hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
4d5194e0e10a84e11cc1527894e07b73e9d9e2bc
5,691
py
Python
tutel/examples/helloworld_deepspeed.py
EricWangCN/tutel
f1bfee19e16348b747702c38c871256a420828b0
[ "MIT" ]
1
2022-02-23T11:17:00.000Z
2022-02-23T11:17:00.000Z
tutel/examples/helloworld_deepspeed.py
EricWangCN/tutel
f1bfee19e16348b747702c38c871256a420828b0
[ "MIT" ]
null
null
null
tutel/examples/helloworld_deepspeed.py
EricWangCN/tutel
f1bfee19e16348b747702c38c871256a420828b0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import time import torch import torch.optim as optim import torch.nn.functional as F import torch.distributed as dist from torch import nn import argparse import deepspeed import logging logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--local_rank', type=int, default=-1) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--num_tokens', type=int, default=1024) parser.add_argument('--model_dim', type=int, default=2048) parser.add_argument('--hidden_size', type=int, default=2048) parser.add_argument('--num_local_experts', type=int, default=2) parser.add_argument('--dtype', type=str, default='float32') parser.add_argument('--fp32_gate', default=False, action='store_true') parser.add_argument('--top', type=int, default=2) parser.add_argument('--use_tutel', default=False, action='store_true') parser.add_argument('--num_steps', type=int, default=100) args = parser.parse_args() try: if dist.is_available(): dist.init_process_group('nccl') dist_rank = dist.get_rank() dist_world_size = dist.get_world_size() def dist_print(*args): if dist_rank == 0: print(*args) except: dist_rank = 0 dist_world_size = 1 dist_print = print args.local_rank = args.local_rank if args.local_rank >= 0 else int(os.environ.get('LOCAL_RANK', 0)) torch.cuda.set_device(args.local_rank) batch_size = args.batch_size num_tokens = args.num_tokens model_dim = args.model_dim hidden_size = args.hidden_size num_local_experts = args.num_local_experts top_value = args.top local_rank = args.local_rank device = torch.device('cuda', args.local_rank) if args.dtype == 'float32': torch.set_default_dtype(torch.float32) elif args.dtype == 'float64': torch.set_default_dtype(torch.float64) elif args.dtype == 'float16': torch.set_default_dtype(torch.float16) elif args.dtype == 'bfloat16': torch.set_default_dtype(torch.bfloat16) else: raise Exception('Unrecognized data type specified: %s' % args.dtype) assert deepspeed.version == '0.5.6' torch.manual_seed(0) deepspeed.init_distributed() deepspeed.utils.groups.initialize(ep_size=dist_world_size) class ExpertModel(torch.nn.Module): def __init__(self, model_dim, hidden_size, activation_fn): super().__init__() self.fc1 = torch.nn.Linear(model_dim, hidden_size, bias=True) self.fc2 = torch.nn.Linear(hidden_size, model_dim, bias=True) self.activation_fn = activation_fn def forward(self, x): x = self.fc1(x) x = self.activation_fn(x) x = self.fc2(x) return x class ExampleModel(torch.nn.Module): def __init__(self): super().__init__() self._moe_layer = deepspeed.moe.layer.MoE( hidden_size = hidden_size, expert = ExpertModel(model_dim, hidden_size, lambda x: F.relu(x)), num_experts = num_local_experts * dist_world_size, k = top_value, use_tutel = args.use_tutel ) for name, param in self._moe_layer.named_parameters(): if '.experts.' in name: setattr(param, 'skip_allreduce', True) # Summary of different parameter types: gate, local_experts local_count = sum([torch.numel(param) for name, param in self._moe_layer.named_parameters() if '.experts.' in name]) shared_count = sum([torch.numel(param) for name, param in self._moe_layer.named_parameters() if '.gate.' in name]) dist_print('[Statistics] param count for MoE local_experts = %s, param count for MoE gate = %s.\n' % (local_count, shared_count)) def forward(self, input): result, _, _ = self._moe_layer(input) result = F.log_softmax(torch.sum(result, dim=2), dim=1) return result model = ExampleModel().to(device) dist_print(model) optimizer = torch.optim.SGD(model.parameters(), lr=1e-5) torch.manual_seed(0) x = torch.tensor(torch.randn([batch_size, num_tokens, model_dim], dtype=torch.float32, device='cpu').detach().numpy(), dtype=torch.get_default_dtype(), requires_grad=False, device=device) y = torch.LongTensor(batch_size).random_(1).to(device) tuples = (dist_world_size, args.dtype, model_dim, hidden_size, batch_size * num_tokens, num_local_experts, top_value, device) dist_print('[Benchmark] world_size = %s, dtype = %s, model_dim = %s, hidden_size = %s, samples = %s, num_local_experts = %s, topK = %s, device = `%s`' % tuples) average_time, num_steps = 0, args.num_steps params_for_all_reduce = [p for p in model.parameters() if not hasattr(p, 'skip_allreduce') and getattr(p, 'requires_grad', False)] for i in range(num_steps): torch.cuda.synchronize() t_start = time.time() optimizer.zero_grad() output = model(x) loss = F.nll_loss(output, y) loss.backward() if dist_world_size > 1: for p in params_for_all_reduce: p.grad /= dist_world_size dist.all_reduce(p.grad) optimizer.step() torch.cuda.synchronize() t_stop = time.time() num_global_experts = num_local_experts * dist_world_size args.top = min(args.top, num_global_experts) tflops = (batch_size * num_tokens * model_dim * hidden_size) * 4 * args.top * 3 * 1e-12 / (t_stop - t_start) dist_print('STEP-%s: loss = %.5f, step_time = %.6f sec, perf = %.2f tflops.' % (i, float(loss.data), t_stop - t_start, tflops)) if i + 10 >= num_steps: average_time += t_stop - t_start average_time /= 10 dist_print('\n[Summary] Average synchronized step_time = %s sec.' % average_time)
35.12963
187
0.69689
c77263ac509df2aaa5d740e70b3e6bdba7f8d414
2,489
py
Python
dlapi.py
omnibus661/omnidl
4e4af09fa12e5d089e60ded05e4c276ef73168c9
[ "MIT" ]
null
null
null
dlapi.py
omnibus661/omnidl
4e4af09fa12e5d089e60ded05e4c276ef73168c9
[ "MIT" ]
null
null
null
dlapi.py
omnibus661/omnidl
4e4af09fa12e5d089e60ded05e4c276ef73168c9
[ "MIT" ]
null
null
null
import json import sys import os import logging import asyncio from threading import Thread from time import sleep from flask import Flask, abort, request, Response, send_from_directory from flask_restful import Resource, Api from flask_jsonpify import jsonify from flask_cors import CORS import youtube_dl as yt import sys import glob import shutil USERS = [ "omni", "omnibus" ] HOST = "omnijunk.xyz" PORT = 66 MAINDIR = "/scripts/ytapi" # flask base app = Flask(__name__) api = Api(app) CORS(app) def ytdl(vid): urls = [] ydl_opts = { 'format': 'mp4', } if "https://youtu.be/" in vid: urls.append(vid) elif "https://youtube.com/" in vid: modid = vid.replace("https://www.youtube.com/watch?v=","") modid = "https://youtu.be/" + str(vid) urls.append(modid) else: modid = "https://youtu.be/" + str(vid) urls.append(modid) with yt.YoutubeDL(ydl_opts) as ydl: ydl.download(urls) print("done downloading.") sleep(1) class base(Resource): def post(self): return {"RESPONSE":405} def get(self): vid = request.args['id'] user = request.args['u'] conf = request.args['dl'] if vid != "" or user != "": if user in USERS: #print(str(vid)) thread = Thread(target = ytdl, args = (vid, )) thread.start() thread.join() globstr = "*"+ str(vid)+".mp4" files = glob.glob(str(globstr)) print(files) filename = files[0] if conf == "y": return send_from_directory(MAINDIR,filename, as_attachment = True) else: return {"RESPONSE":200} else: return {"RESPONSE":401} else: return {"RESPONSE":400} if __name__ == '__main__': import logging logging.basicConfig(filename='DB_Server.log',level=logging.ERROR) if sys.platform == "linux": os.system('clear') elif sys.platform == "win32": os.system('cls') else: print("Now running on port "+str(PORT)) api.add_resource(base,'/') # send raw request data to database #api.add_resource(view,'/dl') #api.add_resource(QueryDB,'/query/') app.run(host=HOST,port=PORT,debug=False)
25.397959
87
0.543994
5152cc69d0033c9518cd985779d3405856a3d05c
1,074
py
Python
hood/urls.py
fuaad001/Neighbourhood
8c1489ce490540c71b319d9e539fe8c2cdd312a4
[ "MIT" ]
null
null
null
hood/urls.py
fuaad001/Neighbourhood
8c1489ce490540c71b319d9e539fe8c2cdd312a4
[ "MIT" ]
4
2021-03-19T00:58:02.000Z
2021-09-08T01:01:19.000Z
hood/urls.py
fuaad001/Neighbourhood
8c1489ce490540c71b319d9e539fe8c2cdd312a4
[ "MIT" ]
null
null
null
from django.conf.urls import url from django.conf.urls.static import static from django.conf import settings from . import views urlpatterns=[ url('^$', views.index, name = 'index'), url(r'^home$', views.home, name = 'home'), url(r'^accounts/profile/$', views.profile, name = 'profile'), url(r'^services$', views.services, name = 'services'), url(r'^business$', views.business, name = 'business'), url(r'^about$', views.about, name = 'about'), url(r'^user_admin$', views.user_admin, name = 'user_admin'), url(r'^category$', views.category, name = 'category'), url(r'^newneighbourhood$', views.newneighbourhood, name = 'newneighbourhood'), url(r'^newservice$', views.newservice, name = 'newservice'), url(r'^newbusiness$', views.newbusiness, name = 'newbusiness'), url(r'^search$', views.search, name = 'search'), url(r'^change$', views.change, name = 'change'), ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
46.695652
86
0.633147
28b59269b21730d53fc4b78318f2b50466f5c4fc
1,995
py
Python
test/nanoid_test.py
etrepum/py-nanoid
2fc593ed3174c16f22dccdca716c15ce9a3e9af5
[ "MIT" ]
256
2017-09-20T11:40:48.000Z
2022-03-31T23:02:56.000Z
test/nanoid_test.py
sthagen/py-nanoid
99e5b478c450f42d713b6111175886dccf16f156
[ "MIT" ]
19
2017-09-21T08:36:01.000Z
2022-02-01T06:16:30.000Z
test/nanoid_test.py
sthagen/py-nanoid
99e5b478c450f42d713b6111175886dccf16f156
[ "MIT" ]
20
2017-09-20T15:21:22.000Z
2022-03-12T05:19:23.000Z
# coding: utf-8 from sys import maxsize from unittest import TestCase from nanoid import generate, non_secure_generate from nanoid.resources import alphabet class TestNanoID(TestCase): def test_flat_distribution(self): count = 100 * 1000 length = 5 alphabet = 'abcdefghijklmnopqrstuvwxyz' chars = {} for _ in range(count): id = generate(alphabet, length) for j in range(len(id)): char = id[j] if not chars.get(char): chars[char] = 0 chars[char] += 1 self.assertEqual(len(chars.keys()), len(alphabet)) max = 0 min = maxsize for k in chars: distribution = (chars[k] * len(alphabet)) / float((count * length)) if distribution > max: max = distribution if distribution < min: min = distribution self.assertLessEqual(max - min, 0.05) def test_generates_url_friendly_id(self): for _ in range(10): id = generate() self.assertEqual(len(id), 21) for j in range(len(id)): self.assertIn(id[j], alphabet) def test_has_no_collisions(self): count = 100 * 1000 used = {} for _ in range(count): id = generate() self.assertIsNotNone(id in used) used[id] = True def test_has_options(self): self.assertEqual(generate('a', 5), 'aaaaa') def test_non_secure_ids(self): for i in range(10000): nanoid = non_secure_generate() self.assertEqual(len(nanoid), 21) def test_non_secure_short_ids(self): for i in range(10000): nanoid = non_secure_generate("12345a", 3) self.assertEqual(len(nanoid), 3) def test_short_secure_ids(self): for i in range(10000): nanoid = generate("12345a", 3) self.assertEqual(len(nanoid), 3)
28.913043
79
0.557393
44c1c0f67e0582280dbbfa81281478c920552634
9,565
py
Python
Algorithms/ProtoAlgorithm/ProtoAlgorithm.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
6
2020-07-07T15:45:13.000Z
2021-08-29T06:44:29.000Z
Algorithms/ProtoAlgorithm/ProtoAlgorithm.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
null
null
null
Algorithms/ProtoAlgorithm/ProtoAlgorithm.py
icsa-caps/HieraGen
4026c1718878d2ef69dd13d3e6e10cab69174fda
[ "MIT" ]
null
null
null
import time from typing import Tuple, List, Dict from Algorithms.General.GenStateSets import extract_states_from_sets, StateSet, StateSets from Algorithms.General.MergeStates import MergeStates from Algorithms.General.Tracing.TraceTree import Trace from DataObjects.ClassLevel import Level from DataObjects.ClassArchitecture import Architecture from Monitor.ProtoCCTable import * from Graphv.ProtoCCGraph import ProtoCCGraph from Algorithms.ProtoAlgorithm.ProtoStalling import ProtoStalling from Algorithms.ProtoAlgorithm.ProtoNonStalling import ProtoNonStalling from Algorithms.ProtoAlgorithm.ProtoDir import ProtoDir from Algorithms.ProtoAlgorithm.ProtoAccessAssign import ProtoAccessAssign from Monitor.ClassDebug import Debug class ProtoAlgorithm(ProtoStalling, ProtoNonStalling, ProtoDir, ProtoAccessAssign, Debug): def __init__(self, level: Level, config, dbg_term: bool = False, dbg_graph: bool = False): ProtoStalling.__init__(self) ProtoNonStalling.__init__(self) ProtoDir.__init__(self) ProtoAccessAssign.__init__(self) Debug.__init__(self, dbg_term) self.dbg_graph = dbg_graph self.debug_all_generated_states = [] self.level = level self.parser = level.parser self.datamsgs = level.parser.getDataMsgTypes() self.access = level.parser.getAccess() self.evict = level.parser.getEvict() self.archProtoGen = {} self.renamedMessages = level.renamedMessages self.hiddenChangeStates = level.hiddenChangeStates self.cacheStateSets = [] self.progressMessages = level.progressMessages """ PROTOGEN OPTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% """ # Options Cache self.CCconservativeInv = config.CCconservativeInv self.nonstalling = config.nonstalling self.maxNestingDepthCC = config.maxNestingDepthCC # Options Directory self.DCconservativeInv = config.DCconservativeInv self.maxNestingDepthDC = config.maxNestingDepthDC # Options Access Assignment self.stableStatesOnly = config.stableStatesOnly self.conservativeAccess = config.conservativeAccess self.ignoreDeferedStates = config.ignoreDeferedStates self.maxagressiveAccess = config.maxagressiveAccess # Options Merging self.enableStateMerging = config.enableStateMerging self.maxMergingIter = config.maxMergingIter self.MergeStates = MergeStates(self.maxMergingIter, self.access, self.evict) self._ProcessArch() def _ProcessArch(self): self.pheader("Caches") self.pdebug(str(self.level.cache)) self.pheader("Directories") self.pdebug(str(self.level.directory)) # Cache arch_name = str(self.level.cache) talgo = time.time() self.pheader("\nArchitecture: " + arch_name) stablestates = [str(state) for state in self.level.cache.stable_states] state_sets = self.level.cache.state_sets self._ProtoGenV2(self.level.cache, state_sets, self.maxNestingDepthCC) self._AssignAccess(state_sets, stablestates) if self.enableStateMerging: print("State reduction function enabled") self.MergeStates.merge_states(state_sets) else: print("State reduction function disabled") self.pdebug("Runtime: " + arch_name + " = " + str(time.time() - talgo)) self.level.cache.update_transitions() statedict = extract_states_from_sets(state_sets) self._pTransitions(arch_name, statedict) # Run ProtoGen if self.dbg_graph: self._dArch(arch_name, statedict) self.cacheStateSets += list(state_sets.values()) self.archProtoGen.update({arch_name: statedict}) self.level.cache.update_transitions() # Directory arch_name = str(self.level.directory) talgo = time.time() self.pheader("\nArchitecture: " + arch_name) # General directory pre processing stablestates = [str(state) for state in self.level.directory.stable_states] state_sets = self.level.directory.state_sets # ProtoGen self._ProtoGenAlgorithm(self.level.directory, state_sets, stablestates, self.maxNestingDepthDC, self._DirectoryDefer) #self.merge_states(state_sets) self.pdebug("Runtime: " + arch_name + " = " + str(time.time() - talgo)) self.level.directory.update_transitions() statedict = extract_states_from_sets(state_sets) self._pTransitions(arch_name, statedict) if self.dbg_graph: self._dArch(arch_name, statedict) self.archProtoGen.update({arch_name: statedict}) self.pdebug("") def _ProtoGenAlgorithm(self, arch: Architecture, state_sets, stablestates, maxdepth, deferfunc): newstates = 1 nestingdepth = 0 while newstates and nestingdepth < maxdepth: newstates = self._GenerateTransientStates(arch, state_sets, stablestates, deferfunc) # Update the traces arch.update_traces() nestingdepth += 1 #self._AppendDefferedMessages(state_sets, stablestates) ######################################################################################################################## # PUBLIC FUNCTIONS ######################################################################################################################## def getArchStates(self): return self.archProtoGen def getCacheStates(self): return self.level.getCacheStates() def getDirStates(self): return self.level.getDirStates() def getMaxNestingDepth(self): return 0 def getDCconservativeInv(self): return self.DCconservativeInv ######################################################################################################################## # DEBUG ######################################################################################################################## def _dArch(self, arch, statedict): if self.dbg: ProtoCCGraph("Spec: " + arch, self._pGetTransitions(statedict)) def _pTransitions(self, arch, statedict): if self.dbg: transitions = self._pGetTransitions(statedict) ProtoCCTablePrinter().ptransitiontable(transitions) def _pGetTransitions(self, statedict): transitions = [] for state in statedict: transitions += statedict[state].gettransitions() transitions = sorted(transitions, key=lambda transition: (transition.getstartstate().getstatename(), transition.getfinalstate().getstatename(), transition.getguard(), transition.getcond())) return transitions ######################################################################################################################## # ProtoGen V2 ######################################################################################################################## def stable_state_trace_map(self, arch: Architecture, state_sets: StateSets) -> \ Tuple[Dict[StateSet, List[Trace]], Dict[StateSet, List[Trace]]]: start_state_set_to_access_trace_list_map: Dict[StateSet, List[Trace]] = {} start_state_set_to_remote_trace_list_map: Dict[StateSet, List[Trace]] = {} for state_set in state_sets: access_traces, remote_traces = self.classify_traces_start_state(arch, state_sets[state_set]) start_state_set_to_access_trace_list_map[state_sets[state_set]] = access_traces start_state_set_to_remote_trace_list_map[state_sets[state_set]] = remote_traces return start_state_set_to_access_trace_list_map, start_state_set_to_remote_trace_list_map def _ProtoGenV2(self, arch: Architecture, state_sets: StateSets, maxdepth: int): # Make trace trees start_state_set_to_access_trace_list_map, start_state_set_to_remote_trace_list_map = \ self.stable_state_trace_map(arch, state_sets) # Stalling newstates = True nestingdepth = 0 while newstates and nestingdepth < 2: newstates = False for state_set in state_sets: ret_val = self.concurrent_start_state_set_states(arch, state_sets[state_set], start_state_set_to_remote_trace_list_map) newstates = newstates or ret_val nestingdepth += 1 arch.update_traces() # Non-stalling enabled = False newstates = True nestingdepth = 0 while newstates and nestingdepth < maxdepth and (self.nonstalling or enabled): newstates = False for state_set in state_sets: ret_val = self.concurrent_end_state_set_states(arch, state_sets[state_set], start_state_set_to_remote_trace_list_map) newstates = newstates or ret_val nestingdepth += 1 arch.update_traces()
36.930502
125
0.596968
3245f829c19fd5641d31efaaf7489cb8163d5905
928
py
Python
tests/integration/ssh/test_mine.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
19
2016-01-29T14:37:52.000Z
2022-03-30T18:08:01.000Z
tests/integration/ssh/test_mine.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
223
2016-03-02T16:39:41.000Z
2022-03-03T12:26:35.000Z
tests/integration/ssh/test_mine.py
Noah-Huppert/salt
998c382f5f2c3b4cbf7d96aa6913ada6993909b3
[ "Apache-2.0" ]
64
2016-02-04T19:45:26.000Z
2021-12-15T02:02:31.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import os import shutil import salt.utils.platform from tests.support.case import SSHCase from tests.support.helpers import slowTest from tests.support.unit import skipIf @skipIf(salt.utils.platform.is_windows(), "salt-ssh not available on Windows") class SSHMineTest(SSHCase): """ testing salt-ssh with mine """ @slowTest def test_ssh_mine_get(self): """ test salt-ssh with mine """ ret = self.run_function("mine.get", ["localhost test.arg"], wipe=False) self.assertEqual(ret["localhost"]["args"], ["itworked"]) def tearDown(self): """ make sure to clean up any old ssh directories """ salt_dir = self.run_function("config.get", ["thin_dir"], wipe=False) if os.path.exists(salt_dir): shutil.rmtree(salt_dir)
27.294118
79
0.658405
1e51c2a1e757879421f2d79e73dba116d4768c2c
393
py
Python
pythreejs/_example_helper.py
aliddell/pythreejs
8a2dc2c8fe9a8adb6affc8214c224e5c9d98fea1
[ "BSD-3-Clause" ]
451
2018-04-20T17:44:49.000Z
2022-03-26T21:53:05.000Z
pythreejs/_example_helper.py
aliddell/pythreejs
8a2dc2c8fe9a8adb6affc8214c224e5c9d98fea1
[ "BSD-3-Clause" ]
164
2018-04-19T08:34:57.000Z
2022-03-31T12:58:53.000Z
pythreejs/_example_helper.py
aliddell/pythreejs
8a2dc2c8fe9a8adb6affc8214c224e5c9d98fea1
[ "BSD-3-Clause" ]
119
2018-04-23T16:01:02.000Z
2022-03-26T03:28:59.000Z
def example_id_gen(max_n=1000): for i in range(1, max_n): yield 'pythree_example_model_%03d' % (i,) def use_example_model_ids(): from ipywidgets import Widget old_init = Widget.__init__ id_gen = example_id_gen() def new_init(self, *args, **kwargs): kwargs['model_id'] = next(id_gen) old_init(self, *args, **kwargs) Widget.__init__ = new_init
26.2
49
0.659033
8ed45f38ccc763aff3c6984958c261e2c9f6ba94
8,618
py
Python
ptsr/utils/utility.py
prateek-77/rcan-it
587904556d8127bca83690deaaa26e34e051a576
[ "MIT" ]
57
2022-01-28T04:44:42.000Z
2022-03-31T13:26:35.000Z
ptsr/utils/utility.py
chisyliu/rcan-it
eb1794777ffef4eadd8a6a06f4419380a0b17435
[ "MIT" ]
6
2022-02-08T11:17:19.000Z
2022-03-27T07:40:18.000Z
ptsr/utils/utility.py
chisyliu/rcan-it
eb1794777ffef4eadd8a6a06f4419380a0b17435
[ "MIT" ]
10
2022-01-28T07:31:12.000Z
2022-03-15T01:35:03.000Z
from typing import Optional import torch.optim.lr_scheduler as lrs import torch.optim as optim import torch import imageio import numpy as np import matplotlib.pyplot as plt import os from math import log10, sqrt import time import datetime from multiprocessing import Process from multiprocessing import Queue import matplotlib matplotlib.use('Agg') class timer(): def __init__(self): self.acc = 0 self.tic() def tic(self): self.t0 = time.time() def toc(self, restart=False): diff = time.time() - self.t0 if restart: self.t0 = time.time() return diff def hold(self): self.acc += self.toc() def release(self): ret = self.acc self.acc = 0 return ret def reset(self): self.acc = 0 class checkpoint(): def __init__(self, cfg): self.cfg = cfg self.ok = True self.log = torch.Tensor() now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S') self.datatest = [] if (self.cfg.SOLVER.TEST_EVERY and not self.cfg.SOLVER.TEST_ONLY): self.datatest = self.cfg.DATASET.DATA_VAL elif (self.cfg.SOLVER.TEST_ONLY): self.datatest = self.cfg.DATASET.DATA_TEST time_stamp = datetime.datetime.now().strftime("_%b%d%y_%H%M") if not cfg.LOG.LOAD: if not cfg.LOG.SAVE: cfg.LOG.SAVE = now self.dir = os.path.join('outputs', cfg.LOG.SAVE + time_stamp) else: self.dir = os.path.join('outputs', cfg.LOG.LOAD + time_stamp) if os.path.exists(self.dir): self.log = torch.load(self.get_path('psnr_log.pt')) print('Continue from epoch {}...'.format( len(self.log)*self.cfg.SOLVER.TEST_EVERY)) else: cfg.LOG.LOAD = '' os.makedirs(self.dir, exist_ok=True) os.makedirs(self.get_path('model'), exist_ok=True) for d in self.datatest: os.makedirs(self.get_path('results-{}'.format(d)), exist_ok=True) open_type = 'a' if os.path.exists(self.get_path('log.txt')) else 'w' self.log_file = open(self.get_path('log.txt'), open_type) with open(self.get_path('config.yaml'), open_type) as f: print(cfg, file=f) self.n_processes = 8 def get_path(self, *subdir): return os.path.join(self.dir, *subdir) def save(self, trainer, iteration, is_best=False, iter_start=0, is_swa=False, iter_suffix=False): self.save_model(self.get_path('model'), trainer, iteration, is_best, is_swa, iter_suffix) self.plot_psnr(iteration, iter_start) torch.save(self.log, self.get_path('psnr_log.pt')) def save_model(self, apath, trainer, iteration: int, is_best: bool = False, is_swa: bool = False, iter_suffix: bool = False): save_dirs = [os.path.join(apath, 'model_latest.pth.tar')] if is_best: save_dirs.append(os.path.join(apath, 'model_best.pth.tar')) elif iter_suffix: save_dirs.append(os.path.join(apath, 'model_%06d.pth.tar' % iteration)) if is_swa: state_dict = trainer.swa_model.module.module.model.state_dict() else: state_dict = trainer.model.module.model.state_dict() # DP, DDP state = {'iteration': iteration, 'state_dict': state_dict, 'optimizer': trainer.optimizer.state_dict(), 'lr_scheduler': trainer.lr_scheduler.state_dict()} if hasattr(trainer, 'mixed_fp') and trainer.mixed_fp: state['scaler'] = trainer.scaler.state_dict() for filename in save_dirs: torch.save(state, filename) def load_model(self, pre_train, trainer, device, restart: bool = False, test_mode: bool = False, strict: bool = True, ignore: Optional[str] = None): if pre_train is None: return state = torch.load(pre_train, map_location=device) if isinstance(state['state_dict'], tuple): trainer.model.module.model.load_state_dict( state['state_dict'][0], strict=strict) else: pretrained_dict = state['state_dict'] if ignore is not None: pretrained_dict = {k: v for k, v in pretrained_dict.items() if ignore not in k} trainer.model.module.model.load_state_dict(pretrained_dict, strict=strict) if not restart and not test_mode: trainer.optimizer.load_state_dict(state['optimizer']) trainer.lr_scheduler.load_state_dict(state['lr_scheduler']) trainer.iter_start = state['iteration'] if hasattr(trainer, 'mixed_fp') and trainer.mixed_fp and 'scaler' in state: trainer.scaler.load_state_dict(state['scaler']) del state # release GPU memory def add_log(self, log): self.log = torch.cat([self.log, log]) def write_log(self, log, refresh=False): print(log) self.log_file.write(log + '\n') if refresh: self.log_file.close() self.log_file = open(self.get_path('log.txt'), 'a') def plot_psnr(self, iteration, iter_start=0): intervel = self.cfg.SOLVER.TEST_EVERY num_points = (iteration + 1 - iter_start) // intervel axis = list(range(1, num_points+1)) axis = np.array(axis) * intervel + iter_start for idx_data, d in enumerate(self.datatest): label = 'SR on {}'.format(d) fig = plt.figure() plt.title(label) for idx_scale, scale in enumerate(self.cfg.DATASET.DATA_SCALE): plt.plot( axis, self.log[:, idx_data, idx_scale].numpy(), label='Scale {}'.format(scale) ) plt.legend() plt.xlabel('Iterations') plt.ylabel('PSNR') plt.grid(True) plt.savefig(self.get_path('test_{}.pdf'.format(d))) plt.close(fig) def begin_background(self): self.queue = Queue() def bg_target(queue): while True: if not queue.empty(): filename, tensor = queue.get() if filename is None: break imageio.imwrite(filename, tensor.numpy()) self.process = [ Process(target=bg_target, args=(self.queue,)) for _ in range(self.n_processes) ] for p in self.process: p.start() def end_background(self): for _ in range(self.n_processes): self.queue.put((None, None)) while not self.queue.empty(): time.sleep(1) for p in self.process: p.join() def save_results(self, dataset, filename, save_list, scale): if self.cfg.LOG.SAVE_RESULTS: filename = self.get_path( 'results-{}'.format(dataset.dataset.name), '{}_x{}_'.format(filename, scale) ) postfix = ('SR', 'LR', 'HR') for v, p in zip(save_list, postfix): normalized = v[0].mul(255 / self.cfg.DATASET.RGB_RANGE) tensor_cpu = normalized.byte().permute(1, 2, 0).cpu() self.queue.put(('{}{}.png'.format(filename, p), tensor_cpu)) def done(self): self.log_file.close() def quantize(img, rgb_range): pixel_range = 255 / rgb_range return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range) def calc_psnr_torch(sr, hr, scale, rgb_range: float = 255.0, use_gray_coeffs: bool = True): # Input images should be in (B, C, H, W) format. if hr.nelement() == 1: return 0 diff = (sr - hr) / rgb_range diff = diff[..., scale:-scale, scale:-scale] if diff.size(1) > 1 and use_gray_coeffs: gray_coeffs = [65.738, 129.057, 25.064] convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / rgb_range diff = diff.mul(convert).sum(dim=1) mse = diff.pow(2).mean() if mse == 0: # PSNR have no importance. return 100 return -10 * log10(mse) def calc_psnr_numpy(sr, hr, scale, rgb_range: float = 255.0): # Input images should be in (H, W, C) format. diff = (sr - hr) diff = diff[scale:-scale, scale:-scale] mse = np.mean(diff ** 2) if mse == 0: # PSNR have no importance. return 100 psnr = 20 * log10(rgb_range / sqrt(mse)) return psnr
33.929134
101
0.57554
ae27bd9490194d6aa55dc3e61c22bca6aa7fe21e
2,239
py
Python
run_tests.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
null
null
null
run_tests.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
1
2021-03-31T18:50:05.000Z
2021-03-31T18:50:05.000Z
run_tests.py
bpuderer/python-test-env
ed5d1f1b977560cc9bc52952500b93060fc11e6a
[ "MIT" ]
null
null
null
"""Wrapper for nose2""" import argparse import glob import os import shlex import subprocess def main(): parser = argparse.ArgumentParser(description='nose2 wrapper script', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('tests', nargs='*', help='Only run specified tests. Ex. tests.test_example \ Ex. tests.test_example.ExampleTestCase \ Ex. tests.test_example.ExampleTestCase.test_env1_config') parser.add_argument('--testenv', '-te', default='DEFAULT', help='Case sensitive section in test_settings.cfg') parser.add_argument('--attr', '-A', nargs='+', help='Select tests by attribute. \ Args are logically OR\'d. Arg with comma delimeter(s) is AND\'d. \ Ex. slow tags=tag2 Ex. slow,tags=tag2') parser.add_argument('--quiet', '-q', action='store_true', default=False) parser.add_argument('--collect_only', '-c', action='store_true', default=False, help='Collect and output test names, don\'t run tests') parser.add_argument('--xml', action='store_true', default=False, help='Write test results xUnit XML') args = parser.parse_args() os.environ['PY_TEST_ENV'] = args.testenv # cleanup previous run for f in glob.glob('reports/*.xml'): os.remove(f) for f in glob.glob('log/*'): os.remove(f) for f in glob.glob('screenshots/*'): os.remove(f) cmd = 'python -m nose2 --config framework/nose2.cfg' if args.tests: cmd += ' ' + ' '.join(args.tests) if not args.quiet: cmd += ' -v' if args.collect_only: cmd += ' --collect-only' if args.attr: cmd += ' -A ' + ' -A '.join(args.attr) if args.xml: cmd += ' --junit-xml' # to combine stdout and stderr #cp = subprocess.run(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) cp = subprocess.run(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE) print(cp.stdout.decode()) print(cp.stderr.decode()) if __name__ == "__main__": main()
33.924242
94
0.595355
5cc1f3013cc110703d1c49adcf3b02c5e72cf4d1
424
py
Python
soluciones/problema9.py
hernan-erasmo/project-euler
d68aa90c5fe2bf733bec54af5a786a2c144783bc
[ "Unlicense" ]
null
null
null
soluciones/problema9.py
hernan-erasmo/project-euler
d68aa90c5fe2bf733bec54af5a786a2c144783bc
[ "Unlicense" ]
null
null
null
soluciones/problema9.py
hernan-erasmo/project-euler
d68aa90c5fe2bf733bec54af5a786a2c144783bc
[ "Unlicense" ]
null
null
null
def main(): r = 2 encontrada = False while not encontrada: for t in mf.dickson_triples(r): print "r = " + str(r) + " - Probando con ", t, " (suma: " + str(t[0] + t[1] + t[2]) + ")" if (t[0] + t[1] + t[2]) == 1000: print "La terna es: ", t, " y el producto de las componentes es: " + str(t[0]*t[1]*t[2]) encontrada = True break r += 2 if __name__ == '__main__': import mis_funciones as mf main()
24.941176
92
0.54717
be1f456e38313545306bea88aaa18675b0dc097a
21,733
py
Python
src/genie/libs/parser/nxos/tests/test_show_arp.py
tylersiemers/genieparser
f18d49f9ca268d23df34faaf8b2212ca29b6882e
[ "Apache-2.0" ]
null
null
null
src/genie/libs/parser/nxos/tests/test_show_arp.py
tylersiemers/genieparser
f18d49f9ca268d23df34faaf8b2212ca29b6882e
[ "Apache-2.0" ]
1
2019-04-02T16:51:56.000Z
2019-04-02T16:51:56.000Z
src/genie/libs/parser/nxos/tests/test_show_arp.py
tylersiemers/genieparser
f18d49f9ca268d23df34faaf8b2212ca29b6882e
[ "Apache-2.0" ]
1
2021-01-29T17:31:33.000Z
2021-01-29T17:31:33.000Z
# Python import unittest from unittest.mock import Mock # ATS from ats.topology import Device # Metaparset from genie.metaparser.util.exceptions import SchemaEmptyParserError, \ SchemaMissingKeyError # Parser from genie.libs.parser.nxos.show_arp import ShowIpArpDetailVrfAll, \ ShowIpArpSummaryVrfAll, \ ShowIpArpstatisticsVrfAll #========================================================= # Unit test for show ip arp detail vrf all #========================================================= class test_show_ip_arp_detail_vrf_all(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { 'interfaces': { 'Ethernet1/1': { 'ipv4': { 'neighbors': { '10.1.3.5': { 'age': '-', 'ip': '10.1.3.5', 'link_layer_address': 'aaaa.bbbb.cccc', 'origin': 'static', 'physical_interface': 'Ethernet1/1'} } } }, 'Ethernet1/1.1': { 'ipv4': { 'neighbors': { '192.168.4.2': { 'age': '00:01:53', 'ip': '192.168.4.2', 'link_layer_address': '000c.292a.1eaf', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/1.1'} } } }, 'Ethernet1/1.2': { 'ipv4': { 'neighbors': { '192.168.154.2': { 'age': '00:00:47', 'ip': '192.168.154.2', 'link_layer_address': '000c.292a.1eaf', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/1.2'} } } }, 'Ethernet1/1.4': { 'ipv4': { 'neighbors': { '192.168.106.2': { 'age': '00:08:42', 'ip': '192.168.106.2', 'link_layer_address': '000c.292a.1eaf', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/1.4'} } } }, 'Ethernet1/2.1': { 'ipv4': { 'neighbors': { '192.168.154.2': { 'age': '00:18:24', 'ip': '192.168.154.2', 'link_layer_address': '000c.2904.5840', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/2.1'} } } }, 'Ethernet1/2.2': { 'ipv4': { 'neighbors': { '192.168.51.2': { 'age': '00:05:21', 'ip': '192.168.51.2', 'link_layer_address': '000c.2904.5840', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/2.2'} } } }, 'Ethernet1/2.4': { 'ipv4': { 'neighbors': { '192.168.9.2': { 'age': '00:10:51', 'ip': '192.168.9.2', 'link_layer_address': '000c.2904.5840', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/2.4'} } } }, 'Ethernet1/4.100': { 'ipv4': { 'neighbors': { '10.51.1.101': { 'age': '00:01:28', 'ip': '10.51.1.101', 'link_layer_address': '0000.71c7.6e61', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/4.100'} } } }, 'Ethernet1/4.101': { 'ipv4': { 'neighbors': { '10.154.1.101': { 'age': '00:01:28', 'ip': '10.154.1.101', 'link_layer_address': '0000.71c7.75c1', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/4.101'} } } }, 'Ethernet1/4.200': { 'ipv4': { 'neighbors': { '10.76.1.101': { 'age': '00:01:28', 'ip': '10.76.1.101', 'link_layer_address': '0000.0068.ce6f', 'origin': 'dynamic', 'physical_interface': 'Ethernet1/4.200'} } } }, 'mgmt0': { 'ipv4': { 'neighbors': { '10.1.7.1': { 'age': '00:17:15', 'ip': '10.1.7.1', 'link_layer_address': '0012.7f57.ac80', 'origin': 'dynamic', 'physical_interface': 'mgmt0'}, '10.1.7.250': { 'age': '00:14:24', 'ip': '10.1.7.250', 'link_layer_address': '0050.5682.7915', 'origin': 'dynamic', 'physical_interface': 'mgmt0'}, '10.1.7.253': { 'age': '00:10:22', 'ip': '10.1.7.253', 'link_layer_address': '0050.56a4.a9fc', 'origin': 'dynamic', 'physical_interface': 'mgmt0'} } } } } } golden_output = {'execute.return_value': ''' N95_1# show ip arp detail vrf all Flags: * - Adjacencies learnt on non-active FHRP router + - Adjacencies synced via CFSoE # - Adjacencies Throttled for Glean CP - Added via L2RIB, Control plane Adjacencies PS - Added via L2RIB, Peer Sync RO - Re-Originated Peer Sync Entry IP ARP Table for all contexts Total number of entries: 12 Address Age MAC Address Interface Physical Interface Flags 10.1.7.1 00:17:15 0012.7f57.ac80 mgmt0 mgmt0 10.1.7.250 00:14:24 0050.5682.7915 mgmt0 mgmt0 10.1.7.253 00:10:22 0050.56a4.a9fc mgmt0 mgmt0 10.1.3.5 - aaaa.bbbb.cccc Ethernet1/1 Ethernet1/1 192.168.4.2 00:01:53 000c.292a.1eaf Ethernet1/1.1 Ethernet1/1.1 192.168.154.2 00:00:47 000c.292a.1eaf Ethernet1/1.2 Ethernet1/1.2 192.168.106.2 00:08:42 000c.292a.1eaf Ethernet1/1.4 Ethernet1/1.4 192.168.154.2 00:18:24 000c.2904.5840 Ethernet1/2.1 Ethernet1/2.1 192.168.51.2 00:05:21 000c.2904.5840 Ethernet1/2.2 Ethernet1/2.2 192.168.9.2 00:10:51 000c.2904.5840 Ethernet1/2.4 Ethernet1/2.4 10.51.1.101 00:01:28 0000.71c7.6e61 Ethernet1/4.100 Ethernet1/4.100 10.154.1.101 00:01:28 0000.71c7.75c1 Ethernet1/4.101 Ethernet1/4.101 10.76.1.101 00:01:28 0000.0068.ce6f Ethernet1/4.200 Ethernet1/4.200 ''' } def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowIpArpDetailVrfAll(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.device = Mock(**self.golden_output) obj = ShowIpArpDetailVrfAll(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output) #========================================================= # Unit test for show ip arp summary vrf all #========================================================= class test_show_ip_arp_summary_vrf_all(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { 'incomplete': 0, 'throttled': 0, 'resolved': 12, 'total': 12, 'unknown': 0} golden_output = {'execute.return_value': ''' N95_1# show ip arp summary IP ARP Table - Adjacency Summary Resolved : 12 Incomplete : 0 (Throttled : 0) Unknown : 0 Total : 12 ''' } golden_parsed_output_1 = { 'incomplete': 0, 'throttled': 0, 'resolved': 12, 'total': 12, 'unknown': 0} golden_output_1 = {'execute.return_value': ''' N95_1# show ip arp summary vrf all IP ARP Table - Adjacency Summary Resolved : 12 Incomplete : 0 (Throttled : 0) Unknown : 0 Total : 12 ''' } def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowIpArpSummaryVrfAll(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.device = Mock(**self.golden_output) obj = ShowIpArpSummaryVrfAll(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output) def test_golden_1(self): self.maxDiff = None self.device = Mock(**self.golden_output_1) obj = ShowIpArpSummaryVrfAll(device=self.device) parsed_output = obj.parse(vrf='all') self.assertEqual(parsed_output, self.golden_parsed_output_1) #========================================================= # Unit test for show ip arp statistics vrf all #========================================================= class test_show_ip_arp_statistics_vrf_all(unittest.TestCase): device = Device(name='aDevice') empty_output = {'execute.return_value': ''} golden_parsed_output = { 'statistics': { 'adjacency': { 'adjacency_adds': 43, 'adjacency_deletes': 12, 'adjacency_timeouts': 12, 'failed_due_to_limits': 0}, 'received': { 'anycast_proxy_arp': 0, 'dropped': 28218, 'dropped_server_port': 0, 'drops_details': { 'appeared_on_a_wrong_interface': 0, 'arp_refresh_requests_received_from_clients': 0, 'context_not_created': 0, 'directed_broadcast_source': 0, 'dropping_due_to_tunneling_failures': 0, 'glean_requests_recv_count': 71, 'grat_arp_received_on_proxy': 0, 'incorrect_length': 0, 'invalid_context': 0, 'invalid_destination_ip_address': 0, 'invalid_hardwaretype': 0, 'invalid_layer2_address_length': 0, 'invalid_layer3_address_length': 0, 'invalid_protocol_packet': 0, 'invalid_source_ip_address': 28, 'invalid_source_mac_address': 0, 'l2_packet_on_untrusted_l2_port': 0, 'l2fm_query_failed_for_a_l2address': 0, 'no_mem_to_create_per_intf_structure': 0, 'non_active_fhrp_dest_ip': 0, 'non_local_destination_ip_address': 20421, 'number_of_signals_received_from_l2rib': 0, 'packet_with_vip_on_standby_fhrp': 0, 'received_before_arp_initialization': 0, 'requests_came_for_exising_entries': 15, 'requests_came_on_a_l2_interface': 0, 'source_address_mismatch_with_subnet': 0, 'source_mac_address_is_our_own': 0}, 'enhanced_proxy_arp': 0, 'fastpath': 0, 'l2_port_track_proxy_arp': 0, 'l2_replies': 0, 'l2_requests': 0, 'local_proxy_arp': 0, 'proxy_arp': 0, 'replies': 6582, 'requests': 22632, 'snooped': 0, 'total': 0, 'tunneled': 0}, 'sent': { 'dropped': 0, 'drops_details': { 'adjacency_couldnt_be_added': 0, 'arp_refresh_skipped_over_core_and_flooded': 0, 'client_enqueue_failed': 0, 'context_not_created': 0, 'dest_not_reachable_for_proxy_arp': 0, 'dest_unreachable_for_enhanced_proxy': 0, 'destnination_is_our_own_ip': 26, 'destnination_on_l2_port_tracked': 0, 'invalid_context': 0, 'invalid_dest_ip': 0, 'invalid_ifindex': 0, 'invalid_local_proxy_arp': 0, 'invalid_proxy_arp': 0, 'invalid_src_ip': 0, 'mbuf_operation_failed': 0, 'null_source_ip': 0, 'null_source_mac': 0, 'unattached_ip': 0, 'vip_is_not_active': 0}, 'gratuitous': 58, 'l2_replies': 0, 'l2_requests': 0, 'replies': 998, 'requests': 2102, 'total': 3158, 'tunneled': 0} } } golden_output = {'execute.return_value': ''' N95_1# show ip arp statistics vrf all ARP State Machine Stats ARP packet statistics for all contexts Sent: Total 3158, Requests 2102, Replies 998, Requests on L2 0, Replies on L2 0, Gratuitous 58, Tunneled 0, Dropped 0 Send packet drops details: MBUF operation failed : 0 Context not yet created : 0 Invalid context : 0 Invalid ifindex : 0 Invalid SRC IP : 0 Invalid DEST IP : 0 Destination is our own IP : 26 Unattached IP : 0 Adjacency Couldn't be added : 0 Null Source IP : 0 Null Source MAC : 0 Client Enqueue Failed : 0 Dest. not reachable for proxy arp : 0 Dest. unreachable for enhanced proxy : 0 Dest. on L2 port being tracked : 0 Invalid Local proxy arp : 0 Invalid proxy arp : 0 VIP is not active : 0 ARP refresh skipped over core and flooded on server : 0 Received: Total 0, Requests 22632, Replies 6582, Requests on L2 0, Replies on L2 0 Proxy arp 0, Local-Proxy arp 0, Enhanced Proxy arp 0, Anycast proxy Proxy arp 0, L2 Port-track Proxy arp 0, Tunneled 0, Fastpath 0, Snooped 0, Dropped 28218 on Server Port 0 Received packet drops details: Appeared on a wrong interface : 0 Incorrect length : 0 Invalid protocol packet : 0 Invalid Hardware type : 0 Invalid context : 0 Context not yet created : 0 Invalid layer 2 address length : 0 Invalid layer 3 address length : 0 Invalid source IP address : 28 Source IP address is our own : 0 No mem to create per intf structure : 0 Source address mismatch with subnet : 0 Directed broadcast source : 0 Invalid destination IP address : 0 Non-local destination IP address : 20421 Non-active FHRP dest IP address. Learn and drop : 0 Invalid source MAC address : 0 Source MAC address is our own : 0 Received before arp initialization : 0 L2 packet on proxy-arp-enabled interface : 0 L2 packet on untrusted L2 port : 0 Packet with VIP on standby FHRP : 0 Grat arp received on proxy-arp-enabled interface : 0 Requests came for exising entries : 15 Requests came on a L2 interface : 0 L2FM query failed for a L2 Address : 0 Dropping due to tunneling failures : 0 Glean requests recv count : 71 ARP refresh requests received from clients: 0 Number of Signals received from L2rib : 0 ARP adjacency statistics Adds 43, Deletes 12, Timeouts 12 Failed due to limits: 0 ''' } golden_parsed_output_1 = {'statistics': {'adjacency': {'adjacency_adds': 5, 'adjacency_deletes': 0, 'adjacency_timeouts': 0}, 'received': {'anycast_proxy_arp': 0, 'dropped': 7, 'dropped_server_port': 0, 'drops_details': {'appeared_on_a_wrong_interface': 0, 'context_not_created': 0, 'directed_broadcast_source': 0, 'dropping_due_to_tunneling_failures': 0, 'grat_arp_received_on_proxy': 0, 'incorrect_length': 0, 'invalid_context': 0, 'invalid_destination_ip_address': 0, 'invalid_hardwaretype': 0, 'invalid_layer2_address_length': 0, 'invalid_layer3_address_length': 0, 'invalid_protocol_packet': 0, 'invalid_source_ip_address': 0, 'invalid_source_mac_address': 0, 'l2_packet_on_untrusted_l2_port': 0, 'l2fm_query_failed_for_a_l2address': 0, 'no_mem_to_create_per_intf_structure': 0, 'non_active_fhrp_dest_ip': 0, 'non_local_destination_ip_address': 7, 'packet_with_vip_on_standby_fhrp': 0, 'received_before_arp_initialization': 0, 'requests_came_for_exising_entries': 0, 'requests_came_on_a_l2_interface': 0, 'source_address_mismatch_with_subnet': 0, 'source_mac_address_is_our_own': 0}, 'enhanced_proxy_arp': 0, 'fastpath': 0, 'l2_port_track_proxy_arp': 0, 'l2_replies': 0, 'l2_requests': 0, 'local_proxy_arp': 0, 'proxy_arp': 0, 'replies': 55, 'requests': 5, 'snooped': 0, 'total': 67, 'tunneled': 0}, 'sent': {'dropped': 0, 'drops_details': {'adjacency_couldnt_be_added': 0, 'client_enqueue_failed': 0, 'context_not_created': 0, 'dest_not_reachable_for_proxy_arp': 0, 'dest_unreachable_for_enhanced_proxy': 0, 'destnination_is_our_own_ip': 0, 'destnination_on_l2_port_tracked': 0, 'invalid_context': 0, 'invalid_dest_ip': 0, 'invalid_ifindex': 0, 'invalid_local_proxy_arp': 0, 'invalid_proxy_arp': 0, 'invalid_src_ip': 0, 'mbuf_operation_failed': 0, 'null_source_ip': 0, 'null_source_mac': 0, 'unattached_ip': 0, 'vip_is_not_active': 0}, 'gratuitous': 2, 'l2_replies': 0, 'l2_requests': 0, 'replies': 5, 'requests': 57, 'total': 64, 'tunneled': 0}}} golden_output_1 = {'execute.return_value': ''' nx-osv9000-1# show ip arp statistics ARP packet statistics for context default Sent: Total 64, Requests 57, Replies 5, Requests on L2 0, Replies on L2 0, Gratuitous 2, Tunneled 0, Dropped 0 Send packet drops details: MBUF operation failed : 0 Context not yet created : 0 Invalid context : 0 Invalid ifindex : 0 Invalid SRC IP : 0 Invalid DEST IP : 0 Destination is our own IP : 0 Unattached IP : 0 Adjacency Couldn't be added : 0 Null Source IP : 0 Null Source MAC : 0 Client Enqueue Failed : 0 Dest. not reachable for proxy arp : 0 Dest. unreachable for enhanced proxy: 0 Dest. on L2 port being tracked : 0 Invalid Local proxy arp : 0 Invalid proxy arp : 0 VIP is not active : 0 Received: Total 67, Requests 5, Replies 55, Requests on L2 0, Replies on L2 0 Proxy arp 0, Local-Proxy arp 0, Enhanced Proxy arp 0, Anycast proxy Proxy arp 0, L2 Port-track Proxy arp 0, Tunneled 0, Fastpath 0, Snooped 0, Dropped 7, on Server Port 0 Received packet drops details: Appeared on a wrong interface : 0 Incorrect length : 0 Invalid protocol packet : 0 Invalid Hardware type : 0 Invalid context : 0 Context not yet created : 0 Invalid layer 2 address length : 0 Invalid layer 3 address length : 0 Invalid source IP address : 0 Source IP address is our own : 0 No mem to create per intf structure : 0 Source address mismatch with subnet : 0 Directed broadcast source : 0 Invalid destination IP address : 0 Non-local destination IP address : 7 Non-active FHRP dest IP address. Learn and drop : 0 Invalid source MAC address : 0 Source MAC address is our own : 0 Received before arp initialization : 0 L2 packet on proxy-arp-enabled interface : 0 L2 packet on untrusted L2 port : 0 Packet with VIP on standby FHRP : 0 Grat arp received on proxy-arp-enabled interface : 0 Requests came for exising entries : 0 Requests came on a l2 interface : 0 L2FM query failed for a L2 Address : 0 Dropping due to tunneling failures : 0 ARP adjacency statistics Adds 5, Deletes 0, Timeouts 0 nx-osv9000-1# ''' } def test_empty(self): self.device = Mock(**self.empty_output) obj = ShowIpArpstatisticsVrfAll(device=self.device) with self.assertRaises(SchemaEmptyParserError): parsed_output = obj.parse() def test_golden(self): self.maxDiff = None self.device = Mock(**self.golden_output) obj = ShowIpArpstatisticsVrfAll(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output) def test_golden_1(self): self.maxDiff = None self.device = Mock(**self.golden_output_1) obj = ShowIpArpstatisticsVrfAll(device=self.device) parsed_output = obj.parse() self.assertEqual(parsed_output, self.golden_parsed_output_1) if __name__ == '__main__': unittest.main()
35.627869
181
0.526849
9ec0ac976de49670c7b742bba14e3d657730bdc3
5,863
py
Python
faster_rcnn/rpn_proposal.py
tendence/faster_rcnn
55810bc759482acc1a047f949cc0bda942329df1
[ "MIT" ]
1
2017-12-08T02:44:40.000Z
2017-12-08T02:44:40.000Z
faster_rcnn/rpn_proposal.py
tendence/faster_rcnn
55810bc759482acc1a047f949cc0bda942329df1
[ "MIT" ]
null
null
null
faster_rcnn/rpn_proposal.py
tendence/faster_rcnn
55810bc759482acc1a047f949cc0bda942329df1
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # Copyright 2017, Mengxiao Lin <linmx0130@gmail.com> import mxnet as mx import numpy as np from .anchor_generator import generate_anchors, map_anchors from .utils import bbox_inverse_transform, bbox_overlaps, bbox_transform, bbox_clip from .nms import nms from .config import cfg def proposal_train(rpn_cls, rpn_reg, gt, feature_shape, image_shape, ctx): # Stop gradient to stop gradient recording rpn_cls = mx.nd.stop_gradient(rpn_cls) rpn_reg = mx.nd.stop_gradient(rpn_reg) # Get basic information of the feature and the image _n, _c, f_height, f_width = feature_shape _in, _ic, img_height, img_width = image_shape rpn_cls = rpn_cls.reshape((1, -1, 2, f_height, f_width)) anchors_count = rpn_cls.shape[1] # Recover RPN prediction with anchors ref_anchors = generate_anchors(base_size=16, ratios=cfg.anchor_ratios, scales=cfg.anchor_scales) anchors = map_anchors(ref_anchors, rpn_reg.shape, img_height, img_width, ctx) anchors = anchors.reshape((1, -1, 4, f_height, f_width)) anchors = mx.nd.transpose(anchors, (0, 3, 4, 1, 2)) rpn_anchor_scores = mx.nd.softmax(mx.nd.transpose(rpn_cls, (0, 3, 4, 1, 2)), axis=4)[:,:,:,:,1] rpn_reg = mx.nd.transpose(rpn_reg.reshape((1, -1, 4, f_height, f_width)), (0, 3, 4, 1, 2)) with mx.autograd.pause(): rpn_bbox_pred = bbox_inverse_transform(anchors.reshape((-1, 4)), rpn_reg.reshape((-1, 4))) rpn_bbox_pred = bbox_clip(rpn_bbox_pred, img_height, img_width) rpn_bbox_pred = rpn_bbox_pred.reshape((1, f_height, f_width, anchors_count, 4)) # Use NMS to filter out too many boxes rpn_bbox_pred = rpn_bbox_pred.asnumpy().reshape((-1, 4)) rpn_anchor_scores = rpn_anchor_scores.asnumpy().reshape((-1, )) rpn_anchor_scores, rpn_bbox_pred = nms(rpn_anchor_scores, rpn_bbox_pred, cfg.rpn_nms_thresh, use_top_n=cfg.bbox_count_before_nms) rpn_bbox_pred = mx.nd.array(rpn_bbox_pred, ctx) del rpn_anchor_scores # append ground truth rpn_bbox_pred = mx.nd.concatenate([rpn_bbox_pred, gt[0][:,:4]]) # assign label for rpn_bbox_pred overlaps = bbox_overlaps(rpn_bbox_pred, gt[0][:, :4].reshape((-1, 4))) gt_assignment = mx.nd.argmax(overlaps, axis=1).asnumpy().astype(np.int32) max_overlaps = mx.nd.max(overlaps, axis=1).asnumpy() gt_labels = gt[0][:, 4].reshape((-1,)).asnumpy() gt_bboxes = gt[0][:, :4].reshape((-1, 4)).asnumpy() cls_labels = gt_labels[gt_assignment] rpn_bbox_pred_np = rpn_bbox_pred.asnumpy() reg_target = gt_bboxes[gt_assignment, :] cls_labels = cls_labels * (max_overlaps >= cfg.rcnn_fg_thresh) # sample positive and negative ROIs fg_inds = np.where(max_overlaps >= cfg.rcnn_fg_thresh)[0] bg_inds = np.where((max_overlaps >= cfg.rcnn_bg_lo_thresh) * (max_overlaps < cfg.rcnn_fg_thresh))[0] fg_nums = int(cfg.rcnn_train_sample_size * cfg.rcnn_train_fg_fraction) bg_nums = cfg.rcnn_train_sample_size - fg_nums if (len(fg_inds) > fg_nums): fg_inds = np.random.choice(fg_inds, size=fg_nums, replace=False) if (len(bg_inds) > bg_nums): bg_inds = np.random.choice(bg_inds, size=bg_nums, replace=False) cls_labels = np.concatenate([cls_labels[fg_inds], cls_labels[bg_inds]]) reg_target = np.concatenate([reg_target[fg_inds], reg_target[bg_inds]]) rpn_bbox_pred_np = np.concatenate([rpn_bbox_pred_np[fg_inds], rpn_bbox_pred_np[bg_inds]]) cls_labels = mx.nd.array(cls_labels, ctx) reg_target = mx.nd.array(reg_target, ctx) rpn_bbox_pred = mx.nd.array(rpn_bbox_pred_np, ctx) reg_target = bbox_transform(rpn_bbox_pred, reg_target) # Shape reg_target into 4 * num_classes reg_large_target = mx.nd.zeros((reg_target.shape[0], 4 * cfg.num_classes), ctx) for i in range(cls_labels.shape[0]): cur_label = int(cls_labels[i].asscalar()) if (cur_label != 0): reg_large_target[i, cur_label*4: (cur_label+1)*4] = reg_target[i, :] return rpn_bbox_pred, reg_large_target, cls_labels def proposal_test(rpn_cls, rpn_reg, feature_shape, image_shape, ctx): # Stop gradient to stop gradient recording rpn_cls = mx.nd.stop_gradient(rpn_cls) rpn_reg = mx.nd.stop_gradient(rpn_reg) # Get basic information of the feature and the image _n, _c, f_height, f_width = feature_shape _in, _ic, img_height, img_width = image_shape rpn_cls = rpn_cls.reshape((1, -1, 2, f_height, f_width)) anchors_count = rpn_cls.shape[1] # Recover RPN prediction with anchors ref_anchors = generate_anchors(base_size=16, ratios=cfg.anchor_ratios, scales=cfg.anchor_scales) anchors = map_anchors(ref_anchors, rpn_reg.shape, img_height, img_width, ctx) anchors = anchors.reshape((1, -1, 4, f_height, f_width)) anchors = mx.nd.transpose(anchors, (0, 3, 4, 1, 2)) rpn_anchor_scores = mx.nd.softmax(mx.nd.transpose(rpn_cls, (0, 3, 4, 1, 2)), axis=4)[:,:,:,:,1] rpn_reg = mx.nd.transpose(rpn_reg.reshape((1, -1, 4, f_height, f_width)), (0, 3, 4, 1, 2)) rpn_bbox_pred = bbox_inverse_transform(anchors.reshape((-1, 4)), rpn_reg.reshape((-1, 4))) rpn_bbox_pred = bbox_clip(rpn_bbox_pred, img_height, img_width) rpn_bbox_pred = rpn_bbox_pred.reshape((1, f_height, f_width, anchors_count, 4)) # Use NMS to filter out too many boxes rpn_bbox_pred = rpn_bbox_pred.asnumpy().reshape((-1, 4)) rpn_anchor_scores = rpn_anchor_scores.asnumpy().reshape((-1, )) rpn_anchor_scores, rpn_bbox_pred = nms(rpn_anchor_scores, rpn_bbox_pred, cfg.rpn_nms_thresh, use_top_n=cfg.bbox_count_before_nms) rpn_bbox_pred = mx.nd.array(rpn_bbox_pred, ctx) del rpn_anchor_scores # Keep first cfg.rcnn_test_sample_size boxes if rpn_bbox_pred.shape[0] > cfg.rcnn_test_sample_size: rpn_bbox_pred = rpn_bbox_pred[:cfg.rcnn_test_sample_size, :] return rpn_bbox_pred
49.686441
133
0.711752
6b05a475bdc626d99997616a9c027a2f62bc8320
753
py
Python
website.py
MrL3X/mr_l3x.github.io
b4c0c5360f5d86ed73ca250d38c251030908d9f7
[ "MIT" ]
1
2018-04-06T00:37:39.000Z
2018-04-06T00:37:39.000Z
website.py
MrL3X/Flask_Website
b4c0c5360f5d86ed73ca250d38c251030908d9f7
[ "MIT" ]
null
null
null
website.py
MrL3X/Flask_Website
b4c0c5360f5d86ed73ca250d38c251030908d9f7
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from flask import Flask, flash, redirect, render_template, request, session, abort from random import randint app = Flask(__name__) app.config['SECRET_KEY'] = 'My website' @app.route("/") def index(): return render_template('index.html', title='Home') @app.route('/') def about(): return render_template('index.html', title='Aboute Me') @app.route('/projects') def programmation(): return render_template('projects.html', title='Projects') @app.route('/events') def roadtrip(): return render_template('events.html', title='Events') @app.route('/experiences') def passions(): return render_template('experiences.html', title='Experiences') if __name__ == "__main__": app.run(host='0.0.0.0', port=80)
25.1
82
0.702523
219fffa25aa59a3e7dada81d4fb072b867a27ba4
1,882
py
Python
config/configure-secrets.py
adeptvin1/AdvantEDGE
e619e7bf7a442b8d652df6b6e8b45dca005059fc
[ "Apache-2.0" ]
43
2019-09-17T23:08:38.000Z
2022-03-11T21:51:48.000Z
config/configure-secrets.py
adeptvin1/AdvantEDGE
e619e7bf7a442b8d652df6b6e8b45dca005059fc
[ "Apache-2.0" ]
51
2019-09-18T14:38:15.000Z
2022-03-27T16:34:07.000Z
config/configure-secrets.py
adeptvin1/AdvantEDGE
e619e7bf7a442b8d652df6b6e8b45dca005059fc
[ "Apache-2.0" ]
32
2019-09-17T19:40:00.000Z
2022-03-24T22:23:35.000Z
#!/usr/bin/python import sys import yaml import subprocess def usage(): print(''' NAME configure-secrets - Create or delete platform deployment secrets from FILE SYNOPSIS configure-secrets <ACTION> FILE ACTION -s, set Set secrets -d, del Delete secrets FILE File containing secrets to be provisioned/removed ''') # Parse secrets file def parse(fname): print ('\n>>> Parsing secrets file') with open(fname, 'r') as stream: secrets = {} try: secrets = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) print('ERROR: failed to parse yaml file') exit(1) return secrets # Add provided secrets def add(secrets): print('\n>>> Setting secrets') if not bool(secrets): print('no secrets to add') return for secret, fields in secrets.items(): if not bool(fields): print('skipping secret with no fields: ' + secret) continue entries = '' for field, value in fields.items(): entries += ' --from-literal=' + field + '=' + value subprocess.call('kubectl create secret generic ' + secret + entries, shell=True) # Remove provided secrets def remove(secrets): print('\n>>> Removing secrets') if not bool(secrets): print('no secrets to remove') return for secret, fields in secrets.items(): subprocess.call('kubectl delete secret ' + secret, shell=True) # Parse arguments argCount = len(sys.argv) if argCount != 3: print('ERROR: invalid number of args') usage() sys.exit(1) action = sys.argv[1] fname = sys.argv[2] # Run command if (action == '-s' or action == 'set'): secrets = parse(fname) remove(secrets) add(secrets) elif (action == '-d' or action == 'del'): secrets = parse(fname) remove(secrets) else: print('ERROR: invalid action') usage() sys.exit(1) print('')
21.146067
84
0.637088
164bf2b5278b5fcaaed44c98c74542d9c15bab88
11,803
py
Python
examples/zonediff.py
Ashiq5/dnspython
5449af5318d88bada34f661247f3bcb16f58f057
[ "ISC" ]
1,666
2015-01-02T17:46:14.000Z
2022-03-30T07:27:32.000Z
examples/zonediff.py
felixonmars/dnspython
2691834df42aab74914883fdf26109aeb62ec647
[ "ISC" ]
591
2015-01-16T12:19:49.000Z
2022-03-30T21:32:11.000Z
examples/zonediff.py
felixonmars/dnspython
2691834df42aab74914883fdf26109aeb62ec647
[ "ISC" ]
481
2015-01-14T04:14:43.000Z
2022-03-30T19:28:52.000Z
#!/usr/bin/env python3 # # Small library and commandline tool to do logical diffs of zonefiles # ./zonediff -h gives you help output # # Requires dnspython to do all the heavy lifting # # (c)2009 Dennis Kaarsemaker <dennis@kaarsemaker.net> # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """See diff_zones.__doc__ for more information""" from typing import cast, Union, Any # pylint: disable=unused-import __all__ = ['diff_zones', 'format_changes_plain', 'format_changes_html'] try: import dns.zone import dns.node except ImportError: raise SystemExit("Please install dnspython") def diff_zones(zone1, # type: dns.zone.Zone zone2, # type: dns.zone.Zone ignore_ttl=False, ignore_soa=False ): # type: (...) -> list """diff_zones(zone1, zone2, ignore_ttl=False, ignore_soa=False) -> changes Compares two dns.zone.Zone objects and returns a list of all changes in the format (name, oldnode, newnode). If ignore_ttl is true, a node will not be added to this list if the only change is its TTL. If ignore_soa is true, a node will not be added to this list if the only changes is a change in a SOA Rdata set. The returned nodes do include all Rdata sets, including unchanged ones. """ changes = [] for name in zone1: namestr = str(name) n1 = cast(dns.node.Node, zone1.get_node(namestr)) n2 = cast(dns.node.Node, zone2.get_node(namestr)) if not n2: changes.append((str(name), n1, n2)) elif _nodes_differ(n1, n2, ignore_ttl, ignore_soa): changes.append((str(name), n1, n2)) for name in zone2: n3 = cast(dns.node.Node, zone1.get_node(name)) if not n3: n4 = cast(dns.node.Node, zone2.get_node(name)) changes.append((str(name), n3, n4)) return changes def _nodes_differ(n1, # type: dns.node.Node n2, # type: dns.node.Node ignore_ttl, # type: bool ignore_soa # type: bool ): # type: (...) -> bool if ignore_soa or not ignore_ttl: # Compare datasets directly for r in n1.rdatasets: if ignore_soa and r.rdtype == dns.rdatatype.SOA: continue if r not in n2.rdatasets: return True if not ignore_ttl: return r.ttl != n2.find_rdataset(r.rdclass, r.rdtype).ttl for r in n2.rdatasets: if ignore_soa and r.rdtype == dns.rdatatype.SOA: continue if r not in n1.rdatasets: return True assert False else: return n1 != n2 def format_changes_plain(oldf, # type: str newf, # type: str changes, # type: list ignore_ttl=False ): # type: (...) -> str """format_changes(oldfile, newfile, changes, ignore_ttl=False) -> str Given 2 filenames and a list of changes from diff_zones, produce diff-like output. If ignore_ttl is True, TTL-only changes are not displayed""" ret = "--- {}\n+++ {}\n".format(oldf, newf) for name, old, new in changes: ret += "@ %s\n" % name if not old: for r in new.rdatasets: ret += "+ %s\n" % str(r).replace('\n', '\n+ ') elif not new: for r in old.rdatasets: ret += "- %s\n" % str(r).replace('\n', '\n+ ') else: for r in old.rdatasets: if r not in new.rdatasets or ( r.ttl != new.find_rdataset(r.rdclass, r.rdtype).ttl and not ignore_ttl ): ret += "- %s\n" % str(r).replace('\n', '\n+ ') for r in new.rdatasets: if r not in old.rdatasets or ( r.ttl != old.find_rdataset(r.rdclass, r.rdtype).ttl and not ignore_ttl ): ret += "+ %s\n" % str(r).replace('\n', '\n+ ') return ret def format_changes_html(oldf, # type: str newf, # type: str changes, # type: list ignore_ttl=False ): # type: (...) -> str """format_changes(oldfile, newfile, changes, ignore_ttl=False) -> str Given 2 filenames and a list of changes from diff_zones, produce nice html output. If ignore_ttl is True, TTL-only changes are not displayed""" ret = '''<table class="zonediff"> <thead> <tr> <th>&nbsp;</th> <th class="old">%s</th> <th class="new">%s</th> </tr> </thead> <tbody>\n''' % (oldf, newf) for name, old, new in changes: ret += ' <tr class="rdata">\n <td class="rdname">%s</td>\n' % name if not old: for r in new.rdatasets: ret += ( ' <td class="old">&nbsp;</td>\n' ' <td class="new">%s</td>\n' ) % str(r).replace('\n', '<br />') elif not new: for r in old.rdatasets: ret += ( ' <td class="old">%s</td>\n' ' <td class="new">&nbsp;</td>\n' ) % str(r).replace('\n', '<br />') else: ret += ' <td class="old">' for r in old.rdatasets: if r not in new.rdatasets or ( r.ttl != new.find_rdataset(r.rdclass, r.rdtype).ttl and not ignore_ttl ): ret += str(r).replace('\n', '<br />') ret += '</td>\n' ret += ' <td class="new">' for r in new.rdatasets: if r not in old.rdatasets or ( r.ttl != old.find_rdataset(r.rdclass, r.rdtype).ttl and not ignore_ttl ): ret += str(r).replace('\n', '<br />') ret += '</td>\n' ret += ' </tr>\n' return ret + ' </tbody>\n</table>' # Make this module usable as a script too. def main(): # type: () -> None import argparse import subprocess import sys import traceback usage = """%prog zonefile1 zonefile2 - Show differences between zones in a diff-like format %prog [--git|--bzr|--rcs] zonefile rev1 [rev2] - Show differences between two revisions of a zonefile The differences shown will be logical differences, not textual differences. """ p = argparse.ArgumentParser(usage=usage) p.add_argument('-s', '--ignore-soa', action="store_true", default=False, dest="ignore_soa", help="Ignore SOA-only changes to records") p.add_argument('-t', '--ignore-ttl', action="store_true", default=False, dest="ignore_ttl", help="Ignore TTL-only changes to Rdata") p.add_argument('-T', '--traceback', action="store_true", default=False, dest="tracebacks", help="Show python tracebacks when errors occur") p.add_argument('-H', '--html', action="store_true", default=False, dest="html", help="Print HTML output") p.add_argument('-g', '--git', action="store_true", default=False, dest="use_git", help="Use git revisions instead of real files") p.add_argument('-b', '--bzr', action="store_true", default=False, dest="use_bzr", help="Use bzr revisions instead of real files") p.add_argument('-r', '--rcs', action="store_true", default=False, dest="use_rcs", help="Use rcs revisions instead of real files") opts, args = p.parse_args() opts.use_vc = opts.use_git or opts.use_bzr or opts.use_rcs def _open(what, err): # type: (Union[list,str], str) -> Any if isinstance(what, list): # Must be a list, open subprocess try: proc = subprocess.Popen(what, stdout=subprocess.PIPE) proc.wait() if proc.returncode == 0: return proc.stdout sys.stderr.write(err + "\n") except Exception: sys.stderr.write(err + "\n") if opts.tracebacks: traceback.print_exc() else: # Open as normal file try: return open(what, 'rb') except IOError: sys.stderr.write(err + "\n") if opts.tracebacks: traceback.print_exc() if not opts.use_vc and len(args) != 2: p.print_help() sys.exit(64) if opts.use_vc and len(args) not in (2, 3): p.print_help() sys.exit(64) # Open file descriptors if not opts.use_vc: oldn, newn = args else: if len(args) == 3: filename, oldr, newr = args oldn = "{}:{}".format(oldr, filename) newn = "{}:{}".format(newr, filename) else: filename, oldr = args newr = None oldn = "{}:{}".format(oldr, filename) newn = filename old, new = None, None oldz, newz = None, None if opts.use_bzr: old = _open(["bzr", "cat", "-r" + oldr, filename], "Unable to retrieve revision {} of {}".format(oldr, filename)) if newr is not None: new = _open(["bzr", "cat", "-r" + newr, filename], "Unable to retrieve revision {} of {}".format(newr, filename)) elif opts.use_git: old = _open(["git", "show", oldn], "Unable to retrieve revision {} of {}".format(oldr, filename)) if newr is not None: new = _open(["git", "show", newn], "Unable to retrieve revision {} of {}".format(newr, filename)) elif opts.use_rcs: old = _open(["co", "-q", "-p", "-r" + oldr, filename], "Unable to retrieve revision {} of {}".format(oldr, filename)) if newr is not None: new = _open(["co", "-q", "-p", "-r" + newr, filename], "Unable to retrieve revision {} of {}".format(newr, filename)) if not opts.use_vc: old = _open(oldn, "Unable to open %s" % oldn) if not opts.use_vc or newr is None: new = _open(newn, "Unable to open %s" % newn) if not old or not new: sys.exit(65) # Parse the zones try: oldz = dns.zone.from_file(old, origin='.', check_origin=False) except dns.exception.DNSException: sys.stderr.write("Incorrect zonefile: %s\n" % old) if opts.tracebacks: traceback.print_exc() try: newz = dns.zone.from_file(new, origin='.', check_origin=False) except dns.exception.DNSException: sys.stderr.write("Incorrect zonefile: %s\n" % new) if opts.tracebacks: traceback.print_exc() if not oldz or not newz: sys.exit(65) changes = diff_zones(oldz, newz, opts.ignore_ttl, opts.ignore_soa) changes.sort() if not changes: sys.exit(0) if opts.html: print(format_changes_html(oldn, newn, changes, opts.ignore_ttl)) else: print(format_changes_plain(oldn, newn, changes, opts.ignore_ttl)) sys.exit(1) if __name__ == '__main__': main()
37.951768
101
0.555791
810a4e596faf1458f9cf82eef33c3e5240c64dd7
705
py
Python
WebMirror/management/rss_parser_funcs/feed_parse_extractWwwOtakubuCom.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
193
2016-08-02T22:04:35.000Z
2022-03-09T20:45:41.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractWwwOtakubuCom.py
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
533
2016-08-23T20:48:23.000Z
2022-03-28T15:55:13.000Z
WebMirror/management/rss_parser_funcs/feed_parse_extractWwwOtakubuCom.py
rrosajp/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
[ "BSD-3-Clause" ]
19
2015-08-13T18:01:08.000Z
2021-07-12T17:13:09.000Z
def extractWwwOtakubuCom(item): ''' Parser for 'www.otakubu.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('Hyaku Ma No Omo', 'Hyaku Ma No Omo', 'translated'), ('Hyaku Ma No Aruji', 'Hyaku Ma No Aruji', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
32.045455
104
0.584397
094ecc7db53347bede899d0e32ccffb01abac1d2
268
py
Python
DayOf/regression.py
samuelfu/MIT_Trading
608464adf08cc9ede838e3947c5ae5ffb31a43f1
[ "MIT" ]
30
2018-12-10T21:17:35.000Z
2022-03-01T04:19:56.000Z
DayOf/regression.py
samuelfu/MIT_Trading
608464adf08cc9ede838e3947c5ae5ffb31a43f1
[ "MIT" ]
8
2020-11-12T02:40:57.000Z
2021-02-25T05:50:03.000Z
DayOf/regression.py
samuelfu/MIT_Trading
608464adf08cc9ede838e3947c5ae5ffb31a43f1
[ "MIT" ]
11
2018-12-23T23:40:10.000Z
2022-03-14T16:49:03.000Z
import pandas as pd from pandas import DataFrame from sklearn import linear_model import statsmodels.api as sm data = pd.read_csv('train_data/simple.csv') df = DataFrame(data, columns=['p', 'prev_price', 't', 'x1', 'x2']) X = df[['x1', 'x2']] Y = df[''] print(df)
19.142857
66
0.679104
5782ba1779dd4d4ebd0d263ee746161642c5a60f
1,674
py
Python
patreon/schemas/user.py
monokrome/patreon-python
09aad6800c6b9f33e026712a43e5f7e7c7a2a391
[ "Apache-2.0" ]
null
null
null
patreon/schemas/user.py
monokrome/patreon-python
09aad6800c6b9f33e026712a43e5f7e7c7a2a391
[ "Apache-2.0" ]
null
null
null
patreon/schemas/user.py
monokrome/patreon-python
09aad6800c6b9f33e026712a43e5f7e7c7a2a391
[ "Apache-2.0" ]
null
null
null
class Attributes(object): email = 'email' first_name = 'first_name' last_name = 'last_name' full_name = 'full_name' gender = 'gender' status = 'status' vanity = 'vanity' about = 'about' facebook_id = 'facebook_id' image_url = 'image_url' thumb_url = 'thumb_url' thumbnails = 'thumbnails' youtube = 'youtube' twitter = 'twitter' facebook = 'facebook' twitch = 'twitch' is_suspended = 'is_suspended' is_deleted = 'is_deleted' is_nuked = 'is_nuked' created = 'created' url = 'url' like_count = 'like_count' comment_count = 'comment_count' is_creator = 'is_creator' hide_pledges = 'hide_pledges' two_factor_enabled = 'two_factor_enabled' class Relationships(object): pledges = 'pledges' cards = 'cards' follows = 'follows' campaign = 'campaign' presence = 'presence' session = 'session' locations = 'locations' current_user_follow = 'current_user_follow' pledge_to_current_user = 'pledge_to_current_user' default_attributes = [ Attributes.email, Attributes.first_name, Attributes.last_name, Attributes.full_name, Attributes.gender, Attributes.status, Attributes.vanity, Attributes.about, Attributes.facebook_id, Attributes.image_url, Attributes.thumb_url, Attributes.thumbnails, Attributes.youtube, Attributes.twitter, Attributes.facebook, Attributes.twitch, Attributes.is_suspended, Attributes.is_deleted, Attributes.is_nuked, Attributes.created, Attributes.url, ] default_relationships = [ Relationships.campaign, Relationships.pledges, ]
23.914286
53
0.677419
0c90af87b94573f87a34b9198ec4f20ce4b963c1
935
py
Python
labeler_api/app/db/__init__.py
UMass-Rescue/RescueLabeler
6a6e57ed2d6f8c05b398b7068a464998abd4bf9b
[ "MIT" ]
null
null
null
labeler_api/app/db/__init__.py
UMass-Rescue/RescueLabeler
6a6e57ed2d6f8c05b398b7068a464998abd4bf9b
[ "MIT" ]
null
null
null
labeler_api/app/db/__init__.py
UMass-Rescue/RescueLabeler
6a6e57ed2d6f8c05b398b7068a464998abd4bf9b
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy_utils import database_exists, create_database import logging from app.db import base # noqa from app.db.base_class import Base import app.core.config as config logger = logging.getLogger("rescue-labeler") engine = create_engine(config.SQLALCHEMY_DATABASE_URI, pool_pre_ping=True) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) def init_db() -> None: """Initialize tables with base metadata""" if not database_exists(engine.url): create_database(engine.url) logger.info("Created db") Base.metadata.create_all(bind=engine) logger.info("initialized_tables") class DBContextManager: def __init__(self): self.db = SessionLocal() def __enter__(self): return self.db def __exit__(self, exc_type, exc_value, traceback): self.db.close()
28.333333
75
0.739037
c8244f33e9417242192afdc8438ef6c61bcfc4f1
1,684
py
Python
Visualization/visualizing_feature_collection.py
monocilindro/qgis-earthengine-examples
82aea8926d34ed3f4ad4a4a345ddbd225819d28f
[ "MIT" ]
646
2019-12-03T06:09:03.000Z
2022-03-28T03:37:08.000Z
Visualization/visualizing_feature_collection.py
csaybar/qgis-earthengine-examples
ba8942683834d2847ff3246bdd1859b36e50fe44
[ "MIT" ]
10
2019-12-30T03:42:44.000Z
2021-05-22T07:34:07.000Z
Visualization/visualizing_feature_collection.py
csaybar/qgis-earthengine-examples
ba8942683834d2847ff3246bdd1859b36e50fe44
[ "MIT" ]
219
2019-12-06T02:20:53.000Z
2022-03-30T15:14:27.000Z
import ee from ee_plugin import Map # Load a FeatureCollection from a table dataset: 'RESOLVE' ecoregions. ecoregions = ee.FeatureCollection('RESOLVE/ECOREGIONS/2017') # Display as default and with a custom color. Map.addLayer(ecoregions, {}, 'default display') Map.addLayer(ecoregions, {'color': 'FF0000'}, 'colored') Map.addLayer(ecoregions.draw(**{'color': '006600', 'strokeWidth': 5}), {}, 'drawn') # Create an empty image into which to paint the features, cast to byte. empty = ee.Image().byte() # Paint all the polygon edges with the same number and 'width', display. outline = empty.paint(**{ 'featureCollection': ecoregions, 'color': 1, 'width': 3 }) Map.addLayer(outline, {'palette': 'FF0000'}, 'edges') # Paint the edges with different colors, display. outlines = empty.paint(**{ 'featureCollection': ecoregions, 'color': 'BIOME_NUM', 'width': 4 }) palette = ['FF0000', '00FF00', '0000FF'] Map.addLayer(outlines, {'palette': palette, 'max': 14}, 'different color edges') # Paint the edges with different colors and 'width's. outlines = empty.paint(**{ 'featureCollection': ecoregions, 'color': 'BIOME_NUM', 'width': 'NNH' }) Map.addLayer(outlines, {'palette': palette, 'max': 14}, 'different color, width edges') # Paint the interior of the polygons with different colors. fills = empty.paint(**{ 'featureCollection': ecoregions, 'color': 'BIOME_NUM', }) Map.addLayer(fills, {'palette': palette, 'max': 14}, 'colored fills') # Paint both the fill and the edges. filledOutlines = empty.paint(ecoregions, 'BIOME_NUM').paint(ecoregions, 0, 2) Map.addLayer(filledOutlines, {'palette': ['000000'] + palette, 'max': 14}, 'edges and fills')
29.034483
93
0.696556
00cd9668d735b60ff529522a27aa5ad1735b0404
2,849
py
Python
optimade-python-tools/tests/server/query_params/conftest.py
attlevafritt/tfya92-groupa-optimade-python-tools
43e462ce70cf50a20f21a0aefb15d39db265773b
[ "MIT" ]
null
null
null
optimade-python-tools/tests/server/query_params/conftest.py
attlevafritt/tfya92-groupa-optimade-python-tools
43e462ce70cf50a20f21a0aefb15d39db265773b
[ "MIT" ]
null
null
null
optimade-python-tools/tests/server/query_params/conftest.py
attlevafritt/tfya92-groupa-optimade-python-tools
43e462ce70cf50a20f21a0aefb15d39db265773b
[ "MIT" ]
null
null
null
import pytest @pytest.fixture def check_include_response(get_good_response): """Fixture to check "good" `include` response""" from typing import Union, List, Set def inner( request: str, expected_included_types: Union[List, Set], expected_included_resources: Union[List, Set], expected_relationship_types: Union[List, Set] = None, server: str = "regular", ): response = get_good_response(request, server) response_data = ( response["data"] if isinstance(response["data"], list) else [response["data"]] ) included_resource_types = list({_["type"] for _ in response["included"]}) assert sorted(expected_included_types) == sorted(included_resource_types), ( f"Expected relationship types: {expected_included_types}. " f"Does not match relationship types in response's included field: {included_resource_types}", ) if expected_relationship_types is None: expected_relationship_types = expected_included_types relationship_types = set() for entry in response_data: relationship_types.update(set(entry.get("relationships", {}).keys())) assert sorted(expected_relationship_types) == sorted(relationship_types), ( f"Expected relationship types: {expected_relationship_types}. " f"Does not match relationship types found in response data: {relationship_types}", ) included_resources = [_["id"] for _ in response["included"]] assert len(included_resources) == len(expected_included_resources), response[ "included" ] assert sorted(set(included_resources)) == sorted(expected_included_resources) return inner @pytest.fixture def check_required_fields_response(get_good_response): """Fixture to check "good" `required_fields` response""" from optimade.server import mappers get_mapper = { "links": mappers.LinksMapper, "references": mappers.ReferenceMapper, "structures": mappers.StructureMapper, } def inner( endpoint: str, known_unused_fields: set, expected_fields: set, server: str = "regular", ): expected_fields |= ( get_mapper[endpoint].get_required_fields() - known_unused_fields ) expected_fields.add("attributes") request = f"/{endpoint}?response_fields={','.join(expected_fields)}" response = get_good_response(request, server) response_fields = set() for entry in response["data"]: response_fields.update(set(entry.keys())) response_fields.update(set(entry["attributes"].keys())) assert sorted(expected_fields) == sorted(response_fields) return inner
35.17284
105
0.651457
2101ec56934901cc5cb4d068f7570f0778674bc5
3,553
py
Python
tests.py
richardpanda/kraken
d37c0a27f41e53846c9a11f562dea328bdb21248
[ "MIT" ]
null
null
null
tests.py
richardpanda/kraken
d37c0a27f41e53846c9a11f562dea328bdb21248
[ "MIT" ]
1
2021-06-01T22:09:12.000Z
2021-06-01T22:09:12.000Z
tests.py
richardpanda/kraken
d37c0a27f41e53846c9a11f562dea328bdb21248
[ "MIT" ]
null
null
null
import json import unittest from app import create_app, db from app.models import User from config import TestingConfig from unittest.mock import patch class APITests(unittest.TestCase): def setUp(self): self.app = create_app(TestingConfig) self.client = self.app.test_client() self.app_context = self.app.app_context() self.app_context.push() db.create_all() def tearDown(self): db.session.remove() db.drop_all() self.app_context.pop() def test_confirm_code(self): user = User(phone_number='+12345678999', start_hour=8, end_hour=22) db.session.add(user) db.session.commit() request_body = {'code': user.code} response = self.client.post( f'/api/phone-number/{user.phone_number}/confirm', data=request_body) self.assertEqual(response.status_code, 200) self.assertFalse(user.is_pending) def test_confirm_code_with_mismatch_codes(self): user = User(phone_number='+12345678999', start_hour=8, end_hour=22) db.session.add(user) db.session.commit() request_body = {'code': 'invalid code'} response = self.client.post( f'/api/phone-number/{user.phone_number}/confirm', data=request_body) response_body = json.loads(response.data) self.assertEqual(response.status_code, 400) self.assertEqual(response_body['message'], 'Mismatch codes.') self.assertTrue(user.is_pending) def test_confirm_code_with_unregistered_phone_number(self): request_body = {'code': '123456'} unregistered_phone_number = '+11111111111' response = self.client.post( f'/api/phone-number/{unregistered_phone_number}/confirm', data=request_body) response_body = json.loads(response.data) self.assertEqual(response.status_code, 400) self.assertEqual(response_body['message'], 'Phone number has not been registered.') @patch('app.api.create_twilio_client') def test_register(self, twilio_client): request_body = { 'phone_number': '+12345678999', 'start_hour': 8, 'end_hour': 22, } response = self.client.post('/api/register', data=request_body) self.assertEqual(response.status_code, 200) user = db.session.query(User).first() self.assertIsNotNone(user.code) self.assertEqual(len(user.code), 6) self.assertTrue(user.is_pending) twilio_client().api.account.messages.create.assert_called_with( to='+12345678999', from_=TestingConfig.TWILIO_PHONE_NUMBER, body=f'Your code is {user.code}') def test_register_with_existing_phone_number(self): user = User(phone_number='+12345678999', start_hour=8, end_hour=22) db.session.add(user) db.session.commit() request_body = { 'phone_number': user.phone_number, 'start_hour': user.start_hour, 'end_hour': user.end_hour, } response = self.client.post('/api/register', data=request_body) response_body = json.loads(response.data) self.assertEqual(response.status_code, 400) self.assertEqual(response_body['message'], 'Phone number has been registered already.') if __name__ == '__main__': unittest.main()
33.205607
88
0.622291
fe39ab84d614565922decd300ded46aea2f32f2f
10,130
py
Python
multinn/models/multinn/multinn_jamming.py
ilya16/MultINN
2173d6c4e67d4619e89ad93b2b8d9cc46aafc1c8
[ "MIT" ]
2
2019-07-22T14:00:40.000Z
2021-01-11T09:04:46.000Z
multinn/models/multinn/multinn_jamming.py
ilya16/MultINN
2173d6c4e67d4619e89ad93b2b8d9cc46aafc1c8
[ "MIT" ]
1
2020-05-04T12:53:26.000Z
2020-05-04T12:53:26.000Z
multinn/models/multinn/multinn_jamming.py
ilya16/MultINN
2173d6c4e67d4619e89ad93b2b8d9cc46aafc1c8
[ "MIT" ]
1
2019-12-30T13:00:13.000Z
2019-12-30T13:00:13.000Z
"""Implementation of a Jamming MultINN model with per-track modules and no communication.""" import tensorflow as tf from models.multinn.core.multi_encoder_nn import MultIEncoderNN from utils.training import compute_gradients class MultINNJamming(MultIEncoderNN): """Jamming MultINN model. Multiple per-track Encoders + Multiple per-track Generators with no inter-communication. Works with multi-track sequences and learns the track specific features. The models with Feedback inherit from the Jamming model. """ def __init__(self, config, params, name='MultINN-jamming'): """Initializes Jamming MultiNN model. Args: config: A dict of the experiment configurations. params: A dict of the model parameters. name: Optional model name to use as a prefix when adding operations. """ super().__init__(config, params, name=name) self._mode = 'jamming' def _init_generators(self, generator_class): """Initializes Generators of the Jamming MultINN model. Args: generator_class: A Python class of the Generators. Returns: generators: A list of the Jamming MultINN Generators. """ generators = [ generator_class( num_dims=self._num_dims_generator, num_hidden=self._params['generator']['num_hidden'], num_hidden_rnn=self._params['generator']['num_hidden_rnn'], keep_prob=self.keep_prob, track_name=self.tracks[i]) for i in range(self.num_tracks) ] return generators def _build_generators(self, mode='eval'): """Building the Jamming MultINN Generators. Inputs to the Generators are outputs from the Encoders. Args: Build mode for optimizing the graph size. """ for i in range(self.num_tracks): with tf.variable_scope(f'generator_inputs/{self.tracks[i]}'): generator_inputs = self._x_encoded[i][:, 0:-1, :] with tf.variable_scope(f'generator_targets/{self.tracks[i]}'): generator_targets = self._x_encoded[i][:, 1:, :] self.generators[i].build(x=generator_inputs, y=generator_targets, lengths=self._lengths, is_train=self._is_train, mode=mode) def _build_generator_outputs(self): """Returns the outputs from the Jamming MultINN Generators. Returns: generator_outputs: A list of flattened per-track outputs from the Generators. """ x_hidden = [] for i in range(self.num_tracks): with tf.variable_scope(f'{self.tracks[i]}'): x_hidden.append(self.generators[i].forward()) return x_hidden def _decode_generator_outputs(self): """Decodes the Generators' outputs through the Encoders. Returns: cond_probs: A list of flattened per-track conditional probabilities for the decoded outputs. decoded_outputs: A list of flattened per-track decoded generator outputs. """ outputs_probs, outputs = [], [] for i in range(self.num_tracks): with tf.variable_scope(f'{self.tracks[i]}'): cond_probs, decodings = self.encoders[i].decode(self._x_hidden[i]) outputs_probs.append(cond_probs) outputs.append(decodings) return outputs_probs, outputs def generate(self, num_steps): """Generating new sequences with the Jamming MultINN. The generative process starts by encoding the batch of input sequences and going through them to obtain the final inputs' state. Then, the Jamming per-track Generators generate `num_steps` new steps by sampling from the modelled conditional distributions. Finally, samples are decoded through the per-track Encoders to get the samples in original multi-track input format. Args: num_steps: A number of time steps to generate. Returns: samples: A batch of generated sequences, sized `[batch_size, num_steps, num_dims, num_tracks]` """ music = [] for i in range(self.num_tracks): # Generator forward pass with tf.variable_scope(f'{self.tracks[i]}'): samples_h = self.generators[i].generate(self._x_encoded[i], num_steps) # Decoding inputs into the original format with tf.variable_scope(f'samples/{self.tracks[i]}/'): _, samples = self.encoders[i].decode(samples_h) music.append(samples) # Making the samples multi-track with tf.variable_scope('samples/'): return tf.stack(music, axis=3, name='music') def pretrain_generators(self, optimizer, lr, separate_losses=False): """Constructs training ops for pre-training per-track MultINN Generators. Args: optimizer: tf.Optimizer object that computes gradients. lr: A learning rate for weight updates. separate_losses: `bool` indicating whether to optimize the separate losses for each track or optimize the average loss for all tracks. Returns: init_ops: A list of weight initialization ops. update_ops: A list of weights update ops. metrics: A dictionary of metric names and metric ops. metrics_upd: A list of metric update ops. summaries: A dict of tf.Summary objects for model's metrics, weights and training gradients. """ # Pre-train each Generator separately but in parallel return self._train_generators(optimizer, lr, pretrain=True, separate_losses=separate_losses) def train_generators(self, optimizer, lr, separate_losses=False): """Constructs training ops for training per-track MultINN Generators. Args: optimizer: tf.Optimizer object that computes gradients. lr: A learning rate for weight updates. separate_losses: `bool` indicating whether to optimize the separate losses for each track or optimize the average loss for all tracks. Returns: init_ops: A list of weight initialization ops. update_ops: A list of weights update ops. metrics: A dictionary of metric names and metric ops. metrics_upd: A list of metric update ops. summaries: A dict of tf.Summary objects for model's metrics, weights and training gradients. """ # Training generators by minimizing mean track loss init_ops, update_ops, metrics, metrics_upd, summaries = self._train_generators( optimizer, lr, pretrain=False, separate_losses=separate_losses ) # Combining with summaries on Encoder level summaries['metrics'] = tf.summary.merge([self.summaries['metrics'], summaries['metrics']]) metrics_upd = self.metrics_upd + metrics_upd metrics['global'] = self.metrics return init_ops, update_ops, metrics, metrics_upd, summaries def _train_generators(self, optimizer, lr, pretrain=False, separate_losses=False): """Auxiliary function for constructing training ops for MultINN Generators. Combines the functionality needed to build pre-training and training ops. Args: optimizer: tf.Optimizer object that computes gradients. lr: A learning rate for weight updates. pretrain: `bool` indicating whether to pre-train or train the Generators. separate_losses: `bool` indicating whether to optimize the separate losses for each track or optimize the average loss for all tracks. Returns: init_ops: A list of weight initialization ops. update_ops: A list of weights update ops. metrics: A dictionary of metric names and metric ops. metrics_upd: A list of metric update ops. summaries: A dict of tf.Summary objects for model's metrics, weights and training gradients. """ # (Pre-)training Fenerators by minimizing mean track loss init_ops, update_ops = [], [] track_metrics, track_metrics_upd, track_summaries = [], [], [] # Collecting per-track metrics for i in range(self.num_tracks): if pretrain: train_func = self.generators[i].pretrain else: train_func = self.generators[i].train init_ops_i, update_ops_i, metrics_i, metrics_upd_i, summaries_i = train_func( optimizer, lr, run_optimizer=separate_losses ) init_ops += init_ops_i update_ops += update_ops_i track_metrics.append(metrics_i) track_metrics_upd.append(metrics_upd_i) track_summaries.append(summaries_i) # Combining metrics and summaries metrics, metrics_upd, summaries = self._combine_track_metrics( track_metrics, track_metrics_upd, track_summaries, global_scope=f"metrics/{self.generators[0].name}/global/" ) if not separate_losses: # Optimizing the mean track loss trainable_variables = self.trainable_generator_variables + self.trainable_feedback_variables update_ops, summaries['gradients'] = compute_gradients( optimizer, metrics['batch/loss'], trainable_variables ) summaries['weights'] = tf.summary.merge( [tf.summary.histogram(var.name, var) for var in trainable_variables] ) return init_ops, update_ops, metrics, metrics_upd, summaries @property def trainable_feedback_variables(self): """An empty list of the Jamming MultINN trainable feedback module variables.""" return []
40.358566
104
0.635044
43932733f006cf948b923cdc4db44bb69cd252d1
673
py
Python
nextbox_ui_plugin/filters.py
MaxRink/nextbox-ui-plugin
c0d7dca18754e2f436b3178fcdd6e8cf0f09c884
[ "MIT" ]
2
2021-11-11T11:49:17.000Z
2022-01-04T02:10:45.000Z
nextbox_ui_plugin/filters.py
MaxRink/nextbox-ui-plugin
c0d7dca18754e2f436b3178fcdd6e8cf0f09c884
[ "MIT" ]
null
null
null
nextbox_ui_plugin/filters.py
MaxRink/nextbox-ui-plugin
c0d7dca18754e2f436b3178fcdd6e8cf0f09c884
[ "MIT" ]
1
2022-01-15T13:14:20.000Z
2022-01-15T13:14:20.000Z
import django_filters from dcim.models import Device, Site, Region class TopologyFilterSet(django_filters.FilterSet): device_id = django_filters.ModelMultipleChoiceFilter( queryset=Device.objects.all(), to_field_name='id', field_name='id', label='Device (ID)', ) site_id = django_filters.ModelMultipleChoiceFilter( queryset=Site.objects.all(), label='Site (ID)', ) region_id = django_filters.ModelMultipleChoiceFilter( queryset=Region.objects.all(), field_name='site__region', label='Region (ID)', ) class Meta: model = Device fields = ['id', 'name', ]
25.884615
57
0.640416
ed39557a3888a553539c7a0f9188defdef8513bf
141
py
Python
solutions/rosalind/ini4/ini4.py
deniscostadsc/playground
11fa8e2b708571940451f005e1f55af0b6e5764a
[ "MIT" ]
18
2015-01-22T04:08:51.000Z
2022-01-08T22:36:47.000Z
solutions/rosalind/ini4/ini4.py
deniscostadsc/playground
11fa8e2b708571940451f005e1f55af0b6e5764a
[ "MIT" ]
4
2016-04-25T12:32:46.000Z
2021-06-15T18:01:30.000Z
solutions/rosalind/ini4/ini4.py
deniscostadsc/playground
11fa8e2b708571940451f005e1f55af0b6e5764a
[ "MIT" ]
25
2015-03-02T06:21:51.000Z
2021-09-12T20:49:21.000Z
import sys a, b = sys.stdin.read().replace('\n', '').split() a = int(a) b = int(b) print(sum([i for i in range(a, b + 1) if i % 2 != 0]))
15.666667
54
0.524823
70c846d63852d4b1907c9305bfec7adc03e349b5
642
py
Python
main.py
WiraDKP/cow_detection_opencv
0e64a148747be879138cbd7cd452cf99c077a879
[ "MIT" ]
1
2021-07-04T07:30:58.000Z
2021-07-04T07:30:58.000Z
main.py
WiraDKP/cow_detection_opencv
0e64a148747be879138cbd7cd452cf99c077a879
[ "MIT" ]
null
null
null
main.py
WiraDKP/cow_detection_opencv
0e64a148747be879138cbd7cd452cf99c077a879
[ "MIT" ]
null
null
null
import cv2 from detect import CowDetection from jcopvision.io import MediaReader, key_pressed, create_sized_window import config as cfg if __name__ == "__main__": media = MediaReader(cfg.FILE_PATH) model = CowDetection(cfg.MODEL_PATH, cfg.CONFIG_PATH, cfg.LABEL_PATH) create_sized_window(500, media.aspect_ratio, cfg.WINDOW_NAME) for frame in media.read(): bbox, labels, scores = model.predict(frame, min_confidence=cfg.MIN_CONF, max_iou=cfg.MAX_IOU) frame = model.draw(frame, bbox, labels, scores) cv2.imshow(cfg.WINDOW_NAME, frame) if key_pressed("q"): break media.close()
33.789474
101
0.714953
fb1ef10600d279876845080702f6cad7155d070e
1,205
py
Python
qiskit/transpiler/passes/decompose.py
gaurav-iiser/qiskit-terra
3554a7e9ab5c77432ed5ccaa106fb8dc15553756
[ "Apache-2.0" ]
2
2021-09-06T19:25:36.000Z
2021-11-17T10:46:12.000Z
qiskit/transpiler/passes/decompose.py
gaurav-iiser/qiskit-terra
3554a7e9ab5c77432ed5ccaa106fb8dc15553756
[ "Apache-2.0" ]
null
null
null
qiskit/transpiler/passes/decompose.py
gaurav-iiser/qiskit-terra
3554a7e9ab5c77432ed5ccaa106fb8dc15553756
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. """Pass for decompose a gate in a circuit.""" from qiskit.transpiler.basepasses import TransformationPass class Decompose(TransformationPass): """ Expand a gate in a circuit using its decomposition rules. """ def __init__(self, gate=None): """ Args: gate (qiskit.circuit.gate.Gate): Gate to decompose. """ super().__init__() self.gate = gate def run(self, dag): """Expand a given gate into its decomposition. Args: dag(DAGCircuit): input dag Returns: DAGCircuit: output dag where gate was expanded. """ # Walk through the DAG and expand each non-basis node for node in dag.op_nodes(self.gate): decomposition_rules = node.op.decompositions() # TODO: allow choosing other possible decompositions decomposition_dag = decomposition_rules[0] dag.substitute_node_with_dag(node, decomposition_dag) return dag
28.023256
77
0.631535
24939e6d7e1adf40ecc8025ee07daccca11e314b
10,474
py
Python
mrjob/logs/mixin.py
lydian/mrjob
13028274296f5618d63ffc00301537fd385eef82
[ "Apache-2.0" ]
null
null
null
mrjob/logs/mixin.py
lydian/mrjob
13028274296f5618d63ffc00301537fd385eef82
[ "Apache-2.0" ]
null
null
null
mrjob/logs/mixin.py
lydian/mrjob
13028274296f5618d63ffc00301537fd385eef82
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2016 Yelp and Contributors # Copyright 2017 Yelp # Copyright 2018 Yelp # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runner mixin for counters and probable cause of failure. This relies on passing around a *log_interpretation* dictionary, which is described in detail in :py:mod:`mrjob.logs`. This mixin doesn't yet handle step logs because the EMR and Hadoop runners handle them so differently. It's up to you to fill in the 'step' field of your log interpretation; the mixin can't do much without it because it needs it for the job/application ID. Your runner should generally have one log interpretation per step, though the mixin doesn't care how or where you store them. """ from logging import getLogger from mrjob.compat import uses_yarn from mrjob.logs.counters import _format_counters from mrjob.logs.counters import _pick_counters from mrjob.logs.errors import _pick_error from mrjob.logs.errors import _pick_error_attempt_ids from mrjob.logs.history import _interpret_history_log from mrjob.logs.history import _ls_history_logs from mrjob.logs.task import _interpret_task_logs from mrjob.logs.task import _interpret_spark_task_logs from mrjob.logs.task import _ls_task_logs from mrjob.logs.task import _ls_spark_task_logs from mrjob.step import _is_spark_step_type log = getLogger(__name__) # a callback for _interpret_task_logs(). Breaking it out to make # testing easier def _log_parsing_task_log(log_path): log.info(' Parsing task log: %s' % log_path) class LogInterpretationMixin(object): """Mix this in to your runner class to simplify log interpretation.""" # this mixin is meant to be tightly bound to MRJobRunner, but # currently it only relies on self.fs and self.get_hadoop_version() ### stuff to redefine ### def _stream_history_log_dirs(self, output_dir=None): """Yield lists of directories (usually, URIs) to search for history logs in. Usually, you'll want to add logging messages (e.g. 'Searching for history logs in ...' :param output_dir: Output directory for step (optional), to look for logs (e.g. on Cloudera). """ return () def _stream_task_log_dirs(self, application_id=None, output_dir=None): """Yield lists of directories (usually, URIs) to search for task logs in. Usually, you'll want to add logging messages (e.g. 'Searching for task syslogs in...') :param application_id: YARN application ID (optional), so we can ls the relevant subdirectory of `userlogs/` rather than the whole thing :param output_dir: Output directory for step (optional), to look for logs (e.g. on Cloudera). """ # sometimes pre-YARN logs are organized by job ID, but not always, # so we don't bother with job_id; just ls() the entire userlogs # dir and depend on regexes to find the right subdir. return () def _get_step_log_interpretation(self, log_interpretation, step_type): """Return interpretation of the step log. Either implement this, or fill ``'step'`` yourself (e.g. from Hadoop binary's output.""" return None ### stuff to call ### def _pick_counters(self, log_interpretation, step_type): """Pick counters from our log interpretation, interpreting history logs if need be.""" if _is_spark_step_type(step_type): return {} counters = _pick_counters(log_interpretation) if self._read_logs(): if not counters: log.info('Attempting to fetch counters from logs...') self._interpret_step_logs(log_interpretation, step_type) counters = _pick_counters(log_interpretation) if not counters: self._interpret_history_log(log_interpretation) counters = _pick_counters(log_interpretation) return counters def _pick_error(self, log_interpretation, step_type): """Pick probable cause of failure (only call this if job fails).""" if self._read_logs() and not all( log_type in log_interpretation for log_type in ('step', 'history', 'task')): log.info('Scanning logs for probable cause of failure...') self._interpret_step_logs(log_interpretation, step_type) self._interpret_history_log(log_interpretation) error_attempt_ids = _pick_error_attempt_ids(log_interpretation) self._interpret_task_logs( log_interpretation, step_type, error_attempt_ids) return _pick_error(log_interpretation) ### stuff that should just work ### def _interpret_history_log(self, log_interpretation): """Fetch history log and add 'history' to log_interpretation.""" if 'history' in log_interpretation: return # already interpreted if not self._read_logs(): return # nothing to do step_interpretation = log_interpretation.get('step') or {} job_id = step_interpretation.get('job_id') if not job_id: if not log_interpretation.get('no_job'): log.warning("Can't fetch history log; missing job ID") return output_dir = step_interpretation.get('output_dir') log_interpretation['history'] = _interpret_history_log( self.fs, self._ls_history_logs( job_id=job_id, output_dir=output_dir)) def _ls_history_logs(self, job_id=None, output_dir=None): """Yield history log matches, logging a message for each one.""" if not self._read_logs(): return for match in _ls_history_logs( self.fs, self._stream_history_log_dirs(output_dir=output_dir), job_id=job_id): log.info(' Parsing history log: %s' % match['path']) yield match def _interpret_step_logs(self, log_interpretation, step_type): """Add *step* to the log interpretation, if it's not already there.""" if 'step' in log_interpretation: return if not self._read_logs(): return step_interpretation = self._get_step_log_interpretation( log_interpretation, step_type) if step_interpretation: log_interpretation['step'] = step_interpretation def _interpret_task_logs( self, log_interpretation, step_type, error_attempt_ids=(), partial=True): """Fetch task syslogs and stderr, and add 'task' to interpretation.""" if 'task' in log_interpretation and ( partial or not log_interpretation['task'].get('partial')): return # already interpreted if not self._read_logs(): return step_interpretation = log_interpretation.get('step') or {} application_id = step_interpretation.get('application_id') job_id = step_interpretation.get('job_id') output_dir = step_interpretation.get('output_dir') yarn = uses_yarn(self.get_hadoop_version()) attempt_to_container_id = log_interpretation.get('history', {}).get( 'attempt_to_container_id', {}) if yarn: if not application_id: if not log_interpretation.get('no_job'): log.warning( "Can't fetch task logs; missing application ID") return else: if not job_id: if not log_interpretation.get('no_job'): log.warning("Can't fetch task logs; missing job ID") return if _is_spark_step_type(step_type): interpret_func = _interpret_spark_task_logs else: interpret_func = _interpret_task_logs log_interpretation['task'] = interpret_func( self.fs, self._ls_task_logs( step_type, application_id=application_id, job_id=job_id, output_dir=output_dir, error_attempt_ids=error_attempt_ids, attempt_to_container_id=attempt_to_container_id, ), partial=partial, log_callback=_log_parsing_task_log) def _ls_task_logs(self, step_type, application_id=None, job_id=None, output_dir=None, error_attempt_ids=None, attempt_to_container_id=None): """Yield task log matches.""" if not self._read_logs(): return if _is_spark_step_type(step_type): ls_func = _ls_spark_task_logs else: ls_func = _ls_task_logs # logging messages are handled by a callback in _interpret_task_logs() matches = ls_func( self.fs, self._stream_task_log_dirs( application_id=application_id, output_dir=output_dir), application_id=application_id, job_id=job_id, error_attempt_ids=error_attempt_ids, attempt_to_container_id=attempt_to_container_id, ) for match in matches: yield match def _log_counters(self, log_interpretation, step_num): """Utility for logging counters (if any) for a step.""" step_type = self._get_step(step_num)['type'] if not _is_spark_step_type(step_type): counters = self._pick_counters( log_interpretation, step_type) if counters: log.info(_format_counters(counters)) elif self._read_logs(): # should only log this if we actually looked for counters log.warning('No counters found') def _read_logs(self): """If this is false, we shouldn't attempt to list or cat logs.""" return self._opts.get('read_logs', True)
37.676259
78
0.650754
8e5c48a837e0ac5fc48117e0d0ea5c8c20838f36
1,776
py
Python
tests/idp_slo_redirect_conf.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
249
2018-03-01T09:47:04.000Z
2022-03-26T04:51:26.000Z
tests/idp_slo_redirect_conf.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
416
2018-02-21T15:18:35.000Z
2022-03-04T16:59:36.000Z
tests/idp_slo_redirect_conf.py
skanct/pysaml2
0c1e26a6dd8759962857a30ebd67f63fe9e881ee
[ "Apache-2.0" ]
203
2018-02-21T13:53:12.000Z
2022-03-08T22:22:17.000Z
from saml2 import BINDING_HTTP_REDIRECT from saml2.saml import NAMEID_FORMAT_PERSISTENT from saml2.saml import NAME_FORMAT_URI from pathutils import full_path CONFIG = { "entityid" : "urn:mace:example.com:saml:roland:idp", "name" : "Rolands IdP", "service": { "idp": { "endpoints" : { "single_sign_on_service" : [ ("http://localhost:8088/sso", BINDING_HTTP_REDIRECT)], "single_logout_service": [ ("http://localhost:8088/slo", BINDING_HTTP_REDIRECT)] }, "policy": { "default": { "lifetime": {"minutes":15}, "attribute_restrictions": None, # means all I have "name_form": NAME_FORMAT_URI }, "urn:mace:example.com:saml:roland:sp": { "lifetime": {"minutes": 5}, "nameid_format": NAMEID_FORMAT_PERSISTENT, } }, "subject_data": full_path("subject_data.db"), } }, "debug" : 1, "key_file" : full_path("test.key"), "cert_file" : full_path("test.pem"), "xmlsec_binary" : None, "metadata": [{ "class": "saml2.mdstore.MetaDataFile", "metadata": [(full_path("sp_slo_redirect.xml"), )], }], "attribute_map_dir" : full_path("attributemaps"), "organization": { "name": "Exempel AB", "display_name": [("Exempel AB","se"),("Example Co.","en")], "url":"http://www.example.com/roland", }, "contact_person": [{ "given_name":"John", "sur_name": "Smith", "email_address": ["john.smith@example.com"], "contact_type": "technical", }, ], }
32.888889
78
0.515203
aebba599d6225d1984135139179c7456d6c1b7e8
1,586
py
Python
src/battery_hour_data.py
albinbjorn/battery_simulator
6636f86cdd5b0ed9a16541ff8ca8f0933360153e
[ "MIT" ]
null
null
null
src/battery_hour_data.py
albinbjorn/battery_simulator
6636f86cdd5b0ed9a16541ff8ca8f0933360153e
[ "MIT" ]
null
null
null
src/battery_hour_data.py
albinbjorn/battery_simulator
6636f86cdd5b0ed9a16541ff8ca8f0933360153e
[ "MIT" ]
null
null
null
import numpy as np def determine_P_instruct(load, P_activate, P_battery_max): if load <= P_activate and (P_activate - load >= P_battery_max): P_instruct = P_battery_max elif load <= P_activate and (P_activate - load < P_battery_max): P_instruct = P_activate - load elif load >= P_activate and (load - P_activate > P_battery_max): P_instruct = -P_battery_max elif load >= P_activate and (load - P_activate <= P_battery_max): P_instruct = -(load - P_activate) return P_instruct def determine_P_actual(P_instruct, SoC_current, SoC_max): if P_instruct >= 0 and SoC_current == SoC_max: P_actual = 0 elif P_instruct <= 0 and SoC_current == 0: P_actual = 0 elif P_instruct > 0 and SoC_current == 0: P_actual = P_instruct elif P_instruct >= 0 and SoC_current <= (SoC_max - P_instruct): P_actual = P_instruct elif P_instruct <= 0 and SoC_current >= abs(P_instruct): P_actual = P_instruct elif P_instruct >= 0 and P_instruct > (SoC_max - SoC_current): P_actual = SoC_max - SoC_current elif P_instruct <= 0 and abs(P_instruct) > SoC_current: P_actual = -SoC_current return P_actual def batt_algo(loadvec, P_activate, P_battery_max, SoC_max, SoC_initial): loadvec = np.array(loadvec).reshape(-1,1) SoC = np.zeros((loadvec.shape[0]+1,1)) SoC[0] = SoC_initial P_battery = np.zeros(loadvec.shape) for i in range(loadvec.shape[0]): P_instruct = determine_P_instruct(loadvec[i], P_activate, P_battery_max) P_battery[i] = determine_P_actual(P_instruct, SoC[i], SoC_max) SoC[i+1] = SoC[i] + P_battery[i] SoC = SoC[1:] return P_battery, SoC
31.72
74
0.725725
83f10c836f609b70d7232d04e53525e54bfca609
5,335
py
Python
conceptnet5/edges.py
CollectiWise/conceptnet
2998df5a9d287ca72032abb1d9b082747ba97c08
[ "Apache-2.0" ]
2
2020-07-19T13:27:29.000Z
2020-07-19T13:37:28.000Z
conceptnet5/edges.py
terU3760/conceptnet5
11ea97fdee0a87170abf948625303bf86c0de835
[ "Apache-2.0" ]
null
null
null
conceptnet5/edges.py
terU3760/conceptnet5
11ea97fdee0a87170abf948625303bf86c0de835
[ "Apache-2.0" ]
null
null
null
""" Utilities for representing edges (assertions). Most notably, this module includes the `make_edge` function, which builds the dictionary representing an edge. """ from conceptnet5.uri import ( assertion_uri, uri_prefix, conjunction_uri, is_concept, split_uri ) from conceptnet5.nodes import ld_node import re def make_edge(rel, start, end, dataset, license, sources, surfaceText=None, surfaceStart=None, surfaceEnd=None, weight=1.0): """ Take in the information representing an edge (a justified assertion), and output that edge in dictionary form. >>> from pprint import pprint >>> from conceptnet5.uri import Licenses >>> e = make_edge(rel='/r/HasProperty', ... start='/c/en/fire', ... end='/c/en/hot', ... dataset='/d/conceptnet/4/en', ... license=Licenses.cc_attribution, ... sources=[{'contributor': '/s/contributor/omcs/dev'}], ... surfaceText='[[Fire]] is [[hot]]', ... weight=1.0) >>> pprint(e) {'dataset': '/d/conceptnet/4/en', 'end': '/c/en/hot', 'features': ['/c/en/fire /r/HasProperty -', '/c/en/fire - /c/en/hot', '- /r/HasProperty /c/en/hot'], 'license': 'cc:by/4.0', 'rel': '/r/HasProperty', 'sources': [{'contributor': '/s/contributor/omcs/dev'}], 'start': '/c/en/fire', 'surfaceEnd': 'hot', 'surfaceStart': 'Fire', 'surfaceText': '[[Fire]] is [[hot]]', 'uri': '/a/[/r/HasProperty/,/c/en/fire/,/c/en/hot/]', 'weight': 1.0} """ pstart = uri_prefix(start) pend = uri_prefix(end) if is_concept(pstart) and is_concept(pend): features = [ "%s %s -" % (pstart, rel), "%s - %s" % (pstart, pend), "- %s %s" % (rel, pend) ] else: features = [] uri = assertion_uri(rel, start, end) assert isinstance(sources, list), sources assert all([isinstance(source, dict) for source in sources]), sources if surfaceStart is None or surfaceEnd is None: surfaceStart, surfaceEnd = extract_surface_terms(surfaceText) obj = { 'uri': uri, 'rel': rel, 'start': start, 'end': end, 'dataset': dataset, 'sources': sources, 'features': features, 'license': license, 'weight': weight, 'surfaceText': surfaceText, 'surfaceStart': surfaceStart, 'surfaceEnd': surfaceEnd } return obj SURFACE_FORM_PATTERN = re.compile(r'\[\[(.*?)\]\]') def extract_surface_terms(surface): """ Some formats don't have separate slots for the surface text of the 'start' and 'end' terms; we only record them as part of the overall surface text, in double brackets. A typical surface text will look like this: [[A dog]] has [[a tail]]. Occasionally, there will be sentence frames that put the 'end' term before the 'start' term. These are marked with an asterisk. *[[A tail]] can belong to [[a dog]]. This function returns the terms in their proper order -- 'surfaceStart' followed by 'surfaceEnd' -- so they can be indexed in the more flexible jsons and msgpack formats. """ if not surface: return (None, None) surface_terms = SURFACE_FORM_PATTERN.findall(surface) if len(surface_terms) != 2: return (None, None) if surface.startswith('*'): surface_terms = surface_terms[::-1] return surface_terms def transform_for_linked_data(edge): """ Modify an edge (assertion) in place to contain values that are appropriate for a Linked Data API. Although this code isn't actually responsible for what an API returns (see the conceptnet-web repository for that), it helps to deal with what edge dictionaries should contain here. The relevant changes are: - Remove the 'features' list - Rename 'uri' to '@id' - Make 'start', 'end', and 'rel' into dictionaries with an '@id' and 'label', removing the separate 'surfaceStart' and 'surfaceEnd' attributes - All dictionaries should have an '@id'. For the edge itself, it's the URI. Without this, we get RDF blank nodes, which are awful. """ if 'features' in edge: del edge['features'] for source in edge['sources']: conj = conjunction_uri(*sorted(source.values())) source['@id'] = conj edge['@id'] = edge['uri'] del edge['uri'] start_uri = edge['start'] end_uri = edge['end'] rel_uri = edge['rel'] start_label = edge.get('surfaceStart') end_label = edge.get('surfaceEnd') del edge['surfaceStart'] del edge['surfaceEnd'] edge['start'] = ld_node(start_uri, start_label) edge['end'] = ld_node(end_uri, end_label) edge['rel'] = ld_node(rel_uri, None) if 'other' in edge: # TODO: Find out when we use this, or remove it if we don't use it if edge['other'] == start_uri: edge['other'] = edge['start'] elif edge['other'] == end_uri: edge['other'] = edge['end'] else: edge['rel'] = ld_node(rel_uri, None) return edge
33.553459
80
0.585567
b46362e0b685da0ea78c583bcbcbb0826f12201c
1,100
py
Python
web/helpers/globals.py
RPANBot/RPANBot
dc0345e40667cb510490ffd32197f3998c5efe2f
[ "Apache-2.0" ]
5
2020-08-25T23:12:33.000Z
2021-09-06T20:38:44.000Z
web/helpers/globals.py
b1uejay27/RPANBot
782ad9bc9f968fd52036ef4d541afd9df8c89025
[ "Apache-2.0" ]
2
2020-10-30T18:23:44.000Z
2021-09-19T22:07:12.000Z
web/helpers/globals.py
b1uejay27/RPANBot
782ad9bc9f968fd52036ef4d541afd9df8c89025
[ "Apache-2.0" ]
3
2022-03-08T19:50:01.000Z
2022-03-23T23:13:46.000Z
""" Copyright 2020 RPANBot Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from discord import CategoryChannel, TextChannel from web.helpers.classes import Guild def get_guild_icon(guild: Guild, size: int = 128, format: str = "jpg") -> str: if not guild.icon: return "https://discordapp.com/assets/322c936a8c8be1b803cd94861bdfa868.png" return f"https://cdn.discordapp.com/icons/{guild.id}/{guild.icon}.{format}?size={size}" def is_text_channel(channel) -> bool: return isinstance(channel, TextChannel) def is_category_channel(channel) -> bool: return isinstance(channel, CategoryChannel)
32.352941
91
0.762727
e219ef988320772d388d89810540c03f61040726
2,246
py
Python
main/tests/test_past_bugs.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
123
2015-01-08T09:21:05.000Z
2021-11-14T19:45:23.000Z
main/tests/test_past_bugs.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
16
2015-02-13T16:56:42.000Z
2021-02-20T23:58:43.000Z
main/tests/test_past_bugs.py
Ecotrust/formhub
05033bb5aa152cc2cbcd7382c2c999d82b2c3276
[ "BSD-2-Clause" ]
110
2015-01-19T14:34:06.000Z
2021-02-01T14:55:11.000Z
from test_process import TestSite from test_base import MainTestCase from odk_logger.models import XForm, Instance import os class TestCSVExport(TestSite): """ We had a problem when two users published the same form that the CSV export would break. """ def test_process(self): TestSite.test_process(self) TestSite.test_process(self, "doug", "doug") class TestInputs(MainTestCase): """ This is where I'll input all files that proved problematic for users when uploading. """ def test_uniqueness_of_group_names_enforced(self): pre_count = XForm.objects.count() self._create_user_and_login() response = self._publish_xls_file( 'fixtures/group_names_must_be_unique.xls') self.assertTrue( "There are two sections with the name group_names_must_be_unique." in response.content) self.assertEqual(XForm.objects.count(), pre_count) def test_mch(self): self._publish_xls_file('fixtures/bug_fixes/MCH_v1.xls') def test_erics_files(self): for name in ['battery_life.xls', 'enumerator_weekly.xls', 'Enumerator_Training_Practice_Survey.xls']: self._publish_xls_file(os.path.join('fixtures', 'bug_fixes', name)) class TestSubmissionBugs(MainTestCase): def test_submission_with_mixed_case_username(self): self._publish_transportation_form() s = self.surveys[0] count = Instance.objects.count() self._make_submission( os.path.join( self.this_directory, 'fixtures', 'transportation', 'instances', s, s + '.xml'), 'BoB') self.assertEqual(Instance.objects.count(), count + 1) class TestCascading(MainTestCase): def test_correct_id_string_picked(self): XForm.objects.all().delete() name = 'new_cascading_select.xls' id_string = u'cascading_select_test' self._publish_xls_file(os.path.join( self.this_directory, 'fixtures', 'bug_fixes', name)) self.assertEqual(XForm.objects.count(), 1) xform_id_string = XForm.objects.all()[0].id_string self.assertEqual(xform_id_string, id_string)
32.550725
79
0.665183
0bc4e55271632b9a502c6f9b94b631d0eacc8082
8
py
Python
kharon/__init__.py
RedRussianBear/kharon
d5ec8ad059d71a69ddc90616eafea38d96de4ed6
[ "BSD-3-Clause" ]
1
2019-04-15T12:22:46.000Z
2019-04-15T12:22:46.000Z
kharon/project_templates/__init__.py
RedRussianBear/kharon
d5ec8ad059d71a69ddc90616eafea38d96de4ed6
[ "BSD-3-Clause" ]
null
null
null
kharon/project_templates/__init__.py
RedRussianBear/kharon
d5ec8ad059d71a69ddc90616eafea38d96de4ed6
[ "BSD-3-Clause" ]
null
null
null
# Init!
4
7
0.5
8cd76474bea97355ed4bfc2d14866804a46659d1
8,296
py
Python
train.py
kushagra414/Tiny-YOLO-v3-for-custom-object
eacd3ad37635beae021ec9c295435772fefe699b
[ "MIT" ]
null
null
null
train.py
kushagra414/Tiny-YOLO-v3-for-custom-object
eacd3ad37635beae021ec9c295435772fefe699b
[ "MIT" ]
null
null
null
train.py
kushagra414/Tiny-YOLO-v3-for-custom-object
eacd3ad37635beae021ec9c295435772fefe699b
[ "MIT" ]
null
null
null
""" Retrain the YOLO model for your own dataset. """ import numpy as np import keras.backend as K from keras.layers import Input, Lambda from keras.models import Model from keras.optimizers import Adam from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss from yolo3.utils import get_random_data def _main(): annotation_path = 'Hand_Class.txt' log_dir = 'logs/000/' classes_path = 'Hand_Class_classes.txt' anchors_path = 'model_data/tiny_yolo_anchors.txt' class_names = get_classes(classes_path) num_classes = len(class_names) anchors = get_anchors(anchors_path) input_shape = (416,416) # multiple of 32, hw is_tiny_version = len(anchors)==6 # default setting if is_tiny_version: model = create_tiny_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5') else: model = create_model(input_shape, anchors, num_classes, freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze logging = TensorBoard(log_dir=log_dir) checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, period=3) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1) val_split = 0.1 with open(annotation_path) as f: lines = f.readlines() np.random.seed(10101) np.random.shuffle(lines) np.random.seed(None) num_val = int(len(lines)*val_split) num_train = len(lines) - num_val # Train with frozen layers first, to get a stable loss. # Adjust num epochs to your dataset. This step is enough to obtain a not bad model. if True: model.compile(optimizer=Adam(lr=1e-3), loss={ # use custom yolo_loss Lambda layer. 'yolo_loss': lambda y_true, y_pred: y_pred}) batch_size = 16 print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=50, initial_epoch=0, callbacks=[logging, checkpoint]) model.save_weights(log_dir + 'trained_weights_stage_1.h5') # Unfreeze and continue training, to fine-tune. # Train longer if the result is not good. if True: for i in range(len(model.layers)): model.layers[i].trainable = True model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change print('Unfreeze all of the layers.') batch_size = 8 # note that more GPU memory is required after unfreezing the body print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes), steps_per_epoch=max(1, num_train//batch_size), validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes), validation_steps=max(1, num_val//batch_size), epochs=100, initial_epoch=50, callbacks=[logging, checkpoint, reduce_lr, early_stopping]) model.save_weights(log_dir + 'trained_weights_final.h5') # Further training if needed. def get_classes(classes_path): '''loads the classes''' with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def get_anchors(anchors_path): '''loads the anchors from a file''' with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/yolo_weights.h5'): '''create the training model''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \ num_anchors//3, num_classes+5)) for l in range(3)] model_body = yolo_body(image_input, num_anchors//3, num_classes) print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze darknet53 body or freeze all but 3 output layers. num = (185, len(model_body.layers)-3)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def create_tiny_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2, weights_path='model_data/tiny_yolo_weights.h5'): '''create the training model, for Tiny YOLOv3''' K.clear_session() # get a new session image_input = Input(shape=(None, None, 3)) h, w = input_shape num_anchors = len(anchors) y_true = [Input(shape=(h//{0:32, 1:16}[l], w//{0:32, 1:16}[l], \ num_anchors//2, num_classes+5)) for l in range(2)] model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes) print('Create Tiny YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes)) if load_pretrained: model_body.load_weights(weights_path, by_name=True, skip_mismatch=True) print('Load weights {}.'.format(weights_path)) if freeze_body in [1, 2]: # Freeze the darknet body or freeze all but 2 output layers. num = (20, len(model_body.layers)-2)[freeze_body-1] for i in range(num): model_body.layers[i].trainable = False print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers))) model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.7})( [*model_body.output, *y_true]) model = Model([model_body.input, *y_true], model_loss) return model def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes): '''data generator for fit_generator''' n = len(annotation_lines) i = 0 while True: image_data = [] box_data = [] for b in range(batch_size): if i==0: np.random.shuffle(annotation_lines) image, box = get_random_data(annotation_lines[i], input_shape, random=True) image_data.append(image) box_data.append(box) i = (i+1) % n image_data = np.array(image_data) box_data = np.array(box_data) y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes) yield [image_data, *y_true], np.zeros(batch_size) def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes): n = len(annotation_lines) if n==0 or batch_size<=0: return None return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes)
44.363636
129
0.676109
9560839b9aadf877d4a23b1ff8d168fc4b73a49c
3,030
py
Python
example_ctrl-c.py
Bosma/unicorn-binance-websocket-api
e8bfe08125ff0afb8f780c3970a6ba6ec6ba6c54
[ "MIT" ]
null
null
null
example_ctrl-c.py
Bosma/unicorn-binance-websocket-api
e8bfe08125ff0afb8f780c3970a6ba6ec6ba6c54
[ "MIT" ]
null
null
null
example_ctrl-c.py
Bosma/unicorn-binance-websocket-api
e8bfe08125ff0afb8f780c3970a6ba6ec6ba6c54
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # File: example_ctrl-c.py # # Part of ‘UNICORN Binance WebSocket API’ # Project website: https://github.com/oliver-zehentleitner/unicorn-binance-websocket-api # Documentation: https://oliver-zehentleitner.github.io/unicorn-binance-websocket-api # PyPI: https://pypi.org/project/unicorn-binance-websocket-api/ # # Author: Oliver Zehentleitner # https://about.me/oliver-zehentleitner # # Copyright (c) 2019-2020, Oliver Zehentleitner # All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # Thanks to mfiro https://github.com/mfiro for sharing this example! from unicorn_binance_websocket_api.unicorn_binance_websocket_api_manager import BinanceWebSocketApiManager import time import threading def print_stream_data_from_stream_buffer(binance_websocket_api_manager): while True: if binance_websocket_api_manager.is_manager_stopping(): exit(0) oldest_stream_data_from_stream_buffer = binance_websocket_api_manager.pop_stream_data_from_stream_buffer() if oldest_stream_data_from_stream_buffer is False: time.sleep(0.01) else: try: print(oldest_stream_data_from_stream_buffer) except Exception: # not able to process the data? write it back to the stream_buffer binance_websocket_api_manager.add_to_stream_buffer(oldest_stream_data_from_stream_buffer) if __name__ == '__main__': binance_websocket_api_manager = BinanceWebSocketApiManager(exchange="binance.com") worker_thread = threading.Thread(target=print_stream_data_from_stream_buffer, args=(binance_websocket_api_manager,)) worker_thread.start() kline_stream_id = binance_websocket_api_manager.create_stream(['kline', 'kline_1m'], ['btcusdt']) try: while True: time.sleep(60) except KeyboardInterrupt: print("\nStopping ... just wait a few seconds!") binance_websocket_api_manager.stop_manager_with_all_streams()
43.285714
120
0.754125
c02e0c74da90e51883da385b0bf3fb352a098007
2,268
py
Python
emotescraper/androidscrape.py
BTDev/berrymotes
f6665b34446e486f4f8a7a56e50dd5cb5bc605c5
[ "WTFPL" ]
null
null
null
emotescraper/androidscrape.py
BTDev/berrymotes
f6665b34446e486f4f8a7a56e50dd5cb5bc605c5
[ "WTFPL" ]
6
2020-01-30T10:55:02.000Z
2021-08-25T05:30:23.000Z
emotescraper/androidscrape.py
BTDev/berrymotes
f6665b34446e486f4f8a7a56e50dd5cb5bc605c5
[ "WTFPL" ]
4
2021-07-04T19:09:11.000Z
2021-07-24T03:57:02.000Z
#!/usr/bin/env python2 # -------------------------------------------------------------------- # # Copyright (C) 2013 Daniel Triendl <daniel@pew.cc> # # This program is free software. It comes without any warranty, to # the extent permitted by applicable law. You can redistribute it # and/or modify it under the terms of the Do What The Fuck You Want # To Public License, Version 2, as published by Sam Hocevar. See # COPYING for more details. # # -------------------------------------------------------------------- import logging logger = logging.basicConfig(level=logging.WARN) from bmscraper import BMScraper, AndroidEmotesProcessorFactory from bmscraper.ratelimiter import TokenBucket from data import * from json import dumps import os import gzip factory = AndroidEmotesProcessorFactory(single_emotes_filename=os.path.join( '..', 'single_emotes', '{}', '{}.png')) scraper = BMScraper(factory) scraper.user = os.environ['REDDIT_USERNAME'] scraper.password = os.environ['REDDIT_PASSWORD'] scraper.subreddits = subreddits scraper.legacy_subreddits = legacy_subreddits scraper.image_blacklist = image_blacklist_android scraper.nsfw_subreddits = nsfw_subreddits scraper.emote_info = emote_info scraper.rate_limit_lock = TokenBucket(15, 30) scraper.scrape() f = gzip.open(os.path.join('..', 'single_emotes', 'emotes.json.gz'), 'wb') f.write(dumps(factory.emotes, separators=(',', ': '))) f.close() for subreddit in subreddits: subreddit_emotes = [x for x in factory.emotes if x['sr'] == subreddit] subreddit_emotes = sorted(subreddit_emotes, key = lambda x: x['image']) emotes_file = os.path.join('..', 'single_emotes', subreddit, 'emotes.json.gz') if not os.path.exists(os.path.dirname(emotes_file)): os.makedirs(os.path.dirname(emotes_file)) emotes_data = dumps(subreddit_emotes, separators=(',', ': ')); emotes_data_old = '' if (os.path.exists(emotes_file)): f = gzip.open(emotes_file, 'r') emotes_data_old = f.read() f.close() if emotes_data != emotes_data_old: f = gzip.open(emotes_file, 'wb') f.write(emotes_data) f.close() f = gzip.open(os.path.join('..', 'single_emotes', 'subreddits.json.gz'), 'wb') f.write(dumps(subreddits, separators=(',', ': '))) f.close()
36
116
0.671517
a432b76e6db9c0cb70181bc352f296aff7e12b6c
6,078
py
Python
radon.py
yuta-hi/chainer-radon-transform
8928687d779c5fbe9691677209c2c9845924761f
[ "MIT" ]
null
null
null
radon.py
yuta-hi/chainer-radon-transform
8928687d779c5fbe9691677209c2c9845924761f
[ "MIT" ]
null
null
null
radon.py
yuta-hi/chainer-radon-transform
8928687d779c5fbe9691677209c2c9845924761f
[ "MIT" ]
1
2020-01-14T04:54:43.000Z
2020-01-14T04:54:43.000Z
import numpy as np import chainer from chainer import link from warnings import warn from abc import ABCMeta, abstractmethod class Projector(link.Chain, metaclass=ABCMeta): """ Abstract class of the projector for 2D-images """ @abstractmethod def forward(self, x): pass def _check_type_forward(self, x): assert x.ndim == 4, 'input tensor should be 4-D.' b, c, w, h = x.shape assert c == 1, 'input image should be grayscale.' class ParallelProjector(Projector): def __init__(self, axis=2, keepdims=True): self._axis = axis self._keepdims = keepdims def forward(self, x): self._check_type_forward(x) return chainer.functions.sum(x, self._axis, self._keepdims) class OrthogonalProjector(Projector): pass class Radon(link.Chain): """ Radon transform of 2D-images given specified projection angles. """ def __init__(self, theta=None): super(Radon, self).__init__() if theta is None: theta = np.arange(180) self._theta = theta self._projector = ParallelProjector(axis=2, keepdims=True) def _check_type_forward(self, x): assert x.ndim == 4, 'input tensor should be 4-D.' b, c, w, h = x.shape assert c == 1, 'input image should be grayscale.' assert w == h, 'input image should be square.' def _build_rotation(self, theta, batch_size): T = np.deg2rad(theta) R = np.array([[np.cos(T), np.sin(T), 0], [-np.sin(T), np.cos(T), 0], [0, 0, 1]]) R = R[:-1,:].astype(np.float32) R = self.xp.asarray(R[np.newaxis]) return chainer.functions.repeat(R, batch_size, axis=0) def forward(self, x): """Applies the radon transform. Args: x (~chainer.Variable): Batch of input images. Returns: ~chainer.Variable: Batch of output sinograms. """ self._check_type_forward(x) b, c, w, h = x.shape ret = [] for i, th in enumerate(self._theta): matrix = self._build_rotation(th, b) grid = chainer.functions.spatial_transformer_grid(matrix, (w,h)) rotated = chainer.functions.spatial_transformer_sampler(x, grid) raysum = self._projector(rotated) ret.append(raysum) ret = chainer.functions.concat(ret, axis=2) return ret def preprocess(image, circle=True): if circle: radius = min(image.shape) // 2 c0, c1 = np.ogrid[0:image.shape[0], 0:image.shape[1]] reconstruction_circle = ((c0 - image.shape[0] // 2) ** 2 + (c1 - image.shape[1] // 2) ** 2) reconstruction_circle = reconstruction_circle <= radius ** 2 if not np.all(reconstruction_circle | (image == 0)): warn('Radon transform: image must be zero outside the ' 'reconstruction circle') # crop image to make it square slices = [] for d in (0, 1): if image.shape[d] > min(image.shape): excess = image.shape[d] - min(image.shape) slices.append(slice(int(np.ceil(excess / 2)), int(np.ceil(excess / 2) + min(image.shape)))) else: slices.append(slice(None)) slices = tuple(slices) padded_image = image[slices] else: diagonal = np.sqrt(2) * max(image.shape) pad = [int(np.ceil(diagonal - s)) for s in image.shape] new_center = [(s + p) // 2 for s, p in zip(image.shape, pad)] old_center = [s // 2 for s in image.shape] pad_before = [nc - oc for oc, nc in zip(old_center, new_center)] pad_width = [(pb, p - pb) for pb, p in zip(pad_before, pad)] padded_image = np.pad(image, pad_width, mode='constant', constant_values=0) return padded_image if __name__ == '__main__': import argparse import cv2 parser = argparse.ArgumentParser(description='Radon Transfrom') parser.add_argument('--image', '-i', type=str, default='phantom.png') parser.add_argument('--gpu', '-g', type=int, default=0) parser.add_argument('--trial', '-t', type=int, default=20, help='number of trails') parser.add_argument('--angle', '-a', type=int, default=500, help='number of angles') parser.add_argument('--slice', '-s', type=int, default=1, help='number of slices, used for debugging') args = parser.parse_args() # setup an input slice image = cv2.imread(args.image)[:,:,0] image = preprocess(image) image = cv2.resize(image, (512,512)) # convert to a volume for debugging. volume = image[:,:,np.newaxis] volume = np.repeat(volume, args.slice, axis=2) w, h, z = volume.shape # convert to a tensor b = c = 1 x = volume.reshape(b,c,w,h,z).astype(np.float32) # reshape the tensor: [b(=1),c(=1),w,h,z] -> [b*z(=z),c(=1),w,h] x = x.transpose(0,4,1,2,3) x = x.reshape(b*z,c,w,h) # to gpu if args.gpu >= 0: import cupy as xp x = xp.asarray(x) x = chainer.Variable(x) print(x.shape) # do radon = Radon(theta=np.linspace(0,180,args.angle)) if args.gpu >= 0: chainer.backends.cuda.get_device_from_id(args.gpu).use() radon.to_gpu() import tqdm for _ in tqdm.tqdm(range(args.trial)): ret = radon(x) print(ret.shape) # visualize a graph import chainer.computational_graph as c g = c.build_computational_graph(ret) with open('graph.dot', 'w') as o: o.write(g.dump()) # to cpu ret = ret.data if args.gpu >= 0: ret = ret.get() # visualize an sinogram respect to the first slice import matplotlib.pyplot as plt plt.figure(figsize=(19,6)) plt.subplot(121) plt.imshow(image, cmap='gray') plt.colorbar() plt.subplot(122) plt.imshow(ret[0,0], cmap='gray') plt.colorbar() plt.show()
30.238806
106
0.579796
51b8e372919604e6f194eeeaae53bb6a4c00ed97
1,269
py
Python
imutils1.py
ivominic/opencv
c058e2ce864e4e811ab5a43793ec17216aa7c5b7
[ "Apache-2.0" ]
null
null
null
imutils1.py
ivominic/opencv
c058e2ce864e4e811ab5a43793ec17216aa7c5b7
[ "Apache-2.0" ]
null
null
null
imutils1.py
ivominic/opencv
c058e2ce864e4e811ab5a43793ec17216aa7c5b7
[ "Apache-2.0" ]
null
null
null
"""Biblioteka koja će se importovati za rad sa slikama""" import numpy as np import cv2 def translate(image, x_osa, y_osa): """Metoda koja translira sliku po x i y osi. Pozitivne vrijednosti desno i dolje, negativne lijevo i gore""" matrica = np.float32([[1, 0, x_osa], [0, 1, y_osa]]) shifted = cv2.warpAffine( image, matrica, (image.shape[1], image.shape[0])) return shifted def rotate(image, angle, center=None, scale=1.0): """ Metoda koja rotira sliku oko centra""" (height, width) = image.shape[:2] if center is None: center = (width // 2, height // 2) matrica = cv2.getRotationMatrix2D(center, angle, scale) rotated = cv2.warpAffine(image, matrica, (width, height)) return rotated def resize(image, width=None, height=None, inter=cv2.INTER_AREA): """ Vrši resize fotografije""" dim = None (pom_height, pom_width) = image.shape[:2] if width is None and height is None: return image if width is None: radius = height/float(pom_height) dim = (int(pom_width * radius), height) else: radius = width/float(pom_width) dim = (width, int(pom_height * radius)) resized = cv2.resize(image, dim, interpolation=inter) return resized
28.840909
67
0.647754
f4abd1075050417b773e40e0ff102ee297a79c71
1,888
py
Python
nova/auth/rbac.py
bopopescu/cc
5c14efcda95c4987532484c84a885a3b07efc984
[ "Apache-2.0" ]
null
null
null
nova/auth/rbac.py
bopopescu/cc
5c14efcda95c4987532484c84a885a3b07efc984
[ "Apache-2.0" ]
1
2020-08-02T15:40:49.000Z
2020-08-02T15:40:49.000Z
nova/auth/rbac.py
bopopescu/cc
5c14efcda95c4987532484c84a885a3b07efc984
[ "Apache-2.0" ]
1
2020-07-25T17:56:39.000Z
2020-07-25T17:56:39.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2010 Anso Labs, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova import exception from nova.auth import users def allow(*roles): def wrap(f): def wrapped_f(self, context, *args, **kwargs): if context.user.is_superuser(): return f(self, context, *args, **kwargs) for role in roles: if __matches_role(context, role): return f(self, context, *args, **kwargs) raise exception.NotAuthorized() return wrapped_f return wrap def deny(*roles): def wrap(f): def wrapped_f(self, context, *args, **kwargs): if context.user.is_superuser(): return f(self, context, *args, **kwargs) for role in roles: if __matches_role(context, role): raise exception.NotAuthorized() return f(self, context, *args, **kwargs) return wrapped_f return wrap def __matches_role(context, role): if role == 'all': return True if role == 'none': return False return context.project.has_role(context.user.id, role)
33.714286
78
0.644597
052363e40c3dcc84883eaf4519e7e2a4a2642459
3,378
py
Python
simbad/rotsearch/tests/test_rotation_search.py
hlasimpk/SIMPLE
89570f1a29e2871cb1e85cfda36cfa22fbad0877
[ "BSD-3-Clause" ]
2
2017-02-14T15:31:30.000Z
2019-07-20T12:30:59.000Z
simbad/rotsearch/tests/test_rotation_search.py
hlasimpk/SIMPLE
89570f1a29e2871cb1e85cfda36cfa22fbad0877
[ "BSD-3-Clause" ]
65
2017-02-14T14:19:28.000Z
2021-09-21T09:50:02.000Z
simbad/rotsearch/tests/test_rotation_search.py
hlasimpk/SIMPLE
89570f1a29e2871cb1e85cfda36cfa22fbad0877
[ "BSD-3-Clause" ]
7
2017-05-09T15:27:08.000Z
2021-06-13T13:32:40.000Z
"""Test functions for rotsearch.AmoreRotationSearch and rotsearch.PhaserRotationSearch""" __author__ = "Adam Simpkin" __date__ = "16 Aug 2017" import os import unittest import simbad.rotsearch.amore_search import simbad.rotsearch.phaser_search try: ROOT_DIR = os.environ['SIMBAD_ROOT'] EXAMPLE_DIR = os.path.join(ROOT_DIR, "test_data") except KeyError: from simbad.command_line import CCP4RootDirectory ROOT_DIR = str(CCP4RootDirectory()) EXAMPLE_DIR = os.path.join(ROOT_DIR, "examples") class Test(unittest.TestCase): """Unit test""" @classmethod def setUpClass(cls): mtz = os.path.join(EXAMPLE_DIR, "toxd", "toxd.mtz") cls.AS = simbad.rotsearch.amore_search.AmoreRotationSearch(mtz, "molrep", "tmp_dir", "work_dir") cls.PS = simbad.rotsearch.phaser_search.PhaserRotationSearch(mtz, "molrep", "tmp_dir", "work_dir") def test_sortfun(self): """Test case for AmoreRotationSearch.sortfun_stdin_template""" f = "f" sigf = "sigf" data = self.AS.sortfun_stdin_template.format(f=f, sigf=sigf) reference_data = """TITLE ** spmi packing h k l F for crystal** SORTFUN RESOL 100. 2.5 LABI FP=f SIGFP=sigf""" self.assertEqual(data, reference_data) def test_rotfun(self): """Test case for AmoreRotationSearch.rotfun_stdin_template""" shres = "shres" intrad = "intrad" pklim = "pklim" npic = "npic" step = "step" data = self.AS.rotfun_stdin_template.format(shres=shres, intrad=intrad, pklim=pklim, npic=npic, step=step) reference_data = """TITLE: Generate HKLPCK1 from MODEL FRAGMENT 1 ROTFUN GENE 1 RESO 100.0 shres CELL_MODEL 80 75 65 CLMN CRYSTAL ORTH 1 RESO 20.0 shres SPHERE intrad CLMN MODEL 1 RESO 20.0 shres SPHERE intrad ROTA CROSS MODEL 1 PKLIM pklim NPIC npic STEP step""" self.assertEqual(data, reference_data) def test_tabfun(self): """Test case for AmoreRotationSearch.tabfun_stdin_template""" x = 100 y = 200 z = 300 a = 10 b = 20 c = 30 data = self.AS.tabfun_stdin_template.format(x=x, y=y, z=z, a=a, b=b, c=c) reference_data = """TITLE: Produce table for MODEL FRAGMENT TABFUN CRYSTAL 100 200 300 10 20 30 ORTH 1 MODEL 1 BTARGET 23.5 SAMPLE 1 RESO 2.5 SHANN 2.5 SCALE 4.0""" self.assertEqual(data, reference_data) def test_rot_job_succeeded_1(self): """Test case for AmoreRotationSearch._rot_job_succeeded""" amore_z_score = 15 data = self.AS._rot_job_succeeded(amore_z_score) self.assertTrue(data) def test_rot_job_succeeded_2(self): """Test case for AmoreRotationSearch._rot_job_succeeded""" amore_z_score = 8 data = self.AS._rot_job_succeeded(amore_z_score) self.assertFalse(data) def test_rot_job_succeeded_3(self): """Test case for PhaserRotationSearch._rot_job_succeeded""" phaser_z_score = 15 data = self.PS._rot_job_succeeded(phaser_z_score) self.assertTrue(data) def test_rot_job_succeeded_4(self): """Test case for PhaserRotationSearch._rot_job_succeeded""" phaser_z_score = 6 data = self.PS._rot_job_succeeded(phaser_z_score) self.assertFalse(data) if __name__ == "__main__": unittest.main()
30.160714
114
0.671107
9878a3adefb93ab3921d57a3b9160abf00d8d1d0
31,182
py
Python
nova/tests/api/openstack/test_common.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
nova/tests/api/openstack/test_common.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
nova/tests/api/openstack/test_common.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
null
null
null
# Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Test suites for 'common' code used throughout the OpenStack HTTP API. """ import xml.dom.minidom as minidom from lxml import etree import mock from testtools import matchers import webob import webob.exc import webob.multidict from nova.api.openstack import common from nova.api.openstack import xmlutil from nova.compute import task_states from nova.compute import vm_states from nova import exception from nova import test from nova.tests import utils NS = "{http://docs.openstack.org/compute/api/v1.1}" ATOMNS = "{http://www.w3.org/2005/Atom}" class LimiterTest(test.TestCase): """Unit tests for the `nova.api.openstack.common.limited` method which takes in a list of items and, depending on the 'offset' and 'limit' GET params, returns a subset or complete set of the given items. """ def setUp(self): """Run before each test.""" super(LimiterTest, self).setUp() self.tiny = range(1) self.small = range(10) self.medium = range(1000) self.large = range(10000) def test_limiter_offset_zero(self): # Test offset key works with 0. req = webob.Request.blank('/?offset=0') self.assertEqual(common.limited(self.tiny, req), self.tiny) self.assertEqual(common.limited(self.small, req), self.small) self.assertEqual(common.limited(self.medium, req), self.medium) self.assertEqual(common.limited(self.large, req), self.large[:1000]) def test_limiter_offset_medium(self): # Test offset key works with a medium sized number. req = webob.Request.blank('/?offset=10') self.assertEqual(common.limited(self.tiny, req), []) self.assertEqual(common.limited(self.small, req), self.small[10:]) self.assertEqual(common.limited(self.medium, req), self.medium[10:]) self.assertEqual(common.limited(self.large, req), self.large[10:1010]) def test_limiter_offset_over_max(self): # Test offset key works with a number over 1000 (max_limit). req = webob.Request.blank('/?offset=1001') self.assertEqual(common.limited(self.tiny, req), []) self.assertEqual(common.limited(self.small, req), []) self.assertEqual(common.limited(self.medium, req), []) self.assertEqual( common.limited(self.large, req), self.large[1001:2001]) def test_limiter_offset_blank(self): # Test offset key works with a blank offset. req = webob.Request.blank('/?offset=') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_offset_bad(self): # Test offset key works with a BAD offset. req = webob.Request.blank(u'/?offset=\u0020aa') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_nothing(self): # Test request with no offset or limit. req = webob.Request.blank('/') self.assertEqual(common.limited(self.tiny, req), self.tiny) self.assertEqual(common.limited(self.small, req), self.small) self.assertEqual(common.limited(self.medium, req), self.medium) self.assertEqual(common.limited(self.large, req), self.large[:1000]) def test_limiter_limit_zero(self): # Test limit of zero. req = webob.Request.blank('/?limit=0') self.assertEqual(common.limited(self.tiny, req), self.tiny) self.assertEqual(common.limited(self.small, req), self.small) self.assertEqual(common.limited(self.medium, req), self.medium) self.assertEqual(common.limited(self.large, req), self.large[:1000]) def test_limiter_limit_medium(self): # Test limit of 10. req = webob.Request.blank('/?limit=10') self.assertEqual(common.limited(self.tiny, req), self.tiny) self.assertEqual(common.limited(self.small, req), self.small) self.assertEqual(common.limited(self.medium, req), self.medium[:10]) self.assertEqual(common.limited(self.large, req), self.large[:10]) def test_limiter_limit_over_max(self): # Test limit of 3000. req = webob.Request.blank('/?limit=3000') self.assertEqual(common.limited(self.tiny, req), self.tiny) self.assertEqual(common.limited(self.small, req), self.small) self.assertEqual(common.limited(self.medium, req), self.medium) self.assertEqual(common.limited(self.large, req), self.large[:1000]) def test_limiter_limit_and_offset(self): # Test request with both limit and offset. items = range(2000) req = webob.Request.blank('/?offset=1&limit=3') self.assertEqual(common.limited(items, req), items[1:4]) req = webob.Request.blank('/?offset=3&limit=0') self.assertEqual(common.limited(items, req), items[3:1003]) req = webob.Request.blank('/?offset=3&limit=1500') self.assertEqual(common.limited(items, req), items[3:1003]) req = webob.Request.blank('/?offset=3000&limit=10') self.assertEqual(common.limited(items, req), []) def test_limiter_custom_max_limit(self): # Test a max_limit other than 1000. items = range(2000) req = webob.Request.blank('/?offset=1&limit=3') self.assertEqual( common.limited(items, req, max_limit=2000), items[1:4]) req = webob.Request.blank('/?offset=3&limit=0') self.assertEqual( common.limited(items, req, max_limit=2000), items[3:]) req = webob.Request.blank('/?offset=3&limit=2500') self.assertEqual( common.limited(items, req, max_limit=2000), items[3:]) req = webob.Request.blank('/?offset=3000&limit=10') self.assertEqual(common.limited(items, req, max_limit=2000), []) def test_limiter_negative_limit(self): # Test a negative limit. req = webob.Request.blank('/?limit=-3000') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_negative_offset(self): # Test a negative offset. req = webob.Request.blank('/?offset=-30') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) class SortParamUtilsTest(test.TestCase): def test_get_sort_params_defaults(self): '''Verifies the default sort key and direction.''' sort_keys, sort_dirs = common.get_sort_params({}) self.assertEqual(['created_at'], sort_keys) self.assertEqual(['desc'], sort_dirs) def test_get_sort_params_override_defaults(self): '''Verifies that the defaults can be overriden.''' sort_keys, sort_dirs = common.get_sort_params({}, default_key='key1', default_dir='dir1') self.assertEqual(['key1'], sort_keys) self.assertEqual(['dir1'], sort_dirs) sort_keys, sort_dirs = common.get_sort_params({}, default_key=None, default_dir=None) self.assertEqual([], sort_keys) self.assertEqual([], sort_dirs) def test_get_sort_params_single_value(self): '''Verifies a single sort key and direction.''' params = webob.multidict.MultiDict() params.add('sort_key', 'key1') params.add('sort_dir', 'dir1') sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) self.assertEqual(['dir1'], sort_dirs) def test_get_sort_params_single_with_default(self): '''Verifies a single sort value with a default.''' params = webob.multidict.MultiDict() params.add('sort_key', 'key1') sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) # sort_key was supplied, sort_dir should be defaulted self.assertEqual(['desc'], sort_dirs) params = webob.multidict.MultiDict() params.add('sort_dir', 'dir1') sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['created_at'], sort_keys) # sort_dir was supplied, sort_key should be defaulted self.assertEqual(['dir1'], sort_dirs) def test_get_sort_params_multiple_values(self): '''Verifies multiple sort parameter values.''' params = webob.multidict.MultiDict() params.add('sort_key', 'key1') params.add('sort_key', 'key2') params.add('sort_key', 'key3') params.add('sort_dir', 'dir1') params.add('sort_dir', 'dir2') params.add('sort_dir', 'dir3') sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1', 'key2', 'key3'], sort_keys) self.assertEqual(['dir1', 'dir2', 'dir3'], sort_dirs) # Also ensure that the input parameters are not modified sort_key_vals = [] sort_dir_vals = [] while 'sort_key' in params: sort_key_vals.append(params.pop('sort_key')) while 'sort_dir' in params: sort_dir_vals.append(params.pop('sort_dir')) self.assertEqual(['key1', 'key2', 'key3'], sort_key_vals) self.assertEqual(['dir1', 'dir2', 'dir3'], sort_dir_vals) self.assertEqual(0, len(params)) class PaginationParamsTest(test.TestCase): """Unit tests for the `nova.api.openstack.common.get_pagination_params` method which takes in a request object and returns 'marker' and 'limit' GET params. """ def test_no_params(self): # Test no params. req = webob.Request.blank('/') self.assertEqual(common.get_pagination_params(req), {}) def test_valid_marker(self): # Test valid marker param. req = webob.Request.blank( '/?marker=263abb28-1de6-412f-b00b-f0ee0c4333c2') self.assertEqual(common.get_pagination_params(req), {'marker': '263abb28-1de6-412f-b00b-f0ee0c4333c2'}) def test_valid_limit(self): # Test valid limit param. req = webob.Request.blank('/?limit=10') self.assertEqual(common.get_pagination_params(req), {'limit': 10}) def test_invalid_limit(self): # Test invalid limit param. req = webob.Request.blank('/?limit=-2') self.assertRaises( webob.exc.HTTPBadRequest, common.get_pagination_params, req) def test_valid_limit_and_marker(self): # Test valid limit and marker parameters. marker = '263abb28-1de6-412f-b00b-f0ee0c4333c2' req = webob.Request.blank('/?limit=20&marker=%s' % marker) self.assertEqual(common.get_pagination_params(req), {'marker': marker, 'limit': 20}) def test_valid_page_size(self): # Test valid page_size param. req = webob.Request.blank('/?page_size=10') self.assertEqual(common.get_pagination_params(req), {'page_size': 10}) def test_invalid_page_size(self): # Test invalid page_size param. req = webob.Request.blank('/?page_size=-2') self.assertRaises( webob.exc.HTTPBadRequest, common.get_pagination_params, req) def test_valid_limit_and_page_size(self): # Test valid limit and page_size parameters. req = webob.Request.blank('/?limit=20&page_size=5') self.assertEqual(common.get_pagination_params(req), {'page_size': 5, 'limit': 20}) class MiscFunctionsTest(test.TestCase): def test_remove_major_version_from_href(self): fixture = 'http://www.testsite.com/v1/images' expected = 'http://www.testsite.com/images' actual = common.remove_version_from_href(fixture) self.assertEqual(actual, expected) def test_remove_version_from_href(self): fixture = 'http://www.testsite.com/v1.1/images' expected = 'http://www.testsite.com/images' actual = common.remove_version_from_href(fixture) self.assertEqual(actual, expected) def test_remove_version_from_href_2(self): fixture = 'http://www.testsite.com/v1.1/' expected = 'http://www.testsite.com/' actual = common.remove_version_from_href(fixture) self.assertEqual(actual, expected) def test_remove_version_from_href_3(self): fixture = 'http://www.testsite.com/v10.10' expected = 'http://www.testsite.com' actual = common.remove_version_from_href(fixture) self.assertEqual(actual, expected) def test_remove_version_from_href_4(self): fixture = 'http://www.testsite.com/v1.1/images/v10.5' expected = 'http://www.testsite.com/images/v10.5' actual = common.remove_version_from_href(fixture) self.assertEqual(actual, expected) def test_remove_version_from_href_bad_request(self): fixture = 'http://www.testsite.com/1.1/images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) def test_remove_version_from_href_bad_request_2(self): fixture = 'http://www.testsite.com/v/images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) def test_remove_version_from_href_bad_request_3(self): fixture = 'http://www.testsite.com/v1.1images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) def test_get_id_from_href_with_int_url(self): fixture = 'http://www.testsite.com/dir/45' actual = common.get_id_from_href(fixture) expected = '45' self.assertEqual(actual, expected) def test_get_id_from_href_with_int(self): fixture = '45' actual = common.get_id_from_href(fixture) expected = '45' self.assertEqual(actual, expected) def test_get_id_from_href_with_int_url_query(self): fixture = 'http://www.testsite.com/dir/45?asdf=jkl' actual = common.get_id_from_href(fixture) expected = '45' self.assertEqual(actual, expected) def test_get_id_from_href_with_uuid_url(self): fixture = 'http://www.testsite.com/dir/abc123' actual = common.get_id_from_href(fixture) expected = "abc123" self.assertEqual(actual, expected) def test_get_id_from_href_with_uuid_url_query(self): fixture = 'http://www.testsite.com/dir/abc123?asdf=jkl' actual = common.get_id_from_href(fixture) expected = "abc123" self.assertEqual(actual, expected) def test_get_id_from_href_with_uuid(self): fixture = 'abc123' actual = common.get_id_from_href(fixture) expected = 'abc123' self.assertEqual(actual, expected) def test_raise_http_conflict_for_instance_invalid_state(self): exc = exception.InstanceInvalidState(attr='fake_attr', state='fake_state', method='fake_method', instance_uuid='fake') try: common.raise_http_conflict_for_instance_invalid_state(exc, 'meow', 'fake_server_id') except webob.exc.HTTPConflict as e: self.assertEqual(unicode(e), "Cannot 'meow' instance fake_server_id while it is in " "fake_attr fake_state") else: self.fail("webob.exc.HTTPConflict was not raised") def test_check_img_metadata_properties_quota_valid_metadata(self): ctxt = utils.get_test_admin_context() metadata1 = {"key": "value"} actual = common.check_img_metadata_properties_quota(ctxt, metadata1) self.assertIsNone(actual) metadata2 = {"key": "v" * 260} actual = common.check_img_metadata_properties_quota(ctxt, metadata2) self.assertIsNone(actual) metadata3 = {"key": ""} actual = common.check_img_metadata_properties_quota(ctxt, metadata3) self.assertIsNone(actual) def test_check_img_metadata_properties_quota_inv_metadata(self): ctxt = utils.get_test_admin_context() metadata1 = {"a" * 260: "value"} self.assertRaises(webob.exc.HTTPBadRequest, common.check_img_metadata_properties_quota, ctxt, metadata1) metadata2 = {"": "value"} self.assertRaises(webob.exc.HTTPBadRequest, common.check_img_metadata_properties_quota, ctxt, metadata2) metadata3 = "invalid metadata" self.assertRaises(webob.exc.HTTPBadRequest, common.check_img_metadata_properties_quota, ctxt, metadata3) metadata4 = None self.assertIsNone(common.check_img_metadata_properties_quota(ctxt, metadata4)) metadata5 = {} self.assertIsNone(common.check_img_metadata_properties_quota(ctxt, metadata5)) def test_status_from_state(self): for vm_state in (vm_states.ACTIVE, vm_states.STOPPED): for task_state in (task_states.RESIZE_PREP, task_states.RESIZE_MIGRATING, task_states.RESIZE_MIGRATED, task_states.RESIZE_FINISH): actual = common.status_from_state(vm_state, task_state) expected = 'RESIZE' self.assertEqual(expected, actual) def test_status_rebuild_from_state(self): for vm_state in (vm_states.ACTIVE, vm_states.STOPPED, vm_states.ERROR): for task_state in (task_states.REBUILDING, task_states.REBUILD_BLOCK_DEVICE_MAPPING, task_states.REBUILD_SPAWNING): actual = common.status_from_state(vm_state, task_state) expected = 'REBUILD' self.assertEqual(expected, actual) def test_task_and_vm_state_from_status(self): fixture1 = ['reboot'] actual = common.task_and_vm_state_from_status(fixture1) expected = [vm_states.ACTIVE], [task_states.REBOOT_PENDING, task_states.REBOOT_STARTED, task_states.REBOOTING] self.assertEqual(expected, actual) fixture2 = ['resize'] actual = common.task_and_vm_state_from_status(fixture2) expected = ([vm_states.ACTIVE, vm_states.STOPPED], [task_states.RESIZE_FINISH, task_states.RESIZE_MIGRATED, task_states.RESIZE_MIGRATING, task_states.RESIZE_PREP]) self.assertEqual(expected, actual) fixture3 = ['resize', 'reboot'] actual = common.task_and_vm_state_from_status(fixture3) expected = ([vm_states.ACTIVE, vm_states.STOPPED], [task_states.REBOOT_PENDING, task_states.REBOOT_STARTED, task_states.REBOOTING, task_states.RESIZE_FINISH, task_states.RESIZE_MIGRATED, task_states.RESIZE_MIGRATING, task_states.RESIZE_PREP]) self.assertEqual(expected, actual) class TestCollectionLinks(test.NoDBTestCase): """Tests the _get_collection_links method.""" @mock.patch('nova.api.openstack.common.ViewBuilder._get_next_link') def test_items_less_than_limit(self, href_link_mock): items = [ {"uuid": "123"} ] req = mock.MagicMock() params = mock.PropertyMock(return_value=dict(limit=10)) type(req).params = params builder = common.ViewBuilder() results = builder._get_collection_links(req, items, "ignored", "uuid") self.assertFalse(href_link_mock.called) self.assertThat(results, matchers.HasLength(0)) @mock.patch('nova.api.openstack.common.ViewBuilder._get_next_link') def test_items_equals_given_limit(self, href_link_mock): items = [ {"uuid": "123"} ] req = mock.MagicMock() params = mock.PropertyMock(return_value=dict(limit=1)) type(req).params = params builder = common.ViewBuilder() results = builder._get_collection_links(req, items, mock.sentinel.coll_key, "uuid") href_link_mock.assert_called_once_with(req, "123", mock.sentinel.coll_key) self.assertThat(results, matchers.HasLength(1)) @mock.patch('nova.api.openstack.common.ViewBuilder._get_next_link') def test_items_equals_default_limit(self, href_link_mock): items = [ {"uuid": "123"} ] req = mock.MagicMock() params = mock.PropertyMock(return_value=dict()) type(req).params = params self.flags(osapi_max_limit=1) builder = common.ViewBuilder() results = builder._get_collection_links(req, items, mock.sentinel.coll_key, "uuid") href_link_mock.assert_called_once_with(req, "123", mock.sentinel.coll_key) self.assertThat(results, matchers.HasLength(1)) @mock.patch('nova.api.openstack.common.ViewBuilder._get_next_link') def test_items_equals_default_limit_with_given(self, href_link_mock): items = [ {"uuid": "123"} ] req = mock.MagicMock() # Given limit is greater than default max, only return default max params = mock.PropertyMock(return_value=dict(limit=2)) type(req).params = params self.flags(osapi_max_limit=1) builder = common.ViewBuilder() results = builder._get_collection_links(req, items, mock.sentinel.coll_key, "uuid") href_link_mock.assert_called_once_with(req, "123", mock.sentinel.coll_key) self.assertThat(results, matchers.HasLength(1)) class MetadataXMLDeserializationTest(test.TestCase): deserializer = common.MetadataXMLDeserializer() def test_create(self): request_body = """ <metadata xmlns="http://docs.openstack.org/compute/api/v1.1"> <meta key='123'>asdf</meta> <meta key='567'>jkl;</meta> </metadata>""" output = self.deserializer.deserialize(request_body, 'create') expected = {"body": {"metadata": {"123": "asdf", "567": "jkl;"}}} self.assertEqual(output, expected) def test_create_empty(self): request_body = """ <metadata xmlns="http://docs.openstack.org/compute/api/v1.1"/>""" output = self.deserializer.deserialize(request_body, 'create') expected = {"body": {"metadata": {}}} self.assertEqual(output, expected) def test_update_all(self): request_body = """ <metadata xmlns="http://docs.openstack.org/compute/api/v1.1"> <meta key='123'>asdf</meta> <meta key='567'>jkl;</meta> </metadata>""" output = self.deserializer.deserialize(request_body, 'update_all') expected = {"body": {"metadata": {"123": "asdf", "567": "jkl;"}}} self.assertEqual(output, expected) def test_update(self): request_body = """ <meta xmlns="http://docs.openstack.org/compute/api/v1.1" key='123'>asdf</meta>""" output = self.deserializer.deserialize(request_body, 'update') expected = {"body": {"meta": {"123": "asdf"}}} self.assertEqual(output, expected) class MetadataXMLSerializationTest(test.TestCase): def test_xml_declaration(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { 'one': 'two', 'three': 'four', }, } output = serializer.serialize(fixture) has_dec = output.startswith("<?xml version='1.0' encoding='UTF-8'?>") self.assertTrue(has_dec) def test_index(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { 'one': 'two', 'three': 'four', }, } output = serializer.serialize(fixture) root = etree.XML(output) xmlutil.validate_schema(root, 'metadata') metadata_dict = fixture['metadata'] metadata_elems = root.findall('{0}meta'.format(NS)) self.assertEqual(len(metadata_elems), 2) for i, metadata_elem in enumerate(metadata_elems): (meta_key, meta_value) = metadata_dict.items()[i] self.assertEqual(str(metadata_elem.get('key')), str(meta_key)) self.assertEqual(str(metadata_elem.text).strip(), str(meta_value)) def test_index_null(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { None: None, }, } output = serializer.serialize(fixture) root = etree.XML(output) xmlutil.validate_schema(root, 'metadata') metadata_dict = fixture['metadata'] metadata_elems = root.findall('{0}meta'.format(NS)) self.assertEqual(len(metadata_elems), 1) for i, metadata_elem in enumerate(metadata_elems): (meta_key, meta_value) = metadata_dict.items()[i] self.assertEqual(str(metadata_elem.get('key')), str(meta_key)) self.assertEqual(str(metadata_elem.text).strip(), str(meta_value)) def test_index_unicode(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { u'three': u'Jos\xe9', }, } output = serializer.serialize(fixture) root = etree.XML(output) xmlutil.validate_schema(root, 'metadata') metadata_dict = fixture['metadata'] metadata_elems = root.findall('{0}meta'.format(NS)) self.assertEqual(len(metadata_elems), 1) for i, metadata_elem in enumerate(metadata_elems): (meta_key, meta_value) = metadata_dict.items()[i] self.assertEqual(str(metadata_elem.get('key')), str(meta_key)) self.assertEqual(metadata_elem.text.strip(), meta_value) def test_show(self): serializer = common.MetaItemTemplate() fixture = { 'meta': { 'one': 'two', }, } output = serializer.serialize(fixture) root = etree.XML(output) meta_dict = fixture['meta'] (meta_key, meta_value) = meta_dict.items()[0] self.assertEqual(str(root.get('key')), str(meta_key)) self.assertEqual(root.text.strip(), meta_value) def test_update_all(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { 'key6': 'value6', 'key4': 'value4', }, } output = serializer.serialize(fixture) root = etree.XML(output) xmlutil.validate_schema(root, 'metadata') metadata_dict = fixture['metadata'] metadata_elems = root.findall('{0}meta'.format(NS)) self.assertEqual(len(metadata_elems), 2) for i, metadata_elem in enumerate(metadata_elems): (meta_key, meta_value) = metadata_dict.items()[i] self.assertEqual(str(metadata_elem.get('key')), str(meta_key)) self.assertEqual(str(metadata_elem.text).strip(), str(meta_value)) def test_update_item(self): serializer = common.MetaItemTemplate() fixture = { 'meta': { 'one': 'two', }, } output = serializer.serialize(fixture) root = etree.XML(output) meta_dict = fixture['meta'] (meta_key, meta_value) = meta_dict.items()[0] self.assertEqual(str(root.get('key')), str(meta_key)) self.assertEqual(root.text.strip(), meta_value) def test_create(self): serializer = common.MetadataTemplate() fixture = { 'metadata': { 'key9': 'value9', 'key2': 'value2', 'key1': 'value1', }, } output = serializer.serialize(fixture) root = etree.XML(output) xmlutil.validate_schema(root, 'metadata') metadata_dict = fixture['metadata'] metadata_elems = root.findall('{0}meta'.format(NS)) self.assertEqual(len(metadata_elems), 3) for i, metadata_elem in enumerate(metadata_elems): (meta_key, meta_value) = metadata_dict.items()[i] self.assertEqual(str(metadata_elem.get('key')), str(meta_key)) self.assertEqual(str(metadata_elem.text).strip(), str(meta_value)) actual = minidom.parseString(output.replace(" ", "")) expected = minidom.parseString(""" <metadata xmlns="http://docs.openstack.org/compute/api/v1.1"> <meta key="key2">value2</meta> <meta key="key9">value9</meta> <meta key="key1">value1</meta> </metadata> """.replace(" ", "").replace("\n", "")) self.assertEqual(expected.toxml(), actual.toxml()) def test_metadata_deserializer(self): """Should throw a 400 error on corrupt xml.""" deserializer = common.MetadataXMLDeserializer() self.assertRaises( exception.MalformedRequestBody, deserializer.deserialize, utils.killer_xml_body()) class LinkPrefixTest(test.NoDBTestCase): def test_update_link_prefix(self): vb = common.ViewBuilder() result = vb._update_link_prefix("http://192.168.0.243:24/", "http://127.0.0.1/compute") self.assertEqual("http://127.0.0.1/compute", result) result = vb._update_link_prefix("http://foo.x.com/v1", "http://new.prefix.com") self.assertEqual("http://new.prefix.com/v1", result) result = vb._update_link_prefix( "http://foo.x.com/v1", "http://new.prefix.com:20455/new_extra_prefix") self.assertEqual("http://new.prefix.com:20455/new_extra_prefix/v1", result)
40.814136
78
0.6159
8d810fb5f6442f8e84980f2d14449c5431ddfc52
1,194
py
Python
tests/tests/correctness/Components/BucketSystem/m_cor_001/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
3
2019-09-02T18:21:22.000Z
2020-04-17T16:34:57.000Z
tests/tests/correctness/Components/BucketSystem/m_cor_001/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
tests/tests/correctness/Components/BucketSystem/m_cor_001/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest() correlator.injectMonitorscript(['BucketSystem.mon'], self.COMPONENTS) correlator.injectMonitorscript(['BucketSystemCreationFailure.mon'], self.input) self.waitForSignal('correlator.out', expr='Test finished', condition='==1', timeout=5) def validate(self): self.assertLineCount('correlator.out', expr='Successfully threw exception:', condition='==11') self.assertLineCount('correlator.out', expr='Test Failed', condition='==0') self.checkSanity()
56.857143
343
0.747906
250a60dd6c89e324ec2b897bd07aadd57829f335
367
py
Python
src/pandas_profiling_study/report/presentation/core/frequency_table.py
lucasiscoviciMoon/pandas-profiling-study
142d3b0f5e3139cdb531819f637a407682fa5684
[ "MIT" ]
null
null
null
src/pandas_profiling_study/report/presentation/core/frequency_table.py
lucasiscoviciMoon/pandas-profiling-study
142d3b0f5e3139cdb531819f637a407682fa5684
[ "MIT" ]
null
null
null
src/pandas_profiling_study/report/presentation/core/frequency_table.py
lucasiscoviciMoon/pandas-profiling-study
142d3b0f5e3139cdb531819f637a407682fa5684
[ "MIT" ]
1
2020-04-25T15:20:39.000Z
2020-04-25T15:20:39.000Z
from typing import Any from ....report.presentation.abstract.item_renderer import ItemRenderer class FrequencyTable(ItemRenderer): def __init__(self, rows, **kwargs): super().__init__("frequency_table", {"rows": rows}, **kwargs) def __repr__(self): return "FrequencyTable" def render(self) -> Any: raise NotImplementedError()
24.466667
71
0.689373
bf7f79916678ccd3c138e6978dbe98f8fadc0cb0
5,137
py
Python
quant_disp.py
UltronAI/SfmLearner-Pytorch
4f8f7f6057150b7a449b05e49eb2e2dca9cc0d56
[ "MIT" ]
null
null
null
quant_disp.py
UltronAI/SfmLearner-Pytorch
4f8f7f6057150b7a449b05e49eb2e2dca9cc0d56
[ "MIT" ]
null
null
null
quant_disp.py
UltronAI/SfmLearner-Pytorch
4f8f7f6057150b7a449b05e49eb2e2dca9cc0d56
[ "MIT" ]
null
null
null
import torch from imageio import imread, imsave from scipy.misc import imresize import numpy as np from path import Path import argparse from tqdm import tqdm from models import QuantDispNetS from utils import tensor2array, getScale, quantize, quantizeWeight parser = argparse.ArgumentParser(description='Quantize Pretrained DispNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--output-disp", action='store_true', help="save disparity img") parser.add_argument("--output-depth", action='store_true', help="save depth img") parser.add_argument("--pretrained", required=True, type=str, help="pretrained DispNet path") parser.add_argument("--img-height", default=128, type=int, help="Image height") parser.add_argument("--img-width", default=416, type=int, help="Image width") parser.add_argument("--no-resize", action='store_true', help="no resizing is done") parser.add_argument("--dataset-list", default=None, type=str, help="Dataset list file") parser.add_argument("--dataset-dir", default='.', type=str, help="Dataset directory") parser.add_argument("--output-dir", default='output', type=str, help="Output directory") parser.add_argument("--img-exts", default=['png', 'jpg', 'bmp'], nargs='*', type=str, help="images extensions to glob") parser.add_argument("--quantize-weights", action='store_true') parser.add_argument("--original-input", action='store_true') device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") fix_info = {} def quantHookWithName(module_name): def quantHook(module, input, output): if 'input' not in fix_info[module_name].keys(): fix_info[module_name]['input'] = getScale(input[0].cpu().numpy().copy()) else: fix_info[module_name]['input'] = min(fix_info[module_name]['input'], getScale(input[0].cpu().numpy().copy())) if 'output' not in fix_info[module_name].keys(): fix_info[module_name]['output'] = getScale(output[0].cpu().numpy().copy()) else: fix_info[module_name]['output'] = min(fix_info[module_name]['output'], getScale(output[0].cpu().numpy().copy())) return quantHook @torch.no_grad() def main(): args = parser.parse_args() if not(args.output_disp or args.output_depth): print('You must at least output one value !') # return disp_net = QuantDispNetS().to(device) weights = torch.load(args.pretrained) disp_net.load_state_dict(weights['state_dict']) disp_net.eval() dataset_dir = Path(args.dataset_dir) output_dir = Path(args.output_dir) output_dir.makedirs_p() if args.quantize_weights: print("Quantizing the pretrained model ...") quant_weights = { 'state_dict': quantizeWeight(weights['state_dict'], fix_info) } torch.save(quant_weights, output_dir/'quant_dispnet_model.pth.tar') else: for key in weights['state_dict'].keys(): fix_info['.'.join(key.split('.')[:-1])] = {} if args.dataset_list is not None: with open(args.dataset_list, 'r') as f: test_files = [dataset_dir/file for file in f.read().splitlines()] else: test_files = sum([dataset_dir.files('*.{}'.format(ext)) for ext in args.img_exts], []) print('{} files to test'.format(len(test_files))) for file in tqdm(test_files): img = imread(file).astype(np.float32) h,w,_ = img.shape if (not args.no_resize) and (h != args.img_height or w != args.img_width): img = imresize(img, (args.img_height, args.img_width)).astype(np.float32) img = np.transpose(img, (2, 0, 1)) tensor_img = torch.from_numpy(img).unsqueeze(0) if args.original_input: tensor_img = (tensor_img).to(device) else: tensor_img = ((tensor_img/255 - 0.5)/0.2).to(device) handles = [] for name, module in disp_net.named_modules(): if name in fix_info.keys(): handle = module.register_forward_hook(quantHookWithName(name)) handles.append(handle) output = disp_net(tensor_img)[0] for handle in handles: handle.remove() if args.output_disp: disp = (255*tensor2array(output, max_value=None, colormap='bone')).astype(np.uint8) imsave(output_dir/'{}_disp{}'.format(file.namebase,file.ext), disp) if args.output_depth: depth = 1/output depth = (255*tensor2array(depth, max_value=10, colormap='rainbow')).astype(np.uint8) imsave(output_dir/'{}_depth{}'.format(file.namebase,file.ext), depth) if not args.quantize_weights: return with open(output_dir/'dispnet_fix_info.txt', 'w') as f: count = 0 for key, value in fix_info.items(): f.write('{count} {layer} 8 {input} 8 {output} 8 {weight} 8 {bias} \n'.format( count=count, layer=key, input=int(value['input']), output=int(value['output']), weight=int(value['weight']), bias=int(value['bias']))) count += 1 if __name__ == '__main__': main()
42.454545
154
0.651937
5395d36eba916372f19d3a81ce0e682c8b649e14
1,623
py
Python
photos/migrations/0001_initial.py
Elrophi/django-gallery
ff8d592c368cdcb5796ea2605b188517bb74eb80
[ "MIT" ]
1
2021-11-06T19:55:53.000Z
2021-11-06T19:55:53.000Z
photos/migrations/0001_initial.py
Elrophi/django-gallery
ff8d592c368cdcb5796ea2605b188517bb74eb80
[ "MIT" ]
null
null
null
photos/migrations/0001_initial.py
Elrophi/django-gallery
ff8d592c368cdcb5796ea2605b188517bb74eb80
[ "MIT" ]
null
null
null
# Generated by Django 3.2.3 on 2021-05-15 19:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('category_name', models.CharField(max_length=60)), ], ), migrations.CreateModel( name='Location', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('location_name', models.CharField(max_length=60)), ], ), migrations.CreateModel( name='Image', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='')), ('image_name', models.CharField(max_length=100)), ('image_description', models.TextField()), ('author', models.CharField(default='admin', max_length=60)), ('date', models.DateTimeField(auto_now_add=True)), ('image_category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='photos.category')), ('image_location', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='photos.location')), ], ), ]
37.744186
121
0.582255
692902b3ed4e8034bf418b9d9452261dc37a189f
2,501
py
Python
dateparser/data/date_translation_data/rm.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
dateparser/data/date_translation_data/rm.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
dateparser/data/date_translation_data/rm.py
Rodp63/dateparser
938a9573234679b603210bd47cc93eb258b1f1df
[ "BSD-3-Clause" ]
null
null
null
info = { "name": "rm", "date_order": "DMY", "january": [ "schan", "schaner" ], "february": [ "favr", "favrer" ], "march": [ "mars" ], "april": [ "avr", "avrigl" ], "may": [ "matg" ], "june": [ "zercl", "zercladur" ], "july": [ "fan", "fanadur" ], "august": [ "avust" ], "september": [ "sett", "settember" ], "october": [ "oct", "october" ], "november": [ "nov", "november" ], "december": [ "dec", "december" ], "monday": [ "gli", "glindesdi" ], "tuesday": [ "ma", "mardi" ], "wednesday": [ "me", "mesemna" ], "thursday": [ "gie", "gievgia" ], "friday": [ "ve", "venderdi" ], "saturday": [ "so", "sonda" ], "sunday": [ "du", "dumengia" ], "am": [ "am" ], "pm": [ "pm" ], "year": [ "onn" ], "month": [ "mais" ], "week": [ "emna" ], "day": [ "tag" ], "hour": [ "ura" ], "minute": [ "minuta" ], "second": [ "secunda" ], "relative-type": { "0 day ago": [ "oz" ], "0 hour ago": [ "this hour" ], "0 minute ago": [ "this minute" ], "0 month ago": [ "this month" ], "0 second ago": [ "now" ], "0 week ago": [ "this week" ], "0 year ago": [ "this year" ], "1 day ago": [ "ier" ], "1 month ago": [ "last month" ], "1 week ago": [ "last week" ], "1 year ago": [ "last year" ], "in 1 day": [ "damaun" ], "in 1 month": [ "next month" ], "in 1 week": [ "next week" ], "in 1 year": [ "next year" ] }, "locale_specific": {}, "skip": [ " ", ".", ",", ";", "-", "/", "'", "|", "@", "[", "]", "," ] }
14.976048
26
0.261096
c413de1236b37bde8fe619b2fa80dd2fe5f528f5
1,363
py
Python
soundtests/soundtest4.py
MageJohn/CHIP8
58fdff9e9860a3ff2b591e58a5e907faa5a90f4c
[ "MIT" ]
1
2016-09-26T06:52:36.000Z
2016-09-26T06:52:36.000Z
soundtests/soundtest4.py
MageJohn/CHIP8
58fdff9e9860a3ff2b591e58a5e907faa5a90f4c
[ "MIT" ]
null
null
null
soundtests/soundtest4.py
MageJohn/CHIP8
58fdff9e9860a3ff2b591e58a5e907faa5a90f4c
[ "MIT" ]
null
null
null
# The first sound test I wrote from scratch which functioned # correctly. I had been fiddling with soundtest2.py a lot, and it was # getting overly complicated. I decided that it would be best start # over, and keep it simple. After this was working, I went back and # applied what I learned to soundtest2.py, and got that functioning. from sdl2 import * from ctypes import * AMPLITUDE = 255 SAMPLES_PER_SECOND = 44100 CHANNELS = 1 TONE_HZ = 262 SQUARE_WAVE_PERIOD = int(SAMPLES_PER_SECOND / TONE_HZ) HALF_SQUARE_WAVE_PERIOD = int(SQUARE_WAVE_PERIOD / 2) audio_settings = SDL_AudioSpec(freq=SAMPLES_PER_SECOND, aformat=AUDIO_U8, channels=CHANNELS, samples=4096) SDL_Init(SDL_INIT_AUDIO) devid = SDL_OpenAudioDevice(None, 0, audio_settings, audio_settings, 0) running_sample_index = 0 phase = 0 SDL_PauseAudioDevice(devid, 0) while True: sound_buffer = (c_ubyte * audio_settings.samples)() for i in range(audio_settings.samples): running_sample_index += 1 if running_sample_index % HALF_SQUARE_WAVE_PERIOD == 0: phase = int(not phase) sample = AMPLITUDE * phase sound_buffer[i] = c_ubyte(sample) SDL_QueueAudio(devid, byref(sound_buffer), audio_settings.samples) print(SDL_GetQueuedAudioSize(devid))
32.452381
71
0.702861
5a3c10926d6e107d60f0940a9e8f76a582e731c9
3,541
py
Python
python3/env/lib/python3.8/site-packages/pip/_vendor/requests/help.py
hedibejaoui/spark-timeseries
9112dcbbba4e095b5eb46c568e1c72e13e1f251a
[ "Apache-2.0" ]
null
null
null
python3/env/lib/python3.8/site-packages/pip/_vendor/requests/help.py
hedibejaoui/spark-timeseries
9112dcbbba4e095b5eb46c568e1c72e13e1f251a
[ "Apache-2.0" ]
null
null
null
python3/env/lib/python3.8/site-packages/pip/_vendor/requests/help.py
hedibejaoui/spark-timeseries
9112dcbbba4e095b5eb46c568e1c72e13e1f251a
[ "Apache-2.0" ]
1
2021-09-05T15:05:53.000Z
2021-09-05T15:05:53.000Z
"""Module containing bug report helper(s).""" import json import platform import sys import ssl from pip._vendor import idna from pip._vendor import urllib3 from pip._vendor import chardet from . import __version__ as requests_version try: from pip._vendor.urllib3.contrib import pyopenssl except ImportError: pyopenssl = None OpenSSL = None cryptography = None else: import OpenSSL import cryptography def _implementation(): """Return a dict with the Python implementation and version. Provide both the name and the version of the Python implementation currently running. For example, on CPython 2.7.5 it will return {'name': 'CPython', 'version': '2.7.5'}. This function works best on CPython and PyPy: in particular, it probably doesn't work for Jython or IronPython. Future investigation should be done to work out the correct shape of the code for those platforms. """ implementation = platform.python_implementation() if implementation == 'CPython': implementation_version = platform.python_version() elif implementation == 'PyPy': implementation_version = '%s.%s.%s' % (sys.pypy_version_info.major, sys.pypy_version_info.minor, sys.pypy_version_info.micro) if sys.pypy_version_info.releaselevel != 'final': implementation_version = ''.join([ implementation_version, sys.pypy_version_info.releaselevel ]) elif implementation == 'Jython': implementation_version = platform.python_version() # Complete Guess elif implementation == 'IronPython': implementation_version = platform.python_version() # Complete Guess else: implementation_version = 'Unknown' return {'name': implementation, 'version': implementation_version} def info(): """Generate information for a bug report.""" try: platform_info = { 'system': platform.system(), 'release': platform.release(), } except IOError: platform_info = { 'system': 'Unknown', 'release': 'Unknown', } implementation_info = _implementation() urllib3_info = {'version': urllib3.__version__} chardet_info = {'version': chardet.__version__} pyopenssl_info = { 'version': None, 'openssl_version': '', } if OpenSSL: pyopenssl_info = { 'version': OpenSSL.__version__, 'openssl_version': '%x' % OpenSSL.SSL.OPENSSL_VERSION_NUMBER, } cryptography_info = { 'version': getattr(cryptography, '__version__', ''), } idna_info = { 'version': getattr(idna, '__version__', ''), } system_ssl = ssl.OPENSSL_VERSION_NUMBER system_ssl_info = { 'version': '%x' % system_ssl if system_ssl is not None else '' } return { 'platform': platform_info, 'implementation': implementation_info, 'system_ssl': system_ssl_info, 'using_pyopenssl': pyopenssl is not None, 'pyOpenSSL': pyopenssl_info, 'urllib3': urllib3_info, 'chardet': chardet_info, 'cryptography': cryptography_info, 'idna': idna_info, 'requests': { 'version': requests_version, }, } def main(): """Pretty-print the bug information as JSON.""" print(json.dumps(info(), sort_keys=True, indent=2)) if __name__ == '__main__': main()
29.508333
78
0.629201
13b7ff5a376a0218faf1bcbc85c084fcffbf0578
3,964
py
Python
hdc/core/asset_mapper.py
hashmapinc/hdc
34bbd4bd889629d80614410332a0bb6e1ee5b329
[ "Apache-2.0" ]
null
null
null
hdc/core/asset_mapper.py
hashmapinc/hdc
34bbd4bd889629d80614410332a0bb6e1ee5b329
[ "Apache-2.0" ]
null
null
null
hdc/core/asset_mapper.py
hashmapinc/hdc
34bbd4bd889629d80614410332a0bb6e1ee5b329
[ "Apache-2.0" ]
null
null
null
# Copyright © 2020 Hashmap, Inc # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ #TODO: Module description """ import logging from providah.factories.package_factory import PackageFactory as providah_pkg_factory from hdc.core.catalog.crawler import Crawler from hdc.core.create.creator import Creator from hdc.core.exceptions.hdc_error import HdcError from hdc.core.map.mapper import Mapper from hdc.utils import file_utils class AssetMapper: def __init__(self, **kwargs): self._logger = self._get_logger() source = kwargs.get('source') destination = kwargs.get('destination') app_config = file_utils.get_app_config(kwargs.get('app_config', None)) if source in app_config['sources'].keys(): self._crawler: Crawler = providah_pkg_factory.create(key=app_config['sources'][source]['type'], library='hdc', configuration={'conf': app_config['sources'][source][ 'conf']}) else: raise HdcError(message=f"{source} not registered in 'sources' in {kwargs.get('app_config') or 'hdc.yml'}") if source in app_config['mappers'].keys() and destination in app_config['mappers'][source].keys(): self._mapper: Mapper = providah_pkg_factory.create(key=app_config['mappers'][source][destination]['type'], library='hdc', configuration={'conf': (app_config['mappers'] [source] [destination] ).get('conf', {"report": False})}) else: raise HdcError( message=f"{source}/{destination} not registered in 'mappers' in {kwargs.get('app_config') or 'hdc.yml'}") if destination in app_config['destinations'].keys(): self._creator: Creator = providah_pkg_factory.create(key=app_config['destinations'][destination]['type'], library='hdc', configuration={'conf': app_config['destinations'][ destination]['conf']}) else: raise HdcError( message=f"{destination} not registered in 'destinations' in {kwargs.get('app_config') or 'hdc.yml'}") def map_assets(self) -> bool: success = False try: catalog_dataframe = self._crawler.obtain_catalog() if catalog_dataframe is not None: sql_ddl_list = self._mapper.map_assets(catalog_dataframe) self._logger.debug(sql_ddl_list) self._creator.replicate_structures(sql_ddl_list) success = True except Exception: import traceback as tb self._logger.error(f"{tb.format_exc()}") raise HdcError(message=f"Failed to map the source to destination", traceback=tb.format_exc()) return success def _get_logger(self): return logging.getLogger(self.__class__.__name__)
47.759036
121
0.557013
c2b91b19613e8e58a4a98756bb275c0418965d35
657
py
Python
Easy/shortest_distance_to_character.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
Easy/shortest_distance_to_character.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
Easy/shortest_distance_to_character.py
BrynjarGeir/LeetCode
dbd57e645c5398dec538b6466215b61491c8d1d9
[ "MIT" ]
null
null
null
class Solution: def shortestToChar(self, s: str, c: str) -> List[int]: indexes = [i for i,x in enumerate(s) if x == c] ans = [10**4]*len(s); curr = 0 for i in range(len(s)): if s[i] == c: ans[i] = 0 curr += 1 else: if curr == 0: ans[i] = indexes[curr] - i else: if curr == len(indexes): ans[i] = i - indexes[curr-1] else: right = indexes[curr]; left = indexes[curr-1] ans[i] = min(right - i, i - left) return ans
36.5
73
0.380518
06fc1cb7b8e16363965e73a4446321b8b1e1838a
4,706
py
Python
datasets/data_prefetcher.py
Tarandro/MOTR_4
bd8e53d7ea0584f06ccf032b056b327c87986ca7
[ "MIT" ]
191
2021-03-30T12:44:27.000Z
2022-03-31T02:06:22.000Z
datasets/data_prefetcher.py
Tarandro/MOTR_4
bd8e53d7ea0584f06ccf032b056b327c87986ca7
[ "MIT" ]
35
2021-05-11T06:33:26.000Z
2022-03-27T04:21:17.000Z
datasets/data_prefetcher.py
Tarandro/MOTR_4
bd8e53d7ea0584f06ccf032b056b327c87986ca7
[ "MIT" ]
34
2021-05-10T04:30:55.000Z
2022-03-30T04:58:52.000Z
# ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) # Copyright (c) 2020 SenseTime. All Rights Reserved. # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import torch from functools import partial from models.structures import Instances def to_cuda(samples, targets, device): samples = samples.to(device, non_blocking=True) targets = [{k: v.to(device, non_blocking=True) for k, v in t.items()} for t in targets] return samples, targets def tensor_to_cuda(tensor: torch.Tensor, device): return tensor.to(device) def is_tensor_or_instances(data): return isinstance(data, torch.Tensor) or isinstance(data, Instances) def data_apply(data, check_func, apply_func): if isinstance(data, dict): for k in data.keys(): if check_func(data[k]): data[k] = apply_func(data[k]) elif isinstance(data[k], dict) or isinstance(data[k], list): data_apply(data[k], check_func, apply_func) else: raise ValueError() elif isinstance(data, list): for i in range(len(data)): if check_func(data[i]): data[i] = apply_func(data[i]) elif isinstance(data[i], dict) or isinstance(data[i], list): data_apply(data[i], check_func, apply_func) else: raise ValueError("invalid type {}".format(type(data[i]))) else: raise ValueError("invalid type {}".format(type(data))) return data def data_dict_to_cuda(data_dict, device): return data_apply(data_dict, is_tensor_or_instances, partial(tensor_to_cuda, device=device)) class data_prefetcher(): def __init__(self, loader, device, prefetch=True): self.loader = iter(loader) self.prefetch = prefetch self.device = device if prefetch: self.stream = torch.cuda.Stream() self.preload() def preload(self): try: self.next_samples, self.next_targets = next(self.loader) except StopIteration: self.next_samples = None self.next_targets = None return # if record_stream() doesn't work, another option is to make sure device inputs are created # on the main stream. # self.next_input_gpu = torch.empty_like(self.next_input, device='cuda') # self.next_target_gpu = torch.empty_like(self.next_target, device='cuda') # Need to make sure the memory allocated for next_* is not still in use by the main stream # at the time we start copying to next_*: # self.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream): self.next_samples, self.next_targets = to_cuda(self.next_samples, self.next_targets, self.device) # more code for the alternative if record_stream() doesn't work: # copy_ will record the use of the pinned source tensor in this side stream. # self.next_input_gpu.copy_(self.next_input, non_blocking=True) # self.next_target_gpu.copy_(self.next_target, non_blocking=True) # self.next_input = self.next_input_gpu # self.next_target = self.next_target_gpu # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: def next(self): if self.prefetch: torch.cuda.current_stream().wait_stream(self.stream) samples = self.next_samples targets = self.next_targets if samples is not None: samples.record_stream(torch.cuda.current_stream()) if targets is not None: for t in targets: for k, v in t.items(): v.record_stream(torch.cuda.current_stream()) self.preload() else: try: samples, targets = next(self.loader) samples, targets = to_cuda(samples, targets, self.device) except StopIteration: print("catch_stop_iter") samples = None targets = None return samples, targets
40.921739
109
0.584573
a841c94d8241ae605fff020b467655d9c982b8e5
16,236
py
Python
domainbed/datasets.py
AllenPu/mbdg
243f53a57dcf4bfb6e717c0c9f64a839cff8d548
[ "MIT" ]
null
null
null
domainbed/datasets.py
AllenPu/mbdg
243f53a57dcf4bfb6e717c0c9f64a839cff8d548
[ "MIT" ]
null
null
null
domainbed/datasets.py
AllenPu/mbdg
243f53a57dcf4bfb6e717c0c9f64a839cff8d548
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import torch from PIL import Image, ImageFile from torchvision import transforms import torchvision.datasets.folder from torch.utils.data import TensorDataset, Subset, ConcatDataset from torchvision.datasets import MNIST, ImageFolder from torchvision.transforms.functional import rotate #from wilds.datasets.camelyon17_dataset import Camelyon17Dataset #from wilds.datasets.fmow_dataset import FMoWDataset ImageFile.LOAD_TRUNCATED_IMAGES = True DATASETS = [ # Debug "Debug28", "Debug224", # Small images "ColoredMNIST", "RotatedMNIST", # Big images "VLCS", "PACS", "OfficeHome", "TerraIncognita", "DomainNet", "SVIRO", # WILDS datasets "WILDSCamelyon", "WILDSFMoW", "EDGEvolCircle", "EDGRPlate", "EDGPortrait", "EDGForestCover" ] def get_dataset_class(dataset_name): """Return the dataset class with the given name.""" if dataset_name not in globals(): raise NotImplementedError("Dataset not found: {}".format(dataset_name)) return globals()[dataset_name] def num_environments(dataset_name): return len(get_dataset_class(dataset_name).ENVIRONMENTS) class MultipleDomainDataset: N_STEPS = 5001 # Default, subclasses may override CHECKPOINT_FREQ = 100 # Default, subclasses may override N_WORKERS = 8 # Default, subclasses may override ENVIRONMENTS = None # Subclasses should override INPUT_SHAPE = None # Subclasses should override def __getitem__(self, index): return self.datasets[index] def __len__(self): return len(self.datasets) class Debug(MultipleDomainDataset): def __init__(self, root, test_envs, hparams): super().__init__() self.input_shape = self.INPUT_SHAPE self.num_classes = 2 self.datasets = [] for _ in [0, 1, 2]: self.datasets.append( TensorDataset( torch.randn(16, *self.INPUT_SHAPE), torch.randint(0, self.num_classes, (16,)) ) ) class Debug28(Debug): INPUT_SHAPE = (3, 28, 28) ENVIRONMENTS = ['0', '1', '2'] class Debug224(Debug): INPUT_SHAPE = (3, 224, 224) ENVIRONMENTS = ['0', '1', '2'] class MultipleEnvironmentMNIST(MultipleDomainDataset): def __init__(self, root, environments, dataset_transform, input_shape, num_classes): super().__init__() if root is None: raise ValueError('Data directory not specified!') transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor() ]) original_dataset_tr = MNIST(root, train=True, download=True, transform=transform) original_dataset_te = MNIST(root, train=False, download=True, transform=transform) data = ConcatDataset([original_dataset_tr, original_dataset_te]) original_images = torch.cat([img for img, _ in data]) original_labels = torch.cat([torch.tensor(label).unsqueeze(0) for _, label in data]) shuffle = torch.randperm(len(original_images)) original_images = original_images[shuffle] original_labels = original_labels[shuffle] self.datasets = [] for i in range(len(environments)): images = original_images[i::len(environments)] labels = original_labels[i::len(environments)] self.datasets.append(dataset_transform(images, labels, environments[i])) self.input_shape = input_shape self.num_classes = num_classes class ColoredMNIST(MultipleEnvironmentMNIST): ENVIRONMENTS = ['+90%', '+80%', '-90%'] def __init__(self, root, test_envs, hparams): super(ColoredMNIST, self).__init__(root, [0.1, 0.2, 0.9], self.color_dataset, (2, 32, 32,), 2) self.input_shape = (2, 32, 32,) self.num_classes = 2 def color_dataset(self, images, labels, environment): # Assign a binary label based on the digit labels = (labels < 5).float() # Flip label with probability 0.25 labels = self.torch_xor_(labels, self.torch_bernoulli_(0.25, len(labels))) # Assign a color based on the label; flip the color with probability e colors = self.torch_xor_(labels, self.torch_bernoulli_(environment, len(labels))) images = torch.stack([images, images], dim=1) # Apply the color to the image by zeroing out the other color channel images[torch.tensor(range(len(images))), (1 - colors).long(), :, :] *= 0 x = images.float() #.div_(255.0) y = labels.view(-1).long() return TensorDataset(x, y) def torch_bernoulli_(self, p, size): return (torch.rand(size) < p).float() def torch_xor_(self, a, b): return (a - b).abs() class RotatedMNIST(MultipleEnvironmentMNIST): ENVIRONMENTS = ['0', '15', '30', '45', '60', '75'] def __init__(self, root, test_envs, hparams): super(RotatedMNIST, self).__init__(root, [0, 15, 30, 45, 60, 75], self.rotate_dataset, (1, 28, 28,), 10) def rotate_dataset(self, images, labels, angle): rotation = transforms.Compose([ transforms.ToPILImage(), transforms.Lambda(lambda x: rotate(x, angle, fill=(0,), resample=Image.BICUBIC)), transforms.ToTensor()]) x = torch.zeros(len(images), 1, 32, 32) for i in range(len(images)): x[i] = rotation(images[i]) y = labels.view(-1) return TensorDataset(x, y) class MultipleEnvironmentImageFolder(MultipleDomainDataset): def __init__(self, root, test_envs, augment, hparams): super().__init__() environments = [f.name for f in os.scandir(root) if f.is_dir()] environments = sorted(environments) transform = transforms.Compose([ transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) augment_transform = transforms.Compose([ # transforms.Resize((224,224)), transforms.RandomResizedCrop(224, scale=(0.7, 1.0)), transforms.RandomHorizontalFlip(), transforms.ColorJitter(0.3, 0.3, 0.3, 0.3), transforms.RandomGrayscale(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.datasets = [] for i, environment in enumerate(environments): if augment and (i not in test_envs): env_transform = augment_transform else: env_transform = transform path = os.path.join(root, environment) env_dataset = ImageFolder(path, transform=env_transform) self.datasets.append(env_dataset) self.input_shape = (3, 224, 224,) self.num_classes = len(self.datasets[-1].classes) class VLCS(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 300 ENVIRONMENTS = ["C", "L", "S", "V"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "VLCS/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class PACS(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 300 ENVIRONMENTS = ["A", "C", "P", "S"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "PACS/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class DomainNet(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 1000 ENVIRONMENTS = ["clip", "info", "paint", "quick", "real", "sketch"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "domain_net/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class OfficeHome(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 300 ENVIRONMENTS = ["A", "C", "P", "R"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "office_home/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class TerraIncognita(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 300 ENVIRONMENTS = ["L100", "L38", "L43", "L46"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "terra_incognita/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class SVIRO(MultipleEnvironmentImageFolder): CHECKPOINT_FREQ = 300 ENVIRONMENTS = ["aclass", "escape", "hilux", "i3", "lexus", "tesla", "tiguan", "tucson", "x5", "zoe"] def __init__(self, root, test_envs, hparams): self.dir = os.path.join(root, "sviro/") super().__init__(self.dir, test_envs, hparams['data_augmentation'], hparams) class WILDSEnvironment: def __init__( self, wilds_dataset, metadata_name, metadata_value, transform=None): self.name = metadata_name + "_" + str(metadata_value) metadata_index = wilds_dataset.metadata_fields.index(metadata_name) metadata_array = wilds_dataset.metadata_array subset_indices = torch.where( metadata_array[:, metadata_index] == metadata_value)[0] self.dataset = wilds_dataset self.indices = subset_indices self.transform = transform def __getitem__(self, i): x = self.dataset.get_input(self.indices[i]) if type(x).__name__ != "Image": x = Image.fromarray(x) y = self.dataset.y_array[self.indices[i]] if self.transform is not None: x = self.transform(x) return x, y def __len__(self): return len(self.indices) class WILDSDataset(MultipleDomainDataset): INPUT_SHAPE = (3, 96, 96) def __init__(self, dataset, metadata_name, test_envs, augment, hparams): super().__init__() transform = transforms.Compose([ transforms.Resize((96, 96)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) augment_transform = transforms.Compose([ transforms.Resize((96, 96)), transforms.RandomResizedCrop(96, scale=(0.7, 1.0)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.datasets = [] for i, metadata_value in enumerate( self.metadata_values(dataset, metadata_name)): if augment and (i not in test_envs): env_transform = augment_transform else: env_transform = transform env_dataset = WILDSEnvironment( dataset, metadata_name, metadata_value, env_transform) self.datasets.append(env_dataset) self.input_shape = (3, 224, 224,) self.num_classes = dataset.n_classes def metadata_values(self, wilds_dataset, metadata_name): metadata_index = wilds_dataset.metadata_fields.index(metadata_name) metadata_vals = wilds_dataset.metadata_array[:, metadata_index] return sorted(list(set(metadata_vals.view(-1).tolist()))) class WILDSCamelyon(WILDSDataset): ENVIRONMENTS = [ "hospital_0", "hospital_1", "hospital_2", "hospital_3", "hospital_4"] def __init__(self, root, test_envs, hparams): dataset = Camelyon17Dataset(root_dir=root) super().__init__( dataset, "hospital", test_envs, hparams['data_augmentation'], hparams) class WILDSFMoW(WILDSDataset): ENVIRONMENTS = [ "region_0", "region_1", "region_2", "region_3", "region_4", "region_5"] def __init__(self, root, test_envs, hparams): dataset = FMoWDataset(root_dir=root) super().__init__( dataset, "region", test_envs, hparams['data_augmentation'], hparams) # # ADD NEW DATASET # class SimpleSyntheticDataset(MultipleDomainDataset): def __init__(self, data_dir, test_envs, hparams): self.data_dir = data_dir # load data data_pkl = self.load_data(data_dir) # config domain_num = len(list(set(data_pkl['domain']))) self.input_shape = data_pkl['data'][0].shape self.num_classes = len(list(set(data_pkl['label']))) self.ENVIRONMENTS = ['Domain '+ str(i) for i in range(domain_num)] # convert to torch Dataset self.datasets = [] for d in range(domain_num): # get x, y from data_pkl idx = data_pkl['domain'] == d x = data_pkl['data'][idx].astype(np.float32) y = data_pkl['label'][idx].astype(np.int64) y = torch.tensor(y).view(-1).long() # turn 1, 2, 3 to 0, 1, 2 self.datasets.append(TensorDataset(torch.tensor(x).float(), y)) def load_data(self, path=None): if not path: raise NotImplementedError return self.read_pickle(path) def read_pickle(self, name): with open(name, 'rb') as f: data = pickle.load(f) return data ######### class EDGRPlate(SimpleSyntheticDataset): def __init__(self, data_dir, test_envs, hparams): super(EDGRPlate, self).__init__( '../datasets_for_domainbed/RPlate/data/RPlate.pkl', test_envs, hparams) ######### class EDGEvolCircle(SimpleSyntheticDataset): def __init__(self, data_dir, test_envs, hparams): super(EDGEvolCircle, self).__init__( '../datasets_for_domainbed/toy-circle/data/half-circle.pkl', test_envs, hparams) ########## class EDGForestCover(MultipleDomainDataset): def __init__(self, data_dir, test_envs, hparams): self.data_dir = data_dir COL = 'Elevation' MAX = 3451 # df[COL].max() MIN = 2061 # df[COL].min() COUNT = hparams['env_number'] # pre self.datasets = [] # df = self.load_forestcover_data().drop('Id', axis = 1) df = self.load_forestcover_data() # MAX = df[COL].max() # 3451 # df[col].max() # MIN = df[COL].min() # 2061 # df[col].min() bins = np.arange(MIN, MAX, (MAX - MIN)/COUNT) se1 = pd.cut(df[COL], bins) df = df.drop(COL, axis=1) gb = df.groupby(se1) gbs = [gb.get_group(x) for x in gb.groups] # groupby('Cover_Type').size() for each in gbs: print(each.groupby('label').size()) gbs = [self.get_xy_from_df(each) for each in gbs] for x, y in gbs: y = torch.tensor(y).view(-1).long() # turn 1, 2, 3 to 0, 1, 2 # print(y) self.datasets.append(TensorDataset(torch.tensor(x).float(), y)) self.input_shape = (54, ) self.num_classes = 2 self.ENVIRONMENTS = [str(i) for i in range(COUNT-1)] return def load_forestcover_data(self, path='ForestCover/train.csv'): df = pd.read_csv(os.path.join(self.data_dir, path)) df = df.rename(columns={"Cover_Type": "label"}) df = self.group_labels(df) df = df.drop('Id', axis=1) df = df.sample(frac=1).reset_index(drop=True) df = df.sample(frac=1).reset_index(drop=False) # [index, label] return df def group_labels(self, df): groups = [ [0, 1, 6, 3], [4, 5, 2, 7], ] # print(df) def new_label(row): for new_l in range(len(groups)): if row['label'] in groups[new_l]: return new_l df['label'] = df.apply(new_label, axis=1) # print(df) return df def get_xy_from_df(self, df): Y = df['label'].to_numpy() X = df.drop('label', axis='columns').to_numpy() return (X, Y)
34.398305
105
0.608339
e7e622cd6afb351ce2d0e2e0a38270046c40c557
2,852
py
Python
urllib3/__init__.py
little-car-counter/backend-app
c0f2bef4f620d08c7296ebb5e71dbcaf3bec49f0
[ "MIT" ]
1
2016-11-16T16:15:54.000Z
2016-11-16T16:15:54.000Z
urllib3/__init__.py
little-car-counter/backend-app
c0f2bef4f620d08c7296ebb5e71dbcaf3bec49f0
[ "MIT" ]
1
2021-02-08T20:17:40.000Z
2021-02-08T20:17:40.000Z
urllib3/__init__.py
little-car-counter/backend-app
c0f2bef4f620d08c7296ebb5e71dbcaf3bec49f0
[ "MIT" ]
null
null
null
""" urllib3 - Thread-safe connection pooling and re-using. """ from __future__ import absolute_import import warnings from .connectionpool import ( HTTPConnectionPool, HTTPSConnectionPool, connection_from_url ) from . import exceptions from .filepost import encode_multipart_formdata from .poolmanager import PoolManager, ProxyManager, proxy_from_url from .response import HTTPResponse from .util.request import make_headers from .util.url import get_host from .util.timeout import Timeout from .util.retry import Retry # Set default logging handler to avoid "No handler found" warnings. import logging try: # Python 2.7+ from logging import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass __author__ = 'Andrey Petrov (andrey.petrov@shazow.net)' __license__ = 'MIT' __version__ = '1.18' __all__ = ( 'HTTPConnectionPool', 'HTTPSConnectionPool', 'PoolManager', 'ProxyManager', 'HTTPResponse', 'Retry', 'Timeout', 'add_stderr_logger', 'connection_from_url', 'disable_warnings', 'encode_multipart_formdata', 'get_host', 'make_headers', 'proxy_from_url', ) logging.getLogger(__name__).addHandler(NullHandler()) def add_stderr_logger(level=logging.DEBUG): """ Helper for quickly adding a StreamHandler to the logger. Useful for debugging. Returns the handler after adding it. """ # This method needs to be in this __init__.py to get the __name__ correct # even if urllib3 is vendored within another package. logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) logger.addHandler(handler) logger.setLevel(level) logger.debug('Added a stderr logging handler to logger: %s', __name__) return handler # ... Clean up. del NullHandler # All warning filters *must* be appended unless you're really certain that they # shouldn't be: otherwise, it's very hard for users to use most Python # mechanisms to silence them. # SecurityWarning's always go off by default. warnings.simplefilter('always', exceptions.SecurityWarning, append=True) # SubjectAltNameWarning's should go off once per host warnings.simplefilter('default', exceptions.SubjectAltNameWarning, append=True) # InsecurePlatformWarning's don't vary between requests, so we keep it default. warnings.simplefilter('default', exceptions.InsecurePlatformWarning, append=True) # SNIMissingWarnings should go off only once. warnings.simplefilter('default', exceptions.SNIMissingWarning, append=True) def disable_warnings(category=exceptions.HTTPWarning): """ Helper for quickly disabling all urllib3 warnings. """ warnings.simplefilter('ignore', category)
29.402062
84
0.741234
bb25e0038e419aac3ee5c02737250a3757960b93
221
py
Python
contrib/wallettools/walletchangepass.py
gondel/mikron
81baad599592863d4e4df5482ed851bd606915b5
[ "MIT" ]
null
null
null
contrib/wallettools/walletchangepass.py
gondel/mikron
81baad599592863d4e4df5482ed851bd606915b5
[ "MIT" ]
null
null
null
contrib/wallettools/walletchangepass.py
gondel/mikron
81baad599592863d4e4df5482ed851bd606915b5
[ "MIT" ]
null
null
null
from jsonrpc import ServiceProxy access = ServiceProxy("http://127.0.0.1:38752") pwd = raw_input("Enter old wallet passphrase: ") pwd2 = raw_input("Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2)
36.833333
49
0.769231
bc0475d9f1e4d1e14cd1313ab9d250a8edb6950f
4,199
py
Python
pystratis/api/connectionmanager/tests/test_connectionmanager.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
pystratis/api/connectionmanager/tests/test_connectionmanager.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
pystratis/api/connectionmanager/tests/test_connectionmanager.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
import pytest from pytest_mock import MockerFixture from pystratis.api.connectionmanager import ConnectionManager from pystratis.api.connectionmanager.responsemodels import * from pystratis.core.networks import StraxMain, CirrusMain def test_all_strax_endpoints_implemented(strax_swagger_json): paths = [key.lower() for key in strax_swagger_json['paths']] for endpoint in paths: if ConnectionManager.route + '/' in endpoint: assert endpoint in ConnectionManager.endpoints def test_all_cirrus_endpoints_implemented(cirrus_swagger_json): paths = [key.lower() for key in cirrus_swagger_json['paths']] for endpoint in paths: if ConnectionManager.route + '/' in endpoint: assert endpoint in ConnectionManager.endpoints def test_all_interfluxstrax_endpoints_implemented(interfluxstrax_swagger_json): paths = [key.lower() for key in interfluxstrax_swagger_json['paths']] for endpoint in paths: if ConnectionManager.route + '/' in endpoint: assert endpoint in ConnectionManager.endpoints def test_all_interfluxcirrus_endpoints_implemented(interfluxcirrus_swagger_json): paths = [key.lower() for key in interfluxcirrus_swagger_json['paths']] for endpoint in paths: if ConnectionManager.route + '/' in endpoint: assert endpoint in ConnectionManager.endpoints @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_addnode(mocker: MockerFixture, network): data = True mocker.patch.object(ConnectionManager, 'get', return_value=data) connection_manager = ConnectionManager(network=network, baseuri=mocker.MagicMock(), session=mocker.MagicMock()) response = connection_manager.addnode(ipaddr='http://localhost', command='add') assert response # noinspection PyUnresolvedReferences connection_manager.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_getpeerinfo(mocker: MockerFixture, network): data = [ { "id": 0, "addr": "[::ffff:x.x.x.x]:17105", "addrlocal": "[::ffff:x.x.x.x]:52424", "services": "9", "relaytxes": False, "lastsend": 0, "lastrecv": 0, "bytessent": 0, "bytesrecv": 0, "conntime": 0, "timeoffset": 0, "pingtime": 0, "minping": 0, "pingwait": 0, "version": 70012, "subver": "StratisFullNode:1.x.x.x (70012)", "inbound": False, "addnode": False, "startingheight": 378614, "banscore": 0, "synced_headers": 0, "synced_blocks": 0, "whitelisted": False, "inflight": None, "bytessent_per_msg": None, "bytesrecv_per_msg": None }, { "id": 1, "addr": "[::ffff:x.x.x.x]:17105", "addrlocal": "[::ffff:x.x.x.x]:33104", "services": "9", "relaytxes": False, "lastsend": 0, "lastrecv": 0, "bytessent": 0, "bytesrecv": 0, "conntime": 0, "timeoffset": 0, "pingtime": 0, "minping": 0, "pingwait": 0, "version": 70012, "subver": "StratisFullNode:1.x.x.x (70012)", "inbound": False, "addnode": False, "startingheight": 379357, "banscore": 0, "synced_headers": 0, "synced_blocks": 0, "whitelisted": False, "inflight": None, "bytessent_per_msg": None, "bytesrecv_per_msg": None } ] mocker.patch.object(ConnectionManager, 'get', return_value=data) connection_manager = ConnectionManager(network=network, baseuri=mocker.MagicMock(), session=mocker.MagicMock()) response = connection_manager.getpeerinfo() assert response == [PeerInfoModel(**x) for x in data] # noinspection PyUnresolvedReferences connection_manager.get.assert_called_once()
35.888889
115
0.608716
1404b79b463bd909a4e35a616500a1be2d1499ee
7,952
py
Python
test/test_exceptions.py
roberto-mello/actifio-python-package
57769d84915e4daef2166b49cfb19efdea826562
[ "MIT" ]
null
null
null
test/test_exceptions.py
roberto-mello/actifio-python-package
57769d84915e4daef2166b49cfb19efdea826562
[ "MIT" ]
null
null
null
test/test_exceptions.py
roberto-mello/actifio-python-package
57769d84915e4daef2166b49cfb19efdea826562
[ "MIT" ]
null
null
null
import unittest import os import sys sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('..')) from Actifio import Actifio from Actifio.actexceptions import * appliance = os.environ['APPLIANCE'] user = os.environ['ACTUSER'] password = os.environ['ACTPASS'] agm = os.environ['ACTAGM'] wrong_applaince = os.environ['WRONGAPPLIANCE'] wrong_user = os.environ['WRONGUSER'] wrong_password = os.environ['WRONGPASS'] oracle_db = os.environ['ORADB'] ora_source = os.environ['ORASOURCE'] ora_target = os.environ['ORATARGET'] ora_home = os.environ['ORACLE_HOME'] ora_dbname = os.environ['ORACLE_SID'] sql_db = os.environ['SQLDB'] sql_dbinst = os.environ['SQLDBINST'] sql_db_source = os.environ['SQLSOURCE'] sql_db_target = os.environ['SQLTARGET'] sql_inst = os.environ['SQLINST'] sql_inst_inst = os.environ['SQLTARGETINST'] sql_inst_source = os.environ['SQLINSTSOURCE'] sql_inst_target = os.environ['SQLINSTTARGET'] class ExceptionTesting(unittest.TestCase): def test_incorrect_ip(self): with self.assertRaises(ActConnectError): act = Actifio(wrong_applaince, user, password) act.run_uds_command('info', 'lsversion', {}) def test_wrong_appliance(self): with self.assertRaises(ActLoginError) as excp: act = Actifio(agm, user, password) act.run_uds_command('info', 'lsversion', {}) self.assertEqual(excp.exception.msg, "This does not seem to be a Actifio Sky/CDS appliance") def test_wrong_user(self): with self.assertRaises(ActLoginError) as excp: act = Actifio(appliance, wrong_user, password) act.run_uds_command('info', 'lsversion', {}) self.assertEqual(excp.exception.msg, "Invalid username or password") def test_wrong_password(self): with self.assertRaises(ActLoginError) as excp: act = Actifio(appliance, user, wrong_password) act.run_uds_command('info', 'lsversion', {}) self.assertEqual(excp.exception.msg, "Invalid username or password") def test_incorrect_command(self): with self.assertRaises(ActAPIError) as excp: act = Actifio(appliance, user, password) act.run_uds_command('info', 'lsversion2', {}) with self.assertRaises(ActAPIError) as excp: act = Actifio(appliance, user, password) act.run_uds_command('xxx', 'lsversion', {}) def test_get_image_bytime_args(self): act = Actifio(appliance, user, password) oracleapp = act.get_applications(appname=oracle_db, hostname=ora_source, appclass="Oracle") sqlapp = act.get_applications(appname=sql_db, hostname=sql_db_source, appclass="SQLServer") nonlsapp = act.get_applications(friendlytype="VMBackup") # incorrect restoretime format in string with self.assertRaises(ActUserError) as excp: from datetime import datetime act.get_image_bytime( application=oracleapp[0], restoretime="03-12-2234 00:00:00", strict_policy=True ) self.assertEqual(excp.exception.msg, "'restoretime' need to be in the format of [YYYY-MM-DD HH:mm:ss]") # strict_policy with non LogSmart app with self.assertRaises(ActUserError) as excp: from datetime import datetime act.get_image_bytime( application=nonlsapp[0], restoretime=datetime.today(), strict_policy=True ) self.assertEqual(excp.exception.msg, "'strict_policy=True' is only valid for LogSmart enables applications. This application is not LogSmart enabled.") # restoretime can't be empty with self.assertRaises(ActUserError) as excp: from datetime import datetime act.get_image_bytime( application=oracleapp[0], restoretime="", strict_policy=True ) self.assertEqual(excp.exception.msg, "'restoretime' should be in the type of datetime or string with format of [YYYY-MM-DD HH:mm:ss]") def test_clone_database_args(self): act = Actifio(appliance, user, password) oracleapp = act.get_applications(appname=oracle_db, hostname=ora_source, appclass="Oracle") sqldb = act.get_applications(appname=sql_db, hostname=sql_db_source , appclass="SQLServer") sqlinst = act.get_applications(appname=sql_inst, appclass="SQLServerGroup") nonlsapp = act.get_applications(friendlytype="VMBackup") target_host_ora = act.get_hosts(hostname=ora_target) # incorrect restoretime format in string with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=oracleapp[0], restoretime="03-12-2234 00:00:00", target_host=target_host_ora, strict_policy=True, ora_home=ora_home, ora_dbname=ora_dbname ) self.assertEqual(excp.exception.msg, "'restoretime' need to be in the format of [YYYY-MM-DD HH:mm:ss]") # restoretime can't be empty with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=oracleapp[0], restoretime=None, target_host=target_host_ora, strict_policy=True, ora_home=ora_home, ora_dbname=ora_dbname ) self.assertEqual(excp.exception.msg, "'restoretime' should be in the type of datetime or string with format of [YYYY-MM-DD HH:mm:ss]") # strict_policy with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=oracleapp[0], restoretime=datetime.today(), target_host=target_host_ora, strict_policy="none", ora_home=ora_home, ora_dbname=ora_dbname ) self.assertEqual(excp.exception.msg, "'strict_policy' should be boolean") # source_application need to be specified with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( restoretime=datetime.today(), target_host=target_host_ora, strict_policy=True, ora_home=ora_home, ora_dbname=ora_dbname ) self.assertEqual(excp.exception.msg, "'source_application' or 'source_appname' and 'source_hostname' need to be specified.") # source_application need to be actApplication with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application="None", restoretime=datetime.today(), target_host=target_host_ora, strict_policy=True, ora_home=ora_home, ora_dbname=ora_dbname ) self.assertEqual(excp.exception.msg, "'source_application' need to be ActApplication type.") # oracle params with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=oracleapp[0], restoretime=datetime.today(), target_host=target_host_ora, strict_policy=True, oracle_db_name=ora_dbname ) self.assertEqual(excp.exception.msg, "Required argument is missing: oracle_home") # oracle params with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=oracleapp[0], restoretime=datetime.today(), target_host=target_host_ora, strict_policy=True, oracle_home=ora_home ) self.assertEqual(excp.exception.msg, "Required argument is missing: oracle_db_name") # sql params with self.assertRaises(ActUserError) as excp: from datetime import datetime act.clone_database( source_application=sqldb[0], restoretime=datetime.today(), target_host=target_host_ora, strict_policy=True, sql_instance_name=sql_dbinst ) self.assertEqual(excp.exception.msg, "Required argument is missing: sql_db_name") if __name__ == "__main__": unittest.main()
36.645161
155
0.697435
f269c7a43f0409d4fb3d9fb0f9d50266e00df29d
3,938
py
Python
rapid7vmconsole/models/resources_role.py
kiblik/vm-console-client-python
038f6d33e8b2654a558326c6eb87f09ee23e0e22
[ "MIT" ]
61
2018-05-17T05:57:09.000Z
2022-03-08T13:59:21.000Z
rapid7vmconsole/models/resources_role.py
kiblik/vm-console-client-python
038f6d33e8b2654a558326c6eb87f09ee23e0e22
[ "MIT" ]
33
2018-06-26T16:21:14.000Z
2022-03-03T20:55:47.000Z
rapid7vmconsole/models/resources_role.py
kiblik/vm-console-client-python
038f6d33e8b2654a558326c6eb87f09ee23e0e22
[ "MIT" ]
43
2018-02-24T05:45:53.000Z
2022-03-31T22:15:16.000Z
# coding: utf-8 """ Python InsightVM API Client OpenAPI spec version: 3 Contact: support@rapid7.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ResourcesRole(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'links': 'list[Link]', 'resources': 'list[Role]' } attribute_map = { 'links': 'links', 'resources': 'resources' } def __init__(self, links=None, resources=None): # noqa: E501 """ResourcesRole - a model defined in Swagger""" # noqa: E501 self._links = None self._resources = None self.discriminator = None if links is not None: self.links = links if resources is not None: self.resources = resources @property def links(self): """Gets the links of this ResourcesRole. # noqa: E501 Hypermedia links to corresponding or related resources. # noqa: E501 :return: The links of this ResourcesRole. # noqa: E501 :rtype: list[Link] """ return self._links @links.setter def links(self, links): """Sets the links of this ResourcesRole. Hypermedia links to corresponding or related resources. # noqa: E501 :param links: The links of this ResourcesRole. # noqa: E501 :type: list[Link] """ self._links = links @property def resources(self): """Gets the resources of this ResourcesRole. # noqa: E501 The resources returned. # noqa: E501 :return: The resources of this ResourcesRole. # noqa: E501 :rtype: list[Role] """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this ResourcesRole. The resources returned. # noqa: E501 :param resources: The resources of this ResourcesRole. # noqa: E501 :type: list[Role] """ self._resources = resources def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResourcesRole, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourcesRole): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.347222
80
0.562722
b91f9d35578542f9eed1fecc372090a83a08980f
1,950
py
Python
pds_pipelines/config.py
kaitlyndlee/PDS-Pipelines
dbcdd72c5c3e8f96593538752855b10279e94983
[ "Unlicense" ]
null
null
null
pds_pipelines/config.py
kaitlyndlee/PDS-Pipelines
dbcdd72c5c3e8f96593538752855b10279e94983
[ "Unlicense" ]
null
null
null
pds_pipelines/config.py
kaitlyndlee/PDS-Pipelines
dbcdd72c5c3e8f96593538752855b10279e94983
[ "Unlicense" ]
null
null
null
import os from pathlib import Path # Database credentials credentials = {'upc_test': {'user': 'postgres', 'pass': '', 'host': 'localhost', 'port': '5432', 'db': 'upc_test'}, 'di_test': {'user': 'postgres', 'pass': '', 'host': 'localhost', 'port': '5432', 'db': 'di_test'}, 'clusterjob_test': {'user': 'postgres', 'pass': '', 'host': 'localhost', 'port': '5432', 'db': 'clusterjobs_test'} } # Redis path(?) info redis_info = {'host': 'localhost', 'port': '6379', 'db': '0'} # POW / MAP2 base path pow_map2_base = '/pds_san/PDS_Services/' web_base = 'https://pdsimage.wr.usgs.gov/Missions/' archive_base = '/pds_san/PDS_Archive/' derived_base = '/pds_san/PDS_Derived/UPC/images/' link_dest = '/pds_san/PDS_Archive_Links/' # Recipe base path # Uses the root of the project to set the base path for all necessary files root = Path(__file__).parent.parent recipe_base = os.path.join(root, 'recipe/new/') pds_info = os.path.join(root, 'pds_pipelines/PDSinfo.json') pds_log = os.path.join(root, 'logs/') slurm_log = os.path.join(root, 'output/') cmd_dir = os.path.join(root, 'pds_pipelines/') keyword_def = os.path.join(root, 'recipe/Keyword_Definition.json') scratch = '/scratch/pds_services/' workarea = os.path.join(scratch, 'workarea/') default_namespace = 'adampaquette_queue' pds_db = 'di_test' upc_db = 'upc_test' cluster_db = 'clusterjob_test' lock_obj = 'processes' upc_error_queue = 'UPC_ErrorQueue' disk_usage_ratio = 0.4 # Path where the JSON summary views are written to summaries_path = '/home/kdlee/builds/PDS-Pipelines/json'
32.5
75
0.557949
42bd0542a9582d0977a7fb2681bca1b6f58ffca7
518
py
Python
examples/factory/subclass.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
2
2021-12-12T18:51:52.000Z
2022-02-23T09:49:16.000Z
examples/factory/subclass.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
2
2021-11-08T12:09:02.000Z
2021-12-12T23:01:12.000Z
examples/factory/subclass.py
Argmaster/PyR3
6786bcb6a101fe4bd4cc50fe43767b8178504b15
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from PyR3.bpy import bpy from PyR3.factory.fields.Number import Integer from PyR3.factory.fields.String import String from PyR3.factory.MeshFactory import MeshFactory from PyR3.shortcut.mesh import addCube class MeshFactorySubclass(MeshFactory): size = Integer(value_range=range(1, 5)) name = String(default="name") def render(self): cube: bpy.types.Object = addCube(size=self.size) cube.name = self.name # cube was just created so it's already selected
28.777778
56
0.722008
8bd2e15b42e92e4191fc58ecfe7caadfbca530d6
6,054
py
Python
xm_transformer.py
jasantosm/powerco_scraper_historical
4aad8a4fdb50ff052391f2ef14b2bbb0662dea71
[ "MIT" ]
null
null
null
xm_transformer.py
jasantosm/powerco_scraper_historical
4aad8a4fdb50ff052391f2ef14b2bbb0662dea71
[ "MIT" ]
null
null
null
xm_transformer.py
jasantosm/powerco_scraper_historical
4aad8a4fdb50ff052391f2ef14b2bbb0662dea71
[ "MIT" ]
null
null
null
import pandas as pd import time from bs4 import BeautifulSoup from mysql_service import insert_day, get_days from sqlalchemy import create_engine def transform(): days_raw = get_days() days_list = [] for n in range(len(days_raw)): titles = days_raw[n]['titles'].split('|') t_raw = days_raw[n]['tables'].split('^_^') date = days_raw[n]['date'] day_dict = {} day_dict['date'] = date # 0. Generacion try: generacion = pd.read_html(t_raw[0], index_col=0)[0] day_dict['generacion_total_programada_redespacho'] = generacion.loc['GENERACION'].loc['Programada Redespacho (GWh)'] day_dict['generacion_total_programada_despacho'] = generacion.loc['GENERACION'].loc['Programada Despacho (GWh)'] day_dict['generacion_total_real'] = generacion.loc['GENERACION'].loc['Real (GWh)'] except: day_dict['generacion_total_programada_redespacho'] = 'ND' day_dict['generacion_total_programada_despacho'] = 'ND' day_dict['generacion_total_real'] = 'ND' print(f'Error en generacion el dia: {date}') # 1. Intercambios internacionales try: intercambios_internacionales = pd.read_html(t_raw[1], index_col=0)[0] day_dict['importacion_programada_redespacho'] = intercambios_internacionales.loc['Importaciones'].loc['Programada Redespacho (GWh)'] day_dict['importacion__real'] = intercambios_internacionales.loc['Importaciones'].loc['Real (GWh)'] day_dict['exportacion_programada_redespacho'] = intercambios_internacionales.loc['Exportaciones'].loc['Programada Redespacho (GWh)'] day_dict['exportacion__real'] = intercambios_internacionales.loc['Exportaciones'].loc['Real (GWh)'] except: day_dict['importacion_programada_redespacho'] = 'ND' day_dict['importacion__real'] = 'ND' day_dict['exportacion_programada_redespacho'] = 'ND' day_dict['exportacion__real'] = 'ND' print(f'Error en intercambios internacionales el dia: {date}') # 2. Disponibilidad try: disponibilidad = pd.read_html(t_raw[2], index_col=0)[0] day_dict['disponibilidad_real'] = disponibilidad.loc['DISPONIBILIDAD'].loc['Real (MW)'] except: day_dict['disponibilidad_real'] = 'ND' print(f'Error en disponibilidad el dia: {date}') # 3. Demanda no atendida try: demanda_no_atendida = pd.read_html(t_raw[3], index_col=0)[0] day_dict['demanda_no_atendida'] = demanda_no_atendida.loc['Total Demanda no atendida -SIN-'].loc['MWh'] except: day_dict['demanda_no_atendida'] = 'ND' print(f'Error en demanda no atendida el dia: {date}') # 7. Costos try: demanda_no_atendida = pd.read_html(t_raw[7], index_col=0)[0] day_dict['costo_marginal_promedio_redespacho'] = demanda_no_atendida.loc['Costo Marginal Promedio del Redespacho ($/kWh)'].loc['$/kWh'] except: day_dict['costo_marginal_promedio_redespacho'] = 'ND' print(f'Error en costo marginal promedio el dia: {date}') # 8. Aportes try: aportes = pd.read_html(t_raw[9], index_col=0)[0] indices = aportes.index indice_aportes = '' columna_aportes = '' for indice in indices: if str(indice) == 'TOTAL -SIN-': indice_aportes = 'TOTAL -SIN-' columna_aportes = 'GWh' elif str(indice) == 'Total SIN': indice_aportes = 'Total SIN' columna_aportes = "Caudal GWh" day_dict['aportes_hidricos'] = aportes.loc[indice_aportes].loc[columna_aportes] except: day_dict['aportes_hidricos'] = "ND" print(f'Error en aportes el dia: {date}') # 9. Reservas try: reservas = pd.read_html(t_raw[10], index_col=0)[0] indices = reservas.index indice_reservas = '' columna_reservas = '' for indice in indices: if str(indice) == 'TOTAL -SIN-': indice_reservas = 'TOTAL -SIN-' elif str(indice) == 'Total SIN': indice_reservas = 'Total SIN' columnas = reservas.columns for columna in columnas: if str(columna) == 'Volumen Util Diario GWh': columna_reservas_1 = 'Volumen Util Diario GWh' elif str(columna) == 'Volumen Util Diario GWh(1)': columna_reservas_1 = 'Volumen Util Diario GWh(1)' for columna in columnas: if str(columna) == 'Volumen GWh': columna_reservas_2 = 'Volumen GWh' elif str(columna) == 'Volumen GWh(4)': columna_reservas_2 = 'Volumen GWh(4)' day_dict['volumen_util_diario'] = reservas.loc[indice_reservas].loc[columna_reservas_1] day_dict['volumen'] = reservas.loc[indice_reservas].loc[columna_reservas_2] except: day_dict['volumen_util_diario'] = 'ND' day_dict['volumen'] = 'ND' print(f'Error en volumen: {date}') days_list.append(day_dict) print('\n') print('Dia transformado: ', date) return days_list def to_mysql(): df = pd.DataFrame(transform()) #Clave GCP SQL Instance: qju7lep86r1L4Nod engine = create_engine('mysql+mysqldb://root:qju7lep86r1L4Nod@34.86.123.197:3306/xmdata', echo = False) df.to_sql(name = 'data_prepared', con = engine, if_exists = 'append', index = False) def main(): to_mysql() if __name__ == "__main__": main()
37.602484
147
0.575487
0d0ab2e901458e7663ef84b3bb90efd803d0e7d9
389
py
Python
hptest/wsgi.py
aitomato123/hptest
842cf5f8c9f419c1a9395f43563d19213a1d531a
[ "Apache-2.0" ]
null
null
null
hptest/wsgi.py
aitomato123/hptest
842cf5f8c9f419c1a9395f43563d19213a1d531a
[ "Apache-2.0" ]
null
null
null
hptest/wsgi.py
aitomato123/hptest
842cf5f8c9f419c1a9395f43563d19213a1d531a
[ "Apache-2.0" ]
null
null
null
""" WSGI config for hptest project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hptest.settings') application = get_wsgi_application()
22.882353
78
0.784062
ac14f6b868288bea41e7d563ee0a59969ab1b911
474
py
Python
docs/source/examples/FB2.0/post_file_systems_policies.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
14
2018-12-07T18:30:27.000Z
2022-02-22T09:12:33.000Z
docs/source/examples/FB2.0/post_file_systems_policies.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
28
2019-09-17T21:03:52.000Z
2022-03-29T22:07:35.000Z
docs/source/examples/FB2.0/post_file_systems_policies.py
Flav-STOR-WL/py-pure-client
03b889c997d90380ac5d6380ca5d5432792d3e89
[ "BSD-2-Clause" ]
15
2020-06-11T15:50:08.000Z
2022-03-21T09:27:25.000Z
# attach policy to a file system # assume we have a policy named "p1", and a file system with id # "100abf42-0000-4000-8023-000det400090" res = client.post_file_systems_policies(policy_names=["p1"], member_ids=["100abf42-0000-4000-8023-000det400090"]) print(res) if type(res) == pypureclient.responses.ValidResponse: print(list(res.items)) # Other valid fields: policy_ids, member_names # See section "Common Fields" for examples
43.090909
92
0.702532
e6d482ff1eb2f0158e76c6b4d174a5992780f646
737
py
Python
instagram/images/migrations/0003_auto_20181129_1801.py
Yesdoing/yestagram
a8f69b0fa2cb460d578717ac132900c1a1077d57
[ "MIT" ]
5
2019-05-08T07:34:42.000Z
2020-08-16T16:54:53.000Z
instagram/images/migrations/0003_auto_20181129_1801.py
Yesdoing/Instagram
a8f69b0fa2cb460d578717ac132900c1a1077d57
[ "MIT" ]
11
2019-12-29T10:18:20.000Z
2022-02-26T14:28:23.000Z
instagram/images/migrations/0003_auto_20181129_1801.py
Yesdoing/Instagram
a8f69b0fa2cb460d578717ac132900c1a1077d57
[ "MIT" ]
2
2019-01-30T11:45:31.000Z
2020-08-16T16:54:55.000Z
# Generated by Django 2.0.9 on 2018-11-29 09:01 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('images', '0002_auto_20181128_1431'), ] operations = [ migrations.AlterField( model_name='comment', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='comments', to='images.Image'), ), migrations.AlterField( model_name='like', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='likes', to='images.Image'), ), ]
29.48
136
0.632293
235353cb89bdca5e9468b004378f912557b559e5
2,267
py
Python
test/tests.py
ithaaswin/TeachersPetBot
e826083b64ea6ab78a223635fcb1d7881ba8b082
[ "MIT" ]
null
null
null
test/tests.py
ithaaswin/TeachersPetBot
e826083b64ea6ab78a223635fcb1d7881ba8b082
[ "MIT" ]
57
2021-10-31T23:15:20.000Z
2021-11-15T18:10:41.000Z
test/tests.py
ithaaswin/TeachersPetBot
e826083b64ea6ab78a223635fcb1d7881ba8b082
[ "MIT" ]
5
2021-11-17T23:21:01.000Z
2021-11-30T03:44:05.000Z
import os import platform import asyncio import discord from dotenv import load_dotenv import test_office_hours import test_event_creation import test_qna import test_calendar import test_profanity import test_attendance import test_help if platform.system() == 'Windows': asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) load_dotenv() TOKEN = os.getenv('TESTING_BOT_TOKEN') TEST_GUILD_ID = int(os.getenv('TEST_GUILD_ID')) testing_bot = discord.Client() async def run_tests(): exit_status = 0 await begin_tests() try: print('testing QNA\n----------') await test_qna.test(testing_bot, TEST_GUILD_ID) print('testing office hours\n----------') await test_office_hours.test(testing_bot, TEST_GUILD_ID) print('testing event creation\n----------') await test_event_creation.test(testing_bot, TEST_GUILD_ID) print('testing calendar\n----------') await test_calendar.test(testing_bot, TEST_GUILD_ID) print('testing profanity\n----------') await test_profanity.test(testing_bot, TEST_GUILD_ID) print('testing attendance\n----------') await test_attendance.test(testing_bot, TEST_GUILD_ID) print('testing help\n----------') await test_help.test(testing_bot, TEST_GUILD_ID) except AssertionError as ex: print('exception: ', type(ex).__name__ + ':', ex) print('--') exit_status = 1 finally: await end_tests() print('exit_status: ', exit_status) assert exit_status == 0 await testing_bot.close() @testing_bot.event async def on_ready(): print('Testing bot running') print('------') await run_tests() async def begin_tests(): await next(ch for ch in testing_bot.get_guild(TEST_GUILD_ID).text_channels if ch.name == 'instructor-commands').send('!begin-tests') async def end_tests(): await next(ch for ch in testing_bot.get_guild(TEST_GUILD_ID).text_channels if ch.name == 'instructor-commands').send('!end-tests') if __name__ == '__main__': testing_bot.run(TOKEN) ########################### # Function: test_dummy # Description: Run the bot ########################### def test_bot(): testing_bot.run(TOKEN)
29.441558
78
0.662991
1f23179f10e007cb39a57c24308054686567cfe0
89
py
Python
contact/apps.py
85599/my-first-contact-app
dda8c12cd9232ee6f962d11e18c397d9c5a2f251
[ "MIT" ]
446
2015-01-04T20:58:26.000Z
2022-03-30T23:08:26.000Z
project/contact/apps.py
giannisdaras/tedxntua2019
0f9ebdb2946cc8da8c44562313be740db8a394ea
[ "MIT" ]
649
2015-01-09T23:42:14.000Z
2022-03-31T17:27:19.000Z
project/contact/apps.py
giannisdaras/tedxntua2019
0f9ebdb2946cc8da8c44562313be740db8a394ea
[ "MIT" ]
319
2015-01-06T20:58:42.000Z
2022-03-30T06:29:04.000Z
from django.apps import AppConfig class ContactConfig(AppConfig): name = 'contact'
14.833333
33
0.752809
1013cb6dc97156a9b477aceaf80936f55992ff4a
13,902
py
Python
plotly/graph_objs/isosurface/caps/__init__.py
piyush1301/plotly.py
50cd5c4cd4732042422751c7760acbab8dd8a50d
[ "MIT" ]
6
2019-05-03T02:12:04.000Z
2020-03-01T06:33:21.000Z
plotly/graph_objs/isosurface/caps/__init__.py
piyush1301/plotly.py
50cd5c4cd4732042422751c7760acbab8dd8a50d
[ "MIT" ]
null
null
null
plotly/graph_objs/isosurface/caps/__init__.py
piyush1301/plotly.py
50cd5c4cd4732042422751c7760acbab8dd8a50d
[ "MIT" ]
5
2019-05-18T16:50:11.000Z
2021-07-06T21:14:36.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Z(_BaseTraceHierarchyType): # fill # ---- @property def fill(self): """ Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'fill' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self['fill'] @fill.setter def fill(self, val): self['fill'] = val # show # ---- @property def show(self): """ Sets the fill ratio of the `slices`. The default fill value of the z `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self['show'] @show.setter def show(self, val): self['show'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'isosurface.caps' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the z `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. """ def __init__(self, arg=None, fill=None, show=None, **kwargs): """ Construct a new Z object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.isosurface.caps.Z fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the z `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. Returns ------- Z """ super(Z, self).__init__('z') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.isosurface.caps.Z constructor must be a dict or an instance of plotly.graph_objs.isosurface.caps.Z""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.isosurface.caps import (z as v_z) # Initialize validators # --------------------- self._validators['fill'] = v_z.FillValidator() self._validators['show'] = v_z.ShowValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('fill', None) self['fill'] = fill if fill is not None else _v _v = arg.pop('show', None) self['show'] = show if show is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Y(_BaseTraceHierarchyType): # fill # ---- @property def fill(self): """ Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'fill' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self['fill'] @fill.setter def fill(self, val): self['fill'] = val # show # ---- @property def show(self): """ Sets the fill ratio of the `slices`. The default fill value of the y `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self['show'] @show.setter def show(self, val): self['show'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'isosurface.caps' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the y `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. """ def __init__(self, arg=None, fill=None, show=None, **kwargs): """ Construct a new Y object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.isosurface.caps.Y fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the y `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. Returns ------- Y """ super(Y, self).__init__('y') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.isosurface.caps.Y constructor must be a dict or an instance of plotly.graph_objs.isosurface.caps.Y""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.isosurface.caps import (y as v_y) # Initialize validators # --------------------- self._validators['fill'] = v_y.FillValidator() self._validators['show'] = v_y.ShowValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('fill', None) self['fill'] = fill if fill is not None else _v _v = arg.pop('show', None) self['show'] = show if show is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class X(_BaseTraceHierarchyType): # fill # ---- @property def fill(self): """ Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'fill' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self['fill'] @fill.setter def fill(self, val): self['fill'] = val # show # ---- @property def show(self): """ Sets the fill ratio of the `slices`. The default fill value of the x `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self['show'] @show.setter def show(self, val): self['show'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'isosurface.caps' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the x `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. """ def __init__(self, arg=None, fill=None, show=None, **kwargs): """ Construct a new X object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.isosurface.caps.X fill Sets the fill ratio of the `caps`. The default fill value of the `caps` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. show Sets the fill ratio of the `slices`. The default fill value of the x `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. Returns ------- X """ super(X, self).__init__('x') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.isosurface.caps.X constructor must be a dict or an instance of plotly.graph_objs.isosurface.caps.X""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.isosurface.caps import (x as v_x) # Initialize validators # --------------------- self._validators['fill'] = v_x.FillValidator() self._validators['show'] = v_x.ShowValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('fill', None) self['fill'] = fill if fill is not None else _v _v = arg.pop('show', None) self['show'] = show if show is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
30.824834
82
0.547044
d4331c16ea10a0efef56c5ab8bf65bb982fadd30
5,041
py
Python
realtime_recognition.py
SHANK885/realtime_face_recognition
4cb3555e58990a4b853dc21af01b13d06e899c2c
[ "MIT" ]
2
2020-07-02T19:35:46.000Z
2020-11-21T19:31:23.000Z
realtime_recognition.py
SHANK885/realtime_face_recognition
4cb3555e58990a4b853dc21af01b13d06e899c2c
[ "MIT" ]
null
null
null
realtime_recognition.py
SHANK885/realtime_face_recognition
4cb3555e58990a4b853dc21af01b13d06e899c2c
[ "MIT" ]
null
null
null
from keras.models import Sequential from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate from keras.models import Model from keras.layers.normalization import BatchNormalization from keras.layers.pooling import MaxPooling2D, AveragePooling2D from keras.layers.merge import Concatenate from keras.layers.core import Lambda, Flatten, Dense from keras.initializers import glorot_uniform from keras.engine.topology import Layer from keras import backend as K K.set_image_data_format('channels_first') import cv2 import json import os import numpy as np from numpy import genfromtxt import pandas as pd import tensorflow as tf from fr_utils import * from triplet_loss import triplet_loss from inception_blocks_v2 import * def create_encoding(image, model): img = image[...,::-1] img = np.around(np.transpose(img, (2,0,1))/255.0, decimals=12) x_train = np.array([img]) embedding = model.predict_on_batch(x_train) return embedding def who_is_it(image_path, database, model): """ Arguments: image_path -- path to an image database -- database containing image encodings along with the name of the person on the image model -- your Inception model instance in Keras Returns: min_dist -- the minimum distance between image_path encoding and the encodings from the database identity -- string, the name prediction for the person on image_path """ ### START CODE HERE ### ## Step 1: Compute the target "encoding" for the image. Use img_to_encoding() see example above. ## (≈ 1 line) encoding = create_encoding(image_path, model) ## Step 2: Find the closest encoding ## # Initialize "min_dist" to a large value, say 100 (≈1 line) min_dist = 100 # Loop over the database dictionary's names and encodings. for (name, db_enc) in database.items(): # Compute L2 distance between the target "encoding" and the current "emb" from the database. (≈ 1 line) dist = np.linalg.norm(encoding-db_enc) # If this distance is less than the min_dist, then set min_dist to dist, and identity to name. (≈ 3 lines) if dist < min_dist: min_dist = dist identity = name ### END CODE HERE ### if min_dist > 0.85: print("Not in the database.") print("distance", min_dist) identity = "Unknown" else: print ("it's " + str(identity) + ", the distance is " + str(min_dist)) return min_dist, identity def main(): embedding_path = "./database/embeddings/embeddings.json" face_detector_path = "./classifiers/haarcascade_frontalface_default.xml" FRmodel = faceRecoModel(input_shape=(3, 96, 96)) print("Total Params:", FRmodel.count_params()) # load trained model FRmodel.compile(optimizer='adam', loss=triplet_loss, metrics=['accuracy']) load_weights_from_FaceNet(FRmodel) with open(embedding_path, 'r') as infile: database = json.load(infile) #who_is_it("images/camera_0.jpg", database, FRmodel) video_capture = cv2.VideoCapture(0) video_capture.set(cv2.CAP_PROP_FRAME_WIDTH, 960) video_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 540) face_detector = cv2.CascadeClassifier(face_detector_path) print("above while") while True: # capture frame if video_capture.isOpened(): ret, frame = video_capture.read() raw_frame = frame.copy() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_detector.detectMultiScale(gray, scaleFactor=1.5, minNeighbors=5, minSize=(30, 30)) if len(faces) > 0: for (x, y, w, h) in faces: cropped = raw_frame[y:y+h, x:x+w] image = cv2.resize(cropped, (96, 96), interpolation=cv2.INTER_LINEAR) min_dist, identity = who_is_it(image, database, FRmodel) if identity == 'Unknown': box_color = (0, 0, 255) text_color = (0, 0, 255) else: box_color = (0, 255, 0) text_color = (255, 0, 0) cv2.rectangle(frame, (x, y), (x+w, y+h), box_color, 2) cv2.putText(frame, identity, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, text_color, thickness=2, lineType=2) cv2.imshow('Realtime Recognition', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows() if __name__ == "__main__": main()
32.733766
114
0.592343
49e7e4ad2b1a5d210f92bd540bc9b0b5ba9ccba3
3,529
py
Python
spyder/__init__.py
StefRe/spyder
210495f5b691cc2986a437c237cce8de4ab06b79
[ "MIT" ]
3
2019-09-27T21:00:00.000Z
2021-03-07T23:28:32.000Z
spyder/__init__.py
StefRe/spyder
210495f5b691cc2986a437c237cce8de4ab06b79
[ "MIT" ]
2
2021-09-19T06:31:54.000Z
2022-02-27T20:21:27.000Z
spyder/__init__.py
StefRe/spyder
210495f5b691cc2986a437c237cce8de4ab06b79
[ "MIT" ]
2
2021-04-30T01:18:22.000Z
2021-09-19T06:31:42.000Z
# -*- coding: utf-8 -*- """ MIT License =========== The spyder/images dir and some source files under other terms (see NOTICE.txt). Copyright (c) 2009- Spyder Project Contributors and others (see AUTHORS.txt) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ version_info = (5, 0, 0, "dev0") __version__ = '.'.join(map(str, version_info)) __license__ = __doc__ __project_url__ = 'https://github.com/spyder-ide/spyder' __forum_url__ = 'https://groups.google.com/group/spyderlib' __trouble_url__ = __project_url__ + '/wiki/Troubleshooting-Guide-and-FAQ' __trouble_url_short__ = 'https://tinyurl.com/SpyderHelp' __website_url__ = 'https://www.spyder-ide.org/' # Dear (Debian, RPM, ...) package makers, please feel free to customize the # following path to module's data (images) and translations: DATAPATH = LOCALEPATH = DOCPATH = MATHJAXPATH = JQUERYPATH = '' import os # Directory of the current file __dir__ = os.path.dirname(os.path.abspath(__file__)) def add_to_distribution(dist): """Add package to py2exe/cx_Freeze distribution object Extension to guidata.disthelpers""" try: dist.add_qt_bindings() except AttributeError: raise ImportError("This script requires guidata 1.5+") for _modname in ('spyder', 'spyderplugins'): dist.add_module_data_files(_modname, ("", ), ('.png', '.svg', '.html', '.png', '.txt', '.js', '.inv', '.ico', '.css', '.doctree', '.qm', '.py',), copy_to_root=False) def get_versions(reporev=True): """Get version information for components used by Spyder""" import sys import platform import qtpy import qtpy.QtCore revision = None if reporev: from spyder.utils import vcs revision, branch = vcs.get_git_revision(os.path.dirname(__dir__)) if not sys.platform == 'darwin': # To avoid a crash with our Mac app system = platform.system() else: system = 'Darwin' return { 'spyder': __version__, 'python': platform.python_version(), # "2.7.3" 'bitness': 64 if sys.maxsize > 2**32 else 32, 'qt': qtpy.QtCore.__version__, 'qt_api': qtpy.API_NAME, # PyQt5 'qt_api_ver': qtpy.PYQT_VERSION, 'system': system, # Linux, Windows, ... 'release': platform.release(), # XP, 10.6, 2.2.0, etc. 'revision': revision, # '9fdf926eccce', 'branch': branch, # '4.x' or master }
36.381443
79
0.669878
22f4652c471f33946c0e1615b9e2cf10088f2dc3
3,158
py
Python
tests/unit/nn/test_rescale.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
153
2021-06-20T20:12:01.000Z
2022-03-31T13:57:45.000Z
tests/unit/nn/test_rescale.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
25
2021-06-17T16:00:16.000Z
2022-03-29T07:04:00.000Z
tests/unit/nn/test_rescale.py
schiotz/nequip
c343ce25ecfeb64f6df92e96022e673a7714e3a6
[ "MIT" ]
25
2021-06-21T22:25:22.000Z
2022-03-30T04:39:46.000Z
import pytest import sys if sys.version_info[1] >= 7: import contextlib else: # has backport of nullcontext import contextlib2 as contextlib import torch from e3nn.util.test import assert_auto_jitable from nequip.nn import RescaleOutput from nequip.data import AtomicDataDict, AtomicData from nequip.utils.test import assert_AtomicData_equivariant from nequip.nn.embedding import OneHotAtomEncoding @pytest.mark.parametrize("scale_by", [0.77, 1.0, None]) @pytest.mark.parametrize("shift_by", [0.0, 0.4443, None]) @pytest.mark.parametrize("scale_trainable", [True, False]) @pytest.mark.parametrize("shift_trainable", [True, False]) def test_rescale( CH3CHO, scale_by, shift_by, scale_trainable, shift_trainable, ): _, data = CH3CHO oh = OneHotAtomEncoding( num_types=3, irreps_in=data.irreps, ) # some combinations are illegal and should raise build_with = contextlib.nullcontext() if scale_by is None and scale_trainable: build_with = pytest.raises(ValueError) elif shift_by is None and shift_trainable: build_with = pytest.raises(ValueError) rescale = None with build_with: rescale = RescaleOutput( model=oh, scale_keys=AtomicDataDict.NODE_ATTRS_KEY, shift_keys=AtomicDataDict.NODE_ATTRS_KEY, scale_by=scale_by, shift_by=shift_by, scale_trainable=scale_trainable, shift_trainable=shift_trainable, ) if rescale is None: return # == Check basics == assert_auto_jitable(rescale) for training_mode in [True, False]: rescale.train(training_mode) rescale(AtomicData.to_AtomicDataDict(data)) assert_AtomicData_equivariant(rescale, data) # == Check scale/shift == for training_mode in [True, False]: rescale.train(training_mode) oh_out = oh(AtomicData.to_AtomicDataDict(data))[AtomicDataDict.NODE_ATTRS_KEY] rescale_out = rescale(AtomicData.to_AtomicDataDict(data))[ AtomicDataDict.NODE_ATTRS_KEY ] if training_mode: assert torch.all(oh_out == rescale_out) continue # don't test anything else # we are now in eval mode if here, test rescaling # node attrs are a one hot, so we know orig then are zeros and ones if scale_by is None and shift_by is None: assert torch.all(oh_out == rescale_out) if shift_by is None: # no shift preserves zeros assert torch.all((rescale_out == 0.0) == (oh_out == 0.0)) if scale_by is None and shift_by is not None: # check that difference is right assert torch.allclose(rescale_out - oh_out, torch.as_tensor(shift_by)) if scale_by is not None and shift_by is None: # check that ratio is right ratio = torch.nan_to_num(rescale_out / oh_out) assert torch.allclose(ratio[oh_out != 0.0], torch.as_tensor(scale_by)) if scale_by is not None and shift_by is not None: assert torch.allclose(rescale_out, scale_by * oh_out + shift_by)
33.956989
86
0.669411
b0adfc852cd1869c411c6b43c54a979fc04ad200
1,138
py
Python
src/unittest/python/grundlegend/test_multiplikation.py
dlangheiter-tgm/test-mirror
9878da44953c40abc1df0311f275c3eebc2e876b
[ "MIT" ]
null
null
null
src/unittest/python/grundlegend/test_multiplikation.py
dlangheiter-tgm/test-mirror
9878da44953c40abc1df0311f275c3eebc2e876b
[ "MIT" ]
null
null
null
src/unittest/python/grundlegend/test_multiplikation.py
dlangheiter-tgm/test-mirror
9878da44953c40abc1df0311f275c3eebc2e876b
[ "MIT" ]
null
null
null
""" Created on 27.12.2013 @author: Walter Rafeiner-Magor <wrafeiner-magor@tgm.ac.at> """ import unittest from bruch.Bruch import * class TestMultiplikation(unittest.TestCase): def setUp(self): self.b = Bruch(3, 2) self.b2 = Bruch(self.b) self.b3 = Bruch(4, 2) pass def tearDown(self): del self.b, self.b2, self.b3 pass def testmal(self): self.b = self.b * Bruch(4) assert(float(self.b) == 6) def testmal2(self): self.b = self.b * self.b2 assert(float(self.b) == 2.25) def testmal3(self): self.b2 = self.b * 2 assert(float(self.b2) == 3) def testiMulError(self): self.assertRaises(TypeError, self.b.__imul__, "other") def testiMul(self): self.b *= 2 assert(self.b == 3) def testiMul2(self): self.b *= Bruch(2) assert(self.b == 3) def testrmal(self): self.b2 = 2 * Bruch(3, 2) assert(float(self.b2) == 3) def testmulError(self): self.assertRaises(TypeError, self.b2.__mul__, 2.0) if __name__ == "__main__": unittest.main()
21.471698
62
0.566784
d75f6714f230bff77455af5b7848968dc2f3e5c7
61
py
Python
test/test_person.py
Eawag-SWW/datapool_client
a43c38f0f858a687d6354ef4d857beee59882c8a
[ "MIT" ]
null
null
null
test/test_person.py
Eawag-SWW/datapool_client
a43c38f0f858a687d6354ef4d857beee59882c8a
[ "MIT" ]
null
null
null
test/test_person.py
Eawag-SWW/datapool_client
a43c38f0f858a687d6354ef4d857beee59882c8a
[ "MIT" ]
null
null
null
def test_person_all(setup_postgres, dp): dp.person.all()
20.333333
40
0.737705
9311787b856c3a439ee3087f9675b9123c85a13d
1,962
py
Python
hparams.py
kokeshing/tacotron2-1
a04f57c3bf1b0182f5a15770cac03039f1b414f8
[ "BSD-3-Clause" ]
null
null
null
hparams.py
kokeshing/tacotron2-1
a04f57c3bf1b0182f5a15770cac03039f1b414f8
[ "BSD-3-Clause" ]
null
null
null
hparams.py
kokeshing/tacotron2-1
a04f57c3bf1b0182f5a15770cac03039f1b414f8
[ "BSD-3-Clause" ]
null
null
null
from text import symbols ################################ # Experiment Parameters # ################################ epochs = 500 iters_per_checkpoint = 3000 seed = 1234 dynamic_loss_scaling = True fp16_run = False distributed_run = False dist_backend = "nccl" dist_url = "tcp://localhost:54321" cudnn_enabled = True cudnn_benchmark = True ignore_layers = ['embedding.weight'] ################################ # Data Parameters # ################################ load_mel_from_disk = False training_files = 'filelists/ljs_audio_text_train_filelist.txt' validation_files = 'filelists/ljs_audio_text_val_filelist.txt' text_cleaners = ['english_cleaners'] ################################ # Audio Parameters # ################################ max_wav_value = 32768.0 sampling_rate = 22050 filter_length = 1024 hop_length = 256 win_length = 1024 n_mel_channels = 80 mel_fmin = 0.0 mel_fmax = None ################################ # Model Parameters # ################################ n_symbols = len(symbols) symbols_embedding_dim = 512 # Encoder parameters encoder_kernel_size = 5 encoder_n_convolutions = 3 encoder_embedding_dim = 512 # Decoder parameters n_frames_per_step = 1 # currently only 1 is supported decoder_rnn_dim = 1024 prenet_dim = 256 max_decoder_steps = 1000 gate_threshold = 0.5 p_attention_dropout = 0.1 p_decoder_dropout = 0.1 # Attention parameters attention_rnn_dim = 1024 attention_dim = 128 # Location Layer parameters attention_location_n_filters = 32 attention_location_kernel_size = 31 # Mel-post processing network parameters postnet_embedding_dim = 512 postnet_kernel_size = 5 postnet_n_convolutions = 5 ################################ # Optimization Hyperparameters # ################################ use_saved_learning_rate = False learning_rate = 4e-4 weight_decay = 1e-6 grad_clip_thresh = 1.0 batch_size = 24 mask_padding = True # set model's padded outputs to padded value
24.222222
65
0.649337
fc38e207b2dad68c026009563af5d233a145cee8
5,928
py
Python
doc/source/conf.py
bonzoyang/d2m
3c491a019c7436245ab6a3ac872c969c3a51a369
[ "Apache-2.0" ]
null
null
null
doc/source/conf.py
bonzoyang/d2m
3c491a019c7436245ab6a3ac872c969c3a51a369
[ "Apache-2.0" ]
null
null
null
doc/source/conf.py
bonzoyang/d2m
3c491a019c7436245ab6a3ac872c969c3a51a369
[ "Apache-2.0" ]
1
2021-07-27T14:25:16.000Z
2021-07-27T14:25:16.000Z
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('../../src')) # -- Project information ----------------------------------------------------- project = 'd2m' copyright = '2021, bonzoyang' author = 'bonzoyang' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.0.1 alpha' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Added by bonzo # [ref] phinx-doc.org/en/master/usage/extensions/autodoc.html#confval-autodoc_mock_imports autodoc_mock_imports = ['pandas'] # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'd2mdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'd2m.tex', 'd2m Documentation', 'bonzoyang', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'd2m', 'd2m Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'd2m', 'd2m Documentation', author, 'd2m', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
29.788945
90
0.643556
3e6e12607a5a885c2c3e96888adeaf00b0140c47
1,046
py
Python
twitter/tweets/migrations/0005_comment.py
vBubbaa/django-twitter
925405dd05cbef3b325b2168663e183b927d8586
[ "MIT" ]
1
2020-02-08T02:16:05.000Z
2020-02-08T02:16:05.000Z
twitter/tweets/migrations/0005_comment.py
vBubbaa/django-twitter
925405dd05cbef3b325b2168663e183b927d8586
[ "MIT" ]
5
2020-02-13T22:36:04.000Z
2021-09-22T18:36:50.000Z
twitter/tweets/migrations/0005_comment.py
vBubbaa/django-twitter
925405dd05cbef3b325b2168663e183b927d8586
[ "MIT" ]
null
null
null
# Generated by Django 2.2.7 on 2020-02-07 23:42 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('tweets', '0004_auto_20200206_1701'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('text', models.CharField(max_length=200)), ('tweet', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='tweets.Tweet')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to=settings.AUTH_USER_MODEL)), ], ), ]
37.357143
143
0.656788
70206327c272c4b1a0e9a9741d3dbaa61e5d5cdb
638
py
Python
exam/myproject/myapp/admin.py
wasit7/cs459_2018
78243bbc939fcc2ed7528df8c14ad75e4b78d9a2
[ "BSD-2-Clause" ]
2
2019-09-04T08:13:47.000Z
2019-09-19T07:12:18.000Z
exam/myproject/myapp/admin.py
wasit7/cs459_2018
78243bbc939fcc2ed7528df8c14ad75e4b78d9a2
[ "BSD-2-Clause" ]
10
2020-03-24T17:05:24.000Z
2022-03-11T23:47:49.000Z
exam/myproject/myapp/admin.py
wasit7/cs459_2018
78243bbc939fcc2ed7528df8c14ad75e4b78d9a2
[ "BSD-2-Clause" ]
9
2019-08-30T04:00:58.000Z
2019-11-19T04:48:07.000Z
from django.contrib import admin from myapp.models import Customer, Transaction, Item, Record class CustomerAdmin(admin.ModelAdmin): list_display=[f.name for f in Customer._meta.fields] admin.site.register(Customer, CustomerAdmin) class TransactionAdmin(admin.ModelAdmin): list_display=[f.name for f in Transaction._meta.fields] admin.site.register(Transaction, TransactionAdmin) class ItemAdmin(admin.ModelAdmin): list_display=[f.name for f in Item._meta.fields] admin.site.register(Item, ItemAdmin) class RecordAdmin(admin.ModelAdmin): list_display=[f.name for f in Record._meta.fields] admin.site.register(Record, RecordAdmin)
35.444444
61
0.811912
08bf22d2829a1e840c09cc430406875ef4c058f0
3,490
py
Python
amadeus/amadeus.py
tsolakoua/amadeus-python
56c0e5cb0510aab5a80646d07593d94c9cba2c69
[ "MIT" ]
125
2018-04-09T07:27:24.000Z
2022-02-22T11:45:20.000Z
amadeus/amadeus.py
tsolakoua/amadeus-python
56c0e5cb0510aab5a80646d07593d94c9cba2c69
[ "MIT" ]
58
2018-03-29T14:58:01.000Z
2022-03-17T10:18:07.000Z
amadeus/amadeus.py
tsolakoua/amadeus-python
56c0e5cb0510aab5a80646d07593d94c9cba2c69
[ "MIT" ]
58
2018-04-06T10:56:20.000Z
2022-03-04T01:23:24.000Z
from .mixins.validator import Validator from .mixins.http import HTTP from .mixins.pagination import Pagination from .namespaces import Core as Namespaces class Client(Namespaces, Pagination, Validator, HTTP, object): ''' The Amadeus client library for accessing the travel APIs. ''' # The available hosts for this API HOSTS = { 'test': 'test.api.amadeus.com', 'production': 'api.amadeus.com' } # The initialization method for the entire module def __init__(self, **options): ''' Initialize using your credentials: .. code-block:: python from amadeus import Client amadeus = Client( client_id='YOUR_CLIENT_ID', client_secret='YOUR_CLIENT_SECRET' ) Alternatively, initialize the library using the environment variables ``AMADEUS_CLIENT_ID`` and ``AMADEUS_CLIENT_SECRET``. .. code-block:: python amadeus = amadeus.Client() :param client_id: the API key used to authenticate the API :paramtype client_id: str :param client_secret: the API secret used to authenticate the API :paramtype client_secret: str :param logger: (optional) a Python compatible logger (Default: ``logging.Logger``) :paramtype logger: logging.Logger :param log_level: (optional) the log level of the client, either ``"debug"``, ``"warn"``, or ``"silent"`` mode (Default: ``"silent"``) :paramtype log_level: str :param hostname: (optional) the name of the server API calls are made to, ``"production"`` or ``"test"``. (Default: ``"test"``) :paramtype hostname: str :param host: (optional) alternatively, you can specify a full host domain name instead, e.g. ``"api.example.com"`` :paramtype host: str :param ssl: if this client is should use HTTPS (Default: ``True``) :paramtype ssl: bool :param port: the port this client should use (Default: ``80`` for HTTP and ``443`` for HTTPS) :paramtype port: int :param custom_app_id: (optional) a custom App ID to be passed in the User Agent to the server (Default: ``None``) :paramtype custom_app_id: str :param custom_app_version: (optional) a custom App Version number to be passed in the User Agent to the server (Default: ``None``) :paramtype custom_app_version: str :param http: (optional) a :func:`urllib.request.urlopen` compatible client that accepts a :class:`urllib.request.Request` compatible object (Default: ``urlopen``) :paramtype http: urllib.request.urlopen :raises ValueError: when a required param is missing ''' self._initialize_client_credentials(options) self._initialize_logger(options) self._initialize_host(options) self._initialize_custom_app(options) self._initialize_http(options) recognized_options = ['client_id', 'client_secret', 'logger', 'host', 'hostname', 'custom_app_id', 'custom_app_version', 'http', 'log_level', 'ssl', 'port'] self._warn_on_unrecognized_options(options, self.logger, recognized_options) Namespaces.__init__(self)
34.9
78
0.608596
c9b7e4f7e84ec8d2310dae139387101d6d66123a
295
py
Python
scratch/test_sw.py
ktbarrett/pyuvm
725e6e4b8088aa085a5ce16861b46db49ce46672
[ "Apache-2.0" ]
84
2021-02-21T23:12:59.000Z
2022-03-25T21:22:27.000Z
scratch/test_sw.py
ktbarrett/pyuvm
725e6e4b8088aa085a5ce16861b46db49ce46672
[ "Apache-2.0" ]
37
2021-05-20T05:35:13.000Z
2022-03-13T09:12:16.000Z
scratch/test_sw.py
ktbarrett/pyuvm
725e6e4b8088aa085a5ce16861b46db49ce46672
[ "Apache-2.0" ]
22
2021-03-31T02:57:09.000Z
2022-03-09T17:30:22.000Z
import dut_cocotb import cocotb import time class Stim(): def __init__(self, max, dut, bfm): self.max = max self.bfm = bfm def numb_gen_test(self): for ii in range(self.max): self.bfm.send_num(ii) time.sleep(5) self.bfm.done.set()
17.352941
38
0.579661
c8e9abf7e763a4767c82c0baf2a1eca3ed24e6e2
1,171
py
Python
ursh/blueprints/api/handlers.py
indico/ursh
74a570299f70986beb7de9b9749270583f16ba52
[ "MIT" ]
5
2019-08-08T12:28:47.000Z
2021-02-01T05:02:11.000Z
ursh/blueprints/api/handlers.py
ThiefMaster/ursh
74a570299f70986beb7de9b9749270583f16ba52
[ "MIT" ]
4
2018-07-27T13:37:41.000Z
2019-05-13T14:42:26.000Z
ursh/blueprints/api/handlers.py
indico/ursh
74a570299f70986beb7de9b9749270583f16ba52
[ "MIT" ]
2
2019-08-05T16:26:42.000Z
2021-01-27T19:53:41.000Z
from flask import current_app, jsonify def handle_bad_requests(error): return jsonify({'status': error.code, 'error': error.description}), error.code def handle_db_errors(error): return create_error_json(400, 'invalid-input', 'Your input is invalid') def handle_not_found(error): return create_error_json(404, 'not-found', error.description.get('message'), args=error.description.get('args')) def handle_method_not_allowed(error): return create_error_json(405, 'invalid-method', 'This HTTP method is not allowed') def handle_conflict(error): return create_error_json(409, 'conflict', error.description.get('message'), args=error.description.get('args')) def handle_internal_exceptions(error): current_app.logger.exception('Unexpected error') return create_error_json(500, 'internal-error', 'Sorry, something went wrong') def create_error_json(status_code, error_code, message, **kwargs): message_dict = { 'status': status_code, 'error': { 'code': error_code, 'description': message } } message_dict['error'].update(kwargs) return jsonify(message_dict), status_code
30.025641
116
0.716482
065f54d57b5c6418b2965567f20d13efeead100d
5,537
py
Python
scrapers/modules/dingding.py
skytalemcc/OffshoreNewsHub
56a12fba8bf740084f988f88134238ab297bb23d
[ "MIT" ]
null
null
null
scrapers/modules/dingding.py
skytalemcc/OffshoreNewsHub
56a12fba8bf740084f988f88134238ab297bb23d
[ "MIT" ]
null
null
null
scrapers/modules/dingding.py
skytalemcc/OffshoreNewsHub
56a12fba8bf740084f988f88134238ab297bb23d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import sys import json import time import hmac import hashlib import base64 if sys.version_info > (3, 0): from urllib.request import urlopen, Request from urllib.parse import quote_plus else: from urllib2 import urlopen, Request from urllib import quote_plus SHOW_AVATAR = "0" # 不隐藏头像 HIDE_AVATAR = "1" # 隐藏头像 BTN_CROSSWISE = "0" # 横向 BTN_LENGTHWAYS = "1" # 纵向 class DingDing(object): def __init__(self, token): self.url = self.parse_token(token) self.headers = {"Content-Type": "application/json"} self.secret = "" def set_secret(self, secret): """设置签名秘钥 """ self.secret = secret def parse_token(self, token): """ :param token: :return: """ ding_url_pre = "https://oapi.dingtalk.com/robot/send?access_token=%s" token = token.strip() if len(token) == 64: return ding_url_pre % token if len(token) == 114: return token raise ValueError("token Error") def send_text(self, text, at_mobiles=[], at_all=False): """ 例子: send_text('天气不错', ['13333333333']) :param text: 消息类型,此时固定为:text :param at_mobiles: 被@人的手机号 ['13333333333', ] :param at_all: @所有人时:true,否则为:false :return: """ data = { "msgtype": "text", "text": {"content": text}, "at": {"atMobiles": at_mobiles, "isAtAll": at_all}, } return self._post(data) def send_link(self, title, text, message_url="", pic_url=""): data = { "msgtype": "link", "link": { "text": text, "title": title, "picUrl": pic_url, "messageUrl": message_url, }, } return self._post(data) def send_markdown(self, title, text, at_mobiles=[], at_all=False): """发送markdown格式 :param title: 首屏会话透出的展示内容 :param text: markdown格式的消息 :param at_mobiles: 被@人的手机号(在text内容里要有@手机号) :param at_all: @所有人时:true,否则为:false :return: """ data = { "msgtype": "markdown", "markdown": {"title": title, "text": text}, "at": {"atMobiles": at_mobiles, "isAtAll": at_all}, } return self._post(data) def send_single_action_card( self, title, text, single_title, single_url, btn_orientation=BTN_LENGTHWAYS, hide_avatar=SHOW_AVATAR, ): """整体跳转ActionCard类型 :param title: 首屏会话透出的展示内容 :param text: markdown格式的消息 :param single_title: 单个按钮的方案。(设置此项和singleURL后btns无效。) :param single_url: 点击singleTitle按钮触发的URL :param btn_orientation: 0-按钮竖直排列,1-按钮横向排列 :param hide_avatar: 0-正常发消息者头像,1-隐藏发消息者头像 :return: """ data = { "actionCard": { "title": title, "text": text, "hideAvatar": hide_avatar, "btnOrientation": btn_orientation, "singleTitle": single_title, "singleURL": single_url, }, "msgtype": "actionCard", } return self._post(data) def send_action_card( self, title, text, btns, btn_orientation=BTN_LENGTHWAYS, hide_avatar=SHOW_AVATAR ): """独立跳转ActionCard类型 :param title: 首屏会话透出的展示内容 :param text: markdown格式的消息 :param btns: 按钮的信息:title-按钮方案,actionURL-点击按钮触发的URL :param btn_orientation: 0-按钮竖直排列,1-按钮横向排列 :param hide_avatar: 0-正常发消息者头像,1-隐藏发消息者头像 :return: """ btns = [{"title": btn[0], "actionURL": btn[1]} for btn in btns] data = { "actionCard": { "title": title, "text": text, "hideAvatar": hide_avatar, "btnOrientation": btn_orientation, "btns": btns, }, "msgtype": "actionCard", } return self._post(data) def send_feed_card(self, rows): """FeedCard类型 例子: send_feed_card([('学vue','https://cn.vuejs.org/','https://cn.vuejs.org/images/logo.png'), ('哪家强', 'https://cn.vuejs.org/', 'https://cn.vuejs.org/images/logo.png')]) :param rows: [(title, messageURL, picURL), (...)] :return: """ rows = [ {"title": row[0], "messageURL": row[1], "picURL": row[2]} for row in rows ] data = {"feedCard": {"links": rows}, "msgtype": "feedCard"} return self._post(data) def _post(self, data): if self.secret: sign, timestamp = self.get_sign_timestamp() self.url = self.url + "&sign=" + sign + "&timestamp=" + timestamp data = json.dumps(data) req = Request(self.url, data=data.encode("utf-8"), headers=self.headers) response = urlopen(req) the_page = response.read() return json.loads(the_page.decode("utf-8")) def get_sign_timestamp(self): timestamp = "%d" % (round(time.time() * 1000)) secret_enc = self.secret.encode("utf-8") string_to_sign = "{}\n{}".format(timestamp, self.secret) string_to_sign_enc = string_to_sign.encode("utf-8") hmac_code = hmac.new( secret_enc, string_to_sign_enc, digestmod=hashlib.sha256 ).digest() sign = quote_plus(base64.b64encode(hmac_code)) return sign, timestamp
30.761111
100
0.543796
7c021e37ae8d27952fdf5d16d8854ca86d865d00
1,751
py
Python
startup/SST/HW/gatevalves.py
NSLS-II-SST/profile_collection
e2c9d1fce421e7ed8a60fb744c34a770f7780803
[ "BSD-3-Clause" ]
null
null
null
startup/SST/HW/gatevalves.py
NSLS-II-SST/profile_collection
e2c9d1fce421e7ed8a60fb744c34a770f7780803
[ "BSD-3-Clause" ]
12
2019-05-30T15:08:15.000Z
2021-04-29T03:24:10.000Z
startup/SST/HW/gatevalves.py
NSLS-II-SST/profile_collection
e2c9d1fce421e7ed8a60fb744c34a770f7780803
[ "BSD-3-Clause" ]
2
2019-05-23T17:13:04.000Z
2019-10-20T14:52:05.000Z
from ..CommonFunctions.functions import run_report from ..Base.valves_and_shutters import EPS_Shutter run_report(__file__) gv14 = EPS_Shutter( "XF:07IDA-VA:2{FS:6-GV:1}", name="Pre Mono Gate Valve", kind="hinted" ) gv14.shutter_type = "GV" gv14.openval = 0 gv14.closeval = 1 gv14a = EPS_Shutter("XF:07IDA-VA:2{FS:6-GV:2}", name="Mono Gate Valve", kind="hinted") gv14a.shutter_type = "GV" gv14a.openval = 0 gv14a.closeval = 1 gv15 = EPS_Shutter( "XF:07IDB-VA:2{Mono:PGM-GV:1}", name="Pre Shutter Gate Valve", kind="hinted" ) gv15.shutter_type = "GV" gv15.openval = 0 gv15.closeval = 1 gv26 = EPS_Shutter( "XF:07IDB-VA:2{Mir:M3C-GV:1}", name="Post Shutter Gate Valve", kind="hinted" ) gv26.shutter_type = "GV" gv26.openval = 1 gv26.closeval = 0 gv27 = EPS_Shutter( "XF:07IDB-VA:3{Slt:C-GV:1}", name="Upstream Gate Valve", kind="hinted" ) gv27.shutter_type = "GV" gv27.openval = 1 gv27.closeval = 0 gv27a = EPS_Shutter( "XF:07IDB-VA:2{RSoXS:Main-GV:1}", name="Izero-Main Gate Valve", kind="hinted" ) gv27a.shutter_type = "GV" gv27a.openval = 1 gv27a.closeval = 0 gv28 = EPS_Shutter( "XF:07IDB-VA:2{BT:1-GV:1}", name="Downstream Gate Valve", kind="hinted" ) gv28.shutter_type = "GV" gv28.openval = 1 gv28.closeval = 0 gvTEM = EPS_Shutter( "XF:07IDB-VA:2{RSoXS:Main-GV:2}", name="TEM Load Lock Gate Valve", kind="hinted" ) gvTEM.shutter_type = "GV" gvTEM.openval = 0 gvTEM.closeval = 1 gvll = EPS_Shutter( "XF:07IDB-VA:2{RSoXS:LL-GV:1}", name="Load Lock Gate Valve", kind="hinted" ) gvll.shutter_type = "GV" gvll.openval = 0 gvll.closeval = 1 gvturbo = EPS_Shutter( "XF:07IDB-VA:2{RSoXS:TP-GV:1}", name="Turbo Gate Valve", kind="hinted" ) gvturbo.shutter_type = "GV" gvturbo.openval = 0 gvturbo.closeval = 1
23.662162
86
0.691605
50e1afe0bee7f904b103478709a98baca075ad32
7,069
py
Python
fairnr/modules/implicit.py
wi1k1n/nrf-accelerations
3075d63177e8ac04ee91784d5b0c56379335740f
[ "MIT" ]
null
null
null
fairnr/modules/implicit.py
wi1k1n/nrf-accelerations
3075d63177e8ac04ee91784d5b0c56379335740f
[ "MIT" ]
null
null
null
fairnr/modules/implicit.py
wi1k1n/nrf-accelerations
3075d63177e8ac04ee91784d5b0c56379335740f
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq.utils import get_activation_fn from fairnr.modules.hyper import HyperFC from fairnr.modules.module_utils import FCLayer class BackgroundField(nn.Module): """ Background (we assume a uniform color) """ def __init__(self, out_dim=3, bg_color="1.0,1.0,1.0", min_color=-1, stop_grad=False, background_depth=5.0): super().__init__() if out_dim == 3: # directly model RGB bg_color = [float(b) for b in bg_color.split(',')] if isinstance(bg_color, str) else [bg_color] if min_color == -1: bg_color = [b * 2 - 1 for b in bg_color] if len(bg_color) == 1: bg_color = bg_color + bg_color + bg_color bg_color = torch.tensor(bg_color) else: bg_color = torch.ones(out_dim).uniform_() if min_color == -1: bg_color = bg_color * 2 - 1 self.out_dim = out_dim self.bg_color = nn.Parameter(bg_color, requires_grad=not stop_grad) self.depth = background_depth def forward(self, x, **kwargs): return self.bg_color.unsqueeze(0).expand( *x.size()[:-1], self.out_dim) class ImplicitField(nn.Module): def __init__(self, in_dim, out_dim, hidden_dim, num_layers, outmost_linear=False, with_ln=True, skips=None, spec_init=True): super().__init__() self.skips = skips self.net = [] prev_dim = in_dim for i in range(num_layers): next_dim = out_dim if i == (num_layers - 1) else hidden_dim if (i == (num_layers - 1)) and outmost_linear: self.net.append(nn.Linear(prev_dim, next_dim)) else: self.net.append(FCLayer(prev_dim, next_dim, with_ln=with_ln)) prev_dim = next_dim if (self.skips is not None) and (i in self.skips) and (i != (num_layers - 1)): prev_dim += in_dim if num_layers > 0: self.net = nn.ModuleList(self.net) if spec_init: self.net.apply(self.init_weights) def forward(self, x): y = self.net[0](x) for i in range(len(self.net) - 1): if (self.skips is not None) and (i in self.skips): y = torch.cat((x, y), dim=-1) y = self.net[i+1](y) return y def init_weights(self, m): if type(m) == nn.Linear: nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu', mode='fan_in') # nn.init.uniform_(m.weight) class HyperImplicitField(nn.Module): def __init__(self, hyper_in_dim, in_dim, out_dim, hidden_dim, num_layers, outmost_linear=False): super().__init__() self.hyper_in_dim = hyper_in_dim self.in_dim = in_dim self.net = HyperFC( hyper_in_dim, 1, 256, hidden_dim, num_layers, in_dim, out_dim, outermost_linear=outmost_linear ) def forward(self, x, c): assert (x.size(-1) == self.in_dim) and (c.size(-1) == self.hyper_in_dim) if self.nerfpos is not None: x = torch.cat([x, self.nerfpos(x)], -1) return self.net(c)(x.unsqueeze(0)).squeeze(0) class SignedDistanceField(ImplicitField): """ Predictor for density or SDF values. """ def __init__(self, in_dim, hidden_dim, num_layers=1, recurrent=False, with_ln=True, spec_init=True): super().__init__(in_dim, in_dim, in_dim, num_layers-1, with_ln=with_ln, spec_init=spec_init) self.recurrent = recurrent if recurrent: assert num_layers > 1 self.hidden_layer = nn.LSTMCell(input_size=in_dim, hidden_size=hidden_dim) self.hidden_layer.apply(init_recurrent_weights) lstm_forget_gate_init(self.hidden_layer) else: self.hidden_layer = FCLayer(in_dim, hidden_dim, with_ln) \ if num_layers > 0 else nn.Identity() prev_dim = hidden_dim if num_layers > 0 else in_dim self.output_layer = nn.Linear(prev_dim, 1) def forward(self, x, state=None): if self.recurrent: shape = x.size() state = self.hidden_layer(x.view(-1, shape[-1]), state) if state[0].requires_grad: state[0].register_hook(lambda x: x.clamp(min=-5, max=5)) return self.output_layer(state[0].view(*shape[:-1], -1)).squeeze(-1), state else: return self.output_layer(self.hidden_layer(x)).squeeze(-1), None class TextureField(ImplicitField): """ Pixel generator based on 1x1 conv networks """ def __init__(self, in_dim, hidden_dim, num_layers, with_alpha=False, with_ln=True, spec_init=True): out_dim = 3 if not with_alpha else 4 super().__init__(in_dim, out_dim, hidden_dim, num_layers, outmost_linear=True, with_ln=with_ln, spec_init=spec_init) class LightTextureField(ImplicitField): """ Pixel generator based on 1x1 conv networks """ def __init__(self, in_dim, hidden_dim, num_layers, with_alpha=False, with_ln=True, spec_init=True): out_dim = 3 if not with_alpha else 4 super().__init__(in_dim, out_dim, hidden_dim, num_layers, outmost_linear=True, with_ln=with_ln, spec_init=spec_init) class ExplicitLightTextureField(ImplicitField): """ Pixel generator based on 1x1 conv networks """ def __init__(self, in_dim, hidden_dim, num_layers, with_ln=True, spec_init=True, r_dim=4): out_dim = r_dim super().__init__(in_dim, out_dim, hidden_dim, num_layers, outmost_linear=True, with_ln=with_ln, spec_init=spec_init) def forward(self, x): y = super().forward(x) return y # ------------------ # # helper functions # # ------------------ # def init_recurrent_weights(self): for m in self.modules(): if type(m) in [nn.GRU, nn.LSTM, nn.RNN]: for name, param in m.named_parameters(): if 'weight_ih' in name: nn.init.kaiming_normal_(param.data) elif 'weight_hh' in name: nn.init.orthogonal_(param.data) elif 'bias' in name: param.data.fill_(0) def lstm_forget_gate_init(lstm_layer): for name, parameter in lstm_layer.named_parameters(): if not "bias" in name: continue n = parameter.size(0) start, end = n // 4, n // 2 parameter.data[start:end].fill_(1.) def clip_grad_norm_hook(x, max_norm=10): total_norm = x.norm() total_norm = total_norm ** (1 / 2.) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: return x * clip_coef
35.883249
111
0.597397
4e0a7289f1fe396dc33488ba08b4b3818d61b922
1,408
py
Python
app/tests.py
uvElena/evolab-hello
7e78a7f3b5db811d5ac123762b48afadf7d3ccf0
[ "MIT" ]
null
null
null
app/tests.py
uvElena/evolab-hello
7e78a7f3b5db811d5ac123762b48afadf7d3ccf0
[ "MIT" ]
null
null
null
app/tests.py
uvElena/evolab-hello
7e78a7f3b5db811d5ac123762b48afadf7d3ccf0
[ "MIT" ]
null
null
null
from flask_testing import TestCase from app import create_app, Configuration from models import db, User from flask import url_for class TestConfiguration(Configuration): SQLALCHEMY_DATABASE_URI = 'sqlite:////tmp/names.db' TESTING = True DEBUG = True class TestBase(TestCase): def create_app(self): app = create_app(TestConfiguration) return app def setUp(self): db.drop_all() db.create_all() def tearDown(self): db.session.remove() db.drop_all() def test_index(self): response = self.client.get(url_for('main.index')) self.assertEqual(response.status_code, 200) def test_say(self): response = self.client.post( url_for('main.say_hi'), data={'name': 'Олег'} ) self.assertIn('Привіт, Олег', response.data.decode("utf-8")) response = self.client.post( url_for('main.say_hi'), data={'name': 'Олег'} ) self.assertIn('Вже бачилися, Олег', response.data.decode("utf-8")) def test_names(self): user = User(user_name='Олег') db.session.add(user) db.session.commit() response = self.client.get( url_for('main.list_names') ) self.assertIn('Вже бачилися з', response.data.decode("utf-8")) self.assertIn('Олег', response.data.decode("utf-8"))
25.6
74
0.605114
0737d4092eb17450864789128069120ecd7108ef
981
py
Python
toughio/relative_permeability/_fatt_klikoff.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
21
2020-03-05T20:03:58.000Z
2022-03-14T23:17:42.000Z
toughio/relative_permeability/_fatt_klikoff.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
60
2020-02-14T22:53:01.000Z
2022-03-26T07:24:19.000Z
toughio/relative_permeability/_fatt_klikoff.py
keurfonluu/toughio
1db0600ee5ad1abb5ca858c81c8ac5226c9dbb4f
[ "BSD-3-Clause-LBNL" ]
6
2020-02-28T08:15:36.000Z
2022-03-13T23:26:24.000Z
from ._base import BaseRelativePermeability __all__ = [ "FattKlikoff", ] class FattKlikoff(BaseRelativePermeability): _id = 7 _name = "Fatt-Klikoff" def __init__(self, slr): """ Fatt and Klikoff's function. After Fatt and Klikoff (1959). Parameters ---------- slr : scalar Irreducible liquid saturation (RP(1)). """ if slr >= 1.0: raise ValueError() self.parameters = [slr] def _eval(self, sl, *args): """Fatt and Klikoff's function.""" (slr,) = args Seff = (sl - slr) / (1.0 - slr) if sl > slr else 0.0 kl = Seff ** 3 kg = (1.0 - Seff) ** 3 return kl, kg @property def parameters(self): """Return model parameters.""" return [self._slr] @parameters.setter def parameters(self, value): if len(value) != 1: raise ValueError() self._slr = value[0]
20.87234
60
0.517839
fb7f0a956bb7501920be59607aa153acd6368496
15,291
py
Python
trove/tests/unittests/guestagent/test_mongodb_manager.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
1
2019-09-20T08:31:54.000Z
2019-09-20T08:31:54.000Z
trove/tests/unittests/guestagent/test_mongodb_manager.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
trove/tests/unittests/guestagent/test_mongodb_manager.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import pymongo import trove.common.db.mongodb.models as models import trove.common.utils as utils import trove.guestagent.backup as backup from trove.guestagent.common.configuration import ImportOverrideStrategy import trove.guestagent.datastore.experimental.mongodb.manager as manager import trove.guestagent.datastore.experimental.mongodb.service as service import trove.guestagent.volume as volume from trove.tests.unittests.guestagent.test_datastore_manager import \ DatastoreManagerTest class GuestAgentMongoDBManagerTest(DatastoreManagerTest): @mock.patch.object(ImportOverrideStrategy, '_initialize_import_directory') def setUp(self, _): super(GuestAgentMongoDBManagerTest, self).setUp('mongodb') self.manager = manager.Manager() self.execute_with_timeout_patch = mock.patch.object( utils, 'execute_with_timeout', return_value=('0', '') ) self.addCleanup(self.execute_with_timeout_patch.stop) self.execute_with_timeout_patch.start() self.pymongo_patch = mock.patch.object( pymongo, 'MongoClient' ) self.addCleanup(self.pymongo_patch.stop) self.pymongo_patch.start() self.mount_point = '/var/lib/mongodb' self.host_wildcard = '%' # This is used in the test_*_user tests below self.serialized_user = { '_name': 'testdb.testuser', '_password': None, '_roles': [{'db': 'testdb', 'role': 'testrole'}], '_username': 'testuser', '_databases': [], '_host': self.host_wildcard, '_database': {'_name': 'testdb', '_character_set': None, '_collate': None}, '_is_root': False } def tearDown(self): super(GuestAgentMongoDBManagerTest, self).tearDown() def test_update_status(self): self.manager.app.status = mock.MagicMock() self.manager.update_status(self.context) self.manager.app.status.update.assert_any_call() def _prepare_method(self, packages=['packages'], databases=None, memory_mb='2048', users=None, device_path=None, mount_point=None, backup_info=None, config_contents=None, root_password=None, overrides=None, cluster_config=None,): """self.manager.app must be correctly mocked before calling.""" self.manager.app.status = mock.Mock() self.manager.prepare(self.context, packages, databases, memory_mb, users, device_path=device_path, mount_point=mount_point, backup_info=backup_info, config_contents=config_contents, root_password=root_password, overrides=overrides, cluster_config=cluster_config) self.manager.app.status.begin_install.assert_any_call() self.manager.app.install_if_needed.assert_called_with(packages) self.manager.app.stop_db.assert_any_call() self.manager.app.clear_storage.assert_any_call() (self.manager.app.apply_initial_guestagent_configuration. assert_called_once_with(cluster_config, self.mount_point)) @mock.patch.object(volume, 'VolumeDevice') @mock.patch('os.path.exists') def test_prepare_for_volume(self, exists, mocked_volume): device_path = '/dev/vdb' self.manager.app = mock.Mock() self._prepare_method(device_path=device_path) mocked_volume().unmount_device.assert_called_with(device_path) mocked_volume().format.assert_any_call() mocked_volume().migrate_data.assert_called_with(self.mount_point) mocked_volume().mount.assert_called_with(self.mount_point) def test_secure(self): self.manager.app = mock.Mock() mock_secure = mock.Mock() self.manager.app.secure = mock_secure self._prepare_method() mock_secure.assert_called_with() @mock.patch.object(backup, 'restore') @mock.patch.object(service.MongoDBAdmin, 'is_root_enabled') def test_prepare_from_backup(self, mocked_root_check, mocked_restore): self.manager.app = mock.Mock() backup_info = {'id': 'backup_id_123abc', 'location': 'fake-location', 'type': 'MongoDBDump', 'checksum': 'fake-checksum'} self._prepare_method(backup_info=backup_info) mocked_restore.assert_called_with(self.context, backup_info, '/var/lib/mongodb') mocked_root_check.assert_any_call() def test_prepare_with_databases(self): self.manager.app = mock.Mock() database = mock.Mock() mock_create_databases = mock.Mock() self.manager.create_database = mock_create_databases self._prepare_method(databases=[database]) mock_create_databases.assert_called_with(self.context, [database]) def test_prepare_with_users(self): self.manager.app = mock.Mock() user = mock.Mock() mock_create_users = mock.Mock() self.manager.create_user = mock_create_users self._prepare_method(users=[user]) mock_create_users.assert_called_with(self.context, [user]) @mock.patch.object(service.MongoDBAdmin, 'enable_root') def test_provide_root_password(self, mocked_enable_root): self.manager.app = mock.Mock() self._prepare_method(root_password='test_password') mocked_enable_root.assert_called_with('test_password') @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') @mock.patch.object(service.MongoDBAdmin, '_get_user_record') def test_create_user(self, mocked_get_user, mocked_admin_user, mocked_client): user = self.serialized_user.copy() user['_password'] = 'testpassword' users = [user] client = mocked_client().__enter__()['testdb'] mocked_get_user.return_value = None self.manager.create_user(self.context, users) client.add_user.assert_called_with('testuser', password='testpassword', roles=[{'db': 'testdb', 'role': 'testrole'}]) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_delete_user(self, mocked_admin_user, mocked_client): client = mocked_client().__enter__()['testdb'] self.manager.delete_user(self.context, self.serialized_user) client.remove_user.assert_called_with('testuser') @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_get_user(self, mocked_admin_user, mocked_client): mocked_find = mock.MagicMock(return_value={ '_id': 'testdb.testuser', 'user': 'testuser', 'db': 'testdb', 'roles': [{'db': 'testdb', 'role': 'testrole'}] }) client = mocked_client().__enter__().admin client.system.users.find_one = mocked_find result = self.manager.get_user(self.context, 'testdb.testuser', None) mocked_find.assert_called_with({'user': 'testuser', 'db': 'testdb'}) self.assertEqual(self.serialized_user, result) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_list_users(self, mocked_admin_user, mocked_client): # roles are NOT returned by list_users user1 = self.serialized_user.copy() user2 = self.serialized_user.copy() user2['_name'] = 'testdb.otheruser' user2['_username'] = 'otheruser' user2['_roles'] = [{'db': 'testdb2', 'role': 'readWrite'}] user2['_databases'] = [{'_name': 'testdb2', '_character_set': None, '_collate': None}] mocked_find = mock.MagicMock(return_value=[ { '_id': 'admin.os_admin', 'user': 'os_admin', 'db': 'admin', 'roles': [{'db': 'admin', 'role': 'root'}] }, { '_id': 'testdb.testuser', 'user': 'testuser', 'db': 'testdb', 'roles': [{'db': 'testdb', 'role': 'testrole'}] }, { '_id': 'testdb.otheruser', 'user': 'otheruser', 'db': 'testdb', 'roles': [{'db': 'testdb2', 'role': 'readWrite'}] } ]) client = mocked_client().__enter__().admin client.system.users.find = mocked_find users, next_marker = self.manager.list_users(self.context) self.assertIsNone(next_marker) self.assertEqual(sorted([user1, user2], key=lambda x: x['_name']), users) @mock.patch.object(service.MongoDBAdmin, 'create_validated_user') @mock.patch.object(utils, 'generate_random_password', return_value='password') def test_enable_root(self, mock_gen_rand_pwd, mock_create_user): root_user = {'_name': 'admin.root', '_username': 'root', '_database': {'_name': 'admin', '_character_set': None, '_collate': None}, '_password': 'password', '_roles': [{'db': 'admin', 'role': 'root'}], '_databases': [], '_host': self.host_wildcard, '_is_root': True} result = self.manager.enable_root(self.context) self.assertTrue(mock_create_user.called) self.assertEqual(root_user, result) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') @mock.patch.object(service.MongoDBAdmin, '_get_user_record', return_value=models.MongoDBUser('testdb.testuser')) def test_grant_access(self, mocked_get_user, mocked_admin_user, mocked_client): client = mocked_client().__enter__()['testdb'] self.manager.grant_access(self.context, 'testdb.testuser', None, ['db1', 'db2', 'db3']) client.add_user.assert_called_with('testuser', roles=[ {'db': 'db1', 'role': 'readWrite'}, {'db': 'db2', 'role': 'readWrite'}, {'db': 'db3', 'role': 'readWrite'} ]) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') @mock.patch.object(service.MongoDBAdmin, '_get_user_record', return_value=models.MongoDBUser('testdb.testuser')) def test_revoke_access(self, mocked_get_user, mocked_admin_user, mocked_client): client = mocked_client().__enter__()['testdb'] mocked_get_user.return_value.roles = [ {'db': 'db1', 'role': 'readWrite'}, {'db': 'db2', 'role': 'readWrite'}, {'db': 'db3', 'role': 'readWrite'} ] self.manager.revoke_access(self.context, 'testdb.testuser', None, 'db2') client.add_user.assert_called_with('testuser', roles=[ {'db': 'db1', 'role': 'readWrite'}, {'db': 'db3', 'role': 'readWrite'} ]) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') @mock.patch.object(service.MongoDBAdmin, '_get_user_record', return_value=models.MongoDBUser('testdb.testuser')) def test_list_access(self, mocked_get_user, mocked_admin_user, mocked_client): mocked_get_user.return_value.roles = [ {'db': 'db1', 'role': 'readWrite'}, {'db': 'db2', 'role': 'readWrite'}, {'db': 'db3', 'role': 'readWrite'} ] accessible_databases = self.manager.list_access( self.context, 'testdb.testuser', None ) self.assertEqual(['db1', 'db2', 'db3'], [db['_name'] for db in accessible_databases]) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_create_databases(self, mocked_admin_user, mocked_client): schema = models.MongoDBSchema('testdb').serialize() db_client = mocked_client().__enter__()['testdb'] self.manager.create_database(self.context, [schema]) # FIXME(songjian):can not create database with null content, # so create a collection # db_client['dummy'].insert.assert_called_with({'dummy': True}) # db_client.drop_collection.assert_called_with('dummy') db_client.create_collection.assert_called_with('dummy') @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_list_databases(self, # mocked_ignored_dbs, mocked_admin_user, mocked_client): # This list contains the special 'admin', 'local' and 'config' dbs; # the special dbs should be skipped in the output. # Pagination is tested by starting at 'db1', so 'db0' should not # be in the output. The limit is set to 2, meaning the result # should be 'db1' and 'db2'. The next_marker should be 'db3'. mocked_list = mock.MagicMock( return_value=['admin', 'local', 'config', 'db0', 'db1', 'db2', 'db3']) mocked_client().__enter__().database_names = mocked_list dbs, next_marker = self.manager.list_databases( self.context, limit=2, marker='db1', include_marker=True) mocked_list.assert_any_call() self.assertEqual([models.MongoDBSchema('db1').serialize(), models.MongoDBSchema('db2').serialize()], dbs) self.assertEqual('db2', next_marker) @mock.patch.object(service, 'MongoDBClient') @mock.patch.object(service.MongoDBAdmin, '_admin_user') def test_delete_database(self, mocked_admin_user, mocked_client): schema = models.MongoDBSchema('testdb').serialize() self.manager.delete_database(self.context, schema) mocked_client().__enter__().drop_database.assert_called_with('testdb')
41.104839
79
0.613171
6559c02f0935515675acead288c966c86aaf3a67
2,613
py
Python
language/bert_extraction/steal_bert_classifier/embedding_perturbations/merge_shards.py
wanchenbest/language
623e016a76eaeb054d09a4173db1026685bc5b08
[ "Apache-2.0" ]
1
2020-02-12T17:27:05.000Z
2020-02-12T17:27:05.000Z
language/bert_extraction/steal_bert_classifier/embedding_perturbations/merge_shards.py
wanchenbest/language
623e016a76eaeb054d09a4173db1026685bc5b08
[ "Apache-2.0" ]
null
null
null
language/bert_extraction/steal_bert_classifier/embedding_perturbations/merge_shards.py
wanchenbest/language
623e016a76eaeb054d09a4173db1026685bc5b08
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to combine multiple shards from discrete_invert_embeddings to a single dataset.""" import tensorflow as tf from tqdm import tqdm app = tf.compat.v1.app flags = tf.flags gfile = tf.gfile logging = tf.logging flags.DEFINE_string("shards_pattern", None, "Glob pattern to identify the set of files to be combined") flags.DEFINE_string("task_name", "mnli", "Task name to understand the input data format") flags.DEFINE_string("output_path", None, "Output path where the combined dataset is exported") FLAGS = flags.FLAGS num_labels = {"sst2": 2, "mnli": 3} relevant_headers = { "sst2": ["original_index", "sentence"], "mnli": ["original_index", "sentence1", "sentence2"] } def main(_): task_name = FLAGS.task_name.lower() # skip the original index header for the final file for compatiblity with # run_classifier_distillation.py output_data = ["index\t" + "\t".join(relevant_headers[task_name][1:])] shards = gfile.Glob(FLAGS.shards_pattern) # sort the shard according to their starting point shards.sort(key=lambda x: int(x[x.rfind(".") + 1:x.rfind("-")])) for shard in tqdm(shards): logging.info("Loading file %s", shard) with gfile.Open(shard, "r") as f: # read the dataset ignoring the header dataset = f.read().strip().split("\n") header = dataset[0].split("\t") dataset = dataset[1:] relevant_indices = [header.index(x) for x in relevant_headers[task_name]] logging.info("Dataset size = %d, Relevant indices = %s", len(dataset), relevant_indices) for point in dataset: point_parts = point.split("\t") output_data.append("\t".join([point_parts[x] for x in relevant_indices])) logging.info("Final dataset of size %d from %d files", len(output_data) - 1, len(shards)) with gfile.Open(FLAGS.output_path, "w") as f: f.write("\n".join(output_data) + "\n") if __name__ == "__main__": app.run(main)
34.84
92
0.684654
1daeb2e3b47b4743c3b95537f96f065be8b0d51b
6,976
py
Python
cherrypy/test/test_logging.py
alan412/cherrypy
52d16c40032158ab5965251bf750659b3c0f4de3
[ "BSD-3-Clause" ]
null
null
null
cherrypy/test/test_logging.py
alan412/cherrypy
52d16c40032158ab5965251bf750659b3c0f4de3
[ "BSD-3-Clause" ]
null
null
null
cherrypy/test/test_logging.py
alan412/cherrypy
52d16c40032158ab5965251bf750659b3c0f4de3
[ "BSD-3-Clause" ]
null
null
null
"""Basic tests for the CherryPy core: request handling.""" import logging import os from unittest import mock import pytest import requests # FIXME: Temporary using it directly, better switch import cherrypy from cherrypy._cpcompat import ntou from cherrypy.test import helper, logtest localDir = os.path.dirname(__file__) access_log = os.path.join(localDir, 'access.log') error_log = os.path.join(localDir, 'error.log') # Some unicode strings. tartaros = ntou('\u03a4\u1f71\u03c1\u03c4\u03b1\u03c1\u03bf\u03c2', 'escape') erebos = ntou('\u0388\u03c1\u03b5\u03b2\u03bf\u03c2.com', 'escape') @pytest.fixture def server(): setup_server() cherrypy.engine.start() yield shutdown_server() def shutdown_server(): cherrypy.engine.exit() servers_copy = list(getattr(cherrypy, 'servers', {}).items()) for name, server in servers_copy: server.unsubscribe() del cherrypy.servers[name] def setup_server(): class Root: @cherrypy.expose def index(self): return 'hello' @cherrypy.expose def uni_code(self): cherrypy.request.login = tartaros cherrypy.request.remote.name = erebos @cherrypy.expose def slashes(self): cherrypy.request.request_line = r'GET /slashed\path HTTP/1.1' @cherrypy.expose def whitespace(self): # User-Agent = "User-Agent" ":" 1*( product | comment ) # comment = "(" *( ctext | quoted-pair | comment ) ")" # ctext = <any TEXT excluding "(" and ")"> # TEXT = <any OCTET except CTLs, but including LWS> # LWS = [CRLF] 1*( SP | HT ) cherrypy.request.headers['User-Agent'] = 'Browzuh (1.0\r\n\t\t.3)' @cherrypy.expose def as_string(self): return 'content' @cherrypy.expose def as_yield(self): yield 'content' @cherrypy.expose @cherrypy.config(**{'tools.log_tracebacks.on': True}) def error(self): raise ValueError() root = Root() cherrypy.config.update({ 'log.error_file': error_log, 'log.access_file': access_log, }) cherrypy.tree.mount(root) class AccessLogTests(helper.CPWebCase, logtest.LogCase): setup_server = staticmethod(setup_server) logfile = access_log def testNormalReturn(self): self.markLog() self.getPage('/as_string', headers=[('Referer', 'http://www.cherrypy.org/'), ('User-Agent', 'Mozilla/5.0')]) self.assertBody('content') self.assertStatus(200) intro = '%s - - [' % self.interface() self.assertLog(-1, intro) if [k for k, v in self.headers if k.lower() == 'content-length']: self.assertLog(-1, '] "GET %s/as_string HTTP/1.1" 200 7 ' '"http://www.cherrypy.org/" "Mozilla/5.0"' % self.prefix()) else: self.assertLog(-1, '] "GET %s/as_string HTTP/1.1" 200 - ' '"http://www.cherrypy.org/" "Mozilla/5.0"' % self.prefix()) def testNormalYield(self): self.markLog() self.getPage('/as_yield') self.assertBody('content') self.assertStatus(200) intro = '%s - - [' % self.interface() self.assertLog(-1, intro) if [k for k, v in self.headers if k.lower() == 'content-length']: self.assertLog(-1, '] "GET %s/as_yield HTTP/1.1" 200 7 "" ""' % self.prefix()) else: self.assertLog(-1, '] "GET %s/as_yield HTTP/1.1" 200 - "" ""' % self.prefix()) @mock.patch( 'cherrypy._cplogging.LogManager.access_log_format', '{h} {l} {u} {t} "{r}" {s} {b} "{f}" "{a}" {o}', ) def testCustomLogFormat(self): """Test a customized access_log_format string, which is a feature of _cplogging.LogManager.access().""" self.markLog() self.getPage('/as_string', headers=[('Referer', 'REFERER'), ('User-Agent', 'USERAGENT'), ('Host', 'HOST')]) self.assertLog(-1, '%s - - [' % self.interface()) self.assertLog(-1, '] "GET /as_string HTTP/1.1" ' '200 7 "REFERER" "USERAGENT" HOST') @mock.patch( 'cherrypy._cplogging.LogManager.access_log_format', '{h} {l} {u} {z} "{r}" {s} {b} "{f}" "{a}" {o}', ) def testTimezLogFormat(self): """Test a customized access_log_format string, which is a feature of _cplogging.LogManager.access().""" self.markLog() expected_time = str(cherrypy._cplogging.LazyRfc3339UtcTime()) with mock.patch( 'cherrypy._cplogging.LazyRfc3339UtcTime', lambda: expected_time): self.getPage('/as_string', headers=[('Referer', 'REFERER'), ('User-Agent', 'USERAGENT'), ('Host', 'HOST')]) self.assertLog(-1, '%s - - ' % self.interface()) self.assertLog(-1, expected_time) self.assertLog(-1, ' "GET /as_string HTTP/1.1" ' '200 7 "REFERER" "USERAGENT" HOST') @mock.patch( 'cherrypy._cplogging.LogManager.access_log_format', '{i}', ) def testUUIDv4ParameterLogFormat(self): """Test rendering of UUID4 within access log.""" self.markLog() self.getPage('/as_string') self.assertValidUUIDv4() def testEscapedOutput(self): # Test unicode in access log pieces. self.markLog() self.getPage('/uni_code') self.assertStatus(200) # The repr of a bytestring includes a b'' prefix self.assertLog(-1, repr(tartaros.encode('utf8'))[2:-1]) # Test the erebos value. Included inline for your enlightenment. # Note the 'r' prefix--those backslashes are literals. self.assertLog(-1, r'\xce\x88\xcf\x81\xce\xb5\xce\xb2\xce\xbf\xcf\x82') # Test backslashes in output. self.markLog() self.getPage('/slashes') self.assertStatus(200) self.assertLog(-1, b'"GET /slashed\\path HTTP/1.1"') # Test whitespace in output. self.markLog() self.getPage('/whitespace') self.assertStatus(200) # Again, note the 'r' prefix. self.assertLog(-1, r'"Browzuh (1.0\r\n\t\t.3)"') def test_tracebacks(server, caplog): with caplog.at_level(logging.ERROR, logger='cherrypy.error'): resp = requests.get('http://127.0.0.1:8080/error') rec = caplog.records[0] exc_cls, exc_msg = rec.exc_info[0], rec.message assert 'raise ValueError()' in resp.text assert 'HTTP' in exc_msg assert exc_cls is ValueError
32.751174
79
0.557769
3f0a867f17dc7d5048a7c558490745488924312a
601
py
Python
load_image.py
KirillYabl/Space-instagram
3b7d6ada3e7d0d3e500578ea450d4aa0ad8cffc2
[ "MIT" ]
null
null
null
load_image.py
KirillYabl/Space-instagram
3b7d6ada3e7d0d3e500578ea450d4aa0ad8cffc2
[ "MIT" ]
null
null
null
load_image.py
KirillYabl/Space-instagram
3b7d6ada3e7d0d3e500578ea450d4aa0ad8cffc2
[ "MIT" ]
null
null
null
import requests def load_image(url, path): """Load image by url to file. Params -------------------------------------------- :param url: str Url with image. :param path: str Path, where image will be saved. -------------------------------------------- """ response = requests.get(url) # check HTTPError response.raise_for_status() # some sites can return 200 and write error in body if 'error' in response: raise requests.exceptions.HTTPError(response['error']) with open(path, 'wb') as f: f.write(response.content)
24.04
62
0.532446
31fdd51148a54f67691ea88534be9eac34f552ff
7,374
py
Python
finnhub/models/forex_candles.py
gavinjay/finnhub-python
b5c409dafeda390d14a2b0618ae6f25ab8d76c5b
[ "Apache-2.0" ]
null
null
null
finnhub/models/forex_candles.py
gavinjay/finnhub-python
b5c409dafeda390d14a2b0618ae6f25ab8d76c5b
[ "Apache-2.0" ]
null
null
null
finnhub/models/forex_candles.py
gavinjay/finnhub-python
b5c409dafeda390d14a2b0618ae6f25ab8d76c5b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Finnhub API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from finnhub.configuration import Configuration class ForexCandles(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'o': 'list[float]', 'h': 'list[float]', 'l': 'list[float]', 'c': 'list[float]', 'v': 'list[float]', 't': 'list[float]', 's': 'str' } attribute_map = { 'o': 'o', 'h': 'h', 'l': 'l', 'c': 'c', 'v': 'v', 't': 't', 's': 's' } def __init__(self, o=None, h=None, l=None, c=None, v=None, t=None, s=None, local_vars_configuration=None): # noqa: E501 """ForexCandles - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._o = None self._h = None self._l = None self._c = None self._v = None self._t = None self._s = None self.discriminator = None if o is not None: self.o = o if h is not None: self.h = h if l is not None: self.l = l if c is not None: self.c = c if v is not None: self.v = v if t is not None: self.t = t if s is not None: self.s = s @property def o(self): """Gets the o of this ForexCandles. # noqa: E501 List of open prices for returned candles. # noqa: E501 :return: The o of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._o @o.setter def o(self, o): """Sets the o of this ForexCandles. List of open prices for returned candles. # noqa: E501 :param o: The o of this ForexCandles. # noqa: E501 :type: list[float] """ self._o = o @property def h(self): """Gets the h of this ForexCandles. # noqa: E501 List of high prices for returned candles. # noqa: E501 :return: The h of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._h @h.setter def h(self, h): """Sets the h of this ForexCandles. List of high prices for returned candles. # noqa: E501 :param h: The h of this ForexCandles. # noqa: E501 :type: list[float] """ self._h = h @property def l(self): """Gets the l of this ForexCandles. # noqa: E501 List of low prices for returned candles. # noqa: E501 :return: The l of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._l @l.setter def l(self, l): """Sets the l of this ForexCandles. List of low prices for returned candles. # noqa: E501 :param l: The l of this ForexCandles. # noqa: E501 :type: list[float] """ self._l = l @property def c(self): """Gets the c of this ForexCandles. # noqa: E501 List of close prices for returned candles. # noqa: E501 :return: The c of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._c @c.setter def c(self, c): """Sets the c of this ForexCandles. List of close prices for returned candles. # noqa: E501 :param c: The c of this ForexCandles. # noqa: E501 :type: list[float] """ self._c = c @property def v(self): """Gets the v of this ForexCandles. # noqa: E501 List of volume data for returned candles. # noqa: E501 :return: The v of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._v @v.setter def v(self, v): """Sets the v of this ForexCandles. List of volume data for returned candles. # noqa: E501 :param v: The v of this ForexCandles. # noqa: E501 :type: list[float] """ self._v = v @property def t(self): """Gets the t of this ForexCandles. # noqa: E501 List of timestamp for returned candles. # noqa: E501 :return: The t of this ForexCandles. # noqa: E501 :rtype: list[float] """ return self._t @t.setter def t(self, t): """Sets the t of this ForexCandles. List of timestamp for returned candles. # noqa: E501 :param t: The t of this ForexCandles. # noqa: E501 :type: list[float] """ self._t = t @property def s(self): """Gets the s of this ForexCandles. # noqa: E501 Status of the response. This field can either be ok or no_data. # noqa: E501 :return: The s of this ForexCandles. # noqa: E501 :rtype: str """ return self._s @s.setter def s(self, s): """Sets the s of this ForexCandles. Status of the response. This field can either be ok or no_data. # noqa: E501 :param s: The s of this ForexCandles. # noqa: E501 :type: str """ self._s = s def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ForexCandles): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ForexCandles): return True return self.to_dict() != other.to_dict()
25.340206
124
0.532818
7e027d6e73033544a27a309e29f96dea20bd14cf
1,386
py
Python
tests/test_hrm.py
MirkoLedda/polyoligo
c9fc952fbc7315f426a137313fb36cd16a5e5957
[ "BSD-2-Clause" ]
3
2019-07-26T20:09:50.000Z
2022-01-11T00:56:45.000Z
tests/test_hrm.py
MirkoLedda/polyoligo
c9fc952fbc7315f426a137313fb36cd16a5e5957
[ "BSD-2-Clause" ]
1
2021-04-21T13:27:45.000Z
2021-04-21T13:27:45.000Z
tests/test_hrm.py
MirkoLedda/polyoligo
c9fc952fbc7315f426a137313fb36cd16a5e5957
[ "BSD-2-Clause" ]
2
2020-02-10T22:34:15.000Z
2022-03-01T21:29:01.000Z
import sys import os import yaml sys.path.insert(0, os.path.abspath(".")) from src.polyoligo import cli_hrm with open("tests/KWARGS.yaml", "r") as f: KWARGS = yaml.safe_load(f) cli_hrm.main(strcmd=" ".join([ "polyoligo-hrm", KWARGS["marker"], KWARGS["out"], KWARGS["reference"], "--webapp", "--debug", ])) cli_hrm.main(strcmd=" ".join([ "polyoligo-hrm", KWARGS["marker"], KWARGS["out"], KWARGS["ref_fasta"], ])) cli_hrm.main(strcmd=" ".join([ "polyoligo-hrm", KWARGS["marker_indels"], KWARGS["out"], KWARGS["reference"], "--webapp", "--debug", ])) cli_hrm.main(strcmd=" ".join([ "polyoligo-hrm", KWARGS["marker_tomato"], KWARGS["out"], KWARGS["ref_tomato"], "--webapp", "--debug" ])) cli_hrm.main(strcmd=" ".join([ "polyoligo-hrm", KWARGS["marker_lim"], KWARGS["out"], KWARGS["reference"], "-n {}".format(KWARGS["n"]), "--vcf {}".format(KWARGS["vcf"]), "--vcf_include {}".format(KWARGS["vcf_include"]), "--depth {}".format(KWARGS["depth"]), "--tm_delta {}".format(KWARGS["tm_delta"]), "--seed {}".format(KWARGS["seed"]), "--offtarget_min_size {}".format(KWARGS["offtarget_min_size"]), "--offtarget_max_size {}".format(KWARGS["offtarget_max_size"]), "--primer3 {}".format(KWARGS["primer3_hrm"]), "-nt {}".format(KWARGS["nt"]), ]))
22.354839
67
0.580808
cddd6da012d261dcc9c3eed5fcba9bd8ece70578
8,406
py
Python
test/test_document.py
vanatteveldt/corenlp-xml-lib
b658ccc5d54901f4d4bcf6a540d7ef69fb853e78
[ "Apache-2.0" ]
7
2015-08-20T20:43:43.000Z
2018-12-17T01:32:03.000Z
test/test_document.py
vanatteveldt/corenlp-xml-lib
b658ccc5d54901f4d4bcf6a540d7ef69fb853e78
[ "Apache-2.0" ]
3
2016-05-15T11:30:41.000Z
2017-06-07T23:24:45.000Z
test/test_document.py
vanatteveldt/corenlp-xml-lib
b658ccc5d54901f4d4bcf6a540d7ef69fb853e78
[ "Apache-2.0" ]
4
2015-09-05T04:57:07.000Z
2018-08-07T13:55:29.000Z
import os import sys sys.path.insert(0, os.path.join("..")) import unittest from corenlp_xml.document import Document, Sentence, Token, TokenList from corenlp_xml.dependencies import DependencyNode from collections import OrderedDict from nltk import Tree class TestDocument(unittest.TestCase): def setUp(self): with open("test.xml", "r") as xml_file: self._document = Document(xml_file.read()) def test_sentiment(self): self.assertIsNone(self._document._sentiment, "Sentiment should be lazy-loaded") expected = 1.2173913043478262 self.assertEquals(expected, self._document.sentiment, "Sentiment should be returned for public property") self.assertIsNotNone(self._document._sentiment, "Sentiment should be memoized") self.assertEquals(expected, self._document._sentiment, "Sentiment should be memoized") def test_sentences(self): self.assertIsNone(self._document._sentences_dict, "Sentences should be lazy-loaded") sentences = self._document._get_sentences_dict().values() self.assertIsNotNone(self._document._sentences_dict, "Sentences should be memoized") self.assertGreater(len(sentences), 0, "We should have sentences") for sentence in sentences: self.assertIsInstance(sentence, Sentence, "Sentences should be a list of only sentences") self.assertEquals(self._document.sentences, sentences, "Sentences property should work") self.assertIsInstance(self._document._sentences_dict, OrderedDict, "Protected sentences should be ordered") def test_get_sentence_by_id(self): sentence = self._document.get_sentence_by_id(1) self.assertIsInstance(sentence, Sentence, "Should return a Sentence instance") self.assertEquals(sentence.id, 1, "Sentence returned should have the appropriate ID") self.assertIsNone(self._document.get_sentence_by_id(-1), "If the ID doesn't exist, we should get None") class TestSentence(unittest.TestCase): """ Tests the Sentence class """ def setUp(self): """ It would probably be a good idea to look into Mock, eventually """ with open("test.xml", "r") as xml_file: self._document = Document(xml_file.read()) self._sentence = self._document.sentences[0] def test_id(self): """ Value isn't None because it's initialized when you create a Document. Hence why mocks might be nice. """ self.assertEquals(1, self._sentence.id, "ID should be an int") self.assertIsNotNone(self._sentence._id, "id property should be memoized") def test_sentiment(self): self.assertIsNone(self._sentence._sentiment, "Sentiment should be lazy-loaded") self.assertEquals(1, self._sentence.sentiment, "Sentiment should be an int") def test_tokens(self): self.assertIsNone(self._sentence._tokens_dict, "Tokens should be lazy-loaded") self.assertGreater(len(self._sentence.tokens), 0, "Tokens should be generated") self.assertIsInstance(self._sentence.tokens, TokenList, "Tokens should be a tokenlist") self.assertEquals(str(self._sentence.tokens), " ".join([token.word for token in self._sentence.tokens]), "toString function of tokenlist should be words") for token in self._sentence.tokens: self.assertIsInstance(token, Token, "Tokens should all be of class Token") self.assertIsNotNone(self._sentence._tokens_dict, "Tokens should be memoized") self.assertIsInstance(self._sentence._tokens_dict, OrderedDict, "Protected tokens should be ordered") def test_head(self): self.assertIsInstance(self._sentence.semantic_head, DependencyNode) self.assertEquals(self._sentence.semantic_head.text, "demonstrates") def test_phrase_strings(self): self.assertIn("a flawed property", self._sentence.phrase_strings("NP")) def test_subtrees_for_phrase(self): t = self._sentence.subtrees_for_phrase("NP")[0] self.assertIsInstance(t, Tree) self.assertEquals("property", t[-1].leaves()[0]) def test_get_token_by_id(self): token = self._sentence.get_token_by_id(1) self.assertIsInstance(token, Token, "Should return a Token instance") self.assertEquals(token.id, 1, "Token returned should have the appropriate ID") self.assertIsNone(self._sentence.get_token_by_id(-1), "If the ID doesn't exist, we should get None") def test_parse(self): self.assertIsNone(self._sentence._parse, "Parse should be lazy-loaded") parse = self._sentence.parse self.assertIsInstance(parse, Tree, "Parse should be an nltk.Tree instance") self.assertIsInstance(self._sentence._parse, Tree, "Parse should be memoized") class TestToken(unittest.TestCase): """ Tests the Token class """ def setUp(self): """ It would probably be a good idea to look into Mock, eventually """ with open("test.xml", "r") as xml_file: self._document = Document(xml_file.read()) self._sentence = self._document.sentences[0] self._token = self._sentence.tokens[0] def test_id(self): """ Value isn't None because it's initialized when getting tokens from sent. Hence why mocks might be nice. """ self.assertIsNotNone(self._token._id, "id property should be memoized") self.assertEquals(1, self._token.id) def test_word(self): self.assertIsNone(self._token._word, "Word should be lazy-loaded") # BREAKAGE WARNING: depends on the current state of xml file test.xml self.assertEquals("Taking", self._token.word, "Word should be string value of word") self.assertIsNotNone(self._token._word, "Word property should be memoized") def test_lemma(self): self.assertIsNone(self._token._lemma, "Lemma should be lazy-loaded") # BREAKAGE WARNING: depends on the current state of xml file test.xml self.assertEquals("take", self._token.lemma, "Word should be string value of word") self.assertIsNotNone(self._token._lemma, "Lemma property should be memoized") def test_character_offset_begin(self): self.assertIsNone(self._token._character_offset_begin, "Character offset being should be lazy-loaded") self.assertIsNotNone(self._token.character_offset_begin, "Character offset should be accessible") self.assertIsNotNone(self._token._character_offset_begin, "Character offset property should be memoized") def test_character_offset_end(self): self.assertIsNone(self._token._character_offset_end, "Character offset being should be lazy-loaded") self.assertIsNotNone(self._token.character_offset_end, "Character offset should be accessible") self.assertIsNotNone(self._token._character_offset_end, "Character offset property should be memoized") def test_pos(self): self.assertIsNone(self._token._pos, "POS should be lazy-loaded") # BREAKAGE WARNING: depends on the current state of xml file test.xml self.assertEquals("VBG", self._token.pos, "POS should be a POS, yo") self.assertIsNotNone(self._token._pos, "POS property should be memoized") def test_ner(self): self.assertIsNone(self._token._ner, "NER should be lazy-loaded") # BREAKAGE WARNING: depends on the current state of xml file test.xml self.assertEquals("O", self._token.ner, "NER should be a NER, yo") self.assertIsNotNone(self._token._ner, "NER property should be memoized") def test_speaker(self): self.assertIsNone(self._token._speaker, "Speaker should be lazy-loaded") # BREAKAGE WARNING: depends on the current state of xml file test.xml self.assertEquals("PER0", self._token.speaker, "Speaker should be a speaker son") self.assertIsNotNone(self._token._speaker, "speaker property should be memoized") def suite(): """ Generates test suite """ test_suite = unittest.TestSuite() test_suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestDocument)) test_suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestSentence)) test_suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestToken)) return test_suite if __name__ == "__main__": unittest.TextTestRunner(verbosity=1).run(suite())
50.945455
119
0.711516
3a4a9f497426f43921aed2082d095fc4cb18f59e
4,930
py
Python
src/models/utils.py
matejklemen/pcl-detection-semeval2022t4
f293dc5a5d248e3ac7e0a52ff4f928f53294749f
[ "MIT" ]
null
null
null
src/models/utils.py
matejklemen/pcl-detection-semeval2022t4
f293dc5a5d248e3ac7e0a52ff4f928f53294749f
[ "MIT" ]
null
null
null
src/models/utils.py
matejklemen/pcl-detection-semeval2022t4
f293dc5a5d248e3ac7e0a52ff4f928f53294749f
[ "MIT" ]
null
null
null
import numpy as np from sklearn.metrics import precision_score, recall_score, f1_score from transformers import BertTokenizerFast, DistilBertTokenizerFast, RobertaTokenizerFast, XLMRobertaTokenizerFast, XLNetTokenizerFast KEYWORDS = ["migrant", "women", "vulnerable", "refugee", "homeless", "immigrant", "in-need", "disabled", "hopeless", "poor-families"] def bracketed_representation(tag): # Converts a tag (e.g. UPOS, NER, sentiment) into unified scheme: tag -> [TAG] return f"[{tag.upper()}]" NER_TAGS = list(map(bracketed_representation, ["O", "B-ORG", "I-ORG", "E-ORG", "S-ORG", "B-PER", "I-PER", "E-PER", "S-PER", "B-LOC", "I-LOC", "E-LOC", "S-LOC", "B-MISC", "I-MISC", "E-MISC", "S-MISC"])) NER_SEQ_TAGS = list(map(bracketed_representation, ["ORG", "/ORG", "PER", "/PER", "LOC", "/LOC", "MISC", "/MISC"])) UPOS_TAGS = list(map(bracketed_representation, ["ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X"])) # Penn treebank tags XPOS_TAGS = list(map(bracketed_representation, ["#", "$", "''", ",", "-LRB-", "-RRB-", ".", ":", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NIL", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB", "``"])) DEPREL_TAGS = list(map(bracketed_representation, ["acl", "acl:relcl", "advcl", "advmod", "advmod:emph", "advmod:lmod", "amod", "appos", "aux", "aux:pass", "case", "cc", "cc:preconj", "ccomp", "clf", "compound", "compound:lvc", "compound:prt", "compound:redup", "compound:svc", "conj", "cop", "csubj", "csubj:pass", "dep", "det", "det:numgov", "det:nummod", "det:poss", "discourse", "dislocated", "expl", "expl:impers", "expl:pass", "expl:pv", "fixed", "flat", "flat:foreign", "flat:name", "goeswith", "iobj", "list", "mark", "nmod", "nmod:poss", "nmod:tmod", "nsubj", "nsubj:pass", "nummod", "nummod:gov", "obj", "obl", "obl:agent", "obl:arg", "obl:lmod", "obl:tmod", "orphan", "parataxis", "punct", "reparandum", "root", "vocative", "xcomp"])) # Max 13 entities in training set (50 is way more than enough) MAX_ENTITIES_IN_DOC = 50 COREF_ENTITY_TAGS = list(map(bracketed_representation, ["O"] + [f"ENTITY{_i}" for _i in range(MAX_ENTITIES_IN_DOC)])) COREF_SEQ_ENTITY_TAGS = list(map(bracketed_representation, [f"ENTITY{_i}" for _i in range(MAX_ENTITIES_IN_DOC)])) + \ list(map(bracketed_representation, [f"/ENTITY{_i}" for _i in range(MAX_ENTITIES_IN_DOC)])) SENTIMENT_TAGS = list(map(bracketed_representation, ["NEG_SENT", "OBJ_SENT", "POS_SENT", "UNK_SENT"])) SENTENCE_SENTIMENT_TAGS = list(map(bracketed_representation, ["NEGATIVE", "NEUTRAL", "POSITIVE"])) def load_fast_tokenizer(tokenizer_type, pretrained_name_or_path): # There is no AutoTokenizerFast?? assert tokenizer_type in ["bert", "distilbert", "roberta", "xlm-roberta", "xlnet"] if tokenizer_type == "bert": return BertTokenizerFast.from_pretrained(pretrained_name_or_path) elif tokenizer_type == "distilbert": return DistilBertTokenizerFast.from_pretrained(pretrained_name_or_path) elif tokenizer_type == "roberta": return RobertaTokenizerFast.from_pretrained(pretrained_name_or_path) elif tokenizer_type == "xlm-roberta": return XLMRobertaTokenizerFast.from_pretrained(pretrained_name_or_path) elif tokenizer_type == "xlnet": return XLNetTokenizerFast.from_pretrained(pretrained_name_or_path) def optimize_threshold(y_true, y_proba_pos, validated_metric): assert validated_metric in ["p_score", "r_score", "f1_score"] if validated_metric == "p_score": metric_fn = precision_score elif validated_metric == "r_score": metric_fn = recall_score else: metric_fn = f1_score valid_thresholds = sorted(list(set(y_proba_pos))) best_thresh, best_metric_value = None, 0.0 for curr_thresh in valid_thresholds: curr_preds = (y_proba_pos >= curr_thresh).astype(np.int32) curr_metric_value = metric_fn(y_true=y_true, y_pred=curr_preds, pos_label=1, average='binary') if curr_metric_value > best_metric_value: best_metric_value = curr_metric_value best_thresh = curr_thresh return best_thresh, best_metric_value
53.010753
145
0.591684
41d33f0d867059e27d7d311027fd1a0f0bf5501a
5,465
py
Python
testing/cffi0/test_zintegration.py
balabit-deps/balabit-os-6-python-cffi
607e8550b1e90f0e5a6ec757257cdc6cb8f61fc8
[ "MIT" ]
163
2016-03-18T21:32:05.000Z
2021-11-08T08:46:22.000Z
testing/cffi0/test_zintegration.py
balabit-deps/balabit-os-6-python-cffi
607e8550b1e90f0e5a6ec757257cdc6cb8f61fc8
[ "MIT" ]
7
2016-04-03T18:11:23.000Z
2018-04-16T18:06:43.000Z
testing/cffi0/test_zintegration.py
balabit-deps/balabit-os-6-python-cffi
607e8550b1e90f0e5a6ec757257cdc6cb8f61fc8
[ "MIT" ]
22
2016-03-19T12:21:41.000Z
2019-12-05T13:02:42.000Z
import py, os, sys, shutil import subprocess from testing.udir import udir if sys.platform == 'win32': py.test.skip('snippets do not run on win32') if sys.version_info < (2, 7): py.test.skip('fails e.g. on a Debian/Ubuntu which patches virtualenv' ' in a non-2.6-friendly way') def create_venv(name): tmpdir = udir.join(name) try: subprocess.check_call(['virtualenv', '--distribute', '-p', os.path.abspath(sys.executable), str(tmpdir)]) except OSError as e: py.test.skip("Cannot execute virtualenv: %s" % (e,)) site_packages = None for dirpath, dirnames, filenames in os.walk(str(tmpdir)): if os.path.basename(dirpath) == 'site-packages': site_packages = dirpath break paths = "" if site_packages: try: from cffi import _pycparser modules = ('cffi', '_cffi_backend') except ImportError: modules = ('cffi', '_cffi_backend', 'pycparser') try: import ply except ImportError: pass else: modules += ('ply',) # needed for older versions of pycparser paths = [] for module in modules: target = __import__(module, None, None, []) if not hasattr(target, '__file__'): # for _cffi_backend on pypy continue src = os.path.abspath(target.__file__) for end in ['__init__.pyc', '__init__.pyo', '__init__.py']: if src.lower().endswith(end): src = src[:-len(end)-1] break paths.append(os.path.dirname(src)) paths = os.pathsep.join(paths) return tmpdir, paths SNIPPET_DIR = py.path.local(__file__).join('..', 'snippets') def really_run_setup_and_program(dirname, venv_dir_and_paths, python_snippet): venv_dir, paths = venv_dir_and_paths def remove(dir): dir = str(SNIPPET_DIR.join(dirname, dir)) shutil.rmtree(dir, ignore_errors=True) remove('build') remove('__pycache__') for basedir in os.listdir(str(SNIPPET_DIR.join(dirname))): remove(os.path.join(basedir, '__pycache__')) olddir = os.getcwd() python_f = udir.join('x.py') python_f.write(py.code.Source(python_snippet)) try: os.chdir(str(SNIPPET_DIR.join(dirname))) if os.name == 'nt': bindir = 'Scripts' else: bindir = 'bin' vp = str(venv_dir.join(bindir).join('python')) env = os.environ.copy() env['PYTHONPATH'] = paths subprocess.check_call((vp, 'setup.py', 'clean'), env=env) subprocess.check_call((vp, 'setup.py', 'install'), env=env) subprocess.check_call((vp, str(python_f)), env=env) finally: os.chdir(olddir) def run_setup_and_program(dirname, python_snippet): venv_dir = create_venv(dirname + '-cpy') really_run_setup_and_program(dirname, venv_dir, python_snippet) # sys._force_generic_engine_ = True try: venv_dir = create_venv(dirname + '-gen') really_run_setup_and_program(dirname, venv_dir, python_snippet) finally: del sys._force_generic_engine_ # the two files lextab.py and yacctab.py are created by not-correctly- # installed versions of pycparser. assert not os.path.exists(str(SNIPPET_DIR.join(dirname, 'lextab.py'))) assert not os.path.exists(str(SNIPPET_DIR.join(dirname, 'yacctab.py'))) class TestZIntegration(object): def teardown_class(self): if udir.isdir(): udir.remove(ignore_errors=True) udir.ensure(dir=1) def test_infrastructure(self): run_setup_and_program('infrastructure', ''' import snip_infrastructure assert snip_infrastructure.func() == 42 ''') def test_distutils_module(self): run_setup_and_program("distutils_module", ''' import snip_basic_verify p = snip_basic_verify.C.getpwuid(0) assert snip_basic_verify.ffi.string(p.pw_name) == b"root" ''') def test_distutils_package_1(self): run_setup_and_program("distutils_package_1", ''' import snip_basic_verify1 p = snip_basic_verify1.C.getpwuid(0) assert snip_basic_verify1.ffi.string(p.pw_name) == b"root" ''') def test_distutils_package_2(self): run_setup_and_program("distutils_package_2", ''' import snip_basic_verify2 p = snip_basic_verify2.C.getpwuid(0) assert snip_basic_verify2.ffi.string(p.pw_name) == b"root" ''') def test_setuptools_module(self): run_setup_and_program("setuptools_module", ''' import snip_setuptools_verify p = snip_setuptools_verify.C.getpwuid(0) assert snip_setuptools_verify.ffi.string(p.pw_name) == b"root" ''') def test_setuptools_package_1(self): run_setup_and_program("setuptools_package_1", ''' import snip_setuptools_verify1 p = snip_setuptools_verify1.C.getpwuid(0) assert snip_setuptools_verify1.ffi.string(p.pw_name) == b"root" ''') def test_setuptools_package_2(self): run_setup_and_program("setuptools_package_2", ''' import snip_setuptools_verify2 p = snip_setuptools_verify2.C.getpwuid(0) assert snip_setuptools_verify2.ffi.string(p.pw_name) == b"root" ''')
36.677852
78
0.621958
ae3a0a1af8dc23f7ceef4f1add7744e2f500c200
10,488
py
Python
sigpy/mri/rf/ptx.py
sickkids-mri/sigpy
350ab6a9f916050f73fca9af711722f87e3fda43
[ "BSD-3-Clause" ]
null
null
null
sigpy/mri/rf/ptx.py
sickkids-mri/sigpy
350ab6a9f916050f73fca9af711722f87e3fda43
[ "BSD-3-Clause" ]
null
null
null
sigpy/mri/rf/ptx.py
sickkids-mri/sigpy
350ab6a9f916050f73fca9af711722f87e3fda43
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """MRI RF excitation pulse design functions, including SLR and small tip spatial design """ import sigpy as sp import numpy as np from sigpy.mri import rf as rf from sigpy import backend from scipy.interpolate import interp1d __all__ = ['stspa', 'stspk'] def stspa(target, sens, coord, dt, roi=None, alpha=0, b0=None, tseg=None, st=None, phase_update_interval=float('inf'), explicit=False, max_iter=1000, tol=1E-6): """Small tip spatial domain method for multicoil parallel excitation. Allows for constrained or unconstrained designs. Args: target (array): desired magnetization profile. [dim dim] sens (array): sensitivity maps. [Nc dim dim] coord (array): coordinates for noncartesian trajectories. [Nt 2] dt (float): hardware sampling dwell time. roi (array): array for error weighting, specify spatial ROI. [dim dim] alpha (float): regularization term, if unconstrained. b0 (array): B0 inhomogeneity map [dim dim]. For explicit matrix building. tseg (None or Dictionary): parameters for time-segmented off-resonance correction. Parameters are 'b0' (array), 'dt' (float), 'lseg' (int), and 'n_bins' (int). Lseg is the number of time segments used, and n_bins is the number of histogram bins. st (None or Dictionary): 'subject to' constraint parameters. Parameters are avg power 'cNorm' (float), peak power 'cMax' (float), 'mu' (float), 'rhoNorm' (float), 'rhoMax' (float), 'cgiter' (int), 'max_iter' (int), 'L' (list of arrays), 'c' (float), 'rho' (float), and 'lam' (float). These parameters are explained in detail in the SDMM documentation. phase_update_interval (int): number of iters between exclusive phase updates. If 0, no phase updates performed. explicit (bool): Use explicit matrix. max_iter (int): max number of iterations. tol (float): allowable error. Returns: array: pulses out. References: Grissom, W., Yip, C., Zhang, Z., Stenger, V. A., Fessler, J. A. & Noll, D. C.(2006). Spatial Domain Method for the Design of RF Pulses in Multicoil Parallel Excitation. Magnetic resonance in medicine, 56, 620-629. """ Nc = sens.shape[0] Nt = coord.shape[0] device = backend.get_device(target) xp = device.xp with device: pulses = xp.zeros((Nc, Nt), xp.complex) # set up the system matrix if explicit: A = rf.linop.PtxSpatialExplicit(sens, coord, dt, target.shape, b0) else: A = sp.mri.linop.Sense(sens, coord, weights=None, tseg=tseg, ishape=target.shape).H # handle the Ns * Ns error weighting ROI matrix W = sp.linop.Multiply(A.oshape, xp.ones(target.shape)) if roi is not None: W = sp.linop.Multiply(A.oshape, roi) # apply ROI A = W * A # Unconstrained, use conjugate gradient if st is None: I = sp.linop.Identity((Nc, coord.shape[0])) b = A.H * W * target alg_method = sp.alg.ConjugateGradient(A.H * A + alpha * I, b, pulses, P=None, max_iter=max_iter, tol=tol) # Constrained case, use SDMM else: # vectorize target for SDMM target = W * target d = xp.expand_dims(target.flatten(), axis=0) alg_method = sp.alg.SDMM(A, d, st['lam'], st['L'], st['c'], st['mu'], st['rho'], st['rhoMax'], st['rhoNorm'], 10**-5, 10**-2, st['cMax'], st['cNorm'], st['cgiter'], st['max_iter']) # perform the design: apply optimization method to find solution pulse while not alg_method.done(): # phase_update switch if (alg_method.iter > 0) and \ (alg_method.iter % phase_update_interval == 0): target = xp.abs(target) * xp.exp( 1j * xp.angle( xp.reshape(A * alg_method.x, target.shape))) b = A.H * target alg_method.b = b alg_method.update() if st is not None: pulses = xp.reshape(alg_method.x, [Nc, Nt]) return pulses def stspk(mask, sens, n_spokes, fov, dx_max, gts, sl_thick, tbw, dgdtmax, gmax, alpha=1, iter_dif=0.01): """Small tip spokes parallel transmit pulse designer. Args: mask (ndarray): region in which to optimize flip angle uniformity in slice. [dim dim] sens (ndarray): sensitivity maps. [nc dim dim] n_spokes (int): number of spokes to be created in the design. fov (float): excitation FOV (cm). dx_max (float): max. resolution of the trajectory (cm). gts (float): hardware sampling dwell time (s). sl_thick (float): slice thickness (mm). tbw (int): time-bandwidth product. dgdtmax (float): max gradient slew (g/cm/s). gmax (float): max gradient amplitude (g/cm). alpha (float): regularization parameter. iter_dif (float): for each spoke, the difference in cost btwn. successive iterations at which to terminate MLS iterations. Returns: 2-element tuple containing - **pulses** (*array*): RF waveform out. - **g** (*array*): corresponding gradient, in g/cm. References: Grissom, W., Khalighi, M., Sacolick, L., Rutt, B. & Vogel, M (2012). Small-tip-angle spokes pulse design using interleaved greedy and local optimization methods. Magnetic Resonance in Medicine, 68(5), 1553-62. """ device = backend.get_device(sens) xp = device.xp with device: nc = sens.shape[0] kmax = 1 / dx_max # /cm, max spatial freq of trajectory # greedy kx, ky grid kxs, kys = xp.meshgrid(xp.linspace(-kmax / 2, kmax / 2 - 1 / fov, xp.int(fov * kmax)), xp.linspace(-kmax / 2, kmax / 2 - 1 / fov, xp.int(fov * kmax))) # vectorize the grid kxs = kxs.flatten() kys = kys.flatten() # remove DC dc = xp.intersect1d(xp.where((kxs == 0)), xp.where((kys == 0)))[0] kxs = xp.concatenate([kxs[:dc], kxs[dc+1:]]) kys = xp.concatenate([kys[:dc], kys[dc+1:]]) # step 2: design the weights # initial kx/ky location is DC k = xp.expand_dims(xp.array([0, 0]), 0) # initial target phase phs = xp.zeros((xp.count_nonzero(mask), 1), dtype=xp.complex) for ii in range(n_spokes): # build Afull (and take only 0 locations into matrix) Anum = rf.PtxSpatialExplicit(sens, k, gts, mask.shape, ret_array=True) Anum = Anum[~(Anum == 0).all(1)] # design wfull using MLS: # initialize wfull sys_a = (Anum.conj().T @ Anum + alpha * xp.eye((ii+1)*nc)) sys_b = (Anum.conj().T @ xp.exp(1j*phs)) w_full = xp.linalg.solve(sys_a, sys_b) err = Anum @ w_full - xp.exp(1j * phs) cost = err.conj().T @ err + alpha * w_full.conj().T @ w_full cost = xp.real(cost) cost_old = 10 * cost # to get the loop going while xp.absolute(cost - cost_old) > iter_dif * cost_old: cost_old = cost phs = xp.angle(Anum @ w_full) w_full = xp.linalg.solve( (Anum.conj().T @ Anum + alpha * xp.eye((ii + 1) * nc)), (Anum.conj().T @ xp.exp(1j * phs))) err = Anum @ w_full - xp.exp(1j * phs) cost = xp.real(err.conj().T @ err + alpha * w_full.conj().T @ w_full) # add a spoke using greedy method if ii < n_spokes - 1: r = xp.exp(1j * phs) - Anum @ w_full rfnorm = xp.zeros(kxs.shape, dtype=xp.complex) for jj in range(kxs.size): ks_test = xp.expand_dims(xp.array([kxs[jj], kys[jj]]), 0) Anum = rf.PtxSpatialExplicit(sens, ks_test, gts, mask.shape, ret_array=True) Anum = Anum[~(Anum == 0).all(1)] rfm = xp.linalg.solve((Anum.conj().T @ Anum), (Anum.conj().T @ r)) rfnorm[jj] = xp.linalg.norm(rfm) ind = xp.argmax(rfnorm) k_new = xp.expand_dims(xp.array([kxs[ind], kys[ind]]), 0) if ii % 2 != 0: # add to end of pulse k = xp.concatenate((k, k_new)) else: # add to beginning of pulse k = xp.concatenate((k_new, k)) # remove chosen point from candidates kxs = xp.concatenate([kxs[:ind], kxs[ind + 1:]]) kys = xp.concatenate([kys[:ind], kys[ind + 1:]]) # from our spoke selections, build the whole waveforms # first, design our gradient waveforms: g = rf.spokes_grad(k, tbw, sl_thick, gmax, dgdtmax, gts) # design our rf # calc. the size of the traps in our gz waveform- will use to calc rf area = tbw / (sl_thick / 10) / 4257 # thick*kwid=twb, kwid=gam*area [subgz, nramp] = rf.min_trap_grad(area, gmax, dgdtmax, gts) npts = 128 subrf = rf.dzrf(npts, tbw, 'st') n_plat = subgz.size - 2 * nramp # time points on trap plateau # interpolate to stretch out waveform to appropriate length f = interp1d(np.arange(0, npts, 1) / npts, subrf, fill_value='extrapolate') subrf = f(xp.arange(0, n_plat, 1) / n_plat) subrf = xp.concatenate((xp.zeros(nramp), subrf, xp.zeros(nramp))) pulses = xp.kron(xp.reshape(w_full, (nc, n_spokes)), subrf) # add zeros for gzref rf_ref = xp.zeros((nc, g.shape[1] - pulses.shape[1])) pulses = xp.concatenate((pulses, rf_ref), 1) return pulses, g
40.809339
79
0.536041
d36d11181e1f3d02b8e600bf376c6d29357f94b7
139
py
Python
qdbvcella/__init__.py
hhelmbre/qdbvcella
59c80050e75be089d9228c74086b14e1e0bbcd59
[ "MIT" ]
null
null
null
qdbvcella/__init__.py
hhelmbre/qdbvcella
59c80050e75be089d9228c74086b14e1e0bbcd59
[ "MIT" ]
null
null
null
qdbvcella/__init__.py
hhelmbre/qdbvcella
59c80050e75be089d9228c74086b14e1e0bbcd59
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function from .version import __version__ # noqa from .qdbvcella import * # noqa
34.75
64
0.805755
4ec9c420bd12a4d415529b0bd297387b160bed31
1,336
py
Python
examples/time_machine_backtesting.py
thatguystone/requests-cache
1c7cd3d7af6bf86bd2c1946168e7de8a95b7f8e8
[ "BSD-2-Clause" ]
null
null
null
examples/time_machine_backtesting.py
thatguystone/requests-cache
1c7cd3d7af6bf86bd2c1946168e7de8a95b7f8e8
[ "BSD-2-Clause" ]
null
null
null
examples/time_machine_backtesting.py
thatguystone/requests-cache
1c7cd3d7af6bf86bd2c1946168e7de8a95b7f8e8
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 """ An example of using the [time-machine](https://github.com/adamchainz/time-machine) library for backtesting, e.g., testing with cached responses that were available at an arbitrary time in the past. """ from datetime import datetime import requests import time_machine from requests_cache import CachedSession, set_response_defaults class BacktestCachedSession(CachedSession): def request(self, method: str, url: str, **kwargs): response = super().request(method, url, **kwargs) # Response was cached after the (simulated) current time, so ignore it and send a new request if response.created_at and response.created_at > datetime.utcnow(): new_response = requests.request(method, url, **kwargs) return set_response_defaults(new_response) else: return response def demo(): session = BacktestCachedSession() response = session.get('https://httpbin.org/get') response = session.get('https://httpbin.org/get') assert response.from_cache is True # Response was not cached yet at this point, so we should get a fresh one with time_machine.travel(datetime(2020, 1, 1)): response = session.get('https://httpbin.org/get') assert response.from_cache is False if __name__ == '__main__': demo()
33.4
107
0.705838
c064f6b81820bfac9d5e91e47fa0b20a0538adf9
248
py
Python
workshop/patternprogram.py
rames4498/Bootcamps_and_workshops
f24e23c81219c35b2ac1e9908b1e3b9755b5ca29
[ "Xnet", "X11" ]
7
2020-03-06T04:41:57.000Z
2022-02-27T10:13:27.000Z
workshop/patternprogram.py
rames4498/Bootcamps_and_workshops
f24e23c81219c35b2ac1e9908b1e3b9755b5ca29
[ "Xnet", "X11" ]
null
null
null
workshop/patternprogram.py
rames4498/Bootcamps_and_workshops
f24e23c81219c35b2ac1e9908b1e3b9755b5ca29
[ "Xnet", "X11" ]
6
2020-03-08T11:40:54.000Z
2020-12-22T11:21:16.000Z
def pattern(n): k = 2 * n - 2 for i in range(0,n): for j in range(0,k): print(end=" ") k = k - 1 for j in range(0, i+1): print("*", end=" ") print(" ") pattern(5)
19.076923
32
0.350806
051797eb5f30df9953d7eca9cda3668ee5264c72
892
py
Python
accounts/accounts/urls.py
HaeckelK/bookkeeping
6f8b62f1322fe1c409f397222653382d302d9754
[ "MIT" ]
null
null
null
accounts/accounts/urls.py
HaeckelK/bookkeeping
6f8b62f1322fe1c409f397222653382d302d9754
[ "MIT" ]
7
2021-06-30T12:05:47.000Z
2021-07-14T07:50:27.000Z
accounts/accounts/urls.py
HaeckelK/bookkeeping
6f8b62f1322fe1c409f397222653382d302d9754
[ "MIT" ]
null
null
null
"""accounts URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from dashboards import views urlpatterns = [ path("admin/", admin.site.urls), path("trial_balance/", views.trial_balance), path("nominal_transactions/", views.nominal_transactions), ]
34.307692
77
0.71861
133f6cc55578970bc52766b4cfdcf4ef2059b7f6
23,279
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_03_01/aio/operations/_local_network_gateways_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_03_01/aio/operations/_local_network_gateways_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_03_01/aio/operations/_local_network_gateways_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LocalNetworkGatewaysOperations: """LocalNetworkGatewaysOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, local_network_gateway_name: str, parameters: "models.LocalNetworkGateway", **kwargs ) -> "models.LocalNetworkGateway": cls = kwargs.pop('cls', None) # type: ClsType["models.LocalNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str', min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'LocalNetworkGateway') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, local_network_gateway_name: str, parameters: "models.LocalNetworkGateway", **kwargs ) -> AsyncLROPoller["models.LocalNetworkGateway"]: """Creates or updates a local network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param parameters: Parameters supplied to the create or update local network gateway operation. :type parameters: ~azure.mgmt.network.v2020_03_01.models.LocalNetworkGateway :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either LocalNetworkGateway or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_03_01.models.LocalNetworkGateway] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.LocalNetworkGateway"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore async def get( self, resource_group_name: str, local_network_gateway_name: str, **kwargs ) -> "models.LocalNetworkGateway": """Gets the specified local network gateway in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LocalNetworkGateway, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.LocalNetworkGateway :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LocalNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str', min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, local_network_gateway_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str', min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore async def begin_delete( self, resource_group_name: str, local_network_gateway_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified local network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore async def update_tags( self, resource_group_name: str, local_network_gateway_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.LocalNetworkGateway": """Updates a local network gateway tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param parameters: Parameters supplied to update local network gateway tags. :type parameters: ~azure.mgmt.network.v2020_03_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: LocalNetworkGateway, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.LocalNetworkGateway :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LocalNetworkGateway"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str', min_length=1), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('LocalNetworkGateway', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.LocalNetworkGatewayListResult"]: """Gets all the local network gateways in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LocalNetworkGatewayListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_03_01.models.LocalNetworkGatewayListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.LocalNetworkGatewayListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('LocalNetworkGatewayListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways'} # type: ignore
50.278618
209
0.678981
03d22098fc140857499e0e4bb3ff5fa6c90092ee
11,586
py
Python
gpxtools.py
rokdd/gpx-tools
5e64fb7f2c65fc37e068172fc001fa538052f2c0
[ "Apache-2.0", "MIT" ]
null
null
null
gpxtools.py
rokdd/gpx-tools
5e64fb7f2c65fc37e068172fc001fa538052f2c0
[ "Apache-2.0", "MIT" ]
null
null
null
gpxtools.py
rokdd/gpx-tools
5e64fb7f2c65fc37e068172fc001fa538052f2c0
[ "Apache-2.0", "MIT" ]
null
null
null
# Copyright 2014 Martijn Grendelman <m@rtijn.net> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy from iso8601 import parse_date from pprint import pprint, pformat from lxml import etree # apt-get install python3-lxml from math import radians, sin, cos, atan2, sqrt from pytz import timezone # apt-get install python3-tz from datetime import timedelta # ns = '{http://www.topografix.com/GPX/1/0}' ns = '{http://www.topografix.com/GPX/1/1}' do_merge = False do_duplicate_search=False base_file = '' # Get unique dates from all tracks def get_dates(tree, ns, tz, split_time): dates = set() for trk in tree.iterchildren(ns + 'trk'): dates.add(get_date(trk, ns, tz, split_time=split_time)) return dates def get_name(trk, ns): return trk.findtext(ns + 'name') or '' def get_date(trk, ns, tz=None, split_time=timedelta()): gpxtime = trk.findtext(ns + 'trkseg/' + ns + 'trkpt/' + ns + 'time') tzobj = None # use automatic timezone from coordinates if type(tz).__name__ == "TimezoneFinder": lat = trk.find(ns + 'trkseg/' + ns + 'trkpt[@lat]') lng = lat.get('lon') lat = lat.get('lat') # From the lat/long, get the tz-database-style time zone name (e.g. 'America/Vancouver') or None timezone_str = tz.certain_timezone_at(lat=float(lat), lng=float(lng)) if timezone_str is None: # print("Could not determine the time zone") pass else: # Display the current time in that time zone tzobj = timezone(timezone_str) # use timezone which is globally specified elif tz is not None: tzobj = timezone(tz) # parse_date returns a datetime.datetime by timezone if isset if tzobj is not None: return (parse_date(gpxtime) - split_time).astimezone(tzobj).date() return (parse_date(gpxtime) - split_time).parse_date(gpxtime).date() def get_datetime(trk, ns, tz=None): gpxtime = trk.findtext(ns + 'trkseg/' + ns + 'trkpt/' + ns + 'time') if gpxtime is not None: # parse_date returns a datetime.datetime if tz is not None: tzobj = timezone(tz) return parse_date(gpxtime).astimezone(tzobj) return parse_date(gpxtime) def get_numpts(trk, ns): return len(trk.findall(ns + 'trkseg/' + ns + 'trkpt')) def get_numtrk(root, ns): return len(root.findall(ns + 'trk')) def get_numwpt(root, ns): return len(root.findall(ns + 'wpt')) def get_numrte(root, ns): return len(root.findall(ns + 'rte')) def get_numrtept(rte, ns): return len(rte.findall(ns + 'rtept')) def distance(lat1, lon1, lat2, lon2): radius = 6371000 # meter lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2]) dlat = lat2 - lat1 dlon = lon2 - lon1 a = sin(dlat / 2) * sin(dlat / 2) + cos(lat1) \ * cos(lat2) * sin(dlon / 2) * sin(dlon / 2) c = 2 * atan2(sqrt(a), sqrt(1 - a)) d = radius * c return d def make_filename(d, dir='.'): global do_merge, base_file do_merge = False n = 0 fn = "%s-%03d.gpx" % (d.isoformat(), n) fname = os.path.join(dir, fn) base_file = fname while os.path.exists(fname): n += 1 fn = "%s-%03d.gpx" % (d.isoformat(), n) fname = os.path.join(dir, fn) do_merge = True return fname def split(filename, tz, split_time=timedelta()): global ns, do_merge, do_duplicate_search try: tree0 = etree.parse(filename) except Exception as e: print("Could not parse GPX: %s" % e) return False root = tree0.getroot() # Get the XML namespace from the tree ns = "{%s}" % root.nsmap[None] dates = get_dates(root, ns, tz, split_time=split_time) # Iterate over the dates and remove non-matching tracks from the tree for d in dates: fname = make_filename(d) tree = copy.deepcopy(tree0) root = tree.getroot() tracks = {} for trk in root.iterchildren(): # Remove all non-track elements if trk.tag != ns + 'trk': root.remove(trk) continue name = get_name(trk, ns) trackdate = get_date(trk, ns, tz, split_time=split_time) if trackdate != d: # print("%-25s: date mismatch, removing %s" % (fname, name)) root.remove(trk) elif name in tracks: oldnum = tracks[name]['numpts'] newnum = get_numpts(trk, ns) # sometimes there is no name and a huge file.. then just merge the segments.. if do_duplicate_search == False: print("%-25s: DUPLICATES %s (track points: old=%d + new=%d) -> concating" % ( fname, name, oldnum, newnum)) for trkseg in trk.iterchildren(): tracks[name]['track'].append(trkseg) tracks[name]['numpts']+=newnum print("%-25s: DUPLICATES %s (track points: old=%d + new=%d) = concated %d" % ( fname, name, oldnum, newnum, len(tracks[name]['track'].findall('.//'+ns+'trkpt')))) root.remove(trk) elif oldnum >= newnum: print("%-25s: DUPLICATE %s (track points: old=%d, new=%d) -> removing" % ( fname, name, oldnum, newnum)) root.remove(trk) else: # newnum > oldnum. Old track should be removed and this one kept. print( "%-25s: duplicate %s (track points differ, old=%d new=%d) -> keeping and removing the old one" % \ (fname, name, oldnum, newnum)) root.remove(tracks[name]['track']) tracks[name] = {'numpts': newnum, 'track': trk} else: numpts = get_numpts(trk, ns) tracks[name] = {'numpts': numpts, 'track': trk} # print("%-25s: keeping %s" % (fname, name)) print("%-25s: writing file" % fname) tree.write(fname, xml_declaration=True, encoding='utf-8') # Merge if necessary if do_merge: print("%-25s: starting merge into %s" % (fname, base_file)) merge(base_file, fname, False) # Merge tracks from file2 into file1. # On duplicate names, keep the track with the most track points. def merge(file1, file2, interactive=True): try: tree1 = etree.parse(file1) tree2 = etree.parse(file2) except Exception as e: print("Could not parse GPX: %s" % e) return False root1 = tree1.getroot() root2 = tree2.getroot() ns1 = "{%s}" % root1.nsmap[None] ns2 = "{%s}" % root2.nsmap[None] # print("%-25s: Namespace: %s" % (file1, ns1)) # print("%-25s: Namespace: %s" % (file2, ns2)) modified = False # Analyze the first file tracks1 = {} for trk in root1.iterchildren(ns1 + 'trk'): name = get_name(trk, ns1) numpts = get_numpts(trk, ns1) if not name in tracks1: tracks1[name] = {'numpts': numpts, 'track': trk} else: print("Track '%s' already seen in '%s'. File contains dupes?" % (name, file1)) oldnum = tracks[name]['numpts'] if numpts > oldnum: print("Duplicate '%s' replacing old track (old=%d, new=%d points)" % (name, oldnum, numpts)) tracks1[name] = {'numpts': numpts, 'track': trk} for trk in root2.iterchildren(ns2 + 'trk'): name = get_name(trk, ns2) numpts = get_numpts(trk, ns2) if not name in tracks1: print("%-25s: appending track '%s'" % (file1, name)) root1.append(copy.deepcopy(trk)) tracks1[name] = {'numpts': numpts, 'track': trk} modified = True else: oldpts = tracks1[name]['numpts'] if numpts > oldpts: print("%-25s: replacing track '%s'. oldpts=%d. newpts=%d" % (file2, name, oldpts, numpts)) root1.remove(tracks1[name]['track']) root1.append(copy.deepcopy(trk)) tracks1[name] = {'numpts': numpts, 'track': trk} modified = True # else: # print("%-25s: skipping track '%s'. oldpts=%d. newpts=%d" % (file2, name, oldpts, numpts)) if modified: yn = False if interactive: while yn not in ['y', 'n']: yn = input("Overwrite '%s' and remove '%s' ? (y/n)" % (file1, file2)) if not interactive or yn == 'y': print("%-25s: Overwriting file" % file1) tree1.write(file1, xml_declaration=True, encoding='utf-8') print("%-25s: Removing file" % file2) os.remove(file2) else: print("%-25s: No changes to write to file" % file1) yn = False if interactive: while yn not in ['y', 'n']: yn = raw_input("Remove '%s' ? (y/n)" % file2) if not interactive or yn == 'y': print("%-25s: Removing file" % file2) os.remove(file2) def info(filename, tz): global ns try: tree0 = etree.parse(filename) except Exception as e: print("Could not parse GPX: %s" % e) return False root = tree0.getroot() # Get the XML namespace from the tree ns = "{%s}" % root.nsmap[None] print("Number of tracks : %d" % get_numtrk(root, ns)) print("Number of routes : %d" % get_numrte(root, ns)) print("Number of waypoints: %d" % get_numwpt(root, ns)) print('') for trk in root.iterchildren(ns + 'trk'): name = get_name(trk, ns) trackdate = get_datetime(trk, ns, tz) print("Track name : %s " % name) print("Track date/time : %s " % trackdate) n = 0 trkd = 0 for trkseg in trk.iterchildren(ns + 'trkseg'): numpts = len(list(trkseg)) oldlat = None d = 0 for trkpt in trkseg.iterchildren(ns + 'trkpt'): lat = float(trkpt.get('lat')) lon = float(trkpt.get('lon')) if oldlat != None: d += distance(oldlat, oldlon, lat, lon) oldlat = lat oldlon = lon print("Segment %3d : %4d track points, distance: %d meter" % (n, numpts, d)) n += 1 trkd += d pts = get_numpts(trk, ns) print("Total points : %4d" % pts) print("Total distance : %d meter" % trkd) print('') for rte in root.iterchildren(ns + 'rte'): print("Route name : %s " % get_name(rte, ns).encode('utf-8')) print("Numer of route points: %d" % get_numrtept(rte, ns)) print('') for wpt in root.iterchildren(ns + 'wpt'): name = get_name(wpt, ns) if name: print("Waypoint name : %s " % get_name(wpt, ns).encode('utf-8')) # vim: ts=4 sw=4 et :
33.778426
122
0.556189