpha,M) else: print('pulse type must be rec, rc, or src') x = signal.lfilter(b,1,x) return x,b/float(Ns),data def NRZ_bits2(data,Ns,pulse='rect',alpha = 0.25,M=6): """ Generate non-return-to-zero (NRZ) data bits with pulse shaping with user data A baseband digital data signal using +/-1 amplitude signal values and including pulse shaping. The data sequence is user supplied. Parameters ---------- data : ndarray of the data bits as 0/1 values Ns : the number of samples per bit, pulse_type : 'rect' , 'rc', 'src' (default 'rect') alpha : excess bandwidth factor(default 0.25) M : single sided pulse duration (default = 6) Returns ------- x : ndarray of the NRZ signal values b : ndarray of the pulse shape Notes ----- Pulse shapes include 'rect' (rectangular), 'rc' (raised cosine), 'src' (root raised cosine). The actual pulse length is 2*M+1 samples. Examples -------- >>> x,b = NRZ_bits2([m_seq(5),10) >>> t = arange(len(x)) >>> plot(t,x) """ N_bits = len(data) x = np.hstack((2*data.reshape(N_bits,1)-1,np.zeros((N_bits,Ns-1)))) x = x.flatten() if pulse.lower() == 'rect': b = np.ones(Ns) elif pulse.lower() == 'rc': b = rc_imp(Ns,alpha,M) elif pulse.lower() == 'src': b = sqrt_rc_imp(Ns,alpha,M) else: print('pulse type must be rec, rc, or src') x = signal.lfilter(b,1,x) return x,b/float(Ns) def eye_plot(x,L,S=0): """ Eye pattern plot of a baseband digital communications waveform. The signal must be real, but can be multivalued in terms of the underlying modulation scheme. Used for BPSK eye plots in the Case Study article. Parameters ---------- x : ndarray of the real input data vector/array L : display length in samples (usually two symbols) S : start index Returns ------- Nothing : A plot window opens containing the eye plot Notes ----- Increase S to eliminate filter transients. Examples -------- >>> # 1000 bits at 10 samples per bit with 'rc' shaping >>> x,b, data = NRZ_bits(1000,10,'rc') >>> eye_plot(x,20,60) """ plt.figure(figsize=(6,4)) idx = np.arange(0,L+1) plt.plot(idx,x[S:S+L+1],'b') k_max = int((len(x) - S)/L)-1 for k in range(1,k_max): plt.plot(idx,x[S+k*L:S+L+1+k*L],'b') plt.grid() plt.xlabel('Time Index - n') plt.ylabel('Amplitude') plt.title('Eye Plot') return 0 def scatter(x,Ns,start): """ Sample a baseband digital communications waveform at the symbol spacing. Parameters ---------- x : ndarray of the input digital comm signal Ns : number of samples per symbol (bit) start : the array index to start the sampling Returns ------- xI : ndarray of the real part of x following sampling xQ : ndarray of the imaginary part of x following sampling Notes ----- Normally the signal is complex, so the scatter plot contains clusters at point in the complex plane. For a binary signal such as BPSK, the point centers are nominally +/-1 on the real axis. Start is used to eliminate transients from the FIR pulse shaping filters from appearing in the scatter plot. Examples -------- >>> x,b, data = NRZ_bits(1000,10,'rc') >>> # add some noise so points are now scattered about +/-1 >>> y = cpx_AWGN(x,20,10) >>> yI,yQ = scatter(y,10,60) >>> plot(yI,yQ,'.') >>> axis('equal') """ xI = np.real(x[start::Ns]) xQ = np.imag(x[start::Ns]) return xI, xQ def bit_errors(z,data,start,Ns): """ A simple bit error counting function. In its present form this function counts bit errors between hard decision BPSK bits in +/-1 form and compares them with 0/1 binary data that was transmitted. Timing between the Tx and Rx data is the responsibility of the user. An enhanced version of this function, which features automatic synching will be created in the future. Parameters ---------- z : ndarray of hard decision BPSK data prior to symbol spaced sampling data : ndarray of reference bits in 1/0 format start : timing reference for the received Ns : the number of samples per symbol Returns ------- Pe_hat : the estimated probability of a bit error Notes ----- The Tx and Rx data streams are exclusive-or'd and the then the bit errors are summed, and finally divided by the number of bits observed to form an estimate of the bit error probability. This function needs to be enhanced to be more useful. Examples -------- >>> from scipy import signal >>> x,b, data = NRZ_bits(1000,10) >>> # set Eb/N0 to 8 dB >>> y = cpx_AWGN(x,8,10) >>> # matched filter the signal >>> z = signal.lfilter(b,1,y) >>> # make bit decisions at 10 and Ns multiples thereafter >>> Pe_hat = bit_errors(z,data,10,10) """ Pe_hat = np.sum(data[0:len(z[start::Ns])]^np.int64((np.sign(np.real(z[start::Ns]))+1)/2))/float(len(z[start::Ns])) return Pe_hat def cpx_AWGN(x,EsN0,Ns): """ Apply white Gaussian noise to a digital communications signal. This function represents a complex baseband white Gaussian noise digital communications channel. The input signal array may be real or complex. Parameters ---------- x : ndarray noise free complex baseband input signal. EsNO : set the channel Es/N0 (Eb/N0 for binary) level in dB Ns : number of samples per symbol (bit) Returns ------- y : ndarray x with additive noise added. Notes ----- Set the channel energy per symbol-to-noise power spectral density ratio (Es/N0) in dB. Examples -------- >>> x,b, data = NRZ_bits(1000,10) >>> # set Eb/N0 = 10 dB >>> y = cpx_AWGN(x,10,10) """ w = np.sqrt(Ns*np.var(x)*10**(-EsN0/10.)/2.)*(np.random.randn(len(x)) + 1j*np.random.randn(len(x))) return x+w def my_psd(x,NFFT=2**10,Fs=1): """ A local version of NumPy's PSD function that returns the plot arrays. A mlab.psd wrapper function that returns two ndarrays; makes no attempt to auto plot anything. Parameters ---------- x : ndarray input signal NFFT : a power of two, e.g., 2**10 = 1024 Fs : the sampling rate in Hz Returns ------- Px : ndarray of the power spectrum estimate f : ndarray of frequency values Notes ----- This function makes it easier to overlay spectrum plots because you have better control over the axis scaling than when using psd() in the autoscale mode. Examples -------- >>> x,b, data = NRZ_bits(10000,10) >>> Px,f = my_psd(x,2**10,10) >>> plot(f, 10*log10(Px)) """ Px,f = pylab.mlab.psd(x,NFFT,Fs) return Px.flatten(), f def am_tx(m,a_mod,fc=75e3): """ AM transmitter for Case Study of Chapter 17. Assume input is sampled at 8 Ksps and upsampling by 24 is performed to arrive at fs_out = 192 Ksps. Parameters ---------- m : ndarray of the input message signal a_mod : AM modulation index, between 0 and 1 fc : the carrier frequency in Hz Returns ------- x192 : ndarray of the upsampled by 24 and modulated carrier t192 : ndarray of the upsampled by 24 time axis m24 : ndarray of the upsampled by 24 message signal Notes ----- The sampling rate of the input signal is assumed to be 8 kHz. Examples -------- >>> n = arange(0,1000) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192 = am_tx(m,0.8,fc=75e3) """ m24 = interp24(m) t192 = np.arange(len(m24))/192.0e3 #m24 = np.cos(2*np.pi*2.0e3*t192) m_max = np.max(np.abs(m24)) x192 = (1 + a_mod*m24/m_max)*np.cos(2*np.pi*fc*t192) return x192, t192, m24 def am_rx(x192): """ AM envelope detector receiver for the Chapter 17 Case Study The receiver bandpass filter is not included in this function. Parameters ---------- x192 : ndarray of the AM signal at sampling rate 192 ksps Returns ------- m_rx8 : ndarray of the demodulated message at 8 ksps t8 : ndarray of the time axis at 8 ksps m_rx192 : ndarray of the demodulated output at 192 ksps x_edet192 : ndarray of the envelope detector output at 192 ksps Notes ----- The bandpass filter needed at the receiver front-end can be designed using b_bpf,a_bpf = am_rx_BPF(). Examples -------- >>> n = arange(0,1000) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> m_rx8,t8,m_rx192,x_edet192 = am_rx(x192) """ x_edet192 = env_det(x192) m_rx8 = deci24(x_edet192) # remove DC offset from the env_det + LPF output m_rx8 -= np.mean(m_rx8) t8 = np.arange(len(m_rx8))/8.0e3 """ For performance testing also filter x_env_det 192e3 using a Butterworth cascade. The filter cutoff is 5kHz, the message BW. """ b192,a192 = signal.butter(5,2*5.0e3/192.0e3) m_rx192 = signal.lfilter(b192,a192,x_edet192) m_rx192 = signal.lfilter(b192,a192,m_rx192) m_rx192 -= np.mean(m_rx192) return m_rx8,t8,m_rx192,x_edet192 def am_rx_BPF(N_order = 7, ripple_dB = 1, B = 10e3, fs = 192e3): """ Bandpass filter design for the AM receiver Case Study of Chapter 17. Design a 7th-order Chebyshev type 1 bandpass filter to remove/reduce adjacent channel intereference at the envelope detector input. Parameters ---------- N_order : the filter order (default = 7) ripple_dB : the passband ripple in dB (default = 1) B : the RF bandwidth (default = 10e3) fs : the sampling frequency Returns ------- b_bpf : ndarray of the numerator filter coefficients a_bpf : ndarray of the denominator filter coefficients Examples -------- >>> from scipy import signal >>> # Use the default values >>> b_bpf,a_bpf = am_rx_BPF() >>> # plot the filter pole-zero plot >>> zplane(b_bpf,a_bpf) >>> # plot the frequency response >>> f = arange(0,192/2.,.1) >>> w, Hbpf = signal.freqz(b_bpf,a_bpf,2*pi*f/192) >>> plot(f,20*log10(abs(Hbpf))) >>> axis([0,192/2.,-80,10]) """ b_bpf,a_bpf = signal.cheby1(N_order,ripple_dB,2*np.array([75e3-B/2.,75e3+B/2.])/fs,'bandpass') return b_bpf,a_bpf def env_det(x): """ Ideal envelope detector. This function retains the positive half cycles of the input signal. Parameters ---------- x : ndarray of the input sugnal Returns ------- y : ndarray of the output signal Examples -------- >>> n = arange(0,100) >>> # 1 kHz message signal >>> m = cos(2*pi*1000/8000.*n) >>> x192, t192 = am_tx(m,0.8,fc=75e3) >>> y = env_det(x192) """ y = np.zeros(len(x)) for k,xx in enumerate(x): if xx >= 0: y[k] = xx return y def interp24(x): """ Interpolate by L = 24 using Butterworth filters. The interpolation is done using three stages. Upsample by L = 2 and lowpass filter, upsample by 3 and lowpass filter, then upsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. Parameters ---------- x : ndarray of the input signal Returns ------- y : ndarray of the output signal Notes ----- The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. Examples -------- >>> y = interp24(x) """ # Stage 1: L = 2 b2,a2 = signal.butter(10,1/2.) y1 = upsample(x,2) y1 = signal.lfilter(b2,a2,2*y1) # Stage 2: L = 3 b3,a3 = signal.butter(10,1/3.) y2 = upsample(y1,3) y2 = signal.lfilter(b3,a3,3*y2) # Stage 3: L = 4 b4,a4 = signal.butter(10,1/4.) y3 = upsample(y2,4) y3 = signal.lfilter(b4,a4,4*y3) return y3 def deci24(x): """ Decimate by L = 24 using Butterworth filters. The decimation is done using two three stages. Downsample sample by L = 2 and lowpass filter, downsample by 3 and lowpass filter, then downsample by L = 4 and lowpass filter. In all cases the lowpass filter is a 10th-order Butterworth lowpass. Parameters ---------- x : ndarray of the input signal Returns ------- y : ndarray of the output signal Notes ----- The cutoff frequency of the lowpass filters is 1/2, 1/3, and 1/4 to track the upsampling by 2, 3, and 4 respectively. Examples -------- >>> y = deci24(x) """ # Stage 1: M = 2 b2,a2 = signal.butter(10,1/2.) y1 = signal.lfilter(b2,a2,x) y1 = downsample(y1,2) # Stage 2: M = 3 b3,a3 = signal.butter(10,1/3.) y2 = signal.lfilter(b3,a3,y1) y2 = downsample(y2,3) # Stage 3: L = 4 b4,a4 = signal.butter(10,1/4.) y3 = signal.lfilter(b4,a4,y2) y3 = downsample(y3,4) return y3 def upsample(x,L): """ Upsample by factor L Insert L - 1 zero samples in between each input sample. Parameters ---------- x : ndarray of input signal values L : upsample factor Returns ------- y : ndarray of the output signal values Examples -------- >>> y = upsample(x,3) """ N_input = len(x) y = np.hstack((x.reshape(N_input,1),np.zeros((N_input,L-1)))) y = y.flatten() return y def downsample(x,M,p=0): """ Downsample by factor M Keep every Mth sample of the input. The phase of the input samples kept can be selected. Parameters ---------- x : ndarray of input signal values M : upsample factor p : phase of decimated value, 0 (default), 1, ..., M-1 Returns ------- y : ndarray of the output signal values Examples -------- >>> y = downsample(x,3) >>> y = downsample(x,3,1) """ x = x[0:np.floor(len(x)/M)*M] x = x.reshape((len(x)/M,M)) y = x[:,p] return y def zplane(b,a,auto_scale=True,size=2): """ Create an z-plane pole-zero plot. Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. Parameters ---------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients auto_scale : bool (default True) size : plot radius maximum when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> zplane(b,a) >>> # Here the plot is generated using manual scaling >>> zplane(b,a,False,1.5) """ M = len(b) - 1 N = len(a) - 1 # Plot labels if multiplicity greater than 1 x_scale = 1.5*size y_scale = 1.5*size x_off = 0.02 y_off = 0.01 #N_roots = np.array([1.0]) if M > 0: N_roots = np.roots(b) #D_roots = np.array([1.0]) if N > 0: D_roots = np.roots(a) if auto_scale: if M > 0 and N > 0: size = max(np.max(np.abs(N_roots)),np.max(np.abs(D_roots)))+.1 elif M > 0: size = max(np.max(np.abs(N_roots)),1.0)+.1 elif N > 0: size = max(1.0,np.max(np.abs(D_roots)))+.1 else: size = 1.1 plt.figure(figsize=(5,5)) plt.axis('equal') r = np.linspace(0,2*np.pi,200) plt.plot(np.cos(r),np.sin(r),'r--') plt.plot([-size,size],[0,0],'k-.') plt.plot([0,0],[-size,size],'k-.') if M > 0: #N_roots = np.roots(b) N_uniq, N_mult=signal.unique_roots(N_roots,tol=1e-3, rtype='avg') plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8) idx_N_mult = mlab.find(N_mult>1) for k in range(len(idx_N_mult)): x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]),ha='center',va='bottom',fontsize=10) if N > 0: #D_roots = np.roots(a) D_uniq, D_mult=signal.unique_roots(D_roots,tol=1e-3, rtype='avg') plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8) idx_D_mult = mlab.find(D_mult>1) for k in range(len(idx_D_mult)): x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]),ha='center',va='bottom',fontsize=10) if M - N < 0: plt.plot(0.0,0.0,'bo',mfc='None',ms=8) elif M - N > 0: plt.plot(0.0,0.0,'kx',ms=8) if abs(M - N) > 1: plt.text(x_off*x_scale,y_off*y_scale,str(abs(M-N)),ha='center',va='bottom',fontsize=10) plt.xlabel('Real Part') plt.ylabel('Imaginary Part') plt.title('Pole-Zero Plot') #plt.grid() plt.axis([-size,size,-size,size]) return M,N def rect_conv(n,N_len): """ The theoretical result of convolving two rectangle sequences. The result is a triangle. The solution is based on pure analysis. Simply coded as opposed to efficiently coded. Parameters ---------- n : ndarray of time axis N_len : rectangle pulse duration Returns ------- y : ndarray of of output signal Examples -------- >>> n = arange(-5,20) >>> y = rect_conv(n,6) """ y = np.zeros(len(n)) for k in range(len(n)): if n[k] >= 0 and n[k] < N_len-1: y[k] = n[k] + 1 elif n[k] >= N_len-1 and n[k] <= 2*N_len-2: y[k] = 2*N_len-1-n[k] return y def biquad2(w_num, r_num, w_den, r_den): """ A biquadratic filter in terms of conjugate pole and zero pairs. Parameters ---------- w_num : zero frequency (angle) in rad/sample r_num : conjugate zeros radius w_den : pole frequency (angle) in rad/sample r_den : conjugate poles radius; less than 1 for stability Returns ------- b : ndarray of numerator coefficients a : ndarray of denominator coefficients Examples -------- b,a = biquad2(pi/4., 1, pi/4., 0.95) """ b = np.array([1, -2*r_num*np.cos(w_num), r_num**2]) a = np.array([1, -2*r_den*np.cos(w_den), r_den**2]) return b, a def plot_na(x,y,mode='stem'): pylab.figure(figsize=(5,2)) frame1 = pylab.gca() if mode.lower() == 'stem': pylab.stem(x,y) else: pylab.plot(x,y) frame1.axes.get_xaxis().set_visible(False) frame1.axes.get_yaxis().set_visible(False) pylab.show() def from_wav(filename): """ Read a wave file. A wrapper function for scipy.io.wavfile.read that also includes int16 to float [-1,1] scaling. Parameters ---------- filename : file name string Returns ------- fs : sampling frequency in Hz x : ndarray of normalized to 1 signal samples Examples -------- >>> fs,x = from_wav('test_file.wav') """ fs, x = wavfile.read(filename) return fs, x/32767. def to_wav(filename,rate,x): """ Write a wave file. A wrapper function for scipy.io.wavfile.write that also includes int16 scaling and conversion. Assume input x is [-1,1] values. Parameters ---------- filename : file name string rate : sampling frequency in Hz Returns ------- Nothing : writes only the *.wav file Examples -------- >>> to_wav('test_file.wav', 8000, x) """ x16 = np.int16(x*32767) wavfile.write(filename, rate, x16) if __name__ == '__main__': t = np.arange(0,2,.002) n = np.arange(0,20,1) # 0 to 19th harmonic fk = 1*n # period = 1s Xk = np.sinc(n*10*.02)*np.exp(-1j*2*np.pi*n*10*.01) x_approx = fs_approx(Xk,fk,t) plt.plot(t,x_approx) plt.show() # n = np.arange(0,10000) # xc = np.exp(1j*7*np.sin(2*np.pi*n*1e3/1.e5)) # f,Sx = simple_SA(xc, 1024, 1024, 1e5) """ x = np.random.randn(10) print x b = signal.remez(16,[0,.1,.2,.5], [1,0], [1,1], 1) w,H = signal.freqz(b,[1],512) plot(w,20*log10(abs(H))) figure(figsize=(6,4)) #plot(arange(0,len(b)),b) y = signal.lfilter(b, [1], x,) print y zplane([1,1,1,1,1],[1,-.8],1.25) """
30.796196
362
0.578803
b45ab968fcd225e68781d4a3bdce360cca46e12b
1,471
py
Python
tests/python/test_stop_grad.py
rezahojabr/taichi
122c0352ec480b740a4118819458cbf08d2e5ddb
[ "MIT" ]
3
2020-01-08T02:58:51.000Z
2020-10-28T07:01:58.000Z
tests/python/test_stop_grad.py
rezahojabr/taichi
122c0352ec480b740a4118819458cbf08d2e5ddb
[ "MIT" ]
null
null
null
tests/python/test_stop_grad.py
rezahojabr/taichi
122c0352ec480b740a4118819458cbf08d2e5ddb
[ "MIT" ]
1
2020-03-25T16:37:00.000Z
2020-03-25T16:37:00.000Z
import taichi as ti @ti.all_archs def test_normal_grad(): x = ti.var(ti.f32) loss = ti.var(ti.f32) n = 128 @ti.layout def place(): ti.root.dense(ti.i, n).place(x) ti.root.place(loss) ti.root.lazy_grad() @ti.kernel def func(): for i in range(n): ti.atomic_add(loss, x[i]**2) for i in range(n): x[i] = i with ti.Tape(loss): func() for i in range(n): assert x.grad[i] == i * 2 @ti.all_archs def test_stop_grad(): x = ti.var(ti.f32) loss = ti.var(ti.f32) n = 128 @ti.layout def place(): ti.root.dense(ti.i, n).place(x) ti.root.place(loss) ti.root.lazy_grad() @ti.kernel def func(): for i in range(n): ti.core.stop_grad(x.snode().ptr) ti.atomic_add(loss, x[i]**2) for i in range(n): x[i] = i with ti.Tape(loss): func() for i in range(n): assert x.grad[i] == 0 @ti.all_archs def test_stop_grad2(): x = ti.var(ti.f32) loss = ti.var(ti.f32) n = 128 @ti.layout def place(): ti.root.dense(ti.i, n).place(x) ti.root.place(loss) ti.root.lazy_grad() @ti.kernel def func(): # Two loops, one with stop grad on without for i in range(n): ti.stop_grad(x) ti.atomic_add(loss, x[i]**2) for i in range(n): ti.atomic_add(loss, x[i]**2) for i in range(n): x[i] = i with ti.Tape(loss): func() # If without stop, grad x.grad[i] = i * 4 for i in range(n): assert x.grad[i] == i * 2
15.98913
46
0.563562
c8daf392a90a1460c4e64893c8e214df4c2a85d9
417
py
Python
medical_prescription/user/admin.py
thiagonf/Sprint-3-GPP
89f1dcf4e649f1bbbb8e21ea6b6f8a4565c996e2
[ "MIT" ]
null
null
null
medical_prescription/user/admin.py
thiagonf/Sprint-3-GPP
89f1dcf4e649f1bbbb8e21ea6b6f8a4565c996e2
[ "MIT" ]
2
2020-06-05T18:41:29.000Z
2021-06-10T20:35:12.000Z
medical_prescription/user/admin.py
thiagonf/Sprint-3-GPP
89f1dcf4e649f1bbbb8e21ea6b6f8a4565c996e2
[ "MIT" ]
null
null
null
# Django from django.contrib import admin from .models import ( User, HealthProfessional, Patient, UserActivateProfile, ResetPasswordProfile ) class UserAdmin(admin.ModelAdmin): list_display = ['email', 'is_active'] admin.site.register(User, UserAdmin) admin.site.register(HealthProfessional) admin.site.register(Patient) admin.site.register(UserActivateProfile) admin.site.register(ResetPasswordProfile)
24.529412
80
0.803357
120868393ba9ea0dd010929d4aa3549887ad341d
2,359
py
Python
blog/models.py
tarek1500/Python-Blog
d9e8e90c20ad5906139b1468e4d195038dfbfc11
[ "MIT" ]
null
null
null
blog/models.py
tarek1500/Python-Blog
d9e8e90c20ad5906139b1468e4d195038dfbfc11
[ "MIT" ]
5
2020-02-27T18:12:25.000Z
2020-02-27T22:43:52.000Z
blog/models.py
tarek1500/Python-Blog
d9e8e90c20ad5906139b1468e4d195038dfbfc11
[ "MIT" ]
1
2020-05-16T00:34:02.000Z
2020-05-16T00:34:02.000Z
from django.db import models from django.contrib.auth.models import User import re # Create your models here. def stringify(self): return self.first_name + ' ' + self.last_name User.add_to_class('__str__', stringify) class Category(models.Model): name = models.CharField(max_length = 100) subscribe = models.ManyToManyField(User, blank = True) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) def __str__(self): return self.name class Tag(models.Model): name = models.CharField(max_length = 200, unique = True) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) def __str__(self): return self.name class Post(models.Model): title = models.CharField(max_length = 200, unique = True) body = models.TextField() author = models.ForeignKey(User, on_delete = models.CASCADE) tag = models.ManyToManyField(Tag, blank = True) category = models.ForeignKey(Category, on_delete = models.CASCADE) image = models.ImageField(null = True, blank = True) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) def __str__(self): return self.title def snippet(self): return self.body[:200] + "..." class Comment(models.Model): content = models.TextField() post = models.ForeignKey(Post, on_delete = models.CASCADE) user = models.ForeignKey(User, on_delete = models.CASCADE) reply = models.ForeignKey('Comment', null = True, related_name = 'replies', on_delete = models.CASCADE) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.content def removeWords(self): words = Word.objects.all() for word in words: self.content = re.sub(r"(?i)\b{}\b".format(word.name), word.name, self.content) return self.content class Word(models.Model): name = models.CharField(max_length = 100) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) class Like(models.Model): like = models.BooleanField() post = models.ForeignKey(Post, on_delete = models.CASCADE) user = models.ForeignKey(User, on_delete = models.CASCADE) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True)
31.453333
104
0.751166
f2573ca35fc374ec3cff6eca72a4f0b6f5f93549
712
py
Python
coding-exercises-avairds/week4-edge-pyramids- contours/part1-edge-pyramids/sobel-operator.py
KyawThuHtun/OpenCV-with-Python
2c471060d4f2aa4ec45cda5f544a61923e4ea2ed
[ "MIT" ]
2
2021-06-30T04:56:51.000Z
2021-06-30T04:57:11.000Z
coding-exercises-avairds/week4-edge-pyramids- contours/part1-edge-pyramids/sobel-operator.py
KyawThuHtun/OpenCV-with-Python
2c471060d4f2aa4ec45cda5f544a61923e4ea2ed
[ "MIT" ]
null
null
null
coding-exercises-avairds/week4-edge-pyramids- contours/part1-edge-pyramids/sobel-operator.py
KyawThuHtun/OpenCV-with-Python
2c471060d4f2aa4ec45cda5f544a61923e4ea2ed
[ "MIT" ]
6
2020-08-03T02:29:48.000Z
2020-08-09T13:21:23.000Z
import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread("sudoku1.jpg", cv.IMREAD_GRAYSCALE) # read image as grayscale sobelX = cv.Sobel(img, cv.CV_64F, 1, 0) # derivative with intensities along x direction sobelY = cv.Sobel(img, cv.CV_64F, 0, 1) # derivative with intensities along y direction sobelX = np.uint8(np.absolute(sobelX)) sobelY = np.uint8(np.absolute(sobelY)) sobelCombined = cv.bitwise_or(sobelX, sobelY) titles = ['image', 'sobelX', 'sobelY', 'sobelCombined'] images = [img, sobelX, sobelY, sobelCombined] for i in range(4): plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') plt.title(titles[i]) plt.xticks([]), plt.yticks([]) plt.show()
30.956522
88
0.703652
ba6b16a5bc12e5d07e067ae56db8bc395143af3d
1,008
py
Python
details_generator.py
Emotional-Support/discordaltgen
7be376dc372258d824fdabb3edac07ebeba6e8d9
[ "Apache-2.0" ]
null
null
null
details_generator.py
Emotional-Support/discordaltgen
7be376dc372258d824fdabb3edac07ebeba6e8d9
[ "Apache-2.0" ]
null
null
null
details_generator.py
Emotional-Support/discordaltgen
7be376dc372258d824fdabb3edac07ebeba6e8d9
[ "Apache-2.0" ]
null
null
null
import random def rand_gen_email(): email = "".join(random.choice("abcdefghijklmnopqrstuvwxyz1234567890") for _ in range(10)) return email def rand_gen_user(): username = "".join(random.choice("abcdefghijklmnopqrstuvwxyz1234567890") for _ in range(10)) return username def rand_gen_pass(): password = "".join(random.choice("abcdefghijklmnopqrstuvwxyz1234567890") for _ in range(10)) return password def rand_gen_birth(): year = random.randint(1984, 2001) month = random.randint(1, 12) day = random.randint(1, 12) concat = year, "-", month, "-", day return concat email = rand_gen_email() username = rand_gen_user() password = rand_gen_pass() bday = rand_gen_birth() payload = { "fingerprint": "956833213890846760.kebhTMLabvfSte5HxhOrNPtcc2I", "email": email, "username": username, "password": password, "invite": "null", "consent": "true", "date_of_birth": bday, "gift_code_sku_id": "null", "captcha_key": "null", }
22.909091
96
0.679563
32c77b7664d10c25be334946ad452799fc0f6fce
85,570
py
Python
python3-virtualenv/lib/python3.8/site-packages/sqlalchemy/dialects/oracle/base.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
python3-virtualenv/lib/python3.8/site-packages/sqlalchemy/dialects/oracle/base.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
python3-virtualenv/lib/python3.8/site-packages/sqlalchemy/dialects/oracle/base.py
bbalkaransingh23888/OrientationHack
7eae6cce1226112c000ea8a175f6dc5a82ee0ac2
[ "MIT" ]
null
null
null
# oracle/base.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php r""" .. dialect:: oracle :name: Oracle :full_support: 11.2, 18c :normal_support: 11+ :best_effort: 8+ Auto Increment Behavior ----------------------- SQLAlchemy Table objects which include integer primary keys are usually assumed to have "autoincrementing" behavior, meaning they can generate their own primary key values upon INSERT. For use within Oracle, two options are available, which are the use of IDENTITY columns (Oracle 12 and above only) or the association of a SEQUENCE with the column. Specifying GENERATED AS IDENTITY (Oracle 12 and above) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Starting from version 12 Oracle can make use of identity columns using the :class:`_sql.Identity` to specify the autoincrementing behavior:: t = Table('mytable', metadata, Column('id', Integer, Identity(start=3), primary_key=True), Column(...), ... ) The CREATE TABLE for the above :class:`_schema.Table` object would be: .. sourcecode:: sql CREATE TABLE mytable ( id INTEGER GENERATED BY DEFAULT AS IDENTITY (START WITH 3), ..., PRIMARY KEY (id) ) The :class:`_schema.Identity` object support many options to control the "autoincrementing" behavior of the column, like the starting value, the incrementing value, etc. In addition to the standard options, Oracle supports setting :paramref:`_schema.Identity.always` to ``None`` to use the default generated mode, rendering GENERATED AS IDENTITY in the DDL. It also supports setting :paramref:`_schema.Identity.on_null` to ``True`` to specify ON NULL in conjunction with a 'BY DEFAULT' identity column. Using a SEQUENCE (all Oracle versions) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Older version of Oracle had no "autoincrement" feature, SQLAlchemy relies upon sequences to produce these values. With the older Oracle versions, *a sequence must always be explicitly specified to enable autoincrement*. This is divergent with the majority of documentation examples which assume the usage of an autoincrement-capable database. To specify sequences, use the sqlalchemy.schema.Sequence object which is passed to a Column construct:: t = Table('mytable', metadata, Column('id', Integer, Sequence('id_seq'), primary_key=True), Column(...), ... ) This step is also required when using table reflection, i.e. autoload_with=engine:: t = Table('mytable', metadata, Column('id', Integer, Sequence('id_seq'), primary_key=True), autoload_with=engine ) .. versionchanged:: 1.4 Added :class:`_schema.Identity` construct in a :class:`_schema.Column` to specify the option of an autoincrementing column. .. _oracle_isolation_level: Transaction Isolation Level / Autocommit ---------------------------------------- The Oracle database supports "READ COMMITTED" and "SERIALIZABLE" modes of isolation. The AUTOCOMMIT isolation level is also supported by the cx_Oracle dialect. To set using per-connection execution options:: connection = engine.connect() connection = connection.execution_options( isolation_level="AUTOCOMMIT" ) For ``READ COMMITTED`` and ``SERIALIZABLE``, the Oracle dialect sets the level at the session level using ``ALTER SESSION``, which is reverted back to its default setting when the connection is returned to the connection pool. Valid values for ``isolation_level`` include: * ``READ COMMITTED`` * ``AUTOCOMMIT`` * ``SERIALIZABLE`` .. note:: The implementation for the :meth:`_engine.Connection.get_isolation_level` method as implemented by the Oracle dialect necessarily forces the start of a transaction using the Oracle LOCAL_TRANSACTION_ID function; otherwise no level is normally readable. Additionally, the :meth:`_engine.Connection.get_isolation_level` method will raise an exception if the ``v$transaction`` view is not available due to permissions or other reasons, which is a common occurrence in Oracle installations. The cx_Oracle dialect attempts to call the :meth:`_engine.Connection.get_isolation_level` method when the dialect makes its first connection to the database in order to acquire the "default"isolation level. This default level is necessary so that the level can be reset on a connection after it has been temporarily modified using :meth:`_engine.Connection.execution_options` method. In the common event that the :meth:`_engine.Connection.get_isolation_level` method raises an exception due to ``v$transaction`` not being readable as well as any other database-related failure, the level is assumed to be "READ COMMITTED". No warning is emitted for this initial first-connect condition as it is expected to be a common restriction on Oracle databases. .. versionadded:: 1.3.16 added support for AUTOCOMMIT to the cx_oracle dialect as well as the notion of a default isolation level .. versionadded:: 1.3.21 Added support for SERIALIZABLE as well as live reading of the isolation level. .. versionchanged:: 1.3.22 In the event that the default isolation level cannot be read due to permissions on the v$transaction view as is common in Oracle installations, the default isolation level is hardcoded to "READ COMMITTED" which was the behavior prior to 1.3.21. .. seealso:: :ref:`dbapi_autocommit` Identifier Casing ----------------- In Oracle, the data dictionary represents all case insensitive identifier names using UPPERCASE text. SQLAlchemy on the other hand considers an all-lower case identifier name to be case insensitive. The Oracle dialect converts all case insensitive identifiers to and from those two formats during schema level communication, such as reflection of tables and indexes. Using an UPPERCASE name on the SQLAlchemy side indicates a case sensitive identifier, and SQLAlchemy will quote the name - this will cause mismatches against data dictionary data received from Oracle, so unless identifier names have been truly created as case sensitive (i.e. using quoted names), all lowercase names should be used on the SQLAlchemy side. .. _oracle_max_identifier_lengths: Max Identifier Lengths ---------------------- Oracle has changed the default max identifier length as of Oracle Server version 12.2. Prior to this version, the length was 30, and for 12.2 and greater it is now 128. This change impacts SQLAlchemy in the area of generated SQL label names as well as the generation of constraint names, particularly in the case where the constraint naming convention feature described at :ref:`constraint_naming_conventions` is being used. To assist with this change and others, Oracle includes the concept of a "compatibility" version, which is a version number that is independent of the actual server version in order to assist with migration of Oracle databases, and may be configured within the Oracle server itself. This compatibility version is retrieved using the query ``SELECT value FROM v$parameter WHERE name = 'compatible';``. The SQLAlchemy Oracle dialect, when tasked with determining the default max identifier length, will attempt to use this query upon first connect in order to determine the effective compatibility version of the server, which determines what the maximum allowed identifier length is for the server. If the table is not available, the server version information is used instead. As of SQLAlchemy 1.4, the default max identifier length for the Oracle dialect is 128 characters. Upon first connect, the compatibility version is detected and if it is less than Oracle version 12.2, the max identifier length is changed to be 30 characters. In all cases, setting the :paramref:`_sa.create_engine.max_identifier_length` parameter will bypass this change and the value given will be used as is:: engine = create_engine( "oracle+cx_oracle://scott:tiger@oracle122", max_identifier_length=30) The maximum identifier length comes into play both when generating anonymized SQL labels in SELECT statements, but more crucially when generating constraint names from a naming convention. It is this area that has created the need for SQLAlchemy to change this default conservatively. For example, the following naming convention produces two very different constraint names based on the identifier length:: from sqlalchemy import Column from sqlalchemy import Index from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import Table from sqlalchemy.dialects import oracle from sqlalchemy.schema import CreateIndex m = MetaData(naming_convention={"ix": "ix_%(column_0N_name)s"}) t = Table( "t", m, Column("some_column_name_1", Integer), Column("some_column_name_2", Integer), Column("some_column_name_3", Integer), ) ix = Index( None, t.c.some_column_name_1, t.c.some_column_name_2, t.c.some_column_name_3, ) oracle_dialect = oracle.dialect(max_identifier_length=30) print(CreateIndex(ix).compile(dialect=oracle_dialect)) With an identifier length of 30, the above CREATE INDEX looks like:: CREATE INDEX ix_some_column_name_1s_70cd ON t (some_column_name_1, some_column_name_2, some_column_name_3) However with length=128, it becomes:: CREATE INDEX ix_some_column_name_1some_column_name_2some_column_name_3 ON t (some_column_name_1, some_column_name_2, some_column_name_3) Applications which have run versions of SQLAlchemy prior to 1.4 on an Oracle server version 12.2 or greater are therefore subject to the scenario of a database migration that wishes to "DROP CONSTRAINT" on a name that was previously generated with the shorter length. This migration will fail when the identifier length is changed without the name of the index or constraint first being adjusted. Such applications are strongly advised to make use of :paramref:`_sa.create_engine.max_identifier_length` in order to maintain control of the generation of truncated names, and to fully review and test all database migrations in a staging environment when changing this value to ensure that the impact of this change has been mitigated. .. versionchanged:: 1.4 the default max_identifier_length for Oracle is 128 characters, which is adjusted down to 30 upon first connect if an older version of Oracle server (compatibility version < 12.2) is detected. LIMIT/OFFSET Support -------------------- Oracle has no direct support for LIMIT and OFFSET until version 12c. To achieve this behavior across all widely used versions of Oracle starting with the 8 series, SQLAlchemy currently makes use of ROWNUM to achieve LIMIT/OFFSET; the exact methodology is taken from https://blogs.oracle.com/oraclemagazine/on-rownum-and-limiting-results . There is currently a single option to affect its behavior: * the "FIRST_ROWS()" optimization keyword is not used by default. To enable the usage of this optimization directive, specify ``optimize_limits=True`` to :func:`_sa.create_engine`. .. versionchanged:: 1.4 The Oracle dialect renders limit/offset integer values using a "post compile" scheme which renders the integer directly before passing the statement to the cursor for execution. The ``use_binds_for_limits`` flag no longer has an effect. .. seealso:: :ref:`change_4808`. Support for changing the row number strategy, which would include one that makes use of the ``row_number()`` window function as well as one that makes use of the Oracle 12c "FETCH FIRST N ROW / OFFSET N ROWS" keywords may be added in a future release. .. _oracle_returning: RETURNING Support ----------------- The Oracle database supports a limited form of RETURNING, in order to retrieve result sets of matched rows from INSERT, UPDATE and DELETE statements. Oracle's RETURNING..INTO syntax only supports one row being returned, as it relies upon OUT parameters in order to function. In addition, supported DBAPIs have further limitations (see :ref:`cx_oracle_returning`). SQLAlchemy's "implicit returning" feature, which employs RETURNING within an INSERT and sometimes an UPDATE statement in order to fetch newly generated primary key values and other SQL defaults and expressions, is normally enabled on the Oracle backend. By default, "implicit returning" typically only fetches the value of a single ``nextval(some_seq)`` expression embedded into an INSERT in order to increment a sequence within an INSERT statement and get the value back at the same time. To disable this feature across the board, specify ``implicit_returning=False`` to :func:`_sa.create_engine`:: engine = create_engine("oracle://scott:tiger@dsn", implicit_returning=False) Implicit returning can also be disabled on a table-by-table basis as a table option:: # Core Table my_table = Table("my_table", metadata, ..., implicit_returning=False) # declarative class MyClass(Base): __tablename__ = 'my_table' __table_args__ = {"implicit_returning": False} .. seealso:: :ref:`cx_oracle_returning` - additional cx_oracle-specific restrictions on implicit returning. ON UPDATE CASCADE ----------------- Oracle doesn't have native ON UPDATE CASCADE functionality. A trigger based solution is available at http://asktom.oracle.com/tkyte/update_cascade/index.html . When using the SQLAlchemy ORM, the ORM has limited ability to manually issue cascading updates - specify ForeignKey objects using the "deferrable=True, initially='deferred'" keyword arguments, and specify "passive_updates=False" on each relationship(). Oracle 8 Compatibility ---------------------- When Oracle 8 is detected, the dialect internally configures itself to the following behaviors: * the use_ansi flag is set to False. This has the effect of converting all JOIN phrases into the WHERE clause, and in the case of LEFT OUTER JOIN makes use of Oracle's (+) operator. * the NVARCHAR2 and NCLOB datatypes are no longer generated as DDL when the :class:`~sqlalchemy.types.Unicode` is used - VARCHAR2 and CLOB are issued instead. This because these types don't seem to work correctly on Oracle 8 even though they are available. The :class:`~sqlalchemy.types.NVARCHAR` and :class:`~sqlalchemy.dialects.oracle.NCLOB` types will always generate NVARCHAR2 and NCLOB. * the "native unicode" mode is disabled when using cx_oracle, i.e. SQLAlchemy encodes all Python unicode objects to "string" before passing in as bind parameters. Synonym/DBLINK Reflection ------------------------- When using reflection with Table objects, the dialect can optionally search for tables indicated by synonyms, either in local or remote schemas or accessed over DBLINK, by passing the flag ``oracle_resolve_synonyms=True`` as a keyword argument to the :class:`_schema.Table` construct:: some_table = Table('some_table', autoload_with=some_engine, oracle_resolve_synonyms=True) When this flag is set, the given name (such as ``some_table`` above) will be searched not just in the ``ALL_TABLES`` view, but also within the ``ALL_SYNONYMS`` view to see if this name is actually a synonym to another name. If the synonym is located and refers to a DBLINK, the oracle dialect knows how to locate the table's information using DBLINK syntax(e.g. ``@dblink``). ``oracle_resolve_synonyms`` is accepted wherever reflection arguments are accepted, including methods such as :meth:`_schema.MetaData.reflect` and :meth:`_reflection.Inspector.get_columns`. If synonyms are not in use, this flag should be left disabled. .. _oracle_constraint_reflection: Constraint Reflection --------------------- The Oracle dialect can return information about foreign key, unique, and CHECK constraints, as well as indexes on tables. Raw information regarding these constraints can be acquired using :meth:`_reflection.Inspector.get_foreign_keys`, :meth:`_reflection.Inspector.get_unique_constraints`, :meth:`_reflection.Inspector.get_check_constraints`, and :meth:`_reflection.Inspector.get_indexes`. .. versionchanged:: 1.2 The Oracle dialect can now reflect UNIQUE and CHECK constraints. When using reflection at the :class:`_schema.Table` level, the :class:`_schema.Table` will also include these constraints. Note the following caveats: * When using the :meth:`_reflection.Inspector.get_check_constraints` method, Oracle builds a special "IS NOT NULL" constraint for columns that specify "NOT NULL". This constraint is **not** returned by default; to include the "IS NOT NULL" constraints, pass the flag ``include_all=True``:: from sqlalchemy import create_engine, inspect engine = create_engine("oracle+cx_oracle://s:t@dsn") inspector = inspect(engine) all_check_constraints = inspector.get_check_constraints( "some_table", include_all=True) * in most cases, when reflecting a :class:`_schema.Table`, a UNIQUE constraint will **not** be available as a :class:`.UniqueConstraint` object, as Oracle mirrors unique constraints with a UNIQUE index in most cases (the exception seems to be when two or more unique constraints represent the same columns); the :class:`_schema.Table` will instead represent these using :class:`.Index` with the ``unique=True`` flag set. * Oracle creates an implicit index for the primary key of a table; this index is **excluded** from all index results. * the list of columns reflected for an index will not include column names that start with SYS_NC. Table names with SYSTEM/SYSAUX tablespaces ------------------------------------------- The :meth:`_reflection.Inspector.get_table_names` and :meth:`_reflection.Inspector.get_temp_table_names` methods each return a list of table names for the current engine. These methods are also part of the reflection which occurs within an operation such as :meth:`_schema.MetaData.reflect`. By default, these operations exclude the ``SYSTEM`` and ``SYSAUX`` tablespaces from the operation. In order to change this, the default list of tablespaces excluded can be changed at the engine level using the ``exclude_tablespaces`` parameter:: # exclude SYSAUX and SOME_TABLESPACE, but not SYSTEM e = create_engine( "oracle://scott:tiger@xe", exclude_tablespaces=["SYSAUX", "SOME_TABLESPACE"]) .. versionadded:: 1.1 DateTime Compatibility ---------------------- Oracle has no datatype known as ``DATETIME``, it instead has only ``DATE``, which can actually store a date and time value. For this reason, the Oracle dialect provides a type :class:`_oracle.DATE` which is a subclass of :class:`.DateTime`. This type has no special behavior, and is only present as a "marker" for this type; additionally, when a database column is reflected and the type is reported as ``DATE``, the time-supporting :class:`_oracle.DATE` type is used. .. versionchanged:: 0.9.4 Added :class:`_oracle.DATE` to subclass :class:`.DateTime`. This is a change as previous versions would reflect a ``DATE`` column as :class:`_types.DATE`, which subclasses :class:`.Date`. The only significance here is for schemes that are examining the type of column for use in special Python translations or for migrating schemas to other database backends. .. _oracle_table_options: Oracle Table Options ------------------------- The CREATE TABLE phrase supports the following options with Oracle in conjunction with the :class:`_schema.Table` construct: * ``ON COMMIT``:: Table( "some_table", metadata, ..., prefixes=['GLOBAL TEMPORARY'], oracle_on_commit='PRESERVE ROWS') .. versionadded:: 1.0.0 * ``COMPRESS``:: Table('mytable', metadata, Column('data', String(32)), oracle_compress=True) Table('mytable', metadata, Column('data', String(32)), oracle_compress=6) The ``oracle_compress`` parameter accepts either an integer compression level, or ``True`` to use the default compression level. .. versionadded:: 1.0.0 .. _oracle_index_options: Oracle Specific Index Options ----------------------------- Bitmap Indexes ~~~~~~~~~~~~~~ You can specify the ``oracle_bitmap`` parameter to create a bitmap index instead of a B-tree index:: Index('my_index', my_table.c.data, oracle_bitmap=True) Bitmap indexes cannot be unique and cannot be compressed. SQLAlchemy will not check for such limitations, only the database will. .. versionadded:: 1.0.0 Index compression ~~~~~~~~~~~~~~~~~ Oracle has a more efficient storage mode for indexes containing lots of repeated values. Use the ``oracle_compress`` parameter to turn on key compression:: Index('my_index', my_table.c.data, oracle_compress=True) Index('my_index', my_table.c.data1, my_table.c.data2, unique=True, oracle_compress=1) The ``oracle_compress`` parameter accepts either an integer specifying the number of prefix columns to compress, or ``True`` to use the default (all columns for non-unique indexes, all but the last column for unique indexes). .. versionadded:: 1.0.0 """ # noqa from itertools import groupby import re from ... import Computed from ... import exc from ... import schema as sa_schema from ... import sql from ... import util from ...engine import default from ...engine import reflection from ...sql import compiler from ...sql import expression from ...sql import sqltypes from ...sql import util as sql_util from ...sql import visitors from ...types import BLOB from ...types import CHAR from ...types import CLOB from ...types import FLOAT from ...types import INTEGER from ...types import NCHAR from ...types import NVARCHAR from ...types import TIMESTAMP from ...types import VARCHAR from ...util import compat RESERVED_WORDS = set( "SHARE RAW DROP BETWEEN FROM DESC OPTION PRIOR LONG THEN " "DEFAULT ALTER IS INTO MINUS INTEGER NUMBER GRANT IDENTIFIED " "ALL TO ORDER ON FLOAT DATE HAVING CLUSTER NOWAIT RESOURCE " "ANY TABLE INDEX FOR UPDATE WHERE CHECK SMALLINT WITH DELETE " "BY ASC REVOKE LIKE SIZE RENAME NOCOMPRESS NULL GROUP VALUES " "AS IN VIEW EXCLUSIVE COMPRESS SYNONYM SELECT INSERT EXISTS " "NOT TRIGGER ELSE CREATE INTERSECT PCTFREE DISTINCT USER " "CONNECT SET MODE OF UNIQUE VARCHAR2 VARCHAR LOCK OR CHAR " "DECIMAL UNION PUBLIC AND START UID COMMENT CURRENT LEVEL".split() ) NO_ARG_FNS = set( "UID CURRENT_DATE SYSDATE USER " "CURRENT_TIME CURRENT_TIMESTAMP".split() ) class RAW(sqltypes._Binary): __visit_name__ = "RAW" OracleRaw = RAW class NCLOB(sqltypes.Text): __visit_name__ = "NCLOB" class VARCHAR2(VARCHAR): __visit_name__ = "VARCHAR2" NVARCHAR2 = NVARCHAR class NUMBER(sqltypes.Numeric, sqltypes.Integer): __visit_name__ = "NUMBER" def __init__(self, precision=None, scale=None, asdecimal=None): if asdecimal is None: asdecimal = bool(scale and scale > 0) super(NUMBER, self).__init__( precision=precision, scale=scale, asdecimal=asdecimal ) def adapt(self, impltype): ret = super(NUMBER, self).adapt(impltype) # leave a hint for the DBAPI handler ret._is_oracle_number = True return ret @property def _type_affinity(self): if bool(self.scale and self.scale > 0): return sqltypes.Numeric else: return sqltypes.Integer class DOUBLE_PRECISION(sqltypes.Float): __visit_name__ = "DOUBLE_PRECISION" class BINARY_DOUBLE(sqltypes.Float): __visit_name__ = "BINARY_DOUBLE" class BINARY_FLOAT(sqltypes.Float): __visit_name__ = "BINARY_FLOAT" class BFILE(sqltypes.LargeBinary): __visit_name__ = "BFILE" class LONG(sqltypes.Text): __visit_name__ = "LONG" class DATE(sqltypes.DateTime): """Provide the oracle DATE type. This type has no special Python behavior, except that it subclasses :class:`_types.DateTime`; this is to suit the fact that the Oracle ``DATE`` type supports a time value. .. versionadded:: 0.9.4 """ __visit_name__ = "DATE" def _compare_type_affinity(self, other): return other._type_affinity in (sqltypes.DateTime, sqltypes.Date) class INTERVAL(sqltypes.NativeForEmulated, sqltypes._AbstractInterval): __visit_name__ = "INTERVAL" def __init__(self, day_precision=None, second_precision=None): """Construct an INTERVAL. Note that only DAY TO SECOND intervals are currently supported. This is due to a lack of support for YEAR TO MONTH intervals within available DBAPIs. :param day_precision: the day precision value. this is the number of digits to store for the day field. Defaults to "2" :param second_precision: the second precision value. this is the number of digits to store for the fractional seconds field. Defaults to "6". """ self.day_precision = day_precision self.second_precision = second_precision @classmethod def _adapt_from_generic_interval(cls, interval): return INTERVAL( day_precision=interval.day_precision, second_precision=interval.second_precision, ) @property def _type_affinity(self): return sqltypes.Interval def as_generic(self, allow_nulltype=False): return sqltypes.Interval( native=True, second_precision=self.second_precision, day_precision=self.day_precision, ) def coerce_compared_value(self, op, value): return self class ROWID(sqltypes.TypeEngine): """Oracle ROWID type. When used in a cast() or similar, generates ROWID. """ __visit_name__ = "ROWID" class _OracleBoolean(sqltypes.Boolean): def get_dbapi_type(self, dbapi): return dbapi.NUMBER colspecs = { sqltypes.Boolean: _OracleBoolean, sqltypes.Interval: INTERVAL, sqltypes.DateTime: DATE, } ischema_names = { "VARCHAR2": VARCHAR, "NVARCHAR2": NVARCHAR, "CHAR": CHAR, "NCHAR": NCHAR, "DATE": DATE, "NUMBER": NUMBER, "BLOB": BLOB, "BFILE": BFILE, "CLOB": CLOB, "NCLOB": NCLOB, "TIMESTAMP": TIMESTAMP, "TIMESTAMP WITH TIME ZONE": TIMESTAMP, "INTERVAL DAY TO SECOND": INTERVAL, "RAW": RAW, "FLOAT": FLOAT, "DOUBLE PRECISION": DOUBLE_PRECISION, "LONG": LONG, "BINARY_DOUBLE": BINARY_DOUBLE, "BINARY_FLOAT": BINARY_FLOAT, } class OracleTypeCompiler(compiler.GenericTypeCompiler): # Note: # Oracle DATE == DATETIME # Oracle does not allow milliseconds in DATE # Oracle does not support TIME columns def visit_datetime(self, type_, **kw): return self.visit_DATE(type_, **kw) def visit_float(self, type_, **kw): return self.visit_FLOAT(type_, **kw) def visit_unicode(self, type_, **kw): if self.dialect._use_nchar_for_unicode: return self.visit_NVARCHAR2(type_, **kw) else: return self.visit_VARCHAR2(type_, **kw) def visit_INTERVAL(self, type_, **kw): return "INTERVAL DAY%s TO SECOND%s" % ( type_.day_precision is not None and "(%d)" % type_.day_precision or "", type_.second_precision is not None and "(%d)" % type_.second_precision or "", ) def visit_LONG(self, type_, **kw): return "LONG" def visit_TIMESTAMP(self, type_, **kw): if type_.timezone: return "TIMESTAMP WITH TIME ZONE" else: return "TIMESTAMP" def visit_DOUBLE_PRECISION(self, type_, **kw): return self._generate_numeric(type_, "DOUBLE PRECISION", **kw) def visit_BINARY_DOUBLE(self, type_, **kw): return self._generate_numeric(type_, "BINARY_DOUBLE", **kw) def visit_BINARY_FLOAT(self, type_, **kw): return self._generate_numeric(type_, "BINARY_FLOAT", **kw) def visit_FLOAT(self, type_, **kw): # don't support conversion between decimal/binary # precision yet kw["no_precision"] = True return self._generate_numeric(type_, "FLOAT", **kw) def visit_NUMBER(self, type_, **kw): return self._generate_numeric(type_, "NUMBER", **kw) def _generate_numeric( self, type_, name, precision=None, scale=None, no_precision=False, **kw ): if precision is None: precision = type_.precision if scale is None: scale = getattr(type_, "scale", None) if no_precision or precision is None: return name elif scale is None: n = "%(name)s(%(precision)s)" return n % {"name": name, "precision": precision} else: n = "%(name)s(%(precision)s, %(scale)s)" return n % {"name": name, "precision": precision, "scale": scale} def visit_string(self, type_, **kw): return self.visit_VARCHAR2(type_, **kw) def visit_VARCHAR2(self, type_, **kw): return self._visit_varchar(type_, "", "2") def visit_NVARCHAR2(self, type_, **kw): return self._visit_varchar(type_, "N", "2") visit_NVARCHAR = visit_NVARCHAR2 def visit_VARCHAR(self, type_, **kw): return self._visit_varchar(type_, "", "") def _visit_varchar(self, type_, n, num): if not type_.length: return "%(n)sVARCHAR%(two)s" % {"two": num, "n": n} elif not n and self.dialect._supports_char_length: varchar = "VARCHAR%(two)s(%(length)s CHAR)" return varchar % {"length": type_.length, "two": num} else: varchar = "%(n)sVARCHAR%(two)s(%(length)s)" return varchar % {"length": type_.length, "two": num, "n": n} def visit_text(self, type_, **kw): return self.visit_CLOB(type_, **kw) def visit_unicode_text(self, type_, **kw): if self.dialect._use_nchar_for_unicode: return self.visit_NCLOB(type_, **kw) else: return self.visit_CLOB(type_, **kw) def visit_large_binary(self, type_, **kw): return self.visit_BLOB(type_, **kw) def visit_big_integer(self, type_, **kw): return self.visit_NUMBER(type_, precision=19, **kw) def visit_boolean(self, type_, **kw): return self.visit_SMALLINT(type_, **kw) def visit_RAW(self, type_, **kw): if type_.length: return "RAW(%(length)s)" % {"length": type_.length} else: return "RAW" def visit_ROWID(self, type_, **kw): return "ROWID" class OracleCompiler(compiler.SQLCompiler): """Oracle compiler modifies the lexical structure of Select statements to work under non-ANSI configured Oracle databases, if the use_ansi flag is False. """ compound_keywords = util.update_copy( compiler.SQLCompiler.compound_keywords, {expression.CompoundSelect.EXCEPT: "MINUS"}, ) def __init__(self, *args, **kwargs): self.__wheres = {} super(OracleCompiler, self).__init__(*args, **kwargs) def visit_mod_binary(self, binary, operator, **kw): return "mod(%s, %s)" % ( self.process(binary.left, **kw), self.process(binary.right, **kw), ) def visit_now_func(self, fn, **kw): return "CURRENT_TIMESTAMP" def visit_char_length_func(self, fn, **kw): return "LENGTH" + self.function_argspec(fn, **kw) def visit_match_op_binary(self, binary, operator, **kw): return "CONTAINS (%s, %s)" % ( self.process(binary.left), self.process(binary.right), ) def visit_true(self, expr, **kw): return "1" def visit_false(self, expr, **kw): return "0" def get_cte_preamble(self, recursive): return "WITH" def get_select_hint_text(self, byfroms): return " ".join("/*+ %s */" % text for table, text in byfroms.items()) def function_argspec(self, fn, **kw): if len(fn.clauses) > 0 or fn.name.upper() not in NO_ARG_FNS: return compiler.SQLCompiler.function_argspec(self, fn, **kw) else: return "" def visit_function(self, func, **kw): text = super(OracleCompiler, self).visit_function(func, **kw) if kw.get("asfrom", False): text = "TABLE (%s)" % func return text def visit_table_valued_column(self, element, **kw): text = super(OracleCompiler, self).visit_table_valued_column(element, **kw) text = "COLUMN_VALUE " + text return text def default_from(self): """Called when a ``SELECT`` statement has no froms, and no ``FROM`` clause is to be appended. The Oracle compiler tacks a "FROM DUAL" to the statement. """ return " FROM DUAL" def visit_join(self, join, from_linter=None, **kwargs): if self.dialect.use_ansi: return compiler.SQLCompiler.visit_join( self, join, from_linter=from_linter, **kwargs ) else: if from_linter: from_linter.edges.add((join.left, join.right)) kwargs["asfrom"] = True if isinstance(join.right, expression.FromGrouping): right = join.right.element else: right = join.right return ( self.process(join.left, from_linter=from_linter, **kwargs) + ", " + self.process(right, from_linter=from_linter, **kwargs) ) def _get_nonansi_join_whereclause(self, froms): clauses = [] def visit_join(join): if join.isouter: # https://docs.oracle.com/database/121/SQLRF/queries006.htm#SQLRF52354 # "apply the outer join operator (+) to all columns of B in # the join condition in the WHERE clause" - that is, # unconditionally regardless of operator or the other side def visit_binary(binary): if isinstance( binary.left, expression.ColumnClause ) and join.right.is_derived_from(binary.left.table): binary.left = _OuterJoinColumn(binary.left) elif isinstance( binary.right, expression.ColumnClause ) and join.right.is_derived_from(binary.right.table): binary.right = _OuterJoinColumn(binary.right) clauses.append( visitors.cloned_traverse( join.onclause, {}, {"binary": visit_binary} ) ) else: clauses.append(join.onclause) for j in join.left, join.right: if isinstance(j, expression.Join): visit_join(j) elif isinstance(j, expression.FromGrouping): visit_join(j.element) for f in froms: if isinstance(f, expression.Join): visit_join(f) if not clauses: return None else: return sql.and_(*clauses) def visit_outer_join_column(self, vc, **kw): return self.process(vc.column, **kw) + "(+)" def visit_sequence(self, seq, **kw): return self.preparer.format_sequence(seq) + ".nextval" def get_render_as_alias_suffix(self, alias_name_text): """Oracle doesn't like ``FROM table AS alias``""" return " " + alias_name_text def returning_clause(self, stmt, returning_cols): columns = [] binds = [] for i, column in enumerate(expression._select_iterables(returning_cols)): if ( self.isupdate and isinstance(column, sa_schema.Column) and isinstance(column.server_default, Computed) and not self.dialect._supports_update_returning_computed_cols ): util.warn( "Computed columns don't work with Oracle UPDATE " "statements that use RETURNING; the value of the column " "*before* the UPDATE takes place is returned. It is " "advised to not use RETURNING with an Oracle computed " "column. Consider setting implicit_returning to False on " "the Table object in order to avoid implicit RETURNING " "clauses from being generated for this Table." ) if column.type._has_column_expression: col_expr = column.type.column_expression(column) else: col_expr = column outparam = sql.outparam("ret_%d" % i, type_=column.type) self.binds[outparam.key] = outparam binds.append(self.bindparam_string(self._truncate_bindparam(outparam))) # ensure the ExecutionContext.get_out_parameters() method is # *not* called; the cx_Oracle dialect wants to handle these # parameters separately self.has_out_parameters = False columns.append(self.process(col_expr, within_columns_clause=False)) self._add_to_result_map( getattr(col_expr, "name", col_expr._anon_name_label), getattr(col_expr, "name", col_expr._anon_name_label), ( column, getattr(column, "name", None), getattr(column, "key", None), ), column.type, ) return "RETURNING " + ", ".join(columns) + " INTO " + ", ".join(binds) def translate_select_structure(self, select_stmt, **kwargs): select = select_stmt if not getattr(select, "_oracle_visit", None): if not self.dialect.use_ansi: froms = self._display_froms_for_select( select, kwargs.get("asfrom", False) ) whereclause = self._get_nonansi_join_whereclause(froms) if whereclause is not None: select = select.where(whereclause) select._oracle_visit = True # if fetch is used this is not needed if select._has_row_limiting_clause and select._fetch_clause is None: limit_clause = select._limit_clause offset_clause = select._offset_clause if select._simple_int_clause(limit_clause): limit_clause = limit_clause.render_literal_execute() if select._simple_int_clause(offset_clause): offset_clause = offset_clause.render_literal_execute() # currently using form at: # https://blogs.oracle.com/oraclemagazine/\ # on-rownum-and-limiting-results orig_select = select select = select._generate() select._oracle_visit = True # add expressions to accommodate FOR UPDATE OF for_update = select._for_update_arg if for_update is not None and for_update.of: for_update = for_update._clone() for_update._copy_internals() for elem in for_update.of: if not select.selected_columns.contains_column(elem): select = select.add_columns(elem) # Wrap the middle select and add the hint inner_subquery = select.alias() limitselect = sql.select( *[ c for c in inner_subquery.c if orig_select.selected_columns.corresponding_column(c) is not None ] ) if ( limit_clause is not None and self.dialect.optimize_limits and select._simple_int_clause(limit_clause) ): limitselect = limitselect.prefix_with( expression.text( "/*+ FIRST_ROWS(%s) */" % self.process(limit_clause, **kwargs) ) ) limitselect._oracle_visit = True limitselect._is_wrapper = True # add expressions to accommodate FOR UPDATE OF if for_update is not None and for_update.of: adapter = sql_util.ClauseAdapter(inner_subquery) for_update.of = [adapter.traverse(elem) for elem in for_update.of] # If needed, add the limiting clause if limit_clause is not None: if select._simple_int_clause(limit_clause) and ( offset_clause is None or select._simple_int_clause(offset_clause) ): max_row = limit_clause if offset_clause is not None: max_row = max_row + offset_clause else: max_row = limit_clause if offset_clause is not None: max_row = max_row + offset_clause limitselect = limitselect.where( sql.literal_column("ROWNUM") <= max_row ) # If needed, add the ora_rn, and wrap again with offset. if offset_clause is None: limitselect._for_update_arg = for_update select = limitselect else: limitselect = limitselect.add_columns( sql.literal_column("ROWNUM").label("ora_rn") ) limitselect._oracle_visit = True limitselect._is_wrapper = True if for_update is not None and for_update.of: limitselect_cols = limitselect.selected_columns for elem in for_update.of: if limitselect_cols.corresponding_column(elem) is None: limitselect = limitselect.add_columns(elem) limit_subquery = limitselect.alias() origselect_cols = orig_select.selected_columns offsetselect = sql.select( *[ c for c in limit_subquery.c if origselect_cols.corresponding_column(c) is not None ] ) offsetselect._oracle_visit = True offsetselect._is_wrapper = True if for_update is not None and for_update.of: adapter = sql_util.ClauseAdapter(limit_subquery) for_update.of = [ adapter.traverse(elem) for elem in for_update.of ] offsetselect = offsetselect.where( sql.literal_column("ora_rn") > offset_clause ) offsetselect._for_update_arg = for_update select = offsetselect return select def limit_clause(self, select, **kw): return "" def visit_empty_set_expr(self, type_): return "SELECT 1 FROM DUAL WHERE 1!=1" def for_update_clause(self, select, **kw): if self.is_subquery(): return "" tmp = " FOR UPDATE" if select._for_update_arg.of: tmp += " OF " + ", ".join( self.process(elem, **kw) for elem in select._for_update_arg.of ) if select._for_update_arg.nowait: tmp += " NOWAIT" if select._for_update_arg.skip_locked: tmp += " SKIP LOCKED" return tmp def visit_is_distinct_from_binary(self, binary, operator, **kw): return "DECODE(%s, %s, 0, 1) = 1" % ( self.process(binary.left), self.process(binary.right), ) def visit_is_not_distinct_from_binary(self, binary, operator, **kw): return "DECODE(%s, %s, 0, 1) = 0" % ( self.process(binary.left), self.process(binary.right), ) def _get_regexp_args(self, binary, kw): string = self.process(binary.left, **kw) pattern = self.process(binary.right, **kw) flags = binary.modifiers["flags"] if flags is not None: flags = self.process(flags, **kw) return string, pattern, flags def visit_regexp_match_op_binary(self, binary, operator, **kw): string, pattern, flags = self._get_regexp_args(binary, kw) if flags is None: return "REGEXP_LIKE(%s, %s)" % (string, pattern) else: return "REGEXP_LIKE(%s, %s, %s)" % (string, pattern, flags) def visit_not_regexp_match_op_binary(self, binary, operator, **kw): return "NOT %s" % self.visit_regexp_match_op_binary(binary, operator, **kw) def visit_regexp_replace_op_binary(self, binary, operator, **kw): string, pattern, flags = self._get_regexp_args(binary, kw) replacement = self.process(binary.modifiers["replacement"], **kw) if flags is None: return "REGEXP_REPLACE(%s, %s, %s)" % ( string, pattern, replacement, ) else: return "REGEXP_REPLACE(%s, %s, %s, %s)" % ( string, pattern, replacement, flags, ) class OracleDDLCompiler(compiler.DDLCompiler): def define_constraint_cascades(self, constraint): text = "" if constraint.ondelete is not None: text += " ON DELETE %s" % constraint.ondelete # oracle has no ON UPDATE CASCADE - # its only available via triggers # http://asktom.oracle.com/tkyte/update_cascade/index.html if constraint.onupdate is not None: util.warn( "Oracle does not contain native UPDATE CASCADE " "functionality - onupdates will not be rendered for foreign " "keys. Consider using deferrable=True, initially='deferred' " "or triggers." ) return text def visit_drop_table_comment(self, drop): return "COMMENT ON TABLE %s IS ''" % self.preparer.format_table(drop.element) def visit_create_index(self, create): index = create.element self._verify_index_table(index) preparer = self.preparer text = "CREATE " if index.unique: text += "UNIQUE " if index.dialect_options["oracle"]["bitmap"]: text += "BITMAP " text += "INDEX %s ON %s (%s)" % ( self._prepared_index_name(index, include_schema=True), preparer.format_table(index.table, use_schema=True), ", ".join( self.sql_compiler.process(expr, include_table=False, literal_binds=True) for expr in index.expressions ), ) if index.dialect_options["oracle"]["compress"] is not False: if index.dialect_options["oracle"]["compress"] is True: text += " COMPRESS" else: text += " COMPRESS %d" % (index.dialect_options["oracle"]["compress"]) return text def post_create_table(self, table): table_opts = [] opts = table.dialect_options["oracle"] if opts["on_commit"]: on_commit_options = opts["on_commit"].replace("_", " ").upper() table_opts.append("\n ON COMMIT %s" % on_commit_options) if opts["compress"]: if opts["compress"] is True: table_opts.append("\n COMPRESS") else: table_opts.append("\n COMPRESS FOR %s" % (opts["compress"])) return "".join(table_opts) def get_identity_options(self, identity_options): text = super(OracleDDLCompiler, self).get_identity_options(identity_options) text = text.replace("NO MINVALUE", "NOMINVALUE") text = text.replace("NO MAXVALUE", "NOMAXVALUE") text = text.replace("NO CYCLE", "NOCYCLE") text = text.replace("NO ORDER", "NOORDER") return text def visit_computed_column(self, generated): text = "GENERATED ALWAYS AS (%s)" % self.sql_compiler.process( generated.sqltext, include_table=False, literal_binds=True ) if generated.persisted is True: raise exc.CompileError( "Oracle computed columns do not support 'stored' persistence; " "set the 'persisted' flag to None or False for Oracle support." ) elif generated.persisted is False: text += " VIRTUAL" return text def visit_identity_column(self, identity, **kw): if identity.always is None: kind = "" else: kind = "ALWAYS" if identity.always else "BY DEFAULT" text = "GENERATED %s" % kind if identity.on_null: text += " ON NULL" text += " AS IDENTITY" options = self.get_identity_options(identity) if options: text += " (%s)" % options return text class OracleIdentifierPreparer(compiler.IdentifierPreparer): reserved_words = {x.lower() for x in RESERVED_WORDS} illegal_initial_characters = {str(dig) for dig in range(0, 10)}.union(["_", "$"]) def _bindparam_requires_quotes(self, value): """Return True if the given identifier requires quoting.""" lc_value = value.lower() return ( lc_value in self.reserved_words or value[0] in self.illegal_initial_characters or not self.legal_characters.match(util.text_type(value)) ) def format_savepoint(self, savepoint): name = savepoint.ident.lstrip("_") return super(OracleIdentifierPreparer, self).format_savepoint(savepoint, name) class OracleExecutionContext(default.DefaultExecutionContext): def fire_sequence(self, seq, type_): return self._execute_scalar( "SELECT " + self.identifier_preparer.format_sequence(seq) + ".nextval FROM DUAL", type_, ) class OracleDialect(default.DefaultDialect): name = "oracle" supports_statement_cache = True supports_alter = True supports_unicode_statements = False supports_unicode_binds = False max_identifier_length = 128 supports_simple_order_by_label = False cte_follows_insert = True supports_sequences = True sequences_optional = False postfetch_lastrowid = False default_paramstyle = "named" colspecs = colspecs ischema_names = ischema_names requires_name_normalize = True supports_comments = True supports_default_values = False supports_default_metavalue = True supports_empty_insert = False supports_identity_columns = True statement_compiler = OracleCompiler ddl_compiler = OracleDDLCompiler type_compiler = OracleTypeCompiler preparer = OracleIdentifierPreparer execution_ctx_cls = OracleExecutionContext reflection_options = ("oracle_resolve_synonyms",) _use_nchar_for_unicode = False construct_arguments = [ ( sa_schema.Table, {"resolve_synonyms": False, "on_commit": None, "compress": False}, ), (sa_schema.Index, {"bitmap": False, "compress": False}), ] @util.deprecated_params( use_binds_for_limits=( "1.4", "The ``use_binds_for_limits`` Oracle dialect parameter is " "deprecated. The dialect now renders LIMIT /OFFSET integers " "inline in all cases using a post-compilation hook, so that the " "value is still represented by a 'bound parameter' on the Core " "Expression side.", ) ) def __init__( self, use_ansi=True, optimize_limits=False, use_binds_for_limits=None, use_nchar_for_unicode=False, exclude_tablespaces=("SYSTEM", "SYSAUX"), **kwargs ): default.DefaultDialect.__init__(self, **kwargs) self._use_nchar_for_unicode = use_nchar_for_unicode self.use_ansi = use_ansi self.optimize_limits = optimize_limits self.exclude_tablespaces = exclude_tablespaces def initialize(self, connection): super(OracleDialect, self).initialize(connection) self.implicit_returning = self.__dict__.get( "implicit_returning", self.server_version_info > (10,) ) if self._is_oracle_8: self.colspecs = self.colspecs.copy() self.colspecs.pop(sqltypes.Interval) self.use_ansi = False self.supports_identity_columns = self.server_version_info >= (12,) def _get_effective_compat_server_version_info(self, connection): # dialect does not need compat levels below 12.2, so don't query # in those cases if self.server_version_info < (12, 2): return self.server_version_info try: compat = connection.exec_driver_sql( "SELECT value FROM v$parameter WHERE name = 'compatible'" ).scalar() except exc.DBAPIError: compat = None if compat: try: return tuple(int(x) for x in compat.split(".")) except: return self.server_version_info else: return self.server_version_info @property def _is_oracle_8(self): return self.server_version_info and self.server_version_info < (9,) @property def _supports_table_compression(self): return self.server_version_info and self.server_version_info >= (10, 1) @property def _supports_table_compress_for(self): return self.server_version_info and self.server_version_info >= (11,) @property def _supports_char_length(self): return not self._is_oracle_8 @property def _supports_update_returning_computed_cols(self): # on version 18 this error is no longet present while it happens on 11 # it may work also on versions before the 18 return self.server_version_info and self.server_version_info >= (18,) def do_release_savepoint(self, connection, name): # Oracle does not support RELEASE SAVEPOINT pass def _check_max_identifier_length(self, connection): if self._get_effective_compat_server_version_info(connection) < ( 12, 2, ): return 30 else: # use the default return None def _check_unicode_returns(self, connection): additional_tests = [ expression.cast( expression.literal_column("'test nvarchar2 returns'"), sqltypes.NVARCHAR(60), ) ] return super(OracleDialect, self)._check_unicode_returns( connection, additional_tests ) _isolation_lookup = ["READ COMMITTED", "SERIALIZABLE"] def get_isolation_level(self, connection): raise NotImplementedError("implemented by cx_Oracle dialect") def get_default_isolation_level(self, dbapi_conn): try: return self.get_isolation_level(dbapi_conn) except NotImplementedError: raise except: return "READ COMMITTED" def set_isolation_level(self, connection, level): raise NotImplementedError("implemented by cx_Oracle dialect") def has_table(self, connection, table_name, schema=None): self._ensure_has_table_connection(connection) if not schema: schema = self.default_schema_name cursor = connection.execute( sql.text( "SELECT table_name FROM all_tables " "WHERE table_name = :name AND owner = :schema_name" ), dict( name=self.denormalize_name(table_name), schema_name=self.denormalize_name(schema), ), ) return cursor.first() is not None def has_sequence(self, connection, sequence_name, schema=None): if not schema: schema = self.default_schema_name cursor = connection.execute( sql.text( "SELECT sequence_name FROM all_sequences " "WHERE sequence_name = :name AND " "sequence_owner = :schema_name" ), dict( name=self.denormalize_name(sequence_name), schema_name=self.denormalize_name(schema), ), ) return cursor.first() is not None def _get_default_schema_name(self, connection): return self.normalize_name( connection.exec_driver_sql( "select sys_context( 'userenv', 'current_schema' ) from dual" ).scalar() ) def _resolve_synonym( self, connection, desired_owner=None, desired_synonym=None, desired_table=None, ): """search for a local synonym matching the given desired owner/name. if desired_owner is None, attempts to locate a distinct owner. returns the actual name, owner, dblink name, and synonym name if found. """ q = ( "SELECT owner, table_owner, table_name, db_link, " "synonym_name FROM all_synonyms WHERE " ) clauses = [] params = {} if desired_synonym: clauses.append("synonym_name = :synonym_name") params["synonym_name"] = desired_synonym if desired_owner: clauses.append("owner = :desired_owner") params["desired_owner"] = desired_owner if desired_table: clauses.append("table_name = :tname") params["tname"] = desired_table q += " AND ".join(clauses) result = connection.execution_options(future_result=True).execute( sql.text(q), params ) if desired_owner: row = result.mappings().first() if row: return ( row["table_name"], row["table_owner"], row["db_link"], row["synonym_name"], ) else: return None, None, None, None else: rows = result.mappings().all() if len(rows) > 1: raise AssertionError( "There are multiple tables visible to the schema, you " "must specify owner" ) elif len(rows) == 1: row = rows[0] return ( row["table_name"], row["table_owner"], row["db_link"], row["synonym_name"], ) else: return None, None, None, None @reflection.cache def _prepare_reflection_args( self, connection, table_name, schema=None, resolve_synonyms=False, dblink="", **kw ): if resolve_synonyms: actual_name, owner, dblink, synonym = self._resolve_synonym( connection, desired_owner=self.denormalize_name(schema), desired_synonym=self.denormalize_name(table_name), ) else: actual_name, owner, dblink, synonym = None, None, None, None if not actual_name: actual_name = self.denormalize_name(table_name) if dblink: # using user_db_links here since all_db_links appears # to have more restricted permissions. # http://docs.oracle.com/cd/B28359_01/server.111/b28310/ds_admin005.htm # will need to hear from more users if we are doing # the right thing here. See [ticket:2619] owner = connection.scalar( sql.text("SELECT username FROM user_db_links " "WHERE db_link=:link"), dict(link=dblink), ) dblink = "@" + dblink elif not owner: owner = self.denormalize_name(schema or self.default_schema_name) return (actual_name, owner, dblink or "", synonym) @reflection.cache def get_schema_names(self, connection, **kw): s = "SELECT username FROM all_users ORDER BY username" cursor = connection.exec_driver_sql(s) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_table_names(self, connection, schema=None, **kw): schema = self.denormalize_name(schema or self.default_schema_name) # note that table_names() isn't loading DBLINKed or synonym'ed tables if schema is None: schema = self.default_schema_name sql_str = "SELECT table_name FROM all_tables WHERE " if self.exclude_tablespaces: sql_str += "nvl(tablespace_name, 'no tablespace') " "NOT IN (%s) AND " % ( ", ".join(["'%s'" % ts for ts in self.exclude_tablespaces]) ) sql_str += "OWNER = :owner " "AND IOT_NAME IS NULL " "AND DURATION IS NULL" cursor = connection.execute(sql.text(sql_str), dict(owner=schema)) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_temp_table_names(self, connection, **kw): schema = self.denormalize_name(self.default_schema_name) sql_str = "SELECT table_name FROM all_tables WHERE " if self.exclude_tablespaces: sql_str += "nvl(tablespace_name, 'no tablespace') " "NOT IN (%s) AND " % ( ", ".join(["'%s'" % ts for ts in self.exclude_tablespaces]) ) sql_str += "OWNER = :owner " "AND IOT_NAME IS NULL " "AND DURATION IS NOT NULL" cursor = connection.execute(sql.text(sql_str), dict(owner=schema)) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_view_names(self, connection, schema=None, **kw): schema = self.denormalize_name(schema or self.default_schema_name) s = sql.text("SELECT view_name FROM all_views WHERE owner = :owner") cursor = connection.execute(s, dict(owner=self.denormalize_name(schema))) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_sequence_names(self, connection, schema=None, **kw): if not schema: schema = self.default_schema_name cursor = connection.execute( sql.text( "SELECT sequence_name FROM all_sequences " "WHERE sequence_owner = :schema_name" ), dict(schema_name=self.denormalize_name(schema)), ) return [self.normalize_name(row[0]) for row in cursor] @reflection.cache def get_table_options(self, connection, table_name, schema=None, **kw): options = {} resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) params = {"table_name": table_name} columns = ["table_name"] if self._supports_table_compression: columns.append("compression") if self._supports_table_compress_for: columns.append("compress_for") text = ( "SELECT %(columns)s " "FROM ALL_TABLES%(dblink)s " "WHERE table_name = :table_name" ) if schema is not None: params["owner"] = schema text += " AND owner = :owner " text = text % {"dblink": dblink, "columns": ", ".join(columns)} result = connection.execute(sql.text(text), params) enabled = dict(DISABLED=False, ENABLED=True) row = result.first() if row: if "compression" in row._fields and enabled.get(row.compression, False): if "compress_for" in row._fields: options["oracle_compress"] = row.compress_for else: options["oracle_compress"] = True return options @reflection.cache def get_columns(self, connection, table_name, schema=None, **kw): """ kw arguments can be: oracle_resolve_synonyms dblink """ resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) columns = [] if self._supports_char_length: char_length_col = "char_length" else: char_length_col = "data_length" if self.server_version_info >= (12,): identity_cols = """\ col.default_on_null, ( SELECT id.generation_type || ',' || id.IDENTITY_OPTIONS FROM ALL_TAB_IDENTITY_COLS%(dblink)s id WHERE col.table_name = id.table_name AND col.column_name = id.column_name AND col.owner = id.owner ) AS identity_options""" % { "dblink": dblink } else: identity_cols = "NULL as default_on_null, NULL as identity_options" params = {"table_name": table_name} text = """ SELECT col.column_name, col.data_type, col.%(char_length_col)s, col.data_precision, col.data_scale, col.nullable, col.data_default, com.comments, col.virtual_column, %(identity_cols)s FROM all_tab_cols%(dblink)s col LEFT JOIN all_col_comments%(dblink)s com ON col.table_name = com.table_name AND col.column_name = com.column_name AND col.owner = com.owner WHERE col.table_name = :table_name AND col.hidden_column = 'NO' """ if schema is not None: params["owner"] = schema text += " AND col.owner = :owner " text += " ORDER BY col.column_id" text = text % { "dblink": dblink, "char_length_col": char_length_col, "identity_cols": identity_cols, } c = connection.execute(sql.text(text), params) for row in c: colname = self.normalize_name(row[0]) orig_colname = row[0] coltype = row[1] length = row[2] precision = row[3] scale = row[4] nullable = row[5] == "Y" default = row[6] comment = row[7] generated = row[8] default_on_nul = row[9] identity_options = row[10] if coltype == "NUMBER": if precision is None and scale == 0: coltype = INTEGER() else: coltype = NUMBER(precision, scale) elif coltype == "FLOAT": # TODO: support "precision" here as "binary_precision" coltype = FLOAT() elif coltype in ("VARCHAR2", "NVARCHAR2", "CHAR", "NCHAR"): coltype = self.ischema_names.get(coltype)(length) elif "WITH TIME ZONE" in coltype: coltype = TIMESTAMP(timezone=True) else: coltype = re.sub(r"\(\d+\)", "", coltype) try: coltype = self.ischema_names[coltype] except KeyError: util.warn( "Did not recognize type '%s' of column '%s'" % (coltype, colname) ) coltype = sqltypes.NULLTYPE if generated == "YES": computed = dict(sqltext=default) default = None else: computed = None if identity_options is not None: identity = self._parse_identity_options( identity_options, default_on_nul ) default = None else: identity = None cdict = { "name": colname, "type": coltype, "nullable": nullable, "default": default, "autoincrement": "auto", "comment": comment, } if orig_colname.lower() == orig_colname: cdict["quote"] = True if computed is not None: cdict["computed"] = computed if identity is not None: cdict["identity"] = identity columns.append(cdict) return columns def _parse_identity_options(self, identity_options, default_on_nul): # identity_options is a string that starts with 'ALWAYS,' or # 'BY DEFAULT,' and continues with # START WITH: 1, INCREMENT BY: 1, MAX_VALUE: 123, MIN_VALUE: 1, # CYCLE_FLAG: N, CACHE_SIZE: 1, ORDER_FLAG: N, SCALE_FLAG: N, # EXTEND_FLAG: N, SESSION_FLAG: N, KEEP_VALUE: N parts = [p.strip() for p in identity_options.split(",")] identity = { "always": parts[0] == "ALWAYS", "on_null": default_on_nul == "YES", } for part in parts[1:]: option, value = part.split(":") value = value.strip() if "START WITH" in option: identity["start"] = compat.long_type(value) elif "INCREMENT BY" in option: identity["increment"] = compat.long_type(value) elif "MAX_VALUE" in option: identity["maxvalue"] = compat.long_type(value) elif "MIN_VALUE" in option: identity["minvalue"] = compat.long_type(value) elif "CYCLE_FLAG" in option: identity["cycle"] = value == "Y" elif "CACHE_SIZE" in option: identity["cache"] = compat.long_type(value) elif "ORDER_FLAG" in option: identity["order"] = value == "Y" return identity @reflection.cache def get_table_comment( self, connection, table_name, schema=None, resolve_synonyms=False, dblink="", **kw ): info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) if not schema: schema = self.default_schema_name COMMENT_SQL = """ SELECT comments FROM all_tab_comments WHERE table_name = :table_name AND owner = :schema_name """ c = connection.execute( sql.text(COMMENT_SQL), dict(table_name=table_name, schema_name=schema), ) return {"text": c.scalar()} @reflection.cache def get_indexes( self, connection, table_name, schema=None, resolve_synonyms=False, dblink="", **kw ): info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) indexes = [] params = {"table_name": table_name} text = ( "SELECT a.index_name, a.column_name, " "\nb.index_type, b.uniqueness, b.compression, b.prefix_length " "\nFROM ALL_IND_COLUMNS%(dblink)s a, " "\nALL_INDEXES%(dblink)s b " "\nWHERE " "\na.index_name = b.index_name " "\nAND a.table_owner = b.table_owner " "\nAND a.table_name = b.table_name " "\nAND a.table_name = :table_name " ) if schema is not None: params["schema"] = schema text += "AND a.table_owner = :schema " text += "ORDER BY a.index_name, a.column_position" text = text % {"dblink": dblink} q = sql.text(text) rp = connection.execute(q, params) indexes = [] last_index_name = None pk_constraint = self.get_pk_constraint( connection, table_name, schema, resolve_synonyms=resolve_synonyms, dblink=dblink, info_cache=kw.get("info_cache"), ) uniqueness = dict(NONUNIQUE=False, UNIQUE=True) enabled = dict(DISABLED=False, ENABLED=True) oracle_sys_col = re.compile(r"SYS_NC\d+\$", re.IGNORECASE) index = None for rset in rp: index_name_normalized = self.normalize_name(rset.index_name) # skip primary key index. This is refined as of # [ticket:5421]. Note that ALL_INDEXES.GENERATED will by "Y" # if the name of this index was generated by Oracle, however # if a named primary key constraint was created then this flag # is false. if pk_constraint and index_name_normalized == pk_constraint["name"]: continue if rset.index_name != last_index_name: index = dict( name=index_name_normalized, column_names=[], dialect_options={}, ) indexes.append(index) index["unique"] = uniqueness.get(rset.uniqueness, False) if rset.index_type in ("BITMAP", "FUNCTION-BASED BITMAP"): index["dialect_options"]["oracle_bitmap"] = True if enabled.get(rset.compression, False): index["dialect_options"]["oracle_compress"] = rset.prefix_length # filter out Oracle SYS_NC names. could also do an outer join # to the all_tab_columns table and check for real col names there. if not oracle_sys_col.match(rset.column_name): index["column_names"].append(self.normalize_name(rset.column_name)) last_index_name = rset.index_name return indexes @reflection.cache def _get_constraint_data( self, connection, table_name, schema=None, dblink="", **kw ): params = {"table_name": table_name} text = ( "SELECT" "\nac.constraint_name," # 0 "\nac.constraint_type," # 1 "\nloc.column_name AS local_column," # 2 "\nrem.table_name AS remote_table," # 3 "\nrem.column_name AS remote_column," # 4 "\nrem.owner AS remote_owner," # 5 "\nloc.position as loc_pos," # 6 "\nrem.position as rem_pos," # 7 "\nac.search_condition," # 8 "\nac.delete_rule" # 9 "\nFROM all_constraints%(dblink)s ac," "\nall_cons_columns%(dblink)s loc," "\nall_cons_columns%(dblink)s rem" "\nWHERE ac.table_name = :table_name" "\nAND ac.constraint_type IN ('R','P', 'U', 'C')" ) if schema is not None: params["owner"] = schema text += "\nAND ac.owner = :owner" text += ( "\nAND ac.owner = loc.owner" "\nAND ac.constraint_name = loc.constraint_name" "\nAND ac.r_owner = rem.owner(+)" "\nAND ac.r_constraint_name = rem.constraint_name(+)" "\nAND (rem.position IS NULL or loc.position=rem.position)" "\nORDER BY ac.constraint_name, loc.position" ) text = text % {"dblink": dblink} rp = connection.execute(sql.text(text), params) constraint_data = rp.fetchall() return constraint_data @reflection.cache def get_pk_constraint(self, connection, table_name, schema=None, **kw): resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) pkeys = [] constraint_name = None constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get("info_cache"), ) for row in constraint_data: ( cons_name, cons_type, local_column, remote_table, remote_column, remote_owner, ) = row[0:2] + tuple([self.normalize_name(x) for x in row[2:6]]) if cons_type == "P": if constraint_name is None: constraint_name = self.normalize_name(cons_name) pkeys.append(local_column) return {"constrained_columns": pkeys, "name": constraint_name} @reflection.cache def get_foreign_keys(self, connection, table_name, schema=None, **kw): """ kw arguments can be: oracle_resolve_synonyms dblink """ requested_schema = schema # to check later on resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get("info_cache"), ) def fkey_rec(): return { "name": None, "constrained_columns": [], "referred_schema": None, "referred_table": None, "referred_columns": [], "options": {}, } fkeys = util.defaultdict(fkey_rec) for row in constraint_data: ( cons_name, cons_type, local_column, remote_table, remote_column, remote_owner, ) = row[0:2] + tuple([self.normalize_name(x) for x in row[2:6]]) cons_name = self.normalize_name(cons_name) if cons_type == "R": if remote_table is None: # ticket 363 util.warn( ( "Got 'None' querying 'table_name' from " "all_cons_columns%(dblink)s - does the user have " "proper rights to the table?" ) % {"dblink": dblink} ) continue rec = fkeys[cons_name] rec["name"] = cons_name local_cols, remote_cols = ( rec["constrained_columns"], rec["referred_columns"], ) if not rec["referred_table"]: if resolve_synonyms: ( ref_remote_name, ref_remote_owner, ref_dblink, ref_synonym, ) = self._resolve_synonym( connection, desired_owner=self.denormalize_name(remote_owner), desired_table=self.denormalize_name(remote_table), ) if ref_synonym: remote_table = self.normalize_name(ref_synonym) remote_owner = self.normalize_name(ref_remote_owner) rec["referred_table"] = remote_table if ( requested_schema is not None or self.denormalize_name(remote_owner) != schema ): rec["referred_schema"] = remote_owner if row[9] != "NO ACTION": rec["options"]["ondelete"] = row[9] local_cols.append(local_column) remote_cols.append(remote_column) return list(fkeys.values()) @reflection.cache def get_unique_constraints(self, connection, table_name, schema=None, **kw): resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get("info_cache"), ) unique_keys = filter(lambda x: x[1] == "U", constraint_data) uniques_group = groupby(unique_keys, lambda x: x[0]) index_names = { ix["name"] for ix in self.get_indexes(connection, table_name, schema=schema) } return [ { "name": name, "column_names": cols, "duplicates_index": name if name in index_names else None, } for name, cols in [ [ self.normalize_name(i[0]), [self.normalize_name(x[2]) for x in i[1]], ] for i in uniques_group ] ] @reflection.cache def get_view_definition( self, connection, view_name, schema=None, resolve_synonyms=False, dblink="", **kw ): info_cache = kw.get("info_cache") (view_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, view_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) params = {"view_name": view_name} text = "SELECT text FROM all_views WHERE view_name=:view_name" if schema is not None: text += " AND owner = :schema" params["schema"] = schema rp = connection.execute(sql.text(text), params).scalar() if rp: if util.py2k: rp = rp.decode(self.encoding) return rp else: return None @reflection.cache def get_check_constraints( self, connection, table_name, schema=None, include_all=False, **kw ): resolve_synonyms = kw.get("oracle_resolve_synonyms", False) dblink = kw.get("dblink", "") info_cache = kw.get("info_cache") (table_name, schema, dblink, synonym) = self._prepare_reflection_args( connection, table_name, schema, resolve_synonyms, dblink, info_cache=info_cache, ) constraint_data = self._get_constraint_data( connection, table_name, schema, dblink, info_cache=kw.get("info_cache"), ) check_constraints = filter(lambda x: x[1] == "C", constraint_data) return [ {"name": self.normalize_name(cons[0]), "sqltext": cons[8]} for cons in check_constraints if include_all or not re.match(r"..+?. IS NOT NULL$", cons[8]) ] class _OuterJoinColumn(sql.ClauseElement): __visit_name__ = "outer_join_column" def __init__(self, column): self.column = column
34.983647
88
0.606685
00ca64f892f149d7e713a3d92d09bc63e2ff734d
1,108
py
Python
utils/bitsmaker.py
tmichalak/prjuray
53f3c94b58ffc6d405ac20a3b340ae726717ed47
[ "0BSD" ]
39
2020-07-17T19:43:40.000Z
2022-01-07T02:05:48.000Z
utils/bitsmaker.py
tmichalak/prjuray
53f3c94b58ffc6d405ac20a3b340ae726717ed47
[ "0BSD" ]
24
2020-07-17T20:15:54.000Z
2022-01-21T08:29:51.000Z
utils/bitsmaker.py
tmichalak/prjuray
53f3c94b58ffc6d405ac20a3b340ae726717ed47
[ "0BSD" ]
11
2020-07-17T19:43:45.000Z
2022-02-09T08:43:23.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2020 The Project U-Ray Authors. # # Use of this source code is governed by a ISC-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/ISC # # SPDX-License-Identifier: ISC from utils import bitstream def write(bits_fn, fnout, tags, bitfilter=None): ''' seg 00020000_046 bit 18_20 bit 39_63 tag LIOB33.IOB_Y1.REFBIT 0 ''' fout = open(fnout, "w") def line(s): fout.write(s + "\n") # Everything relative to start of bitstream line("seg 00000000_000") bitdata = bitstream.load_bitdata2(open(bits_fn, "r")) for frame, words in bitdata.items(): for word, wbits in words.items(): if bitfilter is not None: if not bitfilter(frame, word): continue for bitidx in sorted(list(wbits)): # Are the names arbitrary? Lets just re-create line("bit %08X_%03u_%02u" % (frame, word, bitidx)) for k, v in tags.items(): line("tag %s %u" % (k, v))
25.181818
66
0.597473