hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
17134739b8596a864d6e6e37035825d72ffbe045
3,119
py
Python
securetea/lib/antivirus/scanner/yara_scanner.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
257
2018-03-28T12:43:20.000Z
2022-03-29T07:07:23.000Z
securetea/lib/antivirus/scanner/yara_scanner.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
155
2018-03-31T14:57:46.000Z
2022-03-17T18:12:41.000Z
securetea/lib/antivirus/scanner/yara_scanner.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
132
2018-03-27T06:25:20.000Z
2022-03-28T11:32:45.000Z
# -*- coding: utf-8 -*- u"""Yara Scanner module for SecureTea AntiVirus. Project: ╔═╗┌─┐┌─┐┬ ┬┬─┐┌─┐╔╦╗┌─┐┌─┐ ╚═╗├┤ │ │ │├┬┘├┤ ║ ├┤ ├─┤ ╚═╝└─┘└─┘└─┘┴└─└─┘ ╩ └─┘┴ ┴ Author: Abhishek Sharma <abhishek_official@hotmail.com> , Jul 4 2019 Version: 1.4 Module: SecureTea """ from securetea.lib.antivirus.scanner.scanner_parent import Scanner import sys import os yara_status = True try: import yara except ImportError: yara_status = False print("[-] Yara not installed") except AttributeError: yara_status = False print("[-] Yara not configured: libyara.so not found") except Exception as e: yara_status = False print(e) class YaraScanner(Scanner): """YaraScanner class.""" def __init__(self, debug=False, config_path=None, vt_api_key=None, file_list=None): """ Initialize YaraEngine. Args: debug (bool): Log on terminal or not config_path (str): Configuration JSON file path vt_api_key (str): VirusTotal API Key file_list (list): List of files to scan Raises: None Returns: None """ # Initialize parent class super().__init__(debug, config_path, file_list, vt_api_key) if self.os_name: try: # Load threads self._WORKERS = self.config_dict[self.os_name]["scanner"]["yara"]["threads"] # Load Yara rules storage path self._YARA_STORAGE = self.config_dict[self.os_name]["update"]["yara"]["storage"] except KeyError: self.logger.log( "Could not load configuration for: {}".format(self.os_name), logtype="error" ) sys.exit(0) else: self.logger.log( "Could not determine the OS", logtype="error" ) sys.exit(0) def scan_file(self, file_path): """ Scan file using Yara rules. Args: file_path (str): Path of the file to scan Raises: None Returns: None """ if yara_status: yara_files_list = os.listdir(self._YARA_STORAGE) for yara_file in yara_files_list: if yara_file.endswith(".yar") or yara_file.endswith(".yara"): yara_file_path = os.path.join(self._YARA_STORAGE, yara_file) rule_compile = yara.compile(yara_file_path) matches = rule_compile.match(file_path) if matches: self.logger.log( "Possible malicious file detected: {0}".format(file_path), logtype="warning" ) if file_path not in self.malicious_file_list: self.malicious_file_list.append(file_path) super().check_virus_total(file_path) return return
30.281553
96
0.520359
20144ab955135ad084cf0fef939398cc14bdd008
4,305
py
Python
server/app/services/products/views/products.py
goodfree/ActorCloud
e8db470830ea6f6f208ad43c2e56a2e8976bc468
[ "Apache-2.0" ]
173
2019-06-10T07:14:49.000Z
2022-03-31T08:42:36.000Z
server/app/services/products/views/products.py
zlyz12345/ActorCloud
9c34b371c23464981323ef9865d9913bde1fe09c
[ "Apache-2.0" ]
27
2019-06-12T08:25:29.000Z
2022-02-26T11:37:15.000Z
server/app/services/products/views/products.py
zlyz12345/ActorCloud
9c34b371c23464981323ef9865d9913bde1fe09c
[ "Apache-2.0" ]
67
2019-06-10T08:40:05.000Z
2022-03-09T03:43:56.000Z
from flask import jsonify from sqlalchemy import func from sqlalchemy.exc import IntegrityError from actor_libs.database.orm import db from actor_libs.errors import ReferencedError from actor_libs.utils import get_delete_ids from app import auth from app.models import DataPoint, DataStream, Device, Product, User from app.schemas import ProductSchema, UpdateProductSchema from . import bp @bp.route('/products') @auth.login_required def list_products(): code_list = ['cloudProtocol', 'productType'] records = Product.query.pagination(code_list=code_list) # Count the number of devices, applications, # data points, and data streams of the product records_item = records['items'] records['items'] = records_item_count(records_item) return jsonify(records) @bp.route('/products/<int:product_id>') @auth.login_required def view_product(product_id): code_list = ['cloudProtocol', 'productType'] record = Product.query \ .outerjoin(Device, Device.productID == Product.productID) \ .join(User, User.id == Product.userIntID) \ .with_entities(Product, User.username.label('createUser'), func.count(Device.id).label('deviceCount')) \ .filter(Product.id == product_id) \ .group_by(Product.id, User.username).to_dict(code_list=code_list) return jsonify(record) @bp.route('/products', methods=['POST']) @auth.login_required def create_product(): request_dict = ProductSchema.validate_request() product = Product() created_product = product.create(request_dict) record = created_product.to_dict() return jsonify(record), 201 @bp.route('/products/<int:product_id>', methods=['PUT']) @auth.login_required def update_product(product_id): product = Product.query.filter(Product.id == product_id).first_or_404() request_dict = UpdateProductSchema.validate_request(obj=product) updated_product = product.update(request_dict) record = updated_product.to_dict() return jsonify(record) @bp.route('/products', methods=['DELETE']) @auth.login_required def delete_product(): delete_ids = get_delete_ids() query_results = Product.query \ .filter(Product.id.in_(delete_ids)) \ .many(allow_none=False, expect_result=len(delete_ids)) # check device is included in the delete product device_count = db.session.query(func.count(Device.id)) \ .join(Product, Device.productID == Product.productID) \ .filter(Product.id.in_(delete_ids)) \ .scalar() if device_count: raise ReferencedError(field='device') try: for product in query_results: db.session.delete(product) db.session.commit() except IntegrityError: raise ReferencedError() return '', 204 def records_item_count(records_item): product_dict = { item['productID']: item['cloudProtocol'] for item in records_item } product_uids = product_dict.keys() # Device count query = db.session \ .query(Product.productID, func.count(Device.id)) \ .outerjoin(Device, Device.productID == Product.productID) \ .group_by(Product.productID) \ .filter(Product.productID.in_(product_uids)).all() product_device_dict = dict(query) # data_point,data_stream or product_item(lwm2m) count query = db.session \ .query(Product.productID, func.count(DataPoint.id)) \ .outerjoin(DataPoint, DataPoint.productID == Product.productID) \ .group_by(Product.productID) \ .filter(Product.productID.in_(product_uids)) \ .all() product_point_dict = dict(query) query = db.session \ .query(Product.productID, func.count(DataStream.id)) \ .outerjoin(DataStream, DataStream.productID == Product.productID) \ .group_by(Product.productID) \ .filter(Product.productID.in_(product_uids)) \ .all() product_stream_dict = dict(query) for record in records_item: record_product_uid = record['productID'] record['deviceCount'] = product_device_dict.get(record_product_uid, 0) record['dataPointCount'] = product_point_dict.get(record_product_uid, 0) record['dataStreamCount'] = product_stream_dict.get(record_product_uid, 0) return records_item
36.483051
82
0.698955
a1f17c6dbe84da7d775bb580e842005296053491
1,640
py
Python
hooks/post_gen_project.py
BrianPugh/cookiecutter-pypackage
ec8b51cb59d2436d77ca1d802991103dd37c9a95
[ "BSD-3-Clause" ]
null
null
null
hooks/post_gen_project.py
BrianPugh/cookiecutter-pypackage
ec8b51cb59d2436d77ca1d802991103dd37c9a95
[ "BSD-3-Clause" ]
null
null
null
hooks/post_gen_project.py
BrianPugh/cookiecutter-pypackage
ec8b51cb59d2436d77ca1d802991103dd37c9a95
[ "BSD-3-Clause" ]
null
null
null
import os import os.path as osp import subprocess COOKIECUTTER_REPO_NAME = 'cookiecutter-pypackage' par_dir_path = osp.normpath(osp.join(osp.abspath(osp.curdir), osp.pardir)) if osp.basename(par_dir_path) == COOKIECUTTER_REPO_NAME: # This was most likely called `cookiecutter .` cookiecutter_repo_path = par_dir_path else: # This was most likely called as `cookeicutter git@bitbucket.org:geomagical/labtech-wrapper.git` # This is the canonical location for the cached cookiecutter template cookiecutter_repo_path = osp.join(os.environ['HOME'], '.cookiecutters', COOKIECUTTER_REPO_NAME) # Obtain Cookiecutter repo path cookiecutter_hash = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cookiecutter_repo_path) cookiecutter_hash = cookiecutter_hash.strip().decode('utf-8') cookiecutter_uri = subprocess.check_output(["git", "config", "--get", "remote.origin.url"], cwd=cookiecutter_repo_path) cookiecutter_uri = cookiecutter_uri.strip().decode('uft-8') ####################### # Setting up git repo # ####################### shell_cmds = [ """git init""", """git remote add origin git@github.com:{{cookiecutter.github_username}}/{{project_slug}}.git""", """git add *""", """git add .gitignore""", f'''git commit -m "Initial commit from cookiecutter {cookiecutter_uri} commit {cookiecutter_hash}"''', ] for cmd in shell_cmds: subprocess.call(cmd, shell=True) print("=======================================================================") print("Project setup complete. If you are happy with the setup, run:") print(" git push origin master")
39.047619
119
0.669512
272f9a294cfa1016c03db2b08daaf22b1cdf0748
10,110
py
Python
sdk/python/pulumi_azure_native/devtestlab/policy.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/devtestlab/policy.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/devtestlab/policy.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables from ._enums import * __all__ = ['Policy'] class Policy(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, description: Optional[pulumi.Input[str]] = None, evaluator_type: Optional[pulumi.Input[Union[str, 'PolicyEvaluatorType']]] = None, fact_data: Optional[pulumi.Input[str]] = None, fact_name: Optional[pulumi.Input[Union[str, 'PolicyFactName']]] = None, lab_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, policy_set_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[Union[str, 'PolicyStatus']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, threshold: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ A Policy. API Version: 2018-09-15. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] description: The description of the policy. :param pulumi.Input[Union[str, 'PolicyEvaluatorType']] evaluator_type: The evaluator type of the policy (i.e. AllowedValuesPolicy, MaxValuePolicy). :param pulumi.Input[str] fact_data: The fact data of the policy. :param pulumi.Input[Union[str, 'PolicyFactName']] fact_name: The fact name of the policy (e.g. LabVmCount, LabVmSize, MaxVmsAllowedPerLab, etc. :param pulumi.Input[str] lab_name: The name of the lab. :param pulumi.Input[str] location: The location of the resource. :param pulumi.Input[str] name: The name of the policy. :param pulumi.Input[str] policy_set_name: The name of the policy set. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Union[str, 'PolicyStatus']] status: The status of the policy. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource. :param pulumi.Input[str] threshold: The threshold of the policy (i.e. a number for MaxValuePolicy, and a JSON array of values for AllowedValuesPolicy). """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['description'] = description __props__['evaluator_type'] = evaluator_type __props__['fact_data'] = fact_data __props__['fact_name'] = fact_name if lab_name is None and not opts.urn: raise TypeError("Missing required property 'lab_name'") __props__['lab_name'] = lab_name __props__['location'] = location __props__['name'] = name if policy_set_name is None and not opts.urn: raise TypeError("Missing required property 'policy_set_name'") __props__['policy_set_name'] = policy_set_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['status'] = status __props__['tags'] = tags __props__['threshold'] = threshold __props__['created_date'] = None __props__['provisioning_state'] = None __props__['type'] = None __props__['unique_identifier'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:devtestlab:Policy"), pulumi.Alias(type_="azure-native:devtestlab/latest:Policy"), pulumi.Alias(type_="azure-nextgen:devtestlab/latest:Policy"), pulumi.Alias(type_="azure-native:devtestlab/v20150521preview:Policy"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20150521preview:Policy"), pulumi.Alias(type_="azure-native:devtestlab/v20160515:Policy"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20160515:Policy"), pulumi.Alias(type_="azure-native:devtestlab/v20180915:Policy"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20180915:Policy")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Policy, __self__).__init__( 'azure-native:devtestlab:Policy', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Policy': """ Get an existing Policy resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["created_date"] = None __props__["description"] = None __props__["evaluator_type"] = None __props__["fact_data"] = None __props__["fact_name"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["status"] = None __props__["tags"] = None __props__["threshold"] = None __props__["type"] = None __props__["unique_identifier"] = None return Policy(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="createdDate") def created_date(self) -> pulumi.Output[str]: """ The creation date of the policy. """ return pulumi.get(self, "created_date") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ The description of the policy. """ return pulumi.get(self, "description") @property @pulumi.getter(name="evaluatorType") def evaluator_type(self) -> pulumi.Output[Optional[str]]: """ The evaluator type of the policy (i.e. AllowedValuesPolicy, MaxValuePolicy). """ return pulumi.get(self, "evaluator_type") @property @pulumi.getter(name="factData") def fact_data(self) -> pulumi.Output[Optional[str]]: """ The fact data of the policy. """ return pulumi.get(self, "fact_data") @property @pulumi.getter(name="factName") def fact_name(self) -> pulumi.Output[Optional[str]]: """ The fact name of the policy (e.g. LabVmCount, LabVmSize, MaxVmsAllowedPerLab, etc. """ return pulumi.get(self, "fact_name") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ The location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning status of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def status(self) -> pulumi.Output[Optional[str]]: """ The status of the policy. """ return pulumi.get(self, "status") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ The tags of the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def threshold(self) -> pulumi.Output[Optional[str]]: """ The threshold of the policy (i.e. a number for MaxValuePolicy, and a JSON array of values for AllowedValuesPolicy). """ return pulumi.get(self, "threshold") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="uniqueIdentifier") def unique_identifier(self) -> pulumi.Output[str]: """ The unique immutable identifier of a resource (Guid). """ return pulumi.get(self, "unique_identifier") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
41.950207
632
0.631256
419ed8ebc49f720d92ff045b931926cee71ebb7f
22,924
py
Python
tests/compute/test_sampling.py
LunaBlack/dgl
bd1e48a51e348b0e8e25622325adeb5ddea1c0ea
[ "Apache-2.0" ]
2
2021-12-09T12:36:13.000Z
2022-03-01T21:22:36.000Z
tests/compute/test_sampling.py
LunaBlack/dgl
bd1e48a51e348b0e8e25622325adeb5ddea1c0ea
[ "Apache-2.0" ]
null
null
null
tests/compute/test_sampling.py
LunaBlack/dgl
bd1e48a51e348b0e8e25622325adeb5ddea1c0ea
[ "Apache-2.0" ]
2
2020-12-07T09:34:01.000Z
2020-12-13T06:18:58.000Z
import dgl import backend as F import numpy as np import unittest def check_random_walk(g, metapath, traces, ntypes, prob=None): traces = F.asnumpy(traces) ntypes = F.asnumpy(ntypes) for j in range(traces.shape[1] - 1): assert ntypes[j] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[0]) assert ntypes[j + 1] == g.get_ntype_id(g.to_canonical_etype(metapath[j])[2]) for i in range(traces.shape[0]): for j in range(traces.shape[1] - 1): assert g.has_edge_between( traces[i, j], traces[i, j+1], etype=metapath[j]) if prob is not None and prob in g.edges[metapath[j]].data: p = F.asnumpy(g.edges[metapath[j]].data['p']) eids = g.edge_id(traces[i, j], traces[i, j+1], etype=metapath[j]) assert p[eids] != 0 @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU random walk not implemented") def test_random_walk(): g1 = dgl.heterograph({ ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)] }) g2 = dgl.heterograph({ ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)] }) g3 = dgl.heterograph({ ('user', 'follow', 'user'): [(0, 1), (1, 2), (2, 0)], ('user', 'view', 'item'): [(0, 0), (1, 1), (2, 2)], ('item', 'viewed-by', 'user'): [(0, 0), (1, 1), (2, 2)]}) g4 = dgl.heterograph({ ('user', 'follow', 'user'): [(0, 1), (1, 2), (1, 3), (2, 0), (3, 0)], ('user', 'view', 'item'): [(0, 0), (0, 1), (1, 1), (2, 2), (3, 2), (3, 1)], ('item', 'viewed-by', 'user'): [(0, 0), (1, 0), (1, 1), (2, 2), (2, 3), (1, 3)]}) g2.edata['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32) g2.edata['p2'] = F.tensor([[3], [0], [3], [3], [3]], dtype=F.float32) g4.edges['follow'].data['p'] = F.tensor([3, 0, 3, 3, 3], dtype=F.float32) g4.edges['viewed-by'].data['p'] = F.tensor([1, 1, 1, 1, 1, 1], dtype=F.float32) traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4) check_random_walk(g1, ['follow'] * 4, traces, ntypes) traces, ntypes = dgl.sampling.random_walk(g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=0.) check_random_walk(g1, ['follow'] * 4, traces, ntypes) traces, ntypes = dgl.sampling.random_walk( g1, [0, 1, 2, 0, 1, 2], length=4, restart_prob=F.zeros((4,), F.float32, F.cpu())) check_random_walk(g1, ['follow'] * 4, traces, ntypes) traces, ntypes = dgl.sampling.random_walk( g1, [0, 1, 2, 0, 1, 2], length=5, restart_prob=F.tensor([0, 0, 0, 0, 1], dtype=F.float32)) check_random_walk( g1, ['follow'] * 4, F.slice_axis(traces, 1, 0, 5), F.slice_axis(ntypes, 0, 0, 5)) assert (F.asnumpy(traces)[:, 5] == -1).all() traces, ntypes = dgl.sampling.random_walk( g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4) check_random_walk(g2, ['follow'] * 4, traces, ntypes) traces, ntypes = dgl.sampling.random_walk( g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p') check_random_walk(g2, ['follow'] * 4, traces, ntypes, 'p') try: traces, ntypes = dgl.sampling.random_walk( g2, [0, 1, 2, 3, 0, 1, 2, 3], length=4, prob='p2') fail = False except dgl.DGLError: fail = True assert fail metapath = ['follow', 'view', 'viewed-by'] * 2 traces, ntypes = dgl.sampling.random_walk( g3, [0, 1, 2, 0, 1, 2], metapath=metapath) check_random_walk(g3, metapath, traces, ntypes) metapath = ['follow', 'view', 'viewed-by'] * 2 traces, ntypes = dgl.sampling.random_walk( g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath) check_random_walk(g4, metapath, traces, ntypes) metapath = ['follow', 'view', 'viewed-by'] * 2 traces, ntypes = dgl.sampling.random_walk( g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p') check_random_walk(g4, metapath, traces, ntypes, 'p') traces, ntypes = dgl.sampling.random_walk( g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=0.) check_random_walk(g4, metapath, traces, ntypes, 'p') traces, ntypes = dgl.sampling.random_walk( g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath, prob='p', restart_prob=F.zeros((6,), F.float32, F.cpu())) check_random_walk(g4, metapath, traces, ntypes, 'p') traces, ntypes = dgl.sampling.random_walk( g4, [0, 1, 2, 3, 0, 1, 2, 3], metapath=metapath + ['follow'], prob='p', restart_prob=F.tensor([0, 0, 0, 0, 0, 0, 1], F.float32)) check_random_walk(g4, metapath, traces[:, :7], ntypes[:7], 'p') assert (F.asnumpy(traces[:, 7]) == -1).all() @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU pack traces not implemented") def test_pack_traces(): traces, types = (np.array( [[ 0, 1, -1, -1, -1, -1, -1], [ 0, 1, 1, 3, 0, 0, 0]], dtype='int64'), np.array([0, 0, 1, 0, 0, 1, 0], dtype='int64')) traces = F.zerocopy_from_numpy(traces) types = F.zerocopy_from_numpy(types) result = dgl.sampling.pack_traces(traces, types) assert F.array_equal(result[0], F.tensor([0, 1, 0, 1, 1, 3, 0, 0, 0], dtype=F.int64)) assert F.array_equal(result[1], F.tensor([0, 0, 0, 0, 1, 0, 0, 1, 0], dtype=F.int64)) assert F.array_equal(result[2], F.tensor([2, 7], dtype=F.int64)) assert F.array_equal(result[3], F.tensor([0, 2], dtype=F.int64)) def test_pinsage_sampling(): def _test_sampler(g, sampler, ntype): neighbor_g = sampler(F.tensor([0, 2], dtype=F.int64)) assert neighbor_g.ntypes == [ntype] u, v = neighbor_g.all_edges(form='uv', order='eid') uv = list(zip(F.asnumpy(u).tolist(), F.asnumpy(v).tolist())) assert (1, 0) in uv or (0, 0) in uv assert (2, 2) in uv or (3, 2) in uv g = dgl.heterograph({ ('item', 'bought-by', 'user'): [(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)], ('user', 'bought', 'item'): [(0, 0), (1, 0), (0, 1), (1, 1), (2, 2), (3, 2), (2, 3), (3, 3)]}) sampler = dgl.sampling.PinSAGESampler(g, 'item', 'user', 4, 0.5, 3, 2) _test_sampler(g, sampler, 'item') sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['bought-by', 'bought']) _test_sampler(g, sampler, 'item') sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, [('item', 'bought-by', 'user'), ('user', 'bought', 'item')]) _test_sampler(g, sampler, 'item') g = dgl.graph([(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)]) sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2) _test_sampler(g, sampler, g.ntypes[0]) g = dgl.heterograph({ ('A', 'AB', 'B'): [(0, 1), (2, 3)], ('B', 'BC', 'C'): [(1, 2), (3, 1)], ('C', 'CA', 'A'): [(2, 0), (1, 2)]}) sampler = dgl.sampling.RandomWalkNeighborSampler(g, 4, 0.5, 3, 2, ['AB', 'BC', 'CA']) _test_sampler(g, sampler, 'A') def _gen_neighbor_sampling_test_graph(hypersparse, reverse): if hypersparse: # should crash if allocated a CSR card = 1 << 50 card2 = (1 << 50, 1 << 50) else: card = None card2 = None if reverse: g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)], 'user', 'follow', num_nodes=card) g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32) g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user', num_nodes=card2) g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32) g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game', num_nodes=card2) g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32) g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user', num_nodes=card2) hg = dgl.hetero_from_relations([g, g1, g2, g3]) else: g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow', num_nodes=card) g.edata['prob'] = F.tensor([.5, .5, 0., .5, .5, 0., 1.], dtype=F.float32) g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game', num_nodes=card2) g1.edata['prob'] = F.tensor([.8, .5, .5, .5], dtype=F.float32) g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user', num_nodes=card2) g2.edata['prob'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32) g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin', num_nodes=card2) hg = dgl.hetero_from_relations([g, g1, g2, g3]) return g, hg def _gen_neighbor_topk_test_graph(hypersparse, reverse): if hypersparse: # should crash if allocated a CSR card = 1 << 50 card2 = (1 << 50, 1 << 50) else: card = None card2 = None if reverse: g = dgl.graph([(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0)], 'user', 'follow') g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32) g1 = dgl.bipartite([(0,0),(1,0),(2,1),(2,3)], 'game', 'play', 'user') g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32) g2 = dgl.bipartite([(0,2),(1,2),(2,2),(0,1),(3,1),(0,0)], 'user', 'liked-by', 'game') g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32) g3 = dgl.bipartite([(0,0),(0,1),(0,2),(0,3)], 'coin', 'flips', 'user') g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32) hg = dgl.hetero_from_relations([g, g1, g2, g3]) else: g = dgl.graph([(1,0),(2,0),(3,0),(0,1),(2,1),(3,1),(0,2)], 'user', 'follow') g.edata['weight'] = F.tensor([.5, .3, 0., -5., 22., 0., 1.], dtype=F.float32) g1 = dgl.bipartite([(0,0),(0,1),(1,2),(3,2)], 'user', 'play', 'game') g1.edata['weight'] = F.tensor([.8, .5, .4, .5], dtype=F.float32) g2 = dgl.bipartite([(2,0),(2,1),(2,2),(1,0),(1,3),(0,0)], 'game', 'liked-by', 'user') g2.edata['weight'] = F.tensor([.3, .5, .2, .5, .1, .1], dtype=F.float32) g3 = dgl.bipartite([(0,0),(1,0),(2,0),(3,0)], 'user', 'flips', 'coin') g3.edata['weight'] = F.tensor([10, 2, 13, -1], dtype=F.float32) hg = dgl.hetero_from_relations([g, g1, g2, g3]) return g, hg def _test_sample_neighbors(hypersparse): g, hg = _gen_neighbor_sampling_test_graph(hypersparse, False) def _test1(p, replace): for i in range(10): subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace) assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 4 u, v = subg.edges() assert set(F.asnumpy(F.unique(v))) == {0, 1} assert F.array_equal(g.has_edges_between(u, v), F.ones((4,), dtype=F.int64)) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) if not replace: # check no duplication assert len(edge_set) == 4 if p is not None: assert not (3, 0) in edge_set assert not (3, 1) in edge_set _test1(None, True) # w/ replacement, uniform _test1(None, False) # w/o replacement, uniform _test1('prob', True) # w/ replacement _test1('prob', False) # w/o replacement def _test2(p, replace): # fanout > #neighbors for i in range(10): subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace) assert subg.number_of_nodes() == g.number_of_nodes() num_edges = 4 if replace else 3 assert subg.number_of_edges() == num_edges u, v = subg.edges() assert set(F.asnumpy(F.unique(v))) == {0, 2} assert F.array_equal(g.has_edges_between(u, v), F.ones((num_edges,), dtype=F.int64)) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) if not replace: # check no duplication assert len(edge_set) == num_edges if p is not None: assert not (3, 0) in edge_set _test2(None, True) # w/ replacement, uniform _test2(None, False) # w/o replacement, uniform _test2('prob', True) # w/ replacement _test2('prob', False) # w/o replacement def _test3(p, replace): for i in range(10): subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace) assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 assert subg['follow'].number_of_edges() == 4 assert subg['play'].number_of_edges() == 2 if replace else 1 assert subg['liked-by'].number_of_edges() == 4 if replace else 3 assert subg['flips'].number_of_edges() == 0 _test3(None, True) # w/ replacement, uniform _test3(None, False) # w/o replacement, uniform _test3('prob', True) # w/ replacement _test3('prob', False) # w/o replacement # test different fanouts for different relations for i in range(10): subg = dgl.sampling.sample_neighbors( hg, {'user' : [0,1], 'game' : 0}, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': 2}, replace=True) assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 assert subg['follow'].number_of_edges() == 2 assert subg['play'].number_of_edges() == 2 assert subg['liked-by'].number_of_edges() == 0 assert subg['flips'].number_of_edges() == 0 def _test_sample_neighbors_outedge(hypersparse): g, hg = _gen_neighbor_sampling_test_graph(hypersparse, True) def _test1(p, replace): for i in range(10): subg = dgl.sampling.sample_neighbors(g, [0, 1], 2, prob=p, replace=replace, edge_dir='out') assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 4 u, v = subg.edges() assert set(F.asnumpy(F.unique(u))) == {0, 1} assert F.array_equal(g.has_edges_between(u, v), F.ones((4,), dtype=F.int64)) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) if not replace: # check no duplication assert len(edge_set) == 4 if p is not None: assert not (0, 3) in edge_set assert not (1, 3) in edge_set _test1(None, True) # w/ replacement, uniform _test1(None, False) # w/o replacement, uniform _test1('prob', True) # w/ replacement _test1('prob', False) # w/o replacement def _test2(p, replace): # fanout > #neighbors for i in range(10): subg = dgl.sampling.sample_neighbors(g, [0, 2], 2, prob=p, replace=replace, edge_dir='out') assert subg.number_of_nodes() == g.number_of_nodes() num_edges = 4 if replace else 3 assert subg.number_of_edges() == num_edges u, v = subg.edges() assert set(F.asnumpy(F.unique(u))) == {0, 2} assert F.array_equal(g.has_edges_between(u, v), F.ones((num_edges,), dtype=F.int64)) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) if not replace: # check no duplication assert len(edge_set) == num_edges if p is not None: assert not (0, 3) in edge_set _test2(None, True) # w/ replacement, uniform _test2(None, False) # w/o replacement, uniform _test2('prob', True) # w/ replacement _test2('prob', False) # w/o replacement def _test3(p, replace): for i in range(10): subg = dgl.sampling.sample_neighbors(hg, {'user' : [0,1], 'game' : 0}, 2, prob=p, replace=replace, edge_dir='out') assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 assert subg['follow'].number_of_edges() == 4 assert subg['play'].number_of_edges() == 2 if replace else 1 assert subg['liked-by'].number_of_edges() == 4 if replace else 3 assert subg['flips'].number_of_edges() == 0 _test3(None, True) # w/ replacement, uniform _test3(None, False) # w/o replacement, uniform _test3('prob', True) # w/ replacement _test3('prob', False) # w/o replacement def _test_sample_neighbors_topk(hypersparse): g, hg = _gen_neighbor_topk_test_graph(hypersparse, False) def _test1(): subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1]) assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 4 u, v = subg.edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) assert edge_set == {(2,0),(1,0),(2,1),(3,1)} _test1() def _test2(): # k > #neighbors subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2]) assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 3 u, v = subg.edges() assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert edge_set == {(2,0),(1,0),(0,2)} _test2() def _test3(): subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}) assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 u, v = subg['follow'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID]) assert edge_set == {(2,0),(1,0),(2,1),(3,1)} u, v = subg['play'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID]) assert edge_set == {(0,0)} u, v = subg['liked-by'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID]) assert edge_set == {(2,0),(2,1),(1,0)} assert subg['flips'].number_of_edges() == 0 _test3() # test different k for different relations subg = dgl.sampling.select_topk( hg, {'follow': 1, 'play': 2, 'liked-by': 0, 'flips': 2}, 'weight', {'user' : [0,1], 'game' : 0}) assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 assert subg['follow'].number_of_edges() == 2 assert subg['play'].number_of_edges() == 1 assert subg['liked-by'].number_of_edges() == 0 assert subg['flips'].number_of_edges() == 0 def _test_sample_neighbors_topk_outedge(hypersparse): g, hg = _gen_neighbor_topk_test_graph(hypersparse, True) def _test1(): subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 1], edge_dir='out') assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 4 u, v = subg.edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) assert edge_set == {(0,2),(0,1),(1,2),(1,3)} _test1() def _test2(): # k > #neighbors subg = dgl.sampling.select_topk(g, 2, 'weight', [0, 2], edge_dir='out') assert subg.number_of_nodes() == g.number_of_nodes() assert subg.number_of_edges() == 3 u, v = subg.edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(g.edge_ids(u, v), subg.edata[dgl.EID]) assert edge_set == {(0,2),(0,1),(2,0)} _test2() def _test3(): subg = dgl.sampling.select_topk(hg, 2, 'weight', {'user' : [0,1], 'game' : 0}, edge_dir='out') assert len(subg.ntypes) == 3 assert len(subg.etypes) == 4 u, v = subg['follow'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['follow'].edge_ids(u, v), subg['follow'].edata[dgl.EID]) assert edge_set == {(0,2),(0,1),(1,2),(1,3)} u, v = subg['play'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['play'].edge_ids(u, v), subg['play'].edata[dgl.EID]) assert edge_set == {(0,0)} u, v = subg['liked-by'].edges() edge_set = set(zip(list(F.asnumpy(u)), list(F.asnumpy(v)))) assert F.array_equal(hg['liked-by'].edge_ids(u, v), subg['liked-by'].edata[dgl.EID]) assert edge_set == {(0,2),(1,2),(0,1)} assert subg['flips'].number_of_edges() == 0 _test3() @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented") def test_sample_neighbors(): _test_sample_neighbors(False) _test_sample_neighbors(True) @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented") def test_sample_neighbors_outedge(): _test_sample_neighbors_outedge(False) _test_sample_neighbors_outedge(True) @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented") def test_sample_neighbors_topk(): _test_sample_neighbors_topk(False) _test_sample_neighbors_topk(True) @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented") def test_sample_neighbors_topk_outedge(): _test_sample_neighbors_topk_outedge(False) _test_sample_neighbors_topk_outedge(True) @unittest.skipIf(F._default_context_str == 'gpu', reason="GPU sample neighbors not implemented") def test_sample_neighbors_with_0deg(): g = dgl.graph([], num_nodes=5) sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=False) assert sg.number_of_edges() == 0 sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='in', replace=True) assert sg.number_of_edges() == 0 sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=False) assert sg.number_of_edges() == 0 sg = dgl.sampling.sample_neighbors(g, F.tensor([1, 2], dtype=F.int64), 2, edge_dir='out', replace=True) assert sg.number_of_edges() == 0 if __name__ == '__main__': test_random_walk() test_pack_traces() test_pinsage_sampling() test_sample_neighbors() test_sample_neighbors_outedge() test_sample_neighbors_topk() test_sample_neighbors_topk_outedge() test_sample_neighbors_with_0deg()
47.659044
126
0.567658
6042c12cfef6c41795afaee5e6f92c8ab2598325
9,435
py
Python
samples/roof_types/train_roof_model.py
mWollenhaupt/Mask_RCNN
40366f4fb6e4853467293bfeb657e0d69585024f
[ "MIT" ]
null
null
null
samples/roof_types/train_roof_model.py
mWollenhaupt/Mask_RCNN
40366f4fb6e4853467293bfeb657e0d69585024f
[ "MIT" ]
null
null
null
samples/roof_types/train_roof_model.py
mWollenhaupt/Mask_RCNN
40366f4fb6e4853467293bfeb657e0d69585024f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: import os import sys import random import math import re import time import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt import skimage.io from imgaug import augmenters as iaa import imgaug as ia # Root directory of the project ROOT_DIR = os.path.abspath("../../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log #get_ipython().run_line_magic('matplotlib', 'inline') # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax class RoofTypeConfig(Config): """Configuration for training on the toy dataset. Derives from the base Config class and overrides some values. """ NAME = "roof_types" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 4 BATCH_SIZE = IMAGES_PER_GPU * GPU_COUNT #RPN_NMS_THRESHOLD = 0.75 LEARNING_RATE = 0.001 DETECTION_MAX_INSTANCES = 400 MAX_GT_INSTANCES = 400 # Number of classes (including background) NUM_CLASSES = 1 + 7 # background + 16 roof types # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 512 IMAGE_MAX_DIM = 512 IMAGE_CHANNEL_COUNT = 3 # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256) # anchor side in pixels #RPN_ANCHOR_SCALES = (10, 20, 40, 80, 160) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 300 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small VALIDATION_STEPS = 15 config = RoofTypeConfig() config.display() class DatasetLoader(): def __init__(self): self.roofs = [] self.dataset_dir = None def load_dataset(self, dataset_dir): self.dataset_dir = dataset_dir with open(os.path.join(dataset_dir, 'map.txt'), 'r') as file: lines = file.readlines() for line in lines: split = line.split() self.roofs.append(split) def split_train_val_data(self, _train=.8, _test=.1, _val=.1, SEED=101010): if not self.roofs: print('Load Dataset before try to split data!') return files = self.roofs count = len(files) train_files = self.split_indices(files, _train, SEED) validation_files = self.split_indices(files, _val/(len(files)/count), SEED) test_files = files dataset_train = RoofTypeDataset() dataset_train.load_roof_data(train_files, self.dataset_dir) dataset_train.prepare() dataset_val = RoofTypeDataset() dataset_val.load_roof_data(validation_files, self.dataset_dir) dataset_val.prepare() dataset_test = RoofTypeDataset() dataset_test.load_roof_data(test_files, self.dataset_dir) dataset_test.prepare() return (dataset_train, dataset_val, dataset_test) def split_indices(self, files, split, SEED=101010): random.seed(SEED) indices = random.sample(range(0, len(files)), int(len(files)*split)) indices.sort(reverse=True) result = [] for idx in indices: result.append(files.pop(idx)) return result class RoofTypeDataset(utils.Dataset): def __init__(self): super().__init__() self.roofs = [] self.types = { '1000':1, "2100":2, "3100":3, "3200":4, "3300":5, "3400":6, "3500":7 } def load_roof_data(self, data_list, dataset_dir): """Load a subset of the RoofType dataset. dataset_dir: Root directory of the dataset. subset: Subset to load: train or val """ # Add classes self.add_class("roof_types", 1, "1000") self.add_class("roof_types", 2, "2100") self.add_class("roof_types", 3, "3100") self.add_class("roof_types", 4, "3200") self.add_class("roof_types", 5, "3300") self.add_class("roof_types", 6, "3400") self.add_class("roof_types", 7, "3500") self.dataset_dir = dataset_dir for entry in data_list: self.add_image( "roof_types", image_id=len(self.roofs), path=os.path.join(dataset_dir, entry[0]) ) self.roofs.append(entry) def load_mask(self, image_id): """Load instance masks for an image. Returns: masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ image_info = self.image_info[image_id] if image_info["source"] != "roof_types": return super(self.__class__, self).load_mask(image_id) img = skimage.io.imread(image_info["path"]) mask_paths = self.roofs[image_id][1:] masks = [] lbls = np.empty(0).astype(np.int) for cnt, mask in enumerate(mask_paths): path = os.path.join(self.dataset_dir, mask) arr = skimage.io.imread(path).astype(np.bool) masks.append(arr) lbl = self.types[mask.split('\\')[1]] lbls = np.append(lbls, lbl) result = np.dstack(np.asarray(masks)) return result, lbls def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "roof_types": return info["path"] else: super(self.__class__, self).image_reference(image_id) dataset_dir = r'C:\Users\MoritzWollenhaupt\Desktop\ArcGIS_Rooftype_Detection\data\bochum\tif\train\512\mrcnn\single_instances_augmented_sobel_min_max_uint16' loader = DatasetLoader() loader.load_dataset(dataset_dir) dataset_train, dataset_val, dataset_test = loader.split_train_val_data() # Create model in training mode model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR) # Which weights to start with? #init_with = "coco" # imagenet, coco, or last init_with = "last" #init_with = "imagenet" if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last(), by_name=True) # ### Augmentation sometimes = lambda aug: iaa.Sometimes(0.5, aug) seqAug = iaa.Sequential( [ # apply the following augmenters to most images iaa.Fliplr(0.5), # horizontally flip 50% of all images iaa.Flipud(0.2), # vertically flip 50% of all images iaa.LinearContrast((0.75, 1.5)), # crop images by -10% to 10% of their height/width sometimes(iaa.CropAndPad( percent=(-0.1, 0.1), #pad_mode=ia.ALL, pad_cval=0 )), sometimes(iaa.Affine( # scale images to 80-120% of their size, individually per axis scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # # translate by -20 to +20 percent (per axis) translate_percent={"x": (-0.2, 0.2), "y": (-0.2, 0.2)}, rotate=(-175, 175), # rotate by -175 to +175 degrees shear=(-16, 16), # shear by -16 to +16 degrees order=[0, 1], # use nearest neighbor or bilinear interpolation (fast) cval=0, # if mode is constant, use a cval = 0 #mode=ia.ALL # use any of scikit-image's warping modes )) ], random_order=True ) # ## Training epochs = 400 model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE/100, epochs=epochs, layers='all', #augmentation=seqAug )
33.221831
157
0.629889
766190045266006ca75ef8f58ba1f3bb115e5859
28,906
py
Python
zvmsdk/tests/unit/test_api.py
wngzhe/feilong
43aeb9c002214e2b150cb1173cf4a2bae239aaa7
[ "Apache-2.0" ]
null
null
null
zvmsdk/tests/unit/test_api.py
wngzhe/feilong
43aeb9c002214e2b150cb1173cf4a2bae239aaa7
[ "Apache-2.0" ]
null
null
null
zvmsdk/tests/unit/test_api.py
wngzhe/feilong
43aeb9c002214e2b150cb1173cf4a2bae239aaa7
[ "Apache-2.0" ]
null
null
null
# Copyright 2017,2021 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import six from zvmsdk import api from zvmsdk import exception from zvmsdk.tests.unit import base from zvmsdk import vmops class SDKAPITestCase(base.SDKTestCase): """Testcases for compute APIs.""" @classmethod def setUpClass(cls): super(SDKAPITestCase, cls).setUpClass() cls.userid = 'TESTUID' cls.userid_list = ["USERID1", "USERID2"] def setUp(self): super(SDKAPITestCase, self).setUp() vmops.VMOps.check_guests_exist_in_db = mock.MagicMock() self.api = api.SDKAPI() def test_init_ComputeAPI(self): self.assertTrue(isinstance(self.api, api.SDKAPI)) @mock.patch("zvmsdk.vmops.VMOps.get_power_state") def test_guest_get_power_state_real(self, gstate): self.api.guest_get_power_state_real(self.userid) gstate.assert_called_once_with(self.userid) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.vmops.VMOps.get_power_state") def test_guest_get_power_state(self, gstate, chk_uid): chk_uid.return_value = True self.api.guest_get_power_state(self.userid) chk_uid.assert_called_once_with(self.userid) gstate.assert_called_once_with(self.userid) chk_uid.reset_mock() gstate.reset_mock() chk_uid.return_value = False self.assertRaises(exception.SDKObjectNotExistError, self.api.guest_get_power_state, self.userid) chk_uid.assert_called_once_with(self.userid) gstate.assert_not_called() @mock.patch("zvmsdk.vmops.VMOps.get_info") def test_guest_get_info(self, ginfo): self.api.guest_get_info(self.userid) ginfo.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.get_definition_info") def test_guest_get_user_direct_(self, ginfo): ginfo.return_value = {'user_direct': ['CPU 00 BASE', 'USER USERID1 PASSWORD 4096m ']} expected_value = {'user_direct': ['CPU 00 BASE', 'USER USERID1 ****** 4096m ']} result = self.api.guest_get_user_direct(self.userid) ginfo.assert_called_once_with(self.userid) self.assertEqual(result, expected_value) @mock.patch("zvmsdk.vmops.VMOps.get_adapters_info") def test_guest_get_adapters_info(self, adapters_info): self.api.guest_get_adapters_info(self.userid) adapters_info.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.guest_deploy") def test_guest_deploy(self, guest_deploy): user_id = 'fakevm' image_name = 'fakeimg' transportfiles = '/tmp/transport.tgz' vdev = '0100' self.api.guest_deploy(user_id, image_name, transportfiles=transportfiles, vdev=vdev) guest_deploy.assert_called_with(user_id.upper(), image_name, transportfiles, None, vdev, None, False) @mock.patch("zvmsdk.imageops.ImageOps.image_import") def test_image_import(self, image_import): image_name = '95a4da37-9f9b-4fb2-841f-f0bb441b7544' url = "file:///install/temp/test.img" image_meta = {'os_version': "rhel6.7"} self.api.image_import(image_name, url, image_meta) image_import.assert_called_once_with(image_name, url, image_meta, remote_host=None) @mock.patch("zvmsdk.imageops.ImageOps.image_export") def test_image_export(self, image_export): image_name = '95a4da37-9f9b-4fb2-841f-f0bb441b7544' dest_url = "file:///install/temp/test.img" self.api.image_export(image_name, dest_url) image_export.assert_called_once_with(image_name, dest_url, None) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create(self, create_vm): vcpus = 1 memory = 1024 disk_list = [] user_profile = 'profile' max_cpu = 10 max_mem = '4G' self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem, '', '', '', [], {}, '', None) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_account(self, create_vm): vcpus = 1 memory = 1024 disk_list = [] user_profile = 'profile' max_cpu = 10 max_mem = '4G' account = "dummy account" self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem, account=account) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem, '', '', '', [], {}, account, None) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_comment(self, create_vm): vcpus = 1 memory = 1024 disk_list = [] user_profile = 'profile' max_cpu = 10 max_mem = '4G' comment_list = ["dummy account", "this is a test"] self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem, comment_list=comment_list) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem, '', '', '', [], {}, '', comment_list) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_default_profile(self, create_vm): vcpus = 1 memory = 1024 disk_list = [] user_profile = '' max_cpu = 10 max_mem = '4G' base.set_conf('zvm', 'user_profile', 'abc') self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, 'abc', max_cpu, max_mem, '', '', '', [], {}, '', None) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_no_disk_pool(self, create_vm): disk_list = [{'size': '1g', 'is_boot_disk': True, 'disk_pool': 'ECKD: eckdpool1'}, {'size': '1g', 'format': 'ext3'}, {'size': '1g', 'format': 'swap'}] vcpus = 1 memory = 1024 user_profile = 'profile' max_cpu = 10 max_mem = '4G' base.set_conf('zvm', 'disk_pool', None) self.assertRaises(exception.SDKInvalidInputFormat, self.api.guest_create, self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem) create_vm.assert_not_called() @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_no_disk_pool_swap_only(self, create_vm): disk_list = [{'size': '1g', 'format': 'swap'}] vcpus = 1 memory = 1024 user_profile = 'profile' base.set_conf('zvm', 'disk_pool', None) base.set_conf('zvm', 'swap_force_mdisk', False) self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, user_profile, 32, '64G', '', '', '', [], {}, '', None) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_no_disk_pool_force_mdisk(self, create_vm): disk_list = [{'size': '1g', 'is_boot_disk': True, 'disk_pool': 'ECKD: eckdpool1'}, {'size': '1g', 'format': 'ext3'}, {'size': '1g', 'format': 'swap'}] vcpus = 1 memory = 1024 user_profile = 'profile' max_cpu = 10 max_mem = '4G' # should be no side effect at all base.set_conf('zvm', 'swap_force_mdisk', True) base.set_conf('zvm', 'disk_pool', None) self.assertRaises(exception.SDKInvalidInputFormat, self.api.guest_create, self.userid, vcpus, memory, disk_list, user_profile, max_cpu, max_mem) create_vm.assert_not_called() @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_no_disk_pool_swap_only_force_mdisk(self, create_vm): disk_list = [{'size': '1g', 'format': 'swap'}] vcpus = 1 memory = 1024 user_profile = 'profile' base.set_conf('zvm', 'disk_pool', None) base.set_conf('zvm', 'swap_force_mdisk', True) self.assertRaises(exception.SDKInvalidInputFormat, self.api.guest_create, self.userid, vcpus, memory, disk_list, user_profile) @mock.patch("zvmsdk.vmops.VMOps.create_vm") def test_guest_create_with_default_max_cpu_memory(self, create_vm): vcpus = 1 memory = 1024 disk_list = [] user_profile = 'profile' self.api.guest_create(self.userid, vcpus, memory, disk_list, user_profile) create_vm.assert_called_once_with(self.userid, vcpus, memory, disk_list, user_profile, 32, '64G', '', '', '', [], {}, '', None) @mock.patch("zvmsdk.imageops.ImageOps.image_query") def test_image_query(self, image_query): imagekeyword = 'eae09a9f_7958_4024_a58c_83d3b2fc0aab' self.api.image_query(imagekeyword) image_query.assert_called_once_with(imagekeyword) @mock.patch("zvmsdk.vmops.VMOps.delete_vm") @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") def test_guest_delete(self, cge, delete_vm): cge.return_value = True self.api.guest_delete(self.userid) cge.assert_called_once_with(self.userid, raise_exc=False) delete_vm.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.delete_vm") @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") def test_guest_delete_userid_in_lower_case(self, cge, delete_vm): cge.return_value = True self.api.guest_delete('testuid') cge.assert_called_once_with(self.userid, raise_exc=False) delete_vm.assert_called_once_with(self.userid) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") def test_guest_delete_not_exist(self, cge, cue): cge.return_value = False cue.return_value = False self.api.guest_delete(self.userid) cge.assert_called_once_with(self.userid, raise_exc=False) cue.assert_called_once_with(self.userid) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") def test_guest_delete_not_exist_in_db(self, cge, cue): cge.return_value = False cue.return_value = True self.assertRaises(exception.SDKObjectNotExistError, self.api.guest_delete, self.userid) cge.assert_called_once_with(self.userid, raise_exc=False) cue.assert_called_once_with(self.userid) @mock.patch("zvmsdk.monitor.ZVMMonitor.inspect_stats") def test_guest_inspect_cpus_list(self, inspect_stats): self.api.guest_inspect_stats(self.userid_list) inspect_stats.assert_called_once_with(self.userid_list) @mock.patch("zvmsdk.monitor.ZVMMonitor.inspect_stats") def test_guest_inspect_cpus_single(self, inspect_stats): self.api.guest_inspect_stats(self.userid) inspect_stats.assert_called_once_with([self.userid]) @mock.patch("zvmsdk.monitor.ZVMMonitor.inspect_vnics") def test_guest_inspect_vnics_list(self, inspect_vnics): self.api.guest_inspect_vnics(self.userid_list) inspect_vnics.assert_called_once_with(self.userid_list) @mock.patch("zvmsdk.monitor.ZVMMonitor.inspect_vnics") def test_guest_inspect_vnics_single(self, inspect_vnics): self.api.guest_inspect_vnics(self.userid) inspect_vnics.assert_called_once_with([self.userid]) @mock.patch("zvmsdk.vmops.VMOps.guest_stop") def test_guest_stop(self, gs): self.api.guest_stop(self.userid) gs.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.guest_stop") def test_guest_stop_with_timeout(self, gs): self.api.guest_stop(self.userid, timeout=300) gs.assert_called_once_with(self.userid, timeout=300) @mock.patch("zvmsdk.vmops.VMOps.guest_softstop") def test_guest_softstop(self, gss): self.api.guest_softstop(self.userid, timeout=300) gss.assert_called_once_with(self.userid, timeout=300) @mock.patch("zvmsdk.vmops.VMOps.guest_pause") def test_guest_pause(self, gp): self.api.guest_pause(self.userid) gp.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.guest_unpause") def test_guest_unpause(self, gup): self.api.guest_unpause(self.userid) gup.assert_called_once_with(self.userid) @mock.patch("zvmsdk.vmops.VMOps.guest_config_minidisks") def test_guest_process_additional_disks(self, config_disks): disk_list = [{'vdev': '0101', 'format': 'ext3', 'mntdir': '/mnt/0101'}] self.api.guest_config_minidisks(self.userid, disk_list) config_disks.assert_called_once_with(self.userid, disk_list) @mock.patch("zvmsdk.imageops.ImageOps.image_delete") def test_image_delete(self, image_delete): image_name = 'eae09a9f_7958_4024_a58c_83d3b2fc0aab' self.api.image_delete(image_name) image_delete.assert_called_once_with(image_name) def test_set_vswitch(self): self.assertRaises(exception.SDKInvalidInputFormat, self.api.vswitch_set, "vswitch_name", unknown='fake_id') @mock.patch("zvmsdk.vmops.VMOps.create_disks") def test_guest_add_disks(self, cds): disk_list = [{'size': '1g'}] self.api.guest_create_disks(self.userid, disk_list) cds.assert_called_once_with(self.userid, disk_list) @mock.patch("zvmsdk.vmops.VMOps.create_disks") def test_guest_add_disks_no_disk_pool(self, cds): disk_list = [{'size': '1g', 'is_boot_disk': True, 'disk_pool': 'ECKD: eckdpool1'}, {'size': '1g', 'format': 'ext3'}] base.set_conf('zvm', 'disk_pool', None) self.assertRaises(exception.SDKInvalidInputFormat, self.api.guest_create_disks, self.userid, disk_list) cds.ssert_not_called() @mock.patch("zvmsdk.vmops.VMOps.create_disks") def test_guest_add_disks_nothing_to_do(self, cds): self.api.guest_create_disks('userid', []) cds.assert_not_called() @mock.patch("zvmsdk.vmops.VMOps.delete_disks") def test_guest_delete_disks(self, dds): vdev_list = ['0102', '0103'] self.api.guest_delete_disks(self.userid, vdev_list) dds.assert_called_once_with(self.userid, vdev_list) @mock.patch("zvmsdk.vmops.VMOps.live_resize_cpus") def test_guest_live_resize_cpus(self, live_resize_cpus): cpu_cnt = 3 self.api.guest_live_resize_cpus(self.userid, cpu_cnt) live_resize_cpus.assert_called_once_with(self.userid, cpu_cnt) @mock.patch("zvmsdk.vmops.VMOps.resize_cpus") def test_guest_resize_cpus(self, resize_cpus): cpu_cnt = 3 self.api.guest_resize_cpus(self.userid, cpu_cnt) resize_cpus.assert_called_once_with(self.userid, cpu_cnt) @mock.patch("zvmsdk.vmops.VMOps.live_resize_memory") def test_guest_live_resize_mem(self, live_resize_memory): size = "1024m" self.api.guest_live_resize_mem(self.userid, size) live_resize_memory.assert_called_once_with(self.userid, size) @mock.patch("zvmsdk.vmops.VMOps.resize_memory") def test_guest_resize_mem(self, resize_memory): size = "2g" self.api.guest_resize_mem(self.userid, size) resize_memory.assert_called_once_with(self.userid, size) @mock.patch("zvmsdk.vmops.VMOps.guest_grow_root_volume") def test_guest_grow_root_volume(self, grow_root_volume): os_version = "RHEL7.8" self.api.guest_grow_root_volume(self.userid, os_version) grow_root_volume.assert_called_once_with(self.userid, os_version) @mock.patch("zvmsdk.networkops.NetworkOPS.grant_user_to_vswitch") def test_vswitch_grant_user(self, guv): self.api.vswitch_grant_user("testvsw", self.userid) guv.assert_called_once_with("testvsw", self.userid) @mock.patch("zvmsdk.volumeop.VolumeOperatorAPI.attach_volume_to_instance") def test_volume_attach(self, mock_attach): connection_info = {'platform': 'x86_64', 'ip': '1.2.3.4', 'os_version': 'rhel7', 'multipath': False, 'target_wwpn': '1111', 'target_lun': '2222', 'zvm_fcp': 'b83c', 'assigner_id': 'user1'} self.api.volume_attach(connection_info) mock_attach.assert_called_once_with(connection_info) @mock.patch("zvmsdk.volumeop.VolumeOperatorAPI.volume_refresh_bootmap") def test_refresh_bootmap(self, mock_attach): fcpchannel = ['5d71'] wwpn = ['5005076802100c1b', '5005076802200c1b'] lun = '01000000000000' self.api.volume_refresh_bootmap(fcpchannel, wwpn, lun) mock_attach.assert_called_once_with(fcpchannel, wwpn, lun, transportfiles=None, guest_networks=None) @mock.patch("zvmsdk.volumeop.VolumeOperatorAPI." "detach_volume_from_instance") def test_volume_detach(self, mock_detach): connection_info = {'platform': 'x86_64', 'ip': '1.2.3.4', 'os_version': 'rhel7', 'multipath': False, 'target_wwpn': '1111', 'target_lun': '2222', 'zvm_fcp': 'b83c', 'assigner_id': 'user1'} self.api.volume_detach(connection_info) mock_detach.assert_called_once_with(connection_info) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.smtclient.SMTClient.get_adapters_info") @mock.patch("zvmsdk.database.GuestDbOperator.add_guest_registered") @mock.patch("zvmsdk.database.NetworkDbOperator.switch_add_record") def test_guest_register(self, networkdb_add, guestdb_reg, get_adapters_info, chk_usr): networkdb_add.return_value = '' guestdb_reg.return_value = '' adapters = [{'adapter_address': '1000', 'adapter_status': '02', 'lan_owner': 'SYSTEM', 'lan_name': 'VSC11590', 'mac_address': '02:55:36:EF:50:91', 'mac_ip_version': '4', 'mac_ip_address': '1.2.3.4'}] get_adapters_info.return_value = adapters chk_usr.return_value = True meta_data = 'rhel7' net_set = '1' port_macs = {'EF5091': '6e2ecc4f-14a2-4f33-9f12-5ac4a42f97e7', '69FCF1': '389dee5e-7b03-405c-b1e8-7c9c235d1425' } self.api.guest_register(self.userid, meta_data, net_set, port_macs) networkdb_add.assert_called_once_with(self.userid, '1000', '6e2ecc4f-14a2-4f33-9f12' '-5ac4a42f97e7', 'VSC11590') guestdb_reg.assert_called_once_with(self.userid, 'rhel7', '1') get_adapters_info.assert_called_once_with(self.userid) chk_usr.assert_called_once_with(self.userid) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.smtclient.SMTClient.get_adapters_info") @mock.patch("zvmsdk.database.GuestDbOperator.add_guest_registered") @mock.patch("zvmsdk.database.NetworkDbOperator.switch_add_record") def test_guest_register_invalid_portmacs(self, networkdb_add, guestdb_reg, get_adapters_info, chk_usr): networkdb_add.return_value = '' guestdb_reg.return_value = '' adapters = [{'adapter_address': '1000', 'adapter_status': '02', 'lan_owner': 'SYSTEM', 'lan_name': 'VSC11590', 'mac_address': '02:55:36:EF:50:91', 'mac_ip_version': '4', 'mac_ip_address': '1.2.3.4'}] get_adapters_info.return_value = adapters chk_usr.return_value = True meta_data = 'rhel7' net_set = '1' port_macs = '6e2ecc4f-14a2-4f33-9f12-5ac4a42f97e7' self.assertRaises(exception.SDKInvalidInputFormat, self.api.guest_register, self.userid, meta_data, net_set, port_macs) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.smtclient.SMTClient.get_adapters_info") @mock.patch("zvmsdk.database.GuestDbOperator.add_guest_registered") @mock.patch("zvmsdk.database.NetworkDbOperator.switch_add_record") def test_guest_register_no_port_macs(self, networkdb_add, guestdb_reg, get_adapters_info, chk_usr): networkdb_add.return_value = '' guestdb_reg.return_value = '' adapters = [{'adapter_address': '1000', 'adapter_status': '02', 'lan_owner': 'SYSTEM', 'lan_name': 'VSC11590', 'mac_address': '02:55:36:EF:50:91', 'mac_ip_version': '4', 'mac_ip_address': '1.2.3.4'}] get_adapters_info.return_value = adapters chk_usr.return_value = True meta_data = 'rhel7' net_set = '1' self.api.guest_register(self.userid, meta_data, net_set) networkdb_add.assert_called_once_with(self.userid, '1000', None, 'VSC11590') guestdb_reg.assert_called_once_with(self.userid, 'rhel7', '1') get_adapters_info.assert_called_once_with(self.userid) chk_usr.assert_called_once_with(self.userid) @mock.patch("zvmsdk.utils.check_userid_exist") @mock.patch("zvmsdk.smtclient.SMTClient.get_adapters_info") @mock.patch("zvmsdk.database.GuestDbOperator.add_guest_registered") @mock.patch("zvmsdk.database.NetworkDbOperator.switch_add_record") @mock.patch("zvmsdk.database.GuestDbOperator.update_guest_by_userid") @mock.patch("zvmsdk.database.GuestDbOperator.get_comments_by_userid") @mock.patch("zvmsdk.database.GuestDbOperator.get_migrated_guest_list") @mock.patch("zvmsdk.database.GuestDbOperator.get_guest_by_userid") def test_guest_register_guest_in_db(self, get_guest, get_mig_guest, get_comments, update_guest, networkdb_add, guestdb_reg, get_adapters_info, chk_usr): get_guest.return_value = 'fake_guest' get_mig_guest.return_value = self.userid + ' other info' get_comments.return_value = {'migrated': 1} update_guest.return_value = '' # Below mocks shall not be called networkdb_add.return_value = '' guestdb_reg.return_value = '' get_adapters_info.return_value = [] chk_usr.return_value = True meta_data = 'rhel7' net_set = '1' self.api.guest_register(self.userid, meta_data, net_set) get_guest.assert_called_once_with(self.userid) get_mig_guest.assert_called_once_with() get_comments.assert_called_once_with(self.userid) update_guest.assert_called_once_with(self.userid, comments={'migrated': 0}) chk_usr.assert_called_once_with(self.userid) networkdb_add.assert_not_called() guestdb_reg.assert_not_called() get_adapters_info.assert_not_called() @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") @mock.patch("zvmsdk.database.NetworkDbOperator." "switch_delete_record_for_userid") @mock.patch("zvmsdk.database.GuestDbOperator.delete_guest_by_userid") def test_guest_deregister(self, guestdb_del, networkdb_del, chk_db): guestdb_del.return_value = '' networkdb_del.return_value = '' chk_db.return_value = True self.api.guest_deregister(self.userid) guestdb_del.assert_called_once_with(self.userid) networkdb_del.assert_called_once_with(self.userid) chk_db.assert_called_once_with(self.userid, raise_exc=False) @mock.patch("zvmsdk.vmops.VMOps.check_guests_exist_in_db") @mock.patch("zvmsdk.database.NetworkDbOperator." "switch_delete_record_for_userid") @mock.patch("zvmsdk.database.GuestDbOperator.delete_guest_by_userid") def test_guest_deregister_not_exists(self, guestdb_del, networkdb_del, chk_db): guestdb_del.return_value = '' networkdb_del.return_value = '' chk_db.return_value = False self.api.guest_deregister(self.userid) guestdb_del.assert_called_once_with(self.userid) networkdb_del.assert_called_once_with(self.userid) chk_db.assert_called_once_with(self.userid, raise_exc=False) @mock.patch("zvmsdk.hostops.HOSTOps.guest_list") def test_host_get_guest_list(self, guest_list): self.api.host_get_guest_list() guest_list.assert_called_once_with() @mock.patch("zvmsdk.hostops.HOSTOps.diskpool_get_volumes") def test_host_get_diskpool_volumes(self, diskpool_vols): base.set_conf('zvm', 'disk_pool', None) disk_pool = 'ECKD:IAS1PL' result = self.api.host_get_diskpool_volumes(disk_pool) diskpool_vols.assert_called_once_with('IAS1PL') # Test disk_pool is None disk_pool = None try: self.api.host_get_diskpool_volumes(disk_pool) except Exception as exc: errmsg = ("Invalid disk_pool input None, disk_pool should be" " configured for sdkserver.") result = errmsg in six.text_type(exc) self.assertEqual(result, True) pass @mock.patch("zvmsdk.hostops.HOSTOps.get_volume_info") def test_host_get_volume_info(self, volume_info): volume = 'VOLUM1' result = self.api.host_get_volume_info(volume) volume_info.assert_called_once_with(volume) # Test volume is None volume = None try: self.api.host_get_volume_info(volume) except Exception as exc: errmsg = ("Invalid volume input None, volume" " must be specified.") result = errmsg in six.text_type(exc) self.assertEqual(result, True) pass @mock.patch("zvmsdk.hostops.HOSTOps.diskpool_get_info") def test_host_diskpool_get_info(self, dp_info): base.set_conf('zvm', 'disk_pool', None) results = self.api.host_diskpool_get_info() self.assertEqual(results['disk_total'], 0) self.assertEqual(results['disk_available'], 0) self.assertEqual(results['disk_used'], 0) dp_info.ssert_not_called()
44.064024
78
0.627551
08a44a4d5423bc24d10d60c34524642ea8970d9d
1,120
py
Python
persimmon/view/blocks/csvoutblock.py
AlvarBer/Persimmon
da08ed854dd0305d7e4684e97ee828acffd76b4d
[ "MIT" ]
206
2016-11-02T20:45:48.000Z
2022-02-07T05:43:18.000Z
persimmon/view/blocks/csvoutblock.py
mgbin088/Persimmon
da08ed854dd0305d7e4684e97ee828acffd76b4d
[ "MIT" ]
6
2016-11-06T19:16:01.000Z
2018-02-20T11:22:45.000Z
persimmon/view/blocks/csvoutblock.py
mgbin088/Persimmon
da08ed854dd0305d7e4684e97ee828acffd76b4d
[ "MIT" ]
40
2017-03-08T21:01:53.000Z
2020-12-29T16:43:56.000Z
from persimmon.view.pins import InputPin from persimmon.view.util import FileDialog from persimmon.view.blocks.block import Block from kivy.properties import ObjectProperty, StringProperty from kivy.lang import Builder import numpy as np import pandas as pd Builder.load_file('persimmon/view/blocks/csvoutblock.kv') class CSVOutBlock(Block): in_1 = ObjectProperty() path = StringProperty() file_dialog = ObjectProperty() def __init__(self, **kwargs): super().__init__(**kwargs) self.file_dialog = FileDialog(dir='~', filters=['*.csv'], size_hint=(0.8, 0.8)) # Let's bind two together self.file_dialog.bind(file_chosen=self.setter('path')) self.tainted = True self.tainted_msg = 'File not chosen in block {}!'.format(self.title) def function(self): if type(self.in_1.val) == np.ndarray: self.in_1.val = pd.DataFrame(self.in_1.val) self.in_1.val.to_csv(path_or_buf=self.path, index=False) def on_path(self, instance, value): self.tainted = not value.endswith('.csv')
31.111111
76
0.665179
37100c3d52b29cc3756f66df886a7f5479039646
10,106
py
Python
spacy_transformers/wrapper.py
maxtrem/spacy-transformers
7458fc3466af0800617c3c106a4ff86fc0285f4d
[ "MIT" ]
null
null
null
spacy_transformers/wrapper.py
maxtrem/spacy-transformers
7458fc3466af0800617c3c106a4ff86fc0285f4d
[ "MIT" ]
1
2020-07-11T14:08:04.000Z
2020-07-11T14:08:04.000Z
spacy_transformers/wrapper.py
maxtrem/spacy-transformers
7458fc3466af0800617c3c106a4ff86fc0285f4d
[ "MIT" ]
2
2020-06-04T18:38:34.000Z
2022-02-19T19:23:19.000Z
from thinc.extra.wrappers import PyTorchWrapper, xp2torch, torch2xp from transformers.optimization import AdamW import transformers import torch.autograd import torch.nn.utils.clip_grad import torch from typing import Tuple, Callable, Any from thinc.neural.optimizers import Optimizer import numpy import contextlib from thinc.compat import BytesIO from .util import get_model, Dropout from .activations import RaggedArray, Activations FINE_TUNE = True CONFIG = {"output_hidden_states": True, "output_attentions": True} class TransformersWrapper(PyTorchWrapper): """Wrap a Transformers model for use in Thinc. The model will take as input a spacy_transformers.util.RaggedArray object that will specify the input IDs and optionally the segment IDs. The RaggedArray is basically a tuple (ids, lengths), where ids is concatenated for a whole batch (this format allows the data to be contiguous even if the sequences are different lengths). The segment IDs should be coded as the different models expect them -- see https://github.com/huggingface/transformers/blob/master/examples/utils_glue.py """ _model: Any _optimizer: Any cfg: dict @classmethod def from_pretrained(cls, name): model_cls = get_model(name) model = model_cls.from_pretrained(name, **CONFIG) self = cls(name, model.config.to_dict(), model) self.cfg.update(self.transformers_model.config.to_dict()) return self def __init__(self, name, config, model): PyTorchWrapper.__init__(self, model) self.cfg = dict(config) @property def nO(self): if "hidden_size" in self.cfg: # BERT return self.cfg["hidden_size"] elif "hidden_dim" in self.cfg: # DistilBERT return self.cfg["hidden_dim"] // 4 elif "n_embd" in self.cfg: # GPT2 return self.cfg["n_embd"] elif "d_model" in self.cfg: # XLNet return self.cfg["d_model"] elif hasattr(self.transformers_model, "dim"): # XLM return self.transformers_model.dim else: keys = ", ".join(self.cfg.keys()) raise ValueError(f"Unexpected config. Keys: {keys}") @property def transformers_model(self): return self._model @property def max_length(self): # `n_positions` in GPT2 config return self.cfg.get("max_position_embeddings", self.cfg.get("n_positions", 128)) def predict(self, inputs: RaggedArray): self._model.eval() model_kwargs = self.get_model_kwargs(inputs) with torch.no_grad(): if hasattr(self._optimizer, "swap_swa_sgd"): self._optimizer.swap_swa_sgd() y_var = self._model(**model_kwargs) if hasattr(self._optimizer, "swap_swa_sgd"): self._optimizer.swap_swa_sgd() return self.make_activations(y_var, inputs.lengths) def begin_update( self, inputs: RaggedArray, drop: Dropout = 0.0 ) -> Tuple[Activations, Callable[..., None]]: if drop is None: # "drop is None" indicates prediction. It's one of the parts of # Thinc's API I'm least happy with... return self.predict(inputs), lambda dY, sgd=None: None max_original = max(inputs.lengths, default=0) model_kwargs = self.get_model_kwargs(inputs) self._model.train() # Prepare all the model arguments, including the attention mask y_var = self._model(**model_kwargs) output = self.make_activations(y_var, inputs.lengths) assert output.lh.data.shape[0] == inputs.data.shape[0], ( output.lh.data.shape, inputs.data.shape, ) def backward_pytorch(d_output: Activations, sgd: Optimizer = None) -> None: y_for_bwd = [] dy_for_bwd = [] if d_output.has_lh: assert d_output.lh.data.shape[0] == sum(d_output.lh.lengths) d_lh = d_output.lh.to_padded(to=max_original) if self.max_length and d_lh.shape[1] >= self.max_length: d_lh = d_lh[:, : self.max_length] dy_for_bwd.append(xp2torch(d_lh)) y_for_bwd.append(y_var[0]) if d_output.has_po: dy_for_bwd.append(xp2torch(d_output.po.data)) y_for_bwd.append(y_var[1]) if FINE_TUNE: torch.autograd.backward(y_for_bwd, grad_tensors=dy_for_bwd) if sgd is not None: if self._optimizer is None: self._optimizer = self._create_optimizer(sgd) if sgd.max_grad_norm: torch.nn.utils.clip_grad.clip_grad_norm_( self._model.parameters(), sgd.max_grad_norm ) optimizer = self._optimizer for group in optimizer.param_groups: group["lr"] = getattr(sgd, "trf_lr", sgd.alpha) optimizer.step() optimizer.zero_grad() self._update_pytorch_averages(sgd) return None self._model.eval() return output, backward_pytorch @contextlib.contextmanager def use_params(self, params): key_prefix = f"pytorch_{self.id}_" state_dict = {} for k, v in params.items(): if hasattr(k, "startswith") and k.startswith(key_prefix): state_dict[k.replace(key_prefix, "")] = xp2torch(v) if state_dict: backup = {k: v.clone() for k, v in self._model.state_dict().items()} self._model.load_state_dict(state_dict) yield self._model.load_state_dict(backup) else: yield def make_activations(self, fields, lengths) -> Activations: """Create Activations from the output tuples produced by PyTorch Transformers. Includes converting torch tensors to xp, and handling missing values. """ fields = list(fields) fields[0] = torch2xp(fields[0]) fields[0] = RaggedArray.from_padded(fields[0], lengths) assert fields[0].data.shape[0] == sum(lengths) # lh: last hidden # po: pooler_output # ah: all_hidden # aa: all_attention if len(fields) != 4: lh = fields[0] po = RaggedArray.blank() else: if isinstance(fields[1], tuple): fields[1] = RaggedArray.blank() else: fields[1] = RaggedArray(torch2xp(fields[1]), [1] * len(lengths)) lh, po, _, _2 = fields # Convert last_hidden_state to xp return Activations(lh, po) def get_model_kwargs(self, inputs): padded = inputs.to_padded(value=-1) if padded.ndim == 2: padded = padded.reshape(padded.shape + (1,)) ids = padded[:, :, 0] neg_idx = ids < 0 ids[neg_idx] = 0 ids = torch.as_tensor(ids, dtype=torch.int64) if padded.shape[2] == 2: segment_ids = padded[:, :, 1] numpy.place(segment_ids, segment_ids<0, 0) segment_ids = torch.as_tensor(segment_ids, dtype=torch.int64) else: segment_ids = torch.zeros_like(ids) # Calculate "attention mask" for BERT and XLNet, but not GPT2 (sigh) if isinstance(self._model, (transformers.BertModel, transformers.XLNetModel)): mask = self.ops.xp.ones(ids.shape, dtype=numpy.int_) mask[neg_idx] = 0 mask = xp2torch(mask) return { "input_ids": ids, "attention_mask": mask, "token_type_ids": segment_ids, } elif isinstance(self._model, (transformers.DistilBertModel)): # Mask, but no token type IDs for DistilBert (sigh again...) mask = self.ops.xp.ones(ids.shape, dtype=numpy.int_) mask[neg_idx] = 0 mask = xp2torch(mask) return {"input_ids": ids, "attention_mask": mask} else: return {"input_ids": ids, "token_type_ids": segment_ids} def _create_optimizer(self, sgd): optimizer = AdamW( self._model.parameters(), lr=getattr(sgd, "trf_lr", sgd.alpha), eps=sgd.eps, betas=(sgd.b1, sgd.b2), weight_decay=getattr(sgd, "trf_weight_decay", 0.0), ) optimizer.zero_grad() return optimizer def _update_pytorch_averages(self, sgd, *, init_steps=1): if sgd.averages is None: return # Collect parameters if we don't have them for name, param in self._model.state_dict().items(): key = f"pytorch_{self.id}_{name}" sgd.nr_update[key] += 1 xp_param = torch2xp(param) if key in sgd.averages: self.ops.update_averages( sgd.averages[key], xp_param, sgd.nr_update[key] ) else: sgd.averages[key] = xp_param.copy() sgd.nr_update[key] = init_steps def to_disk(self, path): torch.save(self._model.state_dict(), str(path)) def from_disk(self, path): if self.ops.device == "cpu": map_location = "cpu" else: map_location = "cuda:0" self._model.load_state_dict(torch.load(path, map_location=map_location)) self._model.to(map_location) def to_bytes(self): filelike = BytesIO() torch.save(self._model.state_dict(), filelike) filelike.seek(0) return filelike.getvalue() def from_bytes(self, data): filelike = BytesIO(data) filelike.seek(0) if self.ops.device == "cpu": map_location = "cpu" else: map_location = "cuda:0" self._model.load_state_dict(torch.load(filelike, map_location=map_location)) self._model.to(map_location)
37.992481
88
0.590243
eb5237ee19b1366d3f8afcf05da7a4a80734d3e4
1,467
py
Python
LED_Knight_Rider01.py
LekkerPrutsen/LED-matrix-experiments
62bd8b18be842df7648d5a09a87b203933541524
[ "MIT" ]
4
2017-01-27T15:08:05.000Z
2019-07-27T19:35:13.000Z
LED_Knight_Rider01.py
LekkerPrutsen/LED-matrix-experiments
62bd8b18be842df7648d5a09a87b203933541524
[ "MIT" ]
null
null
null
LED_Knight_Rider01.py
LekkerPrutsen/LED-matrix-experiments
62bd8b18be842df7648d5a09a87b203933541524
[ "MIT" ]
1
2018-03-31T13:09:00.000Z
2018-03-31T13:09:00.000Z
# -*- coding: utf-8 -*- import time from random import randint import max7219.led as led device = led.matrix(cascaded=4) device.orientation(90) print "Press Ctrl+C to stop" #ASCII codes symbol01 = 219 symbol02 = 178 symbol03 = 177 symbol04 = 176 duration = 0.2 try: while True: #position 1 device.letter(0, symbol01) device.letter(1, symbol02) device.letter(2, symbol04) device.letter(3, symbol04) time.sleep(duration) #position 2 device.letter(0, symbol02) device.letter(1, symbol01) device.letter(2, symbol04) device.clear(3) time.sleep(duration) #position 3 device.letter(0, symbol03) device.letter(1, symbol02) device.letter(2, symbol01) device.clear(3) time.sleep(duration) #position 4 device.letter(0, symbol04) device.letter(1, symbol03) device.letter(2, symbol02) device.letter(3, symbol01) time.sleep(duration) #position 5 device.clear(0) device.letter(1, symbol04) device.letter(2, symbol01) device.letter(3, symbol02) time.sleep(duration) #position 6 device.clear(0) device.letter(1, symbol01) device.letter(2, symbol02) device.letter(3, symbol03) time.sleep(duration) except KeyboardInterrupt: device.clear()
18.807692
34
0.587594
17abb5660d5577fd08a3c9ddab481c55cf7d159c
24,233
py
Python
tests/test_taskgroups.py
byronformwalt/anyio
35858dcd08d2522fee3f84b213d55d902ebbc2ff
[ "MIT" ]
null
null
null
tests/test_taskgroups.py
byronformwalt/anyio
35858dcd08d2522fee3f84b213d55d902ebbc2ff
[ "MIT" ]
null
null
null
tests/test_taskgroups.py
byronformwalt/anyio
35858dcd08d2522fee3f84b213d55d902ebbc2ff
[ "MIT" ]
null
null
null
import asyncio import re import sys import time import pytest import trio import anyio from anyio import ( CancelScope, ExceptionGroup, create_task_group, current_effective_deadline, current_time, fail_after, get_cancelled_exc_class, move_on_after, sleep, wait_all_tasks_blocked) if sys.version_info < (3, 7): current_task = asyncio.Task.current_task else: current_task = asyncio.current_task pytestmark = pytest.mark.anyio async def async_error(text, delay=0.1): try: if delay: await sleep(delay) finally: raise Exception(text) async def test_already_closed(): async with create_task_group() as tg: pass with pytest.raises(RuntimeError) as exc: tg.start_soon(async_error, 'fail') exc.match('This task group is not active; no new tasks can be started') async def test_success(): async def async_add(value): results.add(value) results = set() async with create_task_group() as tg: tg.start_soon(async_add, 'a') tg.start_soon(async_add, 'b') assert results == {'a', 'b'} @pytest.mark.parametrize('module', [ pytest.param(asyncio, id='asyncio'), pytest.param(trio, id='trio') ]) def test_run_natively(module): async def testfunc(): async with create_task_group() as tg: tg.start_soon(sleep, 0) if module is asyncio: from anyio._backends._asyncio import native_run try: native_run(testfunc()) finally: asyncio.set_event_loop(None) else: module.run(testfunc) async def test_start_soon_while_running(): async def task_func(): tg.start_soon(sleep, 0) async with create_task_group() as tg: tg.start_soon(task_func) async def test_start_soon_after_error(): with pytest.raises(ZeroDivisionError): async with create_task_group() as tg: a = 1 / 0 # noqa: F841 with pytest.raises(RuntimeError) as exc: tg.start_soon(sleep, 0) exc.match('This task group is not active; no new tasks can be started') async def test_start_no_value(): async def taskfunc(*, task_status): task_status.started() async with create_task_group() as tg: value = await tg.start(taskfunc) assert value is None async def test_start_with_value(): async def taskfunc(*, task_status): task_status.started('foo') async with create_task_group() as tg: value = await tg.start(taskfunc) assert value == 'foo' async def test_start_crash_before_started_call(): async def taskfunc(*, task_status): raise Exception('foo') async with create_task_group() as tg: with pytest.raises(Exception) as exc: await tg.start(taskfunc) exc.match('foo') async def test_start_crash_after_started_call(): async def taskfunc(*, task_status): task_status.started(2) raise Exception('foo') with pytest.raises(Exception) as exc: async with create_task_group() as tg: value = await tg.start(taskfunc) exc.match('foo') assert value == 2 async def test_start_no_started_call(): async def taskfunc(*, task_status): pass async with create_task_group() as tg: with pytest.raises(RuntimeError) as exc: await tg.start(taskfunc) exc.match('hild exited') async def test_start_cancelled(): async def taskfunc(*, task_status): nonlocal started, finished started = True await sleep(2) finished = True started = finished = False async with create_task_group() as tg: tg.cancel_scope.cancel() await tg.start(taskfunc) assert started assert not finished @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_start_native_host_cancelled(): async def taskfunc(*, task_status): nonlocal started, finished started = True await sleep(2) finished = True async def start_another(): async with create_task_group() as tg: await tg.start(taskfunc) started = finished = False task = asyncio.get_event_loop().create_task(start_another()) await wait_all_tasks_blocked() task.cancel() with pytest.raises(asyncio.CancelledError): await task assert started assert not finished @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_start_native_child_cancelled(): async def taskfunc(*, task_status): nonlocal task, finished task = current_task() await sleep(2) finished = True async def start_another(): async with create_task_group() as tg2: await tg2.start(taskfunc) task = None finished = False async with create_task_group() as tg: tg.start_soon(start_another) await wait_all_tasks_blocked() task.cancel() assert not finished async def test_start_exception_delivery(): def task_fn(*, task_status): task_status.started("hello") async with anyio.create_task_group() as tg: with pytest.raises(TypeError, match='to be synchronous$'): await tg.start(task_fn) async def test_host_exception(): async def set_result(value): nonlocal result await sleep(3) result = value result = None with pytest.raises(Exception) as exc: async with create_task_group() as tg: tg.start_soon(set_result, 'a') raise Exception('dummy error') exc.match('dummy error') assert result is None async def test_edge_cancellation(): async def dummy(): nonlocal marker marker = 1 # At this point the task has been cancelled so sleep() will raise an exception await sleep(0) # Execution should never get this far marker = 2 marker = None async with create_task_group() as tg: tg.start_soon(dummy) assert marker is None tg.cancel_scope.cancel() assert marker == 1 async def test_failing_child_task_cancels_host(): async def child(): await wait_all_tasks_blocked() raise Exception('foo') sleep_completed = False with pytest.raises(Exception) as exc: async with create_task_group() as tg: tg.start_soon(child) await sleep(0.5) sleep_completed = True exc.match('foo') assert not sleep_completed async def test_failing_host_task_cancels_children(): async def child(): nonlocal sleep_completed await sleep(1) sleep_completed = True sleep_completed = False with pytest.raises(Exception) as exc: async with create_task_group() as tg: tg.start_soon(child) await wait_all_tasks_blocked() raise Exception('foo') exc.match('foo') assert not sleep_completed async def test_cancel_scope_in_another_task(): async def child(): nonlocal result, local_scope with CancelScope() as local_scope: await sleep(2) result = True local_scope = None result = False async with create_task_group() as tg: tg.start_soon(child) while local_scope is None: await sleep(0) local_scope.cancel() assert not result async def test_cancel_propagation(): async def g(): async with create_task_group(): await sleep(1) assert False async with create_task_group() as tg: tg.start_soon(g) await sleep(0) tg.cancel_scope.cancel() async def test_cancel_twice(): """Test that the same task can receive two cancellations.""" async def cancel_group(): await wait_all_tasks_blocked() tg.cancel_scope.cancel() for _ in range(2): async with create_task_group() as tg: tg.start_soon(cancel_group) await sleep(1) pytest.fail('Execution should not reach this point') async def test_cancel_exiting_task_group(): """ Test that if a task group is waiting for subtasks to finish and it receives a cancellation, the subtasks are also cancelled and the waiting continues. """ async def waiter(): nonlocal cancel_received try: await sleep(5) finally: cancel_received = True async def subgroup(): async with create_task_group() as tg2: tg2.start_soon(waiter) cancel_received = False async with create_task_group() as tg: tg.start_soon(subgroup) await wait_all_tasks_blocked() tg.cancel_scope.cancel() assert cancel_received async def test_exception_group_children(): with pytest.raises(ExceptionGroup) as exc: async with create_task_group() as tg: tg.start_soon(async_error, 'task1') tg.start_soon(async_error, 'task2', 0.15) assert len(exc.value.exceptions) == 2 assert sorted(str(e) for e in exc.value.exceptions) == ['task1', 'task2'] assert exc.match('^2 exceptions were raised in the task group:\n') assert exc.match(r'Exception: task\d\n----') assert re.fullmatch( r"<ExceptionGroup: Exception\('task[12]',?\), Exception\('task[12]',?\)>", repr(exc.value)) async def test_exception_group_host(): with pytest.raises(ExceptionGroup) as exc: async with create_task_group() as tg: tg.start_soon(async_error, 'child', 2) await wait_all_tasks_blocked() raise Exception('host') assert len(exc.value.exceptions) == 2 assert sorted(str(e) for e in exc.value.exceptions) == ['child', 'host'] assert exc.match('^2 exceptions were raised in the task group:\n') assert exc.match(r'Exception: host\n----') async def test_escaping_cancelled_exception(): async with create_task_group() as tg: tg.cancel_scope.cancel() await sleep(0) async def test_cancel_scope_cleared(): with move_on_after(0.1): await sleep(1) await sleep(0) @pytest.mark.parametrize('delay', [0, 0.1], ids=['instant', 'delayed']) async def test_fail_after(delay): with pytest.raises(TimeoutError): with fail_after(delay) as scope: await sleep(1) assert scope.cancel_called async def test_fail_after_no_timeout(): with fail_after(None) as scope: assert scope.deadline == float('inf') await sleep(0.1) assert not scope.cancel_called async def test_fail_after_after_cancellation(): event = anyio.Event() async with anyio.create_task_group() as tg: tg.cancel_scope.cancel() await event.wait() block_complete = False with pytest.raises(TimeoutError): with fail_after(0.1): await anyio.sleep(0.5) block_complete = True assert not block_complete @pytest.mark.parametrize('delay', [0, 0.1], ids=['instant', 'delayed']) async def test_move_on_after(delay): result = False with move_on_after(delay) as scope: await sleep(1) result = True assert not result assert scope.cancel_called async def test_move_on_after_no_timeout(): result = False with move_on_after(None) as scope: assert scope.deadline == float('inf') await sleep(0.1) result = True assert result assert not scope.cancel_called async def test_nested_move_on_after(): sleep_completed = inner_scope_completed = False with move_on_after(0.1) as outer_scope: assert current_effective_deadline() == outer_scope.deadline with move_on_after(1) as inner_scope: assert current_effective_deadline() == outer_scope.deadline await sleep(2) sleep_completed = True inner_scope_completed = True assert not sleep_completed assert not inner_scope_completed assert outer_scope.cancel_called assert not inner_scope.cancel_called async def test_shielding(): async def cancel_when_ready(): await wait_all_tasks_blocked() tg.cancel_scope.cancel() inner_sleep_completed = outer_sleep_completed = False async with create_task_group() as tg: tg.start_soon(cancel_when_ready) with move_on_after(10, shield=True) as inner_scope: assert inner_scope.shield await sleep(0.1) inner_sleep_completed = True await sleep(1) outer_sleep_completed = True assert inner_sleep_completed assert not outer_sleep_completed assert tg.cancel_scope.cancel_called assert not inner_scope.cancel_called async def test_cancel_from_shielded_scope(): async with create_task_group() as tg: with CancelScope(shield=True) as inner_scope: assert inner_scope.shield tg.cancel_scope.cancel() with pytest.raises(get_cancelled_exc_class()): await sleep(0.01) with pytest.raises(get_cancelled_exc_class()): await sleep(0.01) @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_cancel_host_asyncgen(): async def host_task(): nonlocal done async with create_task_group() as tg: with CancelScope(shield=True) as inner_scope: assert inner_scope.shield tg.cancel_scope.cancel() with pytest.raises(get_cancelled_exc_class()): await sleep(0) with pytest.raises(get_cancelled_exc_class()): await sleep(0) done = True async def host_agen_fn(): await host_task() yield pytest.fail("host_agen_fn should only be __anext__ed once") done = False host_agen = host_agen_fn() try: await asyncio.get_event_loop().create_task(host_agen.__anext__()) finally: await host_agen.aclose() assert done async def test_shielding_immediate_scope_cancelled(): async def cancel_when_ready(): await wait_all_tasks_blocked() scope.cancel() sleep_completed = False async with create_task_group() as tg: with CancelScope(shield=True) as scope: tg.start_soon(cancel_when_ready) await sleep(0.5) sleep_completed = True assert not sleep_completed async def test_cancel_scope_in_child_task(): async def child(): nonlocal child_scope with CancelScope() as child_scope: await sleep(2) child_scope = None host_done = False async with create_task_group() as tg: tg.start_soon(child) await wait_all_tasks_blocked() child_scope.cancel() await sleep(0.1) host_done = True assert host_done assert not tg.cancel_scope.cancel_called async def test_exception_cancels_siblings(): async def child(fail): if fail: raise Exception('foo') else: nonlocal sleep_completed await sleep(1) sleep_completed = True sleep_completed = False with pytest.raises(Exception) as exc: async with create_task_group() as tg: tg.start_soon(child, False) await wait_all_tasks_blocked() tg.start_soon(child, True) exc.match('foo') assert not sleep_completed async def test_cancel_cascade(): async def do_something(): async with create_task_group() as tg2: tg2.start_soon(sleep, 1) raise Exception('foo') async with create_task_group() as tg: tg.start_soon(do_something) await wait_all_tasks_blocked() tg.cancel_scope.cancel() async def test_cancelled_parent(): async def child(): with CancelScope(): await sleep(1) raise Exception('foo') async def parent(tg): await wait_all_tasks_blocked() tg.start_soon(child) async with create_task_group() as tg: tg.start_soon(parent, tg) tg.cancel_scope.cancel() async def test_shielded_deadline(): with move_on_after(10): with CancelScope(shield=True): with move_on_after(1000): assert current_effective_deadline() - current_time() > 900 async def test_deadline_reached_on_start(): with move_on_after(0): await sleep(0) pytest.fail('Execution should not reach this point') async def test_deadline_moved(): with fail_after(0.1) as scope: scope.deadline += 0.3 await sleep(0.2) async def test_timeout_error_with_multiple_cancellations(): with pytest.raises(TimeoutError): with fail_after(0.1): async with create_task_group() as tg: tg.start_soon(sleep, 2) await sleep(2) async def test_nested_fail_after(): async def killer(scope): await wait_all_tasks_blocked() scope.cancel() async with create_task_group() as tg: with CancelScope() as scope: with CancelScope(): tg.start_soon(killer, scope) with fail_after(1): await sleep(2) pytest.fail('Execution should not reach this point') pytest.fail('Execution should not reach this point either') pytest.fail('Execution should also not reach this point') assert scope.cancel_called async def test_nested_shield(): async def killer(scope): await wait_all_tasks_blocked() scope.cancel() with pytest.raises(TimeoutError): async with create_task_group() as tg: with CancelScope() as scope: with CancelScope(shield=True): tg.start_soon(killer, scope) with fail_after(0.2): await sleep(2) def test_task_group_in_generator(anyio_backend_name, anyio_backend_options): async def task_group_generator(): async with create_task_group(): yield gen = task_group_generator() anyio.run(gen.__anext__, backend=anyio_backend_name, backend_options=anyio_backend_options) pytest.raises(StopAsyncIteration, anyio.run, gen.__anext__, backend=anyio_backend_name, backend_options=anyio_backend_options) async def test_exception_group_filtering(): """Test that CancelledErrors are filtered out of nested exception groups.""" async def fail(name): try: await anyio.sleep(.1) finally: raise Exception('%s task failed' % name) async def fn(): async with anyio.create_task_group() as tg: tg.start_soon(fail, 'parent') async with anyio.create_task_group() as tg2: tg2.start_soon(fail, 'child') await anyio.sleep(1) with pytest.raises(ExceptionGroup) as exc: await fn() assert len(exc.value.exceptions) == 2 assert str(exc.value.exceptions[0]) == 'parent task failed' assert str(exc.value.exceptions[1]) == 'child task failed' async def test_cancel_propagation_with_inner_spawn(): async def g(): async with anyio.create_task_group() as tg2: tg2.start_soon(anyio.sleep, 10) await anyio.sleep(1) assert False async with anyio.create_task_group() as tg: tg.start_soon(g) await wait_all_tasks_blocked() tg.cancel_scope.cancel() async def test_escaping_cancelled_error_from_cancelled_task(): """Regression test for issue #88. No CancelledError should escape the outer scope.""" with CancelScope() as scope: with move_on_after(0.1): await sleep(1) scope.cancel() @pytest.mark.filterwarnings('ignore:"@coroutine" decorator is deprecated:DeprecationWarning') def test_cancel_generator_based_task(): from asyncio import coroutine async def native_coro_part(): with CancelScope() as scope: scope.cancel() @coroutine def generator_part(): yield from native_coro_part() anyio.run(generator_part, backend='asyncio') async def test_suppress_exception_context(): """ Test that the __context__ attribute has been cleared when the exception is re-raised in the exception group. This prevents recursive tracebacks. """ with pytest.raises(ValueError) as exc: async with create_task_group() as tg: tg.cancel_scope.cancel() async with create_task_group() as tg2: tg2.start_soon(sleep, 1) raise ValueError assert exc.value.__context__ is None @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_cancel_native_future_tasks(): async def wait_native_future(): loop = asyncio.get_event_loop() await loop.create_future() async with anyio.create_task_group() as tg: tg.start_soon(wait_native_future) tg.cancel_scope.cancel() @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_cancel_native_future_tasks_cancel_scope(): async def wait_native_future(): with anyio.CancelScope(): loop = asyncio.get_event_loop() await loop.create_future() async with anyio.create_task_group() as tg: tg.start_soon(wait_native_future) tg.cancel_scope.cancel() @pytest.mark.parametrize('anyio_backend', ['asyncio']) async def test_cancel_completed_task(): loop = asyncio.get_event_loop() old_exception_handler = loop.get_exception_handler() exceptions = [] def exception_handler(*args, **kwargs): exceptions.append((args, kwargs)) loop.set_exception_handler(exception_handler) try: async def noop(): pass async with anyio.create_task_group() as tg: tg.start_soon(noop) tg.cancel_scope.cancel() assert exceptions == [] finally: loop.set_exception_handler(old_exception_handler) async def test_task_in_sync_spawn_callback(): outer_task_id = anyio.get_current_task().id inner_task_id = None def task_wrap(): assert anyio.get_current_task().id == outer_task_id async def corofn(): nonlocal inner_task_id inner_task_id = anyio.get_current_task().id return corofn() async with create_task_group() as tg: tg.start_soon(task_wrap) assert inner_task_id is not None assert inner_task_id != outer_task_id async def test_shielded_cancel_sleep_time(): """Test that cancelling a shielded tasks spends more time sleeping than cancelling.""" event = anyio.Event() hang_time = 0.2 async def set_event(): await sleep(hang_time) event.set() async def never_cancel_task(): with CancelScope(shield=True): await sleep(0.2) await event.wait() async with create_task_group() as tg: tg.start_soon(set_event) async with create_task_group() as tg: tg.start_soon(never_cancel_task) tg.cancel_scope.cancel() process_time = time.process_time() assert (time.process_time() - process_time) < hang_time async def test_cancelscope_wrong_exit_order(): """ Test that a RuntimeError is raised if the task tries to exit cancel scopes in the wrong order. """ scope1 = CancelScope() scope2 = CancelScope() scope1.__enter__() scope2.__enter__() pytest.raises(RuntimeError, scope1.__exit__, None, None, None) async def test_cancelscope_exit_before_enter(): """Test that a RuntimeError is raised if one tries to exit a cancel scope before entering.""" scope = CancelScope() pytest.raises(RuntimeError, scope.__exit__, None, None, None) @pytest.mark.parametrize('anyio_backend', ['asyncio']) # trio does not check for this yet async def test_cancelscope_exit_in_wrong_task(): async def enter_scope(scope): scope.__enter__() async def exit_scope(scope): scope.__exit__(None, None, None) scope = CancelScope() async with create_task_group() as tg: tg.start_soon(enter_scope, scope) with pytest.raises(RuntimeError): async with create_task_group() as tg: tg.start_soon(exit_scope, scope)
27.32018
99
0.653695
ebef1c101324744cadab3ce6c3e39ccb05c9efed
1,934
py
Python
Splunk_TA_paloalto/bin/Splunk_TA_paloalto_rh_cortex_xdr.py
moshekaplan/Splunk-Apps
fc95334aa2ee2209b221bd5b2a6a520ad9ecab4a
[ "0BSD" ]
34
2016-03-25T08:09:05.000Z
2020-07-23T05:04:16.000Z
Splunk_TA_paloalto/bin/Splunk_TA_paloalto_rh_cortex_xdr.py
moshekaplan/Splunk-Apps
fc95334aa2ee2209b221bd5b2a6a520ad9ecab4a
[ "0BSD" ]
127
2020-08-07T21:56:58.000Z
2022-03-30T18:24:53.000Z
Splunk_TA_paloalto/bin/Splunk_TA_paloalto_rh_cortex_xdr.py
moshekaplan/Splunk-Apps
fc95334aa2ee2209b221bd5b2a6a520ad9ecab4a
[ "0BSD" ]
22
2016-03-26T09:39:19.000Z
2020-07-27T21:17:55.000Z
import splunk_ta_paloalto_declare from splunktaucclib.rest_handler.endpoint import ( field, validator, RestModel, DataInputModel, ) from splunktaucclib.rest_handler import admin_external, util from splunk_aoblib.rest_migration import ConfigMigrationHandler util.remove_http_proxy_env_vars() fields = [ field.RestField( 'interval', required=True, encrypted=False, default=None, validator=validator.Pattern( regex=r"""^\-[1-9]\d*$|^\d*$""", ) ), field.RestField( 'index', required=True, encrypted=False, default='default', validator=validator.String( min_len=1, max_len=80, ) ), field.RestField( 'xdr_tenant', required=True, encrypted=False, default=None, validator=validator.String( min_len=0, max_len=8192, ) ), field.RestField( 'xdr_region', required=True, encrypted=False, default='us', validator=validator.String( min_len=0, max_len=8192, ) ), field.RestField( 'xdr_key_id', required=True, encrypted=True, default=None, validator=validator.String( min_len=0, max_len=8192, ) ), field.RestField( 'xdr_key', required=True, encrypted=True, default=None, validator=validator.String( min_len=0, max_len=8192, ) ), field.RestField( 'disabled', required=False, validator=None ) ] model = RestModel(fields, name=None) endpoint = DataInputModel( 'cortex_xdr', model, ) if __name__ == '__main__': admin_external.handle( endpoint, handler=ConfigMigrationHandler, )
19.535354
63
0.544467
430e28f567856a1115587b43a19d9f22689d789f
752
py
Python
Client/scraping.py
alejodiazg/DadaPoemGenerator
798d6e4a80b3b79201e65e394f11748a5d25ea8a
[ "MIT" ]
null
null
null
Client/scraping.py
alejodiazg/DadaPoemGenerator
798d6e4a80b3b79201e65e394f11748a5d25ea8a
[ "MIT" ]
null
null
null
Client/scraping.py
alejodiazg/DadaPoemGenerator
798d6e4a80b3b79201e65e394f11748a5d25ea8a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from lxml import html import requests from random import shuffle from re import search print(" ") print("***** INSTRUCCIONES PARA REALIZAR UN POEMA DADAÍSTA *****") print("***** (Sin necesidad de periódicos o tijeras) *****") print(" ") url = raw_input("Introduzca el URL del artículo seleccionado: ") page = requests.get(url) tree = html.fromstring(page.content) texto = tree.xpath('//*[@class="entry-content"]/p/text()') text = [] for line in texto: aux = line.split() for word in aux: word = word.encode('utf8') objMatch = search(r'[\wÁÉÍÓÚÑáéíóúñ]+',word) if objMatch != None: text += [objMatch.group()] shuffle(text) shuffle(text) f = open('prueba', 'w') for word in text: f.write(word) f.write("\n")
24.258065
66
0.658245
5c1a11917529a867c7dfd9d48fa45816d5863d2a
959
py
Python
ML_and_DL/gpu_project.py
AshfakYeafi/AI_practice_code
3d8a0b9382f5903e840ce59218ebb95ca962ab01
[ "MIT" ]
null
null
null
ML_and_DL/gpu_project.py
AshfakYeafi/AI_practice_code
3d8a0b9382f5903e840ce59218ebb95ca962ab01
[ "MIT" ]
null
null
null
ML_and_DL/gpu_project.py
AshfakYeafi/AI_practice_code
3d8a0b9382f5903e840ce59218ebb95ca962ab01
[ "MIT" ]
null
null
null
import tensorflow as tf import cv2 from tensorflow import keras import matplotlib.pyplot as plt import numpy as np (x_train,y_train),(x_test,y_test)=tf.keras.datasets.cifar10.load_data() classes=["airplane", "automobile", "bird","cat","deer","dog","frog","horse","ship","truck"] x_train_scaled=x_train/255 x_test_scaled=x_test/255 print(x_train_scaled.shape) y_train_catargorical=keras.utils.to_categorical( y_train,num_classes=10 ) print(y_train_catargorical[0:5]) model=keras.Sequential([ keras.layers.Flatten(input_shape=(32,32,3)), keras.layers.Dense(3000,activation="relu"), keras.layers.Dense(1000,activation="relu"), keras.layers.Dense(10,activation="sigmoid") ]) model.compile(optimizer="SGD", loss="categorical_crossentropy", metrics=['accuracy']) model.fit(x_train_scaled,y_train_catargorical,epochs=50) print(np.argmax(model.predict(x_test_scaled)[0])) print(y_train[0][0])
18.09434
91
0.727842
7e938db1a1cb23f0ac8b5d897b9240c86e4f9287
955
py
Python
stable_baselines3/common/recorder.py
offdroid/stable-baselines3
793bf44e11fe1e6735e8984add42442e5ab59d0f
[ "MIT" ]
null
null
null
stable_baselines3/common/recorder.py
offdroid/stable-baselines3
793bf44e11fe1e6735e8984add42442e5ab59d0f
[ "MIT" ]
null
null
null
stable_baselines3/common/recorder.py
offdroid/stable-baselines3
793bf44e11fe1e6735e8984add42442e5ab59d0f
[ "MIT" ]
null
null
null
from typing import List, Tuple from enum import Enum class ReplayMode(Enum): """No recording or replay""" IGNORE = 1 """Record the training buffer""" RECORDING = 2 """Replay a given buffer""" REPLAYING = 3 class Recording: def __init__(self, source: List) -> None: self.pos = 0 self._history = source def __iter__(self) -> "Recording": self.pos = 0 return self def __next__(self) -> Tuple: if self.pos <= len(self._history): x = self._history[self.pos] self.pos += 1 return x else: raise StopIteration class Recorder: def __init__(self) -> None: self._recording = [] def append(self, new_obs, rewards, dones, infos, buffer_actions) -> None: self._recording.append((new_obs, rewards, dones, infos, buffer_actions)) def freeze(self) -> Recording: return Recording(self._recording)
24.487179
80
0.597906
642cf8d3a51d63ae2db4a42fb7e03f804a6e2c42
571
py
Python
qlib/contrib/online/__init__.py
lpd6375/qlib
3a911bc09ba5136cd7c61c2c8dcca8a63339e738
[ "MIT" ]
1
2022-02-05T06:54:28.000Z
2022-02-05T06:54:28.000Z
qlib/contrib/online/__init__.py
lpd6375/qlib
3a911bc09ba5136cd7c61c2c8dcca8a63339e738
[ "MIT" ]
null
null
null
qlib/contrib/online/__init__.py
lpd6375/qlib
3a911bc09ba5136cd7c61c2c8dcca8a63339e738
[ "MIT" ]
1
2022-03-22T06:37:38.000Z
2022-03-22T06:37:38.000Z
# pylint: skip-file ''' TODO: - Online needs that the model have such method def get_data_with_date(self, date, **kwargs): """ Will be called in online module need to return the data that used to predict the label (score) of stocks at date. :param date: pd.Timestamp predict date :return: data: the input data that used to predict the label (score) of stocks at predict date. """ raise NotImplementedError("get_data_with_date for this model is not implemented.") '''
27.190476
98
0.618214
8cb519dd73ef2509e17d878d0ec8f2d5b5f35250
7,086
py
Python
test/functional/llmq-chainlocks.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
null
null
null
test/functional/llmq-chainlocks.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
null
null
null
test/functional/llmq-chainlocks.py
farsider350/AUTX-Core
6d00d1e027a5a6dffb3b0815a155e4515ced007b
[ "MIT" ]
1
2021-01-03T02:35:54.000Z
2021-01-03T02:35:54.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2020 The autx Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import time from test_framework.mininode import * from test_framework.test_framework import autxTestFramework from test_framework.util import * ''' llmq-chainlocks.py Checks LLMQs based ChainLocks ''' class LLMQChainLocksTest(autxTestFramework): def set_test_params(self): self.set_autx_test_params(6, 5, fast_dip3_enforcement=True) def run_test(self): self.log.info("Wait for dip0008 activation") while self.nodes[0].getblockchaininfo()["bip9_softforks"]["dip0008"]["status"] != "active": self.nodes[0].generate(10) sync_blocks(self.nodes, timeout=60*5) self.nodes[0].spork("SPORK_17_QUORUM_DKG_ENABLED", 0) self.wait_for_sporks_same() self.log.info("Mining 4 quorums") for i in range(4): self.mine_quorum() self.nodes[0].spork("SPORK_19_CHAINLOCKS_ENABLED", 0) self.wait_for_sporks_same() self.log.info("Mine single block, wait for chainlock") self.nodes[0].generate(1) self.wait_for_chainlocked_block_all_nodes(self.nodes[0].getbestblockhash()) self.log.info("Mine many blocks, wait for chainlock") self.nodes[0].generate(20) # We need more time here due to 20 blocks being generated at once self.wait_for_chainlocked_block_all_nodes(self.nodes[0].getbestblockhash(), timeout=30) self.log.info("Assert that all blocks up until the tip are chainlocked") for h in range(1, self.nodes[0].getblockcount()): block = self.nodes[0].getblock(self.nodes[0].getblockhash(h)) assert(block['chainlock']) self.log.info("Isolate node, mine on another, and reconnect") isolate_node(self.nodes[0]) node0_mining_addr = self.nodes[0].getnewaddress() node0_tip = self.nodes[0].getbestblockhash() self.nodes[1].generatetoaddress(5, node0_mining_addr) self.wait_for_chainlocked_block(self.nodes[1], self.nodes[1].getbestblockhash()) assert(self.nodes[0].getbestblockhash() == node0_tip) reconnect_isolated_node(self.nodes[0], 1) self.nodes[1].generatetoaddress(1, node0_mining_addr) self.wait_for_chainlocked_block(self.nodes[0], self.nodes[1].getbestblockhash()) self.log.info("Isolate node, mine on both parts of the network, and reconnect") isolate_node(self.nodes[0]) self.nodes[0].generate(5) self.nodes[1].generatetoaddress(1, node0_mining_addr) good_tip = self.nodes[1].getbestblockhash() self.wait_for_chainlocked_block(self.nodes[1], good_tip) assert(not self.nodes[0].getblock(self.nodes[0].getbestblockhash())["chainlock"]) reconnect_isolated_node(self.nodes[0], 1) self.nodes[1].generatetoaddress(1, node0_mining_addr) self.wait_for_chainlocked_block(self.nodes[0], self.nodes[1].getbestblockhash()) assert(self.nodes[0].getblock(self.nodes[0].getbestblockhash())["previousblockhash"] == good_tip) assert(self.nodes[1].getblock(self.nodes[1].getbestblockhash())["previousblockhash"] == good_tip) self.log.info("Keep node connected and let it try to reorg the chain") good_tip = self.nodes[0].getbestblockhash() self.log.info("Restart it so that it forgets all the chainlocks from the past") self.stop_node(0) self.start_node(0) connect_nodes(self.nodes[0], 1) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) self.log.info("Now try to reorg the chain") self.nodes[0].generate(2) time.sleep(6) assert(self.nodes[1].getbestblockhash() == good_tip) self.nodes[0].generate(2) time.sleep(6) assert(self.nodes[1].getbestblockhash() == good_tip) self.log.info("Now let the node which is on the wrong chain reorg back to the locked chain") self.nodes[0].reconsiderblock(good_tip) assert(self.nodes[0].getbestblockhash() != good_tip) self.nodes[1].generatetoaddress(1, node0_mining_addr) self.wait_for_chainlocked_block(self.nodes[0], self.nodes[1].getbestblockhash()) assert(self.nodes[0].getbestblockhash() == self.nodes[1].getbestblockhash()) self.log.info("Enable LLMQ bases InstantSend, which also enables checks for \"safe\" transactions") self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 0) self.nodes[0].spork("SPORK_3_INSTANTSEND_BLOCK_FILTERING", 0) self.wait_for_sporks_same() self.log.info("Isolate a node and let it create some transactions which won't get IS locked") isolate_node(self.nodes[0]) txs = [] for i in range(3): txs.append(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1)) txs += self.create_chained_txs(self.nodes[0], 1) self.log.info("Assert that after block generation these TXs are NOT included (as they are \"unsafe\")") self.nodes[0].generate(1) for txid in txs: tx = self.nodes[0].getrawtransaction(txid, 1) assert("confirmations" not in tx) time.sleep(1) assert(not self.nodes[0].getblock(self.nodes[0].getbestblockhash())["chainlock"]) self.log.info("Disable LLMQ based InstantSend for a very short time (this never gets propagated to other nodes)") self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 4070908800) self.log.info("Now the TXs should be included") self.nodes[0].generate(1) self.nodes[0].spork("SPORK_2_INSTANTSEND_ENABLED", 0) self.log.info("Assert that TXs got included now") for txid in txs: tx = self.nodes[0].getrawtransaction(txid, 1) assert("confirmations" in tx and tx["confirmations"] > 0) # Enable network on first node again, which will cause the blocks to propagate and IS locks to happen retroactively # for the mined TXs, which will then allow the network to create a CLSIG self.log.info("Reenable network on first node and wait for chainlock") reconnect_isolated_node(self.nodes[0], 1) self.wait_for_chainlocked_block(self.nodes[0], self.nodes[0].getbestblockhash(), timeout=30) def create_chained_txs(self, node, amount): txid = node.sendtoaddress(node.getnewaddress(), amount) tx = node.getrawtransaction(txid, 1) inputs = [] valueIn = 0 for txout in tx["vout"]: inputs.append({"txid": txid, "vout": txout["n"]}) valueIn += txout["value"] outputs = { node.getnewaddress(): round(float(valueIn) - 0.0001, 6) } rawtx = node.createrawtransaction(inputs, outputs) rawtx = node.signrawtransaction(rawtx) rawtxid = node.sendrawtransaction(rawtx["hex"]) return [txid, rawtxid] if __name__ == '__main__': LLMQChainLocksTest().main()
45.716129
123
0.670336
8e5ee16141e43d4fa74f17f6c4f49a59d45501bc
6,950
py
Python
steps.py
undoingtech/Sticky-Steps
fdb3af0c4c7e0ccf3689204d298d0794c2f99dc6
[ "MIT" ]
null
null
null
steps.py
undoingtech/Sticky-Steps
fdb3af0c4c7e0ccf3689204d298d0794c2f99dc6
[ "MIT" ]
null
null
null
steps.py
undoingtech/Sticky-Steps
fdb3af0c4c7e0ccf3689204d298d0794c2f99dc6
[ "MIT" ]
null
null
null
""" TODO: cosmetics - get rid of the lines from html_label """ """ TODO: functionality - new temporary input file (opens editor) - save temporary input file (opens save dialog) - text resizing / zoom - remember text size / zoom on close - open file from url - copy button for codeblocks and code - remember file and step on close - remember window position and size on close - color preferences - add step before current step - add step after current step - add note to step """ """TODO: bug fixes """ """TODO: non-functionality - Readme - video link - description of each file - Help / tutorial default first open md file - Example md instruction files """ from tkinter import * from tkinter import filedialog from tkinter import simpledialog from tkinter import messagebox from tkhtmlview import HTMLLabel import markdown import editor # SOURCE: https://stackoverflow.com/questions/2632199/how-do-i-get-the-path-of-the-current-executed-file-in-python import inspect, os.path class Steps: def __init__(self, file_location): md_file = open(file_location) md_text = md_file.read() md_file.close() html = markdown.markdown(md_text) # variables that don't change after init self.step_list = html.split("<hr />") self.step_count = len(self.step_list) self.file_location = file_location # - blue #a9edf1 SOURCE: https://www.color-hex.com/color-palette/104537 # - yellow #f1f58f SOURCE: https://www.color-hex.com/color-palette/104537 # - purple #CB94FE - formerly #9985ff # - pink #e095f9 self.colors = ["#f1f58f", "#a9edf1", "#CB94FE", "#e095f9"] # variables that do change after init self.number = 1 self.html = self.step_list[0] self.color = self.colors[0] def goto_step_number(self, step_number): # if requested step number is invalid, return the current step if step_number in range(1, self.step_count + 1): self.number = step_number self.html = self.step_list[step_number - 1] self.color = self.get_step_color(step_number) return self.html def get_step_color(self, step_number): color_index = step_number - 1 if step_number >= len(self.colors): color_index = (step_number - 1) % len(self.colors) return self.colors[color_index] class StickySteps: root = Tk() root.title("Sticky Steps") widgets = dict() width = 300 height = 200 y = 10 step = None def __init__(self): # make the sticky sized window appear in the top right corner x = self.root.winfo_screenwidth() - self.width - 10 self.root.geometry("%dx%d+%d+%d" % (self.width, self.height, x, self.y)) # add gui elements self.widgets["counter"] = Label(self.root, text = "") self.widgets["counter"].pack() self.widgets["html_label"] = HTMLLabel(self.root, html="") self.widgets["html_label"].pack(fill="both", expand=True) self.widgets["html_label"].fit_height() self.widgets["bottomButtons"] = Frame(self.root) self.widgets["bottomButtons"].pack(side = BOTTOM) # make buttons to paginate through step list self.widgets["prev_button"] = Button(self.widgets["bottomButtons"], text="<", command=self.prev_step) self.widgets["prev_button"].grid(row = 0, column = 0) self.widgets["open_button"] = Button(self.widgets["bottomButtons"], text="o", command=self.open_file) self.widgets["open_button"].grid(row = 0, column = 1) self.widgets["next_button"] = Button(self.widgets["bottomButtons"], text=">", command=self.next_step) self.widgets["next_button"].grid(row = 0, column = 2) self.root["background"] = "#f1f58f" for widget in self.widgets: #print("widget: %s - widget type: %s" % (widget, type(widget))) self.widgets[widget].configure(bg="#f1f58f", bd=0, relief=FLAT) # because html_label only picks up color after the configure for some reason self.widgets["html_label"].set_html("") self.root.bind("<h>", lambda e:self.help_message()) self.root.bind("<o>", lambda e:self.open_file()) self.root.bind("<e>", lambda e:self.edit_file()) self.root.bind("<Right>", lambda e:self.next_step()) self.root.bind("<Left>", lambda e:self.prev_step()) self.root.bind("<g>", lambda e:self.goto_step_number()) self.root.bind("<Control-q>", lambda e:self.root.destroy()) self.keybindings = dict() self.keybindings["h"] = "Show keybindings" self.keybindings["o"] = "Open local file" self.keybindings["e"] = "Edit file" self.keybindings["Right"] = "Go to next step" self.keybindings["Left"] = "Go to previous step" self.keybindings["g"] = "Go to step [number]" self.keybindings["Control-q"] = "Quit" def help_message(self): # Oneliner SOURCE: https://stackoverflow.com/questions/44689546/how-to-print-out-a-dictionary-nicely-in-python message = "\n".join("{}\t{}".format(k, v) for k, v in self.keybindings.items()) messagebox.showinfo("Key bindings", message) def open_file(self, file_location=None): if file_location is None: file_location = filedialog.askopenfilename(filetypes=[("markdown files", "*.md")]) if type(file_location) is not str or file_location == "": return self.step = Steps(file_location) self.widgets["html_label"].set_html(self.step.html) self.update_counter() def update_counter(self): self.widgets["counter"].config(text = "%d / %d" % (self.step.number, self.step.step_count)) def update_color(self): self.root["background"] = self.step.color for widget in self.widgets: #print("widget: %s - widget type: %s" % (widget, type(widget))) self.widgets[widget].configure(bg=self.step.color) def update_widgets(self): self.update_counter() self.update_color() def goto_step_number(self): if self.step is None: return step_number = simpledialog.askinteger("Input", "Go to step", parent=self.root) html = self.step.goto_step_number(step_number) # must set html after update widgets so html has same color self.update_widgets() self.widgets["html_label"].set_html(html) def goto_step_increment(self, increment): if self.step is None: return html = self.step.goto_step_number(self.step.number + increment) # must set html after update widgets so html has same color self.update_widgets() self.widgets["html_label"].set_html(html) def prev_step(self): self.goto_step_increment(-1) def next_step(self): self.goto_step_increment(1) def edit_file(self): if self.step is None: return target_file = self.step.file_location editor(filename=target_file) self.open_file(target_file) def run(self): # SOURCE for getting file location: https://stackoverflow.com/questions/2632199/how-do-i-get-the-path-of-the-current-executed-file-in-python filename = inspect.getframeinfo(inspect.currentframe()).filename path = os.path.dirname(os.path.abspath(filename)) # SOURCE for joining path: https://stackoverflow.com/questions/7132861/build-the-full-path-filename-in-python test_file = os.path.join(path, "test.md") self.open_file(test_file) self.root.mainloop() stickysteps = StickySteps() stickysteps.run()
33.253589
142
0.71554
87ece73966885a4b54b7c9a3af968b9f263fb60d
620
py
Python
pyvac/tests/mocks/celery.py
sayoun/pyvac
45ade8de2f29864d500e0358e38ebcbd2674a06d
[ "BSD-3-Clause" ]
21
2015-11-19T17:36:46.000Z
2021-07-02T15:48:21.000Z
pyvac/tests/mocks/celery.py
sayoun/pyvac
45ade8de2f29864d500e0358e38ebcbd2674a06d
[ "BSD-3-Clause" ]
28
2015-07-03T07:54:48.000Z
2022-03-21T22:16:23.000Z
pyvac/tests/mocks/celery.py
sayoun/pyvac
45ade8de2f29864d500e0358e38ebcbd2674a06d
[ "BSD-3-Clause" ]
13
2015-07-03T07:30:04.000Z
2020-07-03T15:22:51.000Z
# -*- coding: utf-8 -*- """ Mock classses for Celery subtask method and Task class. """ def subtask(task): return task class DummyTask(object): _ids = { 'worker_approved': 10, 'worker_accepted': 20, 'worker_denied': 30, } def __init__(self, task=None): self.task = task @property def task_id(self): return self._ids[self.task] @property def name(self): return self.task def delay(self, **kwargs): return self def apply_async(self, **kwargs): return self def send(self, **kwargs): return True
16.756757
63
0.570968
6acba325333dfee5254429a311e85022dc800296
7,075
py
Python
ucsb/repository/asset_repository.py
jasunchen/agmonitor_backend
2eea26732dea09080af2a7e700c24ef7f9300f2c
[ "MIT" ]
null
null
null
ucsb/repository/asset_repository.py
jasunchen/agmonitor_backend
2eea26732dea09080af2a7e700c24ef7f9300f2c
[ "MIT" ]
null
null
null
ucsb/repository/asset_repository.py
jasunchen/agmonitor_backend
2eea26732dea09080af2a7e700c24ef7f9300f2c
[ "MIT" ]
null
null
null
from ucsb.models import user_asset, user from rest_framework.response import Response from rest_framework.decorators import api_view from ucsb.repository.asset_data_repository import delete_asset_data_helper from django.forms.models import model_to_dict from ucsb.repository.helpers import * @api_view(['POST']) def add_asset(request): params = ["email", "name", "description", "type_of_asset"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) email = request.data.get('email') tmp_user = user(user_email=email) name = request.data.get('name') desc = request.data.get('description') if request.data.get("type_of_asset", None) == "generation": params = ["declination", "azimuth", "modules_power"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) declination = request.data.get('declination') azimuth = request.data.get('azimuth') modules_power = request.data.get('modules_power') asset = user_asset(user=tmp_user, asset_name=name, description=desc, declination=declination, azimuth=azimuth, modules_power=modules_power, type_of_asset="generation") asset.save() elif request.data.get("type_of_asset", None) == "flexible": params = ["start_charge_time", "end_charge_time", "demand", "duration"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) start_time = request.data.get('start_charge_time') end_time = request.data.get('end_charge_time') dmd = request.data.get('demand') dur = request.data.get('duration') asset = user_asset(user=tmp_user, asset_name=name, description=desc, start_charge_time=start_time, end_charge_time=end_time, type_of_asset="flexible",demand=dmd, duration=dur) asset.save() else: asset = user_asset(user=tmp_user, asset_name=name, description=desc) asset.save() return Response({"detail":"Asset created successfully"}) @api_view(['POST']) def update_asset(request): params = ["id", "name", "description", "type_of_asset"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) id = request.data.get('id') name = request.data.get('name') desc = request.data.get('description') try: asset = user_asset.objects.get(id=id) except: return Response({"detail":"Asset does not exist"}, status=400) asset.asset_name = name asset.description = desc if asset.type_of_asset == "generation": params = ["declination", "azimuth", "modules_power"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) declination = request.data.get('declination') azimuth = request.data.get('azimuth') modules_power = request.data.get('modules_power') asset.declination = declination asset.azimuth = azimuth asset.modules_power = modules_power elif asset.type_of_asset == "flexible": params = ["start_charge_time", "end_charge_time", "demand", "duration"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) start_time = request.data.get('start_charge_time') end_time = request.data.get('end_charge_time') dmd = request.data.get('demand') dur = request.data.get('duration') asset.start_charge_time = start_time asset.end_charge_time = end_time asset.demand = dmd asset.duration = dur asset.save() return Response({"detail":"Asset updated successfully"}) @api_view(['DELETE']) def delete_asset(request): params = ["id"] #Check for Required Fields for p in params: if request.data.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) #Check for Invalid Parameters if verify(request.data, params): return Response( {"message": "Request has invalid parameter not in {}".format(params)}, status = 400) id = request.data.get('id') try: asset = user_asset.objects.get(id=id) except: return Response({"detail":"Asset does not exist"}, status=400) delete_asset_data_helper(id) user_asset.objects.filter(id=id).delete() return Response({"detail": "Asset deleted successfully"}) @api_view(['GET']) def get_all_assets(request): params = ["email"] #Check for Required Fields for p in params: if request.query_params.get(p, None) == None: return Response( {"message": "Missing Required Parameters: {}".format(p)}, status = 400) #Check for Invalid Parameters if verify(request.query_params, params): return Response( {"message": "Request has invalid parameter not in {}".format(params)}, status = 400) email = request.query_params.get('email') try: tmp_user = user.objects.get(user_email=email) except: return Response({"detail": "Error: User does not exist"}, status=400) bases = user_asset.objects.filter(user=tmp_user, type_of_asset='base').values('id', 'asset_name', 'description') generations = user_asset.objects.filter(user=tmp_user, type_of_asset='generation').values('id', 'asset_name', 'description', 'declination', 'azimuth', 'modules_power') felxible_assets = user_asset.objects.filter(user=tmp_user, type_of_asset='flexible').values('id', 'asset_name', 'description', 'start_charge_time', 'end_charge_time', 'duration', 'demand') result = {"base": bases, "generation": generations, "flexible": felxible_assets} return Response(result) @api_view(['GET']) def get_single_asset(request): id = request.query_params.get('id') try: asset = user_asset.objects.get(id=id) except: return Response({"detail":"Asset does not exist"}, status=400) return Response(model_to_dict(asset))
38.243243
192
0.619788
a574e9c80a438acde205cffa5ed7393322181f4a
1,839
py
Python
src/tic_tac_toe_game/__main__.py
alexistli/tic-tac-toe-game
f6689d5ea722c3ea52c06c8a3433cf052543297f
[ "MIT" ]
1
2021-12-11T09:10:33.000Z
2021-12-11T09:10:33.000Z
src/tic_tac_toe_game/__main__.py
alexistli/tic-tac-toe-game
f6689d5ea722c3ea52c06c8a3433cf052543297f
[ "MIT" ]
39
2021-11-01T23:18:43.000Z
2022-03-31T23:27:55.000Z
src/tic_tac_toe_game/__main__.py
alexistli/tic-tac-toe-game
f6689d5ea722c3ea52c06c8a3433cf052543297f
[ "MIT" ]
null
null
null
"""Command-line interface.""" import click from tic_tac_toe_game import engine @click.command() @click.version_option() def main() -> None: """Tic Tac Toe Game.""" click.secho("hello", fg="green") if click.confirm("Do you want to play a game?", abort=True): click.echo("Let's play a game...") # player_1_mark = click.prompt( # "Player 1, please pick your mark", # type=click.Choice(["X", "O"], case_sensitive=False), # default="X", # ) # # player_2_type = click.prompt( # "Player 2, are you Human (H) or a Bot (B)?", # type=click.Choice(["H", "B"], case_sensitive=False), # default="B", # ) game = engine.build_game() # game = engine.Engine(player_1_mark, player_2_type) # game.board = Board() # TODO: Upgrade with any possible strategy # game.players_match.update_ai_algorithm(move) finished = False while not finished: player = game.players_match.current() print("\n\n") print(f"{player.name}, it is your turn!") print("Current grid: \n") print(f"{game.board.framed_grid()}\n") if isinstance(player, engine.HumanPlayer): played_cell = click.prompt( "Please pick a cell xy", type=click.Tuple([int, int]) ) else: played_cell = game.get_move() game.board.make_move(coord=played_cell, value=player.get_mark()) if game.board.is_winning_move(played_cell, player.get_mark()): print(f"Player {player.name} won!") finished = True elif game.board.is_full(): print("Players tied!") finished = True else: game.players_match.switch() if __name__ == "__main__": main(prog_name="tic-tac-toe-game") # pragma: no cover
28.292308
72
0.584013
3359fef0e98cc83f7723cb3fe70bb7cba5b8a9ab
1,749
py
Python
movie.py
Roger-tn-su/javbus_crawler
ebc163a778df2210f8a01749f84057f8fdcb9229
[ "MIT" ]
null
null
null
movie.py
Roger-tn-su/javbus_crawler
ebc163a778df2210f8a01749f84057f8fdcb9229
[ "MIT" ]
null
null
null
movie.py
Roger-tn-su/javbus_crawler
ebc163a778df2210f8a01749f84057f8fdcb9229
[ "MIT" ]
1
2021-10-30T18:30:56.000Z
2021-10-30T18:30:56.000Z
class Movie: """ class for each movie in javbus website""" def __init__(self, avNum, title, coverImgUrl, date): self._avNum = avNum self._title = title self._cover_img = coverImgUrl self._release_date = date @property def avNum(self): return self._avNum @property def title(self): return self._title @property def cover_img(self): return self._cover_img @property def release_date(self): return self._release_date def __repr__(self): return '{} {} {} {}'.format(self._avNum, self._title, self._cover_img, self._release_date) class Link: """ Class for magnet link""" def __init__(self, avNum, magnet, size): self._avNum = avNum self._magnet = magnet self._size = size @property def size(self): return self._size @property def magnet(self): return self._magnet @property def av_num(self): return self._avNum def __repr__(self): return '{} {} {}'.format(self._avNum, self._magnet, self._size) class Counter: """ Class for counter""" def __init__(self): self._parsing_time = 0 self._page_skip = 0 self._movie_skip = 0 @property def parsing_time(self): return self._parsing_time @property def page_skip(self): return self._page_skip @property def movie_skip(self): return self._movie_skip def reset_movie_skip(self): self._movie_skip = 0 def increment_movie_skip(self): self._movie_skip += 1 def increment_page_skip(self): self._page_skip += 1 def increment_parse(self): self._parsing_time += 1
20.576471
98
0.608348
fa64d027993ad0602ee242b438a5dab7c4abc5aa
2,767
py
Python
setup.py
kadeve/assistant-sdk-python
d8f6143f03851a0c2f236e12c2f1051f8f77178c
[ "Apache-2.0" ]
null
null
null
setup.py
kadeve/assistant-sdk-python
d8f6143f03851a0c2f236e12c2f1051f8f77178c
[ "Apache-2.0" ]
null
null
null
setup.py
kadeve/assistant-sdk-python
d8f6143f03851a0c2f236e12c2f1051f8f77178c
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages import io install_requires = [ 'googleapis-common-protos==1.5.2', 'grpcio==1.2.1', ] auth_helpers_requires = [ 'google-auth-oauthlib==0.0.1', 'urllib3[secure]==1.20', ] audio_helpers_requires = [ 'sounddevice==0.3.7', ] samples_requires = [ 'click==6.7', 'tenacity==4.1.0', ] + auth_helpers_requires + audio_helpers_requires with io.open('README.rst', 'r') as fh: long_description = fh.read() setup( name='google-assistant-sdk', version='0.2.1', author='Google Assistant SDK team', author_email='proppy+assistant-sdk@google.com', description='Samples and bindings for the Google Assistant API', long_description=long_description, url='https://github.com/googlesamples/assistant-sdk-python', packages=find_packages(exclude=['tests*']), namespace_packages=[ 'google', 'google.assistant', 'google.assistant.embedded', 'googlesamples', ], install_requires=install_requires, extras_require={ 'samples': samples_requires, 'auth_helpers': auth_helpers_requires, 'audio_helpers': audio_helpers_requires, }, entry_points={ 'console_scripts': [ 'googlesamples-assistant' '=googlesamples.assistant.__main__:main [samples]', 'googlesamples-assistant-auth' '=googlesamples.assistant.auth_helpers.__main__:main [samples]', ], }, license='Apache 2.0', keywords='google assistant api sdk sample', classifiers=( 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Operating System :: OS Independent', 'Topic :: Internet :: WWW/HTTP', ), )
31.804598
76
0.653415
621879993257357bd94ae2ab02c4f42840705bd9
6,686
py
Python
funsor/joint.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
funsor/joint.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
funsor/joint.py
bogiebro/funsor
c15eaf7019e34c647630ed3da89001e620a972fa
[ "Apache-2.0" ]
null
null
null
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import math from collections import OrderedDict from functools import reduce from typing import Tuple, Union from multipledispatch import dispatch from multipledispatch.variadic import Variadic import funsor.ops as ops from funsor.cnf import Contraction, GaussianMixture from funsor.delta import Delta from funsor.domains import bint from funsor.gaussian import Gaussian, align_gaussian from funsor.ops import AssociativeOp from funsor.tensor import Tensor, align_tensor from funsor.terms import Funsor, Independent, Number, Reduce, Unary, eager, moment_matching, normalize @dispatch(str, str, Variadic[(Gaussian, GaussianMixture)]) def eager_cat_homogeneous(name, part_name, *parts): assert parts output = parts[0].output inputs = OrderedDict([(part_name, None)]) for part in parts: assert part.output == output assert part_name in part.inputs inputs.update(part.inputs) int_inputs = OrderedDict((k, v) for k, v in inputs.items() if v.dtype != "real") real_inputs = OrderedDict((k, v) for k, v in inputs.items() if v.dtype == "real") inputs = int_inputs.copy() inputs.update(real_inputs) discretes = [] info_vecs = [] precisions = [] for part in parts: inputs[part_name] = part.inputs[part_name] int_inputs[part_name] = inputs[part_name] shape = tuple(d.size for d in int_inputs.values()) if isinstance(part, Gaussian): discrete = None gaussian = part elif issubclass(type(part), GaussianMixture): # TODO figure out why isinstance isn't working discrete, gaussian = part.terms[0], part.terms[1] discrete = ops.expand(align_tensor(int_inputs, discrete), shape) else: raise NotImplementedError("TODO") discretes.append(discrete) info_vec, precision = align_gaussian(inputs, gaussian) info_vecs.append(ops.expand(info_vec, shape + (-1,))) precisions.append(ops.expand(precision, shape + (-1, -1))) if part_name != name: del inputs[part_name] del int_inputs[part_name] dim = 0 info_vec = ops.cat(dim, *info_vecs) precision = ops.cat(dim, *precisions) inputs[name] = bint(info_vec.shape[dim]) int_inputs[name] = inputs[name] result = Gaussian(info_vec, precision, inputs) if any(d is not None for d in discretes): for i, d in enumerate(discretes): if d is None: discretes[i] = ops.new_zeros(info_vecs[i], info_vecs[i].shape[:-1]) discrete = ops.cat(dim, *discretes) result = result + Tensor(discrete, int_inputs) return result ################################# # patterns for moment-matching ################################# @moment_matching.register(Contraction, AssociativeOp, AssociativeOp, frozenset, Variadic[object]) def moment_matching_contract_default(*args): return None @moment_matching.register(Contraction, ops.LogAddExpOp, ops.AddOp, frozenset, (Number, Tensor), Gaussian) def moment_matching_contract_joint(red_op, bin_op, reduced_vars, discrete, gaussian): approx_vars = frozenset(k for k in reduced_vars if k in gaussian.inputs and gaussian.inputs[k].dtype != 'real') exact_vars = reduced_vars - approx_vars if exact_vars and approx_vars: return Contraction(red_op, bin_op, exact_vars, discrete, gaussian).reduce(red_op, approx_vars) if approx_vars and not exact_vars: discrete += gaussian.log_normalizer new_discrete = discrete.reduce(ops.logaddexp, approx_vars.intersection(discrete.inputs)) new_discrete = discrete.reduce(ops.logaddexp, approx_vars.intersection(discrete.inputs)) num_elements = reduce(ops.mul, [ gaussian.inputs[k].num_elements for k in approx_vars.difference(discrete.inputs)], 1) if num_elements != 1: new_discrete -= math.log(num_elements) int_inputs = OrderedDict((k, d) for k, d in gaussian.inputs.items() if d.dtype != 'real') probs = (discrete - new_discrete.clamp_finite()).exp() old_loc = Tensor(ops.cholesky_solve(ops.unsqueeze(gaussian.info_vec, -1), gaussian._precision_chol).squeeze(-1), int_inputs) new_loc = (probs * old_loc).reduce(ops.add, approx_vars) old_cov = Tensor(ops.cholesky_inverse(gaussian._precision_chol), int_inputs) diff = old_loc - new_loc outers = Tensor(ops.unsqueeze(diff.data, -1) * ops.unsqueeze(diff.data, -2), diff.inputs) new_cov = ((probs * old_cov).reduce(ops.add, approx_vars) + (probs * outers).reduce(ops.add, approx_vars)) # Numerically stabilize by adding bogus precision to empty components. total = probs.reduce(ops.add, approx_vars) mask = ops.unsqueeze(ops.unsqueeze((total.data == 0), -1), -1) new_cov.data = new_cov.data + mask * ops.new_eye(new_cov.data, new_cov.data.shape[-1:]) new_precision = Tensor(ops.cholesky_inverse(ops.cholesky(new_cov.data)), new_cov.inputs) new_info_vec = (new_precision.data @ ops.unsqueeze(new_loc.data, -1)).squeeze(-1) new_inputs = new_loc.inputs.copy() new_inputs.update((k, d) for k, d in gaussian.inputs.items() if d.dtype == 'real') new_gaussian = Gaussian(new_info_vec, new_precision.data, new_inputs) new_discrete -= new_gaussian.log_normalizer return new_discrete + new_gaussian return None #################################################### # Patterns for normalizing #################################################### @eager.register(Reduce, ops.AddOp, Unary[ops.ExpOp, Funsor], frozenset) def eager_reduce_exp(op, arg, reduced_vars): # x.exp().reduce(ops.add) == x.reduce(ops.logaddexp).exp() log_result = arg.arg.reduce(ops.logaddexp, reduced_vars) if log_result is not normalize(Reduce, ops.logaddexp, arg.arg, reduced_vars): return log_result.exp() return None @eager.register(Independent, (Contraction[ops.NullOp, ops.AddOp, frozenset, Tuple[Delta, Union[Number, Tensor], Gaussian]], Contraction[ops.NullOp, ops.AddOp, frozenset, Tuple[Delta, Union[Number, Tensor, Gaussian]]]), str, str, str) def eager_independent_joint(joint, reals_var, bint_var, diag_var): if diag_var not in joint.terms[0].fresh: return None delta = Independent(joint.terms[0], reals_var, bint_var, diag_var) new_terms = (delta,) + tuple(t.reduce(ops.add, bint_var) for t in joint.terms[1:]) return reduce(joint.bin_op, new_terms)
42.858974
120
0.667963
b5cca9bc3246e5b87c5752b1652216acb8c65c7b
216
py
Python
yabul/__init__.py
timodonnell/yabul
d2ad2fbf934b375f9ef2b6f2d9c2ab9c157260d2
[ "Apache-2.0" ]
2
2021-03-01T20:09:20.000Z
2021-03-02T05:52:34.000Z
yabul/__init__.py
timodonnell/yabul
d2ad2fbf934b375f9ef2b6f2d9c2ab9c157260d2
[ "Apache-2.0" ]
null
null
null
yabul/__init__.py
timodonnell/yabul
d2ad2fbf934b375f9ef2b6f2d9c2ab9c157260d2
[ "Apache-2.0" ]
null
null
null
""" Yet Another Bioinformatics Utility Library """ __version__ = "0.0.3" from .fasta import read_fasta, write_fasta from .align import align_pair __all__ = [ "read_fasta", "write_fasta", "align_pair", ]
16.615385
42
0.699074
596289ba8a1eb9f05ef70c8af8d9347678a59cb9
1,871
py
Python
src/preprocess/displace_matrix.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
2
2021-01-05T02:55:57.000Z
2021-04-16T15:49:08.000Z
src/preprocess/displace_matrix.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
null
null
null
src/preprocess/displace_matrix.py
MelvinYin/Defined_Proteins
75da20be82a47d85d27176db29580ab87d52b670
[ "BSD-3-Clause" ]
1
2021-01-05T08:12:38.000Z
2021-01-05T08:12:38.000Z
""" Displace a matrix file to the left or right, filling remaining spots with the composition frequencies. """ import matplotlib.pyplot as plt import os from config import paths from utils import seq_logo from preprocess import crop_matrix def displace(displacement, matrix_file, output_file, composition_file=paths.COMPOSITION): matrix = [] with open(matrix_file, 'r') as file: for line in file: matrix.append((line.strip().split(" "))) composition = [] with open(composition_file, 'r') as file: for line in file: split_line = line.strip().split(" ") if len(split_line) != 2: continue composition.append(split_line[1]) output_matrix = [] assert len(composition) == len(matrix[0]) if displacement > 0: # shift right for i in range(displacement): output_matrix.append(composition) for i in range(len(matrix) - displacement): output_matrix.append(matrix[i]) else: # shift left displacement *= -1 for i in range(displacement, len(matrix)): output_matrix.append(matrix[i]) for i in range(displacement): output_matrix.append(composition) assert len(output_matrix) == len(matrix) with open(output_file, 'w') as file: for line in output_matrix: file.write(" ".join(line) + "\n") def test_displace(): direct_from_nbdb = os.path.join(paths.USER_INPUT, "GxxGxG_pssm.txt") cropped = os.path.join(paths.USER_INPUT, "GxxGxG_pssm_cropped.txt") test_output = os.path.join(paths.TEST, 'test.txt') crop_matrix.crop(direct_from_nbdb, cropped) displace(-2, cropped, test_output, paths.COMPOSITION) seq_logo.build_logo_nbdb(test_output) os.remove(cropped) os.remove(test_output) plt.show()
31.183333
77
0.644041
db91d1a194430276df4a1258b130857333228a1e
5,715
py
Python
test_net.py
R2D2oid/slowfast_feature_extractor
a5f2f0bdeee964ffd3b5e5950d84c22b93ab8467
[ "MIT" ]
63
2019-11-08T14:03:26.000Z
2022-03-06T05:28:40.000Z
test_net.py
xujinglin/slowfast_feature_extractor
be219c1dbf24511a189e458cc8d4ab5c0292a335
[ "MIT" ]
15
2019-11-11T09:16:30.000Z
2022-03-08T14:56:21.000Z
test_net.py
xujinglin/slowfast_feature_extractor
be219c1dbf24511a189e458cc8d4ab5c0292a335
[ "MIT" ]
17
2019-11-11T07:38:59.000Z
2021-11-19T19:29:09.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Modified to process a list of videos """Extract features for videos using pre-trained networks""" import numpy as np import torch import os import time from tqdm import tqdm import av from moviepy.video.io.VideoFileClip import VideoFileClip import slowfast.utils.checkpoint as cu import slowfast.utils.distributed as du import slowfast.utils.logging as logging import slowfast.utils.misc as misc from models import build_model from datasets import VideoSet logger = logging.get_logger(__name__) def calculate_time_taken(start_time, end_time): hours = int((end_time - start_time) / 3600) minutes = int((end_time - start_time) / 60) - (hours * 60) seconds = int((end_time - start_time) % 60) return hours, minutes, seconds @torch.no_grad() def perform_inference(test_loader, model, cfg): """ Perform mutli-view testing that samples a segment of frames from a video and extract features from a pre-trained model. Args: test_loader (loader): video testing loader. model (model): the pretrained video model to test. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Enable eval mode. model.eval() feat_arr = None for inputs in tqdm(test_loader): # Transfer the data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) # Perform the forward pass. preds, feat = model(inputs) # Gather all the predictions across all the devices to perform ensemble. if cfg.NUM_GPUS > 1: preds, feat = du.all_gather([preds, feat]) feat = feat.cpu().numpy() if feat_arr is None: feat_arr = feat else: feat_arr = np.concatenate((feat_arr, feat), axis=0) return feat_arr def test(cfg): """ Perform multi-view testing/feature extraction on the pretrained video model. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Print config. logger.info("Test with config:") logger.info(cfg) # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=False) cu.load_test_checkpoint(cfg, model) vid_root = os.path.join(cfg.DATA.PATH_TO_DATA_DIR, cfg.DATA.PATH_PREFIX) videos_list_file = os.path.join(cfg.DATA.PATH_TO_DATA_DIR, "vid_list.csv") print("Loading Video List ...") with open(videos_list_file) as f: videos = sorted([x.strip() for x in f.readlines() if len(x.strip()) > 0]) print("Done") print("----------------------------------------------------------") if cfg.DATA.READ_VID_FILE: rejected_vids = [] print("{} videos to be processed...".format(len(videos))) print("----------------------------------------------------------") start_time = time.time() for vid_no, vid in enumerate(videos): # Create video testing loaders. path_to_vid = os.path.join(vid_root, os.path.split(vid)[0]) vid_id = os.path.split(vid)[1] if cfg.DATA.READ_VID_FILE: try: _ = VideoFileClip( os.path.join(path_to_vid, vid_id) + cfg.DATA.VID_FILE_EXT, audio=False, fps_source="fps", ) except Exception as e: print("{}. {} cannot be read with error {}".format(vid_no, vid, e)) print("----------------------------------------------------------") rejected_vids.append(vid) continue out_path = os.path.join(cfg.OUTPUT_DIR, os.path.split(vid)[0]) out_file = vid_id.split(".")[0] + "_{}.npy".format(cfg.DATA.NUM_FRAMES) if os.path.exists(os.path.join(out_path, out_file)): print("{}. {} already exists".format(vid_no, out_file)) print("----------------------------------------------------------") continue print("{}. Processing {}...".format(vid_no, vid)) dataset = VideoSet( cfg, path_to_vid, vid_id, read_vid_file=cfg.DATA.READ_VID_FILE ) test_loader = torch.utils.data.DataLoader( dataset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, sampler=None, num_workers=cfg.DATA_LOADER.NUM_WORKERS, pin_memory=cfg.DATA_LOADER.PIN_MEMORY, drop_last=False, ) # Perform multi-view test on the entire dataset. feat_arr = perform_inference(test_loader, model, cfg) os.makedirs(out_path, exist_ok=True) np.save(os.path.join(out_path, out_file), feat_arr) print("Done.") print("----------------------------------------------------------") if cfg.DATA.READ_VID_FILE: print("Rejected Videos: {}".format(rejected_vids)) end_time = time.time() hours, minutes, seconds = calculate_time_taken(start_time, end_time) print( "Time taken: {} hour(s), {} minute(s) and {} second(s)".format( hours, minutes, seconds ) ) print("----------------------------------------------------------")
32.657143
83
0.584427
3c3513a3ef5992c12d88cee0ae7da54721bec955
7,841
py
Python
train.py
ruyueshi/crnn.pytorch-1
2272d4defc328c033a889b9ca3279795f268b52d
[ "MIT" ]
2,122
2017-03-23T02:43:38.000Z
2022-03-30T22:48:43.000Z
train.py
Salamit/crnn.pytorch
d3a47f91691b31b8d5336e2ed5932e6cf65142f0
[ "MIT" ]
242
2017-04-02T07:05:24.000Z
2022-03-15T08:35:22.000Z
train.py
Salamit/crnn.pytorch
d3a47f91691b31b8d5336e2ed5932e6cf65142f0
[ "MIT" ]
646
2017-03-04T15:15:40.000Z
2022-03-30T02:32:48.000Z
from __future__ import print_function from __future__ import division import argparse import random import torch import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data from torch.autograd import Variable import numpy as np from warpctc_pytorch import CTCLoss import os import utils import dataset import models.crnn as crnn parser = argparse.ArgumentParser() parser.add_argument('--trainRoot', required=True, help='path to dataset') parser.add_argument('--valRoot', required=True, help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=64, help='input batch size') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to network') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image to network') parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state') parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for') # TODO(meijieru): epoch -> iter parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--pretrained', default='', help="path to pretrained model (to continue training)") parser.add_argument('--alphabet', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz') parser.add_argument('--expr_dir', default='expr', help='Where to store samples and models') parser.add_argument('--displayInterval', type=int, default=500, help='Interval to be displayed') parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display when test') parser.add_argument('--valInterval', type=int, default=500, help='Interval to be displayed') parser.add_argument('--saveInterval', type=int, default=500, help='Interval to be displayed') parser.add_argument('--lr', type=float, default=0.01, help='learning rate for Critic, not used by adadealta') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)') parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is rmsprop)') parser.add_argument('--keep_ratio', action='store_true', help='whether to keep ratio for image resize') parser.add_argument('--manualSeed', type=int, default=1234, help='reproduce experiemnt') parser.add_argument('--random_sample', action='store_true', help='whether to sample the dataset with random sampler') opt = parser.parse_args() print(opt) if not os.path.exists(opt.expr_dir): os.makedirs(opt.expr_dir) random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") train_dataset = dataset.lmdbDataset(root=opt.trainroot) assert train_dataset if not opt.random_sample: sampler = dataset.randomSequentialSampler(train_dataset, opt.batchSize) else: sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batchSize, shuffle=True, sampler=sampler, num_workers=int(opt.workers), collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio)) test_dataset = dataset.lmdbDataset( root=opt.valroot, transform=dataset.resizeNormalize((100, 32))) nclass = len(opt.alphabet) + 1 nc = 1 converter = utils.strLabelConverter(opt.alphabet) criterion = CTCLoss() # custom weights initialization called on crnn def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) crnn = crnn.CRNN(opt.imgH, nc, nclass, opt.nh) crnn.apply(weights_init) if opt.pretrained != '': print('loading pretrained model from %s' % opt.pretrained) crnn.load_state_dict(torch.load(opt.pretrained)) print(crnn) image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH) text = torch.IntTensor(opt.batchSize * 5) length = torch.IntTensor(opt.batchSize) if opt.cuda: crnn.cuda() crnn = torch.nn.DataParallel(crnn, device_ids=range(opt.ngpu)) image = image.cuda() criterion = criterion.cuda() image = Variable(image) text = Variable(text) length = Variable(length) # loss averager loss_avg = utils.averager() # setup optimizer if opt.adam: optimizer = optim.Adam(crnn.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) elif opt.adadelta: optimizer = optim.Adadelta(crnn.parameters()) else: optimizer = optim.RMSprop(crnn.parameters(), lr=opt.lr) def val(net, dataset, criterion, max_iter=100): print('Start val') for p in crnn.parameters(): p.requires_grad = False net.eval() data_loader = torch.utils.data.DataLoader( dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers)) val_iter = iter(data_loader) i = 0 n_correct = 0 loss_avg = utils.averager() max_iter = min(max_iter, len(data_loader)) for i in range(max_iter): data = val_iter.next() i += 1 cpu_images, cpu_texts = data batch_size = cpu_images.size(0) utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts) utils.loadData(text, t) utils.loadData(length, l) preds = crnn(image) preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size)) cost = criterion(preds, text, preds_size, length) / batch_size loss_avg.add(cost) _, preds = preds.max(2) preds = preds.squeeze(2) preds = preds.transpose(1, 0).contiguous().view(-1) sim_preds = converter.decode(preds.data, preds_size.data, raw=False) for pred, target in zip(sim_preds, cpu_texts): if pred == target.lower(): n_correct += 1 raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp] for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts): print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt)) accuracy = n_correct / float(max_iter * opt.batchSize) print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) def trainBatch(net, criterion, optimizer): data = train_iter.next() cpu_images, cpu_texts = data batch_size = cpu_images.size(0) utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts) utils.loadData(text, t) utils.loadData(length, l) preds = crnn(image) preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size)) cost = criterion(preds, text, preds_size, length) / batch_size crnn.zero_grad() cost.backward() optimizer.step() return cost for epoch in range(opt.nepoch): train_iter = iter(train_loader) i = 0 while i < len(train_loader): for p in crnn.parameters(): p.requires_grad = True crnn.train() cost = trainBatch(crnn, criterion, optimizer) loss_avg.add(cost) i += 1 if i % opt.displayInterval == 0: print('[%d/%d][%d/%d] Loss: %f' % (epoch, opt.nepoch, i, len(train_loader), loss_avg.val())) loss_avg.reset() if i % opt.valInterval == 0: val(crnn, test_dataset, criterion) # do checkpointing if i % opt.saveInterval == 0: torch.save( crnn.state_dict(), '{0}/netCRNN_{1}_{2}.pth'.format(opt.expr_dir, epoch, i))
36.640187
117
0.693406
9a1837e2f9dd3fc1a3e0d38816c4c8288db421e0
197
py
Python
leonardo_package_index/apps/package_index_api.py
leonardo-modules/leonardo-package-index
ed4dd006055fe99d841ce09776507a2cd31c2b83
[ "BSD-3-Clause" ]
null
null
null
leonardo_package_index/apps/package_index_api.py
leonardo-modules/leonardo-package-index
ed4dd006055fe99d841ce09776507a2cd31c2b83
[ "BSD-3-Clause" ]
11
2015-08-28T23:00:15.000Z
2016-09-17T19:31:00.000Z
leonardo_package_index/apps/package_index_api.py
leonardo-modules/leonardo-package-index
ed4dd006055fe99d841ce09776507a2cd31c2b83
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import * urlpatterns = patterns('leonardo_package_index.apps.views', url(r'^', include('leonardo_package_index.api.urls'),), )
28.142857
78
0.57868
69eb164733d6ec8bd04522102a81225cce0bf977
2,268
py
Python
src/utils/glove.py
LaudateCorpus1/hermes-5
d9b50452379fe636da96c2bad2d286afa15cd7b9
[ "Apache-2.0" ]
135
2015-11-17T09:04:37.000Z
2022-01-14T07:00:34.000Z
src/utils/glove.py
cacan/hermes
d9b50452379fe636da96c2bad2d286afa15cd7b9
[ "Apache-2.0" ]
16
2015-11-19T18:04:13.000Z
2016-11-19T00:30:12.000Z
src/utils/glove.py
cacan/hermes
d9b50452379fe636da96c2bad2d286afa15cd7b9
[ "Apache-2.0" ]
68
2015-11-13T22:51:57.000Z
2022-01-26T01:51:09.000Z
import numpy as np class Glove(object): """Load a GloVe model and provide access to the vectors and vector space. Provides access to word vectors as if it were a dictionary: glove_instance = Glove('file') glove['word'] Unrecognized words will return the Null vector (all 0). Also provides a way to find the closest word to a vector in the vector space. """ def __init__(self, glove_file): """Set up the GloVe class by reading in a vector file. Args: glove_file (str): Location of the plain text GloVe vector file. """ self.__model = {} self.__line_to_word = {} space = [] # Load the GloVe data from a file with open(glove_file, 'r') as open_file: for line_number, line in enumerate(open_file): sline = line.split() key_word = sline[0] vector = np.array([float(i) for i in sline[1:]]) self.__model[key_word] = vector self.__line_to_word[line_number] = key_word space.append(vector) # Set up a vector space so we can quickly find the closest vector self.__vector_space = np.array(space) # Null vector for unrecognized words self.vector_size = len(vector) self.__null_vector = np.zeros(self.vector_size) def __getitem__(self, key): """Return the vector representation of a word. Args: key (str): A word to locate in the vector space. Returns: numpy array: The location of the word in the vector space, or the null (0) vector if the word is not found. """ return self.__model.get(key, self.__null_vector) def closest_word(self, vector): """Return the closest word to a given vector. Args: vector (numpy array): A vector of the same dimension as the vector space. Returns: str: The closest word to the input vector in the vector space. """ squares = (self.__vector_space - vector)**2 distances = np.sum(squares, axis=1) line_number = np.argmin(distances) return self.__line_to_word[line_number]
31.5
78
0.59612
35b101f2c6f3c7d3d6daf2d23908f82c5f60f15f
2,388
py
Python
python/cuda_linux_demo/model_test.py
windstamp/Paddle-Inference-Demo
de773a0864eb12911d2cdcbc8f1f036911541c60
[ "Apache-2.0" ]
115
2020-05-06T09:47:08.000Z
2022-03-31T08:47:18.000Z
python/cuda_linux_demo/model_test.py
windstamp/Paddle-Inference-Demo
de773a0864eb12911d2cdcbc8f1f036911541c60
[ "Apache-2.0" ]
79
2020-05-06T09:51:45.000Z
2022-03-27T00:23:29.000Z
python/cuda_linux_demo/model_test.py
windstamp/Paddle-Inference-Demo
de773a0864eb12911d2cdcbc8f1f036911541c60
[ "Apache-2.0" ]
81
2020-05-06T09:47:11.000Z
2022-03-23T07:29:32.000Z
import numpy as np import argparse import cv2 from paddle.inference import Config from paddle.inference import create_predictor from paddle.inference import PrecisionType from img_preprocess import preprocess def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", type=str, default="", help= "Model dir, If you load a non-combined model, specify the directory of the model." ) parser.add_argument( "--model_file", type=str, default="", help="Model filename, Specify this when your model is a combined model." ) parser.add_argument( "--params_file", type=str, default="", help= "Parameter filename, Specify this when your model is a combined model." ) parser.add_argument("--img_path", type=str, default="", help="Input image path.") parser.add_argument("--threads", type=int, default=1, help="Whether use gpu.") return parser.parse_args() if __name__ == '__main__': args = parse_args() assert (args.model_dir != "") or \ (args.model_file != "" and args.params_file != ""), \ "Set model path error." assert args.img_path != "", "Set img_path error." # Init config if args.model_dir == "": config = Config(args.model_file, args.params_file) else: config = Config(args.model_dir) config.enable_use_gpu(500, 0) config.switch_ir_optim() config.enable_memory_optim() config.enable_tensorrt_engine(workspace_size=1 << 30, precision_mode=PrecisionType.Float32,max_batch_size=1, min_subgraph_size=5, use_static=False, use_calib_mode=False) # Create predictor predictor = create_predictor(config) # Set input img = cv2.imread(args.img_path) img = preprocess(img) input_names = predictor.get_input_names() input_tensor = predictor.get_input_handle(input_names[0]) input_tensor.reshape(img.shape) input_tensor.copy_from_cpu(img.copy()) # Run predictor.run() # Set output output_names = predictor.get_output_names() output_tensor = predictor.get_output_handle(output_names[0]) output_data = output_tensor.copy_to_cpu() print("Predict class index: ", np.argmax(output_data))
31.421053
173
0.646566
2c26c233741c290e55f23f5fb8856be3cd70b909
2,068
py
Python
motorodm/documents/meta_document.py
rob-blackbourn/motorodm
c77e79bd2b11c896b9a971ba6a9c4947dce96163
[ "Apache-2.0" ]
null
null
null
motorodm/documents/meta_document.py
rob-blackbourn/motorodm
c77e79bd2b11c896b9a971ba6a9c4947dce96163
[ "Apache-2.0" ]
null
null
null
motorodm/documents/meta_document.py
rob-blackbourn/motorodm
c77e79bd2b11c896b9a971ba6a9c4947dce96163
[ "Apache-2.0" ]
null
null
null
from ..fields.field import Field from ..fields import ObjectIdField from ..query_sets.query_set import QuerySet class MetaEmbeddedDocument(type): def __new__(cls, name, bases, dct): dct['_fields'] = {} dct['_db_name_map'] = {} dct['_indices'] = [] for base in bases: for field_name, field in filter(lambda x: isinstance(x[1], Field), base.__dict__.items()): cls.add_field(dct, field_name, field) for field_name, field in filter(lambda x: isinstance(x[1], Field), dct.items()): field.name = field_name cls.add_field(dct, field_name, field) dct['_values'] = {} dct['_dirty_fields'] = set() return super().__new__(cls, name, bases, dct) @classmethod def add_field(cls, dct, field_name, field): if field_name in dct['_fields']: raise KeyError(f"Field '{field_name}' already exists") if not field.db_name: field.db_name = field_name if field.db_name in dct['_db_name_map']: raise KeyError(f"Field '{field_name}' already exists") field.name = field_name dct['_fields'][field_name] = field dct['_db_name_map'][field.db_name] = field_name if field.unique: dct['_indices'].append(field_name) class MetaDocument(MetaEmbeddedDocument): def __new__(cls, name, bases, dct): if '_root' in dct and dct['_root']: return super().__new__(cls, name, bases, dct) if dct.get('__collection__', None) is None: dct['__collection__'] = name klass = super().__new__(cls, name, bases, dct) if '_id' not in klass._db_name_map: if 'id' in klass.__dict__: raise Exception('Unable to set id field - already exists') field = ObjectIdField(name='id', db_name='_id') klass.id = field klass._fields[field.name] = field klass._db_name_map[field.db_name] = field.name klass.qs = QuerySet() return klass
31.815385
102
0.597195
d27a7cd8fb1a33aefe639f54dcde93489cfbe955
6,982
py
Python
JobScript/wind_to_db/wind_stock_daily_import.py
zuoziji/transaction
7a59817a699d9df32e13d43edda630520af7860d
[ "Apache-2.0" ]
null
null
null
JobScript/wind_to_db/wind_stock_daily_import.py
zuoziji/transaction
7a59817a699d9df32e13d43edda630520af7860d
[ "Apache-2.0" ]
9
2021-02-08T20:19:53.000Z
2022-03-11T23:16:46.000Z
JobScript/wind_to_db/wind_stock_daily_import.py
zuoziji/transaction
7a59817a699d9df32e13d43edda630520af7860d
[ "Apache-2.0" ]
2
2019-03-03T14:27:54.000Z
2019-07-22T09:00:35.000Z
from datetime import date, datetime, timedelta import pandas as pd import numpy as np from config_fh import get_db_engine, get_db_session, STR_FORMAT_DATE, UN_AVAILABLE_DATE, WIND_REST_URL from fh_tools.windy_utils_rest import WindRest from fh_tools.fh_utils import get_last, get_first import logging from sqlalchemy.types import String, Date, Float, Integer DATE_BASE = datetime.strptime('2005-01-01', STR_FORMAT_DATE).date() ONE_DAY = timedelta(days=1) def get_datelist(startdate, enddate): datelist = w.tdays(startdate, enddate) datelist = datelist.Data[0] datelist = [i.strftime(STR_FORMAT_DATE) for i in datelist] return datelist def get_stockcodes(targerdate): codesinfo = w.wset("sectorconstituent", "date=%s;windcode=881001.WI" % targerdate) codes = codesinfo.Data[1] names = codesinfo.Data[2] return codes, names def get_tradeinfo(stockcode, stockname, startdate, enddate): wind_indictor_str = "open,high,low,close,adjfactor,volume,amt,pct_chg,maxupordown," + \ "swing,turn,free_turn,trade_status,susp_days" stock_tradeinfo = w.wsd(stockcode, wind_indictor_str, startdate, enddate) stock_times = stock_tradeinfo.Times stock_data = stock_tradeinfo.Data stockre = pd.DataFrame() stockre['Trade_Date'] = [i.strftime('%Y-%m-%d') for i in stock_times] stockcode_list = [stockcode] * len(stock_data[0]) stockname_list = [stockname] * len(stock_data[0]) stockre['Stock_Code'] = stockcode_list stockre['Stock_Name'] = stockname_list wind_list = wind_indictor_str.split(',') for index, wincode in enumerate(wind_list): stockre[wincode] = stock_data[index] # 去除nan数据 open_tmp = stockre['close'] open_tmp_nan = np.isnan(open_tmp) stockre = stockre[open_tmp_nan != 1] return stockre def save_df2db(stockre, indexnames, conn): stockre.to_sql('stock_tradeinfo', conn, if_exists='append', flavor='mysql', index_label=['Trade_Date', 'Stock_Code', 'Stock_Name']) def import_stock_daily(): w = WindRest(WIND_REST_URL) engine = get_db_engine() with get_db_session(engine) as session: # 获取每只股票最新交易日数据 sql_str = 'select wind_code, max(Trade_date) from wind_stock_daily group by wind_code' table = session.execute(sql_str) stock_trade_date_latest_dic = dict(table.fetchall()) # 获取市场有效交易日数据 sql_str = "select trade_date from wind_trade_date where trade_date > '2005-1-1'" table = session.execute(sql_str) trade_date_sorted_list = [t[0] for t in table.fetchall()] trade_date_sorted_list.sort() # 获取每只股票上市日期、退市日期 table = session.execute('SELECT wind_code, ipo_date, delist_date FROM wind_stock_info') stock_date_dic = {wind_code: (ipo_date, delist_date if delist_date is None or delist_date > UN_AVAILABLE_DATE else None) for wind_code, ipo_date, delist_date in table.fetchall()} today_t_1 = date.today() - ONE_DAY data_df_list = [] try: for wind_code, date_pair in stock_date_dic.items(): date_ipo, date_delist = date_pair # 获取 date_from if wind_code in stock_trade_date_latest_dic: date_latest_t1 = stock_trade_date_latest_dic[wind_code] + ONE_DAY date_from = max([date_latest_t1, DATE_BASE, date_ipo]) else: date_from = max([DATE_BASE, date_ipo]) date_from = get_first(trade_date_sorted_list, lambda x: x >= date_from) # 获取 date_to if date_delist is None: date_to = today_t_1 else: date_to = min([date_delist, today_t_1]) date_to = get_last(trade_date_sorted_list, lambda x: x <= date_to) if date_from is None or date_to is None or date_from > date_to: continue # 获取股票量价等行情数据 wind_indictor_str = "open,high,low,close,adjfactor,volume,amt,pct_chg,maxupordown," + \ "swing,turn,free_turn,trade_status,susp_days" data_df = w.wsd(wind_code, wind_indictor_str, date_from, date_to) if data_df is None: logging.warning('%s has no data during %s %s', wind_code, date_from, date_to) continue logging.info('%d data of %s', data_df.shape[0], wind_code) data_df['wind_code'] = wind_code data_df_list.append(data_df) finally: # 导入数据库 if len(data_df_list) > 0: data_df_all = pd.concat(data_df_list) data_df_all.index.rename('trade_date', inplace=True) data_df_all.reset_index(inplace=True) data_df_all.set_index(['wind_code', 'trade_date'], inplace=True) data_df_all.to_sql('wind_stock_daily', engine, if_exists='append', dtype={ 'wind_code': String(20), 'trade_date': Date, 'open': Float, 'high': Float, 'low': Float, 'close': Float, 'adjfactor': Float, 'volume': Float, 'amt': Float, 'pct_chg': Float, 'maxupordown': Integer, 'swing': Float, 'turn': Float, 'free_turn': Float, 'trade_status': String(20), 'susp_days': Integer, } ) logging.info('%d data imported', data_df_all.shape[0]) if __name__ == '__main__': import_stock_daily() # startdate = '2005-01-03' # enddate = '2014-12-31' # stockcodes, stocknames = get_stockcodes(enddate) # stockloc = 1085 # costtime = 0 # stockcodes = stockcodes[stockloc:] # stocknames = stocknames[stockloc:] # with get_db_session() as session: # for stockcode, stockname in zip(stockcodes, stocknames): # timestart = time.time() # stockre = get_tradeinfo(stockcode, stockname, startdate, enddate) # stockre.set_index(['Trade_Date', 'Stock_Code', 'Stock_Name'], inplace=True) # # indexnames = ['Trade_Date', 'Stock_Code', 'Stock_Name'] # save_df2db(stockre, indexnames, session) # timeend = time.time() # costtime = costtime + timeend - timestart # # conn.close() # print('Success Transfer %s, %s' % (stockcode, stockname), # "本次耗时:%d" % round(timeend - timestart), "累计耗时:%d" % costtime)
44.75641
133
0.584073
7e99ec6791ef449bd15d88bc40e47be5465426ce
2,149
py
Python
bot_4u/shop.py
Gametz/Helper_Bot
c48c8258a71782ecc4621b0a0eac3f9de4d461b7
[ "Apache-2.0" ]
null
null
null
bot_4u/shop.py
Gametz/Helper_Bot
c48c8258a71782ecc4621b0a0eac3f9de4d461b7
[ "Apache-2.0" ]
null
null
null
bot_4u/shop.py
Gametz/Helper_Bot
c48c8258a71782ecc4621b0a0eac3f9de4d461b7
[ "Apache-2.0" ]
null
null
null
import json def shop(): return "Магазин:" \ "\n" \ "\n&#12288;🚗 Машины" \ "\n&#12288;📱 Телефоны" \ "\n&#12288;🏡 Дома" \ "\n&#12288;🎞 Видеокарты" \ "\n&#12288;₿ Биткоины" \ "\n" \ "\n📌 Для просмотра категории используйте ее название" def sell(): return "Продажа:" \ "\n" \ "\n&#12288;🚗 Пмашину - Продать свою машину" \ "\n&#12288;📱 Птел - Продать свой телефон" \ "\n&#12288;🏡 Пдом - Продать свой дом" \ "\n&#12288;🎞 Пкарту - Продать свю видеокарту" def cars(): return "🚗 Машины:" \ "\n" \ "\n&#12288;💎 1. ВАЗ 2115 | 2.000$" \ "\n&#12288;💎 2. LADA Vesta | 4.000$" \ "\n&#12288;💎 3. Audi Q7 | 8.000$" \ "\n&#12288;💎 4. BMW M8 | 15.000$" \ "\n&#12288;💎 5. Range Rover | 50.000$" \ "\n&#12288;💎 6. Rolls-Royce | 150.000$" \ "\n" \ "\n📌 Для покупки транспорта используйте 'кмашину [номер]'\n" \ "Например: кмашину 1" def phones(): return "📱 Телефоны:" \ "\n" \ "\n&#12288;💎 1. Fly Ezzy Flip | 200$" \ "\n&#12288;💎 2. Sony Xperia XA1 | 1.000$" \ "\n&#12288;💎 3. Xiaomi Mi 11 | 10.000$" \ "\n&#12288;💎 4. Samsung Galaxy S21 | 50.000$" \ "\n&#12288;💎 5. iPhone 12 | 200.000$" \ "\n" \ "\n📌 Для покупки телефона используйте 'ктел [номер]'\n" \ "Например: ктел 1" def homes(): return "🏡 Дома:" \ "\n" \ "\n&#12288;💎 1. Картонная коробка | 100$" \ "\n&#12288;💎 2. Дом на дереве | 2.000$" \ "\n&#12288;💎 3. Деревянный дом | 10.000$" \ "\n&#12288;💎 4. Квартира в новостройке | 50.000$" \ "\n&#12288;💎 5. Особняк | 150.000$" \ "\n&#12288;💎 6. Дом на Рублёвке | 300.000$" \ "\n&#12288;💎 7. Личный остров | 500.000$" \ "\n&#12288;💎 8. Дворец в Геленджике | 1.000.000$" \ "\n" \ "\n📌 Для покупки транспорта используйте 'кдом [номер]'\n" \ "Например: кдом 1"
35.229508
73
0.442531
02f488e6ce3fe201ae71bfea566b158c06d9e203
5,026
py
Python
dataset_processing/process_modelnet.py
Mingy2018/SwitchVAE
cf9c06ce3af50a559d79b9cba14851472e43a70b
[ "MIT" ]
1
2021-07-22T00:46:06.000Z
2021-07-22T00:46:06.000Z
dataset_processing/process_modelnet.py
Mingy2018/SwitchVAE
cf9c06ce3af50a559d79b9cba14851472e43a70b
[ "MIT" ]
null
null
null
dataset_processing/process_modelnet.py
Mingy2018/SwitchVAE
cf9c06ce3af50a559d79b9cba14851472e43a70b
[ "MIT" ]
1
2021-12-07T17:10:19.000Z
2021-12-07T17:10:19.000Z
import os import numpy as np from utils import binvox_rw import glob if __name__ == '__main__': ModelNet10_ROOT = '/home/zmy/Datasets/ModelNet10/ModelNet10' ModelNet40_ROOT = '/home/zmy/Datasets/ModelNet40' image_ROOT = '/home/zmy/mmi_dataset/ModelNet40_images/modelnet40_images_new_12x' ModelNet10_CLASSES = ['bathtub', 'bed', 'chair', 'desk', 'dresser', 'monitor', 'night_stand', 'sofa', 'table', 'toilet'] ModelNet40_CLASSES = [ 'airplane', 'bowl', 'table', 'chair', 'vase', 'glass_box', 'bathtub', 'toilet', 'range_hood', 'flower_pot', 'laptop', 'plant', 'cup', 'person', 'tent', 'sofa', 'monitor', 'keyboard', 'desk', 'mantel', 'curtain', 'bed', 'lamp', 'bench', 'dresser','car', 'sink', 'night_stand', 'stool', 'door', 'guitar', 'stairs', 'radio', 'tv_stand', 'cone', 'xbox', 'wardrobe', 'bookshelf', 'bottle', 'piano'] # ---------------Block1--------------------------- # X = {'train': [], 'test': []} # y = {'train': [], 'test': []} # # for label, cl in enumerate(ModelNet10_CLASSES): # for split in ['train', 'test']: # examples_dir = os.path.join(ModelNet10_ROOT, cl, split) # for example in os.listdir(examples_dir): # if 'binvox' in example: # Ignore OFF files # with open(os.path.join(examples_dir, example), 'rb') as file: # data = np.int32(binvox_rw.read_as_3d_array(file).data) # X[split].append(data) # y[split].append(label) # X['train']=np.expand_dims(X['train'], axis=1) # X['test'] = np.expand_dims(X['test'], axis=1) # # np.savez_compressed('/home/zmy/Datasets/modelnet10.npz', # X_train=X['train'], # X_test=X['test'], # y_train=y['train'], # y_test=y['test']) #---------------------------------------------------- # -----------------------Block2-------------------------- # X = {'train': [], 'test': []} # y = {'train': [], 'test': []} # for label, cl in enumerate(ModelNet40_CLASSES): # for split in ['train', 'test']: # examples_dir = os.path.join(ModelNet40_ROOT, cl, split) # for example in os.listdir(examples_dir): # if 'binvox' in example: # Ignore OFF files # with open(os.path.join(examples_dir, example), 'rb') as file: # data = np.int32(binvox_rw.read_as_3d_array(file).data) # X[split].append(data) # y[split].append(label) # # X['train'] = np.expand_dims(X['train'], axis=1) # X['test'] = np.expand_dims(X['test'], axis=1) # np.savez_compressed('/home/zmy/Datasets/modelnet40.npz', # X_train=X['train'], # X_test=X['test'], # y_train=y['train'], # y_test=y['test']) #------------------------------------------------------- #------------------------------------------------------------- # X = {'train': [], 'test': []} # y = {'train': [], 'test': []} # # for label, cl in enumerate(ModelNet10_CLASSES): # for split in ['train', 'test']: # examples_dir = os.path.join(image_ROOT, cl, split) # file_list = os.listdir(examples_dir) # id_list = [name.split('.')[0] for name in file_list if not name.startswith('.')] # unique_id_list = list(set(id_list)) # X[split]+= unique_id_list # y[split]+= [label] * len(unique_id_list) # # np.savez_compressed('/home/zmy/mmi_dataset/modelnet10_image.npz', # X_train=X['train'], # X_test=X['test'], # y_train=y['train'], # y_test=y['test']) #------------------------------------------------------------------------------------- #------------------------------------------------------------- X = {'train': [], 'test': []} y = {'train': [], 'test': []} for label, cl in enumerate(ModelNet40_CLASSES): for split in ['train', 'test']: examples_dir = os.path.join(image_ROOT, cl, split) file_list = os.listdir(examples_dir) id_list = [name.split('.')[0] for name in file_list if not name.startswith('.')] unique_id_list = list(set(id_list)) X[split]+= unique_id_list y[split]+= [label] * len(unique_id_list) np.savez_compressed('/home/zmy/mmi_dataset/modelnet40_image.npz', X_train=X['train'], X_test=X['test'], y_train=y['train'], y_test=y['test']) #-------------------------------------------------------------------------------------
45.690909
120
0.449065
1c51aa15373779b06273296a27d913c070079f41
857
py
Python
python/paddle/fluid/contrib/slim/quantization/__init__.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
1
2022-03-26T11:44:07.000Z
2022-03-26T11:44:07.000Z
python/paddle/fluid/contrib/slim/quantization/__init__.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/contrib/slim/quantization/__init__.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
1
2022-03-26T11:44:12.000Z
2022-03-26T11:44:12.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from . import quantization_pass from .quantization_pass import * from . import quantization_strategy from .quantization_strategy import * __all__ = quantization_pass.__all__ + quantization_strategy.__all__
37.26087
74
0.787631
7be7a563b31adbb4c9c6a38a319557746106dc98
2,409
py
Python
day20/part2.py
mtn/advent18
634ad20f02c321d6a38583077ee6b7f84a8848e5
[ "MIT" ]
1
2018-12-01T20:58:37.000Z
2018-12-01T20:58:37.000Z
day20/part2.py
mtn/advent18
634ad20f02c321d6a38583077ee6b7f84a8848e5
[ "MIT" ]
null
null
null
day20/part2.py
mtn/advent18
634ad20f02c321d6a38583077ee6b7f84a8848e5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from collections import defaultdict open_parens = [] start_end = {} # open paren to close paren ind alt_starts = {} # alternation to opening "(" alts = {} # maps "(" ind to [alternations] with open("input.txt") as f: inp = f.read().strip() for i, ch in enumerate(inp): if ch == "$": break if ch == "(": open_parens.append(i) elif ch == ")": last_open = open_parens.pop() start_end[last_open] = i if ch == "|": alt_starts[i] = open_parens[-1] if open_parens[-1] in alts: alts[open_parens[-1]].append(i) else: alts[open_parens[-1]] = [i] assert not open_parens # all opened parens should be closed g = defaultdict(set) # graph represented as adjacency lists visited = set() # what we've visited so we don't cycle in inp def run(point, ind): global g while True: if inp[ind] == "$" or (point, ind) in visited: break visited.add((point, ind)) if inp[ind] == "N": new = (point[0], point[1] - 1) g[point].add(new) g[new].add(point) ind += 1 point = new elif inp[ind] == "E": new = (point[0] + 1, point[1]) g[point].add(new) g[new].add(point) ind += 1 point = new elif inp[ind] == "S": new = (point[0], point[1] + 1) g[point].add(new) g[new].add(point) ind += 1 point = new elif inp[ind] == "W": new = (point[0] - 1, point[1]) g[point].add(new) g[new].add(point) ind += 1 point = new elif inp[ind] == "|": # jump to the end of the alternation ind = start_end[alt_starts[ind]] + 1 elif inp[ind] == "(": for alt in alts[ind]: run(point, alt + 1) ind += 1 # the first branch wasn't parsed as part of the alts elif inp[ind] == ")": ind += 1 run((0, 0), 1) q = [((0, 0), 0)] distances = {} count = 0 while q: (x, y), dist = q.pop() if (x, y) in distances and distances[(x, y)] <= dist: continue if dist >= 1000: count += 1 distances[(x, y)] = dist for neighbor in g[(x, y)]: q.append((neighbor, dist + 1)) print(count)
24.333333
74
0.479867
c045e6c776ebf0200b59b2bd61fbe2c462c08bca
6,031
py
Python
pydown/downloader.py
qorost/pydown
b8ab1ff12c20f0e9e3f7af30bea31f4288025d7e
[ "BSD-2-Clause" ]
null
null
null
pydown/downloader.py
qorost/pydown
b8ab1ff12c20f0e9e3f7af30bea31f4288025d7e
[ "BSD-2-Clause" ]
null
null
null
pydown/downloader.py
qorost/pydown
b8ab1ff12c20f0e9e3f7af30bea31f4288025d7e
[ "BSD-2-Clause" ]
null
null
null
import sys import urllib import urllib2 #import requests import os.path import thread import threading import argparse def print_progress(iteration,total,prefix='Progress: ',suffix='Complete',decimals = 2, barlen = 100): """ http://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) """ filledlen = int(round(barlen*iteration)/float(total)) percents = round(100.00*(iteration/float(total)),decimals) bar = '#' * filledlen + '-' * (barlen - filledlen) try: sys.stdout.write("%s [%s] %s%s %s\r" % (prefix,bar,percents,'%',suffix)) sys.stdout.flush() except Exception,e: print str(e) print prefix,bar,percents,suffix print type(percents),type(bar) if iteration == total: print("\n") class LinkFile(): def __init__(self,filename="links.txt"): self.filename = filename def saveto(self,links): try: fp = open(self.filename,"w") for i in links: fp.write(i) fp.write("\n") fp.close() except Exception,e: sys.stderr.write("Error in Writing: " + str(e)) def extractfrom(self,filename=None): links = set() if filename is not None: tmp = filename else: tmp = self.filename try: fp = open(tmp,"r") texts = fp.read().splitlines() for i in texts: links.add(i) fp.close() return links except Exception,e: sys.stderr.write("Error while reading: " + str(e)) class Downloader(): def __init__(self,url,filename,overite=False): self.url = url self.filename = filename def run(self,overite=False) : msg= self.url i = 0 url = self.url file_name = self.filename if os.path.exists(os.path.abspath(file_name)) and overite == False: print "File Already Existed, skip downloading..." return 1 try: u = urllib2.urlopen(url) f = open(file_name, 'wb') meta = u.info() file_size = int(meta.getheaders("Content-Length")[0]) print "Downloading: %s Bytes: %s" % (file_name, file_size) file_size_dl = 0 block_sz = 8192 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) print_progress(file_size_dl,file_size) #status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl * 100. / file_size) #status = status + chr(8)*(len(status)+1) #print status f.close() return 0 except Exception,e: print 'Exceptiion in %s',url,': ',str(e) return -1 class MyDownLoadThread(threading.Thread) : def __init__(self,url, filename = None): threading.Thread.__init__(self) self.fileurl = url if filename is not None: self.filename = filename else: if url.find('/') >= 0: self.filename = url.split('/')[-1] else : self.filename ='test.pdf' def run(self) : msg= 'Thread downloading %s started!\n From url: %s' %(self.filename,self.fileurl) try : urllib.urlretrieve(self.fileurl, self.filename,None) msg= 'File %s downloaded!' % self.filename except: msg= 'failed to download' class MyFilesDownloader(): def __init__(self, urls, dir='.'): self.downurls = urls self.threads = [] self.dir = dir def startDownloadingFiles(self, multiThreading = False): if multiThreading == True : msg= 'In MULTITHREAD mode \nStart Downloading file into directory %s...' % self.dir if self.downurls is not None: for url in self.downurls : if url.find('/') >= 0: filename = url.split('/')[-1] else : filename ="test.pdf" filename =os.path.join(self.dir, filename) t = MyDownLoadThread(url, filename) self.threads.append(t) t.start() else : msg= 'In NORMAL mode \nStart Downloading file into directory %s...' % self.dir if self.downurls is not None: i = 1 failures = 0 skipped = 0 success = 0 num = len(self.downurls) for url in self.downurls : if url.find('/') >= 0: filename = url.split('/')[-1] else : filename ="test.pdf" print "(%d/%d) URL: %s" %(i,num,url) filename =os.path.join(self.dir, filename) filedownloader = Downloader(url, filename) result = filedownloader.run() i += 1 if result == 1: skipped += 1 elif result == 0: success += 1 else: failures += 1 print "\nDownloading finished, (Suc:%d,Fails:%d,Skipped,%d,Total:%d)" %(success,failures,skipped,num) def test_download(): filename = "5MB5MB.zip" url = "http://download.thinkbroadband.com/5MB.zip" xdown = Downloader(url,filename) xdown.run() if __name__ == '__main__': test_download() #
31.910053
113
0.507213
d8ffa1d38fd38bef012c335812ecb17304bf1ace
5,266
py
Python
raymon/types.py
pbonte/raymon
83912d7a5ff22d61289688828169a7178fa34a2d
[ "MIT" ]
21
2021-06-14T08:37:22.000Z
2022-03-08T05:41:54.000Z
raymon/types.py
pbonte/raymon
83912d7a5ff22d61289688828169a7178fa34a2d
[ "MIT" ]
57
2021-01-30T08:45:13.000Z
2022-02-21T16:15:00.000Z
raymon/types.py
pbonte/raymon
83912d7a5ff22d61289688828169a7178fa34a2d
[ "MIT" ]
1
2021-06-18T09:53:58.000Z
2021-06-18T09:53:58.000Z
import json import io from abc import ABC, abstractmethod from pydoc import locate import msgpack import numpy as np import pandas as pd import base64 import ast from PIL import Image as PILImage from raymon.globals import Serializable class RaymonDataType(Serializable, ABC): def to_json(self): return json.dumps(self.to_jcr()) def to_msgpack(self): return msgpack.packb(self.to_jcr()) def class2str(self): module = str(self.__class__.__module__) classname = str(self.__class__.__name__) return f"{module}.{classname}" class Image(RaymonDataType): def __init__(self, data, lossless=False): self.validate(data=data, lossless=lossless) self.data = data self.lossless = lossless def validate(self, data, lossless): # Validate 3 channels if not isinstance(data, PILImage.Image): raise ValueError("Image shoud be a PIL Image") if not isinstance(lossless, bool): raise ValueError("lossless should be boolean") return True def to_jcr(self): img_byte_arr = io.BytesIO() if self.lossless: self.data.save(img_byte_arr, format="png") else: # We'll save the image as JPEG. This is not lossless, but it is saves as the highest JPEG quality. This is 25 times faster than dumping as lossless PNG, and results in a size of only 1/5th the size, before b64 encoding. # Measurements: PNG: 3.767667055130005s, 4008037 bytes -- PNG: 3.767667055130005s, 4008037 bytes # For impact on algorithms see "On the Impact of Lossy Image and Video Compression on the Performance of Deep Convolutional Neural Network Architectures" (https://arxiv.org/abs/2007.14314), although this paper takes jpeg quality 95 as highest quality. self.data.save(img_byte_arr, format="jpeg", quality=95) img_byte_arr = img_byte_arr.getvalue() b64 = base64.b64encode(img_byte_arr).decode() data = {"type": self.class2str(), "params": {"data": b64, "lossless": self.lossless}} return data @classmethod def from_jcr(cls, params): b64 = params["data"] img_byte_arr = io.BytesIO(base64.decodebytes(b64.encode())) img = PILImage.open(img_byte_arr) return cls(data=img) class Numpy(RaymonDataType): def __init__(self, data): self.validate(data) self.data = data def validate(self, data): if not isinstance(data, np.ndarray): raise ValueError(f"Data must bu of type numpy.ndarray, not {type(data)}.") return True def to_jcr(self): b64 = base64.b64encode(self.data).decode() shape = self.data.shape dtype = self.data.dtype data = {"type": self.class2str(), "params": {"data": b64, "shape": str(shape), "dtype": str(dtype)}} return data @classmethod def from_jcr(cls, params): shape = ast.literal_eval(params["shape"]) dtype = params["dtype"] b64 = params["data"] nprest = np.frombuffer(base64.decodebytes(b64.encode()), dtype=str(dtype)).reshape(shape) return cls(data=nprest) class Series(RaymonDataType): def __init__(self, data): self.validate(data) self.data = data def validate(self, data): if not isinstance(data, pd.Series): raise ValueError("Data should be a Pandas Series") return True def to_jcr(self): data = { "type": self.class2str(), "params": { "data": json.loads(self.data.to_json()), }, } return data @classmethod def from_jcr(cls, jcr): series = pd.Series(**jcr) return cls(series) class DataFrame(RaymonDataType): def __init__(self, data): self.validate(data) self.data = data def validate(self, data): if not isinstance(data, pd.DataFrame): raise ValueError("Data should be a Pandas DataFrame") return True def to_jcr(self): data = { "type": self.class2str(), "params": { "data": json.loads(self.data.to_json()), }, } return data @classmethod def from_jcr(cls, jcr): frame = pd.read_json(json.dumps(jcr["data"])) return cls(frame) class Native(RaymonDataType): def __init__(self, data): self.validate(data) self.data = data def validate(self, data): try: json.dumps(data) except TypeError as exc: raise ValueError(f"{exc}") return True def to_jcr(self): data = { "type": self.class2str(), "params": { "data": self.data, }, } return data @classmethod def from_jcr(cls, jcr): return cls(jcr["data"]) def load_jcr(jcr): params = jcr["params"] dtype = jcr["type"] type_class = locate(dtype) if type_class is None: raise NameError(f"Could not locate {dtype}") loaded = type_class.from_jcr(params) return loaded def from_msgpack(data): loaded_data = msgpack.unpackb(data, raw=False) return load_jcr(loaded_data)
29.418994
263
0.6109
4e04e12ca888d485002ae7196472f3182c8a4d8a
640
py
Python
release/cs_submitter/mainform/views.py
kvswim/kv_jhucs_coursesubmit
a00f2d1ca52204857bdf34271e13d97b424fcfca
[ "MIT" ]
null
null
null
release/cs_submitter/mainform/views.py
kvswim/kv_jhucs_coursesubmit
a00f2d1ca52204857bdf34271e13d97b424fcfca
[ "MIT" ]
null
null
null
release/cs_submitter/mainform/views.py
kvswim/kv_jhucs_coursesubmit
a00f2d1ca52204857bdf34271e13d97b424fcfca
[ "MIT" ]
null
null
null
#Kyle Verdeyen #Independent Study, Summer 2017 #Joanne Selinski #View for the mainform. Very basic validation checks. from django.shortcuts import render, render_to_response, redirect from django.http import HttpResponse from .forms import MainFormModelForm from django.urls import reverse # Create your views here. def index(request): if request.method == "POST": form = MainFormModelForm(request.POST) if form.is_valid(): post = form.save(commit = False) post.save() return redirect('/table') else: form = MainFormModelForm() return render(request, 'form/index.html', {'form' : form}) #return reverse('table:table')
30.47619
65
0.75
ae70b469d9ff51872b0638d41b15693be95ad731
7,398
py
Python
mars/services/scheduling/supervisor/tests/test_queue_balance.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
2,413
2018-12-06T09:37:11.000Z
2022-03-30T15:47:39.000Z
mars/services/scheduling/supervisor/tests/test_queue_balance.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
1,335
2018-12-07T03:06:18.000Z
2022-03-31T11:45:57.000Z
mars/services/scheduling/supervisor/tests/test_queue_balance.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
329
2018-12-07T03:12:41.000Z
2022-03-29T21:49:57.000Z
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import pytest from typing import Tuple, List from ..... import oscar as mo from ....cluster import ClusterAPI from ....cluster.core import NodeRole, NodeStatus from ....cluster.uploader import NodeInfoUploaderActor from ....cluster.supervisor.locator import SupervisorPeerLocatorActor from ....cluster.supervisor.node_info import NodeInfoCollectorActor from ....subtask import Subtask from ...supervisor import AssignerActor, \ SubtaskManagerActor, SubtaskQueueingActor, GlobalSlotManagerActor class MockNodeInfoCollectorActor(NodeInfoCollectorActor): def __init__(self, timeout=None, check_interval=None): super().__init__(timeout=timeout, check_interval=check_interval) self.ready_nodes = {('address0', 'numa-0'): 2, ('address1', 'numa-0'): 2, ('address2', 'numa-0'): 2} async def update_node_info(self, address, role, env=None, resource=None, detail=None, status=None): if 'address' in address and status == NodeStatus.STOPPING: del self.ready_nodes[(address, 'numa-0')] await super().update_node_info(address, role, env, resource, detail, status) def get_all_bands(self, role=None, statuses=None): if statuses == {NodeStatus.READY}: return self.ready_nodes else: return {('address0', 'numa-0'): 2, ('address1', 'numa-0'): 2, ('address2', 'numa-0'): 2} class FakeClusterAPI(ClusterAPI): @classmethod async def create(cls, address: str, **kw): dones, _ = await asyncio.wait([ mo.create_actor(SupervisorPeerLocatorActor, 'fixed', address, uid=SupervisorPeerLocatorActor.default_uid(), address=address), mo.create_actor(MockNodeInfoCollectorActor, uid=NodeInfoCollectorActor.default_uid(), address=address), mo.create_actor(NodeInfoUploaderActor, NodeRole.WORKER, interval=kw.get('upload_interval'), band_to_slots=kw.get('band_to_slots'), use_gpu=kw.get('use_gpu', False), uid=NodeInfoUploaderActor.default_uid(), address=address), ]) for task in dones: try: task.result() except mo.ActorAlreadyExist: # pragma: no cover pass api = await super().create(address=address) await api.mark_node_ready() return api class MockSlotsActor(mo.Actor): def apply_subtask_slots(self, band: Tuple, session_id: str, subtask_ids: List[str], subtask_slots: List[int]): return subtask_ids class MockAssignerActor(mo.Actor): def assign_subtasks(self, subtasks: List[Subtask]): return [subtask.expect_bands[0] for subtask in subtasks] def reassign_subtasks(self, band_num_queued_subtasks): if len(band_num_queued_subtasks.keys()) == 1: [(band, _)] = band_num_queued_subtasks.items() return {band: 0} return {('address1', 'numa-0'): -8, ('address0', 'numa-0'): 0, ('address2', 'numa-0'): 8} class MockSubtaskManagerActor(mo.Actor): def __init__(self): self._subtask_ids, self._bands = [], [] @mo.extensible def submit_subtask_to_band(self, subtask_id: str, band: Tuple): self._subtask_ids.append(subtask_id) self._bands.append(band) def dump_data(self): return self._subtask_ids, self._bands @pytest.fixture async def actor_pool(): pool = await mo.create_actor_pool('127.0.0.1', n_process=0) async with pool: session_id = 'test_session' cluster_api = await FakeClusterAPI.create(pool.external_address) # create assigner actor await mo.create_actor(MockAssignerActor, uid=AssignerActor.gen_uid(session_id), address=pool.external_address) # create queueing actor manager_ref = await mo.create_actor(MockSubtaskManagerActor, uid=SubtaskManagerActor.gen_uid(session_id), address=pool.external_address) # create slots actor slots_ref = await mo.create_actor(MockSlotsActor, uid=GlobalSlotManagerActor.default_uid(), address=pool.external_address) # create queueing actor queueing_ref = await mo.create_actor(SubtaskQueueingActor, session_id, 1, uid=SubtaskQueueingActor.gen_uid(session_id), address=pool.external_address) yield pool, session_id, cluster_api, queueing_ref, slots_ref, manager_ref await mo.destroy_actor(queueing_ref) async def _queue_subtasks(num_subtasks, expect_bands, queueing_ref): if not num_subtasks: return subtasks = [Subtask(expect_bands[0] + '-' + str(i)) for i in range(num_subtasks)] for subtask in subtasks: subtask.expect_bands = [expect_bands] priorities = [(i,) for i in range(num_subtasks)] await queueing_ref.add_subtasks(subtasks, priorities) @pytest.mark.asyncio async def test_subtask_queueing(actor_pool): _pool, session_id, cluster_api, queueing_ref, slots_ref, manager_ref = actor_pool nums_subtasks = [9, 8, 1] expects_bands = [('address0', 'numa-0'), ('address1', 'numa-0'), ('address2', 'numa-0')] for num_subtasks, expect_bands in zip(nums_subtasks, expects_bands): await _queue_subtasks(num_subtasks, expect_bands, queueing_ref) await cluster_api.set_node_status( node='address1', role=NodeRole.WORKER, status=NodeStatus.STOPPING) # 9 subtasks on ('address0', 'numa-0') await queueing_ref.submit_subtasks(band=('address0', 'numa-0'), limit=10) commited_subtask_ids, _commited_bands = await manager_ref.dump_data() assert len(commited_subtask_ids) == 9 # 0 subtasks on ('address1', 'numa-0') await queueing_ref.submit_subtasks(band=('address1', 'numa-0'), limit=10) commited_subtask_ids, _commited_bands = await manager_ref.dump_data() assert len(commited_subtask_ids) == 9 # 9 subtasks on ('address2', 'numa-0') await queueing_ref.submit_subtasks(band=('address2', 'numa-0'), limit=10) commited_subtask_ids, _commited_bands = await manager_ref.dump_data() assert len(commited_subtask_ids) == 18
40.872928
90
0.628008
1bd69ceec19c6af6752dbe20cdaa51daebdac417
183
py
Python
mindhome_alpha/erpnext/patches/v5_0/rename_customer_issue.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
1
2021-04-29T14:55:29.000Z
2021-04-29T14:55:29.000Z
mindhome_alpha/erpnext/patches/v5_0/rename_customer_issue.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
null
null
null
mindhome_alpha/erpnext/patches/v5_0/rename_customer_issue.py
Mindhome/field_service
3aea428815147903eb9af1d0c1b4b9fc7faed057
[ "MIT" ]
1
2021-04-29T14:39:01.000Z
2021-04-29T14:39:01.000Z
from __future__ import unicode_literals import frappe def execute(): if frappe.db.table_exists("Customer Issue"): frappe.rename_doc("DocType", "Customer Issue", "Warranty Claim")
26.142857
66
0.775956
3385ae91238131c0f2ff872285f9cab3f21c3557
2,189
py
Python
fynance/models/xgb.py
ArthurBernard/Fynance
efd9a2e6f8eddcff017d828972236312f6f24084
[ "MIT" ]
19
2018-12-13T18:52:51.000Z
2021-09-03T00:33:47.000Z
fynance/models/xgb.py
ArthurBernard/Fynance
efd9a2e6f8eddcff017d828972236312f6f24084
[ "MIT" ]
null
null
null
fynance/models/xgb.py
ArthurBernard/Fynance
efd9a2e6f8eddcff017d828972236312f6f24084
[ "MIT" ]
6
2019-05-31T16:51:51.000Z
2021-07-29T21:31:25.000Z
#!/usr/bin/env python3 # coding: utf-8 # @Author: ArthurBernard # @Email: arthur.bernard.92@gmail.com # @Date: 2019-04-23 19:15:05 # @Last modified by: ArthurBernard # @Last modified time: 2019-09-25 14:14:47 # Built-in packages # Third party packages # import xgboost as xgb # Local packages __all__ = ['XGB', 'XGBData'] class XGB: # TODO : train method, predict method def __init__(self, X, y, **kwargs): """ Setting data to XGBoot model. Parameters ---------- X, y : np.ndarray[ndim=2, dtype=np.float64] Respectively features with shape `(T, N)` and target with shape `(T, 1)` of the model. kwargs : dict, optional Parameters of DMatrix object, cf XGBoost documentation [1]_. References ---------- .. [1] https://xgboost.readthedocs.io/en/latest/python/python_api.html """ self.data = XGBData(X, label=y, **kwargs) def run(self, n, s, **params): # TODO : to remove train = self.data[:-n] estim = self.data[: s] # bst = xgb.train(params, train) # return bst.predict(estim) class XGBData: # (xgb.DMatrix): """ Set data for XGBoost models. """ def __getitem__(self, key): """ Slice the DMatrix and return a new DMatrix that only contains `key`. Parameters ---------- key : slice Slice to be selected. Returns ------- res : DMatrix A new DMatrix containing only selected indices. """ start = 0 if key.start is None else key.start step = 1 if key.step is None else key.step stop = self.num_row() if key.stop is None else key.stop if step < 0: stop, start = start - 1, stop + 1 if stop < 0: stop += self.num_row() + 1 return self.slice(list(range(start, stop, step))) def train_xgb(params, dtrain, bst=None, **kwargs): """ Train a XGBoost model """ if bst is None: pass # return xgb.train(params, dtrain, **kwargs) else: pass # return xgb.train(params, dtrain, xgb_model=bst, **kwargs)
24.595506
80
0.562814
79e4955fbc2717ea605a117d3b035dbae454bceb
36,864
py
Python
tensorflow/python/autograph/impl/api_test.py
AdaAlarm/tensorflow
e0db063159751276a92d88a4ad6d481b1199318c
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/autograph/impl/api_test.py
AdaAlarm/tensorflow
e0db063159751276a92d88a4ad6d481b1199318c
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/autograph/impl/api_test.py
AdaAlarm/tensorflow
e0db063159751276a92d88a4ad6d481b1199318c
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for api module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import contextlib import functools import gc import imp import os import re import sys import textwrap import types import numpy as np import six from tensorflow.python.autograph.core import ag_ctx from tensorflow.python.autograph.core import converter from tensorflow.python.autograph.core import converter_testing from tensorflow.python.autograph.impl import api from tensorflow.python.autograph.impl import conversion from tensorflow.python.autograph.pyct import errors from tensorflow.python.autograph.pyct import inspect_utils from tensorflow.python.autograph.pyct import parser from tensorflow.python.autograph.utils import ag_logging from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.framework import _errors_test_helper from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors as tf_errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.util import function_utils from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect global_n = 2 DEFAULT_RECURSIVE = converter.ConversionOptions(recursive=True) class TestResource(object): def __init__(self): self.x = 3 class ApiTest(test.TestCase): @contextlib.contextmanager def assertPrints(self, expected, not_expected): try: out_capturer = six.StringIO() sys.stdout = out_capturer yield self.assertIn(expected, out_capturer.getvalue()) self.assertNotIn(not_expected, out_capturer.getvalue()) finally: sys.stdout = sys.__stdout__ def assertNoMemoryLeaks(self, f): object_ids_before = {id(o) for o in gc.get_objects()} f() gc.collect() objects_after = tuple( o for o in gc.get_objects() if id(o) not in object_ids_before) self.assertEmpty( tuple(o for o in objects_after if isinstance(o, TestResource))) def test_converted_call_kwonly_args(self): def test_fn(*, a): return a x = api.converted_call( test_fn, (), {'a': constant_op.constant(-1)}, options=DEFAULT_RECURSIVE) self.assertEqual(-1, self.evaluate(x)) def test_super_with_no_arg(self): test_case_self = self class TestBase: def plus_three(self, x): return x + 3 class TestSubclass(TestBase): def plus_three(self, x): test_case_self.fail('This should never be called.') def no_arg(self, x): return super().plus_three(x) tc = api.converted_call(TestSubclass, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(5, tc.no_arg(2)) def test_converted_call_avoids_triggering_operators(self): test_self = self class Pair(collections.namedtuple('Pair', ['a', 'b'])): def __call__(self): return self.a + self.b def __eq__(self, other): test_self.fail('Triggered operator') p = Pair(constant_op.constant(1), constant_op.constant(2)) x = api.converted_call(p, (), {}, options=DEFAULT_RECURSIVE) self.assertIsNotNone(self.evaluate(x), 3) @test_util.run_deprecated_v1 def test_decorator_recursive(self): class TestClass(object): def called_member(self, a): if a < 0: a = -a return a @api.convert(recursive=True) def test_method(self, x, s, a): while math_ops.reduce_sum(x) > s: x //= self.called_member(a) return x tc = TestClass() x = tc.test_method( constant_op.constant([2, 4]), constant_op.constant(1), constant_op.constant(-2)) self.assertListEqual([0, 1], self.evaluate(x).tolist()) @test_util.run_deprecated_v1 def test_decorator_not_recursive(self): class TestClass(object): def called_member(self, a): return math_ops.negative(a) @api.convert(recursive=False) def test_method(self, x, s, a): while math_ops.reduce_sum(x) > s: x //= self.called_member(a) return x tc = TestClass() x = tc.test_method( constant_op.constant([2, 4]), constant_op.constant(1), constant_op.constant(-2)) self.assertListEqual([0, 1], self.evaluate(x).tolist()) @test_util.run_deprecated_v1 def test_convert_then_do_not_convert(self): class TestClass(object): @api.do_not_convert def called_member(self, a): return math_ops.negative(a) @api.convert(recursive=True) def test_method(self, x, s, a): while math_ops.reduce_sum(x) > s: x //= self.called_member(a) return x tc = TestClass() x = tc.test_method( constant_op.constant((2, 4)), constant_op.constant(1), constant_op.constant(-2)) self.assertAllEqual((0, 1), self.evaluate(x)) @test_util.run_deprecated_v1 def test_decorator_calls_decorated(self): class TestClass(object): @api.convert() def called_member(self, a): if a < 0: a = -a return a @api.convert(recursive=True) def test_method(self, x, s, a): while math_ops.reduce_sum(x) > s: x //= self.called_member(a) return x tc = TestClass() x = tc.test_method( constant_op.constant([2, 4]), constant_op.constant(1), constant_op.constant(-2)) self.assertListEqual([0, 1], self.evaluate(x).tolist()) def test_decorator_preserves_argspec(self): class TestClass(object): def test_method(self, a): if a < 0: a = -a return a test_method_converted = api.convert()(test_method) tc = TestClass() self.assertListEqual( list(tf_inspect.getfullargspec(tc.test_method)), list(tf_inspect.getfullargspec(tc.test_method_converted))) def test_do_not_convert_argspec(self): class TestClass(object): def test_method(self, x, y): z = x + y return z test_method_allowlisted = api.do_not_convert(test_method) tc = TestClass() self.assertTrue(tf_inspect.ismethod(tc.test_method_allowlisted)) # Because the wrapped function is not generated, we can't preserve its # arg spec. self.assertEqual((), tuple(function_utils.fn_args(tc.test_method_allowlisted))) def test_do_not_convert_callable_object(self): class TestClass(object): def __call__(self): return 1 tc = TestClass() self.assertEqual(1, api.do_not_convert(tc)()) @test_util.run_deprecated_v1 def test_convert_call_site_decorator(self): class TestClass(object): def called_member(self, a): if a < 0: a = -a return a @api.convert(recursive=True) def test_method(self, x, s, a): while math_ops.reduce_sum(x) > s: x //= api.converted_call( self.called_member, (a,), None, options=DEFAULT_RECURSIVE) return x tc = TestClass() x = tc.test_method( constant_op.constant([2, 4]), constant_op.constant(1), constant_op.constant(-2)) self.assertListEqual([0, 1], self.evaluate(x).tolist()) def test_converted_call_builtin(self): x = api.converted_call(range, (3,), None, options=DEFAULT_RECURSIVE) self.assertEqual((0, 1, 2), tuple(x)) x = api.converted_call( re.compile, ('mnas_v4_a.*\\/.*(weights|kernel):0$',), None, options=DEFAULT_RECURSIVE) self.assertIsNotNone(x.match('mnas_v4_a/weights:0')) def test_converted_call_function(self): def test_fn(x): if x < 0: return -x return x x = api.converted_call( test_fn, (constant_op.constant(-1),), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) @test_util.run_v1_only('b/120545219') def test_converted_call_functools_partial(self): def test_fn(x, y, z): if x < 0: return -x, -y, -z return x, y, z x = api.converted_call( functools.partial(test_fn, constant_op.constant(-1), z=-3), (constant_op.constant(-2),), None, options=DEFAULT_RECURSIVE) self.assertEqual((1, 2, 3), self.evaluate(x)) x = api.converted_call( functools.partial( functools.partial(test_fn, constant_op.constant(-1)), z=-3), (constant_op.constant(-2),), None, options=DEFAULT_RECURSIVE) self.assertEqual((1, 2, 3), self.evaluate(x)) @test_util.run_v1_only('b/120545219') def test_converted_call_functools_partial_kwarg_mutation(self): def test_fn(x, y, z): if x < 0: return -x, -y, -z return x, y, z partial_fn = functools.partial(test_fn, constant_op.constant(-1), z=-3) # Call using kwargs to assign y first to ensure that partial_fn.keywords is # not mutated for subsequent calls (where y is assign through args). x = api.converted_call( partial_fn, args=(), kwargs={ 'y': constant_op.constant(-2), }, options=DEFAULT_RECURSIVE) self.assertEqual((1, 2, 3), self.evaluate(x)) x = api.converted_call( partial_fn, args=(constant_op.constant(-4),), kwargs=None, options=DEFAULT_RECURSIVE) self.assertEqual((1, 4, 3), self.evaluate(x)) def test_converted_call_method(self): class TestClass(object): def __init__(self, x): self.x = x def test_method(self): if self.x < 0: return -self.x return self.x tc = TestClass(constant_op.constant(-1)) x = api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) def test_converted_call_synthetic_method(self): class TestClass(object): def __init__(self, x): self.x = x def test_function(self): if self.x < 0: return -self.x return self.x tc = TestClass(constant_op.constant(-1)) test_method = types.MethodType(test_function, tc) x = api.converted_call(test_method, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) def test_converted_call_method_wrapper(self): class TestClass(object): def foo(self): pass tc = TestClass() # `method.__get__()` returns a so-called method-wrapper. wrapper = api.converted_call( tc.foo.__get__, (tc,), None, options=DEFAULT_RECURSIVE) self.assertEqual(wrapper, tc.foo) def test_converted_call_method_as_object_attribute(self): class AnotherClass(object): def __init__(self): self.another_class_attr = constant_op.constant(1) def method(self): if self.another_class_attr > 0: return self.another_class_attr + 1 return self.another_class_attr + 10 class TestClass(object): def __init__(self, another_obj_method): self.another_obj_method = another_obj_method obj = AnotherClass() tc = TestClass(obj.method) x = api.converted_call( tc.another_obj_method, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(self.evaluate(x), 2) def test_converted_call_method_converts_recursively(self): class TestClass(object): def __init__(self, x): self.x = x def other_method(self): if self.x < 0: return -self.x return self.x def test_method(self): return self.other_method() tc = TestClass(constant_op.constant(-1)) x = api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) def test_converted_call_method_by_class(self): class TestClass(object): def __init__(self, x): self.x = x def test_method(self): if self.x < 0: return -self.x return self.x tc = TestClass(constant_op.constant(-1)) x = api.converted_call( TestClass.test_method, (tc,), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) def test_converted_call_callable_object(self): class TestClass(object): def __init__(self, x): self.x = x def __call__(self): if self.x < 0: return -self.x return self.x tc = TestClass(constant_op.constant(-1)) x = api.converted_call(tc, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(1, self.evaluate(x)) def test_converted_call_callable_metaclass(self): test_self = self class TestMetaclass(type): def __call__(cls): self.assertTrue(converter_testing.is_inside_generated_code()) inst = object.__new__(cls) inst.__init__() def instance_call(unused_self): test_self.fail( 'The class-bound __call__ should be called, not the instance' ' bound one.') inst.__call__ = instance_call return inst tmc = TestMetaclass('TestClass', (), {}) tc = api.converted_call(tmc, (), None, options=DEFAULT_RECURSIVE) self.assertIsInstance(tc, tmc) def test_converted_call_callable_abc(self): test_self = self @six.add_metaclass(abc.ABCMeta) class TestBase(object): @abc.abstractmethod def __call__(self): test_self.fail('This should not be called') class TestSubclass(TestBase): def __init__(self): test_self.assertFalse(converter_testing.is_inside_generated_code()) def __call__(self, expected): test_self.assertTrue(expected) test_self.assertTrue(converter_testing.is_inside_generated_code()) tc = api.converted_call(TestSubclass, (), None, options=DEFAULT_RECURSIVE) api.converted_call(tc, (True,), None, options=DEFAULT_RECURSIVE) @test_util.run_deprecated_v1 def test_converted_call_constructor(self): test_self = self class TestClass(object): def __init__(self): test_self.assertFalse(converter_testing.is_inside_generated_code()) tc = api.converted_call(TestClass, (), None, options=DEFAULT_RECURSIVE) self.assertIsInstance(tc, TestClass) def test_converted_call_mangled_properties(self): class TestClass(object): def __init__(self): self.__private = constant_op.constant(-1) def test_method(self): return self.__private tc = TestClass() with self.assertRaisesRegex( errors.UnsupportedLanguageElementError, 'mangled names'): api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) # TODO(mdan): Refactor to avoid this use of global state. ag_logging.set_verbosity(0, True) os.environ['AUTOGRAPH_STRICT_CONVERSION'] = '0' with self.assertPrints('could not transform', 'bug'): api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) ag_logging.set_verbosity(0, False) os.environ['AUTOGRAPH_STRICT_CONVERSION'] = '1' def test_converted_call_partial_of_allowlisted_function(self): def test_fn(_): self.assertFalse(converter_testing.is_inside_generated_code()) converter_testing.allowlist(test_fn) api.converted_call( functools.partial(test_fn, None), (), None, options=DEFAULT_RECURSIVE) def test_converted_call_already_converted(self): def f(x): return x == 0 x = api.converted_call( f, (constant_op.constant(0),), None, options=DEFAULT_RECURSIVE) self.assertTrue(self.evaluate(x)) converted_f = api.to_graph( f, experimental_optional_features=converter.Feature.ALL) x = api.converted_call( converted_f, (constant_op.constant(0),), None, options=DEFAULT_RECURSIVE) self.assertTrue(self.evaluate(x)) def test_converted_call_then_already_converted_dynamic(self): @api.convert() def g(x): if x > 0: return x else: return -x def f(g, x): return g(x) x = api.converted_call( f, (g, constant_op.constant(1)), None, options=DEFAULT_RECURSIVE) self.assertEqual(self.evaluate(x), 1) def test_converted_call_forced_when_explicitly_allowlisted(self): @api.do_not_convert() def f(x): return x + 1 opts = converter.ConversionOptions(recursive=True, user_requested=True) x = api.converted_call(f, (constant_op.constant(0),), None, options=opts) self.assertTrue(self.evaluate(x)) converted_f = api.to_graph( f, experimental_optional_features=converter.Feature.ALL) x = api.converted_call(converted_f, (0,), None, options=DEFAULT_RECURSIVE) self.assertEqual(x, 1) @test_util.run_deprecated_v1 def test_converted_call_no_user_code(self): def f(x): return len(x) opts = converter.ConversionOptions(internal_convert_user_code=False) # f should not be converted, causing len to error out. with self.assertRaisesRegex(Exception, 'len is not well defined'): api.converted_call(f, (constant_op.constant([0]),), None, options=opts) # len on the other hand should work fine. x = api.converted_call( len, (constant_op.constant([0]),), None, options=opts) # The constant has static shape so the result is a primitive not a Tensor. self.assertEqual(x, 1) def test_converted_call_no_kwargs_allowed(self): def f(*args): # Note: np.broadcast rejects any **kwargs, even *{} return np.broadcast(args[:1]) opts = converter.ConversionOptions(internal_convert_user_code=False) self.assertIsNotNone( api.converted_call(f, (1, 2, 3, 4), None, options=opts)) def test_converted_call_allowlisted_method(self): class TestClass(object): def method(self): return converter_testing.is_inside_generated_code() obj = TestClass() converter_testing.allowlist(obj.method.__func__) self.assertFalse( api.converted_call(obj.method, (), {}, options=DEFAULT_RECURSIVE)) def test_converted_call_allowlisted_method_via_owner(self): class TestClass(object): def method(self): return converter_testing.is_inside_generated_code() converter_testing.allowlist(TestClass) obj = TestClass() self.assertFalse( api.converted_call(obj.method, (), {}, options=DEFAULT_RECURSIVE)) def test_converted_call_numpy(self): x = api.converted_call(np.arange, (5,), None, options=DEFAULT_RECURSIVE) self.assertAllEqual(x, list(range(5))) def test_converted_call_tf_op_forced(self): # TODO(mdan): Add the missing level of support to LOGICAL_EXPRESSIONS. opts = converter.ConversionOptions( user_requested=True, optional_features=None) x = api.converted_call(math_ops.add, (1, 1), None, options=opts) self.assertAllEqual(self.evaluate(x), 2) def test_converted_call_exec_generated_code(self): temp_mod = imp.new_module('test_module') dynamic_code = """ def foo(x): return x + 1 """ exec(textwrap.dedent(dynamic_code), temp_mod.__dict__) # pylint:disable=exec-used opts = converter.ConversionOptions(optional_features=None) x = api.converted_call(temp_mod.foo, (1,), None, options=opts) self.assertAllEqual(x, 2) def test_converted_call_namedtuple(self): x = api.converted_call( collections.namedtuple, ('TestNamedtuple', ('a', 'b')), None, options=DEFAULT_RECURSIVE) self.assertTrue(inspect_utils.isnamedtuple(x)) def test_converted_call_namedtuple_via_collections(self): x = api.converted_call( collections.namedtuple, ('TestNamedtuple', ('a', 'b')), None, options=DEFAULT_RECURSIVE) self.assertTrue(inspect_utils.isnamedtuple(x)) def test_converted_call_namedtuple_subclass_bound_method(self): class TestClass(collections.namedtuple('TestNamedtuple', ('a', 'b'))): def test_method(self, x): while math_ops.reduce_sum(x) > self.a: x //= self.b return x obj = TestClass(5, 2) x = api.converted_call( obj.test_method, (constant_op.constant([2, 4]),), None, options=DEFAULT_RECURSIVE) self.assertAllEqual(self.evaluate(x), [1, 2]) def test_converted_call_namedtuple_method(self): class TestClass(collections.namedtuple('TestNamedtuple', ('a', 'b'))): pass obj = TestClass(5, 2) # _asdict is a documented method of namedtuple. x = api.converted_call(obj._asdict, (), None, options=DEFAULT_RECURSIVE) self.assertDictEqual(x, {'a': 5, 'b': 2}) def test_converted_call_namedtuple_subclass_unbound_method(self): class TestClass(collections.namedtuple('TestNamedtuple', ('a', 'b'))): def test_method(self, x): while math_ops.reduce_sum(x) > self.a: x //= self.b return x obj = TestClass(5, 2) x = api.converted_call( TestClass.test_method, (obj, constant_op.constant([2, 4])), None, options=DEFAULT_RECURSIVE) self.assertAllEqual(self.evaluate(x), [1, 2]) def test_converted_call_lambda(self): l = lambda x: x == 0 x = api.converted_call( l, (constant_op.constant(0),), None, options=DEFAULT_RECURSIVE) self.evaluate(variables.global_variables_initializer()) self.assertAllEqual(True, self.evaluate(x)) def test_converted_call_defun_object_method(self): # pylint:disable=method-hidden class TestClass(object): def method(self): return 1 def prepare(self): self.method = function.defun(self.method) # pylint:enable=method-hidden tc = TestClass() tc.prepare() x = api.converted_call(tc.method, (), None, options=DEFAULT_RECURSIVE) self.assertAllEqual(1, self.evaluate(x)) def test_converted_call_native_binding(self): x = api.converted_call(np.power, (2, 2), None, options=DEFAULT_RECURSIVE) self.assertAllEqual(x, 4) def test_converted_call_native_binding_errorneous(self): class FaultyBinding(object): def __array__(self): raise ValueError('fault') bad_obj = FaultyBinding() def fail_if_warning(*_): self.fail('No warning should be issued') with test.mock.patch.object(ag_logging, 'warn', fail_if_warning): with self.assertRaisesRegex(ValueError, 'fault'): api.converted_call( np.power, (bad_obj, 2), None, options=DEFAULT_RECURSIVE) def test_converted_call_through_tf_dataset(self): def other_fn(x): if x > 0: return x return -x def f(): return dataset_ops.Dataset.range(-3, 3).map(other_fn) # Dataset iteration only works inside math_ops. @def_function.function def graph_fn(): ds = api.converted_call(f, (), None, options=DEFAULT_RECURSIVE) itr = iter(ds) return next(itr), next(itr), next(itr) self.assertAllEqual(self.evaluate(graph_fn()), (3, 2, 1)) def test_converted_call_no_leaks_via_closure(self): def test_fn(): res = TestResource() def f(y): return res.x + y api.converted_call(f, (1,), None, options=DEFAULT_RECURSIVE) self.assertNoMemoryLeaks(test_fn) def test_converted_call_no_leaks_via_inner_function_closure(self): def test_fn(): res = TestResource() def f(y): def inner_f(): return res.x + y return inner_f api.converted_call(f, (1,), None, options=DEFAULT_RECURSIVE)() self.assertNoMemoryLeaks(test_fn) def test_converted_call_no_caching_on_abort(self): def test_fn(needs_autograph): if needs_autograph: if constant_op.constant(True): x = constant_op.constant(1) else: x = constant_op.constant(2) else: x = 3 return x def call_in_disabled_context(): with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED): return api.converted_call( test_fn, (False,), None, options=DEFAULT_RECURSIVE) def call_in_default_context(): with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.ENABLED): return api.converted_call( test_fn, (True,), None, options=DEFAULT_RECURSIVE) # Note: this is an invariant, not a test (see above). assert call_in_disabled_context() == 3 # If api.convert placed test_fn in the unconverted cache, this second # invocation would fail. self.assertEqual(self.evaluate(call_in_default_context()), 1) def test_converted_call_caching_of_allowlisted_bound_methods(self): class TestClass(object): def __init__(self): self.__private = constant_op.constant(-1) def test_method(self): return self.__private # TODO(mdan): Refactor to avoid this use of global state. cache_size_before = len(conversion._ALLOWLIST_CACHE) # First invocation with fallback on, to allow recording it into cache. os.environ['AUTOGRAPH_STRICT_CONVERSION'] = '0' tc = TestClass() api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) os.environ['AUTOGRAPH_STRICT_CONVERSION'] = '1' # Entry should be added to the allowlist cache. self.assertEqual(len(conversion._ALLOWLIST_CACHE), cache_size_before + 1) # A second invocation should go through even with fallback off. tc = TestClass() api.converted_call(tc.test_method, (), None, options=DEFAULT_RECURSIVE) # No new entries should appear in the allowlist cache. self.assertEqual(len(conversion._ALLOWLIST_CACHE), cache_size_before + 1) def test_context_tracking_direct_calls(self): @api.do_not_convert() def unconverted_fn(): self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.DISABLED) @api.convert() def converted_fn(): self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.ENABLED) unconverted_fn() self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.ENABLED) self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.UNSPECIFIED) converted_fn() self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.UNSPECIFIED) @api.call_with_unspecified_conversion_status def unspecified_fn(): self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.UNSPECIFIED) unspecified_fn() def test_to_graph_basic(self): def test_fn(x, s): while math_ops.reduce_sum(x) > s: x //= 2 return x compiled_fn = api.to_graph(test_fn) with ops.Graph().as_default(): x = compiled_fn(constant_op.constant((4, 8)), 4) self.assertAllEqual(self.evaluate(x), (1, 2)) @test_util.run_deprecated_v1 def test_to_graph_with_defaults(self): foo = 4 def test_fn(x, s=foo): while math_ops.reduce_sum(x) > s: x //= 2 return x compiled_fn = api.to_graph(test_fn) x = compiled_fn(constant_op.constant([4, 8])) self.assertListEqual([1, 2], self.evaluate(x).tolist()) def test_to_graph_with_globals(self): def test_fn(x): global global_n global_n = x + global_n return global_n converted_fn = api.to_graph(test_fn) prev_val = global_n converted_fn(10) self.assertGreater(global_n, prev_val) def test_to_graph_with_kwargs_clashing_converted_call(self): def called_fn(**kwargs): return kwargs['f'] + kwargs['owner'] def test_fn(): # These arg names intentionally match converted_call's return called_fn(f=1, owner=2) compiled_fn = api.to_graph(test_fn) self.assertEqual(compiled_fn(), 3) def test_to_graph_with_kwargs_clashing_unconverted_call(self): @api.do_not_convert def called_fn(**kwargs): return kwargs['f'] + kwargs['owner'] def test_fn(): # These arg names intentionally match _call_unconverted's return called_fn(f=1, owner=2) compiled_fn = api.to_graph(test_fn) self.assertEqual(compiled_fn(), 3) def test_to_graph_caching(self): def test_fn(x): if x > 0: return x else: return -x converted_functions = tuple(api.to_graph(test_fn) for _ in (-1, 0, 1)) # All outputs are from the same module. We can't use __module__ because # that's reset when we instantiate the function (see conversion.py). # TODO(mdan): Can and should we overwrite __module__ instead? module_names = frozenset(f.ag_module for f in converted_functions) self.assertEqual(len(module_names), 1) self.assertNotIn('__main__', module_names) self.assertEqual(len(frozenset(id(f) for f in converted_functions)), 3) def test_to_graph_caching_different_options(self): def called_fn(): pass def test_fn(): return called_fn() converted_recursive = api.to_graph(test_fn, recursive=True) converted_non_recursive = api.to_graph(test_fn, recursive=False) self.assertNotEqual(converted_recursive.ag_module, converted_non_recursive.ag_module) self.assertRegex( tf_inspect.getsource(converted_recursive), 'FunctionScope(.*recursive=True.*)') self.assertRegex( tf_inspect.getsource(converted_non_recursive), 'FunctionScope(.*recursive=False.*)') def test_to_graph_preserves_bindings(self): y = 3 def test_fn(): return y converted = api.to_graph(test_fn) self.assertEqual(converted(), 3) y = 7 self.assertEqual(converted(), 7) def test_to_graph_source_map(self): def test_fn(y): return y**2 self.assertTrue(hasattr(api.to_graph(test_fn), 'ag_source_map')) def test_to_graph_sets_conversion_context(self): def g(): self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.ENABLED) return 0 # Note: the autograph=False sets the connect to Status.DISABLED. The test # verifies that to_graph overrides that. @def_function.function(autograph=False) def f(): converted_g = api.to_graph(g) converted_g() f() def test_to_code_basic(self): def test_fn(x, s): while math_ops.reduce_sum(x) > s: x /= 2 return x # Just check that the output is parseable Python code. self.assertIsNotNone(parser.parse(api.to_code(test_fn))) def test_to_code_with_wrapped_function(self): @def_function.function def test_fn(x, s): while math_ops.reduce_sum(x) > s: x /= 2 return x with self.assertRaisesRegex(Exception, 'try passing.*python_function'): api.to_code(test_fn) def test_tf_convert_overrides_current_context(self): def f(expect_converted): self.assertEqual( converter_testing.is_inside_generated_code(), expect_converted) @api.do_not_convert def test_fn(ctx, expect_converted): return api.tf_convert(f, ctx)(expect_converted) test_fn( ag_ctx.ControlStatusCtx(status=ag_ctx.Status.ENABLED), True) test_fn( ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED), False) def test_tf_convert_unspecified_not_converted_by_default(self): def f(): self.assertEqual(ag_ctx.control_status_ctx().status, ag_ctx.Status.UNSPECIFIED) self.assertFalse(converter_testing.is_inside_generated_code()) @def_function.function def test_fn(ctx): return api.tf_convert(f, ctx, convert_by_default=False)() test_fn(ag_ctx.ControlStatusCtx(status=ag_ctx.Status.UNSPECIFIED)) def test_tf_convert_allowlisted_method(self): if six.PY2: self.skipTest('Test bank not comptible with Python 2.') class TestClass(object): def method(self): return converter_testing.is_inside_generated_code() converter_testing.allowlist(TestClass.method) obj = TestClass() converted_call = api.tf_convert( obj.method, ag_ctx.ControlStatusCtx(status=ag_ctx.Status.ENABLED)) _, converted_target = tf_decorator.unwrap(converted_call) self.assertIs(converted_target.__func__, obj.method.__func__) def test_tf_convert_tf_decorator_unwrapping_context_enabled(self): def f(): self.assertTrue(converter_testing.is_inside_generated_code()) @functools.wraps(f) def wrapper(*args, **kwargs): return wrapper.__wrapped__(*args, **kwargs) decorated_f = tf_decorator.make_decorator(f, wrapper) def test_fn(ctx): return api.tf_convert(decorated_f, ctx)() test_fn(ag_ctx.ControlStatusCtx(status=ag_ctx.Status.ENABLED)) def test_tf_convert_tf_decorator_unwrapping_context_disabled(self): def f(): self.assertFalse(converter_testing.is_inside_generated_code()) @functools.wraps(f) def wrapper(*args, **kwargs): return wrapper.__wrapped__(*args, **kwargs) decorated_f = tf_decorator.make_decorator(f, wrapper) def test_fn(ctx): return api.tf_convert(decorated_f, ctx)() test_fn(ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED)) def test_tf_convert_tf_decorator_allowlist_method(self): def wrap(f): def wrapper(*args, **kwargs): return wrapper.__wrapped__(*args, **kwargs) return tf_decorator.make_decorator(f, wrapper) class TestClass(object): @wrap def method(self): return converter_testing.is_inside_generated_code() converter_testing.allowlist(TestClass.method) obj = TestClass() # It's intended that tf_convert modifies the original method in this case. # This is not desirable, but options are limited. converted = api.tf_convert( obj.method, ag_ctx.ControlStatusCtx(status=ag_ctx.Status.ENABLED)) self.assertTrue(converted()) self.assertTrue(obj.method()) def test_super_with_one_arg(self): test_case_self = self class TestBase(object): def plus_three(self, x): return x + 3 class TestSubclass(TestBase): def plus_three(self, x): test_case_self.fail('This should never be called.') def one_arg(self, x): test_base_unbound = super(TestSubclass) test_base = test_base_unbound.__get__(self, TestSubclass) return test_base.plus_three(x) tc = api.converted_call(TestSubclass, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(5, tc.one_arg(2)) def test_super_with_two_args(self): test_case_self = self class TestBase(object): def plus_three(self, x): return x + 3 class TestSubclass(TestBase): def plus_three(self, x): test_case_self.fail('This should never be called.') def two_args(self, x): return super(TestSubclass, self).plus_three(x) tc = api.converted_call(TestSubclass, (), None, options=DEFAULT_RECURSIVE) self.assertEqual(5, tc.two_args(2)) def test_raise_from_func_graph(self): @def_function.function def raise_from_tf_function(n): _errors_test_helper.TestRaiseFromStatus(n) for code, expected_exception in [ (1, tf_errors.CancelledError), (2, tf_errors.UnknownError), (3, tf_errors.InvalidArgumentError), (4, tf_errors.DeadlineExceededError), (5, tf_errors.NotFoundError), (6, tf_errors.AlreadyExistsError), (7, tf_errors.PermissionDeniedError), (16, tf_errors.UnauthenticatedError), (8, tf_errors.ResourceExhaustedError), (9, tf_errors.FailedPreconditionError), (10, tf_errors.AbortedError), (11, tf_errors.OutOfRangeError), (12, tf_errors.UnimplementedError), (13, tf_errors.InternalError), (14, tf_errors.UnavailableError), (15, tf_errors.DataLossError), ]: with self.assertRaises(expected_exception) as error: raise_from_tf_function(code) self.assertEqual(error.exception.experimental_payloads['key1'], 'value1') self.assertEqual(error.exception.experimental_payloads['key2'], 'value2') if __name__ == '__main__': os.environ['AUTOGRAPH_STRICT_CONVERSION'] = '1' test.main()
28.400616
86
0.678792
dc2fc7e67bc880962a42b7655e4b7d26a8f72a0d
5,474
py
Python
com/xiumei/etl/process_finance_data.py
struggle3014/aqf
d0477075bd6d25d0de82acd9796a5a4e9e056b2e
[ "Apache-2.0" ]
2
2020-02-07T15:08:12.000Z
2020-04-14T09:48:07.000Z
com/xiumei/etl/process_finance_data.py
struggle3014/aqf
d0477075bd6d25d0de82acd9796a5a4e9e056b2e
[ "Apache-2.0" ]
null
null
null
com/xiumei/etl/process_finance_data.py
struggle3014/aqf
d0477075bd6d25d0de82acd9796a5a4e9e056b2e
[ "Apache-2.0" ]
null
null
null
# -*- coding=utf-8 -*- import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import seaborn import tushare as ts import scipy.stats as stats # 1.1- 获取单个证券的股价数据 def get_single_stock_data(stock, start_date, end_date): # 获取证券的股价。数据类型为 pandas.core.frame.DataFrame data = ts.get_k_data(stock, start=start_date, end=end_date) # 1- 将数据 date 列指定为索引 data.set_index('date', inplace=True) # 将字符串格式的 date 转换为日期格式 data.index = pd.to_datetime(data.index) return data # 1.2- 获取多只证券的股价信息 def get_multi_stock_data(stocks, start_date, end_date): datas = map(get_single_stock_data, stocks, fill_list(start_date, len(stocks)), fill_list(end_date, len(stocks))) return pd.concat(datas, keys=stocks, names=['Ticker', 'Date']) # 填充指定长度的 list def fill_list(thing, length): result = [] for i in range(length): result.append(thing) return result # 2.1- 金融数据可视化 def finance_data_visual(): stocks = get_multi_stock_data(['600030', '000001', '600426'], '2019-05-05', '2019-06-06') # 1- 重置索引 close_price = stocks[['close']].reset_index() print(close_price.head()) # 2- 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') print(daily_close.head()) # 3- 画图 daily_close.plot(subplots=True, figsize=(10, 8)) plt.show() # 3.1- 金融数据计算,每日收益 def calculate_daily_profit(): stocks = get_multi_stock_data(['600030', '000001', '600426'], '2019-05-05', '2019-06-06') # 1- 重置索引 close_price = stocks[['close']].reset_index() # 2- 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') # 3- 使用 shift 方法,计算收益。shift 将每列下移 n 格。 price_change = daily_close / daily_close.shift(1) - 1 # print(price_change.ix[:, 0:4].head()) print(price_change.head()) # 4- 将 NaN 替换为 0 price_change.fillna(0, inplace=True) print(price_change.head()) # 3.2- 金融数据计算,累计收益 def calculate_accu_profit(): stocks = get_multi_stock_data(['600030', '000001', '600426'], '2019-05-05', '2019-06-06') # 1- 重置索引 close_price = stocks[['close']].reset_index() # 2- 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') # 3- 使用 shift 方法,计算收益。shift 将每列下移 n 格。 price_change = daily_close / daily_close.shift(1) - 1 # print(price_change.ix[:, 0:4].head()) # 4- 将 NaN 替换为 0 price_change.fillna(0, inplace=True) cum_daily_return = (1 + price_change).cumprod() print(cum_daily_return.head()) cum_daily_return.plot(figsize=(8, 6)) plt.show() # 4- 分析 return 分布 # 4.1- 直方图 def plot_hist(): # stocks = get_multi_stock_data(['600030', '000001', '600426'], '2019-05-05', '2019-06-06') stocks = get_multi_stock_data(['600030', '600426'], '2019-05-05', '2019-06-06') # 1- 重置索引 close_price = stocks[['close']].reset_index() # 2- 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') # 3- 使用 shift 方法,计算收益。shift 将每列下移 n 格。 price_change = daily_close / daily_close.shift(1) - 1 # print(price_change.ix[:, 0:4].head()) # 4- 将 NaN 替换为 0 price_change.fillna(0, inplace=True) # 5- 画出 600030 股价直方图 price_change['600030'].hist(bins=30, figsize=(4, 3)) plt.show() # 6- 画出所有股票的股价分布图 price_change.hist(bins=20, sharex=True, figsize=(12, 8)) plt.show() # 4.2- QQ-Plots # 使用 QQ 图验证股价 return 分布 def plot_qq(): # stocks = get_multi_stock_data(['600030', '000001', '600426'], '2019-05-05', '2019-06-06') stocks = get_multi_stock_data(['600030', '600426'], '2019-05-05', '2019-06-06') # 1- 重置索引 close_price = stocks[['close']].reset_index() # 2- 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') # 3- 使用 shift 方法,计算收益。shift 将每列下移 n 格。 price_change = daily_close / daily_close.shift(1) - 1 # print(price_change.ix[:, 0:4].head()) # 4- 将 NaN 替换为 0 price_change.fillna(0, inplace=True) # 5- 绘制 QQ 图 fig = plt.figure(figsize=(7, 5)) stats.probplot(price_change['600030'], dist='norm', plot=fig.add_subplot(111)) plt.show() # 5- 股价相关性 def plot_stocks_coors(): # 1- 获取 hs300 股价信息 hs300_data = get_single_stock_data('hs300', '2016-01-01', '2017-07-01') hs300_return = hs300_data.close.pct_change().fillna(0) # 2- 获取其他股票股价信息 stocks = get_multi_stock_data(['600030', '000001', '600426'], '2016-01-01', '2017-07-01') close_price = stocks[['close']].reset_index() # 数据透视表,将所有股价信息显示在一张表中 daily_close = close_price.pivot(index='Date', columns='Ticker', values='close') # 3- 数据合并 return_all = pd.concat([hs300_return, daily_close.pct_change().fillna(0)], axis=1) return_all.rename(columns={'close': 'hs300'}, inplace=True) print(return_all.head()) # 4- 计算累计收益 cum_return_all = (1 + return_all).cumprod() print(cum_return_all.head()) # 5- 累计收益作图 cum_return_all[['hs300', '600030', '600426']].plot(figsize=(8, 6)) # plt.show() # 6- 计算相关性,corr 协方差计算 corrs = return_all.corr() seaborn.heatmap(corrs) plt.show() if __name__ == '__main__': # get_single_stock_data() # result = get_multi_stock_data(['600030', '000001'], '2019-06-05', '2019-06-06') # finance_data_visual() # calculate_daily_profit() # calculate_accu_profit() # plot_hist() # plot_qq() plot_stocks_coors()
34
116
0.658385
8ada3766ccb0b1de8ad1debab6da32648e1e988f
1,679
py
Python
myshkin/mixins/model.py
jakesnell/myshkin
cea0a625b1913627e27d66d0ada9155402f57d33
[ "MIT" ]
null
null
null
myshkin/mixins/model.py
jakesnell/myshkin
cea0a625b1913627e27d66d0ada9155402f57d33
[ "MIT" ]
null
null
null
myshkin/mixins/model.py
jakesnell/myshkin
cea0a625b1913627e27d66d0ada9155402f57d33
[ "MIT" ]
null
null
null
import os import glob import yaml import numpy as np import keras class Model(object): def save_conf(self, out_file): with open(out_file, 'w') as f: conf_dict = {'model': self.__class__.__name__, 'opts': dict(self.opts._asdict())} f.write(yaml.dump(conf_dict, default_flow_style=False)) def save_weights(self, out_dir, verbose=False): if not os.path.isdir(out_dir): os.mkdir(out_dir) def _save_weights(out_dir, name, component): if isinstance(component, keras.models.Model): if verbose: print "saving {:s}...".format(name) component.save_weights(os.path.join(out_dir, name + ".h5"), overwrite=True) else: for k, subcomponent in component.components.iteritems(): _save_weights(out_dir, name + "." + k, subcomponent) for k, component in self.components.iteritems(): _save_weights(out_dir, k, component) def get_component(self, specs): cur = self for spec in specs: cur = cur.components[spec] return cur def load_weights(self, weights_dir, verbose=False): weight_files = glob.glob(os.path.join(weights_dir, '*.h5')) for weight_file in weight_files: component = self.get_component(os.path.basename(weight_file).split(".")[:-1]) if verbose: print "loading from {:s}...".format(os.path.basename(weight_file)) component.load_weights(weight_file) def __repr__(self): return "{:s}({:s})".format(self.__class__.__name__, self.opts)
35.723404
91
0.596188
4a84eff221ec4d84cf0a858d30cc9ef4061428fe
1,867
py
Python
commands.py
Bocom/LSP-typescript
c2fbd5f756ff0fe36142b00a31100bf7505bdbc1
[ "MIT" ]
null
null
null
commands.py
Bocom/LSP-typescript
c2fbd5f756ff0fe36142b00a31100bf7505bdbc1
[ "MIT" ]
null
null
null
commands.py
Bocom/LSP-typescript
c2fbd5f756ff0fe36142b00a31100bf7505bdbc1
[ "MIT" ]
null
null
null
from .protocol import Call, CallsDirection, CallsRequestParams, CallsResponse from LSP.plugin import Request from LSP.plugin import Session from LSP.plugin.core.protocol import LocationLink from LSP.plugin.core.registry import LspTextCommand from LSP.plugin.core.typing import Optional from LSP.plugin.core.views import text_document_position_params from LSP.plugin.locationpicker import LocationPicker import functools import sublime SESSION_NAME = "LSP-typescript" class LspTypescriptCallsCommand(LspTextCommand): session_name = SESSION_NAME def is_enabled(self) -> bool: selection = self.view.sel() return len(selection) > 0 and super().is_enabled() def run(self, edit: sublime.Edit, direction: CallsDirection) -> None: session = self.session_by_name(self.session_name) if session is None: return position_params = text_document_position_params(self.view, self.view.sel()[0].b) params = { 'textDocument': position_params['textDocument'], 'position': position_params['position'], 'direction': direction } # type: CallsRequestParams session.send_request(Request("textDocument/calls", params), functools.partial(self.on_result_async, session)) def on_result_async(self, session: Session, result: Optional[CallsResponse]) -> None: if not result: return def to_location_link(call: Call) -> LocationLink: return { 'targetUri': call['location']['uri'], 'targetSelectionRange': call['location']['range'], } locations = list(map(to_location_link, result['calls'])) self.view.run_command("add_jump_record", {"selection": [(r.a, r.b) for r in self.view.sel()]}) LocationPicker(self.view, session, locations, side_by_side=False)
38.102041
117
0.688806
020af2a1bce83b829f5f549f2229002dcd2274fc
9,491
py
Python
ambari-server/src/main/resources/common-services/AMBARI_METRICS/0.1.0/package/scripts/hbase.py
hmcl/ambari-apache
87423d64f54d896c62d1a9245eb03a97763e35a4
[ "Apache-2.0" ]
1
2021-05-06T06:24:04.000Z
2021-05-06T06:24:04.000Z
ambari-server/src/main/resources/common-services/AMBARI_METRICS/0.1.0/package/scripts/hbase.py
hmcl/ambari-apache
87423d64f54d896c62d1a9245eb03a97763e35a4
[ "Apache-2.0" ]
null
null
null
ambari-server/src/main/resources/common-services/AMBARI_METRICS/0.1.0/package/scripts/hbase.py
hmcl/ambari-apache
87423d64f54d896c62d1a9245eb03a97763e35a4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from ambari_commons import OSConst from resource_management.core.resources.system import Directory, Execute, File from resource_management.libraries.resources.xml_config import XmlConfig from resource_management.libraries.resources.template_config import TemplateConfig from resource_management.libraries.functions.format import format from resource_management.core.source import Template, InlineTemplate from ambari_commons.os_family_impl import OsFamilyFuncImpl, OsFamilyImpl @OsFamilyFuncImpl(os_family=OSConst.WINSRV_FAMILY) def hbase(name=None, action = None): import params Directory(params.hbase_conf_dir, owner = params.hadoop_user, create_parents = True ) Directory(params.hbase_tmp_dir, create_parents = True, owner = params.hadoop_user ) Directory (os.path.join(params.local_dir, "jars"), owner = params.hadoop_user, create_parents = True ) XmlConfig("hbase-site.xml", conf_dir = params.hbase_conf_dir, configurations = params.config['configurations']['ams-hbase-site'], configuration_attributes=params.config['configuration_attributes']['ams-hbase-site'], owner = params.hadoop_user ) if 'ams-hbase-policy' in params.config['configurations']: XmlConfig("hbase-policy.xml", conf_dir = params.hbase_conf_dir, configurations = params.config['configurations']['ams-hbase-policy'], configuration_attributes=params.config['configuration_attributes']['ams-hbase-policy'], owner = params.hadoop_user ) # Manually overriding ownership of file installed by hadoop package else: File(os.path.join(params.hbase_conf_dir, "hbase-policy.xml"), owner = params.hadoop_user ) # Metrics properties File(os.path.join(params.hbase_conf_dir, "hadoop-metrics2-hbase.properties"), owner = params.hbase_user, content=Template("hadoop-metrics2-hbase.properties.j2") ) hbase_TemplateConfig('regionservers', user=params.hadoop_user) if params.security_enabled: hbase_TemplateConfig(format("hbase_{name}_jaas.conf"), user=params.hadoop_user) if name != "client": Directory (params.hbase_log_dir, owner = params.hadoop_user, create_parents = True ) if (params.hbase_log4j_props != None): File(os.path.join(params.hbase_conf_dir, "log4j.properties"), owner=params.hadoop_user, content=params.hbase_log4j_props ) elif (os.path.exists(os.path.join(params.hbase_conf_dir,"log4j.properties"))): File(os.path.join(params.hbase_conf_dir,"log4j.properties"), owner=params.hadoop_user ) @OsFamilyFuncImpl(os_family=OsFamilyImpl.DEFAULT) def hbase(name=None # 'master' or 'regionserver' or 'client' , action=None): import params Directory(params.hbase_conf_dir, owner = params.hbase_user, group = params.user_group, create_parents = True, recursive_ownership = True, ) Directory (params.hbase_tmp_dir, owner = params.hbase_user, cd_access="a", create_parents = True, recursive_ownership = True, ) Directory (os.path.join(params.local_dir, "jars"), owner = params.hbase_user, group = params.user_group, cd_access="a", mode=0775, create_parents = True ) merged_ams_hbase_site = {} merged_ams_hbase_site.update(params.config['configurations']['ams-hbase-site']) if params.security_enabled: merged_ams_hbase_site.update(params.config['configurations']['ams-hbase-security-site']) if not params.is_hbase_distributed: File(format("{hbase_conf_dir}/core-site.xml"), action='delete', owner=params.hbase_user) File(format("{hbase_conf_dir}/hdfs-site.xml"), action='delete', owner=params.hbase_user) XmlConfig("hbase-site.xml", conf_dir = params.hbase_conf_dir, configurations = merged_ams_hbase_site, configuration_attributes=params.config['configuration_attributes']['ams-hbase-site'], owner = params.hbase_user, group = params.user_group ) # Phoenix spool file dir if not /tmp if not os.path.exists(params.phoenix_server_spool_dir): Directory(params.phoenix_server_spool_dir, owner=params.ams_user, mode = 0755, group=params.user_group, cd_access="a", create_parents = True ) pass if 'ams-hbase-policy' in params.config['configurations']: XmlConfig("hbase-policy.xml", conf_dir = params.hbase_conf_dir, configurations = params.config['configurations']['ams-hbase-policy'], configuration_attributes=params.config['configuration_attributes']['ams-hbase-policy'], owner = params.hbase_user, group = params.user_group ) # Manually overriding ownership of file installed by hadoop package else: File( format("{params.hbase_conf_dir}/hbase-policy.xml"), owner = params.hbase_user, group = params.user_group ) File(format("{hbase_conf_dir}/hbase-env.sh"), owner = params.hbase_user, content=InlineTemplate(params.hbase_env_sh_template) ) # Metrics properties File(os.path.join(params.hbase_conf_dir, "hadoop-metrics2-hbase.properties"), owner = params.hbase_user, group = params.user_group, content=Template("hadoop-metrics2-hbase.properties.j2") ) # hbase_TemplateConfig( params.metric_prop_file_name, # tag = 'GANGLIA-MASTER' if name == 'master' else 'GANGLIA-RS' # ) hbase_TemplateConfig('regionservers', user=params.hbase_user) if params.security_enabled: hbase_TemplateConfig( format("hbase_{name}_jaas.conf"), user=params.hbase_user) hbase_TemplateConfig( format("hbase_client_jaas.conf"), user=params.hbase_user) hbase_TemplateConfig( format("ams_zookeeper_jaas.conf"), user=params.hbase_user) if name != "client": Directory( params.hbase_pid_dir, owner = params.hbase_user, create_parents = True, cd_access = "a", mode = 0755, ) Directory (params.hbase_log_dir, owner = params.hbase_user, create_parents = True, cd_access = "a", mode = 0755, ) if name == "master": if not params.is_local_fs_rootdir: # If executing Stop All, HDFS is probably down if action != 'stop': params.HdfsResource(params.hbase_root_dir, type="directory", action="create_on_execute", owner=params.hbase_user, mode=0775, dfs_type=params.dfs_type ) params.HdfsResource(params.hbase_staging_dir, type="directory", action="create_on_execute", owner=params.hbase_user, mode=0711, dfs_type=params.dfs_type ) params.HdfsResource(None, action="execute") if params.is_hbase_distributed: #Workaround for status commands not aware of operating mode File(format("{params.hbase_pid_dir}/distributed_mode"), action="create", mode=0644, owner=params.hbase_user) pass else: local_root_dir = params.hbase_root_dir #cut protocol name if local_root_dir.startswith("file://"): local_root_dir = local_root_dir[7:] #otherwise assume dir name is provided as is Directory(local_root_dir, owner = params.hbase_user, cd_access="a", create_parents = True, recursive_ownership = True ) File(format("{params.hbase_pid_dir}/distributed_mode"), action="delete", owner=params.hbase_user) if params.hbase_log4j_props is not None: File(format("{params.hbase_conf_dir}/log4j.properties"), mode=0644, group=params.user_group, owner=params.hbase_user, content=params.hbase_log4j_props ) elif os.path.exists(format("{params.hbase_conf_dir}/log4j.properties")): File(format("{params.hbase_conf_dir}/log4j.properties"), mode=0644, group=params.user_group, owner=params.hbase_user ) def hbase_TemplateConfig(name, tag=None, user=None): import params TemplateConfig( os.path.join(params.hbase_conf_dir, name), owner = user, template_tag = tag )
34.638686
116
0.660837
cf922ee9a428e5e2e14e71ebf5fb49ed68e89d24
1,271
py
Python
setup.py
laterpay/djtranslationchecker
6589ed3472193a795d78504a9f2337cd045b29f2
[ "MIT" ]
1
2015-03-25T09:30:55.000Z
2015-03-25T09:30:55.000Z
setup.py
laterpay/djtranslationchecker
6589ed3472193a795d78504a9f2337cd045b29f2
[ "MIT" ]
null
null
null
setup.py
laterpay/djtranslationchecker
6589ed3472193a795d78504a9f2337cd045b29f2
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- from setuptools import find_packages, setup import codecs import os #import time #_version = "0.10.dev%s" % int(time.time()) _version = "0.10.0" _packages = find_packages('.', exclude=["*.tests", "*.tests.*", "tests.*", "tests"]) if os.path.exists('README.rst'): _long_description = codecs.open('README.rst', 'r', 'utf-8').read() else: _long_description = "" setup( name='djtranslationchecker', version=_version, description="Check your Django translation files", long_description=_long_description, author="LaterPay GmbH", author_email="support@laterpay.net", url="https://github.com/laterpay/djtranslationchecker", license='MIT', keywords="Django translation check gettext", #test_suite="tests", packages=_packages, classifiers=( "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Topic :: Software Development :: Libraries :: Python Modules", ), )
28.244444
84
0.638867
ca071c293474dd0ee380b182a0684ea4dd7fde3b
170
py
Python
persist.py
leosantos16/sample-market-maker
4006b1a7fadf0db3821202cfb5681768af33d711
[ "Apache-2.0" ]
null
null
null
persist.py
leosantos16/sample-market-maker
4006b1a7fadf0db3821202cfb5681768af33d711
[ "Apache-2.0" ]
null
null
null
persist.py
leosantos16/sample-market-maker
4006b1a7fadf0db3821202cfb5681768af33d711
[ "Apache-2.0" ]
null
null
null
from subprocess import Popen import sys filename = 'run.py' while True: print("\nStarting " + filename) p = Popen("python " + filename, shell=True) p.wait()
18.888889
47
0.658824
9e511e5d1d9bdf7f3fa6fac8215605f4269c1137
1,771
py
Python
cafe/drivers/unittest/config.py
melissa-kam/opencafe
af90c228084d479afa60b8b06a6b5d4d1adf2b8e
[ "Apache-2.0" ]
null
null
null
cafe/drivers/unittest/config.py
melissa-kam/opencafe
af90c228084d479afa60b8b06a6b5d4d1adf2b8e
[ "Apache-2.0" ]
null
null
null
cafe/drivers/unittest/config.py
melissa-kam/opencafe
af90c228084d479afa60b8b06a6b5d4d1adf2b8e
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Rackspace # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from cafe.engine.models.data_interfaces import ( ConfigSectionInterface, _get_path_from_env) class DriverConfig(ConfigSectionInterface): """ Unittest driver configuration values. This config section is intended to supply values and configuration that can not be programatically identified to the unittest driver. """ SECTION_NAME = 'drivers.unittest' def __init__(self, config_file_path=None): config_file_path = config_file_path or _get_path_from_env( 'CAFE_ENGINE_CONFIG_FILE_PATH') super(DriverConfig, self).__init__(config_file_path=config_file_path) @property def ignore_empty_datasets(self): """ Identify whether empty datasets should change suite results. A dataset provided to a suite should result in the suite failing. This value provides a mechanism to modify that behavior in the case of suites with intensionally included empty datasets. If this is set to 'True' empty datasets will not cause suite failures. This defaults to 'False'. """ return self.get_boolean( item_name="ignore_empty_datasets", default=False)
37.680851
79
0.726708
d28f307af02ce3bac54ba47c296eef107a99687c
4,432
py
Python
src/103_signal_processing.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
src/103_signal_processing.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
src/103_signal_processing.py
j20232/kaggle_earthquake
47fac5f2e8d2ad4fab82426a0b6af18b71e4b57b
[ "MIT" ]
null
null
null
"""Extract signal processing features Reference: https://www.kaggle.com/gpreda/lanl-earthquake-eda-and-prediction """ import sys import numpy as np import pandas as pd from pathlib import Path from sklearn.linear_model import LinearRegression from tqdm import tqdm import competition as cc from common import stop_watch TRAIN_CSV_DIRECTORY_PATH = cc.INPUT_PATH / sys.argv[1] TRAIN_CSV_LIST = list(TRAIN_CSV_DIRECTORY_PATH.glob('**/*.csv')) @stop_watch def extract_features(csv_list, feature_dir_path): df = pd.DataFrame() Path.mkdir(feature_dir_path, exist_ok=True, parents=True) for index, each_csv in enumerate(tqdm(sorted(csv_list))): seg = pd.read_csv(each_csv, dtype=cc.DTYPES) seg_id = each_csv.split("/")[-1].split(".")[0] df.loc[index, "seg_id"] = seg_id xc = pd.Series(seg['acoustic_data'].values) # Regression df.loc[index, 'trend'] = add_trend_feature(xc) df.loc[index, 'abs_trend'] = add_trend_feature(xc, abs_values=True) # classic_sta_lta (the definition is written in this file) df.loc[index, 'classic_sta_lta1_mean'] = classic_sta_lta(xc, 500, 10000).mean() df.loc[index, 'classic_sta_lta2_mean'] = classic_sta_lta(xc, 5000, 100000).mean() df.loc[index, 'classic_sta_lta3_mean'] = classic_sta_lta(xc, 3333, 6666).mean() df.loc[index, 'classic_sta_lta4_mean'] = classic_sta_lta(xc, 10000, 25000).mean() # moving average df.loc[index, 'Moving_average_700_mean'] = xc.rolling(window=700).mean().mean(skipna=True) df.loc[index, 'Moving_average_1500_mean'] = xc.rolling(window=1500).mean().mean(skipna=True) df.loc[index, 'Moving_average_3000_mean'] = xc.rolling(window=3000).mean().mean(skipna=True) df.loc[index, 'Moving_average_6000_mean'] = xc.rolling(window=6000).mean().mean(skipna=True) # ema moving average ewma = pd.Series.ewm df.loc[index, 'exp_Moving_average_300_mean'] = ewma(xc, span=300).mean().mean(skipna=True) df.loc[index, 'exp_Moving_average_3000_mean'] = ewma(xc, span=3000).mean().mean(skipna=True) df.loc[index, 'exp_Moving_average_30000_mean'] = ewma(xc, span=6000).mean().mean(skipna=True) # moving average by correction with std no_of_std = 2 df.loc[index, 'MA_400MA_std_mean'] = xc.rolling(window=400).std().mean() df.loc[index, 'MA_400MA_BB_high_mean'] = (df.loc[index, 'Moving_average_700_mean'] + no_of_std * df.loc[index, 'MA_400MA_std_mean']).mean() df.loc[index, 'MA_400MA_BB_low_mean'] = (df.loc[index, 'Moving_average_700_mean'] - no_of_std * df.loc[index, 'MA_400MA_std_mean']).mean() df.loc[index, 'MA_700MA_std_mean'] = xc.rolling(window=700).std().mean() df.loc[index, 'MA_700MA_BB_high_mean'] = (df.loc[index, 'Moving_average_700_mean'] + no_of_std * df.loc[index, 'MA_700MA_std_mean']).mean() df.loc[index, 'MA_700MA_BB_low_mean'] = (df.loc[index, 'Moving_average_700_mean'] - no_of_std * df.loc[index, 'MA_700MA_std_mean']).mean() df.loc[index, 'MA_1000MA_std_mean'] = xc.rolling(window=1000).std().mean() print("Aggregation output is belows:") print(df.head(3)) df.to_csv(feature_dir_path / "{}.csv".format(cc.PREF), index=False) def add_trend_feature(arr, abs_values=False): idx = np.array(range(len(arr))) if abs_values: arr = np.abs(arr) lr = LinearRegression() lr.fit(idx.reshape(-1, 1), arr) return lr.coef_[0] def classic_sta_lta(x, length_sta, length_lta): sta = np.cumsum(x ** 2) # Convert to float sta = np.require(sta, dtype=np.float) # Copy for LTA lta = sta.copy() # Compute the STA and the LTA sta[length_sta:] = sta[length_sta:] - sta[:-length_sta] sta /= length_sta lta[length_lta:] = lta[length_lta:] - lta[:-length_lta] lta /= length_lta # Pad zeros sta[:length_lta - 1] = 0 # Avoid division by zero by setting zero values to tiny float dtiny = np.finfo(0.0).tiny idx = lta < dtiny lta[idx] = dtiny return sta / lta if __name__ == "__main__": train_csv_path = cc.FEATURE_PATH / "{}".format(sys.argv[1]) train_csv_l = [str(item) for item in TRAIN_CSV_LIST] extract_features(train_csv_l, train_csv_path) test_csv_path = cc.FEATURE_PATH / "test" test_csv_l = [str(item) for item in cc.TEST_CSV_LIST] extract_features(test_csv_l, test_csv_path)
43.45098
147
0.678475
7d6fa3b3374606aeeb424c0e983aa60cabcb2ff0
1,209
py
Python
dgi_gcn/models/dgi.py
Guo-lab/Graph
c4c5fbc8fb5d645c16da20351b9746019cf75aab
[ "MIT" ]
null
null
null
dgi_gcn/models/dgi.py
Guo-lab/Graph
c4c5fbc8fb5d645c16da20351b9746019cf75aab
[ "MIT" ]
null
null
null
dgi_gcn/models/dgi.py
Guo-lab/Graph
c4c5fbc8fb5d645c16da20351b9746019cf75aab
[ "MIT" ]
null
null
null
import torch import torch.nn as nn from layers import GCN, AvgReadout, Discriminator class DGI(nn.Module): def __init__(self, n_in, n_h, activation): super(DGI, self).__init__() self.gcn = GCN(n_in, n_h, activation) self.read = AvgReadout() self.sigm = nn.Sigmoid() self.disc = Discriminator(n_h) def forward(self, seq1, seq2, adj, sparse, msk, samp_bias1, samp_bias2): h_1 = self.gcn(seq1, adj, sparse) #//print("h1 gat OK") #//print("h1 shape", h_1.shape) #//print("seq shape, adj shape", seq1.shape, adj.shape) c = self.read(h_1, msk) #//print("AvgReadout OK") #//print("c shape", c.shape) c = self.sigm(c) #//print("seq2 shape, adj shape", seq2.shape, adj.shape) h_2 = self.gcn(seq2, adj, sparse) #//print(h_2.shape) #//print("h2 gat OK") ret = self.disc(c, h_1, h_2, samp_bias1, samp_bias2) return ret # Detach the return variables def embed(self, seq, adj, sparse, msk): h_1 = self.gcn(seq, adj, sparse) c = self.read(h_1, msk) return h_1.detach(), c.detach()
29.487805
76
0.557486
c570097cf8e08e24570debaf9bdf54543aca13c6
6,331
py
Python
lab/weather.py
AbdullahNoori/replace
1dffd3668ca467a1e5acf20c5fe6f992e483eb49
[ "MIT" ]
null
null
null
lab/weather.py
AbdullahNoori/replace
1dffd3668ca467a1e5acf20c5fe6f992e483eb49
[ "MIT" ]
null
null
null
lab/weather.py
AbdullahNoori/replace
1dffd3668ca467a1e5acf20c5fe6f992e483eb49
[ "MIT" ]
null
null
null
class Subject: # Both of the following two methods take an # observer as an argument; that is, the observer # to be registered ore removed. def registerObserver(observer): pass def removeObserver(observer): pass # This method is called to notify all observers # when the Subject's state (measurements) have changed. def notifyObservers(): pass # The observer class is implemented by all observers, # so they all have to implemented the update() method. Here # we're following Mary and Sue's lead and # passing the measurements to the observers. class Observer: def update(self, temp, humidity, pressure): pass # WeatherData now implements the subject interface. class WeatherData(Subject): def __init__(self): self.observers = [] self.temperature = 0 self.humidity = 0 self.pressure = 0 def registerObserver(self, observer): # When an observer registers, we just # add it to the end of the list. self.observers.append(observer) def removeObserver(self, observer): # When an observer wants to un-register, # we just take it off the list. self.observers.remove(observer) def notifyObservers(self): # We notify the observers when we get updated measurements # from the Weather Station. for ob in self.observers: ob.update(self.temperature, self.humidity, self.pressure) def measurementsChanged(self): self.notifyObservers() def setMeasurements(self, temperature, humidity, pressure): self.temperature = temperature self.humidity = humidity self.pressure = pressure self.measurementsChanged() # other WeatherData methods here. class CurrentConditionsDisplay(Observer): def __init__(self, weatherData): self.temperature = 0 self.humidity = 0 self.pressure = 0 self.weatherData = weatherData # save the ref in an attribute. weatherData.registerObserver(self) # register the observer # so it gets data updates. def update(self, temperature, humidity, pressure): self.temeprature = temperature self.humidity = humidity self.pressure = pressure self.display() def display(self): print("Current conditions:", self.temperature, "F degrees and", self.humidity,"[%] humidity", "and pressure", self.pressure) # TODO: implement StatisticsDisplay class and ForecastDisplay class. # The StatisticsDisplay class should keep track of the min/average/max # measurements and display them. class StatisticsDisplay(Observer): def __init__(self, weatherData): self.temperatures = [] self.humidities = [] self.pressures = [] self.weatherData = weatherData weatherData.registerObserver(self) def update(self, temperature, humidity, pressure): self.temperatures.append(temperature) self.humidities.append(humidity) self.pressures.append(pressure) self.display() def getStats(self, units): """Returns min, max, and avg of a list""" if units == "[%]": values = self.temperatures measurement = "temp" elif units == "F degrees": values = self.humidities measurement = "humidity" else: values = self.pressures measurement = "pressure" # calculate results result = ( f"Min: {measurement}: {min(values)} {units}, " + f"Avg {measurement}: {sum(values) / len(values)} {units}, " + f"Max {measurement}: {max(values)} {units}" ) return result def display(self): # displays temparatures if self.temperatures: print(self.getStats("F degrees")) else: print("No temperature stats") # displays humidities if self.humidities: print(self.getStats("[%]")) else: print("No humidity stats") # displays pressures if self.pressures: print(self.getStats(""), '\n') else: print("No pressure stats", '\n') # ForecastDisplay class. Also, we register them to the concrete instance # of the Subject class so the they retrieve the measurements' updates. class ForecastDisplay(Observer): def __init__(self, weatherData): self.weatherData = weatherData weatherData.registerObserver(self) self.forecast_temp = 0 self.forecast_humidity = 0 self.forecast_pressure = 0 # The ForecastDisplay class shows the weather forecast based on the current # temperature, humidity and pressure. Use the following formulas : def update(self, temperature, humidity, pressure): self.forecast_temp = temperature + 0.11 * humidity + 0.2 * pressure self.forecast_humidity = humidity - 0.9 * humidity self.forecast_pressure = pressure + 0.1 * temperature - 0.21 * pressure self.display() def display(self): print("Forecast conditions:", self.forecast_temp, "F degrees and", self.forecast_humidity, "[%] humidity", "and pressure", self.forecast_pressure,) class WeatherStation: def main(self): weatherData = WeatherData() current_display = CurrentConditionsDisplay(weatherData) # TODO: Create two objects from StatisticsDisplay class and # ForecastDisplay class. Also, register them to the concrete instance # of the Subject class so they get the measurements' updates. stats_display = StatisticsDisplay(weatherData) forecast_display = ForecastDisplay(weatherData) weatherData.setMeasurements(80, 65,30.4) weatherData.setMeasurements(82, 70,29.2) weatherData.setMeasurements(78, 90,29.2) # un-register the observer weatherData.removeObserver(current_display) weatherData.setMeasurements(120, 100,1000) if __name__ == "__main__": w = WeatherStation() w.main()
32.973958
79
0.623282
dfa52052899c80b0f08aa247e02dd629e0153ad3
180
py
Python
start_notebook_server.py
ftschindler-work/proceedings-mbour-2017-lrbms-control
0fa8b63b223f3ce8bdfa0f010266a7719a574091
[ "BSD-2-Clause" ]
null
null
null
start_notebook_server.py
ftschindler-work/proceedings-mbour-2017-lrbms-control
0fa8b63b223f3ce8bdfa0f010266a7719a574091
[ "BSD-2-Clause" ]
null
null
null
start_notebook_server.py
ftschindler-work/proceedings-mbour-2017-lrbms-control
0fa8b63b223f3ce8bdfa0f010266a7719a574091
[ "BSD-2-Clause" ]
1
2020-09-23T12:51:00.000Z
2020-09-23T12:51:00.000Z
#!/bin/bash export NOTEBOOK_PATH=$PWD export NOTEBOOK_PORT=${EXPOSED_PORT:-18881} jupyter-notebook --ip 0.0.0.0 --no-browser --notebook-dir=$NOTEBOOK_PATH --port=$NOTEBOOK_PORT
22.5
94
0.755556
13bd82f006456ce483eba276ce72a8df6bcd6f25
1,054
py
Python
solutions/day11/p1/main.py
tosmun/AdventOfCode
62f4f3a8cc3761ee5d5eaf682ae9c2c985cd80b5
[ "Apache-2.0" ]
1
2017-07-15T19:01:03.000Z
2017-07-15T19:01:03.000Z
solutions/day11/p1/main.py
tosmun/Python-AdventOfCode
62f4f3a8cc3761ee5d5eaf682ae9c2c985cd80b5
[ "Apache-2.0" ]
null
null
null
solutions/day11/p1/main.py
tosmun/Python-AdventOfCode
62f4f3a8cc3761ee5d5eaf682ae9c2c985cd80b5
[ "Apache-2.0" ]
null
null
null
import copy, re encoding="UTF-8" input=bytearray('hepxcrrq',encoding) max_byte=bytearray('z', encoding)[0] min_byte=bytearray('a', encoding)[0] invalid_chars=bytearray('iol', encoding) double_char_pattern=re.compile(r'(.|^)(?!\1)(.)\2(?!\2)') new=copy.copy(input) while True: #Work backwards for i in range(len(new)-1,-1,-1): if new[i] == max_byte: new[i] = min_byte #Detect rollover if i == 0: #TODO more pythonic way? for i in range(0, len(new)): new[i] = min_byte break else: new[i] = new[i] + 1 #Ensure valid char while(new[i] in invalid_chars): new[i] = new[i] + 1 break #Check for two overlapping pairs new_str = new.decode(encoding) if len(double_char_pattern.findall(new_str)) < 2: continue buffer = [ new[0] ] for i in range(1, len(new)): if len(buffer) == 3: break elif buffer[-1] != new[i]-1: buffer = [ new[i] ] else: buffer.append(new[i]) if len(buffer) == 3: print(new.decode(encoding)) break if new == input: raise Exception("No suitable new password found")
23.422222
57
0.63852
a89b95f6ef51c58e817351f96c53f0273a56013a
4,112
py
Python
zfused_maya/zfused_maya/tool/rigging/transferuv.py
qinningfx/zfused_outsource
bfc5558f05e3d6005653794a47bd863b61b009b1
[ "Apache-2.0" ]
2
2019-02-22T03:33:26.000Z
2019-02-23T03:29:26.000Z
zfused_maya/zfused_maya/tool/rigging/transferuv.py
qinningfx/zfused_outsource
bfc5558f05e3d6005653794a47bd863b61b009b1
[ "Apache-2.0" ]
null
null
null
zfused_maya/zfused_maya/tool/rigging/transferuv.py
qinningfx/zfused_outsource
bfc5558f05e3d6005653794a47bd863b61b009b1
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 # --author-- 张伟 # cmds.polyTransfer('zero:p_zero_luoxuanjiang_1', v = 0, vc = 0, uv = 1, ao = 'zero_172:p_zero_luoxuanjiang_1') from PySide2 import QtWidgets, QtCore import maya.OpenMayaUI as oi import shiboken2 as shiboken import zfused_maya.widgets.window as win import maya.cmds as cmds class PolyTransfer(): def __init__(self): self.showUI() self.__uiwindow = oi.MQtUtil.findWindow(u"传递UV") self.__uiwindow = shiboken.wrapInstance(long(self.__uiwindow), QtWidgets.QWidget) # pass def _returnwindow(self): return self.__uiwindow def showUI(self): windowName = u'传递UV' if cmds.window(windowName, q = True, exists = True): cmds.deleteUI(windowName) if cmds.windowPref(windowName, exists = True) == True: cmds.windowPref(windowName,remove = True) cmds.window(windowName,t = windowName,sizeable = True,w = 250) PrimaryLayout = cmds.columnLayout(adj = True, bgc = [0.15,0.15,0.15]) cmds.separator(h = 5) cmds.text(l = u'方 法 一', bgc = [0.2,0.2,0.2], height = 22) cmds.text(l = u'选择模型,单击\'<<<\'选定', h = 20) true_InfoGatherLayout = cmds.rowLayout(nc = 3, adjustableColumn = 2, p = PrimaryLayout) cmds.text(l = u"UV正确模型 : ") trueUV_Name = cmds.textField(w = 200) trueUV_Assign = cmds.button(l = '<<<', c = lambda *args: self.true_AssignBtnCmd()) cmds.setParent(PrimaryLayout) false_InfoGatherLayout = cmds.rowLayout(nc = 3, adjustableColumn = 2, p = PrimaryLayout) cmds.text(l = u"UV错误模型 : ") falseUV_Name = cmds.textField(w = 200) falseUV_Assign = cmds.button(l = '<<<', c = lambda *agrs: self.false_AssignBtnCmd()) cmds.setParent(PrimaryLayout) assignButton = cmds.button(l = u'传递', c = lambda *args: self.transferUV()) cmds.setParent(PrimaryLayout) cmds.separator(h = 10, bgc = [0.2,0.2,0.2]) cmds.separator(h = 10, bgc = [0.2,0.2,0.2]) cmds.text(l = u'方 法 二', bgc = [0.2,0.2,0.2], height = 22) cmds.text(l = u'先选正确UV模型,后选错误UV模型', h = 20) cmds.button(l = u'传递', c = lambda *args: self.secTransferUV()) cmds.separator(h = 5) self.trueUV_Name = trueUV_Name self.falseUV_Name = falseUV_Name def setTextField(self, textFieldToSet, Value): cmds.textField(textFieldToSet, e = True, text = Value) def getTrueModel(self): selection = cmds.ls(sl = True)[0] return selection def true_AssignBtnCmd(self): trueUV_Name = self.trueUV_Name trueModelName = self.getTrueModel() self.setTextField(trueUV_Name, trueModelName) def getFalseModel(self): selection = cmds.ls(sl = True)[0] return selection def false_AssignBtnCmd(self): falseUV_Name = self.falseUV_Name falseModelName = self.getFalseModel() self.setTextField(falseUV_Name, falseModelName) def transferUV(self): trueUV_Name = self.trueUV_Name falseUV_Name = self.falseUV_Name trueName = cmds.textField(trueUV_Name, q = True, text = True) falseName = cmds.textField(falseUV_Name, q = True, text = True) cmds.polyTransfer(falseName, v = 0, vc = 0, uv = 1, ao = trueName) def secTransferUV(self): selects = cmds.ls(sl = True) cmds.polyTransfer(selects[1], v = 0, vc = 0, uv = 1, ao = selects[0]) def UI(self): # self.showUI() # _uiwindow = oi.MQtUtil.findWindow(u"传递UV") # _uiwindow = shiboken.wrapInstance(long(_uiwindow), QtWidgets.QWidget) mainWindow = win.Window() mainWindow.set_central_widget(self._returnwindow()) mainWindow.set_title_name(u"传递UV") #mainWindow.setFixedSize(500,286) mainWindow.resize(500,286) mainWindow.show() if __name__ == "__main__": polytransfer = PolyTransfer() polytransfer.UI()
39.538462
111
0.604086
af1f95eda2e8845d622db272b4eee154b56d8c9d
4,932
py
Python
test/record/parser/test_response_ccwhois_verisign_grs_com_cc_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_ccwhois_verisign_grs_com_cc_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_ccwhois_verisign_grs_com_cc_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
# This file is autogenerated. Do not edit it manually. # If you want change the content of this file, edit # # spec/fixtures/responses/ccwhois.verisign-grs.com/cc/status_registered # # and regenerate the tests with the following script # # $ scripts/generate_tests.py # from nose.tools import * from dateutil.parser import parse as time_parse import yawhois class TestCcwhoisVerisignGrsComCcStatusRegistered(object): def setUp(self): fixture_path = "spec/fixtures/responses/ccwhois.verisign-grs.com/cc/status_registered.txt" host = "ccwhois.verisign-grs.com" part = yawhois.record.Part(open(fixture_path, "r").read(), host) self.record = yawhois.record.Record(None, [part]) def test_status(self): eq_(self.record.status, 'registered') def test_available(self): eq_(self.record.available, False) def test_domain(self): eq_(self.record.domain, "google.cc") def test_nameservers(self): eq_(self.record.nameservers.__class__.__name__, 'list') eq_(len(self.record.nameservers), 4) eq_(self.record.nameservers[0].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[0].name, "ns1.google.com") eq_(self.record.nameservers[0].ipv4, None) eq_(self.record.nameservers[0].ipv6, None) eq_(self.record.nameservers[1].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[1].name, "ns2.google.com") eq_(self.record.nameservers[1].ipv4, None) eq_(self.record.nameservers[1].ipv6, None) eq_(self.record.nameservers[2].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[2].name, "ns3.google.com") eq_(self.record.nameservers[2].ipv4, None) eq_(self.record.nameservers[2].ipv6, None) eq_(self.record.nameservers[3].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[3].name, "ns4.google.com") eq_(self.record.nameservers[3].ipv4, None) eq_(self.record.nameservers[3].ipv6, None) def test_registered(self): eq_(self.record.registered, True) def test_referral_whois(self): eq_(self.record.referral_whois, "whois.markmonitor.com") def test_created_on(self): eq_(self.record.created_on.__class__.__name__, 'datetime') eq_(self.record.created_on, time_parse('1999-06-07 00:00:00 UTC')) def test_registrar(self): eq_(self.record.registrar.__class__.__name__, 'Registrar') eq_(self.record.registrar.id, "292") eq_(self.record.registrar.name, "MARKMONITOR INC.") eq_(self.record.registrar.organization, None) eq_(self.record.registrar.url, "http://www.markmonitor.com") def test_referral_url(self): eq_(self.record.referral_url, "http://www.markmonitor.com") def test_updated_on(self): eq_(self.record.updated_on.__class__.__name__, 'datetime') eq_(self.record.updated_on, time_parse('2013-05-06 05:17:44 UTC')) def test_domain_id(self): eq_(self.record.domain_id, "86420657") def test_expires_on(self): eq_(self.record.expires_on.__class__.__name__, 'datetime') eq_(self.record.expires_on, time_parse('2014-06-07 00:00:00 UTC')) def test_disclaimer(self): eq_(self.record.disclaimer, "TERMS OF USE: You are not authorized to access or query our Whois database through the use of electronic processes that are high-volume and automated except as reasonably necessary to register domain names or modify existing registrations; the Data in VeriSign's (\"VeriSign\") Whois database is provided by VeriSign for information purposes only, and to assist persons in obtaining information about or related to a domain name registration record. VeriSign does not guarantee its accuracy. By submitting a Whois query, you agree to abide by the following terms of use: You agree that you may use this Data only for lawful purposes and that under no circumstances will you use this Data to: (1) allow, enable, or otherwise support the transmission of mass unsolicited, commercial advertising or solicitations via e-mail, telephone, or facsimile; or (2) enable high volume, automated, electronic processes that apply to VeriSign (or its computer systems). The compilation, repackaging, dissemination or other use of this Data is expressly prohibited without the prior written consent of VeriSign. You agree not to use electronic processes that are automated and high-volume to access or query the Whois database except as reasonably necessary to register domain names or modify existing registrations. VeriSign reserves the right to restrict your access to the Whois database in its sole discretion to ensure operational stability. VeriSign may restrict or terminate your access to the Whois database for failure to abide by these terms of use. VeriSign reserves the right to modify these terms at any time.")
57.348837
1,647
0.727494
d762a376f57716369303f18337fb37d8543ff2f8
2,615
py
Python
arithmetic_analysis/in_static_equilibrium.py
Study-Repos-Forks/Python
c86aa72cfa0467bd9a5711d7b5a77ed8243e49f1
[ "MIT" ]
1
2022-03-18T12:11:26.000Z
2022-03-18T12:11:26.000Z
arithmetic_analysis/in_static_equilibrium.py
abdussalam02/Python
a80e5aadf30817251989378e8d908ca18f733a2f
[ "MIT" ]
null
null
null
arithmetic_analysis/in_static_equilibrium.py
abdussalam02/Python
a80e5aadf30817251989378e8d908ca18f733a2f
[ "MIT" ]
null
null
null
""" Checks if a system of forces is in static equilibrium. """ from __future__ import annotations from numpy import array, cos, cross, float64, radians, sin from numpy.typing import NDArray def polar_force( magnitude: float, angle: float, radian_mode: bool = False ) -> list[float]: """ Resolves force along rectangular components. (force, angle) => (force_x, force_y) >>> import math >>> force = polar_force(10, 45) >>> math.isclose(force[0], 7.071067811865477) True >>> math.isclose(force[1], 7.0710678118654755) True >>> polar_force(10, 3.14, radian_mode=True) [-9.999987317275396, 0.01592652916486828] """ if radian_mode: return [magnitude * cos(angle), magnitude * sin(angle)] return [magnitude * cos(radians(angle)), magnitude * sin(radians(angle))] def in_static_equilibrium( forces: NDArray[float64], location: NDArray[float64], eps: float = 10**-1 ) -> bool: """ Check if a system is in equilibrium. It takes two numpy.array objects. forces ==> [ [force1_x, force1_y], [force2_x, force2_y], ....] location ==> [ [x1, y1], [x2, y2], ....] >>> force = array([[1, 1], [-1, 2]]) >>> location = array([[1, 0], [10, 0]]) >>> in_static_equilibrium(force, location) False """ # summation of moments is zero moments: NDArray[float64] = cross(location, forces) sum_moments: float = sum(moments) return abs(sum_moments) < eps if __name__ == "__main__": # Test to check if it works forces = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) location: NDArray[float64] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg forces = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) location = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg forces = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) location = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
28.423913
78
0.545315
03c0e45d005d4bdc28d9e1488c2e81136cd0e8d7
4,719
py
Python
modules/tools/common/message_manager.py
zarmars/apollo
2c71e68118fdfc8ea4327e6a0fdc93b428882a8b
[ "Apache-2.0" ]
1
2021-12-04T08:02:09.000Z
2021-12-04T08:02:09.000Z
modules/tools/common/message_manager.py
Mrrabbitan/apollo
ff6bb065eb343689603a0827828728ed4fa1a699
[ "Apache-2.0" ]
null
null
null
modules/tools/common/message_manager.py
Mrrabbitan/apollo
ff6bb065eb343689603a0827828728ed4fa1a699
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from modules.localization.proto import localization_pb2 from modules.perception.proto import perception_obstacle_pb2 from modules.perception.proto import traffic_light_detection_pb2 from modules.planning.proto import planning_internal_pb2 from modules.planning.proto import planning_pb2 from modules.prediction.proto import prediction_obstacle_pb2 from modules.routing.proto import routing_pb2 from modules.control.proto import control_cmd_pb2 from modules.canbus.proto import chassis_pb2 from modules.common.proto import drive_event_pb2 from modules.map.relative_map.proto import navigation_pb2 from modules.guardian.proto import guardian_pb2 from modules.tools.common import proto_utils class MessageType: def __init__(self, name, topic, msg_type): self.name = name self.topic = topic self.msg_type = msg_type def instance(self): return self.__msg_type() def parse_file(self, filename): value = self.instance() if not proto_utils.get_pb_from_file(filename, value): print("Failed to parse file %s" % filename) return None else: return value topic_pb_list = [ MessageType("planning", "/apollo/planning", planning_pb2.ADCTrajectory), MessageType("control", "/apollo/control", control_cmd_pb2.ControlCommand), MessageType("chassis", "/apollo/canbus/chassis", chassis_pb2.Chassis), MessageType("prediction", "/apollo/prediction", prediction_obstacle_pb2.PredictionObstacles), MessageType("perception", "/apollo/perception/obstacles", perception_obstacle_pb2.PerceptionObstacles), MessageType("routing_response", "/apollo/routing_response", routing_pb2.RoutingResponse), MessageType("routing_request", "/apollo/routing_request", routing_pb2.RoutingRequest), MessageType("localization", "/apollo/localization/pose", localization_pb2.LocalizationEstimate), MessageType("traffic_light", "/apollo/perception/traffic_light", traffic_light_detection_pb2.TrafficLightDetection), MessageType("drive_event", "/apollo/drive_event", drive_event_pb2.DriveEvent), MessageType("relative_map", "/apollo/relative_map", navigation_pb2.MapMsg), MessageType("navigation", "/apollo/navigation", navigation_pb2.NavigationInfo), MessageType("guardian", "/apollo/guardian", guardian_pb2.GuardianCommand), ] class PbMessageManager: def __init__(self): self.__topic_dict = {} self.__name_dict = {} for msg in topic_pb_list: self.__topic_dict[msg.topic] = msg self.__name_dict[msg.name] = msg def topic_dict(self): return self.__topic_dict def get_msg_meta_by_topic(self, topic): if topic in self.__topic_dict: return self.__topic_dict[topic] else: return None def get_msg_meta_by_name(self, name): if name in self.__name_dict: return self.__name_dict[name] else: return None def name_dict(self): return self.__name_dict def parse_topic_file(self, topic, filename): if topic not in self.__topic_dict: print("topic %s is not registered in topic_pb_list" % topic) return None meta_msg = self.__topic_dict[topic] return meta_msg.parse_file(filename) def parse_file(self, filename): """parse a file by guessing topic type""" for topic, meta_msg in self.__topic_dict.items(): try: message = meta_msg.parse_file(filename) if message: print("identified topic %s" % topic) return (meta_msg, message) except text_format.ParseError as e: print("Tried %s, failed" % (topic)) continue return (None, None)
38.365854
79
0.665395
73c11134fd43b5ccb5c236067011b23c61ff39d3
13,997
py
Python
niftynet/application/regression_application.py
josemariamoreira/NiftyNet
d3ed1404fed9b8b69a3b60ae5b398045ae121d34
[ "Apache-2.0" ]
1
2018-05-13T14:54:47.000Z
2018-05-13T14:54:47.000Z
niftynet/application/regression_application.py
josemariamoreira/NiftyNet
d3ed1404fed9b8b69a3b60ae5b398045ae121d34
[ "Apache-2.0" ]
null
null
null
niftynet/application/regression_application.py
josemariamoreira/NiftyNet
d3ed1404fed9b8b69a3b60ae5b398045ae121d34
[ "Apache-2.0" ]
2
2018-05-13T14:54:48.000Z
2018-05-26T16:08:09.000Z
import tensorflow as tf import os from niftynet.application.base_application import BaseApplication from niftynet.engine.application_factory import ApplicationNetFactory from niftynet.engine.application_factory import OptimiserFactory from niftynet.engine.application_variables import CONSOLE from niftynet.engine.application_variables import NETWORK_OUTPUT from niftynet.engine.application_variables import TF_SUMMARIES from niftynet.engine.sampler_grid import GridSampler from niftynet.engine.sampler_resize import ResizeSampler from niftynet.engine.sampler_uniform import UniformSampler from niftynet.engine.sampler_weighted import WeightedSampler from niftynet.engine.sampler_balanced import BalancedSampler from niftynet.engine.windows_aggregator_grid import GridSamplesAggregator from niftynet.engine.windows_aggregator_resize import ResizeSamplesAggregator from niftynet.io.image_reader import ImageReader from niftynet.layer.crop import CropLayer from niftynet.layer.histogram_normalisation import \ HistogramNormalisationLayer from niftynet.layer.loss_regression import LossFunction from niftynet.layer.mean_variance_normalisation import \ MeanVarNormalisationLayer from niftynet.layer.pad import PadLayer from niftynet.layer.post_processing import PostProcessingLayer from niftynet.layer.rand_flip import RandomFlipLayer from niftynet.layer.rand_rotation import RandomRotationLayer from niftynet.layer.rand_spatial_scaling import RandomSpatialScalingLayer from niftynet.evaluation.regression_evaluator import RegressionEvaluator SUPPORTED_INPUT = set(['image', 'output', 'weight', 'sampler', 'inferred']) class RegressionApplication(BaseApplication): REQUIRED_CONFIG_SECTION = "REGRESSION" def __init__(self, net_param, action_param, action): BaseApplication.__init__(self) tf.logging.info('starting regression application') self.action = action self.net_param = net_param self.action_param = action_param self.regression_param = None self.data_param = None self.SUPPORTED_SAMPLING = { 'uniform': (self.initialise_uniform_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), 'weighted': (self.initialise_weighted_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), 'resize': (self.initialise_resize_sampler, self.initialise_resize_sampler, self.initialise_resize_aggregator), 'balanced': (self.initialise_balanced_sampler, self.initialise_grid_sampler, self.initialise_grid_aggregator), } def initialise_dataset_loader( self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.regression_param = task_param file_lists = self.get_file_lists(data_partitioner) # read each line of csv files into an instance of Subject if self.is_training: self.readers = [] for file_list in file_lists: reader = ImageReader({'image', 'output', 'weight', 'sampler'}) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) elif self.is_inference: inference_reader = ImageReader(['image']) file_list = data_partitioner.inference_files inference_reader.initialise(data_param, task_param, file_lists[0]) self.readers = [inference_reader] elif self.is_evaluation: file_list = data_partitioner.inference_files reader = ImageReader({'image', 'output', 'inferred'}) reader.initialise(data_param, task_param, file_lists[0]) self.readers = [reader] else: raise ValueError('Action `{}` not supported. Expected one of {}' .format(self.action, self.SUPPORTED_ACTIONS)) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image') histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) augmentation_layers = [] if self.is_training: if self.action_param.random_flipping_axes != -1: augmentation_layers.append(RandomFlipLayer( flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append(RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1])) if self.action_param.rotation_angle: augmentation_layers.append(RandomRotationLayer()) augmentation_layers[-1].init_uniform_angle( self.action_param.rotation_angle) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append(PadLayer( image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size)) for reader in self.readers: reader.add_preprocessing_layers(volume_padding_layer + normalisation_layers + augmentation_layers) def initialise_uniform_sampler(self): self.sampler = [[UniformSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_weighted_sampler(self): self.sampler = [[WeightedSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_resize_sampler(self): self.sampler = [[ResizeSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, shuffle_buffer=self.is_training, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_grid_sampler(self): self.sampler = [[GridSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, spatial_window_size=self.action_param.spatial_window_size, window_border=self.action_param.border, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_balanced_sampler(self): self.sampler = [[BalancedSampler( reader=reader, data_param=self.data_param, batch_size=self.net_param.batch_size, windows_per_image=self.action_param.sample_per_volume, queue_length=self.net_param.queue_length) for reader in self.readers]] def initialise_grid_aggregator(self): self.output_decoder = GridSamplesAggregator( image_reader=self.readers[0], output_path=self.action_param.save_seg_dir, window_border=self.action_param.border, interp_order=self.action_param.output_interp_order) def initialise_resize_aggregator(self): self.output_decoder = ResizeSamplesAggregator( image_reader=self.readers[0], output_path=self.action_param.save_seg_dir, window_border=self.action_param.border, interp_order=self.action_param.output_interp_order) def initialise_sampler(self): if self.is_training: self.SUPPORTED_SAMPLING[self.net_param.window_sampling][0]() elif self.is_inference: self.SUPPORTED_SAMPLING[self.net_param.window_sampling][1]() def initialise_aggregator(self): self.SUPPORTED_SAMPLING[self.net_param.window_sampling][2]() def initialise_network(self): w_regularizer = None b_regularizer = None reg_type = self.net_param.reg_type.lower() decay = self.net_param.decay if reg_type == 'l2' and decay > 0: from tensorflow.contrib.layers.python.layers import regularizers w_regularizer = regularizers.l2_regularizer(decay) b_regularizer = regularizers.l2_regularizer(decay) elif reg_type == 'l1' and decay > 0: from tensorflow.contrib.layers.python.layers import regularizers w_regularizer = regularizers.l1_regularizer(decay) b_regularizer = regularizers.l1_regularizer(decay) self.net = ApplicationNetFactory.create(self.net_param.name)( num_classes=1, w_regularizer=w_regularizer, b_regularizer=b_regularizer, acti_func=self.net_param.activation_function) def connect_data_and_network(self, outputs_collector=None, gradients_collector=None): def switch_sampler(for_training): with tf.name_scope('train' if for_training else 'validation'): sampler = self.get_sampler()[0][0 if for_training else -1] return sampler.pop_batch_op() if self.is_training: if self.action_param.validation_every_n > 0: data_dict = tf.cond(tf.logical_not(self.is_validation), lambda: switch_sampler(True), lambda: switch_sampler(False)) else: data_dict = switch_sampler(for_training=True) image = tf.cast(data_dict['image'], tf.float32) net_out = self.net(image, is_training=self.is_training) with tf.name_scope('Optimiser'): optimiser_class = OptimiserFactory.create( name=self.action_param.optimiser) self.optimiser = optimiser_class.get_instance( learning_rate=self.action_param.lr) loss_func = LossFunction( loss_type=self.action_param.loss_type) crop_layer = CropLayer( border=self.regression_param.loss_border, name='crop-88') prediction = crop_layer(net_out) ground_truth = crop_layer(data_dict.get('output', None)) weight_map = None if data_dict.get('weight', None) is None \ else crop_layer(data_dict.get('weight', None)) data_loss = loss_func(prediction=prediction, ground_truth=ground_truth, weight_map=weight_map) reg_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) if self.net_param.decay > 0.0 and reg_losses: reg_loss = tf.reduce_mean( [tf.reduce_mean(reg_loss) for reg_loss in reg_losses]) loss = data_loss + reg_loss else: loss = data_loss grads = self.optimiser.compute_gradients(loss) # collecting gradients variables gradients_collector.add_to_collection([grads]) # collecting output variables outputs_collector.add_to_collection( var=data_loss, name='Loss', average_over_devices=False, collection=CONSOLE) outputs_collector.add_to_collection( var=data_loss, name='Loss', average_over_devices=True, summary_type='scalar', collection=TF_SUMMARIES) elif self.is_inference: data_dict = switch_sampler(for_training=False) image = tf.cast(data_dict['image'], tf.float32) net_out = self.net(image, is_training=self.is_training) crop_layer = CropLayer(border=0, name='crop-88') post_process_layer = PostProcessingLayer('IDENTITY') net_out = post_process_layer(crop_layer(net_out)) outputs_collector.add_to_collection( var=net_out, name='window', average_over_devices=False, collection=NETWORK_OUTPUT) outputs_collector.add_to_collection( var=data_dict['image_location'], name='location', average_over_devices=False, collection=NETWORK_OUTPUT) self.initialise_aggregator() def interpret_output(self, batch_output): if self.is_inference: return self.output_decoder.decode_batch( batch_output['window'], batch_output['location']) else: return True def initialise_evaluator(self, eval_param): self.eval_param = eval_param self.evaluator = RegressionEvaluator(self.readers[0], self.regression_param, eval_param) def add_inferred_output(self, data_param, task_param): return self.add_inferred_output_like(data_param, task_param, 'output')
45.444805
78
0.650639
13acb83397ddc86f7d6751b0180565940b1d779a
713
py
Python
cplex_gurobi_projects/00_Initial/first_example.py
hpaucar/autonomous-system-repo
b86b62c23fe9a05694fcb5a106457454ff9976fb
[ "MIT" ]
null
null
null
cplex_gurobi_projects/00_Initial/first_example.py
hpaucar/autonomous-system-repo
b86b62c23fe9a05694fcb5a106457454ff9976fb
[ "MIT" ]
null
null
null
cplex_gurobi_projects/00_Initial/first_example.py
hpaucar/autonomous-system-repo
b86b62c23fe9a05694fcb5a106457454ff9976fb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ First Example from CPLEX """ import pyomo.environ as pyo from pyomo.environ import * from pyomo.opt import SolverFactory model = pyo.ConcreteModel() model.c = pyo.Var(bounds=(0, None), domain=Integers) model.p = pyo.Var(bounds=(0, None), domain=Integers) c = model.c p = model.p model.obj = pyo.Objective(expr = 3000*c + 5000*p, sense=maximize) model.C1 = pyo.Constraint(expr = 2*c + 3*p <= 30) model.C2 = pyo.Constraint(expr = 4*c + 8*p <= 70) opt = SolverFactory('gurobi') opt.solve(model) model.pprint() print('------------------------------------------------------') print('N casas: ', pyo.value(c)) print('N predios: ', pyo.value(p)) print('Lucro: ', pyo.value(model.obj))
23.766667
65
0.619916
5fb99e5517c1f752028d731a23e50fc1001ed510
9,634
py
Python
lib/core/function.py
kuldeepbrd1/deep-high-resolution-net.pytorch
aece4d855edb4f43c968218a294a72e23304b4b1
[ "MIT" ]
1
2021-12-17T08:37:38.000Z
2021-12-17T08:37:38.000Z
lib/core/function.py
kuldeepbrd1/HRNet-spacecraft-pose
13992450423449b9abf3b02741e699d5e2ae2875
[ "MIT" ]
null
null
null
lib/core/function.py
kuldeepbrd1/HRNet-spacecraft-pose
13992450423449b9abf3b02741e699d5e2ae2875
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by Bin Xiao (Bin.Xiao@microsoft.com) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import logging import os import numpy as np import torch from core.evaluate import accuracy from core.inference import get_final_preds from utils.transforms import flip_back from utils.vis import save_debug_images # ---- Added all heatmap save util function ---- 28/02 from sat_pose_utils.utils import save_all_val_heatmaps logger = logging.getLogger(__name__) def train(config, train_loader, model, criterion, optimizer, epoch, output_dir, tb_log_dir, writer_dict): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target, target_weight, meta) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) # compute output outputs = model(input) target = target.cuda(non_blocking=True) target_weight = target_weight.cuda(non_blocking=True) if isinstance(outputs, list): loss = criterion(outputs[0], target, target_weight) for output in outputs[1:]: loss += criterion(output, target, target_weight) else: output = outputs loss = criterion(output, target, target_weight) # loss = criterion(output, target, target_weight) # compute gradient and do update step optimizer.zero_grad() loss.backward() optimizer.step() # measure accuracy and record loss losses.update(loss.item(), input.size(0)) _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(), target.detach().cpu().numpy()) acc.update(avg_acc, cnt) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = 'Epoch: [{0}][{1}/{2}]\t' \ 'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Speed {speed:.1f} samples/s\t' \ 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \ 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' \ 'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, speed=input.size(0)/batch_time.val, data_time=data_time, loss=losses, acc=acc) logger.info(msg) writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] writer.add_scalar('train_loss', losses.val, global_steps) writer.add_scalar('train_acc', acc.val, global_steps) writer_dict['train_global_steps'] = global_steps + 1 prefix = '{}_{}'.format(os.path.join(output_dir, 'train'), i) save_debug_images(config, input, meta, target, pred*4, output, prefix) def validate(config, val_loader, val_dataset, model, criterion, output_dir, tb_log_dir, writer_dict=None): batch_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() # switch to evaluate mode model.eval() num_samples = len(val_dataset) all_preds = np.zeros( (num_samples, config.MODEL.NUM_JOINTS, 3), dtype=np.float32 ) all_boxes = np.zeros((num_samples, 6)) image_path = [] filenames = [] imgnums = [] idx = 0 with torch.no_grad(): end = time.time() for i, (input, target, target_weight, meta) in enumerate(val_loader): # compute output outputs = model(input) if isinstance(outputs, list): output = outputs[-1] else: output = outputs if config.TEST.FLIP_TEST: input_flipped = input.flip(3) outputs_flipped = model(input_flipped) if isinstance(outputs_flipped, list): output_flipped = outputs_flipped[-1] else: output_flipped = outputs_flipped output_flipped = flip_back(output_flipped.cpu().numpy(), val_dataset.flip_pairs) output_flipped = torch.from_numpy(output_flipped.copy()).cuda() # feature is not aligned, shift flipped heatmap for higher accuracy if config.TEST.SHIFT_HEATMAP: output_flipped[:, :, :, 1:] = \ output_flipped.clone()[:, :, :, 0:-1] output = (output + output_flipped) * 0.5 target = target.cuda(non_blocking=True) target_weight = target_weight.cuda(non_blocking=True) loss = criterion(output, target, target_weight) num_images = input.size(0) # measure accuracy and record loss losses.update(loss.item(), num_images) _, avg_acc, cnt, pred = accuracy(output.cpu().numpy(), target.cpu().numpy()) acc.update(avg_acc, cnt) # measure elapsed time batch_time.update(time.time() - end) end = time.time() c = meta['center'].numpy() s = meta['scale'].numpy() score = meta['score'].numpy() #print(f"idx: {i}") preds, maxvals = get_final_preds( config, output.clone().cpu().numpy(), c, s) all_preds[idx:idx + num_images, :, 0:2] = preds[:, :, 0:2] all_preds[idx:idx + num_images, :, 2:3] = maxvals # double check this all_boxes parts all_boxes[idx:idx + num_images, 0:2] = c[:, 0:2] all_boxes[idx:idx + num_images, 2:4] = s[:, 0:2] all_boxes[idx:idx + num_images, 4] = np.prod(s*200, 1) all_boxes[idx:idx + num_images, 5] = score image_path.extend(meta['image']) idx += num_images # ----------------Save all heatmaps from test/val : 28/02 ----- save_all_val_heatmaps(config, input, meta, target, pred*4, output,output_dir) if i % config.PRINT_FREQ == 0: msg = 'Test: [{0}/{1}]\t' \ 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \ 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \ 'Accuracy {acc.val:.3f} ({acc.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, acc=acc) logger.info(msg) prefix = '{}_{}'.format( os.path.join(output_dir, config.DATASET.TEST_SET), i ) save_debug_images(config, input, meta, target, pred*4, output, prefix) name_values, perf_indicator = val_dataset.evaluate( config, all_preds, output_dir, all_boxes, image_path, filenames, imgnums ) model_name = config.MODEL.NAME if isinstance(name_values, list): for name_value in name_values: _print_name_value(name_value, model_name) else: _print_name_value(name_values, model_name) if writer_dict: writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar( 'valid_loss', losses.avg, global_steps ) writer.add_scalar( 'valid_acc', acc.avg, global_steps ) if isinstance(name_values, list): for name_value in name_values: writer.add_scalars( 'valid', dict(name_value), global_steps ) else: writer.add_scalars( 'valid', dict(name_values), global_steps ) writer_dict['valid_global_steps'] = global_steps + 1 return perf_indicator # markdown format output def _print_name_value(name_value, full_arch_name): names = name_value.keys() values = name_value.values() num_values = len(name_value) logger.info( '| Arch ' + ' '.join(['| {}'.format(name) for name in names]) + ' |' ) logger.info('|---' * (num_values+1) + '|') if len(full_arch_name) > 15: full_arch_name = full_arch_name[:8] + '...' logger.info( '| ' + full_arch_name + ' ' + ' '.join(['| {:.3f}'.format(value) for value in values]) + ' |' ) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count if self.count != 0 else 0
34.284698
89
0.531659
86cd1aac404ea65ff2fa02d832bb61f296deba69
4,509
py
Python
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/rax_cdb_database.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
22
2021-07-16T08:11:22.000Z
2022-03-31T07:15:34.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/rax_cdb_database.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/general/plugins/modules/rax_cdb_database.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
39
2021-07-05T02:31:42.000Z
2022-03-31T02:46:03.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' module: rax_cdb_database short_description: 'create / delete a database in the Cloud Databases' description: - create / delete a database in the Cloud Databases. options: cdb_id: type: str description: - The databases server UUID required: yes name: type: str description: - Name to give to the database required: yes character_set: type: str description: - Set of symbols and encodings default: 'utf8' collate: type: str description: - Set of rules for comparing characters in a character set default: 'utf8_general_ci' state: type: str description: - Indicate desired state of the resource choices: ['present', 'absent'] default: present author: "Simon JAILLET (@jails)" extends_documentation_fragment: - community.general.rackspace - community.general.rackspace.openstack ''' EXAMPLES = ''' - name: Build a database in Cloud Databases tasks: - name: Database build request local_action: module: rax_cdb_database credentials: ~/.raxpub region: IAD cdb_id: 323e7ce0-9cb0-11e3-a5e2-0800200c9a66 name: db1 state: present register: rax_db_database ''' try: import pyrax HAS_PYRAX = True except ImportError: HAS_PYRAX = False from ansible.module_utils.basic import AnsibleModule from ansible_collections.community.general.plugins.module_utils.rax import rax_argument_spec, rax_required_together, rax_to_dict, setup_rax_module def find_database(instance, name): try: database = instance.get_database(name) except Exception: return False return database def save_database(module, cdb_id, name, character_set, collate): cdb = pyrax.cloud_databases try: instance = cdb.get(cdb_id) except Exception as e: module.fail_json(msg='%s' % e.message) changed = False database = find_database(instance, name) if not database: try: database = instance.create_database(name=name, character_set=character_set, collate=collate) except Exception as e: module.fail_json(msg='%s' % e.message) else: changed = True module.exit_json(changed=changed, action='create', database=rax_to_dict(database)) def delete_database(module, cdb_id, name): cdb = pyrax.cloud_databases try: instance = cdb.get(cdb_id) except Exception as e: module.fail_json(msg='%s' % e.message) changed = False database = find_database(instance, name) if database: try: database.delete() except Exception as e: module.fail_json(msg='%s' % e.message) else: changed = True module.exit_json(changed=changed, action='delete', database=rax_to_dict(database)) def rax_cdb_database(module, state, cdb_id, name, character_set, collate): # act on the state if state == 'present': save_database(module, cdb_id, name, character_set, collate) elif state == 'absent': delete_database(module, cdb_id, name) def main(): argument_spec = rax_argument_spec() argument_spec.update( dict( cdb_id=dict(type='str', required=True), name=dict(type='str', required=True), character_set=dict(type='str', default='utf8'), collate=dict(type='str', default='utf8_general_ci'), state=dict(default='present', choices=['present', 'absent']) ) ) module = AnsibleModule( argument_spec=argument_spec, required_together=rax_required_together(), ) if not HAS_PYRAX: module.fail_json(msg='pyrax is required for this module') cdb_id = module.params.get('cdb_id') name = module.params.get('name') character_set = module.params.get('character_set') collate = module.params.get('collate') state = module.params.get('state') setup_rax_module(module, pyrax) rax_cdb_database(module, state, cdb_id, name, character_set, collate) if __name__ == '__main__': main()
26.063584
146
0.645154
a82f4fe5cd0e915c94eb16e20bf17f63bc9186f1
420
py
Python
kernal_rom.py
folkertvanheusden/pyc64
90d7fc117427fc3f7b7a65a5a26ed0d1d2ad8941
[ "Apache-2.0" ]
null
null
null
kernal_rom.py
folkertvanheusden/pyc64
90d7fc117427fc3f7b7a65a5a26ed0d1d2ad8941
[ "Apache-2.0" ]
null
null
null
kernal_rom.py
folkertvanheusden/pyc64
90d7fc117427fc3f7b7a65a5a26ed0d1d2ad8941
[ "Apache-2.0" ]
null
null
null
# (C) 2020 by Folkert van Heusden <mail@vanheusden.com> # License: Apache License v2.0 from bus_device import bus_device class kernal_rom(bus_device): def __init__(self): fh = open('kernal.901227-01.bin', 'rb') self.rom: List[int] = [ int(b) for b in fh.read() ] fh.close() def write_through(self): return True def read(self, addr): return self.rom[addr - 0xe000]
24.705882
59
0.628571
0b1440e94e2481ce39569cfabc7511ea13f6f245
68,112
py
Python
taxcalc/utils.py
ClarePan/Tax-Calculator
d2d6cb4b551f34017db7166d91d982b5c4670816
[ "CC0-1.0" ]
1
2021-02-23T21:03:43.000Z
2021-02-23T21:03:43.000Z
taxcalc/utils.py
ClarePan/Tax-Calculator
d2d6cb4b551f34017db7166d91d982b5c4670816
[ "CC0-1.0" ]
null
null
null
taxcalc/utils.py
ClarePan/Tax-Calculator
d2d6cb4b551f34017db7166d91d982b5c4670816
[ "CC0-1.0" ]
null
null
null
""" PUBLIC low-level utility functions for Tax-Calculator. """ # CODING-STYLE CHECKS: # pycodestyle utils.py # pylint --disable=locally-disabled utils.py # # pylint: disable=too-many-lines import os import math import json import collections import pkg_resources import six import numpy as np import pandas as pd import bokeh.io as bio import bokeh.plotting as bp from bokeh.models import PrintfTickFormatter from taxcalc.utilsprvt import (weighted_count_lt_zero, weighted_count_gt_zero, weighted_count, weighted_mean, wage_weighted, agi_weighted, expanded_income_weighted) # Items in the DIST_TABLE_COLUMNS list below correspond to the items in the # DIST_TABLE_LABELS list below; this correspondence allows us to use this # labels list to map a label to the correct column in a distribution table. DIST_VARIABLES = ['expanded_income', 'c00100', 'aftertax_income', 'standard', 'c04470', 'c04600', 'c04800', 'taxbc', 'c62100', 'c09600', 'c05800', 'othertaxes', 'refund', 'c07100', 'iitax', 'payrolltax', 'combined', 's006', 'ubi', 'benefit_cost_total', 'benefit_value_total'] DIST_TABLE_COLUMNS = ['s006', 'c00100', 'num_returns_StandardDed', 'standard', 'num_returns_ItemDed', 'c04470', 'c04600', 'c04800', 'taxbc', 'c62100', 'num_returns_AMT', 'c09600', 'c05800', 'c07100', 'othertaxes', 'refund', 'iitax', 'payrolltax', 'combined', 'ubi', 'benefit_cost_total', 'benefit_value_total', 'expanded_income', 'aftertax_income'] DIST_TABLE_LABELS = ['Returns', 'AGI', 'Standard Deduction Filers', 'Standard Deduction', 'Itemizers', 'Itemized Deduction', 'Personal Exemption', 'Taxable Income', 'Regular Tax', 'AMTI', 'AMT Filers', 'AMT', 'Tax before Credits', 'Non-refundable Credits', 'Other Taxes', 'Refundable Credits', 'Individual Income Tax Liabilities', 'Payroll Tax Liablities', 'Combined Payroll and Individual Income Tax Liabilities', 'Universal Basic Income', 'Total Cost of Benefits', 'Consumption Value of Benefits', 'Expanded Income', 'After-Tax Expanded Income'] # Items in the DIFF_TABLE_COLUMNS list below correspond to the items in the # DIFF_TABLE_LABELS list below; this correspondence allows us to use this # labels list to map a label to the correct column in a difference table. DIFF_VARIABLES = ['expanded_income', 'c00100', 'aftertax_income', 'iitax', 'payrolltax', 'combined', 's006', 'ubi', 'benefit_cost_total', 'benefit_value_total'] DIFF_TABLE_COLUMNS = ['count', 'tax_cut', 'perc_cut', 'tax_inc', 'perc_inc', 'mean', 'tot_change', 'share_of_change', 'ubi', 'benefit_cost_total', 'benefit_value_total', 'pc_aftertaxinc'] DIFF_TABLE_LABELS = ['All Tax Units', 'Tax Units with Tax Cut', 'Percent with Tax Cut', 'Tax Units with Tax Increase', 'Percent with Tax Increase', 'Average Tax Change', 'Total Tax Difference', 'Share of Overall Change', 'Universal Basic Income', 'Total Cost of Benefits', 'Consumption Value of Benefits', '% Change in After-Tax Income'] DECILE_ROW_NAMES = ['0-10n', '0-10z', '0-10p', '10-20', '20-30', '30-40', '40-50', '50-60', '60-70', '70-80', '80-90', '90-100', 'ALL', '90-95', '95-99', 'Top 1%'] STANDARD_ROW_NAMES = ['<$0K', '=$0K', '$0-10K', '$10-20K', '$20-30K', '$30-40K', '$40-50K', '$50-75K', '$75-100K', '$100-200K', '$200-500K', '$500-1000K', '>$1000K', 'ALL'] STANDARD_INCOME_BINS = [-9e99, -1e-9, 1e-9, 10e3, 20e3, 30e3, 40e3, 50e3, 75e3, 100e3, 200e3, 500e3, 1e6, 9e99] SOI_AGI_BINS = [-9e99, 1.0, 5e3, 10e3, 15e3, 20e3, 25e3, 30e3, 40e3, 50e3, 75e3, 100e3, 200e3, 500e3, 1e6, 1.5e6, 2e6, 5e6, 10e6, 9e99] def unweighted_sum(pdf, col_name): """ Return unweighted sum of Pandas DataFrame col_name items. """ return pdf[col_name].sum() def weighted_sum(pdf, col_name): """ Return weighted sum of Pandas DataFrame col_name items. """ return (pdf[col_name] * pdf['s006']).sum() def add_quantile_table_row_variable(pdf, income_measure, num_quantiles, decile_details=False, weight_by_income_measure=False): """ Add a variable to specified Pandas DataFrame, pdf, that specifies the table row and is called 'table_row'. The rows hold equal number of filing units when weight_by_income_measure=False or equal number of income dollars when weight_by_income_measure=True. Assumes that specified pdf contains columns for the specified income_measure and for sample weights, s006. When num_quantiles is 10 and decile_details is True, the bottom decile is broken up into three subgroups (neg, zero, and pos income_measure ) and the top decile is broken into three subgroups (90-95, 95-99, and top 1%). """ assert isinstance(pdf, pd.DataFrame) assert income_measure in pdf if decile_details and num_quantiles != 10: msg = 'decile_details is True when num_quantiles is {}' raise ValueError(msg.format(num_quantiles)) pdf.sort_values(by=income_measure, inplace=True) if weight_by_income_measure: pdf['cumsum_temp'] = np.cumsum(np.multiply(pdf[income_measure].values, pdf['s006'].values)) min_cumsum = pdf['cumsum_temp'].values[0] else: pdf['cumsum_temp'] = np.cumsum(pdf['s006'].values) min_cumsum = 0. # because s006 values are non-negative max_cumsum = pdf['cumsum_temp'].values[-1] cumsum_range = max_cumsum - min_cumsum bin_width = cumsum_range / float(num_quantiles) bin_edges = list(min_cumsum + np.arange(0, (num_quantiles + 1)) * bin_width) bin_edges[-1] = 9e99 # raise top of last bin to include all observations bin_edges[0] = -9e99 # lower bottom of 1st bin to include all observations num_bins = num_quantiles if decile_details: assert bin_edges[1] > 1e-9 # bin_edges[1] is top of bottom decile bin_edges.insert(1, 1e-9) # top of zeros bin_edges.insert(1, -1e-9) # top of negatives bin_edges.insert(-1, bin_edges[-2] + 0.5 * bin_width) # top of 90-95 bin_edges.insert(-1, bin_edges[-2] + 0.4 * bin_width) # top of 95-99 num_bins += 4 labels = range(1, (num_bins + 1)) pdf['table_row'] = pd.cut(pdf['cumsum_temp'], bin_edges, right=False, labels=labels) pdf.drop('cumsum_temp', axis=1, inplace=True) return pdf def add_income_table_row_variable(pdf, income_measure, bin_edges): """ Add a variable to specified Pandas DataFrame, pdf, that specifies the table row and is called 'table_row'. The rows are defined by the specified bin_edges function argument. Note that the bin groupings are LEFT INCLUSIVE, which means that bin_edges=[1,2,3,4] implies these three bin groupings: [1,2), [2,3), [3,4). Parameters ---------- pdf: Pandas DataFrame the object to which we are adding bins income_measure: String specifies income variable used to construct bins bin_edges: list of scalar bin edges Returns ------- pdf: Pandas DataFrame the original input plus the added 'table_row' column """ assert isinstance(pdf, pd.DataFrame) assert income_measure in pdf assert isinstance(bin_edges, list) pdf['table_row'] = pd.cut(pdf[income_measure], bin_edges, right=False) return pdf def get_sums(pdf): """ Compute unweighted sum of items in each column of Pandas DataFrame, pdf. Returns ------- Pandas Series object containing column sums indexed by pdf column names. """ sums = dict() for col in pdf.columns.values.tolist(): if col != 'table_row': sums[col] = pdf[col].sum() return pd.Series(sums, name='ALL') def create_distribution_table(vdf, groupby, income_measure): """ Get results from vdf, sort them by expanded_income based on groupby, and return them as a table. Parameters ---------- vdf : Pandas DataFrame including columns named in DIST_TABLE_COLUMNS list for example, an object returned from the Calculator class distribution_table_dataframe method groupby : String object options for input: 'weighted_deciles' or 'standard_income_bins' or 'soi_agi_bins' determines how the rows in the resulting Pandas DataFrame are sorted income_measure: String object options for input: 'expanded_income' or 'expanded_income_baseline' determines which variable is used to sort rows Returns ------- distribution table as a Pandas DataFrame with DIST_TABLE_COLUMNS and groupby rows. NOTE: when groupby is 'weighted_deciles', the returned table has three extra rows containing top-decile detail consisting of statistics for the 0.90-0.95 quantile range (bottom half of top decile), for the 0.95-0.99 quantile range, and for the 0.99-1.00 quantile range (top one percent); and the returned table splits the bottom decile into filing units with negative (denoted by a 0-10n row label), zero (denoted by a 0-10z row label), and positive (denoted by a 0-10p row label) values of the specified income_measure. """ # pylint: disable=too-many-statements,too-many-branches # nested function that returns calculated column statistics as a DataFrame def stat_dataframe(gpdf): """ Returns calculated distribution table column statistics derived from the specified grouped Dataframe object, gpdf. """ unweighted_columns = ['s006', 'num_returns_StandardDed', 'num_returns_ItemDed', 'num_returns_AMT'] sdf = pd.DataFrame() for col in DIST_TABLE_COLUMNS: if col in unweighted_columns: sdf[col] = gpdf.apply(unweighted_sum, col) else: sdf[col] = gpdf.apply(weighted_sum, col) return sdf # main logic of create_distribution_table assert isinstance(vdf, pd.DataFrame) assert (groupby == 'weighted_deciles' or groupby == 'standard_income_bins' or groupby == 'soi_agi_bins') assert (income_measure == 'expanded_income' or income_measure == 'expanded_income_baseline') assert income_measure in vdf assert 'table_row' not in list(vdf.columns.values) # sort the data given specified groupby and income_measure if groupby == 'weighted_deciles': pdf = add_quantile_table_row_variable(vdf, income_measure, 10, decile_details=True) elif groupby == 'standard_income_bins': pdf = add_income_table_row_variable(vdf, income_measure, STANDARD_INCOME_BINS) elif groupby == 'soi_agi_bins': pdf = add_income_table_row_variable(vdf, income_measure, SOI_AGI_BINS) # construct grouped DataFrame gpdf = pdf.groupby('table_row', as_index=False) dist_table = stat_dataframe(gpdf) del pdf['table_row'] # compute sum row sum_row = get_sums(dist_table)[dist_table.columns] # handle placement of sum_row in table if groupby == 'weighted_deciles': # compute top-decile row lenindex = len(dist_table.index) assert lenindex == 14 # rows should be indexed from 0 to 13 topdec_row = get_sums(dist_table[11:lenindex])[dist_table.columns] # move top-decile detail rows to make room for topdec_row and sum_row dist_table = dist_table.reindex(index=range(0, lenindex + 2)) dist_table.iloc[15] = dist_table.iloc[13] dist_table.iloc[14] = dist_table.iloc[12] dist_table.iloc[13] = dist_table.iloc[11] dist_table.iloc[12] = sum_row dist_table.iloc[11] = topdec_row del topdec_row else: dist_table = dist_table.append(sum_row) del sum_row # set print display format for float table elements pd.options.display.float_format = '{:8,.0f}'.format # ensure dist_table columns are in correct order assert dist_table.columns.values.tolist() == DIST_TABLE_COLUMNS # add row names to table if using weighted_deciles or standard_income_bins if groupby == 'weighted_deciles': rownames = DECILE_ROW_NAMES elif groupby == 'standard_income_bins': rownames = STANDARD_ROW_NAMES else: rownames = None if rownames: assert len(dist_table.index) == len(rownames) dist_table.index = rownames del rownames # delete intermediate Pandas DataFrame objects del gpdf del pdf # return table as Pandas DataFrame vdf.sort_index(inplace=True) return dist_table def create_difference_table(vdf1, vdf2, groupby, tax_to_diff): """ Get results from two different vdf, construct tax difference results, and return the difference statistics as a table. Parameters ---------- vdf1 : Pandas DataFrame including columns named in DIFF_VARIABLES list for example, object returned from a dataframe(DIFF_VARIABLE) call on the basesline Calculator object vdf2 : Pandas DataFrame including columns in the DIFF_VARIABLES list for example, object returned from a dataframe(DIFF_VARIABLE) call on the reform Calculator object groupby : String object options for input: 'weighted_deciles' or 'standard_income_bins' or 'soi_agi_bins' determines how the rows in the resulting Pandas DataFrame are sorted tax_to_diff : String object options for input: 'iitax', 'payrolltax', 'combined' specifies which tax to difference Returns ------- difference table as a Pandas DataFrame with DIFF_TABLE_COLUMNS and groupby rows. NOTE: when groupby is 'weighted_deciles', the returned table has three extra rows containing top-decile detail consisting of statistics for the 0.90-0.95 quantile range (bottom half of top decile), for the 0.95-0.99 quantile range, and for the 0.99-1.00 quantile range (top one percent); and the returned table splits the bottom decile into filing units with negative (denoted by a 0-10n row label), zero (denoted by a 0-10z row label), and positive (denoted by a 0-10p row label) values of the specified income_measure. """ # pylint: disable=too-many-statements,too-many-locals # nested function that creates dataframe containing additive statistics def additive_stats_dataframe(gpdf): """ Nested function that returns additive stats DataFrame derived from gpdf """ sdf = pd.DataFrame() sdf['count'] = gpdf.apply(weighted_count) sdf['tax_cut'] = gpdf.apply(weighted_count_lt_zero, 'tax_diff') sdf['tax_inc'] = gpdf.apply(weighted_count_gt_zero, 'tax_diff') sdf['tot_change'] = gpdf.apply(weighted_sum, 'tax_diff') sdf['ubi'] = gpdf.apply(weighted_sum, 'ubi') sdf['benefit_cost_total'] = gpdf.apply(weighted_sum, 'benefit_cost_total') sdf['benefit_value_total'] = gpdf.apply(weighted_sum, 'benefit_value_total') sdf['atinc1'] = gpdf.apply(weighted_sum, 'atinc1') sdf['atinc2'] = gpdf.apply(weighted_sum, 'atinc2') return sdf # main logic of create_difference_table assert isinstance(vdf1, pd.DataFrame) assert isinstance(vdf2, pd.DataFrame) assert np.allclose(vdf1['s006'], vdf2['s006']) # check rows in same order assert (groupby == 'weighted_deciles' or groupby == 'standard_income_bins' or groupby == 'soi_agi_bins') assert 'expanded_income' in vdf1 assert (tax_to_diff == 'iitax' or tax_to_diff == 'payrolltax' or tax_to_diff == 'combined') assert 'table_row' not in list(vdf1.columns.values) assert 'table_row' not in list(vdf2.columns.values) baseline_expanded_income = 'expanded_income_baseline' vdf2[baseline_expanded_income] = vdf1['expanded_income'] vdf2['tax_diff'] = vdf2[tax_to_diff] - vdf1[tax_to_diff] vdf2['atinc1'] = vdf1['aftertax_income'] vdf2['atinc2'] = vdf2['aftertax_income'] # add table_row column to vdf2 given specified groupby and income_measure if groupby == 'weighted_deciles': pdf = add_quantile_table_row_variable(vdf2, baseline_expanded_income, 10, decile_details=True) elif groupby == 'standard_income_bins': pdf = add_income_table_row_variable(vdf2, baseline_expanded_income, STANDARD_INCOME_BINS) elif groupby == 'soi_agi_bins': pdf = add_income_table_row_variable(vdf2, baseline_expanded_income, SOI_AGI_BINS) # create grouped Pandas DataFrame gpdf = pdf.groupby('table_row', as_index=False) del pdf['table_row'] # create additive difference table statistics from gpdf diff_table = additive_stats_dataframe(gpdf) # calculate additive statistics on sums row sum_row = get_sums(diff_table)[diff_table.columns] # handle placement of sum_row in table if groupby == 'weighted_deciles': # compute top-decile row lenindex = len(diff_table.index) assert lenindex == 14 # rows should be indexed from 0 to 13 topdec_row = get_sums(diff_table[11:lenindex])[diff_table.columns] # move top-decile detail rows to make room for topdec_row and sum_row diff_table = diff_table.reindex(index=range(0, lenindex + 2)) diff_table.iloc[15] = diff_table.iloc[13] diff_table.iloc[14] = diff_table.iloc[12] diff_table.iloc[13] = diff_table.iloc[11] diff_table.iloc[12] = sum_row diff_table.iloc[11] = topdec_row del topdec_row else: diff_table = diff_table.append(sum_row) # delete intermediate Pandas DataFrame objects del gpdf del pdf # compute non-additive stats in each table cell count = diff_table['count'] diff_table['perc_cut'] = np.where(count > 0., 100 * diff_table['tax_cut'] / count, 0.) diff_table['perc_inc'] = np.where(count > 0., 100 * diff_table['tax_inc'] / count, 0.) diff_table['mean'] = np.where(count > 0., diff_table['tot_change'] / count, 0.) total_change = sum_row['tot_change'] diff_table['share_of_change'] = np.where(total_change == 0., np.nan, (100 * diff_table['tot_change'] / total_change)) diff_table['pc_aftertaxinc'] = np.where(diff_table['atinc1'] == 0., np.nan, (100 * (diff_table['atinc2'] / diff_table['atinc1'] - 1))) # delete intermediate Pandas DataFrame objects del diff_table['atinc1'] del diff_table['atinc2'] del count del sum_row # set print display format for float table elements pd.options.display.float_format = '{:10,.2f}'.format # put diff_table columns in correct order diff_table = diff_table.reindex(columns=DIFF_TABLE_COLUMNS) # add row names to table if using weighted_deciles or standard_income_bins if groupby == 'weighted_deciles': rownames = DECILE_ROW_NAMES elif groupby == 'standard_income_bins': rownames = STANDARD_ROW_NAMES else: rownames = None if rownames: assert len(diff_table.index) == len(rownames) diff_table.index = rownames del rownames # return table as Pandas DataFrame vdf1.sort_index(inplace=True) vdf2.sort_index(inplace=True) return diff_table def create_diagnostic_table(vdf, year): """ Extract single-year diagnostic table from Pandas DataFrame object derived from a Calculator object using the dataframe(DIST_VARIABLES) method. Parameters ---------- vdf : Pandas DataFrame object containing the variables year : calendar year for which variables were drawn from Calculator object Returns ------- Pandas DataFrame object containing the diagnostic table """ # pylint: disable=too-many-statements def diagnostic_table_odict(recs): """ Nested function that extracts diagnostic table dictionary from the specified Pandas DataFrame object, vdf. Parameters ---------- vdf : Pandas DataFrame object containing the variables Returns ------- ordered dictionary of variable names and aggregate weighted values """ # aggregate weighted values expressed in millions or billions in_millions = 1.0e-6 in_billions = 1.0e-9 odict = collections.OrderedDict() # total number of filing units wghts = vdf['s006'] odict['Returns (#m)'] = wghts.sum() * in_millions # adjusted gross income agi = vdf['c00100'] odict['AGI ($b)'] = (agi * wghts).sum() * in_billions # number of itemizers num = (wghts[vdf['c04470'] > 0.].sum()) odict['Itemizers (#m)'] = num * in_millions # itemized deduction ided1 = vdf['c04470'] * wghts val = ided1[vdf['c04470'] > 0.].sum() odict['Itemized Deduction ($b)'] = val * in_billions # number of standard deductions num = wghts[vdf['standard'] > 0.].sum() odict['Standard Deduction Filers (#m)'] = num * in_millions # standard deduction sded1 = recs.standard * wghts val = sded1[vdf['standard'] > 0.].sum() odict['Standard Deduction ($b)'] = val * in_billions # personal exemption val = (vdf['c04600'] * wghts).sum() odict['Personal Exemption ($b)'] = val * in_billions # taxable income val = (vdf['c04800'] * wghts).sum() odict['Taxable Income ($b)'] = val * in_billions # regular tax liability val = (vdf['taxbc'] * wghts).sum() odict['Regular Tax ($b)'] = val * in_billions # AMT taxable income odict['AMT Income ($b)'] = ((vdf['c62100'] * wghts).sum() * in_billions) # total AMT liability odict['AMT Liability ($b)'] = ((vdf['c09600'] * wghts).sum() * in_billions) # number of people paying AMT odict['AMT Filers (#m)'] = (wghts[vdf['c09600'] > 0.].sum() * in_millions) # tax before credits val = (vdf['c05800'] * wghts).sum() odict['Tax before Credits ($b)'] = val * in_billions # refundable credits val = (vdf['refund'] * wghts).sum() odict['Refundable Credits ($b)'] = val * in_billions # nonrefundable credits val = (vdf['c07100'] * wghts).sum() odict['Nonrefundable Credits ($b)'] = val * in_billions # reform surtaxes (part of federal individual income tax liability) val = (vdf['surtax'] * wghts).sum() odict['Reform Surtaxes ($b)'] = val * in_billions # other taxes on Form 1040 val = (vdf['othertaxes'] * wghts).sum() odict['Other Taxes ($b)'] = val * in_billions # federal individual income tax liability val = (vdf['iitax'] * wghts).sum() odict['Ind Income Tax ($b)'] = val * in_billions # OASDI+HI payroll tax liability (including employer share) val = (vdf['payrolltax'] * wghts).sum() odict['Payroll Taxes ($b)'] = val * in_billions # combined income and payroll tax liability val = (vdf['combined'] * wghts).sum() odict['Combined Liability ($b)'] = val * in_billions # number of tax units with non-positive income tax liability num = (wghts[vdf['iitax'] <= 0]).sum() odict['With Income Tax <= 0 (#m)'] = num * in_millions # number of tax units with non-positive combined tax liability num = (wghts[vdf['combined'] <= 0]).sum() odict['With Combined Tax <= 0 (#m)'] = num * in_millions return odict # tabulate diagnostic table odict = diagnostic_table_odict(vdf) pdf = pd.DataFrame(data=odict, index=[year], columns=odict.keys()) pdf = pdf.transpose() pd.options.display.float_format = '{:8,.1f}'.format del odict return pdf def mtr_graph_data(vdf, year, mars='ALL', mtr_measure='combined', mtr_variable='e00200p', alt_e00200p_text='', mtr_wrt_full_compen=False, income_measure='expanded_income', dollar_weighting=False): """ Prepare marginal tax rate data needed by xtr_graph_plot utility function. Parameters ---------- vdf : a Pandas DataFrame object containing variables and marginal tax rates (See Calculator.mtr_graph method for required elements of vdf.) year : integer specifies calendar year of the data in vdf mars : integer or string specifies which filing status subgroup to show in the graph - 'ALL': include all filing units in sample - 1: include only single filing units - 2: include only married-filing-jointly filing units - 3: include only married-filing-separately filing units - 4: include only head-of-household filing units mtr_measure : string specifies which marginal tax rate to show on graph's y axis - 'itax': marginal individual income tax rate - 'ptax': marginal payroll tax rate - 'combined': sum of marginal income and payroll tax rates mtr_variable : string any string in the Calculator.VALID_MTR_VARS set specifies variable to change in order to compute marginal tax rates alt_e00200p_text : string text to use in place of mtr_variable when mtr_variable is 'e00200p'; if empty string then use 'e00200p' mtr_wrt_full_compen : boolean see documentation of Calculator.mtr() argument wrt_full_compensation (value has an effect only if mtr_variable is 'e00200p') income_measure : string specifies which income variable to show on the graph's x axis - 'wages': wage and salary income (e00200) - 'agi': adjusted gross income, AGI (c00100) - 'expanded_income': sum of AGI, non-taxable interest income, non-taxable social security benefits, and employer share of FICA taxes. dollar_weighting : boolean False implies both income_measure percentiles on x axis and mtr values for each percentile on the y axis are computed without using dollar income_measure weights (just sampling weights); True implies both income_measure percentiles on x axis and mtr values for each percentile on the y axis are computed using dollar income_measure weights (in addition to sampling weights). Specifying True produces a graph x axis that shows income_measure (not filing unit) percentiles. Returns ------- dictionary object suitable for passing to xtr_graph_plot utility function """ # pylint: disable=too-many-arguments,too-many-statements # pylint: disable=too-many-locals,too-many-branches # check validity of function arguments # . . check income_measure value weighting_function = weighted_mean if income_measure == 'wages': income_var = 'e00200' income_str = 'Wage' if dollar_weighting: weighting_function = wage_weighted elif income_measure == 'agi': income_var = 'c00100' income_str = 'AGI' if dollar_weighting: weighting_function = agi_weighted elif income_measure == 'expanded_income': income_var = 'expanded_income' income_str = 'Expanded-Income' if dollar_weighting: weighting_function = expanded_income_weighted else: msg = ('income_measure="{}" is neither ' '"wages", "agi", nor "expanded_income"') raise ValueError(msg.format(income_measure)) # . . check mars value if isinstance(mars, six.string_types): if mars != 'ALL': msg = 'string value of mars="{}" is not "ALL"' raise ValueError(msg.format(mars)) elif isinstance(mars, int): if mars < 1 or mars > 4: msg = 'integer mars="{}" is not in [1,4] range' raise ValueError(msg.format(mars)) else: msg = 'mars="{}" is neither a string nor an integer' raise ValueError(msg.format(mars)) # . . check mars value if mtr_variable is e00200s if mtr_variable == 'e00200s' and mars != 2: msg = 'mtr_variable == "e00200s" but mars != 2' raise ValueError(msg) # . . check mtr_measure value if mtr_measure == 'itax': mtr_str = 'Income-Tax' elif mtr_measure == 'ptax': mtr_str = 'Payroll-Tax' elif mtr_measure == 'combined': mtr_str = 'Income+Payroll-Tax' else: msg = ('mtr_measure="{}" is neither ' '"itax" nor "ptax" nor "combined"') raise ValueError(msg.format(mtr_measure)) # . . check vdf assert isinstance(vdf, pd.DataFrame) # create 'table_row' column given specified income_var and dollar_weighting dfx = add_quantile_table_row_variable( vdf, income_var, 100, weight_by_income_measure=dollar_weighting) # split dfx into groups specified by 'table_row' column gdfx = dfx.groupby('table_row', as_index=False) # apply the weighting_function to percentile-grouped mtr values mtr1_series = gdfx.apply(weighting_function, 'mtr1') mtr2_series = gdfx.apply(weighting_function, 'mtr2') # construct DataFrame containing the two mtr?_series lines = pd.DataFrame() lines['base'] = mtr1_series lines['reform'] = mtr2_series # construct dictionary containing merged data and auto-generated labels data = dict() data['lines'] = lines if dollar_weighting: income_str = 'Dollar-weighted {}'.format(income_str) mtr_str = 'Dollar-weighted {}'.format(mtr_str) data['ylabel'] = '{} MTR'.format(mtr_str) xlabel_str = 'Baseline {} Percentile'.format(income_str) if mars != 'ALL': xlabel_str = '{} for MARS={}'.format(xlabel_str, mars) data['xlabel'] = xlabel_str var_str = '{}'.format(mtr_variable) if mtr_variable == 'e00200p' and alt_e00200p_text != '': var_str = '{}'.format(alt_e00200p_text) if mtr_variable == 'e00200p' and mtr_wrt_full_compen: var_str = '{} wrt full compensation'.format(var_str) title_str = 'Mean Marginal Tax Rate for {} by Income Percentile' title_str = title_str.format(var_str) if mars != 'ALL': title_str = '{} for MARS={}'.format(title_str, mars) title_str = '{} for {}'.format(title_str, year) data['title'] = title_str return data def atr_graph_data(vdf, year, mars='ALL', atr_measure='combined'): """ Prepare average tax rate data needed by xtr_graph_plot utility function. Parameters ---------- vdf : a Pandas DataFrame object containing variables and tax liabilities (See Calculator.atr_graph method for required elements of vdf.) year : integer specifies calendar year of the data in vdf mars : integer or string specifies which filing status subgroup to show in the graph - 'ALL': include all filing units in sample - 1: include only single filing units - 2: include only married-filing-jointly filing units - 3: include only married-filing-separately filing units - 4: include only head-of-household filing units atr_measure : string specifies which average tax rate to show on graph's y axis - 'itax': average individual income tax rate - 'ptax': average payroll tax rate - 'combined': sum of average income and payroll tax rates Returns ------- dictionary object suitable for passing to xtr_graph_plot utility function """ # pylint: disable=too-many-locals,too-many-statements # check validity of function arguments # . . check mars value if isinstance(mars, six.string_types): if mars != 'ALL': msg = 'string value of mars="{}" is not "ALL"' raise ValueError(msg.format(mars)) elif isinstance(mars, int): if mars < 1 or mars > 4: msg = 'integer mars="{}" is not in [1,4] range' raise ValueError(msg.format(mars)) else: msg = 'mars="{}" is neither a string nor an integer' raise ValueError(msg.format(mars)) # . . check atr_measure value if atr_measure == 'combined': atr_str = 'Income+Payroll-Tax' elif atr_measure == 'itax': atr_str = 'Income-Tax' elif atr_measure == 'ptax': atr_str = 'Payroll-Tax' else: msg = ('atr_measure="{}" is neither ' '"itax" nor "ptax" nor "combined"') raise ValueError(msg.format(atr_measure)) # . . check vdf object assert isinstance(vdf, pd.DataFrame) # determine last bin that contains non-positive expanded_income values weights = vdf['s006'] nonpos = np.array(vdf['expanded_income'] <= 0, dtype=bool) nonpos_frac = weights[nonpos].sum() / weights.sum() num_bins_with_nonpos = int(math.ceil(100 * nonpos_frac)) # create 'table_row' column dfx = add_quantile_table_row_variable(vdf, 'expanded_income', 100) # specify which 'table_row' are included include = [0] * num_bins_with_nonpos + [1] * (100 - num_bins_with_nonpos) included = np.array(include, dtype=bool) # split dfx into groups specified by 'table_row' column gdfx = dfx.groupby('table_row', as_index=False) # apply weighted_mean function to percentile-grouped values avginc_series = gdfx.apply(weighted_mean, 'expanded_income') avgtax1_series = gdfx.apply(weighted_mean, 'tax1') avgtax2_series = gdfx.apply(weighted_mean, 'tax2') # compute average tax rates for each included income percentile atr1_series = np.zeros_like(avginc_series) atr1_series[included] = avgtax1_series[included] / avginc_series[included] atr2_series = np.zeros_like(avginc_series) atr2_series[included] = avgtax2_series[included] / avginc_series[included] # construct DataFrame containing the two atr?_series lines = pd.DataFrame() lines['base'] = atr1_series lines['reform'] = atr2_series # include only percentiles with average income no less than min_avginc lines = lines[included] # construct dictionary containing plot lines and auto-generated labels data = dict() data['lines'] = lines data['ylabel'] = '{} Average Tax Rate'.format(atr_str) xlabel_str = 'Baseline Expanded-Income Percentile' if mars != 'ALL': xlabel_str = '{} for MARS={}'.format(xlabel_str, mars) data['xlabel'] = xlabel_str title_str = 'Average Tax Rate by Income Percentile' if mars != 'ALL': title_str = '{} for MARS={}'.format(title_str, mars) title_str = '{} for {}'.format(title_str, year) data['title'] = title_str return data def xtr_graph_plot(data, width=850, height=500, xlabel='', ylabel='', title='', legendloc='bottom_right'): """ Plot marginal/average tax rate graph using data returned from either the mtr_graph_data function or the atr_graph_data function. Parameters ---------- data : dictionary object returned from ?tr_graph_data() utility function width : integer width of plot expressed in pixels height : integer height of plot expressed in pixels xlabel : string x-axis label; if '', then use label generated by ?tr_graph_data ylabel : string y-axis label; if '', then use label generated by ?tr_graph_data title : string graph title; if '', then use title generated by ?tr_graph_data legendloc : string options: 'top_right', 'top_left', 'bottom_left', 'bottom_right' specifies location of the legend in the plot Returns ------- bokeh.plotting figure object containing a raster graphics plot Notes ----- USAGE EXAMPLE:: gdata = mtr_graph_data(...) gplot = xtr_graph_plot(gdata) THEN when working interactively in a Python notebook:: bp.show(gplot) OR when executing script using Python command-line interpreter:: bio.output_file('graph-name.html', title='?TR by Income Percentile') bio.show(gplot) [OR bio.save(gplot) WILL JUST WRITE FILE TO DISK] WILL VISUALIZE GRAPH IN BROWSER AND WRITE GRAPH TO SPECIFIED HTML FILE To convert the visualized graph into a PNG-formatted file, click on the "Save" icon on the Toolbar (located in the top-right corner of the visualized graph) and a PNG-formatted file will written to your Download directory. The ONLY output option the bokeh.plotting figure has is HTML format, which (as described above) can be converted into a PNG-formatted raster graphics file. There is no option to make the bokeh.plotting figure generate a vector graphics file such as an EPS file. """ # pylint: disable=too-many-arguments if title == '': title = data['title'] fig = bp.figure(plot_width=width, plot_height=height, title=title) fig.title.text_font_size = '12pt' lines = data['lines'] fig.line(lines.index, lines.base, line_color='blue', line_width=3, legend='Baseline') fig.line(lines.index, lines.reform, line_color='red', line_width=3, legend='Reform') fig.circle(0, 0, visible=False) # force zero to be included on y axis if xlabel == '': xlabel = data['xlabel'] fig.xaxis.axis_label = xlabel fig.xaxis.axis_label_text_font_size = '12pt' fig.xaxis.axis_label_text_font_style = 'normal' if ylabel == '': ylabel = data['ylabel'] fig.yaxis.axis_label = ylabel fig.yaxis.axis_label_text_font_size = '12pt' fig.yaxis.axis_label_text_font_style = 'normal' fig.legend.location = legendloc fig.legend.label_text_font = 'times' fig.legend.label_text_font_style = 'italic' fig.legend.label_width = 2 fig.legend.label_height = 2 fig.legend.label_standoff = 2 fig.legend.glyph_width = 14 fig.legend.glyph_height = 14 fig.legend.spacing = 5 fig.legend.padding = 5 return fig def pch_graph_data(vdf, year): """ Prepare percentage change in after-tax expanded income data needed by pch_graph_plot utility function. Parameters ---------- vdf : a Pandas DataFrame object containing variables (See Calculator.pch_graph method for required elements of vdf.) year : integer specifies calendar year of the data in vdf Returns ------- dictionary object suitable for passing to pch_graph_plot utility function """ # pylint: disable=too-many-locals # check validity of function arguments assert isinstance(vdf, pd.DataFrame) # determine last bin that contains non-positive expanded_income values weights = vdf['s006'] nonpos = np.array(vdf['expanded_income'] <= 0, dtype=bool) nonpos_frac = weights[nonpos].sum() / weights.sum() num_bins_with_nonpos = int(math.ceil(100 * nonpos_frac)) # create 'table_row' column dfx = add_quantile_table_row_variable(vdf, 'expanded_income', 100) # specify which 'table_row' are included include = [0] * num_bins_with_nonpos + [1] * (100 - num_bins_with_nonpos) included = np.array(include, dtype=bool) # split dfx into groups specified by 'table_row' column gdfx = dfx.groupby('table_row', as_index=False) # apply weighted_mean function to percentile-grouped values avginc_series = gdfx.apply(weighted_mean, 'expanded_income') change_series = gdfx.apply(weighted_mean, 'chg_aftinc') # compute percentage change statistic each included income percentile pch_series = np.zeros_like(avginc_series) pch_series[included] = change_series[included] / avginc_series[included] # construct DataFrame containing the pch_series expressed as percent line = pd.DataFrame() line['pch'] = pch_series * 100 # include only percentiles with average income no less than min_avginc line = line[included] # construct dictionary containing plot line and auto-generated labels data = dict() data['line'] = line data['ylabel'] = 'Change in After-Tax Expanded Income' data['xlabel'] = 'Baseline Expanded-Income Percentile' title_str = ('Percentage Change in After-Tax Expanded Income ' 'by Income Percentile') title_str = '{} for {}'.format(title_str, year) data['title'] = title_str return data def pch_graph_plot(data, width=850, height=500, xlabel='', ylabel='', title=''): """ Plot percentage change in after-tax expanded income using data returned from the pch_graph_data function. Parameters ---------- data : dictionary object returned from ?tr_graph_data() utility function width : integer width of plot expressed in pixels height : integer height of plot expressed in pixels xlabel : string x-axis label; if '', then use label generated by pch_graph_data ylabel : string y-axis label; if '', then use label generated by pch_graph_data title : string graph title; if '', then use title generated by pch_graph_data Returns ------- bokeh.plotting figure object containing a raster graphics plot Notes ----- See Notes to xtr_graph_plot function. """ # pylint: disable=too-many-arguments if title == '': title = data['title'] fig = bp.figure(plot_width=width, plot_height=height, title=title) fig.title.text_font_size = '12pt' fig.line(data['line'].index, data['line'].pch, line_color='blue', line_width=3) fig.circle(0, 0, visible=False) # force zero to be included on y axis zero_grid_line_range = range(0, 101) zero_grid_line_height = [0] * len(zero_grid_line_range) fig.line(zero_grid_line_range, zero_grid_line_height, line_color='black', line_width=1) if xlabel == '': xlabel = data['xlabel'] fig.xaxis.axis_label = xlabel fig.xaxis.axis_label_text_font_size = '12pt' fig.xaxis.axis_label_text_font_style = 'normal' if ylabel == '': ylabel = data['ylabel'] fig.yaxis.axis_label = ylabel fig.yaxis.axis_label_text_font_size = '12pt' fig.yaxis.axis_label_text_font_style = 'normal' fig.yaxis[0].formatter = PrintfTickFormatter(format='%+.1f%%') return fig def write_graph_file(figure, filename, title): """ Write HTML file named filename containing figure. The title is the text displayed in the browser tab. Parameters ---------- figure : bokeh.plotting figure object filename : string name of HTML file to which figure is written; should end in .html title : string text displayed in browser tab when HTML file is displayed in browser Returns ------- Nothing """ delete_file(filename) # work around annoying 'already exists' bokeh msg bio.output_file(filename=filename, title=title) bio.save(figure) def isoelastic_utility_function(consumption, crra, cmin): """ Calculate and return utility of consumption. Parameters ---------- consumption : float consumption for a filing unit crra : non-negative float constant relative risk aversion parameter cmin : positive float consumption level below which marginal utility is assumed to be constant Returns ------- utility of consumption """ if consumption >= cmin: if crra == 1.0: return math.log(consumption) return math.pow(consumption, (1.0 - crra)) / (1.0 - crra) else: # if consumption < cmin if crra == 1.0: tu_at_cmin = math.log(cmin) else: tu_at_cmin = math.pow(cmin, (1.0 - crra)) / (1.0 - crra) mu_at_cmin = math.pow(cmin, -crra) tu_at_c = tu_at_cmin + mu_at_cmin * (consumption - cmin) return tu_at_c def expected_utility(consumption, probability, crra, cmin): """ Calculate and return expected utility of consumption. Parameters ---------- consumption : numpy array consumption for each filing unit probability : numpy array samplying probability of each filing unit crra : non-negative float constant relative risk aversion parameter of isoelastic utility function cmin : positive float consumption level below which marginal utility is assumed to be constant Returns ------- expected utility of consumption array """ utility = consumption.apply(isoelastic_utility_function, args=(crra, cmin,)) return np.inner(utility, probability) def certainty_equivalent(exputil, crra, cmin): """ Calculate and return certainty-equivalent of exputil of consumption assuming an isoelastic utility function with crra and cmin as parameters. Parameters ---------- exputil : float expected utility value crra : non-negative float constant relative risk aversion parameter of isoelastic utility function cmin : positive float consumption level below which marginal utility is assumed to be constant Returns ------- certainty-equivalent of specified expected utility, exputil """ if crra == 1.0: tu_at_cmin = math.log(cmin) else: tu_at_cmin = math.pow(cmin, (1.0 - crra)) / (1.0 - crra) if exputil >= tu_at_cmin: if crra == 1.0: return math.exp(exputil) return math.pow((exputil * (1.0 - crra)), (1.0 / (1.0 - crra))) mu_at_cmin = math.pow(cmin, -crra) return ((exputil - tu_at_cmin) / mu_at_cmin) + cmin def ce_aftertax_expanded_income(df1, df2, custom_params=None, require_no_agg_tax_change=True): """ Return dictionary that contains certainty-equivalent of the expected utility of after-tax expanded income computed for several constant-relative-risk-aversion parameter values for each of two Pandas DataFrame objects: df1, which represents the pre-reform situation, and df2, which represents the post-reform situation. Both DataFrame objects must contain 's006', 'combined', and 'expanded_income' columns. IMPORTANT NOTES: These normative welfare calculations are very simple. It is assumed that utility is a function of only consumption, and that consumption is equal to after-tax income. This means that any assumed behavioral responses that change work effort will not affect utility via the correpsonding change in leisure. And any saving response to changes in after-tax income do not affect consumption. The cmin value is the consumption level below which marginal utility is considered to be constant. This allows the handling of filing units with very low or even negative after-tax expanded income in the expected-utility and certainty-equivalent calculations. """ # pylint: disable=too-many-locals # check consistency of the two DataFrame objects assert isinstance(df1, pd.DataFrame) assert isinstance(df2, pd.DataFrame) assert df1.shape == df2.shape # specify utility function parameters if custom_params: crras = custom_params['crra_list'] for crra in crras: assert crra >= 0 cmin = custom_params['cmin_value'] assert cmin > 0 else: crras = [0, 1, 2, 3, 4] cmin = 1000 # compute aggregate combined tax revenue and aggregate after-tax income billion = 1.0e-9 cedict = dict() cedict['tax1'] = weighted_sum(df1, 'combined') * billion cedict['tax2'] = weighted_sum(df2, 'combined') * billion if require_no_agg_tax_change: diff = cedict['tax2'] - cedict['tax1'] if abs(diff) >= 0.0005: msg = 'Aggregate taxes not equal when required_... arg is True:' msg += '\n taxes1= {:9.3f}' msg += '\n taxes2= {:9.3f}' msg += '\n txdiff= {:9.3f}' msg += ('\n(adjust _LST or other parameter to bracket txdiff=0 ' 'and then interpolate)') raise ValueError(msg.format(cedict['tax1'], cedict['tax2'], diff)) cedict['inc1'] = weighted_sum(df1, 'expanded_income') * billion cedict['inc2'] = weighted_sum(df2, 'expanded_income') * billion # calculate sample-weighted probability of each filing unit prob_raw = np.divide(df1['s006'], # pylint: disable=no-member df1['s006'].sum()) prob = np.divide(prob_raw, # pylint: disable=no-member prob_raw.sum()) # handle any rounding error # calculate after-tax income of each filing unit in df1 and df2 ati1 = df1['expanded_income'] - df1['combined'] ati2 = df2['expanded_income'] - df2['combined'] # calculate certainty-equivaluent after-tax income in df1 and df2 cedict['crra'] = crras ce1 = list() ce2 = list() for crra in crras: eu1 = expected_utility(ati1, prob, crra, cmin) ce1.append(certainty_equivalent(eu1, crra, cmin)) eu2 = expected_utility(ati2, prob, crra, cmin) ce2.append(certainty_equivalent(eu2, crra, cmin)) cedict['ceeu1'] = ce1 cedict['ceeu2'] = ce2 # ... return cedict return cedict def read_egg_csv(fname, index_col=None): """ Read from egg the file named fname that contains CSV data and return pandas DataFrame containing the data. """ try: path_in_egg = os.path.join('taxcalc', fname) vdf = pd.read_csv( pkg_resources.resource_stream( pkg_resources.Requirement.parse('taxcalc'), path_in_egg), index_col=index_col ) except Exception: raise ValueError('could not read {} data from egg'.format(fname)) # cannot call read_egg_ function in unit tests return vdf # pragma: no cover def read_egg_json(fname): """ Read from egg the file named fname that contains JSON data and return dictionary containing the data. """ try: path_in_egg = os.path.join('taxcalc', fname) pdict = json.loads( pkg_resources.resource_stream( pkg_resources.Requirement.parse('taxcalc'), path_in_egg).read().decode('utf-8'), object_pairs_hook=collections.OrderedDict ) except Exception: raise ValueError('could not read {} data from egg'.format(fname)) # cannot call read_egg_ function in unit tests return pdict # pragma: no cover def delete_file(filename): """ Remove specified file if it exists. """ if os.path.isfile(filename): os.remove(filename) def bootstrap_se_ci(data, seed, num_samples, statistic, alpha): """ Return bootstrap estimate of standard error of statistic and bootstrap estimate of 100*(1-2*alpha)% confidence interval for statistic in a dictionary along with specified seed and nun_samples (B) and alpha. """ assert isinstance(data, np.ndarray) assert isinstance(seed, int) assert isinstance(num_samples, int) assert callable(statistic) # function that computes statistic from data assert isinstance(alpha, float) bsest = dict() bsest['seed'] = seed np.random.seed(seed) # pylint: disable=no-member dlen = len(data) idx = np.random.randint(low=0, high=dlen, # pylint: disable=no-member size=(num_samples, dlen)) samples = data[idx] stat = statistic(samples, axis=1) bsest['B'] = num_samples bsest['se'] = np.std(stat, ddof=1) stat = np.sort(stat) bsest['alpha'] = alpha bsest['cilo'] = stat[int(round(alpha * num_samples)) - 1] bsest['cihi'] = stat[int(round((1 - alpha) * num_samples)) - 1] return bsest def dec_graph_data(dist_table1, dist_table2, year, include_zero_incomes, include_negative_incomes): """ Prepare data needed by dec_graph_plot utility function. Parameters ---------- dist_table1 : a Pandas DataFrame object returned from the Calculator class distribution_tables method for baseline dist_table2 : a Pandas DataFrame object returned from the Calculator class distribution_tables method for reform year : integer specifies calendar year of the data in the diff_table include_zero_incomes : boolean if True, the bottom decile does contain filing units with zero expanded_income; if False, the bottom decile does not contain filing units with zero expanded_income. include_negative_incomes : boolean if True, the bottom decile does contain filing units with negative expanded_income; if False, the bottom decile does not contain filing units with negative expanded_income. Returns ------- dictionary object suitable for passing to dec_graph_plot utility function """ # pylint: disable=too-many-locals # check that the two distribution tables are consistent assert len(dist_table1.index) == len(DECILE_ROW_NAMES) assert len(dist_table2.index) == len(DECILE_ROW_NAMES) assert np.allclose(dist_table1['s006'], dist_table2['s006']) # compute bottom bar width and statistic value wght = dist_table1['s006'] total_wght = wght[2] + wght[1] + wght[0] included_wght = wght[2] included_val1 = dist_table1['aftertax_income'][2] * wght[2] included_val2 = dist_table2['aftertax_income'][2] * wght[2] if include_zero_incomes: included_wght += wght[1] included_val1 += dist_table1['aftertax_income'][1] * wght[1] included_val2 += dist_table2['aftertax_income'][1] * wght[1] if include_negative_incomes: included_wght += wght[0] included_val1 += dist_table1['aftertax_income'][0] * wght[0] included_val2 += dist_table2['aftertax_income'][0] * wght[0] bottom_bar_width = included_wght / total_wght bottom_bar_value = (included_val2 / included_val1 - 1.) * 100. # construct dictionary containing the bar data required by dec_graph_plot bars = dict() # ... bottom bar info = dict() if include_zero_incomes and include_negative_incomes: info['label'] = '0-10' elif include_zero_incomes and not include_negative_incomes: info['label'] = '0-10zp' if not include_zero_incomes and include_negative_incomes: info['label'] = '0-10np' if not include_zero_incomes and not include_negative_incomes: info['label'] = '0-10p' info['value'] = bottom_bar_value bars[0] = info # ... other bars offset = 2 for idx in range(offset + 1, len(DECILE_ROW_NAMES)): info = dict() info['label'] = DECILE_ROW_NAMES[idx] val1 = dist_table1['aftertax_income'][idx] * wght[idx] val2 = dist_table2['aftertax_income'][idx] * wght[idx] info['value'] = (val2 / val1 - 1.) * 100. if info['label'] == 'ALL': info['label'] = '---------' info['value'] = 0 bars[idx - offset] = info # construct dictionary containing bar data and auto-generated labels data = dict() data['bottom_bar_width'] = bottom_bar_width data['bars'] = bars xlabel = 'Reform-Induced Percentage Change in After-Tax Expanded Income' data['xlabel'] = xlabel ylabel = 'Expanded Income Percentile Group' data['ylabel'] = ylabel title_str = 'Change in After-Tax Income by Income Percentile Group' data['title'] = '{} for {}'.format(title_str, year) return data def dec_graph_plot(data, width=850, height=500, xlabel='', ylabel='', title=''): """ Plot stacked decile graph using data returned from dec_graph_data function. Parameters ---------- data : dictionary object returned from dec_graph_data() utility function width : integer width of plot expressed in pixels height : integer height of plot expressed in pixels xlabel : string x-axis label; if '', then use label generated by dec_graph_data ylabel : string y-axis label; if '', then use label generated by dec_graph_data title : string graph title; if '', then use title generated by dec_graph_data Returns ------- bokeh.plotting figure object containing a raster graphics plot Notes ----- USAGE EXAMPLE:: gdata = dec_graph_data(...) gplot = dec_graph_plot(gdata) THEN when working interactively in a Python notebook:: bp.show(gplot) OR when executing script using Python command-line interpreter:: bio.output_file('graph-name.html', title='Change in After-Tax Income') bio.show(gplot) [OR bio.save(gplot) WILL JUST WRITE FILE TO DISK] WILL VISUALIZE GRAPH IN BROWSER AND WRITE GRAPH TO SPECIFIED HTML FILE To convert the visualized graph into a PNG-formatted file, click on the "Save" icon on the Toolbar (located in the top-right corner of the visualized graph) and a PNG-formatted file will written to your Download directory. The ONLY output option the bokeh.plotting figure has is HTML format, which (as described above) can be converted into a PNG-formatted raster graphics file. There is no option to make the bokeh.plotting figure generate a vector graphics file such as an EPS file. """ # pylint: disable=too-many-arguments,too-many-locals if title == '': title = data['title'] bar_keys = sorted(data['bars'].keys()) bar_labels = [data['bars'][key]['label'] for key in bar_keys] fig = bp.figure(plot_width=width, plot_height=height, title=title, y_range=bar_labels) fig.title.text_font_size = '12pt' fig.outline_line_color = None fig.axis.axis_line_color = None fig.axis.minor_tick_line_color = None fig.axis.axis_label_text_font_size = '12pt' fig.axis.axis_label_text_font_style = 'normal' fig.axis.major_label_text_font_size = '12pt' if xlabel == '': xlabel = data['xlabel'] fig.xaxis.axis_label = xlabel fig.xaxis[0].formatter = PrintfTickFormatter(format='%+.1f%%') if ylabel == '': ylabel = data['ylabel'] fig.yaxis.axis_label = ylabel fig.ygrid.grid_line_color = None # plot thick x-axis grid line at zero fig.line(x=[0, 0], y=[0, 14], line_width=1, line_color='black') # plot bars barheight = 0.8 bcolor = 'blue' yidx = 0 for idx in bar_keys: bval = data['bars'][idx]['value'] blabel = data['bars'][idx]['label'] bheight = barheight if blabel == '0-10': bheight *= data['bottom_bar_width'] elif blabel == '90-95': bheight *= 0.5 bcolor = 'red' elif blabel == '95-99': bheight *= 0.4 elif blabel == 'Top 1%': bheight *= 0.1 fig.rect(x=(bval / 2.0), # x-coordinate of center of the rectangle y=(yidx + 0.5), # y-coordinate of center of the rectangle width=abs(bval), # width of the rectangle height=bheight, # height of the rectangle color=bcolor) yidx += 1 return fig def nonsmall_diffs(linelist1, linelist2, small=0.0): """ Return True if line lists differ significantly; otherwise return False. Significant difference means one or more numbers differ (between linelist1 and linelist2) by more than the small amount. NOTE: this function is meant to be used only in the unit tests to handle small differences in floating point values generated by Python 2.7 and 3.6, where a nonzero small amount is used only under Python 3.6. """ # embedded function used only in nonsmall_diffs function def isfloat(value): """ Return True if value can be cast to float; otherwise return False. """ try: float(value) return True except ValueError: return False # begin nonsmall_diffs logic assert isinstance(linelist1, list) assert isinstance(linelist2, list) if len(linelist1) != len(linelist2): return True assert small >= 0.0 and small <= 1.0 epsilon = 1e-6 smallamt = small + epsilon for line1, line2 in zip(linelist1, linelist2): if line1 == line2: continue else: tokens1 = line1.replace(',', '').split() tokens2 = line2.replace(',', '').split() for tok1, tok2 in zip(tokens1, tokens2): tok1_isfloat = isfloat(tok1) tok2_isfloat = isfloat(tok2) if tok1_isfloat and tok2_isfloat: if abs(float(tok1) - float(tok2)) <= smallamt: continue else: return True elif not tok1_isfloat and not tok2_isfloat: if tok1 == tok2: continue else: return True else: return True return False def quantity_response(quantity, price_elasticity, aftertax_price1, aftertax_price2, income_elasticity, aftertax_income1, aftertax_income2): """ Calculate dollar change in quantity using a log-log response equation, which assumes that the proportional change in the quantity is equal to the sum of two terms: (1) the proportional change in the quanitity's marginal aftertax price times an assumed price elasticity, and (2) the proportional change in aftertax income times an assumed income elasticity. Parameters ---------- quantity: numpy array pre-response quantity whose response is being calculated price_elasticity: float coefficient of the percentage change in aftertax price of the quantity in the log-log response equation aftertax_price1: numpy array marginal aftertax price of the quanitity under baseline policy Note that this function forces prices to be in [0.01, inf] range, but the caller of this function may want to constrain negative or very small prices to be somewhat larger in order to avoid extreme proportional changes in price. Note this is NOT an array of marginal tax rates (MTR), but rather usually 1-MTR (or in the case of quantities, like charitable giving, whose MTR values are non-positive, 1+MTR). aftertax_price2: numpy array marginal aftertax price of the quantity under reform policy Note that this function forces prices to be in [0.01, inf] range, but the caller of this function may want to constrain negative or very small prices to be somewhat larger in order to avoid extreme proportional changes in price. Note this is NOT an array of marginal tax rates (MTR), but rather usually 1-MTR (or in the case of quantities, like charitable giving, whose MTR values are non-positive, 1+MTR). income_elasticity: float coefficient of the percentage change in aftertax income in the log-log response equation aftertax_income1: numpy array aftertax income under baseline policy Note that this function forces income to be in [1, inf] range, but the caller of this function may want to constrain negative or small incomes to be somewhat larger in order to avoid extreme proportional changes in aftertax income. aftertax_income2: numpy array aftertax income under reform policy Note that this function forces income to be in [1, inf] range, but the caller of this function may want to constrain negative or small incomes to be somewhat larger in order to avoid extreme proportional changes in aftertax income. Returns ------- response: numpy array dollar change in quantity calculated from log-log response equation """ # pylint: disable=too-many-arguments # compute price term in log-log response equation if price_elasticity == 0.: pch_price = np.zeros(quantity.shape) else: atp1 = np.where(aftertax_price1 < 0.01, 0.01, aftertax_price1) atp2 = np.where(aftertax_price2 < 0.01, 0.01, aftertax_price2) pch_price = atp2 / atp1 - 1. # compute income term in log-log response equation if income_elasticity == 0.: pch_income = np.zeros(quantity.shape) else: ati1 = np.where(aftertax_income1 < 1.0, 1.0, aftertax_income1) ati2 = np.where(aftertax_income2 < 1.0, 1.0, aftertax_income2) pch_income = ati2 / ati1 - 1. # compute response pch_q = price_elasticity * pch_price + income_elasticity * pch_income response = pch_q * quantity return response
39.189873
79
0.626571
8185a8d9f5d71cb35eecdb1605c61aa54a9f4f9f
4,726
py
Python
code/calcUpstreamLength.py
hishivshah/waterSourceHeatMap
5f5e3ace8d7ede88ec543132b48c9c3f21f66593
[ "MIT" ]
null
null
null
code/calcUpstreamLength.py
hishivshah/waterSourceHeatMap
5f5e3ace8d7ede88ec543132b48c9c3f21f66593
[ "MIT" ]
null
null
null
code/calcUpstreamLength.py
hishivshah/waterSourceHeatMap
5f5e3ace8d7ede88ec543132b48c9c3f21f66593
[ "MIT" ]
null
null
null
import sqlite3 import logging import networkx import shapely import shapely.wkt def searchUpOrDownStream( graph, startNode, gaugedEdgeId, gaugedEdgeUpLen, searchDirection ): if searchDirection == "upstream": # Find upstream edges searchNodes = graph.predecessors(startNode) elif searchDirection == "downstream": # Find downstream edges searchNodes = graph.successors(startNode) searchEdges = graph.edges(searchNodes, keys=True, data=True) for sEdge in searchEdges: if sEdge[3].get("nearestGaugedEdge") is None: sEdge[3]["nearestGaugedEdge"] = gaugedEdgeId sEdge[3]["upstreamLengthRatio"] = ( sEdge[3]["upstreamLength"] / gaugedEdgeUpLen ) searchUpOrDownStream( graph, sEdge[0], gaugedEdgeId, gaugedEdgeUpLen, searchDirection ) if __name__ == "__main__": # Logging set-up logging.basicConfig(format="%(asctime)s|%(levelname)s|%(message)s", level=logging.INFO) # Database path sqliteDb = "../results/results.sqlite" # Create Directed Graph with multiple edges logging.info("Creating graph object") G = networkx.MultiDiGraph() # Connect to database logging.info("Connecting to database") with sqlite3.connect(sqliteDb) as db: db.enable_load_extension(True) db.load_extension("mod_spatialite") cur = db.cursor() cur.execute("SELECT InitSpatialMetaData(1);") # Add river nodes to graph logging.info("Adding river nodes to graph") cur.execute("SELECT id, ST_ASText(geometry) from riverNodes;") for row in cur: id = row[0] geometry = shapely.wkt.loads(row[1]) G.add_node(id, geometry=geometry) # Add river edges to graph logging.info("Adding river edges to graph") cur.execute("""SELECT id, startNodeId, endNodeId, ST_ASText(geometry) FROM riverEdges WHERE startNodeId IS NOT NULL AND endNodeId IS NOT NULL;""") for row in cur: id = row[0] startNodeId = row[1] endNodeId = row[2] geometry = shapely.wkt.loads(row[3]) G.add_edge(startNodeId, endNodeId, key=id, geometry=geometry) # Calculate upstream river length logging.info("Calculating upstream river lengths") for startNode, endNode, key, attr in G.edges_iter( data=True, keys=True ): preNodes = networkx.ancestors(G, startNode) preEdges = G.edges(preNodes, keys=True, data=True) upstreamLength = ( attr["geometry"].length + sum([e[3]["geometry"].length for e in preEdges]) ) G.edge[startNode][endNode][key]["upstreamLength"] = upstreamLength # Find river reaches with gauging station cur.execute("""SELECT id FROM riverEdges e WHERE e.id IN (SELECT riverId FROM nrfaStations) AND startNodeId IS NOT NULL AND endNodeId IS NOT NULL;""") gEdgeIds = [row[0] for row in cur.fetchall()] gEdges = [ e for e in G.edges(keys=True, data=True) if edge[2] in gEdgeIds ] for gEdge in gEdges: gEdge[3]["nearestGaugedEdge"] = gEdge[2] gEdge[3]["upstreamLengthRatio"] = 1 # Find upstream edges for each gauged edge for gEdge in gEdges: gEdgeStart = gEdge[0] gEdgeId = gEdge[2] gEdgeUpLen = gEdge[3]["upstreamLength"] searchUpOrDownStream( G, gEdgeStart, gEdgeId, gEdgeUpLen, "upstream" ) # Find downstream edges for each gauged edge for gEdge in gEdges: gEdgeStart = gEdge[0] gEdgeId = gEdge[2] gEdgeUpLen = gEdge[3]["upstreamLength"] searchUpOrDownStream( G, gEdgeStart, gEdgeId, gEdgeUpLen, "downstream" ) # Update riverEdges tables for e in G.edges_iter(data=True, keys=True): if e[3].get("nearestGaugedEdge") is not None: cur.execute(""" UPDATE riverEdges SET nearestGaugedEdge = '%s', upstreamLengthRatio = %s WHERE id = '%s'; """ % ( e[3].get("nearestGaugedEdge"), e[3].get("upstreamLengthRatio"), e[2] )) # Commit changes db.commit()
33.28169
79
0.557766
dbcd6fa121b8b855845c9a235a8511266164b058
53,702
py
Python
cinder/tests/unit/test_rbd.py
scottdangelo/RemoveVolumeMangerLocks
a448e6981f00ee068e29f3daac33d2d2d3820b4d
[ "Apache-2.0" ]
1
2019-02-08T05:24:58.000Z
2019-02-08T05:24:58.000Z
cinder/tests/unit/test_rbd.py
scottdangelo/RemoveVolumeMangerLocks
a448e6981f00ee068e29f3daac33d2d2d3820b4d
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/test_rbd.py
scottdangelo/RemoveVolumeMangerLocks
a448e6981f00ee068e29f3daac33d2d2d3820b4d
[ "Apache-2.0" ]
null
null
null
# Copyright 2012 Josh Durgin # Copyright 2013 Canonical Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import math import os import tempfile import mock from oslo_utils import timeutils from oslo_utils import units from cinder import db from cinder import exception from cinder.i18n import _ from cinder.image import image_utils from cinder import test from cinder.tests.unit.image import fake as fake_image from cinder.tests.unit import test_volume from cinder.tests.unit import utils from cinder.volume import configuration as conf import cinder.volume.drivers.rbd as driver from cinder.volume.flows.manager import create_volume # This is used to collect raised exceptions so that tests may check what was # raised. # NOTE: this must be initialised in test setUp(). RAISED_EXCEPTIONS = [] class MockException(Exception): def __init__(self, *args, **kwargs): RAISED_EXCEPTIONS.append(self.__class__) class MockImageNotFoundException(MockException): """Used as mock for rbd.ImageNotFound.""" class MockImageBusyException(MockException): """Used as mock for rbd.ImageBusy.""" class MockImageExistsException(MockException): """Used as mock for rbd.ImageExists.""" def common_mocks(f): """Decorator to set mocks common to all tests. The point of doing these mocks here is so that we don't accidentally set mocks that can't/don't get unset. """ def _common_inner_inner1(inst, *args, **kwargs): @mock.patch('cinder.volume.drivers.rbd.RBDVolumeProxy') @mock.patch('cinder.volume.drivers.rbd.RADOSClient') @mock.patch('cinder.backup.drivers.ceph.rbd') @mock.patch('cinder.backup.drivers.ceph.rados') def _common_inner_inner2(mock_rados, mock_rbd, mock_client, mock_proxy): inst.mock_rbd = mock_rbd inst.mock_rados = mock_rados inst.mock_client = mock_client inst.mock_proxy = mock_proxy inst.mock_rbd.RBD.Error = Exception inst.mock_rados.Error = Exception inst.mock_rbd.ImageBusy = MockImageBusyException inst.mock_rbd.ImageNotFound = MockImageNotFoundException inst.mock_rbd.ImageExists = MockImageExistsException inst.driver.rbd = inst.mock_rbd inst.driver.rados = inst.mock_rados return f(inst, *args, **kwargs) return _common_inner_inner2() return _common_inner_inner1 CEPH_MON_DUMP = """dumped monmap epoch 1 { "epoch": 1, "fsid": "33630410-6d93-4d66-8e42-3b953cf194aa", "modified": "2013-05-22 17:44:56.343618", "created": "2013-05-22 17:44:56.343618", "mons": [ { "rank": 0, "name": "a", "addr": "[::1]:6789\/0"}, { "rank": 1, "name": "b", "addr": "[::1]:6790\/0"}, { "rank": 2, "name": "c", "addr": "[::1]:6791\/0"}, { "rank": 3, "name": "d", "addr": "127.0.0.1:6792\/0"}, { "rank": 4, "name": "e", "addr": "example.com:6791\/0"}], "quorum": [ 0, 1, 2]} """ class RBDTestCase(test.TestCase): def setUp(self): global RAISED_EXCEPTIONS RAISED_EXCEPTIONS = [] super(RBDTestCase, self).setUp() self.cfg = mock.Mock(spec=conf.Configuration) self.cfg.volume_tmp_dir = None self.cfg.image_conversion_dir = None self.cfg.rbd_cluster_name = 'nondefault' self.cfg.rbd_pool = 'rbd' self.cfg.rbd_ceph_conf = None self.cfg.rbd_secret_uuid = None self.cfg.rbd_user = None self.cfg.volume_dd_blocksize = '1M' self.cfg.rbd_store_chunk_size = 4 mock_exec = mock.Mock() mock_exec.return_value = ('', '') self.driver = driver.RBDDriver(execute=mock_exec, configuration=self.cfg) self.driver.set_initialized() self.volume_name = u'volume-00000001' self.snapshot_name = u'snapshot-00000001' self.volume_size = 1 self.volume = dict(name=self.volume_name, size=self.volume_size) self.snapshot = dict(volume_name=self.volume_name, name=self.snapshot_name) @common_mocks def test_create_volume(self): client = self.mock_client.return_value client.__enter__.return_value = client self.driver.create_volume(self.volume) chunk_size = self.cfg.rbd_store_chunk_size * units.Mi order = int(math.log(chunk_size, 2)) args = [client.ioctx, str(self.volume_name), self.volume_size * units.Gi, order] kwargs = {'old_format': False, 'features': client.features} self.mock_rbd.RBD.return_value.create.assert_called_once_with( *args, **kwargs) client.__enter__.assert_called_once_with() client.__exit__.assert_called_once_with(None, None, None) @common_mocks def test_manage_existing_get_size(self): with mock.patch.object(self.driver.rbd.Image(), 'size') as \ mock_rbd_image_size: with mock.patch.object(self.driver.rbd.Image(), 'close') \ as mock_rbd_image_close: mock_rbd_image_size.return_value = 2 * units.Gi existing_ref = {'source-name': self.volume_name} return_size = self.driver.manage_existing_get_size( self.volume, existing_ref) self.assertEqual(2, return_size) mock_rbd_image_size.assert_called_once_with() mock_rbd_image_close.assert_called_once_with() @common_mocks def test_manage_existing_get_invalid_size(self): with mock.patch.object(self.driver.rbd.Image(), 'size') as \ mock_rbd_image_size: with mock.patch.object(self.driver.rbd.Image(), 'close') \ as mock_rbd_image_close: mock_rbd_image_size.return_value = 'abcd' existing_ref = {'source-name': self.volume_name} self.assertRaises(exception.VolumeBackendAPIException, self.driver.manage_existing_get_size, self.volume, existing_ref) mock_rbd_image_size.assert_called_once_with() mock_rbd_image_close.assert_called_once_with() @common_mocks def test_manage_existing(self): client = self.mock_client.return_value client.__enter__.return_value = client with mock.patch.object(self.driver.rbd.RBD(), 'rename') as \ mock_rbd_image_rename: exist_volume = 'vol-exist' existing_ref = {'source-name': exist_volume} mock_rbd_image_rename.return_value = 0 self.driver.manage_existing(self.volume, existing_ref) mock_rbd_image_rename.assert_called_with( client.ioctx, exist_volume, self.volume_name) @common_mocks def test_manage_existing_with_exist_rbd_image(self): client = self.mock_client.return_value client.__enter__.return_value = client self.mock_rbd.RBD.return_value.rename.side_effect = ( MockImageExistsException) exist_volume = 'vol-exist' existing_ref = {'source-name': exist_volume} self.assertRaises(self.mock_rbd.ImageExists, self.driver.manage_existing, self.volume, existing_ref) # Make sure the exception was raised self.assertEqual(RAISED_EXCEPTIONS, [self.mock_rbd.ImageExists]) @common_mocks def test_delete_backup_snaps(self): self.driver.rbd.Image.remove_snap = mock.Mock() with mock.patch.object(self.driver, '_get_backup_snaps') as \ mock_get_backup_snaps: mock_get_backup_snaps.return_value = [{'name': 'snap1'}] rbd_image = self.driver.rbd.Image() self.driver._delete_backup_snaps(rbd_image) mock_get_backup_snaps.assert_called_once_with(rbd_image) self.assertTrue( self.driver.rbd.Image.return_value.remove_snap.called) @common_mocks def test_delete_volume(self): client = self.mock_client.return_value self.driver.rbd.Image.return_value.list_snaps.return_value = [] with mock.patch.object(self.driver, '_get_clone_info') as \ mock_get_clone_info: with mock.patch.object(self.driver, '_delete_backup_snaps') as \ mock_delete_backup_snaps: mock_get_clone_info.return_value = (None, None, None) self.driver.delete_volume(self.volume) mock_get_clone_info.assert_called_once_with( self.mock_rbd.Image.return_value, self.volume_name, None) (self.driver.rbd.Image.return_value .list_snaps.assert_called_once_with()) client.__enter__.assert_called_once_with() client.__exit__.assert_called_once_with(None, None, None) mock_delete_backup_snaps.assert_called_once_with( self.mock_rbd.Image.return_value) self.assertFalse( self.driver.rbd.Image.return_value.unprotect_snap.called) self.assertEqual( 1, self.driver.rbd.RBD.return_value.remove.call_count) @common_mocks def delete_volume_not_found(self): self.mock_rbd.Image.side_effect = self.mock_rbd.ImageNotFound self.assertIsNone(self.driver.delete_volume(self.volume)) self.mock_rbd.Image.assert_called_once_with() # Make sure the exception was raised self.assertEqual(RAISED_EXCEPTIONS, [self.mock_rbd.ImageNotFound]) @common_mocks def test_delete_busy_volume(self): self.mock_rbd.Image.return_value.list_snaps.return_value = [] self.mock_rbd.RBD.return_value.remove.side_effect = ( self.mock_rbd.ImageBusy) with mock.patch.object(self.driver, '_get_clone_info') as \ mock_get_clone_info: mock_get_clone_info.return_value = (None, None, None) with mock.patch.object(self.driver, '_delete_backup_snaps') as \ mock_delete_backup_snaps: with mock.patch.object(driver, 'RADOSClient') as \ mock_rados_client: self.assertRaises(exception.VolumeIsBusy, self.driver.delete_volume, self.volume) mock_get_clone_info.assert_called_once_with( self.mock_rbd.Image.return_value, self.volume_name, None) (self.mock_rbd.Image.return_value.list_snaps .assert_called_once_with()) mock_rados_client.assert_called_once_with(self.driver) mock_delete_backup_snaps.assert_called_once_with( self.mock_rbd.Image.return_value) self.assertFalse( self.mock_rbd.Image.return_value.unprotect_snap.called) self.assertEqual( 3, self.mock_rbd.RBD.return_value.remove.call_count) self.assertEqual(3, len(RAISED_EXCEPTIONS)) # Make sure the exception was raised self.assertIn(self.mock_rbd.ImageBusy, RAISED_EXCEPTIONS) @common_mocks def test_delete_volume_not_found(self): self.mock_rbd.Image.return_value.list_snaps.return_value = [] self.mock_rbd.RBD.return_value.remove.side_effect = ( self.mock_rbd.ImageNotFound) with mock.patch.object(self.driver, '_get_clone_info') as \ mock_get_clone_info: mock_get_clone_info.return_value = (None, None, None) with mock.patch.object(self.driver, '_delete_backup_snaps') as \ mock_delete_backup_snaps: with mock.patch.object(driver, 'RADOSClient') as \ mock_rados_client: self.assertIsNone(self.driver.delete_volume(self.volume)) mock_get_clone_info.assert_called_once_with( self.mock_rbd.Image.return_value, self.volume_name, None) (self.mock_rbd.Image.return_value.list_snaps .assert_called_once_with()) mock_rados_client.assert_called_once_with(self.driver) mock_delete_backup_snaps.assert_called_once_with( self.mock_rbd.Image.return_value) self.assertFalse( self.mock_rbd.Image.return_value.unprotect_snap.called) self.assertEqual( 1, self.mock_rbd.RBD.return_value.remove.call_count) # Make sure the exception was raised self.assertEqual(RAISED_EXCEPTIONS, [self.mock_rbd.ImageNotFound]) @common_mocks def test_create_snapshot(self): proxy = self.mock_proxy.return_value proxy.__enter__.return_value = proxy self.driver.create_snapshot(self.snapshot) args = [str(self.snapshot_name)] proxy.create_snap.assert_called_with(*args) proxy.protect_snap.assert_called_with(*args) @common_mocks def test_delete_snapshot(self): proxy = self.mock_proxy.return_value proxy.__enter__.return_value = proxy self.driver.delete_snapshot(self.snapshot) proxy.remove_snap.assert_called_with(self.snapshot_name) proxy.unprotect_snap.assert_called_with(self.snapshot_name) @common_mocks def test_delete_busy_snapshot(self): proxy = self.mock_proxy.return_value proxy.__enter__.return_value = proxy proxy.unprotect_snap.side_effect = ( self.mock_rbd.ImageBusy) with mock.patch.object(self.driver, '_get_children_info') as \ mock_get_children_info: mock_get_children_info.return_value = [('pool', 'volume2')] with mock.patch.object(driver, 'LOG') as \ mock_log: self.assertRaises(exception.SnapshotIsBusy, self.driver.delete_snapshot, self.snapshot) mock_get_children_info.assert_called_once_with( proxy, self.snapshot_name) self.assertTrue(mock_log.info.called) self.assertTrue(proxy.unprotect_snap.called) self.assertFalse(proxy.remove_snap.called) @common_mocks def test_get_children_info(self): volume = self.mock_proxy volume.set_snap = mock.Mock() volume.list_children = mock.Mock() list_children = [('pool', 'volume2')] volume.list_children.return_value = list_children info = self.driver._get_children_info(volume, self.snapshot_name) self.assertEqual(list_children, info) @common_mocks def test_get_clone_info(self): volume = self.mock_rbd.Image() volume.set_snap = mock.Mock() volume.parent_info = mock.Mock() parent_info = ('a', 'b', '%s.clone_snap' % (self.volume_name)) volume.parent_info.return_value = parent_info info = self.driver._get_clone_info(volume, self.volume_name) self.assertEqual(parent_info, info) self.assertFalse(volume.set_snap.called) volume.parent_info.assert_called_once_with() @common_mocks def test_get_clone_info_w_snap(self): volume = self.mock_rbd.Image() volume.set_snap = mock.Mock() volume.parent_info = mock.Mock() parent_info = ('a', 'b', '%s.clone_snap' % (self.volume_name)) volume.parent_info.return_value = parent_info snapshot = self.mock_rbd.ImageSnapshot() info = self.driver._get_clone_info(volume, self.volume_name, snap=snapshot) self.assertEqual(parent_info, info) self.assertEqual(2, volume.set_snap.call_count) volume.parent_info.assert_called_once_with() @common_mocks def test_get_clone_info_w_exception(self): volume = self.mock_rbd.Image() volume.set_snap = mock.Mock() volume.parent_info = mock.Mock() volume.parent_info.side_effect = self.mock_rbd.ImageNotFound snapshot = self.mock_rbd.ImageSnapshot() info = self.driver._get_clone_info(volume, self.volume_name, snap=snapshot) self.assertEqual((None, None, None), info) self.assertEqual(2, volume.set_snap.call_count) volume.parent_info.assert_called_once_with() # Make sure the exception was raised self.assertEqual(RAISED_EXCEPTIONS, [self.mock_rbd.ImageNotFound]) @common_mocks def test_get_clone_info_deleted_volume(self): volume = self.mock_rbd.Image() volume.set_snap = mock.Mock() volume.parent_info = mock.Mock() parent_info = ('a', 'b', '%s.clone_snap' % (self.volume_name)) volume.parent_info.return_value = parent_info info = self.driver._get_clone_info(volume, "%s.deleted" % (self.volume_name)) self.assertEqual(parent_info, info) self.assertFalse(volume.set_snap.called) volume.parent_info.assert_called_once_with() @common_mocks def test_create_cloned_volume_same_size(self): src_name = u'volume-00000001' dst_name = u'volume-00000002' self.cfg.rbd_max_clone_depth = 2 with mock.patch.object(self.driver, '_get_clone_depth') as \ mock_get_clone_depth: # Try with no flatten required with mock.patch.object(self.driver, '_resize') as mock_resize: mock_get_clone_depth.return_value = 1 self.driver.create_cloned_volume({'name': dst_name, 'size': 10}, {'name': src_name, 'size': 10}) (self.mock_rbd.Image.return_value.create_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.protect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) self.assertEqual( 1, self.mock_rbd.RBD.return_value.clone.call_count) self.mock_rbd.Image.return_value.close \ .assert_called_once_with() self.assertTrue(mock_get_clone_depth.called) self.assertEqual( 0, mock_resize.call_count) @common_mocks def test_create_cloned_volume_different_size(self): src_name = u'volume-00000001' dst_name = u'volume-00000002' self.cfg.rbd_max_clone_depth = 2 with mock.patch.object(self.driver, '_get_clone_depth') as \ mock_get_clone_depth: # Try with no flatten required with mock.patch.object(self.driver, '_resize') as mock_resize: mock_get_clone_depth.return_value = 1 self.driver.create_cloned_volume({'name': dst_name, 'size': 20}, {'name': src_name, 'size': 10}) (self.mock_rbd.Image.return_value.create_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.protect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) self.assertEqual( 1, self.mock_rbd.RBD.return_value.clone.call_count) self.mock_rbd.Image.return_value.close \ .assert_called_once_with() self.assertTrue(mock_get_clone_depth.called) self.assertEqual( 1, mock_resize.call_count) @common_mocks def test_create_cloned_volume_w_flatten(self): src_name = u'volume-00000001' dst_name = u'volume-00000002' self.cfg.rbd_max_clone_depth = 1 with mock.patch.object(self.driver, '_get_clone_info') as \ mock_get_clone_info: mock_get_clone_info.return_value = ( ('fake_pool', dst_name, '.'.join((dst_name, 'clone_snap')))) with mock.patch.object(self.driver, '_get_clone_depth') as \ mock_get_clone_depth: # Try with no flatten required mock_get_clone_depth.return_value = 1 self.assertRaises(self.mock_rbd.RBD.Error, self.driver.create_cloned_volume, dict(name=dst_name), dict(name=src_name)) (self.mock_rbd.Image.return_value.create_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.protect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) self.assertEqual( 1, self.mock_rbd.RBD.return_value.clone.call_count) (self.mock_rbd.Image.return_value.unprotect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.remove_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) # We expect the driver to close both volumes, so 2 is expected self.assertEqual( 2, self.mock_rbd.Image.return_value.close.call_count) self.assertTrue(mock_get_clone_depth.called) @common_mocks def test_create_cloned_volume_w_clone_exception(self): src_name = u'volume-00000001' dst_name = u'volume-00000002' self.cfg.rbd_max_clone_depth = 2 self.mock_rbd.RBD.return_value.clone.side_effect = ( self.mock_rbd.RBD.Error) with mock.patch.object(self.driver, '_get_clone_depth') as \ mock_get_clone_depth: # Try with no flatten required mock_get_clone_depth.return_value = 1 self.assertRaises(self.mock_rbd.RBD.Error, self.driver.create_cloned_volume, {'name': dst_name}, {'name': src_name}) (self.mock_rbd.Image.return_value.create_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.protect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) self.assertEqual( 1, self.mock_rbd.RBD.return_value.clone.call_count) (self.mock_rbd.Image.return_value.unprotect_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) (self.mock_rbd.Image.return_value.remove_snap .assert_called_once_with('.'.join((dst_name, 'clone_snap')))) self.mock_rbd.Image.return_value.close.assert_called_once_with() @common_mocks def test_good_locations(self): locations = ['rbd://fsid/pool/image/snap', 'rbd://%2F/%2F/%2F/%2F', ] map(self.driver._parse_location, locations) @common_mocks def test_bad_locations(self): locations = ['rbd://image', 'http://path/to/somewhere/else', 'rbd://image/extra', 'rbd://image/', 'rbd://fsid/pool/image/', 'rbd://fsid/pool/image/snap/', 'rbd://///', ] for loc in locations: self.assertRaises(exception.ImageUnacceptable, self.driver._parse_location, loc) self.assertFalse( self.driver._is_cloneable(loc, {'disk_format': 'raw'})) @common_mocks def test_cloneable(self): with mock.patch.object(self.driver, '_get_fsid') as mock_get_fsid: mock_get_fsid.return_value = 'abc' location = 'rbd://abc/pool/image/snap' info = {'disk_format': 'raw'} self.assertTrue(self.driver._is_cloneable(location, info)) self.assertTrue(mock_get_fsid.called) @common_mocks def test_uncloneable_different_fsid(self): with mock.patch.object(self.driver, '_get_fsid') as mock_get_fsid: mock_get_fsid.return_value = 'abc' location = 'rbd://def/pool/image/snap' self.assertFalse( self.driver._is_cloneable(location, {'disk_format': 'raw'})) self.assertTrue(mock_get_fsid.called) @common_mocks def test_uncloneable_unreadable(self): with mock.patch.object(self.driver, '_get_fsid') as mock_get_fsid: mock_get_fsid.return_value = 'abc' location = 'rbd://abc/pool/image/snap' self.driver.rbd.Error = Exception self.mock_proxy.side_effect = Exception args = [location, {'disk_format': 'raw'}] self.assertFalse(self.driver._is_cloneable(*args)) self.assertEqual(1, self.mock_proxy.call_count) self.assertTrue(mock_get_fsid.called) @common_mocks def test_uncloneable_bad_format(self): with mock.patch.object(self.driver, '_get_fsid') as mock_get_fsid: mock_get_fsid.return_value = 'abc' location = 'rbd://abc/pool/image/snap' formats = ['qcow2', 'vmdk', 'vdi'] for f in formats: self.assertFalse( self.driver._is_cloneable(location, {'disk_format': f})) self.assertTrue(mock_get_fsid.called) def _copy_image(self): with mock.patch.object(tempfile, 'NamedTemporaryFile'): with mock.patch.object(os.path, 'exists') as mock_exists: mock_exists.return_value = True with mock.patch.object(image_utils, 'fetch_to_raw'): with mock.patch.object(self.driver, 'delete_volume'): with mock.patch.object(self.driver, '_resize'): mock_image_service = mock.MagicMock() args = [None, {'name': 'test', 'size': 1}, mock_image_service, None] self.driver.copy_image_to_volume(*args) @common_mocks def test_copy_image_no_volume_tmp(self): self.cfg.volume_tmp_dir = None self.cfg.image_conversion_dir = None self._copy_image() @common_mocks def test_copy_image_volume_tmp(self): self.cfg.volume_tmp_dir = None self.cfg.image_conversion_dir = '/var/run/cinder/tmp' self._copy_image() @common_mocks def test_update_volume_stats(self): client = self.mock_client.return_value client.__enter__.return_value = client client.cluster = mock.Mock() client.cluster.mon_command = mock.Mock() client.cluster.mon_command.return_value = ( 0, '{"stats":{"total_bytes":64385286144,' '"total_used_bytes":3289628672,"total_avail_bytes":61095657472},' '"pools":[{"name":"rbd","id":2,"stats":{"kb_used":1510197,' '"bytes_used":1546440971,"max_avail":28987613184,"objects":412}},' '{"name":"volumes","id":3,"stats":{"kb_used":0,"bytes_used":0,' '"max_avail":28987613184,"objects":0}}]}\n', '') self.driver.configuration.safe_get = mock.Mock() self.driver.configuration.safe_get.return_value = 'RBD' expected = dict( volume_backend_name='RBD', vendor_name='Open Source', driver_version=self.driver.VERSION, storage_protocol='ceph', total_capacity_gb=27, free_capacity_gb=26, reserved_percentage=0) actual = self.driver.get_volume_stats(True) client.cluster.mon_command.assert_called_once_with( '{"prefix":"df", "format":"json"}', '') self.assertDictMatch(expected, actual) @common_mocks def test_update_volume_stats_error(self): client = self.mock_client.return_value client.__enter__.return_value = client client.cluster = mock.Mock() client.cluster.mon_command = mock.Mock() client.cluster.mon_command.return_value = (22, '', '') self.driver.configuration.safe_get = mock.Mock() self.driver.configuration.safe_get.return_value = 'RBD' expected = dict(volume_backend_name='RBD', vendor_name='Open Source', driver_version=self.driver.VERSION, storage_protocol='ceph', total_capacity_gb='unknown', free_capacity_gb='unknown', reserved_percentage=0) actual = self.driver.get_volume_stats(True) client.cluster.mon_command.assert_called_once_with( '{"prefix":"df", "format":"json"}', '') self.assertDictMatch(expected, actual) @common_mocks def test_get_mon_addrs(self): with mock.patch.object(self.driver, '_execute') as mock_execute: mock_execute.return_value = (CEPH_MON_DUMP, '') hosts = ['::1', '::1', '::1', '127.0.0.1', 'example.com'] ports = ['6789', '6790', '6791', '6792', '6791'] self.assertEqual((hosts, ports), self.driver._get_mon_addrs()) @common_mocks def test_initialize_connection(self): hosts = ['::1', '::1', '::1', '127.0.0.1', 'example.com'] ports = ['6789', '6790', '6791', '6792', '6791'] with mock.patch.object(self.driver, '_get_mon_addrs') as \ mock_get_mon_addrs: mock_get_mon_addrs.return_value = (hosts, ports) volume_id = '0a83f0a3-ef6e-47b6-a8aa-20436bc9ed01' expected = { 'driver_volume_type': 'rbd', 'data': { 'name': '%s/%s' % (self.cfg.rbd_pool, self.volume_name), 'hosts': hosts, 'ports': ports, 'auth_enabled': False, 'auth_username': None, 'secret_type': 'ceph', 'secret_uuid': None, 'volume_id': volume_id } } volume = dict(name=self.volume_name, id=volume_id) actual = self.driver.initialize_connection(volume, None) self.assertDictMatch(expected, actual) self.assertTrue(mock_get_mon_addrs.called) @common_mocks def test_clone(self): src_pool = u'images' src_image = u'image-name' src_snap = u'snapshot-name' client_stack = [] def mock__enter__(inst): def _inner(): client_stack.append(inst) return inst return _inner client = self.mock_client.return_value # capture both rados client used to perform the clone client.__enter__.side_effect = mock__enter__(client) self.driver._clone(self.volume, src_pool, src_image, src_snap) args = [client_stack[0].ioctx, str(src_image), str(src_snap), client_stack[1].ioctx, str(self.volume_name)] kwargs = {'features': client.features} self.mock_rbd.RBD.return_value.clone.assert_called_once_with( *args, **kwargs) self.assertEqual(2, client.__enter__.call_count) @common_mocks def test_extend_volume(self): fake_size = '20' fake_vol = {'project_id': 'testprjid', 'name': self.volume_name, 'size': fake_size, 'id': 'a720b3c0-d1f0-11e1-9b23-0800200c9a66'} self.mox.StubOutWithMock(self.driver, '_resize') size = int(fake_size) * units.Gi self.driver._resize(fake_vol, size=size) self.mox.ReplayAll() self.driver.extend_volume(fake_vol, fake_size) self.mox.VerifyAll() @common_mocks def test_retype(self): context = {} diff = {'encryption': {}, 'extra_specs': {}} fake_volume = {'name': 'testvolume', 'host': 'currenthost'} fake_type = 'high-IOPS' # no support for migration host = {'host': 'anotherhost'} self.assertFalse(self.driver.retype(context, fake_volume, fake_type, diff, host)) host = {'host': 'currenthost'} # no support for changing encryption diff['encryption'] = {'non-empty': 'non-empty'} self.assertFalse(self.driver.retype(context, fake_volume, fake_type, diff, host)) diff['encryption'] = {} # no support for changing extra_specs diff['extra_specs'] = {'non-empty': 'non-empty'} self.assertFalse(self.driver.retype(context, fake_volume, fake_type, diff, host)) diff['extra_specs'] = {} self.assertTrue(self.driver.retype(context, fake_volume, fake_type, diff, host)) @common_mocks def test_update_migrated_volume(self): client = self.mock_client.return_value client.__enter__.return_value = client with mock.patch.object(self.driver.rbd.RBD(), 'rename') as mock_rename: context = {} current_volume = {'id': 'curr_id', 'name': 'curr_name', 'provider_location': 'curr_provider_location'} original_volume = {'id': 'orig_id', 'name': 'orig_name', 'provider_location': 'orig_provider_location'} mock_rename.return_value = 0 model_update = self.driver.update_migrated_volume(context, original_volume, current_volume, 'available') mock_rename.assert_called_with(client.ioctx, 'volume-%s' % current_volume['id'], 'volume-%s' % original_volume['id']) self.assertEqual({'_name_id': None, 'provider_location': None}, model_update) def test_rbd_volume_proxy_init(self): mock_driver = mock.Mock(name='driver') mock_driver._connect_to_rados.return_value = (None, None) with driver.RBDVolumeProxy(mock_driver, self.volume_name): self.assertEqual(1, mock_driver._connect_to_rados.call_count) self.assertFalse(mock_driver._disconnect_from_rados.called) self.assertEqual(1, mock_driver._disconnect_from_rados.call_count) mock_driver.reset_mock() snap = u'snapshot-name' with driver.RBDVolumeProxy(mock_driver, self.volume_name, snapshot=snap): self.assertEqual(1, mock_driver._connect_to_rados.call_count) self.assertFalse(mock_driver._disconnect_from_rados.called) self.assertEqual(1, mock_driver._disconnect_from_rados.call_count) @common_mocks @mock.patch('time.sleep') def test_connect_to_rados(self, sleep_mock): # Default self.cfg.rados_connect_timeout = -1 self.mock_rados.Rados.return_value.open_ioctx.return_value = \ self.mock_rados.Rados.return_value.ioctx # default configured pool ret = self.driver._connect_to_rados() self.assertTrue(self.mock_rados.Rados.return_value.connect.called) # Expect no timeout if default is used self.mock_rados.Rados.return_value.connect.assert_called_once_with() self.assertTrue(self.mock_rados.Rados.return_value.open_ioctx.called) self.assertEqual(self.mock_rados.Rados.return_value.ioctx, ret[1]) self.mock_rados.Rados.return_value.open_ioctx.assert_called_with( self.cfg.rbd_pool) # different pool ret = self.driver._connect_to_rados('alt_pool') self.assertTrue(self.mock_rados.Rados.return_value.connect.called) self.assertTrue(self.mock_rados.Rados.return_value.open_ioctx.called) self.assertEqual(self.mock_rados.Rados.return_value.ioctx, ret[1]) self.mock_rados.Rados.return_value.open_ioctx.assert_called_with( 'alt_pool') # With timeout self.cfg.rados_connect_timeout = 1 self.mock_rados.Rados.return_value.connect.reset_mock() self.driver._connect_to_rados() self.mock_rados.Rados.return_value.connect.assert_called_once_with( timeout=1) # error self.mock_rados.Rados.return_value.open_ioctx.reset_mock() self.mock_rados.Rados.return_value.shutdown.reset_mock() self.mock_rados.Rados.return_value.open_ioctx.side_effect = ( self.mock_rados.Error) self.assertRaises(exception.VolumeBackendAPIException, self.driver._connect_to_rados) self.assertTrue(self.mock_rados.Rados.return_value.open_ioctx.called) self.assertEqual( 3, self.mock_rados.Rados.return_value.shutdown.call_count) class RBDImageIOWrapperTestCase(test.TestCase): def setUp(self): super(RBDImageIOWrapperTestCase, self).setUp() self.meta = mock.Mock() self.meta.user = 'mock_user' self.meta.conf = 'mock_conf' self.meta.pool = 'mock_pool' self.meta.image = mock.Mock() self.meta.image.read = mock.Mock() self.meta.image.write = mock.Mock() self.meta.image.size = mock.Mock() self.mock_rbd_wrapper = driver.RBDImageIOWrapper(self.meta) self.data_length = 1024 self.full_data = 'abcd' * 256 def test_init(self): self.assertEqual(self.mock_rbd_wrapper._rbd_meta, self.meta) self.assertEqual(0, self.mock_rbd_wrapper._offset) def test_inc_offset(self): self.mock_rbd_wrapper._inc_offset(10) self.mock_rbd_wrapper._inc_offset(10) self.assertEqual(20, self.mock_rbd_wrapper._offset) def test_rbd_image(self): self.assertEqual(self.mock_rbd_wrapper.rbd_image, self.meta.image) def test_rbd_user(self): self.assertEqual(self.mock_rbd_wrapper.rbd_user, self.meta.user) def test_rbd_pool(self): self.assertEqual(self.mock_rbd_wrapper.rbd_conf, self.meta.conf) def test_rbd_conf(self): self.assertEqual(self.mock_rbd_wrapper.rbd_pool, self.meta.pool) def test_read(self): def mock_read(offset, length): return self.full_data[offset:length] self.meta.image.read.side_effect = mock_read self.meta.image.size.return_value = self.data_length data = self.mock_rbd_wrapper.read() self.assertEqual(self.full_data, data) data = self.mock_rbd_wrapper.read() self.assertEqual('', data) self.mock_rbd_wrapper.seek(0) data = self.mock_rbd_wrapper.read() self.assertEqual(self.full_data, data) self.mock_rbd_wrapper.seek(0) data = self.mock_rbd_wrapper.read(10) self.assertEqual(self.full_data[:10], data) def test_write(self): self.mock_rbd_wrapper.write(self.full_data) self.assertEqual(1024, self.mock_rbd_wrapper._offset) def test_seekable(self): self.assertTrue(self.mock_rbd_wrapper.seekable) def test_seek(self): self.assertEqual(0, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(10) self.assertEqual(10, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(10) self.assertEqual(10, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(10, 1) self.assertEqual(20, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(0) self.mock_rbd_wrapper.write(self.full_data) self.meta.image.size.return_value = self.data_length self.mock_rbd_wrapper.seek(0) self.assertEqual(0, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(10, 2) self.assertEqual(self.data_length + 10, self.mock_rbd_wrapper._offset) self.mock_rbd_wrapper.seek(-10, 2) self.assertEqual(self.data_length - 10, self.mock_rbd_wrapper._offset) # test exceptions. self.assertRaises(IOError, self.mock_rbd_wrapper.seek, 0, 3) self.assertRaises(IOError, self.mock_rbd_wrapper.seek, -1) # offset should not have been changed by any of the previous # operations. self.assertEqual(self.data_length - 10, self.mock_rbd_wrapper._offset) def test_tell(self): self.assertEqual(0, self.mock_rbd_wrapper.tell()) self.mock_rbd_wrapper._inc_offset(10) self.assertEqual(10, self.mock_rbd_wrapper.tell()) def test_flush(self): with mock.patch.object(driver, 'LOG') as mock_logger: self.meta.image.flush = mock.Mock() self.mock_rbd_wrapper.flush() self.meta.image.flush.assert_called_once_with() self.meta.image.flush.reset_mock() # this should be caught and logged silently. self.meta.image.flush.side_effect = AttributeError self.mock_rbd_wrapper.flush() self.meta.image.flush.assert_called_once_with() msg = _("flush() not supported in this version of librbd") mock_logger.warning.assert_called_with(msg) def test_fileno(self): self.assertRaises(IOError, self.mock_rbd_wrapper.fileno) def test_close(self): self.mock_rbd_wrapper.close() class ManagedRBDTestCase(test_volume.DriverTestCase): driver_name = "cinder.volume.drivers.rbd.RBDDriver" def setUp(self): super(ManagedRBDTestCase, self).setUp() # TODO(dosaboy): need to remove dependency on mox stubs here once # image.fake has been converted to mock. fake_image.stub_out_image_service(self.stubs) self.volume.driver.set_initialized() self.volume.stats = {'allocated_capacity_gb': 0, 'pools': {}} self.called = [] def _create_volume_from_image(self, expected_status, raw=False, clone_error=False): """Try to clone a volume from an image, and check status afterwards. NOTE: if clone_error is True we force the image type to raw otherwise clone_image is not called """ volume_id = 1 # See tests.image.fake for image types. if raw: image_id = '155d900f-4e14-4e4c-a73d-069cbf4541e6' else: image_id = 'c905cedb-7281-47e4-8a62-f26bc5fc4c77' # creating volume testdata db.volume_create(self.context, {'id': volume_id, 'updated_at': timeutils.utcnow(), 'display_description': 'Test Desc', 'size': 20, 'status': 'creating', 'instance_uuid': None, 'host': 'dummy'}) try: if not clone_error: self.volume.create_volume(self.context, volume_id, request_spec={'image_id': image_id}) else: self.assertRaises(exception.CinderException, self.volume.create_volume, self.context, volume_id, request_spec={'image_id': image_id}) volume = db.volume_get(self.context, volume_id) self.assertEqual(expected_status, volume['status']) finally: # cleanup db.volume_destroy(self.context, volume_id) def test_create_vol_from_image_status_available(self): """Clone raw image then verify volume is in available state.""" def _mock_clone_image(context, volume, image_location, image_meta, image_service): return {'provider_location': None}, True with mock.patch.object(self.volume.driver, 'clone_image') as \ mock_clone_image: mock_clone_image.side_effect = _mock_clone_image with mock.patch.object(self.volume.driver, 'create_volume') as \ mock_create: with mock.patch.object(create_volume.CreateVolumeFromSpecTask, '_copy_image_to_volume') as mock_copy: self._create_volume_from_image('available', raw=True) self.assertFalse(mock_copy.called) self.assertTrue(mock_clone_image.called) self.assertFalse(mock_create.called) @mock.patch('cinder.image.image_utils.TemporaryImages.fetch') def test_create_vol_from_non_raw_image_status_available(self, mock_fetch): """Clone non-raw image then verify volume is in available state.""" def _mock_clone_image(context, volume, image_location, image_meta, image_service): return {'provider_location': None}, False mock_fetch.return_value = mock.MagicMock(spec=utils.get_file_spec()) with mock.patch.object(self.volume.driver, 'clone_image') as \ mock_clone_image: mock_clone_image.side_effect = _mock_clone_image with mock.patch.object(self.volume.driver, 'create_volume') as \ mock_create: with mock.patch.object(create_volume.CreateVolumeFromSpecTask, '_copy_image_to_volume') as mock_copy: self._create_volume_from_image('available', raw=False) self.assertTrue(mock_copy.called) self.assertTrue(mock_clone_image.called) self.assertTrue(mock_create.called) def test_create_vol_from_image_status_error(self): """Fail to clone raw image then verify volume is in error state.""" with mock.patch.object(self.volume.driver, 'clone_image') as \ mock_clone_image: mock_clone_image.side_effect = exception.CinderException with mock.patch.object(self.volume.driver, 'create_volume'): with mock.patch.object(create_volume.CreateVolumeFromSpecTask, '_copy_image_to_volume') as mock_copy: self._create_volume_from_image('error', raw=True, clone_error=True) self.assertFalse(mock_copy.called) self.assertTrue(mock_clone_image.called) self.assertFalse(self.volume.driver.create_volume.called) def test_clone_failure(self): driver = self.volume.driver with mock.patch.object(driver, '_is_cloneable', lambda *args: False): image_loc = (mock.Mock(), None) actual = driver.clone_image(mock.Mock(), mock.Mock(), image_loc, {}, mock.Mock()) self.assertEqual(({}, False), actual) self.assertEqual(({}, False), driver.clone_image('', object(), None, {}, '')) def test_clone_success(self): expected = ({'provider_location': None}, True) driver = self.volume.driver with mock.patch.object(self.volume.driver, '_is_cloneable') as \ mock_is_cloneable: mock_is_cloneable.return_value = True with mock.patch.object(self.volume.driver, '_clone') as \ mock_clone: with mock.patch.object(self.volume.driver, '_resize') as \ mock_resize: image_loc = ('rbd://fee/fi/fo/fum', None) volume = {'name': 'vol1'} actual = driver.clone_image(mock.Mock(), volume, image_loc, {'disk_format': 'raw', 'id': 'id.foo'}, mock.Mock()) self.assertEqual(expected, actual) mock_clone.assert_called_once_with(volume, 'fi', 'fo', 'fum') mock_resize.assert_called_once_with(volume) def test_clone_multilocation_success(self): expected = ({'provider_location': None}, True) driver = self.volume.driver def cloneable_side_effect(url_location, image_meta): return url_location == 'rbd://fee/fi/fo/fum' with mock.patch.object(self.volume.driver, '_is_cloneable') \ as mock_is_cloneable, \ mock.patch.object(self.volume.driver, '_clone') as mock_clone, \ mock.patch.object(self.volume.driver, '_resize') \ as mock_resize: mock_is_cloneable.side_effect = cloneable_side_effect image_loc = ('rbd://bee/bi/bo/bum', [{'url': 'rbd://bee/bi/bo/bum'}, {'url': 'rbd://fee/fi/fo/fum'}]) volume = {'name': 'vol1'} image_meta = mock.sentinel.image_meta image_service = mock.sentinel.image_service actual = driver.clone_image(self.context, volume, image_loc, image_meta, image_service) self.assertEqual(expected, actual) self.assertEqual(2, mock_is_cloneable.call_count) mock_clone.assert_called_once_with(volume, 'fi', 'fo', 'fum') mock_is_cloneable.assert_called_with('rbd://fee/fi/fo/fum', image_meta) mock_resize.assert_called_once_with(volume) def test_clone_multilocation_failure(self): expected = ({}, False) driver = self.volume.driver with mock.patch.object(driver, '_is_cloneable', return_value=False) \ as mock_is_cloneable, \ mock.patch.object(self.volume.driver, '_clone') as mock_clone, \ mock.patch.object(self.volume.driver, '_resize') \ as mock_resize: image_loc = ('rbd://bee/bi/bo/bum', [{'url': 'rbd://bee/bi/bo/bum'}, {'url': 'rbd://fee/fi/fo/fum'}]) volume = {'name': 'vol1'} image_meta = mock.sentinel.image_meta image_service = mock.sentinel.image_service actual = driver.clone_image(self.context, volume, image_loc, image_meta, image_service) self.assertEqual(expected, actual) self.assertEqual(2, mock_is_cloneable.call_count) mock_is_cloneable.assert_any_call('rbd://bee/bi/bo/bum', image_meta) mock_is_cloneable.assert_any_call('rbd://fee/fi/fo/fum', image_meta) self.assertFalse(mock_clone.called) self.assertFalse(mock_resize.called)
41.597211
79
0.586663
8514a26670ff04da73c9c99ba2907300ac8a2757
619
py
Python
ubb/fop/lab05-07/main.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
null
null
null
ubb/fop/lab05-07/main.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
6
2020-03-04T20:52:39.000Z
2022-03-31T00:33:07.000Z
ubb/fop/lab05-07/main.py
AlexanderChristian/private_courses
c80f3526af539e35f93b460f3909f669aaef573c
[ "MIT" ]
null
null
null
import atexit from tests.tester import Tester from ui.LibraryApplication import LibraryApplication from controllers.LibraryController import LibraryController from repository.LibraryRepository import LibraryRepository from model.sort import gnomeSort from model.sort import testSort from model.book import Book from model.client import Client __author__ = 'cosmin' if __name__ == '__main__': tester = Tester() tester.testAll() testSort() repo = LibraryRepository() controller = LibraryController(repo) atexit.register(repo.saveHistory) app = LibraryApplication(controller) app.run()
25.791667
59
0.785137
40b15e77b786a0dd62c833f18e16386fc67b5932
5,905
py
Python
mne/parallel.py
libertyh/mne-python
bf03e17f323341a877dea62963c86cf140757896
[ "BSD-3-Clause" ]
1
2020-07-28T16:09:54.000Z
2020-07-28T16:09:54.000Z
mne/parallel.py
gkmaro634/mne-python
5409a89233b764f3f3f3136cf9bf6b8d5fb0a4fe
[ "BSD-3-Clause" ]
1
2019-08-16T13:59:53.000Z
2019-08-19T16:37:35.000Z
mne/parallel.py
gkmaro634/mne-python
5409a89233b764f3f3f3136cf9bf6b8d5fb0a4fe
[ "BSD-3-Clause" ]
1
2019-12-10T02:59:18.000Z
2019-12-10T02:59:18.000Z
"""Parallel util function.""" # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: Simplified BSD import logging import os from . import get_config from .utils import logger, verbose, warn, ProgressBar from .fixes import _get_args if 'MNE_FORCE_SERIAL' in os.environ: _force_serial = True else: _force_serial = None @verbose def parallel_func(func, n_jobs, max_nbytes='auto', pre_dispatch='n_jobs', total=None, prefer=None, verbose=None): """Return parallel instance with delayed function. Util function to use joblib only if available Parameters ---------- func: callable A function n_jobs: int Number of jobs to run in parallel max_nbytes : int, str, or None Threshold on the minimum size of arrays passed to the workers that triggers automated memory mapping. Can be an int in Bytes, or a human-readable string, e.g., '1M' for 1 megabyte. Use None to disable memmaping of large arrays. Use 'auto' to use the value set using mne.set_memmap_min_size. pre_dispatch : int, or string, optional See :class:`joblib.Parallel`. total : int | None If int, use a progress bar to display the progress of dispatched jobs. This should only be used when directly iterating, not when using ``split_list`` or :func:`np.array_split`. If None (default), do not add a progress bar. prefer : str | None If str, can be "processes" or "threads". See :class:`joblib.Parallel`. Ignored if the joblib version is too old to support this. .. versionadded:: 0.18 %(verbose)s INFO or DEBUG will print parallel status, others will not. Returns ------- parallel: instance of joblib.Parallel or list The parallel object my_func: callable func if not parallel or delayed(func) n_jobs: int Number of jobs >= 0 """ should_print = (logger.level <= logging.INFO) # for a single job, we don't need joblib if n_jobs != 1: try: from joblib import Parallel, delayed except ImportError: try: from sklearn.externals.joblib import Parallel, delayed except ImportError: warn('joblib not installed. Cannot run in parallel.') n_jobs = 1 if n_jobs == 1: n_jobs = 1 my_func = func parallel = list else: # check if joblib is recent enough to support memmaping p_args = _get_args(Parallel.__init__) joblib_mmap = ('temp_folder' in p_args and 'max_nbytes' in p_args) cache_dir = get_config('MNE_CACHE_DIR', None) if isinstance(max_nbytes, str) and max_nbytes == 'auto': max_nbytes = get_config('MNE_MEMMAP_MIN_SIZE', None) if max_nbytes is not None: if not joblib_mmap and cache_dir is not None: warn('"MNE_CACHE_DIR" is set but a newer version of joblib is ' 'needed to use the memmapping pool.') if joblib_mmap and cache_dir is None: logger.info( 'joblib supports memapping pool but "MNE_CACHE_DIR" ' 'is not set in MNE-Python config. To enable it, use, ' 'e.g., mne.set_cache_dir(\'/tmp/shm\'). This will ' 'store temporary files under /dev/shm and can result ' 'in large memory savings.') # create keyword arguments for Parallel kwargs = {'verbose': 5 if should_print and total is None else 0} kwargs['pre_dispatch'] = pre_dispatch if 'prefer' in p_args: kwargs['prefer'] = prefer if joblib_mmap: if cache_dir is None: max_nbytes = None # disable memmaping kwargs['temp_folder'] = cache_dir kwargs['max_nbytes'] = max_nbytes n_jobs = check_n_jobs(n_jobs) parallel = Parallel(n_jobs, **kwargs) my_func = delayed(func) if total is not None: def parallel_progress(op_iter): pb = ProgressBar(total, verbose_bool=should_print) return parallel(pb(op_iter)) parallel_out = parallel_progress else: parallel_out = parallel return parallel_out, my_func, n_jobs def check_n_jobs(n_jobs, allow_cuda=False): """Check n_jobs in particular for negative values. Parameters ---------- n_jobs : int The number of jobs. allow_cuda : bool Allow n_jobs to be 'cuda'. Default: False. Returns ------- n_jobs : int The checked number of jobs. Always positive (or 'cuda' if applicable.) """ if not isinstance(n_jobs, int): if not allow_cuda: raise ValueError('n_jobs must be an integer') elif not isinstance(n_jobs, str) or n_jobs != 'cuda': raise ValueError('n_jobs must be an integer, or "cuda"') # else, we have n_jobs='cuda' and this is okay, so do nothing elif _force_serial: n_jobs = 1 logger.info('... MNE_FORCE_SERIAL set. Processing in forced ' 'serial mode.') elif n_jobs <= 0: try: import multiprocessing n_cores = multiprocessing.cpu_count() n_jobs = min(n_cores + n_jobs + 1, n_cores) if n_jobs <= 0: raise ValueError('If n_jobs has a negative value it must not ' 'be less than the number of CPUs present. ' 'You\'ve got %s CPUs' % n_cores) except ImportError: # only warn if they tried to use something other than 1 job if n_jobs != 1: warn('multiprocessing not installed. Cannot run in parallel.') n_jobs = 1 return n_jobs
35.359281
79
0.602371
7e653828f0538d63d5a0053be206b584f1b6d857
4,350
py
Python
feature_engine/base_transformers.py
iahsanujunda/feature_engine
46c6bd5a06626b0789fcc1367069d065010794a1
[ "BSD-3-Clause" ]
1
2020-11-15T13:15:28.000Z
2020-11-15T13:15:28.000Z
feature_engine/base_transformers.py
myamullaciencia/feature_engine
46c6bd5a06626b0789fcc1367069d065010794a1
[ "BSD-3-Clause" ]
null
null
null
feature_engine/base_transformers.py
myamullaciencia/feature_engine
46c6bd5a06626b0789fcc1367069d065010794a1
[ "BSD-3-Clause" ]
null
null
null
# Transformation methods are shared by most transformer groups. # Each transformer can inherit the transform method from these base classes. import warnings from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted from feature_engine.dataframe_checks import ( _is_dataframe, _check_input_matches_training_df, _check_contains_na, ) from feature_engine.variable_manipulation import _find_numerical_variables class BaseImputer(BaseEstimator, TransformerMixin): # Common transformation procedure for most feature imputers def transform(self, X): """ Replaces missing data with the learned parameters. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features] The input samples. Returns ------- X_transformed : pandas dataframe of shape = [n_samples, n_features] The dataframe without missing values in the selected variables. """ # Check method fit has been called check_is_fitted(self) # check that input is a dataframe X = _is_dataframe(X) # Check that input data contains same number of columns than # the dataframe used to fit the imputer. _check_input_matches_training_df(X, self.input_shape_[1]) # replaces missing data with the learned parameters for variable in self.imputer_dict_: X[variable].fillna(self.imputer_dict_[variable], inplace=True) return X class BaseCategoricalTransformer(BaseEstimator, TransformerMixin): # Common transformation procedure for most variable encoders def transform(self, X): """ Replaces categories with the learned parameters. Parameters ---------- X : pandas dataframe of shape = [n_samples, n_features]. The input samples. Returns ------- X_transformed : pandas dataframe of shape = [n_samples, n_features]. The dataframe containing categories replaced by numbers. """ # Check method fit has been called check_is_fitted(self) # check that input is a dataframe X = _is_dataframe(X) # check if dataset contains na _check_contains_na(X, self.variables) # Check that the dataframe contains the same number of columns # than the dataframe # used to fit the imputer. _check_input_matches_training_df(X, self.input_shape_[1]) # replace categories by the learned parameters for feature in self.encoder_dict_.keys(): X[feature] = X[feature].map(self.encoder_dict_[feature]) # check if NaN values were introduced by the encoding if X[self.encoder_dict_.keys()].isnull().sum().sum() > 0: warnings.warn( "NaN values were introduced in the returned dataframe by the encoder." "This means that some of the categories in the input dataframe were " "not present in the training set used when the fit method was called. " "Thus, mappings for those categories does not exist. Try using the " "RareLabelCategoricalEncoder to remove infrequent categories before " "calling this encoder." ) return X class BaseNumericalTransformer(BaseEstimator, TransformerMixin): # shared set-up procedures across numerical transformers, i.e., # variable transformers, discretisers, outlier handlers def fit(self, X, y=None): # check input dataframe X = _is_dataframe(X) # find or check for numerical variables self.variables = _find_numerical_variables(X, self.variables) # check if dataset contains na _check_contains_na(X, self.variables) return X def transform(self, X): # Check method fit has been called check_is_fitted(self) # check that input is a dataframe X = _is_dataframe(X) # check if dataset contains na _check_contains_na(X, self.variables) # Check that the dataframe contains the same number of columns # than the dataframe used to fit the imputer. _check_input_matches_training_df(X, self.input_shape_[1]) return X
32.954545
87
0.662299
b7ec5f45c56d3759b8ab7bfc00162a5371be0bb7
22,703
py
Python
tests/sentry/receivers/test_featureadoption.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/receivers/test_featureadoption.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
tests/sentry/receivers/test_featureadoption.py
pierredup/sentry
0145e4b3bc0e775bf3482fe65f5e1a689d0dbb80
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from django.utils import timezone from sentry.models import FeatureAdoption, GroupAssignee, GroupTombstone, Rule from sentry.plugins.bases import IssueTrackingPlugin2, NotificationPlugin from sentry.signals import ( alert_rule_created, event_processed, first_event_received, project_created, member_joined, plugin_enabled, user_feedback_received, issue_assigned, issue_resolved, advanced_search, save_search_created, inbound_filter_toggled, sso_enabled, data_scrubber_enabled, ) from sentry.receivers.rules import DEFAULT_RULE_DATA from sentry.testutils import SnubaTestCase, TestCase class FeatureAdoptionTest(TestCase, SnubaTestCase): def setUp(self): super(FeatureAdoptionTest, self).setUp() self.now = timezone.now() self.owner = self.create_user() self.organization = self.create_organization(owner=self.owner) self.team = self.create_team(organization=self.organization) self.project = self.create_project(teams=[self.team]) def test_bad_feature_slug(self): FeatureAdoption.objects.record(self.organization.id, "xxx") feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="first_event" ) assert feature_complete is None def test_all_passed_feature_slugs_are_complete(self): event1 = self.store_event( data={"tags": {"environment": "prod"}}, project_id=self.project.id ) event2 = self.store_event( data={"tags": {"environment": "prod"}}, project_id=self.project.id ) event_processed.send(project=self.project, event=event1, sender=type(self.project)) event_processed.send(project=self.project, event=event2, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="environment_tracking" ) assert feature_complete.complete def test_first_event(self): event = self.store_event( data={"platform": "javascript", "message": "javascript error message"}, project_id=self.project.id, ) first_event_received.send(project=self.project, event=event, sender=type(self.project)) first_event = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="first_event" ) assert first_event.complete def test_javascript(self): event = self.store_event(data={"platform": "javascript"}, project_id=self.project.id) event_processed.send(project=self.project, event=event, sender=type(self.project)) js = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="javascript") assert js.complete def test_python(self): event = self.store_event( data={"platform": "python", "message": "python error message"}, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) python = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="python") assert python.complete def test_node(self): event = self.store_event( data={"platform": "node", "message": "node error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) node = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="node") assert node.complete def test_ruby(self): event = self.store_event( data={"platform": "ruby", "message": "ruby error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) ruby = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="ruby") assert ruby.complete def test_java(self): event = self.store_event( data={"platform": "java", "message": "java error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) java = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="java") assert java.complete def test_cocoa(self): event = self.store_event( data={"platform": "cocoa", "message": "cocoa error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) cocoa = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="cocoa") assert cocoa.complete def test_objc(self): event = self.store_event( data={"platform": "objc", "message": "objc error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) objc = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="objc") assert objc.complete def test_php(self): event = self.store_event( data={"platform": "php", "message": "php error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) php = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="php") assert php.complete def test_go(self): event = self.store_event( data={"platform": "go", "message": "go error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) go = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="go") assert go.complete def test_csharp(self): event = self.store_event( data={"platform": "csharp", "message": "csharp error message"}, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) csharp = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="csharp") assert csharp.complete def test_perl(self): event = self.store_event( data={"platform": "perl", "message": "perl error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) perl = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="perl") assert perl.complete def test_elixir(self): event = self.store_event( data={"platform": "elixir", "message": "elixir error message"}, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) elixir = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="elixir") assert elixir.complete def test_cfml(self): event = self.store_event( data={"platform": "cfml", "message": "cfml error message"}, project_id=self.project.id ) event_processed.send(project=self.project, event=event, sender=type(self.project)) cfml = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="cfml") assert cfml.complete def test_groovy(self): event = self.store_event( data={"platform": "groovy", "message": "groovy error message"}, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) groovy = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="groovy") assert groovy.complete def test_release_tracking(self): event = self.store_event(data={"tags": {"sentry:release": "1"}}, project_id=self.project.id) event_processed.send(project=self.project, event=event, sender=type(self.project)) release_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="release_tracking" ) assert release_tracking def test_environment_tracking(self): event = self.store_event(data={"environment": "prod"}, project_id=self.project.id) event_processed.send(project=self.project, event=event, sender=type(self.project)) environment_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="environment_tracking" ) assert environment_tracking def test_bulk_create(self): event = self.store_event( data={ "platform": "javascript", "environment": "prod", "tags": {"sentry:release": "abc"}, "user": {"id": "123"}, }, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) javascript = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="javascript" ) assert javascript environment_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="environment_tracking" ) assert environment_tracking release_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="release_tracking" ) assert release_tracking feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="user_tracking" ) assert feature_complete def test_user_tracking(self): event = self.store_event(data={"user": {"id": "123"}}, project_id=self.project.id) event_processed.send(project=self.project, event=event, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="user_tracking" ) assert feature_complete def test_no_user_tracking_for_ip_address_only(self): """test to see if just sending ip address doesn't check the user tracking box""" userless_event = self.store_event( data={"user": {"ip_address": "0.0.0.0"}}, project_id=self.project.id ) event_processed.send(project=self.project, event=userless_event, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="user_tracking" ) assert feature_complete is None def test_no_env_tracking(self): envless_event = self.store_event( data={"platform": "javascript"}, project_id=self.project.id ) event_processed.send(project=self.project, event=envless_event, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="environment_tracking" ) assert feature_complete is None def test_custom_tags(self): event = self.store_event(data={}, project_id=self.project.id) event.data["tags"].append(("foo", "bar")) assert event.get_tag("foo") == "bar" event_processed.send(project=self.project, event=event, sender=type(self.project)) custom_tags = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="custom_tags" ) assert custom_tags def test_source_maps(self): event = self.store_event( data={ "platform": "javascript", "exception": { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] }, }, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) source_maps = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="source_maps" ) assert source_maps def test_breadcrumbs(self): event = self.store_event( data={ "breadcrumbs": { "values": [ { "category": "xhr", "timestamp": 1496395011.63, "type": "http", "data": { "url": "/api/path/here", "status_code": "500", "method": "POST", }, } ] } }, project_id=self.project.id, ) event_processed.send(project=self.project, event=event, sender=type(self.project)) breadcrumbs = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="breadcrumbs" ) assert breadcrumbs def test_multiple_events(self): simple_event = self.store_event( data={"message": "javascript error message", "platform": "javascript"}, project_id=self.project.id, ) first_event_received.send( project=self.project, event=simple_event, sender=type(self.project) ) event_processed.send(project=self.project, event=simple_event, sender=type(self.project)) first_event = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="first_event" ) assert first_event.complete js = FeatureAdoption.objects.get_by_slug(organization=self.organization, slug="javascript") assert js.complete full_event = self.store_event( data={ "message": "javascript error message", "platform": "javascript", "environment": "prod", "tags": {"sentry:release": "abc"}, "user": {"id": "123"}, "exception": { "values": [ { "stacktrace": { "frames": [ { "data": { "sourcemap": "https://media.sentry.io/_static/29e365f8b0d923bc123e8afa38d890c3/sentry/dist/vendor.js.map" } } ] }, "type": "TypeError", } ] }, "breadcrumbs": { "values": [ { "category": "xhr", "timestamp": 1496395011.63, "type": "http", "data": { "url": "/api/path/here", "status_code": "500", "method": "POST", }, } ] }, }, project_id=self.project.id, ) event_processed.send(project=self.project, event=full_event, sender=type(self.project)) release_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="release_tracking" ) assert release_tracking environment_tracking = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="environment_tracking" ) assert environment_tracking feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="user_tracking" ) assert feature_complete source_maps = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="source_maps" ) assert source_maps breadcrumbs = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="breadcrumbs" ) assert breadcrumbs def test_user_feedback(self): user_feedback_received.send(project=self.project, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="user_feedback" ) assert feature_complete def test_project_created(self): project_created.send(project=self.project, user=self.owner, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="first_project" ) assert feature_complete def test_member_joined(self): member = self.create_member( organization=self.organization, teams=[self.team], user=self.create_user() ) member_joined.send(member=member, organization=self.organization, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="invite_team" ) assert feature_complete def test_assignment(self): GroupAssignee.objects.create( group_id=self.group.id, user_id=self.user.id, project_id=self.project.id ) issue_assigned.send( project=self.project, group=self.group, user=self.user, sender="something" ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="assignment" ) assert feature_complete def test_resolved_in_release(self): issue_resolved.send( organization_id=self.organization.id, project=self.project, group=self.group, user=self.user, resolution_type="in_next_release", sender=type(self.project), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="resolved_in_release" ) assert feature_complete def test_resolved_manually(self): issue_resolved.send( organization_id=self.organization.id, project=self.project, group=self.group, user=self.user, resolution_type="now", sender=type(self.project), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="resolved_in_release" ) assert not feature_complete def test_advanced_search(self): advanced_search.send(project=self.project, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="advanced_search" ) assert feature_complete def test_save_search(self): save_search_created.send(project=self.project, user=self.user, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="saved_search" ) assert feature_complete def test_inbound_filters(self): inbound_filter_toggled.send(project=self.project, sender=type(self.project)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="inbound_filters" ) assert feature_complete def test_alert_rules(self): rule = Rule.objects.create( project=self.project, label="Trivially modified rule", data=DEFAULT_RULE_DATA ) alert_rule_created.send( user=self.owner, project=self.project, rule=rule, rule_type="issue", sender=type(self.project), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="alert_rules" ) assert feature_complete def test_issue_tracker_plugin(self): plugin_enabled.send( plugin=IssueTrackingPlugin2(), project=self.project, user=self.owner, sender=type(self.project), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="issue_tracker_integration" ) assert feature_complete def test_notification_plugin(self): plugin_enabled.send( plugin=NotificationPlugin(), project=self.project, user=self.owner, sender=type(self.project), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="notification_integration" ) assert feature_complete def test_sso(self): sso_enabled.send( organization=self.organization, user=self.user, provider="google", sender=type(self.organization), ) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="sso" ) assert feature_complete def test_data_scrubber(self): data_scrubber_enabled.send(organization=self.organization, sender=type(self.organization)) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="data_scrubbers" ) assert feature_complete def test_delete_and_discard(self): GroupTombstone.objects.create(previous_group_id=self.group.id, project=self.project) feature_complete = FeatureAdoption.objects.get_by_slug( organization=self.organization, slug="delete_and_discard" ) assert feature_complete
38.544992
149
0.609963
5c6ad587928af26fe0259f211e65b6b49220a490
1,218
py
Python
krux/object.py
SpectrumIO/python-krux-stdlib
cb99e5dbd52711a76eb4fbb68a90fc1373616c07
[ "MIT" ]
3
2016-02-05T22:46:11.000Z
2017-07-15T03:23:41.000Z
krux/object.py
SpectrumIO/python-krux-stdlib
cb99e5dbd52711a76eb4fbb68a90fc1373616c07
[ "MIT" ]
45
2015-01-13T00:59:05.000Z
2019-10-16T01:14:02.000Z
krux/object.py
SpectrumIO/python-krux-stdlib
cb99e5dbd52711a76eb4fbb68a90fc1373616c07
[ "MIT" ]
2
2015-08-08T04:17:30.000Z
2021-03-02T18:09:47.000Z
# © Copyright 2013-2020 Salesforce.com, inc. from __future__ import generator_stop from abc import ABCMeta from krux.logging import get_logger from krux.stats import get_stats class Object(object, metaclass=ABCMeta): """ An abstract class to handle the common Krux coding pattern .. seealso:: https://docs.python.org/2/library/abc.html """ def __init__(self, name=None, logger=None, stats=None): """ Basic init method that sets up name, logger, and stats :param name: Name of the application :type name: str :param logger: Logger, recommended to be obtained using krux.cli.Application :type logger: logging.Logger :param stats: Stats, recommended to be obtained using krux.cli.Application :type stats: kruxstatsd.StatsClient """ # Call to the superclass to bootstrap. super(Object, self).__init__() # Private variables, not to be used outside this module self._name = name if name is not None else self.__class__.__name__ self._logger = logger if logger is not None else get_logger(self._name) self._stats = stats if stats is not None else get_stats(prefix=self._name)
34.8
84
0.686371
be6528415bedcc22d19f89616ddae8848dbc562c
4,507
py
Python
tests/test_s3_merge_upsert.py
njdanielsen/aws-data-wrangler
5cdb316224370e952dfb3a701825e1b1ab331105
[ "Apache-2.0" ]
1
2021-08-06T07:55:34.000Z
2021-08-06T07:55:34.000Z
tests/test_s3_merge_upsert.py
njdanielsen/aws-data-wrangler
5cdb316224370e952dfb3a701825e1b1ab331105
[ "Apache-2.0" ]
1
2021-03-12T20:39:41.000Z
2021-03-15T08:21:03.000Z
tests/test_s3_merge_upsert.py
Glovo/aws-data-wrangler
ce0444ecc210d51eec1aeb2e085aabe536d51172
[ "Apache-2.0" ]
null
null
null
import datetime import logging import pandas as pd import pytest import awswrangler as wr from awswrangler.s3._merge_upsert_table import _is_data_quality_sufficient, merge_upsert_table logger = logging.getLogger("awswrangler") logger.setLevel(logging.DEBUG) def test_is_data_quality_sufficient_check_column_names(): # Check both table have the same columns existing_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) def test_is_data_quality_sufficient_mistmatch_column_names(): # Check both dataframe have the same columns. # In this case they are different thus it should fail existing_df = pd.DataFrame({"c0": [1, 2, 1, 2], "c1": [1, 2, 1, 2], "c2": [2, 1, 2, 1]}) delta_df = pd.DataFrame({"d0": [1, 2, 1, 2], "d1": [1, 2, 1, 2], "c2": [2, 1, 2, 1]}) primary_key = ["c0", "c1"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is False def test_is_data_quality_sufficient_same_column_names_different_row_count(): # Check both table have the same columns and existing_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], columns=["col_a", "col_b", "col_c"]) delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is True def test_is_data_quality_sufficient_missing_primary_key(): # Check both tables have the same primary key existing_df = pd.DataFrame({"c0": [1, 2, 1], "c1": [1, 2, 1], "c2": [2, 1, 1]}) delta_df = pd.DataFrame({"c0": [1, 2, 1, 2]}) primary_key = ["c0", "c1"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is False def test_is_data_quality_sufficient_fail_for_duplicate_data(): # Check for duplicate data inside the dataframe existing_df = pd.DataFrame([[1, 2, 3], [1, 2, 3], [7, 8, 9], [10, 11, 12]], columns=["col_a", "col_b", "col_c"]) delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] assert _is_data_quality_sufficient(existing_df=existing_df, delta_df=delta_df, primary_key=primary_key) is False def test_table_does_not_exist(glue_database, glue_table): # Fail as table does not exist delta_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=["col_a", "col_b", "col_c"]) primary_key = ["col_a", "col_b"] with pytest.raises(AttributeError): merge_upsert_table(delta_df=delta_df, database=glue_database, table=glue_table, primary_key=primary_key) def test_success_case(glue_database, glue_table, path): df = pd.DataFrame( {"id": [1, 2], "cchar": ["foo", "boo"], "date": [datetime.date(2020, 1, 1), datetime.date(2020, 1, 2)]} ) # Create the table wr.s3.to_parquet(df=df, path=path, index=False, dataset=True, database=glue_database, table=glue_table)["paths"] delta_df = pd.DataFrame({"id": [1], "cchar": ["foo"], "date": [datetime.date(2021, 1, 1)]}) primary_key = ["id", "cchar"] merge_upsert_table(delta_df=delta_df, database=glue_database, table=glue_table, primary_key=primary_key) merged_df = wr.s3.read_parquet_table(database=glue_database, table=glue_table) # Row count should still be 2 rows assert merged_df.shape == (2, 3) def test_success_case2(glue_database, glue_table, path): df = pd.DataFrame( {"id": [1, 2], "cchar": ["foo", "boo"], "date": [datetime.date(2020, 1, 1), datetime.date(2020, 1, 2)]} ) # Create the table wr.s3.to_parquet(df=df, path=path, index=False, dataset=True, database=glue_database, table=glue_table)["paths"] delta_df = pd.DataFrame( {"id": [1, 2], "cchar": ["foo", "boo"], "date": [datetime.date(2021, 1, 1), datetime.date(2021, 1, 2)]} ) primary_key = ["id", "cchar"] merge_upsert_table(delta_df=delta_df, database=glue_database, table=glue_table, primary_key=primary_key) merged_df = wr.s3.read_parquet_table(database=glue_database, table=glue_table) # Row count should still be 2 rows assert merged_df.shape == (2, 3)
49.527473
116
0.678722
deb062c48dc791c67574092b3e55e7f5d40c6526
16,020
py
Python
neural_network/gan.py
kostogls/Python
81c2bcb3cbaeb4f861bc5c44df2526a89c616512
[ "MIT" ]
5
2020-03-04T18:50:13.000Z
2020-05-05T11:46:13.000Z
neural_network/gan.py
Mathewsmusukuma/Python
4866b1330bc7c77c0ed0e050e6b99efdeb026448
[ "MIT" ]
1
2021-12-19T23:22:00.000Z
2021-12-19T23:22:00.000Z
neural_network/gan.py
Mathewsmusukuma/Python
4866b1330bc7c77c0ed0e050e6b99efdeb026448
[ "MIT" ]
4
2020-03-06T00:53:00.000Z
2021-01-05T13:42:35.000Z
import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from sklearn.utils import shuffle import input_data random_numer = 42 np.random.seed(random_numer) def ReLu(x): mask = (x > 0) * 1.0 return mask * x def d_ReLu(x): mask = (x > 0) * 1.0 return mask def arctan(x): return np.arctan(x) def d_arctan(x): return 1 / (1 + x ** 2) def log(x): return 1 / (1 + np.exp(-1 * x)) def d_log(x): return log(x) * (1 - log(x)) def tanh(x): return np.tanh(x) def d_tanh(x): return 1 - np.tanh(x) ** 2 def plot(samples): fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) gs.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect("equal") plt.imshow(sample.reshape(28, 28), cmap="Greys_r") return fig if __name__ == "__main__": # 1. Load Data and declare hyper print("--------- Load Data ----------") mnist = input_data.read_data_sets("MNIST_data", one_hot=False) temp = mnist.test images, labels = temp.images, temp.labels images, labels = shuffle(np.asarray(images), np.asarray(labels)) num_epoch = 10 learing_rate = 0.00009 G_input = 100 hidden_input, hidden_input2, hidden_input3 = 128, 256, 346 hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686 print("--------- Declare Hyper Parameters ----------") # 2. Declare Weights D_W1 = ( np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002 ) # D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 D_b1 = np.zeros(hidden_input) D_W2 = ( np.random.normal( size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)) ) * 0.002 ) # D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 D_b2 = np.zeros(1) G_W1 = ( np.random.normal( size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)) ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b1 = np.zeros(hidden_input) G_W2 = ( np.random.normal( size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0)), ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b2 = np.zeros(hidden_input2) G_W3 = ( np.random.normal( size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0)), ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b3 = np.zeros(hidden_input3) G_W4 = ( np.random.normal( size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0)), ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b4 = np.zeros(hidden_input4) G_W5 = ( np.random.normal( size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0)), ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b5 = np.zeros(hidden_input5) G_W6 = ( np.random.normal( size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0)), ) * 0.002 ) # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 G_b6 = np.zeros(hidden_input6) G_W7 = ( np.random.normal( size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0)) ) * 0.002 ) # G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 G_b7 = np.zeros(784) # 3. For Adam Optimzier v1, m1 = 0, 0 v2, m2 = 0, 0 v3, m3 = 0, 0 v4, m4 = 0, 0 v5, m5 = 0, 0 v6, m6 = 0, 0 v7, m7 = 0, 0 v8, m8 = 0, 0 v9, m9 = 0, 0 v10, m10 = 0, 0 v11, m11 = 0, 0 v12, m12 = 0, 0 v13, m13 = 0, 0 v14, m14 = 0, 0 v15, m15 = 0, 0 v16, m16 = 0, 0 v17, m17 = 0, 0 v18, m18 = 0, 0 beta_1, beta_2, eps = 0.9, 0.999, 0.00000001 print("--------- Started Training ----------") for iter in range(num_epoch): random_int = np.random.randint(len(images) - 5) current_image = np.expand_dims(images[random_int], axis=0) # Func: Generate The first Fake Data Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) Gl2 = Gl1A.dot(G_W2) + G_b2 Gl2A = ReLu(Gl2) Gl3 = Gl2A.dot(G_W3) + G_b3 Gl3A = arctan(Gl3) Gl4 = Gl3A.dot(G_W4) + G_b4 Gl4A = ReLu(Gl4) Gl5 = Gl4A.dot(G_W5) + G_b5 Gl5A = tanh(Gl5) Gl6 = Gl5A.dot(G_W6) + G_b6 Gl6A = ReLu(Gl6) Gl7 = Gl6A.dot(G_W7) + G_b7 current_fake_data = log(Gl7) # Func: Forward Feed for Real data Dl1_r = current_image.dot(D_W1) + D_b1 Dl1_rA = ReLu(Dl1_r) Dl2_r = Dl1_rA.dot(D_W2) + D_b2 Dl2_rA = log(Dl2_r) # Func: Forward Feed for Fake Data Dl1_f = current_fake_data.dot(D_W1) + D_b1 Dl1_fA = ReLu(Dl1_f) Dl2_f = Dl1_fA.dot(D_W2) + D_b2 Dl2_fA = log(Dl2_f) # Func: Cost D D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA) # Func: Gradient grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA) grad_f_w2_part_2 = d_log(Dl2_f) grad_f_w2_part_3 = Dl1_fA grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) grad_f_w1_part_2 = d_ReLu(Dl1_f) grad_f_w1_part_3 = current_fake_data grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 grad_r_w2_part_1 = -1 / Dl2_rA grad_r_w2_part_2 = d_log(Dl2_r) grad_r_w2_part_3 = Dl1_rA grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) grad_r_w1_part_2 = d_ReLu(Dl1_r) grad_r_w1_part_3 = current_image grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 grad_w1 = grad_f_w1 + grad_r_w1 grad_b1 = grad_f_b1 + grad_r_b1 grad_w2 = grad_f_w2 + grad_r_w2 grad_b2 = grad_f_b2 + grad_r_b2 # ---- Update Gradient ---- m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 v1 = beta_2 * v1 + (1 - beta_2) * grad_w1 ** 2 m2 = beta_1 * m2 + (1 - beta_1) * grad_b1 v2 = beta_2 * v2 + (1 - beta_2) * grad_b1 ** 2 m3 = beta_1 * m3 + (1 - beta_1) * grad_w2 v3 = beta_2 * v3 + (1 - beta_2) * grad_w2 ** 2 m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * ( m1 / (1 - beta_1) ) D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * ( m2 / (1 - beta_1) ) D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * ( m3 / (1 - beta_1) ) D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * ( m4 / (1 - beta_1) ) # Func: Forward Feed for G Z = np.random.uniform(-1.0, 1.0, size=[1, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) Gl2 = Gl1A.dot(G_W2) + G_b2 Gl2A = ReLu(Gl2) Gl3 = Gl2A.dot(G_W3) + G_b3 Gl3A = arctan(Gl3) Gl4 = Gl3A.dot(G_W4) + G_b4 Gl4A = ReLu(Gl4) Gl5 = Gl4A.dot(G_W5) + G_b5 Gl5A = tanh(Gl5) Gl6 = Gl5A.dot(G_W6) + G_b6 Gl6A = ReLu(Gl6) Gl7 = Gl6A.dot(G_W7) + G_b7 current_fake_data = log(Gl7) Dl1 = current_fake_data.dot(D_W1) + D_b1 Dl1_A = ReLu(Dl1) Dl2 = Dl1_A.dot(D_W2) + D_b2 Dl2_A = log(Dl2) # Func: Cost G G_cost = -np.log(Dl2_A) # Func: Gradient grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot( D_W1.T ) grad_G_w7_part_2 = d_log(Gl7) grad_G_w7_part_3 = Gl6A grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) grad_G_b7 = grad_G_w7_part_1 * grad_G_w7_part_2 grad_G_w6_part_1 = (grad_G_w7_part_1 * grad_G_w7_part_2).dot(G_W7.T) grad_G_w6_part_2 = d_ReLu(Gl6) grad_G_w6_part_3 = Gl5A grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2 grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) grad_G_w5_part_2 = d_tanh(Gl5) grad_G_w5_part_3 = Gl4A grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2 grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) grad_G_w4_part_2 = d_ReLu(Gl4) grad_G_w4_part_3 = Gl3A grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2 grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) grad_G_w3_part_2 = d_arctan(Gl3) grad_G_w3_part_3 = Gl2A grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2 grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) grad_G_w2_part_2 = d_ReLu(Gl2) grad_G_w2_part_3 = Gl1A grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2 grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) grad_G_w1_part_2 = d_arctan(Gl1) grad_G_w1_part_3 = Z grad_G_w1 = grad_G_w1_part_3.T.dot(grad_G_w1_part_1 * grad_G_w1_part_2) grad_G_b1 = grad_G_w1_part_1 * grad_G_w1_part_2 # ---- Update Gradient ---- m5 = beta_1 * m5 + (1 - beta_1) * grad_G_w1 v5 = beta_2 * v5 + (1 - beta_2) * grad_G_w1 ** 2 m6 = beta_1 * m6 + (1 - beta_1) * grad_G_b1 v6 = beta_2 * v6 + (1 - beta_2) * grad_G_b1 ** 2 m7 = beta_1 * m7 + (1 - beta_1) * grad_G_w2 v7 = beta_2 * v7 + (1 - beta_2) * grad_G_w2 ** 2 m8 = beta_1 * m8 + (1 - beta_1) * grad_G_b2 v8 = beta_2 * v8 + (1 - beta_2) * grad_G_b2 ** 2 m9 = beta_1 * m9 + (1 - beta_1) * grad_G_w3 v9 = beta_2 * v9 + (1 - beta_2) * grad_G_w3 ** 2 m10 = beta_1 * m10 + (1 - beta_1) * grad_G_b3 v10 = beta_2 * v10 + (1 - beta_2) * grad_G_b3 ** 2 m11 = beta_1 * m11 + (1 - beta_1) * grad_G_w4 v11 = beta_2 * v11 + (1 - beta_2) * grad_G_w4 ** 2 m12 = beta_1 * m12 + (1 - beta_1) * grad_G_b4 v12 = beta_2 * v12 + (1 - beta_2) * grad_G_b4 ** 2 m13 = beta_1 * m13 + (1 - beta_1) * grad_G_w5 v13 = beta_2 * v13 + (1 - beta_2) * grad_G_w5 ** 2 m14 = beta_1 * m14 + (1 - beta_1) * grad_G_b5 v14 = beta_2 * v14 + (1 - beta_2) * grad_G_b5 ** 2 m15 = beta_1 * m15 + (1 - beta_1) * grad_G_w6 v15 = beta_2 * v15 + (1 - beta_2) * grad_G_w6 ** 2 m16 = beta_1 * m16 + (1 - beta_1) * grad_G_b6 v16 = beta_2 * v16 + (1 - beta_2) * grad_G_b6 ** 2 m17 = beta_1 * m17 + (1 - beta_1) * grad_G_w7 v17 = beta_2 * v17 + (1 - beta_2) * grad_G_w7 ** 2 m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * ( m5 / (1 - beta_1) ) G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * ( m6 / (1 - beta_1) ) G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * ( m7 / (1 - beta_1) ) G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * ( m8 / (1 - beta_1) ) G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * ( m9 / (1 - beta_1) ) G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * ( m10 / (1 - beta_1) ) G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * ( m11 / (1 - beta_1) ) G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * ( m12 / (1 - beta_1) ) G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * ( m13 / (1 - beta_1) ) G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * ( m14 / (1 - beta_1) ) G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * ( m15 / (1 - beta_1) ) G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * ( m16 / (1 - beta_1) ) G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * ( m17 / (1 - beta_1) ) G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * ( m18 / (1 - beta_1) ) # --- Print Error ---- # print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') if iter == 0: learing_rate = learing_rate * 0.01 if iter == 40: learing_rate = learing_rate * 0.01 # ---- Print to Out put ---- if iter % 10 == 0: print( "Current Iter: ", iter, " Current D cost:", D_cost, " Current G cost: ", G_cost, end="\r", ) print("--------- Show Example Result See Tab Above ----------") print("--------- Wait for the image to load ---------") Z = np.random.uniform(-1.0, 1.0, size=[16, G_input]) Gl1 = Z.dot(G_W1) + G_b1 Gl1A = arctan(Gl1) Gl2 = Gl1A.dot(G_W2) + G_b2 Gl2A = ReLu(Gl2) Gl3 = Gl2A.dot(G_W3) + G_b3 Gl3A = arctan(Gl3) Gl4 = Gl3A.dot(G_W4) + G_b4 Gl4A = ReLu(Gl4) Gl5 = Gl4A.dot(G_W5) + G_b5 Gl5A = tanh(Gl5) Gl6 = Gl5A.dot(G_W6) + G_b6 Gl6A = ReLu(Gl6) Gl7 = Gl6A.dot(G_W7) + G_b7 current_fake_data = log(Gl7) fig = plot(current_fake_data) fig.savefig( "Click_Me_{}.png".format( str(iter).zfill(3) + "_Ginput_" + str(G_input) + "_hiddenone" + str(hidden_input) + "_hiddentwo" + str(hidden_input2) + "_LR_" + str(learing_rate) ), bbox_inches="tight", ) # for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 # -- end code --
31.597633
173
0.527278
3e2bbd0b61fae259eacb5d804224ea267d56aa77
2,260
py
Python
pylearn2/neuroimaging_utils/research/randomize_snps.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
1
2017-10-29T06:18:35.000Z
2017-10-29T06:18:35.000Z
pylearn2/neuroimaging_utils/research/randomize_snps.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
null
null
null
pylearn2/neuroimaging_utils/research/randomize_snps.py
rdevon/pylearn2
f7b9a6ea0e2498176b47202f5bb83aec4976e1dd
[ "BSD-3-Clause" ]
null
null
null
""" .. todo:: WRITEME """ __authors__ = "Devon Hjelm" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Devon Hjelm"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import theano from theano.sandbox.rng_mrg import MRG_RandomStreams from theano import tensor as T from pylearn2.blocks import Block from pylearn2.utils.rng import make_theano_rng class RandomizeSNPs(Block): """ .. todo:: WRITEME Parameters ---------- theano_rng : WRITEME seed : WRITEME input_space : WRITEME """ def __init__(self, theano_rng = None, seed=None, input_space=None, corruption_prob=0.1): super(RandomizeSNPs, self).__init__() assert theano_rng is None or seed is None theano_rng = make_theano_rng(theano_rng if theano_rng is not None else seed, 2012+11+22, which_method='binomial') self.__dict__.update(locals()) del self.self self.set_fn() def set_fn(self): """ .. todo:: WRITEME """ inputs = T.matrix() a = self.theano_rng.binomial( size=(self.input_space.dim, ), p=(1 - self.corruption_prob), dtype=theano.config.floatX ) b = self.theano_rng.binomial( size=(self.input_space.dim, ), p=0.5, dtype=theano.config.floatX ) + 1 c = T.eq(a, 0) * b self.fn = theano.function([inputs], ((2 * inputs + c) % 3 / 2.0)) def __call__(self, X): return self.perform(X) def set_input_space(self, space): """ .. todo:: WRITEME """ self.input_space = space def get_input_space(self): """ .. todo:: WRITEME """ if self.input_space is not None: return self.input_space raise ValueError("No input space was specified for this Block (%s). " "You can call set_input_space to correct that." % str(self)) def get_output_space(self): """ .. todo:: WRITEME """ return self.get_input_space()
23.789474
84
0.557522
9cb329d58ba682b36718b26aa33b7d052f527bfe
267,910
py
Python
src/config/api-server/vnc_cfg_api_server/tests/test_crud_basic.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
37
2020-09-21T10:42:26.000Z
2022-01-09T10:16:40.000Z
src/config/api-server/vnc_cfg_api_server/tests/test_crud_basic.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
null
null
null
src/config/api-server/vnc_cfg_api_server/tests/test_crud_basic.py
atsgen/tf-controller
9321889cdd3d7108980cc88937b2e82956502cc5
[ "Apache-2.0" ]
21
2020-08-25T12:48:42.000Z
2022-03-22T04:32:18.000Z
from __future__ import print_function from __future__ import absolute_import from __future__ import division # # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # from builtins import str from builtins import range from builtins import object from past.utils import old_div import gevent import os import sys import socket import errno import uuid import logging import random import netaddr import mock import tempfile import fixtures import testtools from testtools.matchers import Equals, MismatchError, Not, Contains, LessThan from testtools import content, content_type, ExpectedException import unittest from flexmock import flexmock import re import json import copy from lxml import etree import inspect import requests import bottle import stevedore import netaddr import contextlib from vnc_api.vnc_api import * from cfgm_common import exceptions as vnc_exceptions from netaddr import IPNetwork import vnc_api.gen.vnc_api_test_gen from vnc_api.gen.resource_test import * import cfgm_common from cfgm_common import vnc_plugin_base from cfgm_common import vnc_cgitb from cfgm_common import SGID_MIN_ALLOC from cfgm_common import rest from functools import reduce vnc_cgitb.enable(format='text') from cfgm_common.tests import cassandra_fake_impl from cfgm_common.tests import test_common from cfgm_common.tests.test_utils import FakeKombu from cfgm_common.tests.test_utils import FakeExtensionManager from cfgm_common.vnc_api_stats import log_api_stats from . import test_case from vnc_cfg_api_server.api_server import VncApiServer from vnc_cfg_api_server.resources import GlobalSystemConfigServer logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class TestFixtures(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestFixtures, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestFixtures, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_fixture_ref(self): proj_fixt = self.useFixture( ProjectTestFixtureGen(self._vnc_lib, project_name='admin')) # 2 policies, 2 VNs associate and check pol_1_fixt = self.useFixture(NetworkPolicyTestFixtureGen( self._vnc_lib, network_policy_name='policy1111', parent_fixt=proj_fixt)) pol_2_fixt = self.useFixture(NetworkPolicyTestFixtureGen( self._vnc_lib, network_policy_name='policy2222', parent_fixt=proj_fixt)) ref_tuple = [(pol_1_fixt._obj, VirtualNetworkPolicyType( sequence=SequenceType(major=0, minor=0)))] ref_tuple2 = [(pol_2_fixt._obj, VirtualNetworkPolicyType( sequence=SequenceType(major=0, minor=0)))] vn_blue = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vnblue', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) vn_red = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vnred', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple2)) policy_name = vn_blue.get_network_policys()[0].fixture()[0].name self.assertThat(policy_name, Equals('policy1111')) policy_name = vn_red.get_network_policys()[0].fixture()[0].name self.assertThat(policy_name, Equals('policy2222')) # ipam referring to virtual dns vdns_data = VirtualDnsType(domain_name='abc.net', record_order='fixed', default_ttl_seconds=360) vdns_fixt = self.useFixture( VirtualDnsTestFixtureGen(self._vnc_lib, virtual_DNS_name='vdns1', virtual_DNS_data=vdns_data)) dns_method = "virtual-dns-server" dns_server = IpamDnsAddressType( virtual_dns_server_name=vdns_fixt.getObj().get_fq_name_str()) ipam_mgmt = IpamType( ipam_dns_method=dns_method, ipam_dns_server=dns_server) ipam_fixt = self.useFixture( NetworkIpamTestFixtureGen( self._vnc_lib, network_ipam_name='ipam1', parent_fixt=proj_fixt, network_ipam_mgmt=ipam_mgmt, virtual_DNS_refs=[vdns_fixt.getObj()])) # end test_fixture_ref def test_fixture_reuse_policy(self): proj_fixt = self.useFixture( ProjectTestFixtureGen(self._vnc_lib, project_name='admin')) pol_fixt = self.useFixture(NetworkPolicyTestFixtureGen( self._vnc_lib, network_policy_name='policy1111', parent_fixt=proj_fixt)) ref_tuple = [(pol_fixt._obj, VirtualNetworkPolicyType( sequence=SequenceType(major=0, minor=0)))] vn1 = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vn1', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) vn2 = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vn2', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) vn3 = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vn3', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) vn4 = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vn4', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) vn5 = self.useFixture( VirtualNetworkTestFixtureGen( self._vnc_lib, virtual_network_name='vn5', parent_fixt=proj_fixt, id_perms=IdPermsType(enable=True), network_policy_ref_infos=ref_tuple)) npolicy_children = len(proj_fixt.getObj().get_network_policys()) self.assertThat(npolicy_children, Equals(1)) # end test_fixture_reuse_policy # end class TestFixtures class TestListUpdate(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestListUpdate, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestListUpdate, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_policy_create_w_rules(self): proj_fixt = self.useFixture(ProjectTestFixtureGen(self._vnc_lib)) policy_obj = NetworkPolicy( 'test-policy-create-w-rules', proj_fixt.getObj()) np_rules = [ PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='pass'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(-1, -1)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(-1, -1)]), PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='deny'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(-1, -1)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(-1, -1)]), ] policy_obj.set_network_policy_entries(PolicyEntriesType(np_rules)) self._vnc_lib.network_policy_create(policy_obj) # cleanup self._vnc_lib.network_policy_delete(id=policy_obj.uuid) # end test_policy_create_w_rules def test_policy_create_wo_rules(self): proj_fixt = self.useFixture(ProjectTestFixtureGen(self._vnc_lib)) policy_obj = NetworkPolicy( 'test-policy-create-wo-rules', proj_fixt.getObj()) self._vnc_lib.network_policy_create(policy_obj) np_rules = [ PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='pass'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(1, 2)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(3, 4)]), PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='deny'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(5, 6)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(7, 8)]), ] policy_entries = PolicyEntriesType(np_rules) policy_obj.set_network_policy_entries(policy_entries) self._vnc_lib.network_policy_update(policy_obj) policy_entries.policy_rule.append( PolicyRuleType(direction='<>', action_list=ActionListType(simple_action= 'deny'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(9, 10)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(11, 12)]) ) policy_obj.set_network_policy_entries(policy_entries) self._vnc_lib.network_policy_update(policy_obj) # cleanup self._vnc_lib.network_policy_delete(id=policy_obj.uuid) # end test_policy_create_wo_rules def test_policy_create_w_sg_in_rules(self): policy_obj = NetworkPolicy('test-policy-create-w-sg-in-rules') np_rules = [ PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='pass'), protocol='any', src_addresses= [AddressType(security_group='local')], src_ports=[PortType(-1, -1)], dst_addresses=[AddressType(security_group='any')], dst_ports=[PortType(-1, -1)]), PolicyRuleType(direction='<>', action_list=ActionListType(simple_action='deny'), protocol='any', src_addresses= [AddressType(virtual_network='local')], src_ports=[PortType(-1, -1)], dst_addresses=[AddressType(virtual_network='any')], dst_ports=[PortType(-1, -1)]), ] policy_obj.set_network_policy_entries(PolicyEntriesType(np_rules)) with ExpectedException(BadRequest) as e: self._vnc_lib.network_policy_create(policy_obj) # cleanup self._vnc_lib.network_policy_delete(id=policy_obj.uuid) # end test_policy_create_w_sg_in_rules # end class TestListUpdate class TestCrud(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestCrud, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestCrud, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_create_using_lib_api(self): vn_obj = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) self.assert_vnc_db_has_ident(vn_obj) # end test_create_using_lib_api def test_create_using_rest_api(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port url = 'http://%s:%s/virtual-networks' %(listen_ip, listen_port) vn_body = { 'virtual-network': { 'fq_name': ['default-domain', 'default-project', 'vn-%s' %(self.id())], 'parent_type': 'project', }} requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(vn_body)) # end test_create_using_rest_api def test_user_defined_log_statistics_crud(self): gsc = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) gsc.add_user_defined_log_statistics(UserDefinedLogStat('Test01', '.*[ab][0-9]s1.*')) gsc.add_user_defined_log_statistics(UserDefinedLogStat('Test02', '127.0.0.1')) self._vnc_lib.global_system_config_update(gsc) gsc_uuid = self._vnc_lib.global_system_configs_list()[ 'global-system-configs'][0]['uuid'] gsc = self._vnc_lib.global_system_config_read(id=gsc_uuid) tst_trgt = ('Test01', 'Test02') self.assertTrue(reduce(lambda x, y: x and y, [p.name in tst_trgt for p in gsc.user_defined_log_statistics.statlist], True)) #end test_user_defined_log_statistics_crud def test_user_defined_log_statistics_bad_add(self): gsc = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) gsc.add_user_defined_log_statistics(UserDefinedLogStat('Test01', '.*[ab][0-9]s1.*')) # bad regex gsc.add_user_defined_log_statistics(UserDefinedLogStat('Test03', '*foo')) with ExpectedException(BadRequest) as e: self._vnc_lib.global_system_config_update(gsc) #end test_user_defined_log_statistics_bad_add def test_user_defined_log_statistics_set(self): gsc = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) sl = UserDefinedLogStatList() sl.add_statlist(UserDefinedLogStat('Test01', '.*[ab][0-9]s1.*')) sl.add_statlist(UserDefinedLogStat('Test02', '127.0.0.1')) gsc.set_user_defined_log_statistics(sl) self._vnc_lib.global_system_config_update(gsc) gsc_uuid = self._vnc_lib.global_system_configs_list()[ 'global-system-configs'][0]['uuid'] gsc = self._vnc_lib.global_system_config_read(id=gsc_uuid) tst_trgt = ('Test01', 'Test02') self.assertTrue(reduce(lambda x, y: x and y, [p.name in tst_trgt for p in gsc.user_defined_log_statistics.statlist], True)) #end test_user_defined_log_statistics_set def test_user_defined_log_statistics_bad_set(self): gsc = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) sl = UserDefinedLogStatList() sl.add_statlist(UserDefinedLogStat('Test01', '.*[ab][0-9]s1.*')) sl.add_statlist(UserDefinedLogStat('Test02', '127.0.0.1')) sl.add_statlist(UserDefinedLogStat('Test03', '*127.0.0.1')) gsc.set_user_defined_log_statistics(sl) with ExpectedException(BadRequest) as e: self._vnc_lib.global_system_config_update(gsc) #end test_user_defined_log_statistics_bad_set def test_vlan_tag_on_sub_intefaces(self): vn = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn) vmi_name = self.id() + '-main_port' logger.info('Creating port %s', vmi_name) main_port_obj = VirtualMachineInterface(vmi_name, parent_obj=Project()) main_port_obj.add_virtual_network(vn) self._vnc_lib.virtual_machine_interface_create(main_port_obj) id_perms = IdPermsType(enable=True) vmi_prop = VirtualMachineInterfacePropertiesType(sub_interface_vlan_tag=256) port_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop, id_perms=id_perms) port_obj.uuid = port_obj.name port_obj.set_virtual_network(vn) port_obj.set_virtual_machine_interface(main_port_obj) #create port with sub_interface_vlan_tag specified port_id = self._vnc_lib.virtual_machine_interface_create(port_obj) vmi_prop.sub_interface_vlan_tag = 128 port_obj.set_virtual_machine_interface_properties(vmi_prop) #updating sub_interface_vlan_tag of the port to a new value should fail #as vrouter doesn't support it. with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_machine_interface_update(port_obj) # end test_vlan_tag_on_sub_interfaces def test_service_interface_type_value(self): vn = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn) vmi_prop = VirtualMachineInterfacePropertiesType(service_interface_type='Left') port_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) port_obj.uuid = port_obj.name port_obj.set_virtual_network(vn) #creation of port should fail as the valid values for #service_interface_type are: management|left|right|other[0-9]* with ExpectedException(BadRequest) as e: port_id = self._vnc_lib.virtual_machine_interface_create(port_obj) # end test_service_interface_type_value def test_physical_router_credentials(self): phy_rout_name = self.id() + '-phy-router-1' user_cred_create = UserCredentials(username="test_user", password="test_pswd") phy_rout = PhysicalRouter(phy_rout_name, physical_router_user_credentials=user_cred_create) phy_rout.uuid = '123e4567-e89b-12d3-a456-426655440000' self._vnc_lib.physical_router_create(phy_rout) phy_rout_obj = self._vnc_lib.physical_router_read(id=phy_rout.uuid) user_cred_read = phy_rout_obj.get_physical_router_user_credentials() self.assertIsNotNone(user_cred_read.password) self.assertEqual(user_cred_read.password, 'ngVv1S3pB+rM2SWMnm6XpQ==') # Verify update of physical router does not update password # unless physical_router_encryption_type is set to 'none' phy_rout_obj.set_physical_router_user_credentials(user_cred_read) self._vnc_lib.physical_router_update(phy_rout_obj) phy_rout_obj = self._vnc_lib.physical_router_read(id=phy_rout.uuid) user_cred_read = phy_rout_obj.get_physical_router_user_credentials() self.assertIsNotNone(user_cred_read.password) self.assertEqual(user_cred_read.password, 'ngVv1S3pB+rM2SWMnm6XpQ==') # Update the user password in Physical Router with # physical_router_encryption_type set to 'none' user_cred_create = UserCredentials(username="test_user", password="test_new_pswd") phy_rout_obj.set_physical_router_user_credentials(user_cred_create) phy_rout_obj.set_physical_router_encryption_type('none') self._vnc_lib.physical_router_update(phy_rout_obj) phy_rout_obj = self._vnc_lib.physical_router_read(id=phy_rout.uuid) user_cred_read = phy_rout_obj.get_physical_router_user_credentials() self.assertIsNotNone(user_cred_read.password) self.assertNotEqual(user_cred_read.password, 'ngVv1S3pB+rM2SWMnm6XpQ==') # end test_physical_router_credentials def test_physical_router_w_no_user_credentials(self): phy_rout_name = self.id() + '-phy-router-2' phy_router = PhysicalRouter(phy_rout_name) self._vnc_lib.physical_router_create(phy_router) # reading Physical Router object when user credentials # are set to None should be successfull. phy_rout_obj = self._vnc_lib.physical_router_read(id=phy_router.uuid) phy_rout3_name = self.id() + '-phy-router-3' phy_router3 = PhysicalRouter(phy_rout3_name) self._vnc_lib.physical_router_create(phy_router3) phy_router3.set_physical_router_user_credentials(None) self._vnc_lib.physical_router_update(phy_router3) # reading Physical Router object when user credentials # are update to None should be successfull. phy_rout_obj = self._vnc_lib.physical_router_read(id=phy_router3.uuid) # end test_physical_router_w_no_user_credentials def test_bridge_domain_with_multiple_bd_in_vn(self): vn1_name = self.id() + '-vn-1' vn1 = VirtualNetwork(vn1_name) logger.info('Creating VN %s', vn1_name) self._vnc_lib.virtual_network_create(vn1) vmi_name = self.id() + '-port' logger.info('Creating port %s', vmi_name) vmi = VirtualMachineInterface(vmi_name, parent_obj=Project()) vmi.add_virtual_network(vn1) self._vnc_lib.virtual_machine_interface_create(vmi) bd1_name = self.id() + '-bd-1' bd1 = BridgeDomain(bd1_name, parent_obj=vn1) bd1.set_isid(200200) logger.info('Creating Bridge Domain %s', bd1_name) self._vnc_lib.bridge_domain_create(bd1) bd2_name = self.id() + '-bd-2' bd2 = BridgeDomain(bd2_name, parent_obj=vn1) bd2.set_isid(300300) logger.info('Creating Bridge Domain %s', bd2_name) with ExpectedException(BadRequest) as e: self._vnc_lib.bridge_domain_create(bd2) # end test_bridge_domain_with_multiple_bd_in_vn def test_bridge_domain_link_vmi_and_bd_in_different_vn(self): vn1_name = self.id() + '-vn-1' vn1 = VirtualNetwork(vn1_name) logger.info('Creating VN %s', vn1_name) self._vnc_lib.virtual_network_create(vn1) vn2_name = self.id() + '-vn-2' vn2 = VirtualNetwork(vn2_name) logger.info('Creating VN %s', vn2_name) self._vnc_lib.virtual_network_create(vn2) vmi1_name = self.id() + '-port-1' logger.info('Creating port %s', vmi1_name) vmi1 = VirtualMachineInterface(vmi1_name, parent_obj=Project()) vmi1.add_virtual_network(vn1) self._vnc_lib.virtual_machine_interface_create(vmi1) vmi2_name = self.id() + '-port-2' logger.info('Creating port %s', vmi2_name) vmi2 = VirtualMachineInterface(vmi2_name, parent_obj=Project()) vmi2.add_virtual_network(vn2) self._vnc_lib.virtual_machine_interface_create(vmi2) bd1_name = self.id() + '-bd-1' bd1 = BridgeDomain(bd1_name, parent_obj=vn1) bd1.set_isid(200200) logger.info('Creating Bridge Domain %s', bd1_name) self._vnc_lib.bridge_domain_create(bd1) bd_ref_data1 = BridgeDomainMembershipType(vlan_tag=0) vmi2.add_bridge_domain(bd1, bd_ref_data1) with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_machine_interface_update(vmi2) bd_ref_data2 = BridgeDomainMembershipType(vlan_tag=0) vmi1.add_bridge_domain(bd1, bd_ref_data2) self._vnc_lib.virtual_machine_interface_update(vmi1) # end test_bridge_domain_link_vmi_and_bd_in_different_vn def test_bridge_domain_delete_vn_ref_with_bd_link(self): vn1_name = self.id() + '-vn-1' vn1 = VirtualNetwork(vn1_name) logger.info('Creating VN %s', vn1_name) self._vnc_lib.virtual_network_create(vn1) vmi_name = self.id() + '-port' logger.info('Creating port %s', vmi_name) vmi = VirtualMachineInterface(vmi_name, parent_obj=Project()) vmi.add_virtual_network(vn1) self._vnc_lib.virtual_machine_interface_create(vmi) bd1_name = self.id() + '-bd-1' bd1 = BridgeDomain(bd1_name, parent_obj=vn1) bd1.set_isid(200200) logger.info('Creating Bridge Domain %s', bd1_name) self._vnc_lib.bridge_domain_create(bd1) bd_ref_data = BridgeDomainMembershipType(vlan_tag=0) vmi.add_bridge_domain(bd1, bd_ref_data) self._vnc_lib.virtual_machine_interface_update(vmi) # Try to delete the VN link with BD ref vmi_temp = copy.deepcopy(vmi) vmi_temp.del_virtual_network(vn1) with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_machine_interface_update(vmi_temp) # Delete the BD ref vmi.del_bridge_domain(bd1) self._vnc_lib.virtual_machine_interface_update(vmi) vmi.del_virtual_network(vn1) self._vnc_lib.virtual_machine_interface_update(vmi) # end test_bridge_domain_with_multiple_bd_in_vn def test_vmi_with_end_to_end_shc(self): project = Project() vn = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn) vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=project) vmi_obj.uuid = vmi_obj.name vmi_obj.set_virtual_network(vn) vmi_id = self._vnc_lib.virtual_machine_interface_create(vmi_obj) shc_props = ServiceHealthCheckType() shc_props.enabled = True shc_props.health_check_type = 'end-to-end' shc_obj = ServiceHealthCheck(str(uuid.uuid4()), parent_obj=project, service_health_check_properties=shc_props) shc_id = self._vnc_lib.service_health_check_create(shc_obj) with ExpectedException(BadRequest) as e: self._vnc_lib.ref_update('virtual-machine-interface', vmi_id, 'service-health-check', shc_id, None, 'ADD') def test_sub_interfaces_with_same_vlan_tags(self): vn = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn) vmi_prop = VirtualMachineInterfacePropertiesType(sub_interface_vlan_tag=256) vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project()) vmi_obj.uuid = vmi_obj.name vmi_obj.set_virtual_network(vn) vmi_id = self._vnc_lib.virtual_machine_interface_create(vmi_obj) sub_vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj.uuid = sub_vmi_obj.name sub_vmi_obj.set_virtual_network(vn) sub_vmi_obj.set_virtual_machine_interface(vmi_obj) sub_vmi_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj) sub_vmi_obj2 = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj2.uuid = sub_vmi_obj2.name sub_vmi_obj2.set_virtual_network(vn) sub_vmi_obj2.set_virtual_machine_interface(vmi_obj) # creating two sub interfacs with same vlan_tag # under same primary port should give an error with ExpectedException(BadRequest) as e: sub_vmi2_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj2) # end test_sub_interfaces_with_same_vlan_tags def test_create_sub_vmi_with_primary_vmi_as_another_sub_vmi(self): vn = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn) vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project()) vmi_obj.uuid = vmi_obj.name vmi_obj.set_virtual_network(vn) vmi_id = self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmi_prop = VirtualMachineInterfacePropertiesType(sub_interface_vlan_tag=128) sub_vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj.uuid = sub_vmi_obj.name sub_vmi_obj.set_virtual_network(vn) sub_vmi_obj.set_virtual_machine_interface(vmi_obj) sub_vmi_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj) sub_vmi_obj2 = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj2.uuid = sub_vmi_obj2.name sub_vmi_obj2.set_virtual_network(vn) # set it's vmi ref (primary port) to another sub interface sub_vmi_obj2.set_virtual_machine_interface(sub_vmi_obj) # creating a sub interface with it's primary port as # another sub interface should give an error with ExpectedException(BadRequest) as e: sub_vmi2_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj2) # end test_create_sub_vmi_with_primary_vmi_as_another_sub_vmi def test_sub_interfaces_on_diff_vns_with_same_vlan_tags(self): vn1 = VirtualNetwork('vn1-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn1) vn2 = VirtualNetwork('vn2-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn2) vmi_prop = VirtualMachineInterfacePropertiesType(sub_interface_vlan_tag=256) vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project()) vmi_obj2 = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project()) vmi_obj.uuid = vmi_obj.name vmi_obj.set_virtual_network(vn1) vmi_id = self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmi_obj2.uuid = vmi_obj2.name vmi_obj2.set_virtual_network(vn2) vmi_id2 = self._vnc_lib.virtual_machine_interface_create(vmi_obj2) sub_vmi_obj = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj.uuid = sub_vmi_obj.name sub_vmi_obj.set_virtual_network(vn1) sub_vmi_obj.set_virtual_machine_interface(vmi_obj) sub_vmi_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj) sub_vmi_obj2 = VirtualMachineInterface( str(uuid.uuid4()), parent_obj=Project(), virtual_machine_interface_properties=vmi_prop) sub_vmi_obj2.uuid = sub_vmi_obj2.name sub_vmi_obj2.set_virtual_network(vn2) sub_vmi_obj2.set_virtual_machine_interface(vmi_obj2) # creating two sub interfacs with same vlan_tag # on different VNs should get succedded sub_vmi2_id = self._vnc_lib.virtual_machine_interface_create(sub_vmi_obj2) # end test_sub_interfaces_on_diff_vns_with_same_vlan_tags def test_physical_router_credentials_list(self): phy_rout_name = self.id() + '-phy-router-1' phy_rout_name_2 = self.id() + '-phy-router-2' phy_rout_name_3 = self.id() + '-phy-router-3' phy_rout_name_4 = self.id() + '-phy-router-4' phy_rout_name_5 = self.id() + '-phy-router-5' user_cred_create = UserCredentials(username="test_user", password="test_pswd") user_cred_create_2 = UserCredentials(username="test_user_2", password="test_pswd_2") # Test the password that's more than 16 bytes user_cred_create_3 = UserCredentials(username="test_user_3", password="01234567890123456789") # Test the password that's more than 32 bytes user_cred_create_4 = UserCredentials(username="test_user_4", password="ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789") # Test the password that is already encrypted user_cred_create_5 = UserCredentials(username="test_user_5", password="waldIpPkKKud0y0Z6AN4Tg8x7q5JOktwkVCPPRuIC2w=") phy_rout = PhysicalRouter(phy_rout_name, physical_router_user_credentials=user_cred_create) phy_rout.uuid = '123e4567-e89b-12d3-a456-426655440001' self._vnc_lib.physical_router_create(phy_rout) phy_rout_2 = PhysicalRouter(phy_rout_name_2, physical_router_user_credentials=user_cred_create_2) phy_rout_2.uuid = '123e4567-e89b-12d3-a456-426655440002' self._vnc_lib.physical_router_create(phy_rout_2) phy_rout_3 = PhysicalRouter(phy_rout_name_3, physical_router_user_credentials=user_cred_create_3) phy_rout_3.uuid = '123e4567-e89b-12d3-a456-426655440003' self._vnc_lib.physical_router_create(phy_rout_3) phy_rout_4 = PhysicalRouter(phy_rout_name_4, physical_router_user_credentials=user_cred_create_4) phy_rout_4.uuid = '123e4567-e89b-12d3-a456-426655440004' self._vnc_lib.physical_router_create(phy_rout_4) phy_rout_5 = PhysicalRouter(phy_rout_name_5, physical_router_user_credentials=user_cred_create_5, physical_router_encryption_type='local') phy_rout_5.uuid = '123e4567-e89b-12d3-a456-426655440005' self._vnc_lib.physical_router_create(phy_rout_5) obj_uuids = [] obj_uuids.append(phy_rout.uuid) obj_uuids.append(phy_rout_2.uuid) obj_uuids.append(phy_rout_3.uuid) obj_uuids.append(phy_rout_4.uuid) obj_uuids.append(phy_rout_5.uuid) phy_rtr_list = self._vnc_lib.physical_routers_list(obj_uuids=obj_uuids, detail=True) for rtr in phy_rtr_list: user_cred_read = rtr.get_physical_router_user_credentials() if user_cred_read.username == 'test_user': self.assertEqual(user_cred_read.password, 'TtF53zhTfh1DQ66R2h5+Fg==') if user_cred_read.username == 'test_user_2': self.assertEqual(user_cred_read.password, '+sasYAEDEZd+Nn3X1ojFUw==') if user_cred_read.username == 'test_user_3': self.assertEqual(user_cred_read.password, 'waldIpPkKKud0y0Z6AN4Tg8x7q5JOktwkVCPPRuIC2w=') if user_cred_read.username == 'test_user_4': self.assertEqual(user_cred_read.password, 'd6jW0qMEBKSlUILBnetOdRIjTZGnK76OQ2R5jQgPxly0r+UNSfEqEh5DPqBL58td') if user_cred_read.username == 'test_user_5': self.assertEqual(user_cred_read.password, 'waldIpPkKKud0y0Z6AN4Tg8x7q5JOktwkVCPPRuIC2w=') # end test_physical_router_credentials def test_allowed_address_pair_prefix_len(self): ip_addresses = {'10.10.10.1': 23, '10.10.10.2': 24, '10.10.10.3': 25, 'fe80:0:0:0:0:0:a0a:a0a': 119, 'fe80:0:0:0:0:0:a0a:a0b': 120, 'fe80:0:0:0:0:0:a0a:a0c': 121, } proj = self._vnc_lib.project_read(fq_name=['default-domain', 'default-project']) vn = VirtualNetwork() for ip_address, prefix in list(ip_addresses.items()): ip_family = netaddr.IPNetwork(ip_address).version vmi = VirtualMachineInterface('vmi-%s-' % prefix +self.id(), parent_obj=proj) print('Validating with ip (%s) and prefix (%s)' % (ip_address, prefix)) aap = AllowedAddressPair(ip=SubnetType(ip_address, prefix), address_mode='active-standby') aaps = AllowedAddressPairs() aaps.allowed_address_pair.append(aap) vmi.set_virtual_machine_interface_allowed_address_pairs(aaps) vmi.add_virtual_network(vn) try: self._vnc_lib.virtual_machine_interface_create(vmi) if ip_family == 4 and prefix < 24: raise RuntimeError('Prefix of length < 24 should have been rejected') if ip_family == 6 and prefix < 120: raise RuntimeError('Prefix of length < 120 should have been rejected') except cfgm_common.exceptions.BadRequest: if ip_family == 4 and prefix >= 24: print('ERROR: Prefix >= 24 should be accepted') raise if ip_family == 6 and prefix >= 120: print('ERROR: Prefix >= 120 should be accepted') raise finally: if ip_family == 4 and prefix >= 24: vmi.del_virtual_machine_interface(vmi) if ip_family == 6 and prefix >= 120: vmi.del_virtual_machine_interface(vmi) # end test_allowed_address_pair_prefix_len def test_show_allowed_address_pair_with_leading_spaces(self): """ This test case compares AAP addresses present in DB and API-server based on leading white spaces and throws an exception if there is a mismatch JIRA TICKET:CEM-14035 """ proj = self._vnc_lib.project_read(fq_name=['default-domain', 'default-project']) vn = VirtualNetwork() ip_address = '10.10.10.1' expected_address = ' 10.10.10.1' prefix = 24 vmi = VirtualMachineInterface('vmi-%s-' % prefix +self.id(), parent_obj=proj) print('Validating with ip (%s) and prefix (%s)' % (ip_address, prefix)) aap = AllowedAddressPair(ip=SubnetType(ip_address, prefix), address_mode='active-standby') aaps = AllowedAddressPairs() aaps.allowed_address_pair.append(aap) vmi.set_virtual_machine_interface_allowed_address_pairs(aaps) vmi.add_virtual_network(vn) self._vnc_lib.virtual_machine_interface_create(vmi) # read vmi ok, vmi_list = self._api_server._db_conn._object_db.object_read( 'virtual-machine-interface', [vmi.uuid]) vmi_dict = vmi_list[0] # manipulate AAP of the VMI with space in the DB vmi_aap = vmi_dict['virtual_machine_interface_allowed_address_pairs'] vmi_aap['allowed_address_pair'][0]['ip']['ip_prefix'] = ( expected_address) self._api_server._db_conn._object_db.object_update( 'virtual-machine-interface', vmi.uuid, vmi_dict) # reading at DB to ensure DB update was successful ok, vmi_list2 = self._api_server._db_conn._object_db.object_read( 'virtual-machine-interface', [vmi.uuid]) vmi_dict2 = vmi_list2[0] vmi_aap2 = vmi_dict2['virtual_machine_interface_allowed_address_pairs'] assert vmi_aap2['allowed_address_pair'][0]['ip']['ip_prefix'] == ( expected_address) # reading at API-server to ensure read is successful vmiobj_re = self._vnc_lib.virtual_machine_interface_read(id=vmi.uuid) aap_read = vmiobj_re.virtual_machine_interface_allowed_address_pairs api_aap_ip_prefix = aap_read.allowed_address_pair[0].ip.ip_prefix assert api_aap_ip_prefix == expected_address, \ ("AAP IP prefix read from Api server (%s) " "do not match expected (%s)" % ( api_aap_ip_prefix, expected_address)) # end test_show_allowed_address_pair_with_leading_spaces def test_allowed_address_pair_with_leading_spaces(self): """ This test case checks for leading white spaces in the IP address and throws an exception if present JIRA TICKET:CEM-14035 """ ip_addresses = {'10.10.10.1': 24, ' 10.10.10.2': 24, '0:0:0:0:0:ffff:1414:1400': 120, ' fe80:0:0:0:0:0:a0a:a0c': 120, } proj = self._vnc_lib.project_read(fq_name=['default-domain', 'default-project']) vn = VirtualNetwork() for ip_address, prefix in list(ip_addresses.items()): vmi = VirtualMachineInterface('vmi-%s-' % prefix +self.id(), parent_obj=proj) print('Validating with ip (%s) and prefix (%s)' % (ip_address, prefix)) aap = AllowedAddressPair(ip=SubnetType(ip_address, prefix), address_mode='active-standby') aaps = AllowedAddressPairs() aaps.allowed_address_pair.append(aap) vmi.set_virtual_machine_interface_allowed_address_pairs(aaps) vmi.add_virtual_network(vn) if ip_address == ip_address.strip(): self._vnc_lib.virtual_machine_interface_create(vmi) vmi.del_virtual_machine_interface(vmi) else: with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_machine_interface_create(vmi) # end test_allowed_address_pair_with_leading_spaces def test_bgpaas_ports_shrunk(self): gsc = self._vnc_lib.global_system_config_read( fq_name=['default-global-system-config']) bgpaas_param = BGPaaServiceParametersType('2','500') gsc.set_bgpaas_parameters(bgpaas_param) self._vnc_lib.global_system_config_update(gsc) gsc.set_bgpaas_parameters(BGPaaServiceParametersType('4','100')) # port range should be allowed to shrunk # as no bgpaas obj. is configured self._vnc_lib.global_system_config_update(gsc) bgpaas = BgpAsAService('bgpaas-%s' % self.id()) self._vnc_lib.bgp_as_a_service_create(bgpaas) gsc.set_bgpaas_parameters(BGPaaServiceParametersType('10','50')) # port range should not be allowed to shrunk with ExpectedException(BadRequest) as e: self._vnc_lib.global_system_config_update(gsc) # end test_bgpaas_ports_shrunk def test_invalid_parent_type(self): vn = VirtualNetwork(self.id()) vn.fq_name = [vn.name] with ExpectedException(BadRequest): self._vnc_lib.virtual_network_create(vn) vn = VirtualNetwork(self.id()) vn.parent_type='network_policy' with ExpectedException(BadRequest): self._vnc_lib.virtual_network_create(vn) # end test_invalid_parent_type def test_routing_policy_create_w_asn_of_cluster_asn_negative(self): rp_name = self.id() + 'rp1' gsc = self._vnc_lib.global_system_config_read(GlobalSystemConfig().fq_name) asn = gsc.autonomous_system rp_entry = PolicyStatementType(term=[PolicyTermType( term_action_list=TermActionListType( update=ActionUpdateType( as_path=ActionAsPathType( expand=AsListType(asn_list=[asn])))))]) rp = RoutingPolicy(rp_name, routing_policy_entries=rp_entry) with ExpectedException(BadRequest): self._vnc_lib.routing_policy_create(rp) # end test_routing_policy_create_w_asn_of_cluster_asn_negative # end class TestCrud class TestVncCfgApiServer(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestVncCfgApiServer, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestVncCfgApiServer, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_fq_name_to_id_http_post(self): test_obj = self._create_test_object() test_uuid = self._vnc_lib.fq_name_to_id('virtual-network', test_obj.get_fq_name()) # check that format is correct try: uuid.UUID(test_uuid) except ValueError: self.assertTrue(False, 'Bad form UUID ' + test_uuid) with ExpectedException(NoIdError) as e: test_uuid = self._vnc_lib.fq_name_to_id('project', test_obj.get_fq_name()) def test_id_to_fq_name_http_post(self): test_obj = self._create_test_object() fq_name = self._vnc_lib.id_to_fq_name(test_obj.uuid) self.assertEqual(test_obj.fq_name, fq_name) with ExpectedException(NoIdError) as e: self._vnc_lib.id_to_fq_name(str(uuid.uuid4())) def test_useragent_kv_http_post(self): # unikey store test_body = json.dumps({'operation': 'STORE', 'key': 'fookey', 'value': 'fooval'}) self.addDetail('useragent-kv-post-store', content.json_content(test_body)) (code, msg) = self._http_post('/useragent-kv', test_body) self.assertEqual(code, 200) # unikey retrieve test_body = json.dumps({'operation': 'RETRIEVE', 'key': 'fookey'}) self.addDetail('useragent-kv-post-retrieve', content.json_content(test_body)) (code, msg) = self._http_post('/useragent-kv', test_body) self.assertEqual(code, 200) self.assertEqual(json.loads(msg)['value'], 'fooval') # multikey retrieve test_body = json.dumps({'operation': 'STORE', 'key': 'barkey', 'value': 'barval'}) self.addDetail('useragent-kv-post-store', content.json_content(test_body)) (code, msg) = self._http_post('/useragent-kv', test_body) self.assertEqual(code, 200) test_body = json.dumps({'operation': 'RETRIEVE', 'key': ['fookey', 'barkey']}) self.addDetail('useragent-kv-post-multikey-retrieve', content.json_content(test_body)) (code, msg) = self._http_post('/useragent-kv', test_body) self.assertEqual(code, 200) self.assertEqual(len(json.loads(msg)['value']), 2) self.assertThat(json.loads(msg)['value'], Contains('fooval')) self.assertThat(json.loads(msg)['value'], Contains('barval')) # wrong op test test_body = json.dumps({'operation': 'foo', 'key': 'fookey'}) self.addDetail('useragent-kv-post-wrongop', content.json_content(test_body)) (code, msg) = self._http_post('/useragent-kv', test_body) self.assertEqual(code, 404) def test_err_on_max_rabbit_pending(self): self.ignore_err_in_log = True api_server = self._server_info['api_server'] orig_max_pending_updates = api_server._args.rabbit_max_pending_updates max_pend_upd = 10 api_server._args.rabbit_max_pending_updates = str(max_pend_upd) orig_rabbitq_pub = api_server._db_conn._msgbus._producer.publish orig_rabbitq_conn_drain = api_server._db_conn._msgbus._conn_drain.connect orig_rabbitq_conn_publish = api_server._db_conn._msgbus._conn_publish.connect try: def err_rabbitq_pub(*args, **kwargs): raise Exception("Faking Rabbit publish failure") def err_rabbitq_conn(*args, **kwargs): gevent.sleep(0.1) raise Exception("Faking RabbitMQ connection failure") api_server._db_conn._msgbus._producer.publish = err_rabbitq_pub api_server._db_conn._msgbus._conn_publish.connect = err_rabbitq_conn logger.info("Creating objects to hit max rabbit pending.") # every VN create, creates RI too test_objs = self._create_test_objects(count=old_div(max_pend_upd,2)+1) def asserts_on_max_pending(): self.assertEqual(e.status_code, 500) self.assertIn("Too many pending updates", e.content) logger.info("Creating one more object expecting failure.") obj = VirtualNetwork('vn-to-fail') self.addDetail('expecting-failed-create', content.text_content(obj.name)) try: self._vnc_lib.virtual_network_create(obj) except HttpError as e: asserts_on_max_pending() else: self.assertTrue(False, 'Create succeeded unexpectedly') logger.info("Update of object should fail.") test_objs[0].display_name = 'foo' try: self._vnc_lib.virtual_network_update(test_objs[0]) except HttpError as e: asserts_on_max_pending() else: self.assertTrue(False, 'Update succeeded unexpectedly') logger.info("Delete of object should fail.") test_objs[0].display_name = 'foo' try: self._vnc_lib.virtual_network_delete(id=test_objs[0].uuid) except HttpError as e: asserts_on_max_pending() else: self.assertTrue(False, 'Delete succeeded unexpectedly') logger.info("Read obj object should be ok.") self._vnc_lib.virtual_network_read(id=test_objs[0].uuid) finally: api_server._args.rabbit_max_pending_updates = orig_max_pending_updates api_server._db_conn._msgbus._producer.publish = orig_rabbitq_pub api_server._db_conn._msgbus._conn_drain.connect = orig_rabbitq_conn_drain api_server._db_conn._msgbus._conn_publish.connect = orig_rabbitq_conn_publish def test_reconnect_to_rabbit(self): self.ignore_err_in_log = True exceptions = [(FakeKombu.Connection.ConnectionException(), 'conn'), (FakeKombu.Connection.ChannelException(), 'chan'), (Exception(), 'generic')] # fake problem on publish to rabbit # restore, ensure retry and successful publish for exc_obj, exc_type in exceptions: obj = VirtualNetwork('%s-pub-%s' %(self.id(), exc_type)) obj.uuid = str(uuid.uuid4()) publish_captured = [False] def err_on_publish(orig_method, *args, **kwargs): msg = args[0] if msg['oper'] == 'CREATE' and msg['uuid'] == obj.uuid: publish_captured[0] = True raise exc_obj return orig_method(*args, **kwargs) rabbit_producer = self._api_server._db_conn._msgbus._producer with test_common.patch(rabbit_producer, 'publish', err_on_publish): self._vnc_lib.virtual_network_create(obj) self.assertTill(lambda: publish_captured[0] == True) # unpatch err publish self.assert_vnc_db_has_ident(obj) # end exception types on publish # fake problem on consume from rabbit # restore, ensure retry and successful consume for exc_obj, exc_type in exceptions: obj = VirtualNetwork('%s-sub-%s' %(self.id(), exc_type)) obj.uuid = str(uuid.uuid4()) consume_captured = [False] consume_test_payload = [None] rabbit_consumer = self._api_server._db_conn._msgbus._consumer def err_on_consume(orig_method, *args, **kwargs): msg = orig_method() payload = msg.payload if payload['oper'] == 'UPDATE' and payload['uuid'] == obj.uuid: if (consume_test_payload[0] == payload): return msg consume_captured[0] = True consume_test_payload[0] = payload rabbit_consumer.queue.put(payload, None) raise exc_obj return msg with test_common.patch(rabbit_consumer.queue, 'get', err_on_consume): # create the object to insert 'get' handler, # update oper will test the error handling self._vnc_lib.virtual_network_create(obj) obj.display_name = 'test_update' self._vnc_lib.virtual_network_update(obj) self.assertTill(lambda: consume_captured[0] == True) # unpatch err consume self.assertTill(self.vnc_db_ident_has_prop, obj=obj, prop_name='display_name', prop_value='test_update') # end exception types on consume # fake problem on consume and publish at same time # restore, ensure retry and successful publish + consume obj = VirtualNetwork('%s-pub-sub' %(self.id())) obj.uuid = str(uuid.uuid4()) msgbus = self._api_server._db_conn._msgbus pub_greenlet = msgbus._publisher_greenlet sub_greenlet = msgbus._connection_monitor_greenlet setattr(pub_greenlet, 'unittest', {'name': 'producer'}) setattr(sub_greenlet, 'unittest', {'name': 'consumer'}) consume_captured = [False] consume_test_payload = [None] publish_connect_done = [False] publish_captured = [False] def err_on_consume(orig_method, *args, **kwargs): msg = orig_method() payload = msg.payload if payload['oper'] == 'UPDATE' and payload['uuid'] == obj.uuid: if (consume_test_payload[0] == payload): return msg consume_captured[0] = True consume_test_payload[0] = payload rabbit_consumer = self._api_server._db_conn._msgbus._consumer rabbit_consumer.queue.put(payload, None) raise exc_obj return msg def block_on_connect(orig_method, *args, **kwargs): # block consumer till publisher does update, # fake consumer connect exceptions till publisher connects fine utvars = getattr(gevent.getcurrent(), 'unittest', None) if utvars and utvars['name'] == 'producer': publish_connect_done[0] = True return orig_method(*args, **kwargs) while not publish_captured[0]: gevent.sleep(0.1) while not publish_connect_done[0]: gevent.sleep(0.1) raise Exception('Faking connection fail') return orig_method(*args, **kwargs) rabbit_consumer = self._api_server._db_conn._msgbus._consumer rabbit_conn = self._api_server._db_conn._msgbus._conn_drain with test_common.patch(rabbit_consumer.queue, 'get', err_on_consume): with test_common.patch(rabbit_conn, 'connect', block_on_connect): # create the object to insert 'get' handler, # update oper will test the error handling self._vnc_lib.virtual_network_create(obj) obj.display_name = 'test_update_1' self._vnc_lib.virtual_network_update(obj) self.assertTill(lambda: consume_captured[0] == True) def err_on_publish(orig_method, *args, **kwargs): msg = args[0] if msg['oper'] == 'UPDATE' and msg['uuid'] == obj.uuid: publish_captured[0] = True raise exc_obj return orig_method(*args, **kwargs) rabbit_producer = self._api_server._db_conn._msgbus._producer with test_common.patch(rabbit_producer, 'publish', err_on_publish): obj.display_name = 'test_update_2' self._vnc_lib.virtual_network_update(obj) self.assertTill(lambda: publish_captured[0] == True) # unpatch err publish # unpatch connect # unpatch err consume self.assertTill(self.vnc_db_ident_has_prop, obj=obj, prop_name='display_name', prop_value='test_update_2') # end test_reconnect_to_rabbit def test_update_implicit(self): self.ignore_err_in_log = True api_server = self._server_info['api_server'] orig_rabbitq_pub = api_server._db_conn._msgbus._producer.publish try: update_implicit = {} def rabbitq_pub(*args, **kwargs): if args[0]['oper'] == 'UPDATE-IMPLICIT': update_implicit.update(args[0]) orig_rabbitq_pub(*args, **kwargs) logger.info("Creating VN objects") # every VN create, creates RI too vn_objs = self._create_test_objects(count=2) api_server._db_conn._msgbus._producer.publish = rabbitq_pub ri_objs = [self._vnc_lib.routing_instance_read( fq_name=vn.fq_name + [vn.name]) for vn in vn_objs] ri_objs[0].add_routing_instance(ri_objs[1], None) self._vnc_lib.routing_instance_update(ri_objs[0]) for i in range(0, 10): gevent.sleep(0.1) if update_implicit.get('uuid') == ri_objs[1].uuid: break else: self.assertTrue(False, 'update-implicit was not published') finally: api_server._db_conn._msgbus._producer.publish = orig_rabbitq_pub def test_handle_trap_on_exception(self): self.ignore_err_in_log = True api_server = self._server_info['api_server'] orig_read = api_server._db_conn._object_db.object_read def exception_on_log_error(*args, **kwargs): self.assertTrue(False) def exception_on_vn_read(obj_type, *args, **kwargs): if obj_type == 'virtual_network': raise Exception("fake vn read exception") orig_read(obj_type, *args, **kwargs) try: orig_config_log = api_server.config_log api_server.config_log = exception_on_log_error with ExpectedException(NoIdError): self._vnc_lib.virtual_network_read(fq_name=['foo', 'bar', 'baz']) finally: api_server.config_log = orig_config_log try: test_obj = self._create_test_object() api_server._db_conn._object_db.object_read = exception_on_vn_read with ExpectedException(HttpError): self._vnc_lib.virtual_network_read(fq_name=test_obj.get_fq_name()) finally: api_server._db_conn._object_db.object_read = orig_read def test_update_api_server_configs(self): api_server = self._server_info['api_server'] introspect_port = api_server._args.http_server_port update_url = 'http://localhost:%s/Snh_ConfigApiUpdateReq?%s' test_dicts = [ {'enable_api_stats_log': '', 'enable_latency_stats_log': '', 'assert': (0, 0)}, {'enable_api_stats_log': 0, 'enable_latency_stats_log': '', 'assert': (0, 0)}, {'enable_api_stats_log': '', 'enable_latency_stats_log': 0, 'assert': (0, 0)}, {'enable_api_stats_log': 1, 'enable_latency_stats_log': '', 'assert': (1, 0)}, {'enable_api_stats_log': '', 'enable_latency_stats_log': 1, 'assert': (1, 1)}, {'enable_api_stats_log': '', 'enable_latency_stats_log': '', 'assert': (1, 1)}, {'enable_api_stats_log': 1, 'enable_latency_stats_log': 1, 'assert': (1, 1)}, {'enable_api_stats_log': '', 'enable_latency_stats_log': '', 'assert': (1, 1)}, {'enable_api_stats_log': 0, 'enable_latency_stats_log': 0, 'assert': (0, 0)}, {'enable_api_stats_log': '', 'enable_latency_stats_log': '', 'assert': (0, 0)}, ] for test_dict in test_dicts: assert_vals = test_dict['assert'] params = 'enable_api_stats_log=%s' % test_dict['enable_api_stats_log'] params += '&enable_latency_stats_log=%s' % test_dict['enable_latency_stats_log'] updates = requests.get(update_url % (introspect_port, params)) self.assertEqual(updates.status_code, 200) self.assertEqual(api_server.enable_api_stats_log, bool(assert_vals[0])) self.assertEqual(api_server.enable_latency_stats_log, bool(assert_vals[1])) def test_sandesh_trace(self): api_server = self._server_info['api_server'] # the test test_obj = self._create_test_object() self.assert_vnc_db_has_ident(test_obj) self._vnc_lib.virtual_network_delete(id=test_obj.uuid) gevent.sleep(0.05) # wait traces published # and validations introspect_port = api_server._args.http_server_port traces = requests.get('http://localhost:%s/Snh_SandeshTraceRequest?x=RestApiTraceBuf' %(introspect_port)) self.assertThat(traces.status_code, Equals(200)) top_elem = etree.fromstring(traces.text) self.assertThat(top_elem[0][0][-2].text, Contains('POST')) self.assertThat(top_elem[0][0][-2].text, Contains('200 OK')) self.assertThat(top_elem[0][0][-1].text, Contains('DELETE')) self.assertThat(top_elem[0][0][-1].text, Contains('200 OK')) traces = requests.get('http://localhost:%s/Snh_SandeshTraceRequest?x=DBRequestTraceBuf' %(introspect_port)) self.assertThat(traces.status_code, Equals(200)) top_elem = etree.fromstring(traces.text) self.assertThat(top_elem[0][0][-1].text, Contains('delete')) self.assertThat(top_elem[0][0][-1].text, Contains(test_obj.name)) traces = requests.get('http://localhost:%s/Snh_SandeshTraceRequest?x=MessageBusNotifyTraceBuf' %(introspect_port)) self.assertThat(traces.status_code, Equals(200)) top_elem = etree.fromstring(traces.text) self.assertThat(top_elem[0][0][-1].text, Contains('DELETE')) self.assertThat(top_elem[0][0][-1].text, Contains(test_obj.name)) def test_dup_create_with_same_uuid(self): dom_name = self.id() + '-domain' logger.info('Creating Domain %s', dom_name) domain_obj = Domain(dom_name) self._vnc_lib.domain_create(domain_obj) project_name = self.id() + '-project' logger.info('Creating Project %s', project_name) orig_project_obj = Project(project_name, domain_obj) self._vnc_lib.project_create(orig_project_obj) logger.info('Creating Dup Project in default domain with same uuid') dup_project_obj = Project(project_name) dup_project_obj.uuid = orig_project_obj.uuid with ExpectedException(RefsExistError) as e: self._vnc_lib.project_create(dup_project_obj) def test_dup_create_port_timing(self): # test for https://bugs.launchpad.net/juniperopenstack/r2.0/+bug/1382385 vn_name = self.id() + '-network' vn_obj = VirtualNetwork(vn_name, parent_obj=Project()) self._vnc_lib.virtual_network_create(vn_obj) vmi_name = self.id() + '-port' logger.info('Creating port %s', vmi_name) vmi_obj = VirtualMachineInterface(vmi_name, parent_obj=Project()) vmi_obj.add_virtual_network(vn_obj) self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmi_name = self.id() + '-port' logger.info('Creating dup port %s', vmi_name) vmi_obj = VirtualMachineInterface(vmi_name, parent_obj=Project()) vmi_obj.add_virtual_network(vn_obj) orig_fq_name_to_uuid = self._api_server._db_conn.fq_name_to_uuid def dummy_fq_name_to_uuid(obj_type, *args, **kwargs): if obj_type == 'virtual-machine-interface': raise NoIdError('') return orig_fq_name_to_uuid(obj_type, *args, **kwargs) self._api_server._db_conn.fq_name_to_uuid = dummy_fq_name_to_uuid try: with ExpectedException(RefsExistError) as e: self._vnc_lib.virtual_machine_interface_create(vmi_obj) finally: self._api_server._db_conn.fq_name_to_uuid= orig_fq_name_to_uuid def test_put_on_wrong_type(self): vn_name = self.id()+'-vn' vn_obj = VirtualNetwork(vn_name) self._add_detail('Creating network with name %s' %(vn_name)) self._vnc_lib.virtual_network_create(vn_obj) listen_port = self._api_server._args.listen_port uri = '/network-ipam/%s' %(vn_obj.uuid) self._add_detail('Trying to update uuid as network-ipam, expecting 404') code, msg = self._http_put(uri, json.dumps({'network-ipam': {'display_name': 'foobar'}})) self.assertThat(code, Equals(404)) self._add_detail('Updating display_name as network, expecting success') uri = '/virtual-network/%s' %(vn_obj.uuid) code, msg = self._http_put(uri, json.dumps({'virtual-network': {'display_name': 'foobar'}})) self.assertThat(code, Equals(200)) rb_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) self.assertThat(rb_obj.display_name, Equals('foobar')) def test_floatingip_as_instanceip(self): ipam_fixt = self.useFixture(NetworkIpamTestFixtureGen( self._vnc_lib, network_ipam_name='ipam-%s' % self.id())) project_fixt = self.useFixture(ProjectTestFixtureGen(self._vnc_lib, 'default-project')) subnet_vnc = IpamSubnetType(subnet=SubnetType('1.1.1.0', 24)) vnsn_data = VnSubnetsType([subnet_vnc]) logger.info("Creating a virtual network") logger.info("Creating subnet 1.1.1.0/24") vn_fixt = self.useFixture(VirtualNetworkTestFixtureGen(self._vnc_lib, 'vn-%s' %(self.id()), network_ipam_ref_infos=[(ipam_fixt.getObj(), vnsn_data)])) vn_fixt.getObj().set_router_external(True) self._vnc_lib.virtual_network_update(vn_fixt.getObj()) logger.info("Fetching floating-ip-pool") fip_pool_fixt = self.useFixture( FloatingIpPoolTestFixtureGen(self._vnc_lib, 'floating-ip-pool', parent_fixt=vn_fixt)) logger.info("Creating auto-alloc floating-ip") fip_fixt = self.useFixture( FloatingIpTestFixtureGen( self._vnc_lib, 'fip1', parent_fixt=fip_pool_fixt, project_refs=[project_fixt.getObj()])) ip_allocated = fip_fixt.getObj().floating_ip_address logger.info("Creating auto-alloc instance-ip, expecting an error") with ExpectedException(RefsExistError) as e: iip_fixt = self.useFixture( InstanceIpTestFixtureGen( self._vnc_lib, 'iip1', auto_prop_val=False, instance_ip_address=ip_allocated, virtual_network_refs=[vn_fixt.getObj()])) # end test_floatingip_as_instanceip def test_aliasip_as_instanceip(self): ipam_fixt = self.useFixture(NetworkIpamTestFixtureGen( self._vnc_lib, network_ipam_name='ipam-%s' % self.id())) project_fixt = self.useFixture(ProjectTestFixtureGen(self._vnc_lib, 'default-project')) subnet_vnc = IpamSubnetType(subnet=SubnetType('1.1.1.0', 24)) vnsn_data = VnSubnetsType([subnet_vnc]) logger.info("Creating a virtual network") logger.info("Creating subnet 1.1.1.0/24") vn_fixt = self.useFixture(VirtualNetworkTestFixtureGen(self._vnc_lib, 'vn-%s' %(self.id()), network_ipam_ref_infos=[(ipam_fixt.getObj(), vnsn_data)])) vn_fixt.getObj().set_router_external(True) self._vnc_lib.virtual_network_update(vn_fixt.getObj()) logger.info("Fetching alias-ip-pool") aip_pool_fixt = self.useFixture( AliasIpPoolTestFixtureGen(self._vnc_lib, 'alias-ip-pool', parent_fixt=vn_fixt)) logger.info("Creating auto-alloc alias-ip") aip_fixt = self.useFixture( AliasIpTestFixtureGen( self._vnc_lib, 'aip1', parent_fixt=aip_pool_fixt, project_refs=[project_fixt.getObj()])) ip_allocated = aip_fixt.getObj().alias_ip_address logger.info("Creating auto-alloc instance-ip, expecting an error") with ExpectedException(RefsExistError) as e: iip_fixt = self.useFixture( InstanceIpTestFixtureGen( self._vnc_lib, 'iip1', auto_prop_val=False, instance_ip_address=ip_allocated, virtual_network_refs=[vn_fixt.getObj()])) # end test_aliasip_as_instanceip def test_list_lib_api(self): num_objs = 5 proj_obj = Project('%s-project' %(self.id())) self._vnc_lib.project_create(proj_obj) ipam_obj = NetworkIpam('%s-ipam' %(self.id()), parent_obj=proj_obj) self._vnc_lib.network_ipam_create(ipam_obj) def create_vns(): objs = [] for i in range(num_objs): name = '%s-%s' %(self.id(), i) obj = VirtualNetwork( name, proj_obj, display_name=name, is_shared=True, router_external=False) obj.add_network_ipam(ipam_obj, VnSubnetsType( [IpamSubnetType(SubnetType('1.1.%s.0' %(i), 28))])) self._vnc_lib.virtual_network_create(obj) objs.append(obj) return objs vn_objs = create_vns() # unanchored summary list without filters read_vn_dicts = self._vnc_lib.virtual_networks_list()['virtual-networks'] self.assertThat(len(read_vn_dicts), Not(LessThan(num_objs))) for obj in vn_objs: # locate created object, should only be one, expect exact fields obj_dict = [d for d in read_vn_dicts if d['uuid'] == obj.uuid] self.assertThat(len(obj_dict), Equals(1)) self.assertThat(set(['fq_name', 'uuid', 'href']), Equals(set(obj_dict[0].keys()))) # unanchored summary list with field filters, with extra fields resp = self._vnc_lib.virtual_networks_list( filters={'display_name':vn_objs[2].display_name}, fields=['is_shared']) vn_dicts = resp['virtual-networks'] self.assertThat(len(vn_dicts), Equals(1)) self.assertThat(vn_dicts[0]['uuid'], Equals(vn_objs[2].uuid)) self.assertThat(set(['fq_name', 'uuid', 'href', 'is_shared']), Equals(set(vn_dicts[0].keys()))) # unanchored detailed list without filters read_vn_objs = self._vnc_lib.virtual_networks_list( detail=True) self.assertThat(len(read_vn_objs), Not(LessThan(num_objs))) read_display_names = [o.display_name for o in read_vn_objs] for obj in vn_objs: self.assertThat(read_display_names, Contains(obj.display_name)) # unanchored detailed list with filters read_vn_objs = self._vnc_lib.virtual_networks_list( detail=True, filters={'is_shared':True}) self.assertThat(len(read_vn_objs), Not(LessThan(num_objs))) read_display_names = [o.display_name for o in read_vn_objs] for obj in vn_objs: self.assertThat(read_display_names, Contains(obj.display_name)) # unanchored detailed list with filter with multiple values filtered_display_names = [ '%s-%d' %(self.id(), num_objs - 1), '%s-%d' %(self.id(), num_objs - 2), ] read_vn_objs = self._vnc_lib.virtual_networks_list( detail=True, filters={'display_name': filtered_display_names}) self.assertEqual(len(read_vn_objs), len(filtered_display_names)) read_display_names = [o.display_name for o in read_vn_objs] self.assertEqual(set(read_display_names), set(filtered_display_names)) # parent anchored summary list without filters, with extra fields read_vn_dicts = self._vnc_lib.virtual_networks_list( parent_id=proj_obj.uuid, fields=['router_external'])['virtual-networks'] self.assertThat(len(read_vn_dicts), Equals(num_objs)) for obj in vn_objs: # locate created object, should only be one, expect exact fields obj_dict = [d for d in read_vn_dicts if d['uuid'] == obj.uuid] self.assertThat(len(obj_dict), Equals(1)) self.assertThat(set(['fq_name', 'uuid', 'href', 'router_external']), Equals(set(obj_dict[0].keys()))) self.assertThat(obj_dict[0]['fq_name'][:-1], Equals(proj_obj.fq_name)) self.assertEqual(obj_dict[0]['router_external'], False) # parent anchored summary list with filters resp = self._vnc_lib.virtual_networks_list( parent_id=proj_obj.uuid, filters={'is_shared': vn_objs[2].is_shared}) read_vn_dicts = resp['virtual-networks'] self.assertThat(len(read_vn_dicts), Equals(num_objs)) for obj in vn_objs: # locate created object, should only be one, expect exact fields obj_dict = [d for d in read_vn_dicts if d['uuid'] == obj.uuid] self.assertThat(len(obj_dict), Equals(1)) self.assertThat(set(['fq_name', 'uuid', 'href']), Equals(set(obj_dict[0].keys()))) self.assertThat(obj_dict[0]['fq_name'][:-1], Equals(proj_obj.fq_name)) # unanchored list with unknown filter read_vn_objs = self._vnc_lib.virtual_networks_list( parent_id=proj_obj.uuid, filters={'foo': 'bar'})['virtual-networks'] self.assertEqual(len(read_vn_objs), num_objs) # parent anchored detailed list without filters read_vn_objs = self._vnc_lib.virtual_networks_list( parent_id=proj_obj.uuid, detail=True) self.assertThat(len(read_vn_objs), Equals(num_objs)) read_display_names = [o.display_name for o in read_vn_objs] read_fq_names = [o.fq_name for o in read_vn_objs] for obj in vn_objs: self.assertThat(read_display_names, Contains(obj.display_name)) for fq_name in read_fq_names: self.assertThat(fq_name[:-1], Equals(proj_obj.fq_name)) # parent anchored detailed list with filters read_vn_objs = self._vnc_lib.virtual_networks_list( parent_id=proj_obj.uuid, detail=True, filters={'display_name':vn_objs[2].display_name}) self.assertThat(len(read_vn_objs), Equals(1)) self.assertThat(read_vn_objs[0].fq_name[:-1], Equals(proj_obj.fq_name)) # backref anchored summary list without filters resp = self._vnc_lib.virtual_networks_list( back_ref_id=ipam_obj.uuid, filters={'is_shared':vn_objs[2].is_shared}) read_vn_dicts = resp['virtual-networks'] self.assertThat(len(read_vn_dicts), Equals(num_objs)) for obj in vn_objs: # locate created object, should only be one, expect exact fields obj_dict = [d for d in read_vn_dicts if d['uuid'] == obj.uuid] self.assertThat(len(obj_dict), Equals(1)) self.assertEqual(obj_dict[0]['fq_name'], obj.get_fq_name()) self.assertThat(set(['fq_name', 'uuid', 'href']), Equals(set(obj_dict[0].keys()))) # backref anchored summary list with filters, with extra fields resp = self._vnc_lib.virtual_networks_list( back_ref_id=ipam_obj.uuid, filters={'display_name':vn_objs[2].display_name}, fields=['is_shared', 'router_external']) read_vn_dicts = resp['virtual-networks'] self.assertEqual(len(read_vn_dicts), 1) self.assertEqual(read_vn_dicts[0]['uuid'], vn_objs[2].uuid) self.assertEqual(read_vn_dicts[0]['is_shared'], True) self.assertEqual(read_vn_dicts[0]['router_external'], False) # backref anchored detailed list without filters read_vn_objs = self._vnc_lib.virtual_networks_list( back_ref_id=ipam_obj.uuid, detail=True) self.assertThat(len(read_vn_objs), Equals(num_objs)) read_display_names = [o.display_name for o in read_vn_objs] read_ipam_uuids = [o.network_ipam_refs[0]['uuid'] for o in read_vn_objs] for obj in vn_objs: self.assertThat(read_display_names, Contains(obj.display_name)) for ipam_uuid in read_ipam_uuids: self.assertThat(ipam_uuid, Equals(ipam_obj.uuid)) # backref anchored detailed list with filters read_vn_objs = self._vnc_lib.virtual_networks_list( back_ref_id=ipam_obj.uuid, detail=True, filters={'display_name':vn_objs[2].display_name, 'is_shared':vn_objs[2].is_shared}) self.assertThat(len(read_vn_objs), Equals(1)) read_ipam_fq_names = [o.network_ipam_refs[0]['to'] for o in read_vn_objs] for ipam_fq_name in read_ipam_fq_names: self.assertThat(ipam_fq_name, Equals(ipam_obj.fq_name)) # id-list detailed without filters read_vn_objs = self._vnc_lib.virtual_networks_list( obj_uuids=[o.uuid for o in vn_objs], detail=True) self.assertThat(len(read_vn_objs), Equals(num_objs)) read_display_names = [o.display_name for o in read_vn_objs] for obj in vn_objs: self.assertThat(read_display_names, Contains(obj.display_name)) # id-list detailed with filters read_vn_objs = self._vnc_lib.virtual_networks_list( obj_uuids=[o.uuid for o in vn_objs], detail=True, filters={'is_shared':False}) self.assertThat(len(read_vn_objs), Equals(0)) # end test_list_lib_api def test_list_with_id_parent_id_backref_id_and_filters(self): # Create 2 projects, one with 4 policies (3 with same name) other one # with one. One rule in first project but used by all policies in both # projects # ===========================|=========================== # P1 | P2 # ===========================|=========================== # FP1 FP2 FP3 FP4 | FP1 # \ \ \ | / # \ \ \ | / # \_____\__ FR_|_/ # FP1, FP2 and FP3 in P1 have the same diplay name p1 = Project('%s-p1' % self.id()) self._vnc_lib.project_create(p1) p2 = Project('%s-p2' % self.id()) self._vnc_lib.project_create(p2) p1_fr = FirewallRule( '%s-fr' % self.id(), parent_obj=p1, service=FirewallServiceType(), ) self._vnc_lib.firewall_rule_create(p1_fr) p1_fp1_fp2_name = '%s-p1-fp1-fp2' % self.id() p1_fp1 = FirewallPolicy( '%s-p1-fp1' % self.id(), parent_obj=p1, display_name=p1_fp1_fp2_name) p1_fp2 = FirewallPolicy( '%s-p1-fp2' % self.id(), parent_obj=p1, display_name=p1_fp1_fp2_name) p1_fp2.add_firewall_rule(p1_fr) p1_fp3 = FirewallPolicy( '%s-p1-fp3' % self.id(), parent_obj=p1, display_name=p1_fp1_fp2_name) p1_fp3.add_firewall_rule(p1_fr) p1_fp4 = FirewallPolicy('%s-p1-fp4' % self.id(), parent_obj=p1) p1_fp4.add_firewall_rule(p1_fr) p2_fp1 = FirewallPolicy('%s-p2-fp1' % self.id(), parent_obj=p2) p2_fp1.add_firewall_rule(p1_fr) for fp in [p1_fp1, p1_fp2, p1_fp3, p1_fp4, p2_fp1]: self._vnc_lib.firewall_policy_create(fp) # list P1 and P2 policies list_result = self._vnc_lib.firewall_policys_list( parent_id=[p1.uuid, p2.uuid] )['firewall-policys'] self.assertEquals(len(list_result), 5) self.assertEquals({r['uuid'] for r in list_result}, set([p1_fp1.uuid, p1_fp2.uuid, p1_fp3.uuid, p1_fp4.uuid, p2_fp1.uuid])) # list P1 policies list_result = self._vnc_lib.firewall_policys_list( parent_id=p1.uuid, )['firewall-policys'] self.assertEquals(len(list_result), 4) self.assertEquals({r['uuid'] for r in list_result}, set([p1_fp1.uuid, p1_fp2.uuid, p1_fp3.uuid, p1_fp4.uuid])) # list P1 policies with a ref to FR list_result = self._vnc_lib.firewall_policys_list( parent_id=p1.uuid, back_ref_id=p1_fr.uuid, )['firewall-policys'] self.assertEquals(len(list_result), 3) self.assertEquals({r['uuid'] for r in list_result}, set([p1_fp2.uuid, p1_fp3.uuid, p1_fp4.uuid])) # list P1 policies whit name 'p1_fp1_fp2_name' and with a ref to FR list_result = self._vnc_lib.firewall_policys_list( parent_id=p1.uuid, back_ref_id=p1_fr.uuid, filters={'display_name': p1_fp1_fp2_name}, )['firewall-policys'] self.assertEquals(len(list_result), 2) self.assertEquals({r['uuid'] for r in list_result}, set([p1_fp2.uuid, p1_fp3.uuid])) # list P1 policies whit name 'p1_fp1_fp2_name', with a ref to FR and # with UUID equals to FP1 UUID list_result = self._vnc_lib.firewall_policys_list( obj_uuids=[p1_fp2.uuid], parent_id=p1.uuid, back_ref_id=p1_fr.uuid, filters={'display_name': p1_fp1_fp2_name}, )['firewall-policys'] self.assertEquals(len(list_result), 1) self.assertEquals(list_result[0]['uuid'], p1_fp2.uuid) def test_list_for_coverage(self): name = '%s-vn1' %(self.id()) vn1_obj = VirtualNetwork( name, display_name=name, is_shared=True, router_external=False) self._vnc_lib.virtual_network_create(vn1_obj) name = '%s-vn2' %(self.id()) id_perms = IdPermsType(user_visible=False) vn2_obj = VirtualNetwork( name, display_name=name, id_perms=id_perms, is_shared=True, router_external=False) def fake_admin_request(orig_method, *args, **kwargs): return True with test_common.patch(self._api_server, 'is_admin_request', fake_admin_request): self._vnc_lib.virtual_network_create(vn2_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port q_params = 'obj_uuids=%s,%s&fields=is_shared,router_external' %( vn1_obj.uuid, vn2_obj.uuid) url = 'http://%s:%s/virtual-networks?%s' %( listen_ip, listen_port, q_params) resp = requests.get(url) self.assertEqual(resp.status_code, 200) read_vn_dicts = json.loads(resp.text)['virtual-networks'] self.assertEqual(len(read_vn_dicts), 1) self.assertEqual(read_vn_dicts[0]['uuid'], vn1_obj.uuid) self.assertEqual(read_vn_dicts[0]['is_shared'], True) self.assertEqual(read_vn_dicts[0]['router_external'], False) # end test_list_for_coverage def test_list_with_malformed_filters(self): vn_objs, _, _, _ = self._create_vn_ri_vmi() vn_uuid = vn_objs[0].uuid vn_uuids = [vn_uuid, 'bad-uuid'] try: results = self._vnc_lib.resource_list('virtual-network', obj_uuids=vn_uuids) self.assertEqual(len(results['virtual-networks']), 1) self.assertEqual(results['virtual-networks'][0]['uuid'], vn_uuid) except HttpError: self.fail('Malformed object UUID filter was not ignored') try: results = self._vnc_lib.resource_list('routing-instance', parent_id=vn_uuids, detail=True) self.assertEqual(len(results), 2) for ri_obj in results: self.assertEqual(ri_obj.parent_uuid, vn_uuid) except HttpError: self.fail('Malformed parent UUID filter was not ignored') try: results = self._vnc_lib.resource_list('virtual-machine-interface', back_ref_id=vn_uuids, detail=True) self.assertEqual(len(results), 1) vmi_obj = results[0] self.assertEqual(vmi_obj.get_virtual_network_refs()[0]['uuid'], vn_uuid) except HttpError: self.fail('Malformed back-ref UUID filter was not ignored') def test_list_filtering_parent_fq_name(self): project = Project('project-%s' % self.id()) self._vnc_lib.project_create(project) fp = FirewallPolicy('fp-%s' % self.id(), parent_obj=project) self._vnc_lib.firewall_policy_create(fp) fps = self._vnc_lib.firewall_policys_list( parent_fq_name=project.fq_name) self.assertEqual(len(fps['%ss' % FirewallPolicy.resource_type]), 1) @mock.patch.object(GlobalSystemConfigServer, 'pre_dbe_create', return_value=(True, '')) def test_list_filtering_parent_fq_name_multiple_parent_types_match( self, pre_dbe_create_mock): identical_name = 'gsc-and-domain-name-%s' % self.id() gsc = GlobalSystemConfig(identical_name) self._vnc_lib.global_system_config_create(gsc) domain = Domain(identical_name) self._vnc_lib.domain_create(domain) gsc_aal = ApiAccessList('gsc-aal-%s' % self.id(), parent_obj=gsc) self._vnc_lib.api_access_list_create(gsc_aal) domain_aal = ApiAccessList('domain-aal-%s' % self.id(), parent_obj=gsc) self._vnc_lib.api_access_list_create(domain_aal) aals = self._vnc_lib.api_access_lists_list(parent_fq_name=gsc.fq_name) self.assertEqual(len(aals['%ss' % ApiAccessList.resource_type]), 2) def test_create_with_wrong_type(self): vn_obj = VirtualNetwork('%s-bad-prop-type' %(self.id())) vn_obj.virtual_network_properties = 'foo' #VirtualNetworkType with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_network_create(vn_obj) #end test_create_with_wrong_type(self): def test_update_with_wrong_type(self): vn_obj = VirtualNetwork('%s-bad-prop-type' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) vn_obj.virtual_network_properties = 'foo' #VirtualNetworkType with ExpectedException(BadRequest) as e: self._vnc_lib.virtual_network_update(vn_obj) #end test_update_with_wrong_type(self): def test_read_rest_api(self): logger.info("Creating VN, RI, VMI.") vn_objs, ipam_objs, ri_objs, vmi_objs = self._create_vn_ri_vmi() listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port logger.info("Reading VN without filters.") url = 'http://%s:%s/virtual-network/%s' %( listen_ip, listen_port, vn_objs[0].uuid) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Contains('routing_instances')) self.assertThat(list(ret_vn.keys()), Contains('virtual_machine_interface_back_refs')) for link_key, linked_obj in [('routing_instances', ri_objs[0]), ('virtual_machine_interface_back_refs', vmi_objs[0])]: found = False for ret_link in ret_vn[link_key]: self.assertThat(ret_link, Contains('to')) self.assertThat(ret_link, Contains('uuid')) if (ret_link['to'] == linked_obj.get_fq_name() and ret_link['uuid'] == linked_obj.uuid): found = True break self.assertTrue(found) logger.info("Reading VN with children excluded.") url = 'http://%s:%s/virtual-network/%s?exclude_children=true' %( listen_ip, listen_port, vn_objs[0].uuid) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Not(Contains('routing_instances'))) self.assertThat(list(ret_vn.keys()), Contains( 'virtual_machine_interface_back_refs')) for link_key, linked_obj in [('virtual_machine_interface_back_refs', vmi_objs[0])]: ret_link = ret_vn[link_key][0] self.assertThat(ret_link, Contains('to')) self.assertThat(ret_link, Contains('uuid')) self.assertEqual(ret_link['to'], linked_obj.get_fq_name()) self.assertEqual(ret_link['uuid'], linked_obj.uuid) logger.info("Reading VN with backrefs excluded.") url = 'http://%s:%s/virtual-network/%s?exclude_back_refs=true' %( listen_ip, listen_port, vn_objs[0].uuid) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Contains('routing_instances')) self.assertThat(list(ret_vn.keys()), Not(Contains( 'virtual_machine_interface_back_refs'))) for link_key, linked_obj in [('routing_instances', ri_objs[0])]: found = False for ret_link in ret_vn[link_key]: self.assertThat(ret_link, Contains('to')) self.assertThat(ret_link, Contains('uuid')) if (ret_link['to'] == linked_obj.get_fq_name() and ret_link['uuid'] == linked_obj.uuid): found = True break self.assertTrue(found) logger.info("Reading VN with children and backrefs excluded.") query_param_str = 'exclude_children=True&exclude_back_refs=true' url = 'http://%s:%s/virtual-network/%s?%s' %( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Not(Contains('routing_instances'))) self.assertThat(list(ret_vn.keys()), Not(Contains( 'virtual_machine_interface_back_refs'))) # id_perms and perms2 are always returned irrespective of what # fields are requested property = 'virtual_network_network_id' reference = 'network_ipam_refs' children = 'routing_instances' back_reference = 'virtual_machine_interface_back_refs' logger.info("Reading VN with one specific property field.") query_param_str = 'fields=%s' % property url = 'http://%s:%s/virtual-network/%s?%s' % ( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Contains(property)) self.assertThat(list(ret_vn.keys()), Contains('id_perms')) self.assertThat(list(ret_vn.keys()), Contains('perms2')) self.assertThat(list(ret_vn.keys()), Not(Contains(reference))) self.assertThat(list(ret_vn.keys()), Not(Contains(children))) self.assertThat(list(ret_vn.keys()), Not(Contains(back_reference))) logger.info("Reading VN with one specific ref field.") query_param_str = 'fields=%s' % reference url = 'http://%s:%s/virtual-network/%s?%s' % ( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Not(Contains(property))) self.assertThat(list(ret_vn.keys()), Contains('id_perms')) self.assertThat(list(ret_vn.keys()), Contains('perms2')) self.assertThat(list(ret_vn.keys()), Contains(reference)) self.assertThat(list(ret_vn.keys()), Not(Contains(children))) self.assertThat(list(ret_vn.keys()), Not(Contains(back_reference))) logger.info("Reading VN with one specific children field.") query_param_str = 'fields=%s' % children url = 'http://%s:%s/virtual-network/%s?%s' % ( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Not(Contains(property))) self.assertThat(list(ret_vn.keys()), Not(Contains(reference))) self.assertThat(list(ret_vn.keys()), Contains('id_perms')) self.assertThat(list(ret_vn.keys()), Contains('perms2')) self.assertThat(list(ret_vn.keys()), Contains(children)) self.assertThat(list(ret_vn.keys()), Not(Contains(back_reference))) logger.info("Reading VN with one specific back-reference field.") query_param_str = 'fields=%s' % back_reference url = 'http://%s:%s/virtual-network/%s?%s' % ( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Not(Contains(property))) self.assertThat(list(ret_vn.keys()), Not(Contains(reference))) self.assertThat(list(ret_vn.keys()), Contains('id_perms')) self.assertThat(list(ret_vn.keys()), Contains('perms2')) self.assertThat(list(ret_vn.keys()), Not(Contains(children))) self.assertThat(list(ret_vn.keys()), Contains(back_reference)) logger.info("Reading VN with property, reference, children and " "back-reference fields.") query_param_str = ('fields=%s,%s,%s,%s' % (property, reference, children, back_reference)) url = 'http://%s:%s/virtual-network/%s?%s' % ( listen_ip, listen_port, vn_objs[0].uuid, query_param_str) resp = requests.get(url) self.assertEqual(resp.status_code, 200) ret_vn = json.loads(resp.text)['virtual-network'] self.assertThat(list(ret_vn.keys()), Contains('id_perms')) self.assertThat(list(ret_vn.keys()), Contains('perms2')) self.assertThat(list(ret_vn.keys()), Contains(property)) self.assertThat(list(ret_vn.keys()), Contains(reference)) self.assertThat(list(ret_vn.keys()), Contains(children)) self.assertThat(list(ret_vn.keys()), Contains(back_reference)) # end test_read_rest_api def test_bulk_read_rest_api_with_fqns(self): num_vn = 4 listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port vn_objs, _, _, _ = self._create_vn_ri_vmi(num_vn) vn_fqns = [o.fq_name for o in vn_objs] vn_fqns_str_list = [':'.join(o.fq_name) for o in vn_objs] self.assertEqual(len(vn_fqns_str_list), num_vn) ret_list = self._vnc_lib.virtual_networks_list(fq_names=vn_fqns) ret_vns = ret_list['virtual-networks'] ret_fqns_str_list = [':'.join(ret['fq_name']) for ret in ret_vns] self.assertEqual(len(ret_fqns_str_list), num_vn) self.assertEqual(vn_fqns_str_list.sort(), ret_fqns_str_list.sort()) #end test_bulk_read_rest_api_with_fqns def test_bulk_read_rest_api_with_bad_fqns(self): num_vn = 2 listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port vn_objs, _, _, _ = self._create_vn_ri_vmi(num_vn) vn_fqns = [o.fq_name for o in vn_objs] vn_fqns.append(['default-domain', 'default-project', 'bad-vn-fqn']) vn_fqns_str_list = [':'.join(o.fq_name) for o in vn_objs] self.assertEqual(len(vn_fqns_str_list), num_vn) ret_list = self._vnc_lib.resource_list('virtual-network', fq_names=vn_fqns) ret_vns = ret_list['virtual-networks'] ret_fqns_str_list = [':'.join(ret['fq_name']) for ret in ret_vns] self.assertEqual(len(ret_fqns_str_list), num_vn) self.assertEqual(vn_fqns_str_list.sort(), ret_fqns_str_list.sort()) #end test_bulk_read_rest_api_with_bad_fqns def test_bulk_read_rest_api_with_fqns_objs(self): num_vn = 4 listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port vn_objs, _, _, _ = self._create_vn_ri_vmi(num_vn) vn_fqns = [o.fq_name for o in vn_objs] vn_fqns_str_list = [':'.join(o.fq_name) for o in vn_objs] vn_uuids_list = [o.uuid for o in vn_objs] self.assertEqual(len(vn_fqns_str_list), num_vn) self.assertEqual(len(vn_uuids_list), num_vn) # We are adding 1st two in fq_names and last two in obj_uuids ret_list = self._vnc_lib.resource_list('virtual-network', fq_names=vn_fqns[0:2], obj_uuids=vn_uuids_list[2:]) ret_vns = ret_list['virtual-networks'] ret_fqns_str_list = [':'.join(ret['fq_name']) for ret in ret_vns] ret_uuids_str_list = [ret['uuid'] for ret in ret_vns] self.assertEqual(len(ret_fqns_str_list), num_vn) self.assertEqual(ret_fqns_str_list.sort(), vn_fqns_str_list.sort()) self.assertEqual(ret_uuids_str_list.sort(), vn_uuids_list.sort()) #end test_bulk_read_rest_api_with_fqns_objs def test_delete_after_unref(self): # 2 policies, 1 VN associate to VN, dissociate, delete policies def create_vn_and_policies(): pol1_obj = NetworkPolicy('%s-pol1' %(self.id())) self._vnc_lib.network_policy_create(pol1_obj) pol2_obj = NetworkPolicy('%s-pol2' %(self.id())) self._vnc_lib.network_policy_create(pol2_obj) vn_obj = VirtualNetwork('%s-vn' %(self.id())) vn_obj.add_network_policy(pol1_obj, VirtualNetworkPolicyType(sequence=SequenceType(major=0, minor=0))) vn_obj.add_network_policy(pol2_obj, VirtualNetworkPolicyType(sequence=SequenceType(major=1, minor=0))) self._vnc_lib.virtual_network_create(vn_obj) return vn_obj, pol1_obj, pol2_obj def delete_vn_and_policies(): self._vnc_lib.network_policy_delete(id=pol1_obj.uuid) self._vnc_lib.network_policy_delete(id=pol2_obj.uuid) self._vnc_lib.virtual_network_delete(id=vn_obj.uuid) # references could be removed like this... vn_obj, pol1_obj, pol2_obj = create_vn_and_policies() vn_obj.del_network_policy(pol1_obj) vn_obj.del_network_policy(pol2_obj) self._vnc_lib.virtual_network_update(vn_obj) delete_vn_and_policies() # ... or this # references could be removed like this... vn_obj, pol1_obj, pol2_obj = create_vn_and_policies() vn_obj.set_network_policy_list([], []) self._vnc_lib.virtual_network_update(vn_obj) delete_vn_and_policies() # end test_delete_after_unref def test_vn_with_native_ri(self): logger.info("Creating a VN, expecting auto Native RI creation...") vn_obj = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) ri_obj = self._vnc_lib.routing_instance_read( fq_name=vn_obj.fq_name+[vn_obj.name]) ri_children = vn_obj.get_routing_instances() self.assertTrue(ri_obj.uuid in [r['uuid'] for r in ri_children]) logger.info("...VN/RI creation done.") logger.info("Deleting a VN, expecting auto Native RI deletion.") self._vnc_lib.virtual_network_delete(id=vn_obj.uuid) with ExpectedException(NoIdError) as e: self._vnc_lib.routing_instance_read(fq_name=ri_obj.fq_name) logger.info("Testing delete RI with refs to RI...") vn_obj = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) ri_obj = self._vnc_lib.routing_instance_read( fq_name=vn_obj.fq_name+[vn_obj.name]) vmi_obj = VirtualMachineInterface( 'vmi-%s' %(self.id()), parent_obj=Project()) # link to vn expected in vmi create in server vmi_obj.add_virtual_network(vn_obj) vmi_obj.add_routing_instance(ri_obj, PolicyBasedForwardingRuleType()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) logger.info("...VN/RI/VMI creation done...") # remove link from vmi before vn delete vmi_obj.del_virtual_network(vn_obj) self._vnc_lib.virtual_machine_interface_update(vmi_obj) self._vnc_lib.virtual_network_delete(id=vn_obj.uuid) with ExpectedException(NoIdError) as e: self._vnc_lib.routing_instance_read(fq_name=ri_obj.fq_name) vmi_obj = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid) ri_refs = vmi_obj.get_routing_instance_refs() self.assertIsNone(ri_refs) logger.info("...VN/RI deletion done.") # end test_vn_with_native_ri def test_vmi_links_to_native_ri(self): logger.info("Creating a VN/VMI, expecting auto Native RI linking...") vn_obj = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) vmi_obj = VirtualMachineInterface( 'vmi-%s' %(self.id()), parent_obj=Project()) # link to vn expected in vmi create in server vmi_obj.add_virtual_network(vn_obj) self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmi_obj = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid) ri_refs = vmi_obj.get_routing_instance_refs() ri_fq_name = vn_obj.fq_name[:] ri_fq_name.append(vn_obj.fq_name[-1]) self.assertEqual(ri_refs[0]['to'], ri_fq_name) logger.info("...link to Native RI done.") # end test_vmi_links_to_native_ri def test_nop_on_empty_body_update(self): # library api test vn_fq_name = VirtualNetwork().fq_name vn_obj = self._vnc_lib.virtual_network_read(fq_name=vn_fq_name) mod_time = vn_obj.id_perms.last_modified resp = self._vnc_lib.virtual_network_update(vn_obj) self.assertIsNone(resp) vn_obj = self._vnc_lib.virtual_network_read(fq_name=vn_fq_name) self.assertEqual(mod_time, vn_obj.id_perms.last_modified) # rest api test listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port url = 'http://%s:%s/virtual-network/%s' %( listen_ip, listen_port, vn_obj.uuid) resp = requests.put(url) self.assertEqual(resp.status_code, 200) self.assertEqual(resp.text, '') # end test_nop_on_empty_body_update def test_id_perms_uuid_update_should_fail(self): vn_obj = self._create_test_object() # read in id-perms vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) orig_id_perms = copy.deepcopy(vn_obj.id_perms) wrong_id_perms = copy.deepcopy(vn_obj.id_perms) wrong_id_perms.uuid.uuid_mslong += 1 wrong_id_perms.uuid.uuid_lslong += 1 vn_obj.set_id_perms(wrong_id_perms) self._vnc_lib.virtual_network_update(vn_obj) read_id_perms = self._vnc_lib.virtual_network_read(id=vn_obj.uuid).id_perms self.assertEqual(read_id_perms.uuid.uuid_mslong, orig_id_perms.uuid.uuid_mslong) self.assertEqual(read_id_perms.uuid.uuid_lslong, orig_id_perms.uuid.uuid_lslong) # end test_id_perms_uuid_update_should_fail def test_ip_addr_not_released_on_delete_error(self): ipam_obj = NetworkIpam('ipam-%s' %(self.id())) self._vnc_lib.network_ipam_create(ipam_obj) vn_obj = VirtualNetwork('vn-%s' %(self.id())) vn_obj.add_network_ipam(ipam_obj, VnSubnetsType( [IpamSubnetType(SubnetType('1.1.1.0', 28))])) self._vnc_lib.virtual_network_create(vn_obj) # instance-ip test iip_obj = InstanceIp('iip-%s' %(self.id())) iip_obj.add_virtual_network(vn_obj) self._vnc_lib.instance_ip_create(iip_obj) # read back to get allocated ip iip_obj = self._vnc_lib.instance_ip_read(id=iip_obj.uuid) def err_on_delete(orig_method, *args, **kwargs): if args[0] == 'instance_ip': raise Exception("Faking db delete for instance ip") return orig_method(*args, **kwargs) with test_common.patch( self._api_server._db_conn, 'dbe_delete', err_on_delete): try: self._vnc_lib.instance_ip_delete(id=iip_obj.uuid) self.assertTrue( False, 'Instance IP delete worked unexpectedly') except Exception as e: self.assertThat(str(e), Contains('Faking db delete for instance ip')) # assert reservation present in zookeeper and value in iip zk_node = "%(#)010d" % {'#': int(netaddr.IPAddress( iip_obj.instance_ip_address))} zk_path = '%s/api-server/subnets/%s:1.1.1.0/28/%s' %( self._cluster_id, vn_obj.get_fq_name_str(), zk_node) mock_zk = self._api_server._db_conn._zk_db._zk_client._zk_client self.assertEqual( mock_zk._values[zk_path][0], iip_obj.uuid) self.assertEqual( self._vnc_lib.instance_ip_read( id=iip_obj.uuid).instance_ip_address, iip_obj.instance_ip_address) # floating-ip test fip_pool_obj = FloatingIpPool( 'fip-pool-%s' %(self.id()), parent_obj=vn_obj) self._vnc_lib.floating_ip_pool_create(fip_pool_obj) fip_obj = FloatingIp('fip-%s' %(self.id()), parent_obj=fip_pool_obj) fip_obj.add_project(Project()) self._vnc_lib.floating_ip_create(fip_obj) # read back to get allocated floating-ip fip_obj = self._vnc_lib.floating_ip_read(id=fip_obj.uuid) def err_on_delete(orig_method, *args, **kwargs): if args[0] == 'floating_ip': raise Exception("Faking db delete for floating ip") if args[0] == 'alias_ip': raise Exception("Faking db delete for alias ip") return orig_method(*args, **kwargs) with test_common.patch( self._api_server._db_conn, 'dbe_delete', err_on_delete): try: self._vnc_lib.floating_ip_delete(id=fip_obj.uuid) self.assertTrue( False, 'Floating IP delete worked unexpectedly') except Exception as e: self.assertThat(str(e), Contains('Faking db delete for floating ip')) # assert reservation present in zookeeper and value in iip zk_node = "%(#)010d" % {'#': int(netaddr.IPAddress( fip_obj.floating_ip_address))} zk_path = '%s/api-server/subnets/%s:1.1.1.0/28/%s' %( self._cluster_id, vn_obj.get_fq_name_str(), zk_node) mock_zk = self._api_server._db_conn._zk_db._zk_client._zk_client self.assertEqual( mock_zk._values[zk_path][0], fip_obj.uuid) self.assertEqual( self._vnc_lib.floating_ip_read( id=fip_obj.uuid).floating_ip_address, fip_obj.floating_ip_address) # alias-ip test aip_pool_obj = AliasIpPool( 'aip-pool-%s' %(self.id()), parent_obj=vn_obj) self._vnc_lib.alias_ip_pool_create(aip_pool_obj) aip_obj = AliasIp('aip-%s' %(self.id()), parent_obj=aip_pool_obj) aip_obj.add_project(Project()) self._vnc_lib.alias_ip_create(aip_obj) # read back to get allocated alias-ip aip_obj = self._vnc_lib.alias_ip_read(id=aip_obj.uuid) with test_common.patch( self._api_server._db_conn, 'dbe_delete', err_on_delete): try: self._vnc_lib.alias_ip_delete(id=aip_obj.uuid) self.assertTrue( False, 'Alias IP delete worked unexpectedly') except Exception as e: self.assertThat(str(e), Contains('Faking db delete for alias ip')) # assert reservation present in zookeeper and value in iip zk_node = "%(#)010d" % {'#': int(netaddr.IPAddress( aip_obj.alias_ip_address))} zk_path = '%s/api-server/subnets/%s:1.1.1.0/28/%s' %( self._cluster_id, vn_obj.get_fq_name_str(), zk_node) mock_zk = self._api_server._db_conn._zk_db._zk_client._zk_client self.assertEqual( mock_zk._values[zk_path][0], aip_obj.uuid) self.assertEqual( self._vnc_lib.alias_ip_read( id=aip_obj.uuid).alias_ip_address, aip_obj.alias_ip_address) # end test_ip_addr_not_released_on_delete_error def test_uve_trace_delete_name_from_msg(self): test_obj = self._create_test_object() self.assert_vnc_db_has_ident(test_obj) db_client = self._api_server._db_conn uve_delete_trace_invoked = [] uuid_to_fq_name_on_delete_invoked = [] def spy_uve_trace(orig_method, *args, **kwargs): oper = kwargs['oper'].upper() obj_uuid = kwargs['uuid'] if oper == 'DELETE' and obj_uuid == test_obj.uuid: if not uve_delete_trace_invoked: uve_delete_trace_invoked.append(True) def assert_on_call(*args, **kwargs): uuid_to_fq_name_on_delete_invoked.append(True) with test_common.patch(db_client, 'uuid_to_fq_name', assert_on_call): return orig_method(*args, **kwargs) else: return orig_method(*args, **kwargs) with test_common.patch(db_client, 'dbe_uve_trace', spy_uve_trace): self._delete_test_object(test_obj) gevent.sleep(0.5) self.assert_vnc_db_doesnt_have_ident(test_obj) self.assertEqual(len(uve_delete_trace_invoked), 1, 'uve_trace not invoked on object delete') self.assertEqual(len(uuid_to_fq_name_on_delete_invoked), 0, 'uuid_to_fq_name invoked in delete at dbe_uve_trace') # end test_uve_trace_delete_name_from_msg def test_ref_update_with_existing_ref(self): ipam_obj = NetworkIpam('ipam-%s' % self.id()) self._vnc_lib.network_ipam_create(ipam_obj) vn_obj = VirtualNetwork('vn-%s' % self.id()) vn_obj.add_network_ipam(ipam_obj, VnSubnetsType( [IpamSubnetType(SubnetType('1.1.1.0', 28))])) self._vnc_lib.virtual_network_create(vn_obj) self._vnc_lib.ref_update('virtual-network', vn_obj.uuid, 'network-ipam', ipam_obj.uuid, ipam_obj.fq_name, 'ADD', VnSubnetsType([ IpamSubnetType(SubnetType('1.1.1.0', 28)), IpamSubnetType(SubnetType('2.2.2.0', 28)), ])) vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) self.assertEqual(len(vn_obj.network_ipam_refs), 1) ipam_subnets = vn_obj.network_ipam_refs[0]['attr'].ipam_subnets self.assertEqual(len(ipam_subnets), 2) self.assertEqual(ipam_subnets[0].subnet.ip_prefix, '1.1.1.0') self.assertEqual(ipam_subnets[1].subnet.ip_prefix, '2.2.2.0') # end test_ref_update_with_existing_ref def test_ref_update_with_resource_type_underscored(self): vn_obj = VirtualNetwork('%s-vn' % self.id()) ipam_obj = NetworkIpam('%s-vmi' % self.id()) self._vnc_lib.network_ipam_create(ipam_obj) self._vnc_lib.virtual_network_create(vn_obj) subnet_type = IpamSubnetType(subnet=SubnetType('1.1.1.0', 2)) self._vnc_lib.ref_update(vn_obj.get_type().replace('-', '_'), vn_obj.uuid, ipam_obj.get_type().replace('-', '_'), ipam_obj.uuid, ipam_obj.fq_name, 'ADD', VnSubnetsType([subnet_type])) vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) fq_name = vn_obj.get_network_ipam_refs()[0]['to'] ipam_name = self._vnc_lib.network_ipam_read(fq_name=fq_name).name self.assertEqual(ipam_obj.name, ipam_name) def test_fq_name_to_id_with_resource_type_underscored(self): test_obj = self._create_test_object() test_uuid = self._vnc_lib.fq_name_to_id( test_obj.get_type().replace('-', '_'), test_obj.get_fq_name()) # check that format is correct try: uuid.UUID(test_uuid) except ValueError: self.assertTrue(False, 'Bad form UUID ' + test_uuid) def test_resource_list_with_resource_type_underscored(self): test_obj = self._create_test_object() resources = self._vnc_lib.resource_list( test_obj.get_type().replace('-', '_'), obj_uuids=[test_obj.uuid]) resource_ids = [resource['uuid'] for resource in resources['%ss' % test_obj.get_type()]] self.assertEqual([test_obj.uuid], resource_ids) def test_qos_config(self): qc = QosConfig('qos-config-%s' %(self.id()), Project()) self._vnc_lib.qos_config_create(qc) qc = self._vnc_lib.qos_config_read(fq_name=qc.get_fq_name()) self.assertEqual(len(qc.get_global_system_config_refs()), 1) def test_annotations(self): vn_obj = vnc_api.VirtualNetwork('vn-set-%s' %(self.id())) vn_obj.set_annotations( KeyValuePairs([KeyValuePair(key='k1', value='v1'), KeyValuePair(key=' k2 prime ', value=json.dumps('v2'))])) self._vnc_lib.virtual_network_create(vn_obj) ret_vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) self.assertEqual(len(ret_vn_obj.annotations.key_value_pair), 2) annotation_check = [a for a in ret_vn_obj.annotations.key_value_pair if a.key == ' k2 prime '] self.assertEqual(len(annotation_check), 1) self.assertEqual(annotation_check[0].value, json.dumps('v2')) vn_obj = vnc_api.VirtualNetwork('vn-add-del-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) vn_obj.add_annotations(KeyValuePair(key='k1', value=None)) vn_obj.add_annotations(KeyValuePair(key='k2', value='v2')) vn_obj.add_annotations(KeyValuePair(key='k3', value=str(300))) self._vnc_lib.virtual_network_update(vn_obj) ret_vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) self.assertEqual(len(ret_vn_obj.annotations.key_value_pair), 3) self.assertEqual(set(['k1', 'k2', 'k3']), set([a.key for a in ret_vn_obj.annotations.key_value_pair])) vn_obj.del_annotations(elem_position='k1') self._vnc_lib.virtual_network_update(vn_obj) ret_vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) self.assertEqual(len(ret_vn_obj.annotations.key_value_pair), 2) self.assertEqual(set(['k2', 'k3']), set([a.key for a in ret_vn_obj.annotations.key_value_pair])) # end test_annotations def test_cert_bundle_refresh(self): bundle_dir = tempfile.mkdtemp(self.id()) try: with open(bundle_dir+'cert', 'w') as f: f.write("CERT") with open(bundle_dir+'ca', 'w') as f: f.write("CA") with open(bundle_dir+'key', 'w') as f: f.write("KEY") cfgm_common.utils.getCertKeyCaBundle(bundle_dir+'pem', [bundle_dir+x for x in ['cert', 'ca', 'key']]) with open(bundle_dir+'pem', 'r') as f: self.assertEqual(f.readlines()[0], 'CERTCAKEY') # sleep so mods to cert/ca/key appear as different epoch gevent.sleep(0.1) with open(bundle_dir+'cert', 'w') as f: f.write("CERTNEW") with open(bundle_dir+'ca', 'w') as f: f.write("CANEW") with open(bundle_dir+'key', 'w') as f: f.write("KEYNEW") cfgm_common.utils.getCertKeyCaBundle(bundle_dir+'pem', [bundle_dir+x for x in ['cert', 'ca', 'key']]) with open(bundle_dir+'pem', 'r') as f: self.assertEqual(f.readlines()[0], 'CERTNEWCANEWKEYNEW') finally: os.removedirs(bundle_dir) # end test_cert_bundle_refresh def test_name_attribute_in_detail_list_resource(self): vn_obj = vnc_api.VirtualNetwork('%s-vn' % self.id()) self._vnc_lib.virtual_network_create(vn_obj) query_params = { 'obj_uuids': vn_obj.uuid, 'detail': True, } results = self._vnc_lib._request_server( rest.OP_GET, '/virtual-networks', data=query_params)['virtual-networks'] self.assertEqual(len(results), 1) vn_dict = results[0]['virtual-network'] self.assertIn('name', vn_dict) self.assertEqual(vn_dict['name'], vn_obj.fq_name[-1]) def test_bgpvpn_type_assoc_with_network_l2_l3_forwarding_mode(self): # Create virtual network with forwarding mode set to 'l2' and 'l3' vn_l2_l3 = self.create_virtual_network('vn-l2-l3-%s' % self.id()) # Create l2 bgpvpn bgpvpn_l2 = Bgpvpn('bgpvpn-l2-%s' % self.id(), bgpvpn_type='l2') self._vnc_lib.bgpvpn_create(bgpvpn_l2) # Create l3 bgpvpn bgpvpn_l3 = Bgpvpn('bgpvpn-l3-%s' % self.id()) self._vnc_lib.bgpvpn_create(bgpvpn_l3) # Trying to associate a 'l2' bgpvpn on the virtual network vn_l2_l3.add_bgpvpn(bgpvpn_l2) self._vnc_lib.virtual_network_update(vn_l2_l3) vn_l2_l3 = self._vnc_lib.virtual_network_read(id=vn_l2_l3.uuid) # Trying to associate a 'l3' bgpvpn on the virtual network vn_l2_l3.add_bgpvpn(bgpvpn_l3) self._vnc_lib.virtual_network_update(vn_l2_l3) vn_l2_l3 = self._vnc_lib.virtual_network_read(id=vn_l2_l3.uuid) # Try to change the virtual network forwarding mode to 'l2' only with ExpectedException(BadRequest): vn_l2_l3.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l2')) self._vnc_lib.virtual_network_update(vn_l2_l3) vn_l2_l3 = self._vnc_lib.virtual_network_read(id=vn_l2_l3.uuid) # Try to change the virtual network forwarding mode to 'l3' only with ExpectedException(BadRequest): vn_l2_l3.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l3')) self._vnc_lib.virtual_network_update(vn_l2_l3) def test_bgpvpn_type_assoc_with_network_l2_forwarding_mode(self): # Create virtual network with forwarding mode set to 'l2' only vn_l2 = self.create_virtual_network('vn-l2-%s' % self.id()) vn_l2.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l2')) self._vnc_lib.virtual_network_update(vn_l2) vn_l2 = self._vnc_lib.virtual_network_read(id=vn_l2.uuid) # Create l2 bgpvpn bgpvpn_l2 = Bgpvpn('bgpvpn-l2-%s' % self.id(), bgpvpn_type='l2') self._vnc_lib.bgpvpn_create(bgpvpn_l2) # Create l3 bgpvpn bgpvpn_l3 = Bgpvpn('bgpvpn-l3-%s' % self.id()) self._vnc_lib.bgpvpn_create(bgpvpn_l3) # Trying to associate a 'l2' bgpvpn on the virtual network vn_l2.add_bgpvpn(bgpvpn_l2) self._vnc_lib.virtual_network_update(vn_l2) vn_l2 = self._vnc_lib.virtual_network_read(id=vn_l2.uuid) # Trying to associate a 'l3' bgpvpn on the virtual network with ExpectedException(BadRequest): vn_l2.add_bgpvpn(bgpvpn_l3) self._vnc_lib.virtual_network_update(vn_l2) vn_l2 = self._vnc_lib.virtual_network_read(id=vn_l2.uuid) # Try to change the virtual network forwarding mode to 'l3' only with ExpectedException(BadRequest): vn_l2.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l3')) self._vnc_lib.virtual_network_update(vn_l2) vn_l2 = self._vnc_lib.virtual_network_read(id=vn_l2.uuid) # Try to change the virtual network forwarding mode to 'l2' and l3' vn_l2.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l2_l3')) self._vnc_lib.virtual_network_update(vn_l2) def test_bgpvpn_type_assoc_with_network_l3_forwarding_mode(self): # Create virtual network with forwarding mode set to 'l3' only vn_l3 = self.create_virtual_network('vn-l3-%s' % self.id()) vn_l3.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l3')) self._vnc_lib.virtual_network_update(vn_l3) vn_l3 = self._vnc_lib.virtual_network_read(id=vn_l3.uuid) # Create l2 bgpvpn bgpvpn_l2 = Bgpvpn('bgpvpn-l2-%s' % self.id(), bgpvpn_type='l2') self._vnc_lib.bgpvpn_create(bgpvpn_l2) # Create l3 bgpvpn bgpvpn_l3 = Bgpvpn('bgpvpn-l3-%s' % self.id()) self._vnc_lib.bgpvpn_create(bgpvpn_l3) # Trying to associate a 'l3' bgpvpn on the virtual network vn_l3.add_bgpvpn(bgpvpn_l3) self._vnc_lib.virtual_network_update(vn_l3) vn_l3 = self._vnc_lib.virtual_network_read(id=vn_l3.uuid) # Trying to associate a 'l2' bgpvpn on the virtual network with ExpectedException(BadRequest): vn_l3.add_bgpvpn(bgpvpn_l2) self._vnc_lib.virtual_network_update(vn_l3) vn_l3 = self._vnc_lib.virtual_network_read(id=vn_l3.uuid) # Try to change the virtual network forwarding mode to 'l2' only with ExpectedException(BadRequest): vn_l3.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l2')) self._vnc_lib.virtual_network_update(vn_l3) vn_l3 = self._vnc_lib.virtual_network_read(id=vn_l3.uuid) # Try to change the virtual network forwarding mode to 'l2' and l3' vn_l3.set_virtual_network_properties( VirtualNetworkType(forwarding_mode='l2_l3')) self._vnc_lib.virtual_network_update(vn_l3) def test_bgpvpn_type_limited_to_l3_for_router_assoc(self): # Create logical router lr, _, _, _ = self.create_logical_router( 'lr-%s' % self.id(), nb_of_attached_networks=0) # Create l2 bgpvpn bgpvpn_l2 = Bgpvpn('bgpvpn-l2-%s' % self.id(), bgpvpn_type='l2') self._vnc_lib.bgpvpn_create(bgpvpn_l2) # Trying to associate a 'l2' bgpvpn on the logical router with ExpectedException(BadRequest): lr.add_bgpvpn(bgpvpn_l2) self._vnc_lib.logical_router_update(lr) def test_bgpvpn_fail_assoc_network_with_gw_router_assoc_to_bgpvpn(self): # Create one bgpvpn bgpvpn = Bgpvpn('bgpvpn-%s' % self.id()) self._vnc_lib.bgpvpn_create(bgpvpn) # Create one virtual network with one logical router as gateway lr, vns, _, _ = self.create_logical_router('lr-%s' % self.id()) # We attached only one virtual network to the logical router vn = vns[0] # Associate the bgppvpn to the logical router lr.add_bgpvpn(bgpvpn) self._vnc_lib.logical_router_update(lr) lr = self._vnc_lib.logical_router_read(id=lr.uuid) # The try to set that same bgpvpn to the virtual network with ExpectedException(BadRequest): vn.add_bgpvpn(bgpvpn) self._vnc_lib.virtual_network_update(vn) def test_bgpvpn_fail_assoc_router_with_network_assoc_to_bgpvpn(self): # Create one bgpvpn bgpvpn = Bgpvpn('bgpvpn-%s' % self.id()) self._vnc_lib.bgpvpn_create(bgpvpn) # Create one virtual network with one logical router as gateway lr, vns, vmis, _ = self.create_logical_router('lr-%s' % self.id()) # We attached only one virtual network to the logical router vn = vns[0] vmi = vmis[0] # Associate the bgpvpn to the virtual network vn.add_bgpvpn(bgpvpn) self._vnc_lib.virtual_network_update(vn) lr = self._vnc_lib.logical_router_read(id=lr.uuid) # The try to set that same bgpvpn to the logical router with ExpectedException(BadRequest): lr.add_bgpvpn(bgpvpn) self._vnc_lib.logical_router_update(lr) lr = self._vnc_lib.logical_router_read(id=lr.uuid) # Detatch the logical router from the virtual network lr.del_virtual_machine_interface(vmi) self._vnc_lib.logical_router_update(lr) lr = self._vnc_lib.logical_router_read(id=lr.uuid) # Associate the bgpvpn to the logical router lr.add_bgpvpn(bgpvpn) self._vnc_lib.logical_router_update(lr) lr = self._vnc_lib.logical_router_read(id=lr.uuid) # Try to reattach the virtual network to the logical router with ExpectedException(BadRequest): lr.add_virtual_machine_interface(vmi) self._vnc_lib.logical_router_update(lr) def test_create_singleton_entry_with_zk_alloc_exist(self): api_server = self._server_info['api_server'] vn_obj = VirtualNetwork('vn-%s' %(self.id())) orig_dbe_alloc = api_server._db_conn.dbe_alloc try: def err_dbe_alloc(*args, **kwargs): return (False, (409, 'Faking zk ResourceExistsError')) api_server._db_conn.dbe_alloc = err_dbe_alloc with ExpectedException(HttpError): api_server.create_singleton_entry(vn_obj) finally: api_server._db_conn.dbe_alloc = orig_dbe_alloc # end test_create_singleton_entry_with_zk_alloc_exist def test_tcp_keepalive_options(self): api_server = self._server_info['api_server'] # Check if the TCP keepalive has been set in the api server args self.assertThat(api_server._args.tcp_keepalive_enable, Equals(True)) # Check if other TCP keepalive options are present in args. self.assertIn('tcp_keepalive_idle_time', api_server._args) self.assertIn('tcp_keepalive_interval', api_server._args) self.assertIn('tcp_keepalive_probes', api_server._args) # end test_tcp_keepalive_options # end class TestVncCfgApiServer class TestStaleLockRemoval(test_case.ApiServerTestCase): STALE_LOCK_SECS = '0.2' @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestStaleLockRemoval, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'stale_lock_seconds', cls.STALE_LOCK_SECS)]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestStaleLockRemoval, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_stale_fq_name_lock_removed_on_partial_create(self): # 1. partially create an object i.e zk done, cass # cass silently not(simulating process restart). # 2. create same object again, expect RefsExist # 3. wait for stale_lock_seconds and attempt create # of same object. should succeed. def stub(*args, **kwargs): return (True, '') with test_common.flexmocks([ (self._api_server._db_conn, 'dbe_create', stub), (self._api_server.get_resource_class('virtual-network'), 'post_dbe_create', stub)]): self._create_test_object() with ExpectedException(RefsExistError), \ mock.patch('vnc_cfg_api_server.api_server'\ '.VncApiServer.get_args') as get_args_patch: get_args_patch.return_value.stale_lock_seconds = sys.maxsize self._create_test_object() gevent.sleep(float(self.STALE_LOCK_SECS)) self._create_test_object() # end test_stale_fq_name_lock_removed_on_partial_create def test_stale_fq_name_lock_removed_on_partial_delete(self): # 1. partially delete an object i.e removed from cass # but not from zk silently (simulating process restart) # 2. create same object again, expect RefsExist # 3. wait for stale_lock_seconds and attempt create # of same object. should succeed. def stub(*args, **kwargs): return (True, '') vn_obj = self._create_test_object() with test_common.flexmocks([ (self._api_server._db_conn, 'dbe_release', stub)]): self._vnc_lib.virtual_network_delete(id=vn_obj.uuid) with ExpectedException(RefsExistError), \ mock.patch('vnc_cfg_api_server.api_server'\ '.VncApiServer.get_args') as get_args_patch: get_args_patch.return_value.stale_lock_seconds = sys.maxsize self._create_test_object() gevent.sleep(float(self.STALE_LOCK_SECS)) self._create_test_object() # end test_stale_fq_name_lock_removed_on_partial_delete def test_stale_fq_name_lock_removed_coverage(self): vn_obj = VirtualNetwork('vn-%s' %(self.id())) vn_obj.__dict__['id_perms'] = {} vn_UUID = uuid.uuid4() # create zk-node self._api_server._db_conn.set_uuid( obj_type=vn_obj._type, obj_dict=vn_obj.__dict__, id=vn_UUID, do_lock=True) # assert we hit the zk-node on re-create with ExpectedException(ResourceExistsError, ".*at zookeeper.*"): self._api_server._db_conn.set_uuid( obj_type=vn_obj._type, obj_dict=vn_obj.__dict__, id=vn_UUID, do_lock=True) # create entry in cassandra too and assert # not a stale lock on re-create uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') with uuid_cf.patch_row(str(vn_UUID), new_columns={'fq_name':json.dumps(vn_obj.fq_name), 'type':json.dumps(vn_obj._type)}): with ExpectedException(ResourceExistsError, ".*at cassandra.*"): self._api_server._db_conn.set_uuid( obj_type=vn_obj._type, obj_dict=vn_obj.__dict__, id=vn_UUID, do_lock=True) self._api_server._db_conn._object_db.cache_uuid_to_fq_name_del( str(vn_UUID)) # sleep and re-create and now it should be fine gevent.sleep(float(self.STALE_LOCK_SECS)) self._api_server._db_conn.set_uuid( obj_type=vn_obj._type, obj_dict=vn_obj.__dict__, id=vn_UUID, do_lock=True) # end test_stale_fq_name_lock_removed_coverage # end TestStaleLockRemoval class TestVncCfgApiServerRequests(test_case.ApiServerTestCase): """ Tests to verify the max_requests config parameter of api-server.""" @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestVncCfgApiServerRequests, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'max_requests', 10)]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestVncCfgApiServerRequests, cls).tearDownClass(*args, **kwargs) # end tearDownClass def api_requests(self, orig_vn_read, count, vn_name): self.blocked = False api_server = self._server_info['api_server'] def slow_response_on_vn_read(obj_type, *args, **kwargs): if obj_type == 'virtual_network': while self.blocked: gevent.sleep(1) return orig_vn_read(obj_type, *args, **kwargs) api_server._db_conn._object_db.object_read = slow_response_on_vn_read logger.info("Creating a test VN object.") test_obj = self.create_virtual_network(vn_name, '1.1.1.0/24') logger.info("Making max_requests(%s) to api server" % (count - 1)) def vn_read(): self._vnc_lib.virtual_network_read(id=test_obj.uuid) gevent.sleep(0) self.blocked = True for i in range(count): gevent.spawn(vn_read) gevent.sleep(1) def test_max_api_requests(self): # Test to make sure api-server accepts requests within max_api_requests self.wait_till_api_server_idle() # when there are pipe-lined requests, responses have content-length # calculated only once. see _cast() in bottle.py for 'out' as bytes. # in this test, without resetting as below, read of def-nw-ipam # in create_vn will be the size returned for read_vn and # deserialization fails api_server = self._server_info['api_server'] def reset_response_content_length(): if 'Content-Length' in bottle.response: del bottle.response['Content-Length'] api_server.api_bottle.add_hook('after_request', reset_response_content_length) orig_vn_read = api_server._db_conn._object_db.object_read try: vn_name = self.id() + '5testvn1' self.api_requests(orig_vn_read, 5, vn_name) logger.info("Making one more requests well within the max_requests to api server") vn_name = self.id() + 'testvn1' try: greenlet = gevent.spawn(self.create_virtual_network, vn_name, '10.1.1.0/24') gevent.sleep(0) vn_obj = greenlet.get(timeout=3) except gevent.timeout.Timeout as e: self.assertFalse(greenlet.successful(), 'Request failed unexpectedly') else: self.assertEqual(vn_obj.name, vn_name) finally: api_server._db_conn._object_db.object_read = orig_vn_read self.blocked = False # Test to make sure api-server rejects requests over max_api_requests self.wait_till_api_server_idle() api_server = self._server_info['api_server'] orig_vn_read = api_server._db_conn._object_db.object_read try: vn_name = self.id() + '11testvn2' self.api_requests(orig_vn_read, 11, vn_name) logger.info("Making one more requests (max_requests + 1) to api server") try: vn_name = self.id() + 'testvn2' greenlet = gevent.spawn(self.create_virtual_network, vn_name, '10.1.1.0/24') gevent.sleep(0) greenlet.get(timeout=3) except gevent.timeout.Timeout as e: logger.info("max_requests + 1 failed as expected.") self.assertFalse(False, greenlet.successful()) else: self.assertTrue(False, 'Request succeeded unexpectedly') finally: api_server._db_conn._object_db.object_read = orig_vn_read self.blocked = False # end class TestVncCfgApiServerRequests class TestLocalAuth(test_case.ApiServerTestCase): _rbac_role = 'admin' @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) from keystonemiddleware import auth_token class FakeAuthProtocol(object): _test_case = cls def __init__(self, app, *args, **kwargs): self._app = app # end __init__ def __call__(self, env, start_response): # in multi-tenancy mode only admin role admitted # by api-server till full rbac support env['HTTP_X_ROLE'] = self._test_case._rbac_role return self._app(env, start_response) # end __call__ def get_admin_token(self): return None # end get_admin_token # end class FakeAuthProtocol super(TestLocalAuth, cls).setUpClass( extra_config_knobs=[ ('DEFAULTS', 'auth', 'keystone'), ('DEFAULTS', 'multi_tenancy', True), ('DEFAULTS', 'listen_ip_addr', '0.0.0.0'), ('KEYSTONE', 'admin_user', 'foo'), ('KEYSTONE', 'admin_password', 'bar'),], extra_mocks=[ (auth_token, 'AuthProtocol', FakeAuthProtocol), ]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestLocalAuth, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_local_auth_on_8095(self): from requests.auth import HTTPBasicAuth admin_port = self._api_server._args.admin_port # equivalent to curl -u foo:bar http://localhost:8095/virtual-networks logger.info("Positive case") url = 'http://localhost:%s/virtual-networks' %(admin_port) resp = requests.get(url, auth=HTTPBasicAuth('foo', 'bar')) self.assertThat(resp.status_code, Equals(200)) logger.info("Negative case without header") resp = requests.get(url) self.assertThat(resp.status_code, Equals(401)) self.assertThat(resp.text, Contains('HTTP_AUTHORIZATION header missing')) logger.info("Negative case with wrong creds") resp = requests.get(url, auth=HTTPBasicAuth('bar', 'foo')) self.assertThat(resp.status_code, Equals(401)) def test_doc_auth(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port # equivalent to curl -u foo:bar http://localhost:8095/documentation/index.html logger.info("Positive case") def fake_static_file(*args, **kwargs): return with test_common.patch( bottle, 'static_file', fake_static_file): url = 'http://%s:%s/documentation/index.html' %(listen_ip, listen_port) resp = requests.get(url) self.assertThat(resp.status_code, Equals(200)) logger.info("Negative case without Documentation") url = 'http://%s:%s/virtual-networks' %(listen_ip, listen_port) orig_rbac_role = TestLocalAuth._rbac_role try: TestLocalAuth._rbac_role = 'foobar' resp = requests.get(url) self.assertThat(resp.status_code, Equals(403)) finally: TestLocalAuth._rbac_role = orig_rbac_role # end class TestLocalAuth class TestExtensionApi(test_case.ApiServerTestCase): test_case = None class ResourceApiDriver(vnc_plugin_base.ResourceApi): def __init__(self, *args, **kwargs): pass # end __init__ def transform_request(self, request): # add/del/mod envvar request.environ['X_TEST_DUMMY'] = 'foo' request.environ['HTTP_X_CONTRAIL_USERAGENT'] = 'bar' del request.environ['SERVER_SOFTWARE'] # /virtual-networks -> virtual-network obj_type = request.path[1:-1] if request.method == 'POST' and obj_type == 'virtual-network': obj_name = request.json[obj_type]['fq_name'][-1] if 'transform-create' in obj_name: # add/del/mod body request.json[obj_type]['dummy_field'] = 'foo' request.json[obj_type]['fq_name'][-1] = obj_name + '-foo' del request.json[obj_type]['uuid'] elif request.method == 'GET': request.environ['QUERY_STRING'] = \ request.environ['QUERY_STRING'].replace('replace-me','') # end transform_request def validate_request(self, request): # /virtual-networks -> virtual-network obj_type = request.path[1:-1] if request.method == 'POST' and obj_type == 'virtual-network': obj_name = request.json[obj_type]['fq_name'][-1] if 'validate-create' in obj_name: raise bottle.abort(456, 'invalidating create request') elif request.method == 'GET': mch = re.match('/virtual-network/.*', request.path) if (mch and 'fail-me' in request.environ['QUERY_STRING']): raise bottle.abort(456, 'invalidating read request') elif request.method == 'PUT': mch = re.match('/virtual-network/.*', request.path) if (mch and request.json['virtual-network'].get('is_shared')): raise bottle.abort(456, 'invalidating update request') elif request.method == 'DELETE': mch = re.match('/virtual-network/.*', request.path) if mch: raise bottle.abort(456, 'invalidating delete request') # end validate_request def transform_response(self, request, response): if request.method == 'POST': obj_type = request.path[1:-1] if obj_type != 'virtual-network': return obj_name = request.json[obj_type]['fq_name'][-1] if 'transform-create' in obj_name: TestExtensionApi.test_case.assertIn('X_TEST_DUMMY', list(request.environ.keys())) TestExtensionApi.test_case.assertNotIn('SERVER_SOFTWARE', list(request.environ.keys())) TestExtensionApi.test_case.assertThat(request.environ['HTTP_X_CONTRAIL_USERAGENT'], Equals('bar')) bottle.response.status = '234 Transformed Response' response[obj_type]['extra_field'] = 'foo' # end transform_response # end class ResourceApiDriver @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) test_common.setup_extra_flexmock( [(stevedore.extension.ExtensionManager, '__new__', FakeExtensionManager)]) FakeExtensionManager._entry_pt_to_classes['vnc_cfg_api.resourceApi'] = \ [TestExtensionApi.ResourceApiDriver] super(TestExtensionApi, cls).setUpClass(extra_mocks=[ (stevedore.extension.ExtensionManager, '__new__', FakeExtensionManager)]) # end setUpClass @classmethod def tearDownClass(cls): FakeExtensionManager._entry_pt_to_classes['vnc_cfg_api.resourceApi'] = \ None FakeExtensionManager._ext_objs = [] logger.removeHandler(cls.console_handler) super(TestExtensionApi, cls).tearDownClass() # end tearDownClass def setUp(self): TestExtensionApi.test_case = self super(TestExtensionApi, self).setUp() # end setUp def test_transform_request(self): # create obj = VirtualNetwork('transform-create') obj_request_uuid = str(uuid.uuid4()) body_dict = {'virtual-network': {'fq_name': obj.fq_name, 'parent_type': 'project', 'uuid': obj_request_uuid}} status, content = self._http_post('/virtual-networks', body=json.dumps(body_dict)) self.assertThat(status, Equals(234)) obj_dict = json.loads(content)['virtual-network'] obj_allocd_uuid = obj_dict['uuid'] self.assertThat(obj_allocd_uuid, Not(Equals(obj_request_uuid))) self.assertThat(obj_dict['fq_name'][-1], Equals('transform-create-foo')) self.assertThat(obj_dict['extra_field'], Equals('foo')) # read status, content = self._http_get('/virtual-networks', query_params={'obj_uuids':'replace-me'+obj_dict['uuid']}) self.assertThat(status, Equals(200)) objs_dict = json.loads(content)['virtual-networks'] self.assertThat(len(objs_dict), Equals(1)) self.assertThat(objs_dict[0]['fq_name'][-1], Equals('transform-create-foo')) # update body_dict = {'virtual-network': {'display_name': 'foo'}} status, content = self._http_put('/virtual-network/'+obj_allocd_uuid, body=json.dumps(body_dict)) obj = self._vnc_lib.virtual_network_read(id=obj_allocd_uuid) self.assertThat(obj.display_name, Equals('foo')) # end test_transform_request def test_validate_request(self): self.ignore_err_in_log = True # create obj = VirtualNetwork('validate-create') body_dict = {'virtual-network': {'fq_name': obj.fq_name, 'parent_type': 'project'}} status, content = self._http_post('/virtual-networks', body=json.dumps(body_dict)) self.assertThat(status, Equals(456)) self.assertThat(content, Contains('invalidating create request')) with ExpectedException(NoIdError) as e: self._vnc_lib.virtual_network_read(fq_name=obj.fq_name) # read obj = self._create_test_object() status, content = self._http_get('/virtual-network/'+obj.uuid, query_params={'fail-me': 1}) self.assertThat(status, Equals(456)) self.assertThat(content, Contains('invalidating read request')) # update obj.is_shared = True body_dict = {'virtual-network': {'is_shared': True}} status, content = self._http_put('/virtual-network/'+obj.uuid, body=json.dumps(body_dict)) self.assertThat(status, Equals(456)) self.assertThat(content, Contains('invalidating update request')) obj = self._vnc_lib.virtual_network_read(id=obj.uuid) self.assertThat(obj.is_shared, Equals(False)) # delete status, content = self._http_delete('/virtual-network/'+obj.uuid, body=None) self.assertThat(status, Equals(456)) self.assertThat(content, Contains('invalidating delete request')) obj = self._vnc_lib.virtual_network_read(id=obj.uuid) # end test_validate_request # end class TestExtensionApi class TestPropertyWithList(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestPropertyWithList, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestPropertyWithList, cls).tearDownClass(*args, **kwargs) # end tearDownClass def assert_kvpos(self, rd_ff_proto, idx, k, v, pos): self.assertEqual(rd_ff_proto[idx][0]['protocol'], k) self.assertEqual(rd_ff_proto[idx][0]['port'], v) self.assertEqual(rd_ff_proto[idx][1], pos) def test_set_in_object(self): vmi_obj = VirtualMachineInterface('vmi-%s' %(self.id()), parent_obj=Project()) vmi_obj.set_virtual_machine_interface_fat_flow_protocols( FatFlowProtocols([ProtocolType(protocol='p1', port=1), ProtocolType(protocol='p2', port=2)])) # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) # ensure stored as list order rd_vmi_obj = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid) rd_ff_proto = rd_vmi_obj.virtual_machine_interface_fat_flow_protocols self.assertThat( rd_ff_proto.fat_flow_protocol[0].protocol, Equals('p1')) self.assertThat( rd_ff_proto.fat_flow_protocol[1].protocol, Equals('p2')) # verify db storage format (wrapper/container type stripped in storage) uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') cols = uuid_cf.get(vmi_obj.uuid, column_start='propl:virtual_machine_interface_fat_flow_protocols:', column_finish='propl:virtual_machine_interface_fat_flow_protocols;') col_name_0, col_val_0 = cols.popitem(last=False) col_name_1, col_val_1 = cols.popitem(last=False) self.assertThat(col_name_0.split(':')[-1], Equals('0')) self.assertThat(json.loads(col_val_0)['protocol'], Equals('p1')) self.assertThat(col_name_1.split(':')[-1], Equals('1')) self.assertThat(json.loads(col_val_1)['protocol'], Equals('p2')) # update and clobber old entries #vmi_obj.set_virtual_machine_interface_bindings([]) vmi_obj.set_virtual_machine_interface_fat_flow_protocols( FatFlowProtocols()) self._vnc_lib.virtual_machine_interface_update(vmi_obj) rd_vmi_obj = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid) rd_ff_proto = rd_vmi_obj.virtual_machine_interface_fat_flow_protocols self.assertIsNone(rd_ff_proto) with ExpectedException(cassandra_fake_impl.NotFoundException) as e: cols = uuid_cf.get(vmi_obj.uuid, column_start='propl:virtual_machine_interface_fat_flow_protocols:', column_finish='propl:virtual_machine_interface_fat_flow_protocols;') # end test_set_in_object def test_add_del_in_object(self): vmi_obj = VirtualMachineInterface('vmi-%s' %(self.id()), parent_obj=Project()) for proto,port,pos in [('proto2', 2, 'pos1'), ('proto1', 1, 'pos2'), ('proto3', 3, 'pos3'), ('proto4', 4, None)]: vmi_obj.add_virtual_machine_interface_fat_flow_protocols( ProtocolType(protocol=proto, port=port), pos) # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) rd_ff_proto = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid).virtual_machine_interface_fat_flow_protocols self.assertEqual(len(rd_ff_proto.fat_flow_protocol), 4) self.assertEqual(rd_ff_proto.fat_flow_protocol[0].protocol, 'proto4') self.assertEqual(rd_ff_proto.fat_flow_protocol[0].port, 4) self.assertEqual(rd_ff_proto.fat_flow_protocol[1].protocol, 'proto2') self.assertEqual(rd_ff_proto.fat_flow_protocol[1].port, 2) self.assertEqual(rd_ff_proto.fat_flow_protocol[2].protocol, 'proto1') self.assertEqual(rd_ff_proto.fat_flow_protocol[2].port, 1) self.assertEqual(rd_ff_proto.fat_flow_protocol[3].protocol, 'proto3') self.assertEqual(rd_ff_proto.fat_flow_protocol[3].port, 3) for pos in ['pos1', 'pos3']: vmi_obj.del_virtual_machine_interface_fat_flow_protocols( elem_position=pos) self._vnc_lib.virtual_machine_interface_update(vmi_obj) rd_ff_proto = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid).virtual_machine_interface_fat_flow_protocols self.assertEqual(len(rd_ff_proto.fat_flow_protocol), 2) self.assertEqual(rd_ff_proto.fat_flow_protocol[0].protocol, 'proto4') self.assertEqual(rd_ff_proto.fat_flow_protocol[0].port, 4) self.assertEqual(rd_ff_proto.fat_flow_protocol[1].protocol, 'proto1') self.assertEqual(rd_ff_proto.fat_flow_protocol[1].port, 1) # end test_add_del_in_object def test_prop_list_add_delete_get_element(self): vmi_obj = VirtualMachineInterface('vmi-%s' %(self.id()), parent_obj=Project()) vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) # 1. Add tests # add with element as type self._vnc_lib.prop_list_add_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', ProtocolType('proto1', 1)) # add with element as dict self._vnc_lib.prop_list_add_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', {'protocol':'proto2', 'port':2}) # verify above add without position specified generated uuid'd order rd_ff_proto = self._vnc_lib.prop_list_get(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols') self.assertEqual(len(rd_ff_proto), 2) # add with position specified self._vnc_lib.prop_list_add_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', {'protocol':'proto3', 'port':3}, '0.1') self._vnc_lib.prop_list_add_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', {'protocol':'proto4', 'port':4}, '0.0') self._vnc_lib.prop_list_add_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', {'protocol':'proto5', 'port':5}, '.00') # 2. Get tests (specific and all elements) # get specific element rd_ff_proto = self._vnc_lib.prop_list_get(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', '0.0') self.assertEqual(len(rd_ff_proto), 1) self.assert_kvpos(rd_ff_proto, 0, 'proto4', 4, '0.0') # get all elements rd_ff_proto = self._vnc_lib.prop_list_get(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols') self.assertEqual(len(rd_ff_proto), 5) self.assert_kvpos(rd_ff_proto, 0, 'proto5', 5, '.00') self.assert_kvpos(rd_ff_proto, 1, 'proto4', 4, '0.0') self.assert_kvpos(rd_ff_proto, 2, 'proto3', 3, '0.1') self.assertTrue( isinstance(uuid.UUID(rd_ff_proto[-1][1]), uuid.UUID), 'Auto-generated position not of uuid form') # 3. Delete tests - middle and edges self._vnc_lib.prop_list_delete_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', '0.1') self._vnc_lib.prop_list_delete_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', '.00') self._vnc_lib.prop_list_delete_element(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols', rd_ff_proto[-1][1]) rd_ff_proto = self._vnc_lib.prop_list_get(vmi_obj.uuid, 'virtual_machine_interface_fat_flow_protocols') self.assertEqual(len(rd_ff_proto), 2) self.assert_kvpos(rd_ff_proto, 0, 'proto4', 4, '0.0') self.assertTrue( isinstance(uuid.UUID(rd_ff_proto[-1][1]), uuid.UUID), 'Deleted incorrect element') # end test_prop_list_add_delete_get_element def test_set_in_resource_body_rest_api(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port url = 'http://%s:%s/virtual-machine-interfaces' %( listen_ip, listen_port) vmi_body = { 'virtual-machine-interface': { 'fq_name': ['default-domain', 'default-project', 'vmi-%s' %(self.id())], 'parent_type': 'project', 'virtual_machine_interface_fat_flow_protocols': { 'fat_flow_protocol': [ {'protocol': 'proto1', 'port': 1}, {'protocol': 'proto1', 'port': 2}, {'protocol': 'proto2', 'port': 1}, {'protocol': 'proto2', 'port': 2}, ] }, 'virtual_network_refs': [ {'to': ['default-domain', 'default-project', 'default-virtual-network']} ] } } vmi_resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(vmi_body)) vmi_uuid = json.loads( vmi_resp.content)['virtual-machine-interface']['uuid'] vmi_url = 'http://%s:%s/virtual-machine-interface/%s' %( listen_ip, listen_port, vmi_uuid) vmi_read = json.loads( requests.get(vmi_url).content)['virtual-machine-interface'] rd_ff_proto = vmi_read['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto['fat_flow_protocol']), 4) self.assertEqual(rd_ff_proto['fat_flow_protocol'][0]['protocol'], 'proto1') self.assertEqual(rd_ff_proto['fat_flow_protocol'][1]['protocol'], 'proto1') self.assertEqual(rd_ff_proto['fat_flow_protocol'][2]['protocol'], 'proto2') self.assertEqual(rd_ff_proto['fat_flow_protocol'][3]['protocol'], 'proto2') vmi_body = { 'virtual-machine-interface': { 'virtual_machine_interface_fat_flow_protocols': { 'fat_flow_protocol': [ {'protocol': 'proto3', 'port': 3} ] } } } vmi_resp = requests.put(vmi_url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(vmi_body)) vmi_read = json.loads( requests.get(vmi_url).content)['virtual-machine-interface'] rd_ff_proto = vmi_read['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto['fat_flow_protocol']), 1) self.assertEqual(rd_ff_proto['fat_flow_protocol'][0]['protocol'], 'proto3') # end test_set_in_resource_body_rest_api def _rest_vmi_create(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port url = 'http://%s:%s/virtual-machine-interfaces' %( listen_ip, listen_port) vmi_body = { 'virtual-machine-interface': { 'fq_name': ['default-domain', 'default-project', 'vmi-%s' %(self.id())], 'parent_type': 'project', 'virtual_network_refs': [ {'to': ['default-domain', 'default-project', 'default-virtual-network']} ] } } vmi_resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(vmi_body)) vmi_uuid = json.loads( vmi_resp.content)['virtual-machine-interface']['uuid'] return vmi_uuid # end _rest_vmi_create def test_prop_list_add_delete_get_rest_api(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port vmi_uuid = self._rest_vmi_create() prop_coll_update_url = 'http://%s:%s/prop-collection-update' %( listen_ip, listen_port) prop_coll_get_url = 'http://%s:%s/prop-collection-get' %( listen_ip, listen_port) # 1. Add elements requests.post(prop_coll_update_url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps( {'uuid': vmi_uuid, 'updates': [ {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'add', 'value': {'protocol': 'proto1', 'port': 1} }, {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'add', 'value': {'protocol': 'proto2', 'port': 2}, 'position': '0.0'}, {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'add', 'value': {'protocol': 'proto3', 'port': 3}, 'position': '.01'} ] })) # 2. Get elements (all and specific) # get all elements query_params = {'uuid': vmi_uuid, 'fields': ','.join( ['virtual_machine_interface_fat_flow_protocols'])} rd_ff_proto = json.loads(requests.get(prop_coll_get_url, params=query_params).content)['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto), 3) self.assertEqual(rd_ff_proto[0][0]['protocol'], 'proto3') self.assertEqual(rd_ff_proto[0][0]['port'], 3) self.assertEqual(rd_ff_proto[0][1], '.01') self.assertEqual(rd_ff_proto[2][0]['protocol'], 'proto1') self.assertEqual(rd_ff_proto[2][0]['port'], 1) self.assertTrue( isinstance(uuid.UUID(rd_ff_proto[2][1]), uuid.UUID), 'Autogenerated position not of uuid form') # get specific element query_params = {'uuid': vmi_uuid, 'fields': ','.join( ['virtual_machine_interface_fat_flow_protocols']), 'position': '.01'} rd_ff_proto = json.loads(requests.get(prop_coll_get_url, params=query_params).content)['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto), 1) self.assertEqual(rd_ff_proto[0][0]['protocol'], 'proto3') self.assertEqual(rd_ff_proto[0][0]['port'], 3) self.assertEqual(rd_ff_proto[0][1], '.01') # 3. Modify specific elements requests.post(prop_coll_update_url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps( {'uuid': vmi_uuid, 'updates': [ {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'modify', 'value': {'protocol': 'proto2', 'port': 21}, 'position': '0.0'}, {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'modify', 'value': {'protocol': 'proto3', 'port': 31}, 'position': '.01'} ] })) query_params = {'uuid': vmi_uuid, 'fields': ','.join( ['virtual_machine_interface_fat_flow_protocols'])} rd_ff_proto = json.loads(requests.get(prop_coll_get_url, params=query_params).content)['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto), 3) self.assertEqual(rd_ff_proto[0][0]['protocol'], 'proto3') self.assertEqual(rd_ff_proto[0][0]['port'], 31) self.assertEqual(rd_ff_proto[0][1], '.01') self.assertEqual(rd_ff_proto[1][0]['protocol'], 'proto2') self.assertEqual(rd_ff_proto[1][0]['port'], 21) # 4. Delete (and add) elements requests.post(prop_coll_update_url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps( {'uuid': vmi_uuid, 'updates': [ {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'delete', 'position': '.01'}, {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'delete', 'position': '0.0'}, {'field': 'virtual_machine_interface_fat_flow_protocols', 'operation': 'add', 'value': {'protocol': 'proto4', 'port': 4}, 'position': '.01'} ] })) query_params = {'uuid': vmi_uuid, 'fields': ','.join( ['virtual_machine_interface_fat_flow_protocols'])} rd_ff_proto = json.loads(requests.get(prop_coll_get_url, params=query_params).content)['virtual_machine_interface_fat_flow_protocols'] self.assertEqual(len(rd_ff_proto), 2) self.assertEqual(rd_ff_proto[0][0]['protocol'], 'proto4') self.assertEqual(rd_ff_proto[0][0]['port'], 4) self.assertEqual(rd_ff_proto[0][1], '.01') self.assertEqual(rd_ff_proto[1][0]['protocol'], 'proto1') self.assertEqual(rd_ff_proto[1][0]['port'], 1) # end test_prop_list_add_delete_get_rest_api def test_prop_list_wrong_type_should_fail(self): listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port vmi_uuid = self._rest_vmi_create() prop_coll_update_url = 'http://%s:%s/prop-collection-update' %( listen_ip, listen_port) prop_coll_get_url = 'http://%s:%s/prop-collection-get' %( listen_ip, listen_port) # 1. Try adding elements to non-prop-list field response = requests.post(prop_coll_update_url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps( {'uuid': vmi_uuid, 'updates': [ {'field': 'display_name', 'operation': 'add', 'value': {'key': 'k3', 'value': 'v3'}, 'position': '.01'} ] })) self.assertEqual(response.status_code, 400) # 2. Try getting elements from non-prop-list field query_params = {'uuid': vmi_uuid, 'fields': ','.join( ['display_name'])} response = requests.get(prop_coll_get_url, params=query_params) self.assertEqual(response.status_code, 400) # end test_prop_list_wrong_type_should_fail def test_resource_list_with_field_prop_list(self): vmi_obj = VirtualMachineInterface('vmi-%s' % (self.id()), parent_obj=Project()) fname = 'virtual_machine_interface_fat_flow_protocols' # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmis = self._vnc_lib.virtual_machine_interfaces_list( obj_uuids=[vmi_obj.uuid], fields=[fname]) vmi_ids = [vmi['uuid'] for vmi in vmis['virtual-machine-interfaces']] self.assertEqual([vmi_obj.uuid], vmi_ids) self.assertNotIn(fname, vmis['virtual-machine-interfaces'][0]) vmi_obj = self._vnc_lib.virtual_machine_interface_read(id=vmi_obj.uuid) proto_type = ProtocolType(protocol='proto', port=1) vmi_obj.add_virtual_machine_interface_fat_flow_protocols(proto_type, 'pos') self._vnc_lib.virtual_machine_interface_update(vmi_obj) vmis = self._vnc_lib.virtual_machine_interfaces_list( obj_uuids=[vmi_obj.uuid], fields=[fname]) vmi_ids = [vmi['uuid'] for vmi in vmis['virtual-machine-interfaces']] self.assertEqual([vmi_obj.uuid], vmi_ids) self.assertIn(fname, vmis['virtual-machine-interfaces'][0]) self.assertDictEqual({'fat_flow_protocol': [vars(proto_type)]}, vmis['virtual-machine-interfaces'][0][fname]) # end class TestPropertyWithlist class TestPropertyWithMap(test_case.ApiServerTestCase): _excluded_vmi_bindings = ['vif_type', 'vnic_type'] def assert_kvpos(self, rd_bindings, idx, k, v, pos): self.assertEqual(rd_bindings[idx][0]['key'], k) self.assertEqual(rd_bindings[idx][0]['value'], v) self.assertEqual(rd_bindings[idx][1], pos) @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestPropertyWithMap, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestPropertyWithMap, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_set_in_object(self): vmi_obj = VirtualMachineInterface('vmi-%s' %(self.id()), parent_obj=Project()) vmi_obj.set_virtual_machine_interface_bindings( KeyValuePairs([KeyValuePair(key='k1', value='v1'), KeyValuePair(key='k2', value='v2')])) # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) # ensure stored as list order rd_bindings = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid).virtual_machine_interface_bindings bindings_dict = {binding.key: binding.value for binding in rd_bindings.key_value_pair if binding.key not in self._excluded_vmi_bindings} self.assertDictEqual(bindings_dict, {'k1': 'v1', 'k2': 'v2'}) # verify db storage format (wrapper/container type stripped in storage) uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') cols = uuid_cf.get(vmi_obj.uuid, column_start='propm:virtual_machine_interface_bindings:', column_finish='propm:virtual_machine_interface_bindings;') col_name_0, col_val_0 = cols.popitem(last=False) col_name_1, col_val_1 = cols.popitem(last=False) self.assertThat(col_name_0.split(':')[-1], Equals('k1')) self.assertThat(json.loads(col_val_0)['key'], Equals('k1')) self.assertThat(col_name_1.split(':')[-1], Equals('k2')) self.assertThat(json.loads(col_val_1)['key'], Equals('k2')) # update and clobber old entries #vmi_obj.set_virtual_machine_interface_bindings([]) vmi_obj.set_virtual_machine_interface_bindings(KeyValuePairs()) self._vnc_lib.virtual_machine_interface_update(vmi_obj) rd_vmi_obj = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid) rd_bindings = rd_vmi_obj.virtual_machine_interface_bindings self.assertIsNone(rd_bindings) with ExpectedException(cassandra_fake_impl.NotFoundException) as e: cols = uuid_cf.get(vmi_obj.uuid, column_start='propm:virtual_machine_interface_bindings:', column_finish='propm:virtual_machine_interface_bindings;') # end test_set_in_object def test_element_add_del_in_object(self): vmi_obj = VirtualMachineInterface('vmi-%s' %(self.id()), parent_obj=Project()) fake_bindings_dict = {'k1': 'v1', 'k2': 'v2', 'k3': 'v3', 'k4': 'v4'} for key, val in fake_bindings_dict.items(): vmi_obj.add_virtual_machine_interface_bindings( KeyValuePair(key=key, value=val)) # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) rd_bindings = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid).virtual_machine_interface_bindings self.assertEqual(len(rd_bindings.key_value_pair), 4) bindings_dict = {binding.key: binding.value for binding in rd_bindings.key_value_pair if binding.key not in self._excluded_vmi_bindings} self.assertDictEqual(bindings_dict, fake_bindings_dict) for pos in ['k1', 'k4']: vmi_obj.del_virtual_machine_interface_bindings(elem_position=pos) fake_bindings_dict.pop(pos) self._vnc_lib.virtual_machine_interface_update(vmi_obj) rd_bindings = self._vnc_lib.virtual_machine_interface_read( id=vmi_obj.uuid).virtual_machine_interface_bindings self.assertEqual(len(rd_bindings.key_value_pair), 2) bindings_dict = {binding.key: binding.value for binding in rd_bindings.key_value_pair if binding.key not in self._excluded_vmi_bindings} self.assertDictEqual(bindings_dict, fake_bindings_dict) # end test_element_set_del_in_object def test_resource_list_with_field_prop_map(self): vmi_obj = VirtualMachineInterface('vmi-%s' % (self.id()), parent_obj=Project()) fname = 'virtual_machine_interface_bindings' # needed for backend type-specific handling vmi_obj.add_virtual_network(VirtualNetwork()) self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmis = self._vnc_lib.virtual_machine_interfaces_list( obj_uuids=[vmi_obj.uuid], fields=[fname]) vmi_ids = [vmi['uuid'] for vmi in vmis['virtual-machine-interfaces']] self.assertEqual([vmi_obj.uuid], vmi_ids) self.assertNotIn(fname, vmis['virtual-machine-interfaces'][0]) vmi_obj = self._vnc_lib.virtual_machine_interface_read(id=vmi_obj.uuid) kv_pairs = KeyValuePairs([KeyValuePair(key='k', value='v')]) vmi_obj.set_virtual_machine_interface_bindings(kv_pairs) self._vnc_lib.virtual_machine_interface_update(vmi_obj) vmis = self._vnc_lib.virtual_machine_interfaces_list( obj_uuids=[vmi_obj.uuid], fields=[fname]) vmi_ids = [vmi['uuid'] for vmi in vmis['virtual-machine-interfaces']] self.assertEqual([vmi_obj.uuid], vmi_ids) self.assertIn(fname, vmis['virtual-machine-interfaces'][0]) self.assertDictEqual(kv_pairs.exportDict()['KeyValuePairs'], vmis['virtual-machine-interfaces'][0][fname]) # end class TestPropertyWithMap class TestDBAudit(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestDBAudit, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestDBAudit, cls).tearDownClass(*args, **kwargs) # end tearDownClass @contextlib.contextmanager def audit_mocks(self): with test_common.patch_imports( [('schema_transformer.db', flexmock(db=flexmock( SchemaTransformerDB=flexmock(get_db_info=lambda: [('to_bgp_keyspace', ['route_target_table'])]))))]): yield # end audit_mocks def _create_vn_subnet_ipam_iip(self, name): ipam_obj = vnc_api.NetworkIpam('vn-%s' % name) self._vnc_lib.network_ipam_create(ipam_obj) vn_obj = vnc_api.VirtualNetwork(name) vn_obj.add_network_ipam(ipam_obj, VnSubnetsType( [IpamSubnetType(SubnetType('1.1.1.0', 28))])) self._vnc_lib.virtual_network_create(vn_obj) iip_obj = vnc_api.InstanceIp('iip-%s' % name) iip_obj.add_virtual_network(vn_obj) self._vnc_lib.instance_ip_create(iip_obj) return vn_obj, ipam_obj, iip_obj # end _create_vn_subnet_ipam_iip def _create_security_group(self, name): sg_obj = vnc_api.SecurityGroup(name) self._vnc_lib.security_group_create(sg_obj) return sg_obj def test_checker(self): with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() self.assertTill(self.vnc_db_has_ident, obj=test_obj) db_manage.db_check(*db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) # end test_checker def test_checker_missing_mandatory_fields(self): # detect OBJ_UUID_TABLE entry missing required fields with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') orig_col_val_ts = uuid_cf.get(test_obj.uuid, include_timestamp=True) omit_col_names = random.sample(set( ['type', 'fq_name', 'prop:id_perms']), 1) wrong_col_val_ts = dict((k,v) for k,v in list(orig_col_val_ts.items()) if k not in omit_col_names) with uuid_cf.patch_row( test_obj.uuid, wrong_col_val_ts): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_obj_mandatory_fields() self.assertIn(db_manage.MandatoryFieldsMissingError, [type(x) for x in errors]) # end test_checker_missing_mandatory_fields def test_checker_fq_name_mismatch_index_to_object(self): # detect OBJ_UUID_TABLE and OBJ_FQ_NAME_TABLE inconsistency with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() self.assert_vnc_db_has_ident(test_obj) uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') orig_col_val_ts = uuid_cf.get(test_obj.uuid, include_timestamp=True) wrong_col_val_ts = copy.deepcopy(orig_col_val_ts) wrong_col_val_ts['fq_name'] = (json.dumps(['wrong-fq-name']), wrong_col_val_ts['fq_name'][1]) with uuid_cf.patch_row( test_obj.uuid, wrong_col_val_ts): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_fq_name_uuid_match() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNMismatchError, error_types) self.assertIn(db_manage.FQNStaleIndexError, error_types) self.assertIn(db_manage.FQNIndexMissingError, error_types) # end test_checker_fq_name_mismatch_index_to_object def test_checker_fq_name_index_stale(self): # fq_name table in cassandra has entry but obj_uuid table doesn't with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') with uuid_cf.patch_row(test_obj.uuid, new_columns=None): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_fq_name_uuid_match() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNStaleIndexError, error_types) # test_checker_fq_name_mismatch_stale def test_checker_fq_name_index_missing(self): # obj_uuid table has entry but fq_name table in cassandra doesn't with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() self.assert_vnc_db_has_ident(test_obj) uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') fq_name_cf = self.get_cf('config_db_uuid','obj_fq_name_table') test_obj_type = test_obj.get_type().replace('-', '_') orig_col_val_ts = fq_name_cf.get(test_obj_type, include_timestamp=True) # remove test obj in fq-name table wrong_col_val_ts = dict((k,v) for k,v in list(orig_col_val_ts.items()) if ':'.join(test_obj.fq_name) not in k) with fq_name_cf.patch_row(test_obj_type, new_columns=wrong_col_val_ts): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_fq_name_uuid_match() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNIndexMissingError, error_types) # test_checker_fq_name_mismatch_missing def test_checker_ifmap_identifier_extra(self): # ifmap has identifier but obj_uuid table in cassandra doesn't with self.audit_mocks(): from vnc_cfg_api_server import db_manage test_obj = self._create_test_object() self.assert_vnc_db_has_ident(test_obj) uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') with uuid_cf.patch_row(test_obj.uuid, new_columns=None): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_fq_name_uuid_match() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNStaleIndexError, error_types) # test_checker_ifmap_identifier_extra def test_checker_ifmap_identifier_missing(self): # ifmap doesn't have an identifier but obj_uuid table # in cassandra does with self.audit_mocks(): from vnc_cfg_api_server import db_manage uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') with uuid_cf.patch_row(str(uuid.uuid4()), new_columns={'type': json.dumps(''), 'fq_name':json.dumps(''), 'prop:id_perms':json.dumps('')}): db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) errors = db_checker.check_fq_name_uuid_match() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNIndexMissingError, error_types) # test_checker_ifmap_identifier_missing def test_checker_useragent_subnet_key_missing(self): pass # move to vnc_openstack test # test_checker_useragent_subnet_key_missing def test_checker_useragent_subnet_id_missing(self): pass # move to vnc_openstack test # test_checker_useragent_subnet_id_missing def test_checker_ipam_subnet_uuid_missing(self): pass # move to vnc_openstack test # test_checker_ipam_subnet_uuid_missing def test_checker_subnet_count_mismatch(self): pass # move to vnc_openstack test # test_checker_subnet_count_mismatch def test_checker_useragent_subnet_missing(self): pass # move to vnc_openstack test # test_checker_useragent_subnet_missing def test_checker_useragent_subnet_extra(self): pass # move to vnc_openstack test # test_checker_useragent_subnet_extra def test_checker_zk_vn_extra(self): vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) fq_name_cf = self.get_cf('config_db_uuid','obj_fq_name_table') orig_col_val_ts = fq_name_cf.get('virtual_network', include_timestamp=True) # remove test obj in fq-name table wrong_col_val_ts = dict((k,v) for k,v in list(orig_col_val_ts.items()) if ':'.join(vn_obj.fq_name) not in k) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) # verify catch of extra ZK VN when name index is mocked with fq_name_cf.patch_row('virtual_network', new_columns=wrong_col_val_ts): errors = db_checker.check_subnet_addr_alloc() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNIndexMissingError, error_types) # test_checker_zk_vn_extra def test_checker_zk_vn_missing(self): vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) with db_checker._zk_client.patch_path( '%s%s/%s' %(self._cluster_id, db_checker.BASE_SUBNET_ZK_PATH, vn_obj.get_fq_name_str())): errors = db_checker.check_subnet_addr_alloc() error_types = [type(x) for x in errors] self.assertIn(db_manage.ZkVNMissingError, error_types) self.assertIn(db_manage.ZkSubnetMissingError, error_types) # test_checker_zk_vn_missing def test_checker_zk_ip_extra(self): vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) # verify catch of zk extra ip when iip is mocked absent iip_obj = vnc_api.InstanceIp(self.id()) iip_obj.add_virtual_network(vn_obj) self._vnc_lib.instance_ip_create(iip_obj) uuid_cf = self.get_cf('config_db_uuid','obj_uuid_table') with uuid_cf.patch_row(iip_obj.uuid, None): errors = db_checker.check_subnet_addr_alloc() error_types = [type(x) for x in errors] self.assertIn(db_manage.FQNStaleIndexError, error_types) self.assertIn(db_manage.ZkIpExtraError, error_types) # test_checker_zk_ip_extra def test_checker_zk_ip_missing(self): vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) iip_obj = vnc_api.InstanceIp(self.id()) iip_obj.add_virtual_network(vn_obj) self._vnc_lib.instance_ip_create(iip_obj) ip_addr = self._vnc_lib.instance_ip_read( id=iip_obj.uuid).instance_ip_address ip_str = "%(#)010d" % {'#': int(netaddr.IPAddress(ip_addr))} with db_checker._zk_client.patch_path( '%s%s/%s:1.1.1.0/28/%s' %( self._cluster_id, db_checker.BASE_SUBNET_ZK_PATH, vn_obj.get_fq_name_str(), ip_str)): errors = db_checker.check_subnet_addr_alloc() error_types = [type(x) for x in errors] self.assertIn(db_manage.ZkIpMissingError, error_types) # test_checker_zk_ip_missing def test_checker_zk_route_target_extra(self): pass # move to schema transformer test # test_checker_zk_route_target_extra def test_checker_zk_route_target_range_wrong(self): pass # move to schema transformer test # test_checker_zk_route_target_range_wrong def test_checker_cass_route_target_range_wrong(self): pass # move to schema transformer test # test_checker_cass_route_target_range_wrong def test_checker_route_target_count_mismatch(self): # include user assigned route-targets here pass # move to schema transformer test # test_checker_route_target_count_mismatch def test_checker_zk_virtual_network_id_extra_and_missing(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( vn_obj.uuid, 'prop:virtual_network_network_id', json.dumps(42)): errors = db_checker.check_virtual_networks_id() error_types = [type(x) for x in errors] self.assertIn(db_manage.ZkVNIdExtraError, error_types) self.assertIn(db_manage.ZkVNIdMissingError, error_types) # test_checker_zk_virtual_network_id_extra_and_missing def test_checker_zk_virtual_network_id_duplicate(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') vn1_obj, _, _ = self._create_vn_subnet_ipam_iip('vn1-%s' % self.id()) vn1_obj = self._vnc_lib.virtual_network_read(id=vn1_obj.uuid) vn2_obj, _, _ = self._create_vn_subnet_ipam_iip('vn2-%s' % self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( vn2_obj.uuid, 'prop:virtual_network_network_id', json.dumps(vn1_obj.virtual_network_network_id)): errors = db_checker.check_virtual_networks_id() error_types = [type(x) for x in errors] self.assertIn(db_manage.VNDuplicateIdError, error_types) self.assertIn(db_manage.ZkVNIdExtraError, error_types) # test_checker_zk_virtual_network_id_duplicate def test_checker_zk_security_group_id_extra_and_missing(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') sg_obj = self._create_security_group(self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( sg_obj.uuid, 'prop:security_group_id', json.dumps(8000042)): errors = db_checker.check_security_groups_id() error_types = [type(x) for x in errors] self.assertIn(db_manage.ZkSGIdExtraError, error_types) self.assertIn(db_manage.ZkSGIdMissingError, error_types) # test_checker_zk_security_group_id_extra_and_missing def test_checker_zk_security_group_id_duplicate(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') sg1_obj = self._create_security_group('sg1-%s' % self.id()) sg1_obj = self._vnc_lib.security_group_read(id=sg1_obj.uuid) sg2_obj = self._create_security_group('sg2-%s' % self.id()) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_checker = db_manage.DatabaseChecker( *db_manage._parse_args('check --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( sg2_obj.uuid, 'prop:security_group_id', json.dumps(sg1_obj.security_group_id)): errors = db_checker.check_security_groups_id() error_types = [type(x) for x in errors] self.assertIn(db_manage.SGDuplicateIdError, error_types) self.assertIn(db_manage.ZkSGIdExtraError, error_types) # test_checker_zk_security_group_id_duplicate def test_checker_security_group_0_missing(self): pass # move to schema transformer test # test_checker_security_group_0_missing def test_checker_route_targets_id_with_vn_rt_list_set_to_none(self): project = Project('project-%s' % self.id()) self._vnc_lib.project_create(project) vn = VirtualNetwork('vn-%s' % self.id(), parent_obj=project) self._vnc_lib.virtual_network_create(vn) vn.set_route_target_list(None) self._vnc_lib.virtual_network_update(vn) with self.audit_mocks(): from vnc_cfg_api_server import db_manage args = db_manage._parse_args( 'check --cluster_id %s' % self._cluster_id) db_checker = db_manage.DatabaseChecker(*args) db_checker.audit_route_targets_id() def test_cleaner(self): with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_manage.db_clean(*db_manage._parse_args('clean --cluster_id %s' %(self._cluster_id))) # end test_cleaner def test_cleaner_zk_virtual_network_id(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_cleaner = db_manage.DatabaseCleaner( *db_manage._parse_args('--execute clean --cluster_id %s' %(self._cluster_id))) fake_id = 42 with uuid_cf.patch_column( vn_obj.uuid, 'prop:virtual_network_network_id', json.dumps(fake_id)): db_cleaner.clean_stale_virtual_network_id() zk_id_str = "%(#)010d" %\ {'#': vn_obj.virtual_network_network_id - 1} self.assertIsNone( db_cleaner._zk_client.exists( '%s%s/%s' % ( self._cluster_id, db_cleaner.BASE_VN_ID_ZK_PATH, zk_id_str)) ) def test_healer_zk_virtual_network_id(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') vn_obj, _, _ = self._create_vn_subnet_ipam_iip(self.id()) vn_obj = self._vnc_lib.virtual_network_read(id=vn_obj.uuid) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_cleaner = db_manage.DatabaseHealer( *db_manage._parse_args('--execute heal --cluster_id %s' % ( self._cluster_id))) fake_id = 42 with uuid_cf.patch_column( vn_obj.uuid, 'prop:virtual_network_network_id', json.dumps(fake_id)): db_cleaner.heal_virtual_networks_id() zk_id_str = "%(#)010d" % {'#': fake_id - 1} self.assertEqual( db_cleaner._zk_client.exists( '%s%s/%s' % ( self._cluster_id, db_cleaner.BASE_VN_ID_ZK_PATH, zk_id_str))[0], vn_obj.get_fq_name_str()) def test_cleaner_zk_security_group_id(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') sg_obj = self._create_security_group(self.id()) sg_obj = self._vnc_lib.security_group_read(id=sg_obj.uuid) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_cleaner = db_manage.DatabaseCleaner( *db_manage._parse_args('--execute clean --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( sg_obj.uuid, 'prop:security_group_id', json.dumps(8000042)): db_cleaner.clean_stale_security_group_id() zk_id_str = "%(#)010d" % {'#': sg_obj.security_group_id} self.assertIsNone( db_cleaner._zk_client.exists( '%s%s/%s' % ( self._cluster_id, db_cleaner.BASE_VN_ID_ZK_PATH, zk_id_str)) ) def test_healer_zk_security_group_id(self): uuid_cf = self.get_cf('config_db_uuid', 'obj_uuid_table') sg_obj = self._create_security_group(self.id()) sg_obj = self._vnc_lib.security_group_read(id=sg_obj.uuid) with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_cleaner = db_manage.DatabaseHealer( *db_manage._parse_args('--execute heal --cluster_id %s' %(self._cluster_id))) with uuid_cf.patch_column( sg_obj.uuid, 'prop:security_group_id', json.dumps(8000042)): db_cleaner.heal_security_groups_id() zk_id_str = "%(#)010d" % {'#': 42} self.assertEqual( db_cleaner._zk_client.exists( '%s%s/%s' % (self._cluster_id, db_cleaner.BASE_SG_ID_ZK_PATH, zk_id_str))[0], sg_obj.get_fq_name_str()) def test_clean_obj_missing_mandatory_fields(self): pass # end test_clean_obj_missing_mandatory_fields def test_clean_dangling_fq_names(self): pass # end test_clean_dangling_fq_names() def test_clean_dangling_back_refs(self): pass # end test_clean_dangling_back_refs() def test_clean_dangling_children(self): pass # end test_clean_dangling_children def test_healer(self): with self.audit_mocks(): from vnc_cfg_api_server import db_manage db_manage.db_heal(*db_manage._parse_args('heal --cluster_id %s' %(self._cluster_id))) # end test_healer def test_heal_fq_name_index(self): pass # end test_heal_fq_name_index def test_heal_back_ref_index(self): pass # end test_heal_back_ref_index def test_heal_children_index(self): pass # end test_heal_children_index def test_heal_useragent_subnet_uuid(self): pass # end test_heal_useragent_subnet_uuid # end class TestDBAudit class TestBulk(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestBulk, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestBulk, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_list_bulk_collection(self): obj_count = self._vnc_lib.POST_FOR_LIST_THRESHOLD + 1 vn_uuids = [] ri_uuids = [] vmi_uuids = [] logger.info("Creating %s VNs, RIs, VMIs.", obj_count) vn_objs, _, ri_objs, vmi_objs = self._create_vn_ri_vmi(obj_count) vn_uuids = [o.uuid for o in vn_objs] ri_uuids = [o.uuid for o in ri_objs] vmi_uuids = [o.uuid for o in vmi_objs] bulk_route = [r for r in self._api_server.api_bottle.routes if r.rule == '/list-bulk-collection'][0] invoked_bulk = [] def spy_list_bulk(orig_method, *args, **kwargs): invoked_bulk.append(True) return orig_method(*args, **kwargs) logger.info("Querying VNs by obj_uuids.") with test_common.patch(bulk_route, 'callback', spy_list_bulk): ret_list = self._vnc_lib.resource_list('virtual-network', obj_uuids=vn_uuids) ret_uuids = [ret['uuid'] for ret in ret_list['virtual-networks']] self.assertThat(set(vn_uuids), Equals(set(ret_uuids))) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() logger.info("Querying RIs by parent_id.") ret_list = self._vnc_lib.resource_list('routing-instance', parent_id=vn_uuids) ret_uuids = [ret['uuid'] for ret in ret_list['routing-instances']] self.assertThat(set(ri_uuids), Equals(set(ret_uuids) & set(ri_uuids))) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() logger.info("Querying VMIs by back_ref_id.") ret_list = self._vnc_lib.resource_list('virtual-machine-interface', back_ref_id=vn_uuids) ret_uuids = [ret['uuid'] for ret in ret_list['virtual-machine-interfaces']] self.assertThat(set(vmi_uuids), Equals(set(ret_uuids))) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() logger.info("Querying VMIs by back_ref_id and extra fields.") ret_list = self._vnc_lib.resource_list('virtual-machine-interface', back_ref_id=vn_uuids, fields=['virtual_network_refs']) ret_uuids = [ret['uuid'] for ret in ret_list['virtual-machine-interfaces']] self.assertThat(set(vmi_uuids), Equals(set(ret_uuids))) self.assertEqual(set(vmi['virtual_network_refs'][0]['uuid'] for vmi in ret_list['virtual-machine-interfaces']), set(vn_uuids)) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() logger.info("Querying RIs by parent_id and filter.") ret_list = self._vnc_lib.resource_list('routing-instance', parent_id=vn_uuids, filters={'display_name':'%s-ri-5' %(self.id())}) self.assertThat(len(ret_list['routing-instances']), Equals(1)) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() logger.info("Querying VNs by obj_uuids for children+backref fields.") ret_objs = self._vnc_lib.resource_list('virtual-network', detail=True, obj_uuids=vn_uuids, fields=['routing_instances', 'virtual_machine_interface_back_refs']) self.assertEqual(len(invoked_bulk), 1) invoked_bulk.pop() ret_ri_uuids = [] ret_vmi_uuids = [] for vn_obj in ret_objs: ri_children = getattr(vn_obj, 'routing_instances', 'RI children absent') self.assertNotEqual(ri_children, 'RI children absent') ret_ri_uuids.extend([ri['uuid'] for ri in ri_children]) vmi_back_refs = getattr(vn_obj, 'virtual_machine_interface_back_refs', 'VMI backrefs absent') self.assertNotEqual(ri_children, 'VMI backrefs absent') ret_vmi_uuids.extend([vmi['uuid'] for vmi in vmi_back_refs]) self.assertThat(set(ri_uuids), Equals(set(ret_ri_uuids) & set(ri_uuids))) self.assertThat(set(vmi_uuids), Equals(set(ret_vmi_uuids))) # end test_list_bulk_collection def test_list_bulk_collection_with_malformed_filters(self): obj_count = self._vnc_lib.POST_FOR_LIST_THRESHOLD + 1 vn_objs, _, _, _ = self._create_vn_ri_vmi() vn_uuid = vn_objs[0].uuid vn_uuids = [vn_uuid] +\ ['bad-uuid'] * self._vnc_lib.POST_FOR_LIST_THRESHOLD try: results = self._vnc_lib.resource_list('virtual-network', obj_uuids=vn_uuids) self.assertEqual(len(results['virtual-networks']), 1) self.assertEqual(results['virtual-networks'][0]['uuid'], vn_uuid) except HttpError: self.fail('Malformed object UUID filter was not ignored') try: results = self._vnc_lib.resource_list('routing-instance', parent_id=vn_uuids, detail=True) self.assertEqual(len(results), 2) for ri_obj in results: self.assertEqual(ri_obj.parent_uuid, vn_uuid) except HttpError: self.fail('Malformed parent UUID filter was not ignored') try: results = self._vnc_lib.resource_list('virtual-machine-interface', back_ref_id=vn_uuids, detail=True) self.assertEqual(len(results), 1) vmi_obj = results[0] self.assertEqual(vmi_obj.get_virtual_network_refs()[0]['uuid'], vn_uuid) except HttpError: self.fail('Malformed back-ref UUID filter was not ignored') # end class TestBulk class TestCacheWithMetadata(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestCacheWithMetadata, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestCacheWithMetadata, cls).tearDownClass(*args, **kwargs) # end tearDownClass def setUp(self): self.uuid_cf = self.get_cf( 'config_db_uuid', 'obj_uuid_table') self.cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr return super(TestCacheWithMetadata, self).setUp() # end setUp def create_test_object(self, name=None): vn_name = name or 'vn-%s' %(self.id()) vn_obj = vnc_api.VirtualNetwork(vn_name) vn_obj.display_name = 'test-cache-obj' self._vnc_lib.virtual_network_create(vn_obj) return vn_obj # end create_object def prime_test_object(self, vn_obj): self._vnc_lib.virtual_networks_list(obj_uuids=[vn_obj.uuid]) return vn_obj # end prime_test_object def create_and_prime_test_object(self, name=None): vn_name = name or 'vn-%s' %(self.id()) return self.prime_test_object(self.create_test_object(vn_name)) # end create_and_prime_test_object def test_hit_and_fresh(self): vn_obj = self.create_and_prime_test_object() uuid_cf = self.uuid_cf vn_row = uuid_cf.get(vn_obj.uuid, include_timestamp=True) with uuid_cf.patch_row(vn_obj.uuid, new_columns={'fq_name': vn_row['fq_name'], 'prop:id_perms': vn_row['prop:id_perms'], 'type': vn_row['type']}): ret_vn_objs = self._vnc_lib.virtual_networks_list( obj_uuids=[vn_obj.uuid], detail=True) self.assertEqual(ret_vn_objs[0].display_name, vn_obj.display_name) # end test_hit_and_fresh def test_hit_and_stale(self): vn_obj = self.create_and_prime_test_object() cache_mgr = self.cache_mgr self.assertIn(vn_obj.uuid, list(cache_mgr._cache.keys())) uuid_cf = self.uuid_cf vn_row = uuid_cf.get(vn_obj.uuid) with uuid_cf.patches([ ('column', (vn_obj.uuid, 'prop:display_name', 'stale-check-name')), ('column', (vn_obj.uuid, 'prop:id_perms', vn_row['prop:id_perms'])), ]): ret_vn_objs = self._vnc_lib.virtual_networks_list( obj_uuids=[vn_obj.uuid], detail=True) self.assertEqual( ret_vn_objs[0].display_name, 'stale-check-name') # end test_hit_and_stale def test_miss(self): vn_obj = self.create_test_object() cache_mgr = self.cache_mgr self.assertNotIn(vn_obj.uuid, list(cache_mgr._cache.keys())) ret_vn_dicts = self._vnc_lib.virtual_networks_list( obj_uuids=[vn_obj.uuid], fields=['display_name'])['virtual-networks'] self.assertEqual(ret_vn_dicts[0]['display_name'], vn_obj.display_name) # end test_miss def test_hits_stales_misses(self): uuid_cf = self.uuid_cf cache_mgr = self.cache_mgr vn_hit_fresh_obj = self.create_and_prime_test_object( 'vn-hit-fresh-%s' %(self.id())) vn_hit_stale_obj = self.create_and_prime_test_object( 'vn-hit-stale-%s' %(self.id())) vn_miss_obj = self.create_test_object('vn-miss-%s' %(self.id())) self.assertNotIn(vn_miss_obj.uuid, list(cache_mgr._cache.keys())) vn_hit_stale_row = uuid_cf.get(vn_hit_stale_obj.uuid) with uuid_cf.patches([ ('column', (vn_hit_fresh_obj.uuid, 'prop:display_name', 'fresh-check-name')), ('column', (vn_hit_stale_obj.uuid, 'prop:display_name', 'stale-check-name')), ('column', (vn_hit_stale_obj.uuid, 'prop:id_perms', vn_hit_stale_row['prop:id_perms'])), ]): vn_uuids = [vn_hit_fresh_obj.uuid, vn_hit_stale_obj.uuid, vn_miss_obj.uuid] ret_vn_dicts = self._vnc_lib.virtual_networks_list( obj_uuids=vn_uuids, fields=['display_name'])['virtual-networks'] self.assertEqual(len(ret_vn_dicts), 3) id_name_tuples = [(vn['uuid'], vn['display_name']) for vn in ret_vn_dicts] self.assertIn( (vn_hit_fresh_obj.uuid, vn_hit_fresh_obj.display_name), id_name_tuples) self.assertIn((vn_hit_stale_obj.uuid, 'stale-check-name'), id_name_tuples) self.assertIn((vn_miss_obj.uuid, vn_miss_obj.display_name), id_name_tuples) # end test_hits_stales_misses def test_evict_on_ref_type_same(self): cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr vn1_name = 'vn-1-%s' %(self.id()) vn2_name = 'vn-2-%s' %(self.id()) vn1_obj = self.create_test_object(vn1_name) vn2_obj = self.create_test_object(vn2_name) # prime RIs to cache ri1_obj = self._vnc_lib.routing_instance_read( fq_name=vn1_obj.fq_name+[vn1_name]) ri2_obj = self._vnc_lib.routing_instance_read( fq_name=vn2_obj.fq_name+[vn2_name]) self.assertIn(ri1_obj.uuid, list(cache_mgr._cache.keys())) self.assertIn(ri2_obj.uuid, list(cache_mgr._cache.keys())) ri1_obj.add_routing_instance(ri2_obj, None) self._vnc_lib.routing_instance_update(ri1_obj) self.assertNotIn(ri2_obj.uuid, list(cache_mgr._cache.keys())) # end test_evict_on_ref_type_same def test_stale_for_backref_on_ref_update(self): uuid_cf = self.uuid_cf cache_mgr = self.cache_mgr vn_obj = VirtualNetwork('vn-%s' %(self.id())) ipam_obj = NetworkIpam('ipam-%s' %(self.id()), display_name='ipam-name') self._vnc_lib.network_ipam_create(ipam_obj) self._vnc_lib.virtual_network_create(vn_obj) # prime ipam in cache self._vnc_lib.network_ipam_read(fq_name=ipam_obj.fq_name) self.assertIn(ipam_obj.uuid, list(cache_mgr._cache.keys())) vn_obj.add_network_ipam(ipam_obj, VnSubnetsType( [IpamSubnetType(SubnetType('1.1.1.0', 28))])) self._vnc_lib.virtual_network_update(vn_obj) with uuid_cf.patches([ ('column', (ipam_obj.uuid, 'prop:display_name', 'stale-check-name'))]): # access for ipam without children/backref should hit cache ret_ipam_obj = self._vnc_lib.network_ipam_read( fq_name=ipam_obj.fq_name) self.assertEqual(ret_ipam_obj.display_name, ipam_obj.display_name) # access for ipam with backref should hit cache but stale ret_ipam_obj = self._vnc_lib.network_ipam_read( fq_name=ipam_obj.fq_name, fields=['display_name', 'virtual_network_back_refs']) self.assertEqual(ret_ipam_obj.display_name, 'stale-check-name') # end test_stale_for_backref_on_ref_update def test_read_for_delete_not_from_cache(self): uuid_cf = self.uuid_cf cache_mgr = self.cache_mgr ipam_obj = NetworkIpam('ipam-%s' %(self.id()), display_name='ipam-name') self._vnc_lib.network_ipam_create(ipam_obj) # prime ipam in cache self._vnc_lib.network_ipam_read(fq_name=ipam_obj.fq_name) self.assertIn(ipam_obj.uuid, list(cache_mgr._cache.keys())) vn_obj = VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn_obj) with uuid_cf.patches([ ('column', (ipam_obj.uuid, 'backref:virtual_network:%s' %(vn_obj.uuid), json.dumps(None))) ]): with ExpectedException(RefsExistError, ".*Delete when resource still referred.*"): self._vnc_lib.network_ipam_delete(id=ipam_obj.uuid) # end test_read_for_delete_not_from_cache # end class TestCacheWithMetadata class TestCacheWithMetadataEviction(test_case.ApiServerTestCase): @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) return super(TestCacheWithMetadataEviction, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'object_cache_entries', '2')]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestCacheWithMetadataEviction, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_evict_on_full(self): vn1_obj = vnc_api.VirtualNetwork('vn-1-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn1_obj) vn2_obj = vnc_api.VirtualNetwork('vn-2-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn2_obj) vn3_obj = vnc_api.VirtualNetwork('vn-3-%s' %(self.id())) self._vnc_lib.virtual_network_create(vn3_obj) # prime with vn-1 and vn-2 cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr self._vnc_lib.virtual_network_read(id=vn1_obj.uuid) self._vnc_lib.virtual_network_read(id=vn2_obj.uuid) cache_keys = list(cache_mgr._cache.keys()) self.assertIn(vn1_obj.uuid, cache_keys) self.assertIn(vn2_obj.uuid, cache_keys) self.assertNotIn(vn3_obj.uuid, cache_keys) # prime vn-3 and test eviction self._vnc_lib.virtual_network_read(id=vn3_obj.uuid) cache_keys = list(cache_mgr._cache.keys()) self.assertIn(vn3_obj.uuid, cache_keys) if vn1_obj.uuid in cache_keys: self.assertNotIn(vn2_obj.uuid, cache_keys) elif vn2_obj.uuid in cache_keys: self.assertNotIn(vn1_obj.uuid, cache_keys) else: self.assertTrue( False, 'Eviction failed, all VNs present in cache') # end test_evict_on_full # end class TestCacheWithMetadataEviction class TestCacheWithMetadataExcludeTypes(test_case.ApiServerTestCase): @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) return super(TestCacheWithMetadataExcludeTypes, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'object_cache_exclude_types', 'project, network-ipam')]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestCacheWithMetadataExcludeTypes, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_exclude_types_not_cached(self): # verify not cached for configured types obj = vnc_api.Project('proj-%s' %(self.id())) self._vnc_lib.project_create(obj) self._vnc_lib.project_read(id=obj.uuid) cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr self.assertNotIn(obj.uuid, list(cache_mgr._cache.keys())) obj = vnc_api.NetworkIpam('ipam-%s' %(self.id())) self._vnc_lib.network_ipam_create(obj) self._vnc_lib.network_ipam_read(id=obj.uuid) cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr self.assertNotIn(obj.uuid, list(cache_mgr._cache.keys())) # verify cached for others obj = vnc_api.VirtualNetwork('vn-%s' %(self.id())) self._vnc_lib.virtual_network_create(obj) self._vnc_lib.virtual_network_read(id=obj.uuid) cache_mgr = self._api_server._db_conn._object_db._obj_cache_mgr self.assertIn(obj.uuid, list(cache_mgr._cache.keys())) # end test_exclude_types_not_cached # end class TestCacheWithMetadataExcludeTypes class TestRefValidation(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestRefValidation, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestRefValidation, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_refs_validation_with_expected_error(self): obj = VirtualNetwork('validate-create-error') body_dict = {'virtual-network': {'fq_name': obj.fq_name, 'parent_type': 'project', 'network_ipam_refs': [ {'attr': {'host_routes': None, 'ipam_subnets': [{'addr_from_start': None, 'alloc_unit': 1, 'allocation_pools': [], 'default_gateway': None, 'dhcp_option_list': None, 'dns_nameservers': [], 'dns_server_address': None, 'enable_dhcp': True, 'host_routes': None, 'subnet': {'ip_prefix': '11.1.1.0', 'ip_prefix_len': 24}, 'subnet_name': None, 'subnet_uuid': 12}]}, 'to': ['default-domain', 'default-project']}]}} status, content = self._http_post('/virtual-networks', body=json.dumps(body_dict)) self.assertThat(status, Equals(400)) self.assertThat(content, Contains('Bad reference')) #end test_refs_validation_with_expected_error def test_refs_validation_with_expected_success(self): obj = VirtualNetwork('validate-create') body_dict = {'virtual-network': {'fq_name': obj.fq_name, 'parent_type': 'project', 'network_ipam_refs': [ {'attr': {'host_routes': None, 'ipam_subnets': [{'addr_from_start': None, 'alloc_unit': 1, 'allocation_pools': [], 'default_gateway': None, 'dhcp_option_list': None, 'dns_nameservers': [], 'dns_server_address': None, 'enable_dhcp': True, 'host_routes': None, 'subnet': None, 'subnet': {'ip_prefix': '10.1.1.0', 'ip_prefix_len': 24}, 'subnet_name': None, 'subnet_uuid': None}]}, 'to': ['default-domain', 'default-project', 'default-network-ipam']}]}} status, content = self._http_post('/virtual-networks', body=json.dumps(body_dict)) self.assertThat(status, Equals(200)) #end test_refs_validation_with_expected_success #end class TestRefValidation class TestVncApiStats(test_case.ApiServerTestCase): _sandesh = None logs = [] def _check_sendwith(self, sandesh, stats, *args): self.assertEqual(stats.response_code, 404) self.assertEqual(stats.obj_type, 'virtual_network') def _mock_sendwith(self, sandesh, stats, *args): self.logs.append("TestVncApiStatsLog") @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestVncApiStats, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestVncApiStats, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_response_code_on_exception(self): from cfgm_common.vnc_api_stats import VncApiStatistics self._api_server.enable_api_stats_log = True try: with test_common.patch(VncApiStatistics, 'sendwith', self._check_sendwith): self._vnc_lib.virtual_network_read( id='5a4f39e3-9fb5-4832-9095-764bd19ffc90') except cfgm_common.exceptions.NoIdError: pass else: self.assertThat(0, ("Expecting HttpError to be raised ", "but was not raised")) # end test_response_code_on_exception def test_disabled_vnc_api_stats(self): from cfgm_common.vnc_api_stats import VncApiStatistics def _crud_exec(factor): with test_common.patch( VncApiStatistics, 'sendwith', self._mock_sendwith): obj = VirtualNetwork('%s-vn' % (self.id())) self._vnc_lib.virtual_network_create(obj) self.assertEquals(len(self.logs), 2 * factor) self._vnc_lib.virtual_network_read(id=obj.uuid) self.assertEquals(len(self.logs), 3 * factor) obj.display_name = 'foo' self._vnc_lib.virtual_network_update(obj) self.assertEquals(len(self.logs), 5 * factor) self._vnc_lib.virtual_network_delete(id=obj.uuid) self.assertEquals(len(self.logs), 7 * factor) self._api_server.enable_api_stats_log = False # try all crud operations _crud_exec(factor=0) # Now enable api server logging and logs will be sent self._api_server.enable_api_stats_log = True _crud_exec(factor=1) # end TestVncApiStats class TestVncLatencyStats(test_case.ApiServerTestCase): _sandesh = None logs = [] @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestVncLatencyStats, cls).setUpClass(*args, **kwargs) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestVncLatencyStats, cls).tearDownClass(*args, **kwargs) # end tearDownClass def mock_send(self, *args, **kwargs): self.logs.append("VncLatencyLog") def test_latency_stats(self): from cfgm_common.uve.vnc_api.ttypes import VncApiLatencyStatsLog def _crud_exec(logs_enabled): with test_common.patch( VncApiLatencyStatsLog, 'send', self.mock_send): obj = VirtualNetwork('%s-vn' % (self.id())) self._vnc_lib.virtual_network_create(obj) if logs_enabled is True: self.assertTrue(len(self.logs) is not 0) else: self.assertEquals(len(self.logs), 0) self.logs = [] self._vnc_lib.virtual_network_read(id=obj.uuid) if logs_enabled is True: self.assertTrue(len(self.logs) is not 0) else: self.assertEquals(len(self.logs), 0) self.logs = [] obj.display_name = 'foo' self._vnc_lib.virtual_network_update(obj) if logs_enabled is True: self.assertTrue(len(self.logs) is not 0) else: self.assertEquals(len(self.logs), 0) self.logs = [] self._vnc_lib.virtual_network_delete(id=obj.uuid) if logs_enabled is True: self.assertTrue(len(self.logs) is not 0) else: self.assertEquals(len(self.logs), 0) self._api_server.enable_latency_stats_log = False # try all crud operations _crud_exec(False) # Now enable api server logging and logs will be sent self._api_server.enable_latency_stats_log = True _crud_exec(True) # end test_response_code_on_exception class TestDbJsonExim(test_case.ApiServerTestCase): @classmethod def setUpClass(cls, *args, **kwargs): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) super(TestDbJsonExim, cls).setUpClass(*args, **kwargs) cls.to_bgp_ks = '%s_to_bgp_keyspace' %(cls._cluster_id) cls.svc_mon_ks = '%s_svc_monitor_keyspace' %(cls._cluster_id) cls.dev_mgr_ks = '%s_dm_keyspace' %(cls._cluster_id) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestDbJsonExim, cls).tearDownClass(*args, **kwargs) # end tearDownClass def test_db_exim_args(self): from cfgm_common import db_json_exim with ExpectedException(db_json_exim.InvalidArguments, 'Both --import-from and --export-to cannot be specified'): db_json_exim.DatabaseExim("--import-from foo --export-to bar") # end test_db_exim_args def test_db_export(self): from cfgm_common import db_json_exim with tempfile.NamedTemporaryFile() as export_dump: patch_ks = cassandra_fake_impl.CassandraFakeServer.patch_keyspace with patch_ks(self.to_bgp_ks, {}), \ patch_ks(self.svc_mon_ks, {}), \ patch_ks(self.dev_mgr_ks, {}): vn_obj = self._create_test_object() db_json_exim.DatabaseExim('--export-to %s --cluster_id %s' %( export_dump.name, self._cluster_id)).db_export() dump = json.loads(export_dump.readlines()[0]) dump_cassandra = dump['cassandra'] dump_zk = json.loads(dump['zookeeper']) uuid_table = dump_cassandra['config_db_uuid']['obj_uuid_table'] self.assertEqual(uuid_table[vn_obj.uuid]['fq_name'][0], json.dumps(vn_obj.get_fq_name())) zk_node = [node for node in dump_zk if node[0] == '%s/fq-name-to-uuid/virtual_network:%s/' %( self._cluster_id, vn_obj.get_fq_name_str())] self.assertEqual(len(zk_node), 1) self.assertEqual(zk_node[0][1][0], vn_obj.uuid) # end test_db_export def test_db_export_with_omit_keyspaces(self): from cfgm_common import db_json_exim with tempfile.NamedTemporaryFile() as export_dump: vn_obj = self._create_test_object() omit_ks = set(db_json_exim.KEYSPACES) - set(['config_db_uuid']) args = '--export-to %s --omit-keyspaces ' %(export_dump.name) for ks in list(omit_ks): args += '%s ' %(ks) args += '--cluster_id %s' %(self._cluster_id) db_json_exim.DatabaseExim(args).db_export() dump = json.loads(export_dump.readlines()[0]) dump_cassandra = dump['cassandra'] dump_zk = json.loads(dump['zookeeper']) uuid_table = dump_cassandra['config_db_uuid']['obj_uuid_table'] self.assertEqual(uuid_table[vn_obj.uuid]['fq_name'][0], json.dumps(vn_obj.get_fq_name())) zk_node = [node for node in dump_zk if node[0] == '%s/fq-name-to-uuid/virtual_network:%s/' %( self._cluster_id, vn_obj.get_fq_name_str())] self.assertEqual(len(zk_node), 1) self.assertEqual(zk_node[0][1][0], vn_obj.uuid) # end test_db_export_with_omit_keyspaces def test_db_export_and_import(self): from cfgm_common import db_json_exim with tempfile.NamedTemporaryFile() as dump_f: patch_ks = cassandra_fake_impl.CassandraFakeServer.patch_keyspace with patch_ks(self.to_bgp_ks, {}), \ patch_ks(self.svc_mon_ks, {}), \ patch_ks(self.dev_mgr_ks, {}): vn_obj = self._create_test_object() db_json_exim.DatabaseExim('--export-to %s --cluster_id %s' %( dump_f.name, self._cluster_id)).db_export() with ExpectedException(db_json_exim.CassandraNotEmptyError): db_json_exim.DatabaseExim( '--import-from %s --cluster_id %s' %( dump_f.name, self._cluster_id)).db_import() uuid_cf = self.get_cf( 'config_db_uuid', 'obj_uuid_table') fq_name_cf = self.get_cf( 'config_db_uuid', 'obj_fq_name_table') shared_cf = self.get_cf( 'config_db_uuid', 'obj_shared_table') with uuid_cf.patch_cf({}), fq_name_cf.patch_cf({}), \ shared_cf.patch_cf({}): with ExpectedException( db_json_exim.ZookeeperNotEmptyError): db_json_exim.DatabaseExim( '--import-from %s --cluster_id %s' %( dump_f.name, self._cluster_id)).db_import() exim_obj = db_json_exim.DatabaseExim( '--import-from %s --cluster_id %s' %( dump_f.name, self._cluster_id)) with uuid_cf.patch_cf({}), fq_name_cf.patch_cf({}), \ shared_cf.patch_cf({}), exim_obj._zookeeper.patch_path( '%s/' %(self._cluster_id), recursive=True): exim_obj.db_import() dump = json.loads(dump_f.readlines()[0]) dump_cassandra = dump['cassandra'] dump_zk = json.loads(dump['zookeeper']) uuid_table = dump_cassandra['config_db_uuid']['obj_uuid_table'] self.assertEqual(uuid_table[vn_obj.uuid]['fq_name'][0], json.dumps(vn_obj.get_fq_name())) zk_node = [node for node in dump_zk if node[0] == '%s/fq-name-to-uuid/virtual_network:%s/' %( self._cluster_id, vn_obj.get_fq_name_str())] self.assertEqual(len(zk_node), 1) self.assertEqual(zk_node[0][1][0], vn_obj.uuid) # end test_db_export_and_import # end class TestDbJsonExim class TestPagination(test_case.ApiServerTestCase): default_paginate_count = 5 @classmethod def setUpClass(cls): cls.console_handler = logging.StreamHandler() cls.console_handler.setLevel(logging.DEBUG) logger.addHandler(cls.console_handler) return super(TestPagination, cls).setUpClass( extra_config_knobs=[('DEFAULTS', 'paginate_count', TestPagination.default_paginate_count)]) # end setUpClass @classmethod def tearDownClass(cls, *args, **kwargs): logger.removeHandler(cls.console_handler) super(TestPagination, cls).tearDownClass(*args, **kwargs) # end tearDownClass class FetchExpect(object): def __init__(self, num_objs, marker): self.num_objs = num_objs self.marker = marker # end FetchExpect def _create_vn_collection(self, count, proj_obj=None): return self._create_test_objects(count=count, proj_obj=proj_obj) # end _create_vn_collection def _create_vmi_collection(self, count, vn_obj): proj_obj = self._vnc_lib.project_read(id=vn_obj.parent_uuid) vmi_objs = [] for i in range(count): vmi_obj = VirtualMachineInterface( 'vmi-%s-%s-%s' %(self.id(), vn_obj.name, i), parent_obj=proj_obj) vmi_obj.add_virtual_network(vn_obj) self._vnc_lib.virtual_machine_interface_create(vmi_obj) vmi_objs.append(vmi_obj) return vmi_objs # end _create_vmi_collection def test_validate_input(self): # * fail 400 if last part of non-None page_marker is not alphanumeric # (non-None marker is uuid in anchored walks and fq_name_str_uuid # in unanchored walks) # * fail 400 if page_limit is not number(None, string, array, dict) pass # end test_validate_input def test_unanchored(self): # 1. create a collection of n # * cover with marker=None, no limit specified, run should be # n/(default limit) # * cover with marker=None, limit=n, run should be 1 # * cover with marker=None, limit=n/2, run should be 2 # * cover with marker=None, limit=1, run should be n # * cover with marker=None, limit<=0, run should be 1 # * cover with marker=1, limit=n, run should be 1 # * cover with marker=n, limit=n, run should be 1 and empty # * cover with marker=1, limit<=0, run should be 1 # * test with unicode/non-ascii char in fqn vn_objs = self._create_vn_collection(self.default_paginate_count*2) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None): marker = None all_vn_ids = [] all_vn_count = self._vnc_lib.virtual_networks_list( count=True)['virtual-networks']['count'] max_fetches = (old_div(all_vn_count, (page_limit or self.default_paginate_count))) + 1 fetches = 0 while True: if ((max_fetches > 0) and (fetches > max_fetches)): break fetches += 1 url = 'http://%s:%s/virtual-networks?page_marker=%s' %( listen_ip, listen_port, marker) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) return self.assertEqual(resp.status_code, 200) read_vn_ids = [vn['uuid'] for vn in json.loads(resp.text)['virtual-networks']] all_vn_ids.extend(read_vn_ids) marker = json.loads(resp.text)['marker'] if marker is not None: self.assertEqual(len(read_vn_ids), page_limit or self.default_paginate_count) else: # all fetched break self.assertLessEqual(fetches, max_fetches) self.assertEqual(set([o.uuid for o in vn_objs]) - set(all_vn_ids), set([])) # end verify_collection_walk verify_collection_walk() verify_collection_walk(page_limit=-1) verify_collection_walk(page_limit=0) verify_collection_walk(page_limit=10000) verify_collection_walk(page_limit=1) verify_collection_walk(page_limit=2) logger.info("Verified unanchored pagination fetch.") # end test_unanchored def test_anchored_by_one_parent(self): proj_obj = Project('%s-project' %(self.id())) self._vnc_lib.project_create(proj_obj) vn_objs = self._create_vn_collection( self.default_paginate_count*2, proj_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None, fetch_expects=None): marker = None all_vn_ids = [] for fe_obj in fetch_expects or []: url = 'http://%s:%s/virtual-networks?page_marker=%s&parent_id=%s' %( listen_ip, listen_port, marker, proj_obj.uuid) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) return self.assertEqual(resp.status_code, 200) read_vn_ids = [vn['uuid'] for vn in json.loads(resp.text)['virtual-networks']] self.assertEqual(len(read_vn_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_vn_ids.extend(read_vn_ids) self.assertEqual(set([o.uuid for o in vn_objs]) - set(all_vn_ids), set([])) # end verify_collection_walk sorted_vn_uuid = sorted([o.uuid for o in vn_objs]) FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, sorted_vn_uuid[self.default_paginate_count-1]), FetchExpect(self.default_paginate_count, sorted_vn_uuid[(self.default_paginate_count*2)-1]), FetchExpect(0, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx,val in enumerate(sorted_vn_uuid)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, sorted_vn_uuid[(i*2)+1]) for i in range(old_div(len(vn_objs),2))] + [FetchExpect(0, None)]) logger.info("Verified anchored pagination fetch with one parent.") # end test_anchored_by_one_parent def test_anchored_by_one_backref(self): proj_obj = Project('%s-project' %(self.id())) self._vnc_lib.project_create(proj_obj) vn_obj = VirtualNetwork('vn1', parent_obj=proj_obj) self._vnc_lib.virtual_network_create(vn_obj) vmi_objs = self._create_vmi_collection( (self.default_paginate_count*2)-1, vn_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None, fetch_expects=None): marker = None all_vmi_ids = [] for fe_obj in fetch_expects or []: url = 'http://%s:%s/virtual-machine-interfaces?page_marker=%s&back_ref_id=%s' %( listen_ip, listen_port, marker, vn_obj.uuid) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) return self.assertEqual(resp.status_code, 200) read_vmi_ids = [vmi['uuid'] for vmi in json.loads(resp.text)['virtual-machine-interfaces']] self.assertEqual(len(read_vmi_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_vmi_ids.extend(read_vmi_ids) self.assertEqual(set([o.uuid for o in vmi_objs]) - set(all_vmi_ids), set([])) # end verify_collection_walk sorted_vmi_uuid = sorted([o.uuid for o in vmi_objs]) FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, sorted_vmi_uuid[self.default_paginate_count-1]), FetchExpect(self.default_paginate_count-1, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx,val in enumerate(sorted_vmi_uuid)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, sorted_vmi_uuid[1]), FetchExpect(2, sorted_vmi_uuid[3]), FetchExpect(2, sorted_vmi_uuid[5]), FetchExpect(2, sorted_vmi_uuid[7]), FetchExpect(1, None)]) logger.info("Verified anchored pagination fetch with one backref.") # end test_anchored_by_one_backref def test_anchored_by_parent_list(self): proj1_obj = Project('%s-project1' %(self.id())) self._vnc_lib.project_create(proj1_obj) proj2_obj = Project('%s-project2' %(self.id())) self._vnc_lib.project_create(proj2_obj) vn_p1_objs = self._create_vn_collection( self.default_paginate_count+1, proj1_obj) vn_p2_objs = self._create_vn_collection(2, proj2_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None, fetch_expects=None): all_vn_ids = [] def request_with_query_params(marker): url = 'http://%s:%s/virtual-networks?page_marker=%s&parent_id=%s,%s' %( listen_ip, listen_port, marker, proj1_obj.uuid, proj2_obj.uuid) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) return resp def request_with_bulk_post(marker): url = 'http://%s:%s/list-bulk-collection' %(listen_ip, listen_port) body = {'type': 'virtual-network', 'parent_id': '%s,%s' %(proj1_obj.uuid, proj2_obj.uuid), 'page_marker': marker} if page_limit is not None: body['page_limit'] = page_limit resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(body)) return resp for req_method in [request_with_query_params, request_with_bulk_post]: marker = None for fe_obj in fetch_expects or []: resp = req_method(marker) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) break self.assertEqual(resp.status_code, 200) read_vn_ids = [vn['uuid'] for vn in json.loads(resp.text)['virtual-networks']] self.assertEqual(len(read_vn_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_vn_ids.extend(read_vn_ids) if page_limit is not None and page_limit <= 0: continue self.assertEqual( set([vn.uuid for vn in vn_p1_objs+vn_p2_objs]) - set(all_vn_ids), set([])) # end for req_method # end verify_collection_walk sorted_vn_uuid = sorted([o.uuid for o in (vn_p1_objs+vn_p2_objs)]) FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, sorted_vn_uuid[self.default_paginate_count-1]), FetchExpect(3, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx, val in enumerate(sorted_vn_uuid)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, sorted_vn_uuid[1]), FetchExpect(2, sorted_vn_uuid[3]), FetchExpect(2, sorted_vn_uuid[5]), FetchExpect(2, sorted_vn_uuid[7]), FetchExpect(0, None)]) # end test_anchored_by_parent_list def test_anchored_by_backref_list(self): proj_obj = Project('%s-project' %(self.id())) self._vnc_lib.project_create(proj_obj) vn1_obj = VirtualNetwork('vn1', parent_obj=proj_obj) self._vnc_lib.virtual_network_create(vn1_obj) vn2_obj = VirtualNetwork('vn2', parent_obj=proj_obj) self._vnc_lib.virtual_network_create(vn2_obj) vmi_vn1_objs = self._create_vmi_collection( self.default_paginate_count-1, vn1_obj) vmi_vn2_objs = self._create_vmi_collection( self.default_paginate_count-1, vn2_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None, fetch_expects=None): all_vmi_ids = [] def request_with_query_params(marker): url = 'http://%s:%s/virtual-machine-interfaces?page_marker=%s&back_ref_id=%s,%s' %( listen_ip, listen_port, marker, vn1_obj.uuid, vn2_obj.uuid) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) return resp def request_with_bulk_post(marker): url = 'http://%s:%s/list-bulk-collection' %(listen_ip, listen_port) body = {'type': 'virtual-machine-interface', 'back_ref_id': '%s,%s' %(vn1_obj.uuid, vn2_obj.uuid), 'page_marker': marker} if page_limit is not None: body['page_limit'] = page_limit resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(body)) return resp for req_method in [request_with_query_params, request_with_bulk_post]: marker = None for fe_obj in fetch_expects or []: resp = req_method(marker) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) break self.assertEqual(resp.status_code, 200) read_vmi_ids = [vmi['uuid'] for vmi in json.loads(resp.text)['virtual-machine-interfaces']] self.assertEqual(len(read_vmi_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_vmi_ids.extend(read_vmi_ids) if page_limit is not None and page_limit <= 0: continue self.assertEqual( set([vmi.uuid for vmi in vmi_vn1_objs+vmi_vn2_objs]) - set(all_vmi_ids), set([])) # end for req_method # end verify_collection_walk sorted_vmi_uuid = sorted([o.uuid for o in (vmi_vn1_objs+vmi_vn2_objs)]) FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, sorted_vmi_uuid[self.default_paginate_count-1]), FetchExpect(3, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx, val in enumerate(sorted_vmi_uuid)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, sorted_vmi_uuid[1]), FetchExpect(2, sorted_vmi_uuid[3]), FetchExpect(2, sorted_vmi_uuid[5]), FetchExpect(2, sorted_vmi_uuid[7]), FetchExpect(0, None)]) # end test_anchored_by_backref_list def test_by_obj_list(self): proj_objs = [Project('%s-proj%s' %(self.id(), i)) for i in range(self.default_paginate_count+2)] for proj_obj in proj_objs: self._vnc_lib.project_create(proj_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port def verify_collection_walk(page_limit=None, fetch_expects=None): all_proj_ids = [] def request_with_query_params(marker): url = 'http://%s:%s/projects?page_marker=%s&obj_uuids=%s' %( listen_ip, listen_port, marker, ','.join([o.uuid for o in proj_objs])) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"'}) return resp def request_with_bulk_post(marker): url = 'http://%s:%s/list-bulk-collection' %(listen_ip, listen_port) body = {'type': 'project', 'obj_uuids': '%s' %(','.join([o.uuid for o in proj_objs])), 'page_marker': marker} if page_limit is not None: body['page_limit'] = page_limit resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(body)) return resp for req_method in [request_with_query_params, request_with_bulk_post]: marker = None for fe_obj in fetch_expects or []: resp = req_method(marker) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) break self.assertEqual(resp.status_code, 200) read_proj_ids = [proj['uuid'] for proj in json.loads(resp.text)['projects']] self.assertEqual(len(read_proj_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_proj_ids.extend(read_proj_ids) if page_limit is not None and page_limit <= 0: continue self.assertEqual( set([proj.uuid for proj in proj_objs]) - set(all_proj_ids), set([])) # end for req_method # end verify_collection_walk proj_uuids = [o.uuid for o in proj_objs] FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, proj_uuids[self.default_paginate_count-1]), FetchExpect(2, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx, val in enumerate(proj_uuids)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, proj_uuids[1]), FetchExpect(2, proj_uuids[3]), FetchExpect(2, proj_uuids[5]), FetchExpect(1, None)]) # end test_by_obj_list def test_anchored_by_parent_list_shared(self): proj1_obj = Project('%s-project1' %(self.id())) self._vnc_lib.project_create(proj1_obj) proj2_obj = Project('%s-project2' %(self.id())) self._vnc_lib.project_create(proj2_obj) vn_p1_objs = self._create_vn_collection( self.default_paginate_count+1, proj1_obj) vn_p2_objs = self._create_vn_collection(2, proj2_obj) listen_ip = self._api_server_ip listen_port = self._api_server._args.listen_port # create couple of globally shared obj and verify they appear at # end of pagination proj3_obj = Project('%s-project3' %(self.id())) self._vnc_lib.project_create(proj3_obj) vn_p3_objs = self._create_vn_collection( 2, proj3_obj) url = 'http://%s:%s/chmod' %(listen_ip, listen_port) for vn_obj in vn_p3_objs: body = {'uuid': vn_obj.uuid, 'global_access': cfgm_common.PERMS_R} resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"'}, data=json.dumps(body)) def verify_collection_walk(page_limit=None, fetch_expects=None): all_vn_ids = [] def request_with_query_params(marker): url = 'http://%s:%s/virtual-networks?page_marker=%s&parent_id=%s,%s&shared=True' %( listen_ip, listen_port, marker, proj1_obj.uuid, proj2_obj.uuid) if page_limit is not None: url += '&page_limit=%s' %(page_limit) resp = requests.get(url, headers={'Content-type': 'application/json; charset="UTF-8"', 'X_USER_DOMAIN_ID': str(uuid.uuid4())}) return resp def request_with_bulk_post(marker): url = 'http://%s:%s/list-bulk-collection' %(listen_ip, listen_port) body = {'type': 'virtual-network', 'parent_id': '%s,%s' %(proj1_obj.uuid, proj2_obj.uuid), 'page_marker': marker, 'shared': True} if page_limit is not None: body['page_limit'] = page_limit resp = requests.post(url, headers={'Content-type': 'application/json; charset="UTF-8"', 'X_USER_DOMAIN_ID': str(uuid.uuid4())}, data=json.dumps(body)) return resp for req_method in [request_with_query_params, request_with_bulk_post]: marker = None for fe_obj in fetch_expects or []: resp = req_method(marker) if page_limit is not None and page_limit <= 0: self.assertEqual(resp.status_code, 400) break self.assertEqual(resp.status_code, 200) read_vn_ids = [vn['uuid'] for vn in json.loads(resp.text)['virtual-networks']] self.assertEqual(len(read_vn_ids), fe_obj.num_objs) marker = json.loads(resp.text)['marker'] self.assertEqual(marker, fe_obj.marker) all_vn_ids.extend(read_vn_ids) if page_limit is not None and page_limit <= 0: continue self.assertEqual( set([vn.uuid for vn in vn_p1_objs+vn_p2_objs+vn_p3_objs]) - set(all_vn_ids), set([])) # end for req_method # end verify_collection_walk sorted_vn_uuid = sorted([o.uuid for o in (vn_p1_objs+vn_p2_objs)]) sorted_shared_vn_uuid = sorted([o.uuid for o in vn_p3_objs]) FetchExpect = self.FetchExpect verify_collection_walk(fetch_expects=[ FetchExpect(self.default_paginate_count, sorted_vn_uuid[self.default_paginate_count-1]), FetchExpect(self.default_paginate_count, 'shared:%s' %(sorted_shared_vn_uuid[-1])), FetchExpect(0, None)]) verify_collection_walk(page_limit=-1, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=0, fetch_expects=[ FetchExpect(0, None)]) verify_collection_walk(page_limit=1, fetch_expects=[ FetchExpect(1, val) for idx, val in enumerate(sorted_vn_uuid)] + [FetchExpect(1, 'shared:%s' %(val)) for idx, val in enumerate(sorted_shared_vn_uuid)] + [FetchExpect(0, None)]) verify_collection_walk(page_limit=2, fetch_expects=[ FetchExpect(2, sorted_vn_uuid[1]), FetchExpect(2, sorted_vn_uuid[3]), FetchExpect(2, sorted_vn_uuid[5]), FetchExpect(2, sorted_vn_uuid[7]), FetchExpect(2, 'shared:%s' %(sorted_shared_vn_uuid[-1])), FetchExpect(0, None)]) # end test_anchored_by_parent_list_shared # end class TestPagination class TestSubCluster(test_case.ApiServerTestCase): default_subcluster_count = 5 def _get_rt_inst_obj(self): vnc_lib = self._vnc_lib rt_inst_obj = vnc_lib.routing_instance_read( fq_name=['default-domain', 'default-project', 'ip-fabric', '__default__']) return rt_inst_obj # end _get_rt_inst_obj def _get_ip(self, ip_w_pfx): return str(IPNetwork(ip_w_pfx).ip) # end _get_ip def test_subcluster(self): sub_cluster_obj = SubCluster( 'test-host', sub_cluster_asn=64514) self._vnc_lib.sub_cluster_create(sub_cluster_obj) sub_cluster_obj = self._vnc_lib.sub_cluster_read( fq_name=sub_cluster_obj.get_fq_name()) sub_cluster_obj.set_sub_cluster_asn(64515) cant_modify = False try: self._vnc_lib.sub_cluster_update(sub_cluster_obj) except Exception as e: cant_modify = True finally: self.assertTrue(cant_modify,'subcluster asn cannot be modified') sub_cluster_obj.set_sub_cluster_asn(64514) # Now that subcluster is created add a bgp router # with different ASN rt_inst_obj = self._get_rt_inst_obj() address_families = ['route-target', 'inet-vpn', 'e-vpn', 'erm-vpn', 'inet6-vpn'] bgp_addr_fams = AddressFamilies(address_families) bgp_sess_attrs = [ BgpSessionAttributes(address_families=bgp_addr_fams)] bgp_sessions = [BgpSession(attributes=bgp_sess_attrs)] bgp_peering_attrs = BgpPeeringAttributes(session=bgp_sessions) router_params = BgpRouterParams(router_type='external-control-node', vendor='unknown', autonomous_system=64515, identifier=self._get_ip('1.1.1.1'), address=self._get_ip('1.1.1.1'), port=179, address_families=bgp_addr_fams) bgp_router_obj = BgpRouter('bgp-router', rt_inst_obj, bgp_router_parameters=router_params) bgp_router_obj.add_sub_cluster(sub_cluster_obj) create_exception = False try: cur_id = self._vnc_lib.bgp_router_create(bgp_router_obj) except Exception as e: create_exception = True finally: self.assertTrue(cant_modify,'subcluster asn bgp asn should be same') # Now create the bgp with the same asn bgp_router_obj.bgp_router_parameters.autonomous_system = 64514 try: cur_id = self._vnc_lib.bgp_router_create(bgp_router_obj) except Exception as e: create_exception = False finally: self.assertTrue(cant_modify,'subcluster asn bgp asn should be same') # Now that bgp object is created, modify asn bgp_router_obj = self._vnc_lib.bgp_router_read(id=cur_id) bgp_router_parameters = bgp_router_obj.get_bgp_router_parameters() bgp_router_parameters.autonomous_system = 64515 bgp_router_obj.set_bgp_router_parameters(bgp_router_parameters) modify_exception = False try: self._vnc_lib.bgp_router_update(bgp_router_obj) except Exception as e: modify_exception = True finally: self.assertTrue(modify_exception,'subcluster asn bgp asn should be same') # Now create a new sub cluster with different asn and move bgp object # to that sub cluster sub_cluster_obj1 = SubCluster( 'test-host1', sub_cluster_asn=64515) self._vnc_lib.sub_cluster_create(sub_cluster_obj1) sub_cluster_obj1 = self._vnc_lib.sub_cluster_read( fq_name=sub_cluster_obj1.get_fq_name()) bgp_router_obj = self._vnc_lib.bgp_router_read(id=cur_id) bgp_router_parameters = bgp_router_obj.get_bgp_router_parameters() bgp_router_parameters.autonomous_system = 64515 bgp_router_obj.set_bgp_router_parameters(bgp_router_parameters) bgp_router_obj.set_sub_cluster(sub_cluster_obj1) try: self._vnc_lib.bgp_router_update(bgp_router_obj) except Exception as e: modify_exception = False finally: self.assertTrue(modify_exception,'subcluster asn bgp asn should be same') # Detach subcluster from the bgp object bgp_router_obj = self._vnc_lib.bgp_router_read(id=cur_id) bgp_router_obj.del_sub_cluster(sub_cluster_obj1) no_delete_exception = True try: self._vnc_lib.bgp_router_update(bgp_router_obj) except Exception as e: no_delete_exception = False finally: self.assertTrue(no_delete_exception,'sub cluster couldnot be detached') # end test_subcluster # end class TestSubCluster class TestApiServer(test_case.ApiServerTestCase): def test_validate_communityattribute_type(self): test_cases = [ '*:*', '*:.*', '.*:*', '123:*', '123:.*', '*:123', '.*:123', '.*:.*', ] for test_case in test_cases: try: VncApiServer._validate_communityattribute_type(test_case) except ValueError as exc: self.assertFalse(True, msg='Test failed {}'.format(exc)) # end class TestApiServer if __name__ == '__main__': ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) logger.addHandler(ch) # unittest.main(failfast=True) unittest.main()
45.937929
132
0.618249
74b93d4be0ab8f90cc3467660ab4b39d02b01114
277
py
Python
backend/api/migrations/0013_merge_20210528_1016.py
alairice/doccano
27eff5caec1ec6ad31f1e74bd1b73b1dd43228dc
[ "MIT" ]
2,082
2018-05-09T07:16:21.000Z
2019-12-01T16:41:50.000Z
backend/api/migrations/0013_merge_20210528_1016.py
alairice/doccano
27eff5caec1ec6ad31f1e74bd1b73b1dd43228dc
[ "MIT" ]
365
2018-07-31T13:49:05.000Z
2019-11-29T11:25:17.000Z
backend/api/migrations/0013_merge_20210528_1016.py
alairice/doccano
27eff5caec1ec6ad31f1e74bd1b73b1dd43228dc
[ "MIT" ]
476
2018-08-17T06:43:57.000Z
2019-12-01T09:47:08.000Z
# Generated by Django 3.2.3 on 2021-05-28 10:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("api", "0009_annotations_relations_20210421_1445"), ("api", "0012_auto_20210514_0654"), ] operations = []
19.785714
60
0.67148
d371c53546a0ab1f6473844da9f5e3582e18d4ca
7,144
py
Python
lib/psd_count_contigs/psd_count_contigsClient.py
nlharris/psd_count_contigs
2b1d1e534dad3c4181258ab97942c7adbc19a406
[ "MIT" ]
null
null
null
lib/psd_count_contigs/psd_count_contigsClient.py
nlharris/psd_count_contigs
2b1d1e534dad3c4181258ab97942c7adbc19a406
[ "MIT" ]
null
null
null
lib/psd_count_contigs/psd_count_contigsClient.py
nlharris/psd_count_contigs
2b1d1e534dad3c4181258ab97942c7adbc19a406
[ "MIT" ]
null
null
null
############################################################ # # Autogenerated by the KBase type compiler - # any changes made here will be overwritten # ############################################################ try: import json as _json except ImportError: import sys sys.path.append('simplejson-2.3.3') import simplejson as _json import requests as _requests import urlparse as _urlparse import random as _random import base64 as _base64 from ConfigParser import ConfigParser as _ConfigParser import os as _os _CT = 'content-type' _AJ = 'application/json' _URL_SCHEME = frozenset(['http', 'https']) def _get_token(user_id, password, auth_svc='https://nexus.api.globusonline.org/goauth/token?' + 'grant_type=client_credentials'): # This is bandaid helper function until we get a full # KBase python auth client released auth = _base64.encodestring(user_id + ':' + password) headers = {'Authorization': 'Basic ' + auth} ret = _requests.get(auth_svc, headers=headers, allow_redirects=True) status = ret.status_code if status >= 200 and status <= 299: tok = _json.loads(ret.text) elif status == 403: raise Exception('Authentication failed: Bad user_id/password ' + 'combination for user %s' % (user_id)) else: raise Exception(ret.text) return tok['access_token'] def _read_rcfile(file=_os.environ['HOME'] + '/.authrc'): # @ReservedAssignment # Another bandaid to read in the ~/.authrc file if one is present authdata = None if _os.path.exists(file): try: with open(file) as authrc: rawdata = _json.load(authrc) # strip down whatever we read to only what is legit authdata = {x: rawdata.get(x) for x in ( 'user_id', 'token', 'client_secret', 'keyfile', 'keyfile_passphrase', 'password')} except Exception, e: print "Error while reading authrc file %s: %s" % (file, e) return authdata def _read_inifile(file=_os.environ.get( # @ReservedAssignment 'KB_DEPLOYMENT_CONFIG', _os.environ['HOME'] + '/.kbase_config')): # Another bandaid to read in the ~/.kbase_config file if one is present authdata = None if _os.path.exists(file): try: config = _ConfigParser() config.read(file) # strip down whatever we read to only what is legit authdata = {x: config.get('authentication', x) if config.has_option('authentication', x) else None for x in ('user_id', 'token', 'client_secret', 'keyfile', 'keyfile_passphrase', 'password')} except Exception, e: print "Error while reading INI file %s: %s" % (file, e) return authdata class ServerError(Exception): def __init__(self, name, code, message, data=None, error=None): self.name = name self.code = code self.message = '' if message is None else message self.data = data or error or '' # data = JSON RPC 2.0, error = 1.1 def __str__(self): return self.name + ': ' + str(self.code) + '. ' + self.message + \ '\n' + self.data class _JSONObjectEncoder(_json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, frozenset): return list(obj) return _json.JSONEncoder.default(self, obj) class psd_count_contigs(object): def __init__(self, url=None, timeout=30 * 60, user_id=None, password=None, token=None, ignore_authrc=False, trust_all_ssl_certificates=False): if url is None: raise ValueError('A url is required') scheme, _, _, _, _, _ = _urlparse.urlparse(url) if scheme not in _URL_SCHEME: raise ValueError(url + " isn't a valid http url") self.url = url self.timeout = int(timeout) self._headers = dict() self.trust_all_ssl_certificates = trust_all_ssl_certificates # token overrides user_id and password if token is not None: self._headers['AUTHORIZATION'] = token elif user_id is not None and password is not None: self._headers['AUTHORIZATION'] = _get_token(user_id, password) elif 'KB_AUTH_TOKEN' in _os.environ: self._headers['AUTHORIZATION'] = _os.environ.get('KB_AUTH_TOKEN') elif not ignore_authrc: authdata = _read_inifile() if authdata is None: authdata = _read_rcfile() if authdata is not None: if authdata.get('token') is not None: self._headers['AUTHORIZATION'] = authdata['token'] elif(authdata.get('user_id') is not None and authdata.get('password') is not None): self._headers['AUTHORIZATION'] = _get_token( authdata['user_id'], authdata['password']) if self.timeout < 1: raise ValueError('Timeout value must be at least 1 second') def _call(self, method, params, json_rpc_context = None): arg_hash = {'method': method, 'params': params, 'version': '1.1', 'id': str(_random.random())[2:] } if json_rpc_context: arg_hash['context'] = json_rpc_context body = _json.dumps(arg_hash, cls=_JSONObjectEncoder) ret = _requests.post(self.url, data=body, headers=self._headers, timeout=self.timeout, verify=not self.trust_all_ssl_certificates) if ret.status_code == _requests.codes.server_error: json_header = None if _CT in ret.headers: json_header = ret.headers[_CT] if _CT in ret.headers and ret.headers[_CT] == _AJ: err = _json.loads(ret.text) if 'error' in err: raise ServerError(**err['error']) else: raise ServerError('Unknown', 0, ret.text) else: raise ServerError('Unknown', 0, ret.text) if ret.status_code != _requests.codes.OK: ret.raise_for_status() ret.encoding = 'utf-8' resp = _json.loads(ret.text) if 'result' not in resp: raise ServerError('Unknown', 0, 'An unknown server error occurred') return resp['result'] def count_contigs(self, workspace_name, contigset_id, json_rpc_context = None): if json_rpc_context and type(json_rpc_context) is not dict: raise ValueError('Method count_contigs: argument json_rpc_context is not type dict as required.') resp = self._call('psd_count_contigs.count_contigs', [workspace_name, contigset_id], json_rpc_context) return resp[0]
39.688889
109
0.575168
4e874f83909e989a87b196065b3b273d1697620f
5,088
py
Python
3DBeam/inputs/eigenvectors/compare_eigenvector.py
JoZimmer/Beam-Models
e701c0bae6e3035e7a07cc590da4a132b133dcff
[ "BSD-3-Clause" ]
null
null
null
3DBeam/inputs/eigenvectors/compare_eigenvector.py
JoZimmer/Beam-Models
e701c0bae6e3035e7a07cc590da4a132b133dcff
[ "BSD-3-Clause" ]
null
null
null
3DBeam/inputs/eigenvectors/compare_eigenvector.py
JoZimmer/Beam-Models
e701c0bae6e3035e7a07cc590da4a132b133dcff
[ "BSD-3-Clause" ]
1
2022-01-05T17:32:32.000Z
2022-01-05T17:32:32.000Z
import sys from matplotlib.pylab import * import numpy as np # pgf_with_rc_fonts = {"pgf.texsystem": "pdflatex"} # matplotlib.rcParams.update(pgf_with_rc_fonts) # measurements from padova z_measured = [0, 0.115, 0.23, 0.345, 0.460] z_adapted = [0 * 180/.46, 0.115 * 180/.46, 0.23 * 180/.46, 0.345 * 180/.46, 0.460 * 180/.46] phi_1_measured = [0, 0.228, 0.498, 0.782, 1.0] # weak axis phi_2_measured = [0, 0.22, 0.535, 0.732, 1.0] # strong axis #results from eigenvalue analysis eigenvector_matrix = 'inputs\\EigenvectorMatrix_mod_jz.dat'#'EigenvectorMatrix_conditioned.dat' eigenvalues = 'inputs\\Eigenvalues.dat'#'Eigenvalues_conditioned.dat' z = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = '),(', usecols = 0) mode1_raw = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = '),(', usecols = 1, dtype=str) mode2_raw = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = '),(', usecols = 2, dtype=str) mode3_raw = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = '),(', usecols = 3, dtype=str) modi_raw = [mode1_raw, mode2_raw, mode3_raw] #mode1, mode2, mode3 = np.zeros(len(z),6), np.zeros(len(z),6), np.zeros(len(z),6) z = np.insert(z, 0, 0.0) modi = [np.zeros((len(z),6)),np.zeros((len(z),6)),np.zeros((len(z),6))] for i in range(3): for z_i in range(len(z)): if z_i == 0: continue cur = modi_raw[i][z_i-1].split(',') modi[i][z_i] = np.asarray([float(val) for val in cur]) np.save('inputs\\z_coords_gid_45.npy',z) np.save('inputs\\EigenvectorsGid.npy', np.asarray(modi)) dof_direction_map = ['rotX', 'rotY','rotZ', 'x', 'y','z'] for i in range(3): fig, ax = plt.subplots(ncols=6, num='modes') plt.title('mode '+str(i+1)) for dof in range(6): dof_z = modi[i][:,dof] ax[dof].plot(dof_z, z, label = 'dof ' + dof_direction_map[dof]) ax[dof].grid() ax[dof].legend() plt.show() # phi_1 = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = ',', usecols = 5) # phi_2 = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = ',', usecols = 10) # phi_3 = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = ',', usecols = 15) # phi_4 = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = ',', usecols = 22) # phi_5 = np.loadtxt(eigenvector_matrix, skiprows = 1, delimiter = ',', usecols = 29) # freq_1 = round_((np.sqrt(np.loadtxt(eigenvalues, delimiter = ',', usecols = 0)) / (2*math.pi)), decimals = 3) # doesn't work with default Eigenvalues.dat file # freq_2 = round_((np.sqrt(np.loadtxt(eigenvalues, delimiter = ',', usecols = 1)) / (2*math.pi)), decimals = 3) # freq_3 = round_((np.sqrt(np.loadtxt(eigenvalues, delimiter = ',', usecols = 2)) / (2*math.pi)), decimals = 3) # freq_4 = round_((np.sqrt(np.loadtxt(eigenvalues, delimiter = ',', usecols = 3)) / (2*math.pi)), decimals = 3) # freq_5 = round_((np.sqrt(np.loadtxt(eigenvalues, delimiter = ',', usecols = 4)) / (2*math.pi)), decimals = 3) # for i in range(0,46): # print(phi_1[i] / phi_1[-1]) # for i in range(0,46): # print(phi_2[i] / phi_2[-1]) # for i in range(0,46): # print(phi_3[i] / phi_3[-1]) # for i in range(0,46): # print(phi_4[i] / phi_4[-1]) # for i in range(0,46): # print(phi_5[i] / phi_5[-1]) #plot # fig = plt.figure('eigenvector generic highrise', figsize=(5.85,3.5), frameon=True) # plt.subplots_adjust(wspace=0.5) # plt.subplot(1,8,(1,3)) # plt.plot(phi_1 / phi_1[-1], z, 'k', linewidth=1, label=r'$\Phi_1$') # plt.plot(phi_4 / phi_4[-1], z, '--k', linewidth=1, label=r'$\Phi_4$') # plt.plot(phi_1_measured, z_adapted, ':k', linewidth=1, label=r'$\Phi_{ref}$') # plt.title('y-sway') # plt.xlim(-1.1, 1.1) # plt.grid(True) # plt.yticks(np.arange(0, 200, 20)) # plt.xticks(ticks = [-1, -0.5, 0, 0.5, 1]) # plt.legend(loc="upper left") # plt.subplot(1,8,(4,6)) # plt.plot(phi_2 / phi_2[-1], z, 'k', linewidth=1, label=r'$\Phi_2$') # plt.plot(phi_5 / phi_5[-1], z, '--k', linewidth=1, label=r'$\Phi_5$') # plt.plot(phi_2_measured, z_adapted, ':k', linewidth=1, label=r'$\Phi_{ref}$') # plt.title('x-sway') # plt.grid(True) # plt.xticks(ticks = [-1, -0.5, 0, 0.5, 1]) # plt.yticks(np.arange(0, 200, 20)) # plt.xlim(-1.1, 1.1) # plt.gca().axes.get_yaxis().set_ticklabels([]) # plt.legend(loc="upper left") # plt.subplot(1,8,(7,8)) # plt.plot(phi_3 / phi_3[-1], z, 'k', linewidth=1, label=r'$\Phi_3$') # plt.plot(np.array([0,0.5,1]), np.array([0,90,180]), '-.k', linewidth=1, label=r'$\Phi_{lin}$') # plt.title('torsion') # plt.grid(True) # plt.xlim(-0.1, 1.1) # plt.xticks(ticks = [0, 0.5, 1]) # plt.yticks(np.arange(0, 200, 20)) # plt.gca().axes.get_yaxis().set_ticklabels([]) # plt.legend(loc="upper left") # fig.text(0.5, 0.01, r'normalized eigenform $\Phi_{normalized}$', ha='center') # fig.text(0.04, 0.5, r'height $z$ [m]', va='center', rotation='vertical') # plt.show() # fig.savefig('/home/koenig/Desktop/Graphs/eigenvector_generic_highrise.pdf') # fig.savefig('/home/koenig/Desktop/Graphs/eigenvector_generic_highrise.pgf') # fig.savefig('/home/koenig/Desktop/Graphs/eigenvector_generic_highrise.svg')
42.4
167
0.636989
c3f4cf959ad953c0dc67efd176ff8c4ec187ed12
97
py
Python
monitor/__init__.py
GdoongMathew/Monitor
1affeea0ca4f61d84fd8f0b8838a847da16854c2
[ "MIT" ]
null
null
null
monitor/__init__.py
GdoongMathew/Monitor
1affeea0ca4f61d84fd8f0b8838a847da16854c2
[ "MIT" ]
null
null
null
monitor/__init__.py
GdoongMathew/Monitor
1affeea0ca4f61d84fd8f0b8838a847da16854c2
[ "MIT" ]
null
null
null
from .reader import NVGPUReader from .reader import CPUReader from .monitor import BasicMonitor
19.4
33
0.835052
930a9bde08163fe4edf860e4527a4c2097c28915
5,029
py
Python
floppymusic-web.py
MisterX2000/floppymusic-web
6fc86757211203fe203c27d64760310766fa7af0
[ "MIT" ]
null
null
null
floppymusic-web.py
MisterX2000/floppymusic-web
6fc86757211203fe203c27d64760310766fa7af0
[ "MIT" ]
4
2017-05-24T05:15:36.000Z
2017-05-24T21:45:59.000Z
floppymusic-web.py
MisterX2000/floppymusic-web
6fc86757211203fe203c27d64760310766fa7af0
[ "MIT" ]
null
null
null
from flask import Flask, render_template, request, redirect, url_for, flash, g from flask_uploads import UploadSet, configure_uploads, UploadNotAllowed import argparse import subprocess import sqlite3 import os parser = argparse.ArgumentParser(description="IMPORTANT! To ensure floppymusics functionality this script must be run as root.") parser.add_argument("--port", help="set Flask web port", default=5000, type=int) parser.add_argument("--host", help="set Flask ip binding (host)", default="0.0.0.0") parser.add_argument("-debug", help="enable Flask debug option", action='store_true', default=False) args = parser.parse_args() app = Flask(__name__) app.secret_key = "super secret key" DATABASE = "database.sqlite" db = sqlite3.connect(DATABASE) c = db.cursor() c.execute("""CREATE TABLE IF NOT EXISTS songs(id INTEGER PRIMARY KEY, name TEXT, dropfac REAL)""") db.commit() db.close() midis = UploadSet("MIDIS", "mid") app.config["UPLOADED_MIDIS_DEST"] = "uploads/" configure_uploads(app, midis) playing = None proc = None def get_db(): # Opens a new database connection if there is none yet for the current application context. if not hasattr(g, "sqlite_db"): g.sqlite_db = sqlite3.connect(DATABASE) return g.sqlite_db def query_db(query, args=(), one=False): cur = get_db().execute(query, args) rv = cur.fetchall() cur.close() return (rv[0] if rv else None) if one else rv @app.teardown_appcontext def close_db(error): # Closes the database again at the end of the request.""" if hasattr(g, "sqlite_db"): g.sqlite_db.close() @app.route("/") def index(): return render_template("index.html", playing=playing, songs=query_db("""SELECT * FROM songs""")) @app.route("/add", methods=["GET", "POST"]) def add(): if request.method == "POST" and "midi" in request.files: try: if request.files['midi'].filename == '': flash("No file selected", "alert-warning") return render_template("add.html") filename = midis.save(request.files["midi"]) except UploadNotAllowed: flash("Upload not allowed (MIDI Files only)", "alert-danger") return render_template("add.html") dropfactor = request.form["drop-factor"] get_db().execute("""INSERT INTO songs (name, dropfac) VALUES(?, ?)""", [str(filename), float(dropfactor)]) get_db().commit() flash(str(filename) + " uploaded", "alert-success") return render_template("add.html") @app.route("/stop") def stop(): global playing global proc playing = None if proc is None: flash("Process not started", "alert-danger") else: if proc.poll() is None: proc.terminate() flash("Process stopped", "alert-success") else: flash("Process already stopped", "alert-success") return redirect(url_for("index")) @app.route("/play/<song_id>") def play(song_id): global playing global proc if os.path.isfile(app.config["UPLOADED_MIDIS_DEST"] + query_db("""SELECT name FROM songs WHERE id=?""", (song_id,))[0][0]): playing = query_db("""SELECT * FROM songs WHERE id=?""", (song_id,))[0] else: flash("File not found", "alert-danger") return redirect(url_for("index")) try: proc = subprocess.Popen(["./floppymusic", "-d " + str(playing[2]), app.config["UPLOADED_MIDIS_DEST"] + str(playing[1])]) except FileNotFoundError: flash(flash("Floppymusic file not found", "alert-danger")) return redirect(url_for("index")) return redirect(url_for("index")) @app.route("/edit/<song_id>", methods=["GET", "POST"]) def edit(song_id): if request.method == "POST": name = request.form["file-name"] dropfac = request.form["drop-factor"] try: os.rename(app.config["UPLOADED_MIDIS_DEST"] + query_db("""SELECT name FROM songs WHERE id=?""", (song_id,))[0][0], app.config["UPLOADED_MIDIS_DEST"] + name + ".mid") except FileNotFoundError: flash("File not found", "alert-danger") return redirect(url_for('index')) get_db().execute("""UPDATE songs SET name=?,dropfac=? WHERE id=?""", [str(name) + ".mid", float(dropfac), int(song_id)]) get_db().commit() flash("Edited {}. {}.mid ({})".format(song_id, name, dropfac), "alert-success") return redirect(url_for('index')) return render_template('edit.html', song=query_db("""SELECT * FROM songs WHERE id=?""", (song_id,))) @app.route("/delete/<song_id>") def delete(song_id): try: os.remove("uploads/" + query_db("""SELECT name FROM songs WHERE id=?""", (song_id,))[0][0]) except FileNotFoundError: flash("File not found", "alert-danger") get_db().execute("""DELETE FROM songs WHERE id=? """, (song_id,)) get_db().commit() return redirect(url_for("index")) if __name__ == "__main__": app.run(host=args.host, port=args.port, debug=args.debug)
34.682759
128
0.641479
1fb9c9b268ba8250c3a2c02829f29af9031513dc
19,987
py
Python
src/cogent3/util/unit_test.py
Lmaster20/cogent3
1d5ff1ba2b3d42736f8f04de8507b5cd585b4fe9
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/util/unit_test.py
Lmaster20/cogent3
1d5ff1ba2b3d42736f8f04de8507b5cd585b4fe9
[ "BSD-3-Clause" ]
null
null
null
src/cogent3/util/unit_test.py
Lmaster20/cogent3
1d5ff1ba2b3d42736f8f04de8507b5cd585b4fe9
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """Extension of the built-in unittest framework for floating-point comparisons. Specific Extensions: assertFloatEqual, assertFloatEqualAbs, and assertFloatEqualRel give fine- grained control over how floating point numbers (or lists thereof) are tested for equality. assertContains and assertNotContains give more helpful error messages when testing whether an observed item is present or absent in a set of possiblities. Ditto assertGreaterThan, assertLessThan, and assertIsProb. assertSameItems and assertEqualItems test the items in a list for pairwise identity and equality respectively (i.e. the observed and expected values must have the same number of each item, though the order can differ). assertSimilarMeans and assertSimilarFreqs allow you to test stochastic results by setting an explicit P-value and checking that the result is not improbable given the expected P-value. Please use these instead of guessing confidence intervals! The major advantage is that you can reset the P-value gloabally over the whole test suite, so that rare failures don't occur every time. """ from unittest import TestCase as orig_TestCase from unittest import TestSuite, findTestCases, main import numpy from numpy import ( array, asarray, isfinite, logical_and, logical_or, ravel, testing, zeros, ) from cogent3.maths.stats.test import G_ind, t_two_sample from cogent3.util.misc import recursive_flatten __author__ = "Rob Knight" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = [ "Rob Knight", "Peter Maxwell", "Sandra Smit", "Zongzhi Liu", "Micah Hamady", "Daniel McDonald", ] __license__ = "BSD-3" __version__ = "2020.7.2a" __maintainer__ = "Gavin Huttley" __email__ = "Gavin.Huttley@anu.edu.au" __status__ = "Production" # SUPPORT2425 class FakeRandom(object): """Drop-in substitute for random.random that provides items from list.""" def __init__(self, data, circular=False): """Returns new FakeRandom object, using list of items in data. circular: if True (default is False), wraps the list around. Otherwise, raises IndexError when we run off the end of the list. WARNING: data must always be iterable, even if it's a single item. """ self._data = data self._ptr = -1 self._circular = circular def __call__(self, *args, **kwargs): """Returns next item from the list in self._data. Raises IndexError when we run out of data. """ self._ptr += 1 # wrap around if circular if self._circular: if self._ptr >= len(self._data): self._ptr = 0 return self._data[self._ptr] class TestCase(orig_TestCase): """Adds some additional utility methods to unittest.TestCase. Notably, adds facilities for dealing with floating point numbers, and some common templates for replicated tests. BEWARE: Do not start any method with 'test' unless you want it to actually run as a test suite in every instance! """ _suite_pvalue = None # see TestCase._set_suite_pvalue() def _get_values_from_matching_dicts(self, d1, d2): """Gets corresponding values from matching dicts""" if set(d1) != set(d2): return None # might not be in same order return list(d1.values()), [d2[k] for k in d1] def errorCheck(self, call, known_errors): """Applies function to (data, error) tuples, checking for error""" for (data, error) in known_errors: self.assertRaises(error, call, data) def valueCheck(self, call, known_values, arg_prefix="", eps=None): """Applies function to (data, expected) tuples, treating data as args""" for (data, expected) in known_values: observed = eval("call(" + arg_prefix + "data)") try: allowed_diff = float(eps) except TypeError: self.assertEqual(observed, expected) else: self.assertFloatEqual(observed, expected, allowed_diff) def assertFloatEqualRel(self, obs, exp, eps=1e-6): """Tests whether two floating point numbers/arrays are approx. equal. Checks whether the distance is within epsilon relative to the value of the sum of observed and expected. Use this method when you expect the difference to be small relative to the magnitudes of the observed and expected values. Note: for arbitrary objects, need to compare the specific attribute that's numeric, not the whole object, using this method. """ # do array check first # note that we can't use array ops to combine, because we need to check # at each element whether the expected is zero to do the test to avoid # floating point error. # WARNING: numpy iterates over objects that are not regular Python # floats/ints, so need to explicitly catch scalar values and prevent # cast to array if we want the exact object to print out correctly. is_array = False if hasattr(obs, "keys") and hasattr(exp, "keys"): # both dicts? result = self._get_values_from_matching_dicts(obs, exp) if result: obs, exp = result else: try: iter(obs) iter(exp) except TypeError: obs = [obs] exp = [exp] else: try: arr_obs = array(obs) arr_exp = array(exp) arr_diff = arr_obs - arr_exp if arr_obs.shape != arr_exp.shape: self.fail( "Wrong shape: Got %s, but expected %s" % (repr(obs), repr(exp)) ) obs = arr_obs.ravel() exp = arr_exp.ravel() is_array = True except (TypeError, ValueError): pass # shape mismatch can still get by... # explict cast is to work around bug in certain versions of numpy # installed version on osx 10.5 if asarray(obs, object).shape != asarray(exp, object).shape: self.fail("Wrong shape: Got %s, but expected %s" % (obs, exp)) for observed, expected in zip(obs, exp): # try the cheap comparison first if observed == expected: continue try: sum = float(observed + expected) diff = float(observed - expected) if sum == 0: if is_array: self.assertFalse( abs(diff) > abs(eps), "Got %s, but expected %s (diff was %s)" % (repr(arr_obs), repr(arr_exp), repr(arr_diff)), ) else: self.assertFalse( abs(diff) > abs(eps), "Got %s, but expected %s (diff was %s)" % (repr(observed), repr(expected), repr(diff)), ) else: if is_array: self.assertFalse( abs(diff / sum) > abs(eps), "Got %s, but expected %s (diff was %s)" % (repr(arr_obs), repr(arr_exp), repr(arr_diff)), ) else: self.assertFalse( abs(diff / sum) > abs(eps), "Got %s, but expected %s (diff was %s)" % (repr(observed), repr(expected), repr(diff)), ) except (TypeError, ValueError, AttributeError, NotImplementedError): self.fail("Got %s, but expected %s" % (repr(observed), repr(expected))) def assertFloatEqualAbs(self, obs, exp, eps=1e-6): """ Tests whether two floating point numbers are approximately equal. Checks whether the absolute value of (a - b) is within epsilon. Use this method when you expect that one of the values should be very small, and the other should be zero. """ # do array check first # note that we can't use array ops to combine, because we need to check # at each element whether the expected is zero to do the test to avoid # floating point error. if hasattr(obs, "keys") and hasattr(exp, "keys"): # both dicts? result = self._get_values_from_matching_dicts(obs, exp) if result: obs, exp = result else: try: iter(obs) iter(exp) except TypeError: obs = [obs] exp = [exp] else: try: arr_obs = array(obs) arr_exp = array(exp) if arr_obs.shape != arr_exp.shape: self.fail( "Wrong shape: Got %s, but expected %s" % (repr(obs), repr(exp)) ) diff = arr_obs - arr_exp self.assertFalse( abs(diff).max() > eps, "Got %s, but expected %s (diff was %s)" % (repr(obs), repr(exp), repr(diff)), ) return except (TypeError, ValueError): pass # only get here if array comparison failed for observed, expected in zip(obs, exp): # cheap comparison first if observed == expected: continue try: diff = observed - expected self.assertFalse( abs(diff) > abs(eps), "Got %s, but expected %s (diff was %s)" % (repr(observed), repr(expected), repr(diff)), ) except (TypeError, ValueError, AttributeError, NotImplementedError): self.fail("Got %s, but expected %s" % (repr(observed), repr(expected))) def assertFloatEqual(self, obs, exp, eps=1e-6, rel_eps=None, abs_eps=None): """Tests whether two floating point numbers are approximately equal. If one of the arguments is zero, tests the absolute magnitude of the difference; otherwise, tests the relative magnitude. Use this method as a reasonable default. """ obs = numpy.asarray(obs, dtype="O") exp = numpy.asarray(exp, dtype="O") obs = numpy.ravel(obs) exp = numpy.ravel(exp) if obs.shape != exp.shape: self.fail("Shape mismatch. Got, %s but expected %s" % (obs, exp)) for observed, expected in zip(obs, exp): if self._is_equal(observed, expected): continue try: rel_eps = rel_eps or eps abs_eps = abs_eps or eps if (observed == 0) or (expected == 0): self.assertFloatEqualAbs(observed, expected, abs_eps) else: self.assertFloatEqualRel(observed, expected, rel_eps) except (TypeError, ValueError, AttributeError, NotImplementedError): self.fail("Got %s, but expected %s" % (repr(observed), repr(expected))) def _is_equal(self, observed, expected): """Returns True if observed and expected are equal, False otherwise.""" # errors to catch: TypeError when obs is None tolist_errors = (AttributeError, ValueError, TypeError) try: obs = observed.tolist() except tolist_errors: obs = observed try: exp = expected.tolist() except tolist_errors: exp = expected return obs == exp def failUnlessEqual(self, observed, expected, msg=None): """Fail if the two objects are unequal as determined by != Overridden to make error message enforce order of observed, expected. Use numpy.testing.assert_equal if ValueError, TypeError raised. """ try: if not self._is_equal(observed, expected): raise self.failureException( msg or "Got %s, but expected %s" % (repr(observed), repr(expected)) ) except (ValueError, TypeError) as e: # The truth value of an array with more than one element is # ambiguous. Use a.any() or a.all() # descriptor 'tolist' of 'numpy.generic' object needs an argument testing.assert_equal(observed, expected) def failIfEqual(self, observed, expected, msg=None): """Fail if the two objects are equal as determined by ==""" try: self.assertEqual(observed, expected) except self.failureException: pass else: raise self.failureException( msg or "Observed %s and expected %s: shouldn't test equal" % (repr(observed), repr(expected)) ) # following needed to get our version instead of unittest's assertEqual = assertEquals = failUnlessEqual assertNotEqual = assertNotEquals = failIfEqual def assertEqualItems(self, observed, expected, msg=None): """Fail if the two items contain unequal elements""" obs_items = list(observed) exp_items = list(expected) if len(obs_items) != len(exp_items): raise self.failureException( msg or "Observed and expected are different lengths: %s and %s" % (len(obs_items), len(exp_items)) ) obs_items.sort() exp_items.sort() for index, (obs, exp) in enumerate(zip(obs_items, exp_items)): if obs != exp: raise self.failureException( msg or "Observed %s and expected %s at sorted index %s" % (obs, exp, index) ) def assertSameItems(self, observed, expected, msg=None): """Fail if the two items contain non-identical elements""" obs_items = list(observed) exp_items = list(expected) if len(obs_items) != len(exp_items): raise self.failureException( msg or "Observed and expected are different lengths: %s and %s" % (len(obs_items), len(exp_items)) ) obs_ids = [(id(i), i) for i in obs_items] exp_ids = [(id(i), i) for i in exp_items] obs_ids.sort() exp_ids.sort() for index, (obs, exp) in enumerate(zip(obs_ids, exp_ids)): o_id, o = obs e_id, e = exp if o_id != e_id: # i.e. the ids are different raise self.failureException( msg or "Observed %s <%s> and expected %s <%s> at sorted index %s" % (o, o_id, e, e_id, index) ) def assertContains(self, observed, item, msg=None): """Fail if item not in observed""" try: if item in observed: return except (TypeError, ValueError): pass raise self.failureException( msg or "Item %s not found in %s" % (repr(item), repr(observed)) ) def assertNotContains(self, observed, item, msg=None): """Fail if item in observed""" try: if item not in observed: return except (TypeError, ValueError): return raise self.failureException( msg or "Item %s should not have been in %s" % (repr(item), repr(observed)) ) def assertGreaterThan(self, observed, value, msg=None): """Fail if observed is <= value""" try: if value is None or observed is None: raise ValueError if (asarray(observed) > value).all(): return except: pass raise self.failureException( msg or "Observed %s has elements <= %s" % (repr(observed), repr(value)) ) def assertLessThan(self, observed, value, msg=None): """Fail if observed is >= value""" try: if value is None or observed is None: raise ValueError if (asarray(observed) < value).all(): return except: pass raise self.failureException( msg or "Observed %s has elements >= %s" % (repr(observed), repr(value)) ) def assertIsProb(self, observed, msg=None): """Fail is observed is not between 0.0 and 1.0""" try: if observed is None: raise ValueError if (asarray(observed) >= 0.0).all() and (asarray(observed) <= 1.0).all(): return except: pass raise self.failureException( msg or "Observed %s has elements that are not probs" % (repr(observed)) ) def _set_suite_pvalue(self, pvalue): """Sets the test suite pvalue to be used in similarity tests This value is by default None. The pvalue used in this case is specified in the test module itself. The purpose of this method is to set the pvalue to be used when running a massive test suite """ self._suite_pvalue = pvalue def assertSimilarMeans(self, observed, expected, pvalue=0.01, msg=None): """Fail if observed p is lower than pvalue""" if self._suite_pvalue: pvalue = self._suite_pvalue observed, expected = asarray(observed), asarray(expected) t, p = t_two_sample(observed, expected) # handle case where all elements were the same if p is None or not isfinite(p): if not observed.shape: observed = observed.reshape((1,)) if not expected.shape: expected = expected.reshape((1,)) if observed[0] == expected[0]: return elif p > pvalue: return else: raise self.failureException( msg or "p-value %s, t-test p %s" % (repr(pvalue), repr(p)) ) def assertSimilarFreqs(self, observed, expected, pvalue=0.01, msg=None): """Fail if observed p is lower than pvalue""" if self._suite_pvalue: pvalue = self._suite_pvalue obs_ravel = ravel(asarray(observed)) exp_ravel = ravel(asarray(expected)) m = zeros((2, len(obs_ravel))) m[0, :] = obs_ravel m[1, :] = exp_ravel G, p = G_ind(m) if p > pvalue: return else: raise self.failureException( msg or "p-value %s, G-test p %s" % (repr(pvalue), repr(p)) ) def assertSameObj(self, observed, expected, msg=None): """Fail if 'observed is not expected'""" try: if observed is expected: return except: pass raise self.failureException( msg or "Observed %s is not the same as expected %s" % (repr(observed), repr(expected)) ) def assertNotSameObj(self, observed, expected, msg=None): """Fail if 'observed is expected'""" try: if observed is not expected: return except: pass raise self.failureException( msg or "Observed %s is the same as expected %s" % (repr(observed), repr(expected)) )
37.081633
87
0.553009
de3719bd3024869b259b9109ca2c04b0a330dcf9
180
py
Python
config/configuration.py
JobQiu/bi-att-flow
ef5058ca5b7e08bdae930340295786a9c047a664
[ "Apache-2.0" ]
null
null
null
config/configuration.py
JobQiu/bi-att-flow
ef5058ca5b7e08bdae930340295786a9c047a664
[ "Apache-2.0" ]
null
null
null
config/configuration.py
JobQiu/bi-att-flow
ef5058ca5b7e08bdae930340295786a9c047a664
[ "Apache-2.0" ]
null
null
null
class Config(): def __init__(self): self.squadLocation = "/content/bi-att-flow/data/squad" self.gloveLocation = "/content/bi-att-flow/data/glove" pass
25.714286
62
0.633333
7aaf03e55aa5ee812d4b7b122436fc8ee5950860
1,788
py
Python
banti/conncomp.py
aimsravi/TELUGU-OCR
6b15e37fd0ad93e5e2ac90b8822b06e64230f05f
[ "Apache-2.0" ]
41
2015-12-19T15:55:35.000Z
2021-08-12T22:29:44.000Z
banti/conncomp.py
aimsravi/TELUGU-OCR
6b15e37fd0ad93e5e2ac90b8822b06e64230f05f
[ "Apache-2.0" ]
9
2015-12-05T04:20:55.000Z
2022-01-19T21:46:53.000Z
banti/conncomp.py
aimsravi/TELUGU-OCR
6b15e37fd0ad93e5e2ac90b8822b06e64230f05f
[ "Apache-2.0" ]
16
2016-01-25T11:45:49.000Z
2021-11-10T06:53:32.000Z
import scipy.ndimage.measurements as meas from .helpers import arr_to_ascii_art class Component(): def __init__(self, big_img, slice, index): self.index = index self.pix = big_img[slice] == index self.slice = slice self.y, self.y2 = slice[0].start, slice[0].stop self.ht = self.y2 - self.y self.x, self.x2 = slice[1].start, slice[1].stop self.wd = self.x2 - self.x def __lt__(self, other): overlap = max(0, min(self.x2 - other.x, other.x2 - self.x) - 1) if overlap / min(self.wd, other.wd) < .5: return self.x < other.x else: return self.y + self.ht/2 < other.y + other.ht/2 def __contains__(self, item): if isinstance(item, Component): return item.x >= self.x and item.x2 <= self.x2 and \ item.y >= self.y and item.y2 <= self.y2 else: raise NotImplementedError("Type of item is unknown: " + type(item)) def has_center_of(self, other): return self.x <= (other.x + other.x2)/2 <= self.x2 and \ self.y <= (other.y + other.y2)/2 <= self.y2 def small_str(self): return "Index:{} Range x: {}-{}({}) y:{}-{}({})\n".format(self.index, self.x, self.x2, self.wd, self.y, self.y2, self.ht) def __str__(self): return self.small_str() + "\n" + arr_to_ascii_art(self.pix) def get_conn_comp(imgarr, sort=True): labelled_image, n_components = meas.label(imgarr) slices = meas.find_objects(labelled_image) components = [] for islice, slaiss in enumerate(slices): components.append(Component(labelled_image, slaiss, islice+1)) if sort: components = sorted(components) return components, labelled_image
32.509091
79
0.587808
921d0f26f502b0d59c0ba44e40c95ef2b273c492
1,960
py
Python
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/CreateFlowProjectRequest.py
bricklayer-Liu/aliyun-openapi-python-sdk
20da2554de22679fc7c5462c483663e4d79512aa
[ "Apache-2.0" ]
1
2021-03-08T02:59:17.000Z
2021-03-08T02:59:17.000Z
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/CreateFlowProjectRequest.py
bricklayer-Liu/aliyun-openapi-python-sdk
20da2554de22679fc7c5462c483663e4d79512aa
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/CreateFlowProjectRequest.py
bricklayer-Liu/aliyun-openapi-python-sdk
20da2554de22679fc7c5462c483663e4d79512aa
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkemr.endpoint import endpoint_data class CreateFlowProjectRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Emr', '2016-04-08', 'CreateFlowProject') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Description(self): return self.get_query_params().get('Description') def set_Description(self,Description): self.add_query_param('Description',Description) def get_ProductType(self): return self.get_query_params().get('ProductType') def set_ProductType(self,ProductType): self.add_query_param('ProductType',ProductType) def get_ResourceGroupId(self): return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self,ResourceGroupId): self.add_query_param('ResourceGroupId',ResourceGroupId) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name)
35
74
0.766837
aa5f3e6e9ad5a9b303ad9726622917e8ac2ecbe4
354
py
Python
app/__init__.py
tonyin/fluffmo
335b0c072f536b9cd4ed4b75d521ef2403f2000c
[ "Apache-2.0" ]
null
null
null
app/__init__.py
tonyin/fluffmo
335b0c072f536b9cd4ed4b75d521ef2403f2000c
[ "Apache-2.0" ]
null
null
null
app/__init__.py
tonyin/fluffmo
335b0c072f536b9cd4ed4b75d521ef2403f2000c
[ "Apache-2.0" ]
null
null
null
from flask import Flask from werkzeug.contrib.fixers import ProxyFix app = Flask( __name__, instance_relative_config=True, static_url_path='/fluffymomo/static' ) # Load default config and then instance config app.config.from_object('config') app.config.from_pyfile('config.py') app.wsgi_app = ProxyFix(app.wsgi_app) from app import views
20.823529
46
0.774011
80251871562022e2440b4cdb3e56f83c037d5175
1,379
py
Python
neofaker/util.py
spacelis/neofaker
72e2f687280d431e864c55531f29ef3cf2edcdde
[ "MIT" ]
null
null
null
neofaker/util.py
spacelis/neofaker
72e2f687280d431e864c55531f29ef3cf2edcdde
[ "MIT" ]
null
null
null
neofaker/util.py
spacelis/neofaker
72e2f687280d431e864c55531f29ef3cf2edcdde
[ "MIT" ]
null
null
null
""" File: util.py Author: Wen Li Email: spacelis@gmail.com Github: http://github.com/spacelis Description: A set of utility functions """ from functools import reduce from csv import DictWriter def rekey(dct, kname, vname, extra=None): """ Generate dicts by keying the key-value pair :dct: a dict :kname: the name for the key :vname: the name for the value :returns: a set of dicts, each item in dct is repack as a dict """ for k, v in dct.items(): yield mk_dict({kname: k, vname: v}, extra if extra else {}) def to_csv(fobj, items): """ Return random items in CSV :fobj: A file object :items: A generator of dict items :returns: None """ first = next(items) wr = DictWriter(fobj, list(first.keys())) wr.writeheader() wr.writerow(first) for item in items: wr.writerow(item) def mk_dict(*args): """Make a new dict from a series of dict :*args: dicts :returns: a combined dicts """ return dict(reduce(lambda x, y: x + y, [list(d.items()) for d in args], [])) def number(lst, prefix, start=0): """ Number the items in the lst :lst: contains items to number :returns: a dict with item as the key and its number as the value """ return {item: '{0}{1}'.format(prefix, itemId) for itemId, item in enumerate(sorted(lst), start=start)}
23.372881
80
0.632342
d3a61627281349b383baf30802ae2b8810e5fa4f
11,297
py
Python
official/benchmark/models/shakespeare/shakespeare_main.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
4
2020-03-13T14:01:32.000Z
2021-05-31T17:17:32.000Z
official/benchmark/models/shakespeare/shakespeare_main.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
7
2020-09-26T01:03:33.000Z
2022-02-10T01:30:14.000Z
official/benchmark/models/shakespeare/shakespeare_main.py
873040/Abhishek
2ddd716e66bc5cc6e6f0787508dd07da0e02e75a
[ "Apache-2.0" ]
3
2020-08-23T21:15:41.000Z
2021-11-08T10:02:17.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Runs a character LSTM model trained on Shakespeare.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os # pylint: disable=wrong-import-order from absl import app from absl import flags import numpy as np import tensorflow as tf # pylint: enable=wrong-import-order from official.utils.flags import core as flags_core from official.utils.misc import distribution_utils from official.utils.misc import keras_utils EMBEDDING_DIM = 256 RNN_UNITS = 1024 SEQ_LENGTH = 100 # Calculated by running batch_size=1 BATCHES_PER_EPOCH = 11043 def define_flags(): """Define the flags for the Shakespeare character LSTM.""" flags_core.define_base(data_dir=False, clean=False, train_epochs=True, epochs_between_evals=False, stop_threshold=False, num_gpu=True, export_dir=False, run_eagerly=True, distribution_strategy=True) flags_core.define_performance(num_parallel_calls=False, inter_op=False, intra_op=False, synthetic_data=False, max_train_steps=False, dtype=True, loss_scale=True, enable_xla=True) flags_core.set_defaults(train_epochs=43, batch_size=64) flags.DEFINE_boolean(name='enable_eager', default=True, help='Enable eager?') flags.DEFINE_boolean( name='train', default=True, help='If true trains the model.') flags.DEFINE_string( name='predict_context', default=None, help='If set, makes a prediction with the given context.') flags.DEFINE_integer( name='predict_length', default=1000, help='Length of the predicted text including the context.') flags.DEFINE_integer(name='train_steps', default=None, help='Overrides train_steps per epoch if not None.') flags.DEFINE_integer( name='log_steps', default=100, help='For every log_steps, we log the timing information such as ' 'examples per second.') flags.DEFINE_string( name='training_data', default=None, help='Path to file containing the training data.') flags.DEFINE_boolean(name='cudnn', default=True, help='Use CuDNN LSTM.') def get_dataset(path_to_file, batch_size=None, seq_length=SEQ_LENGTH): """Creates a dataset from a given text file. Args: path_to_file: The path to the training data. batch_size: Batch size to use. seq_length: The length of the LSTM sequence. Returns: A tuple, consisting of the Dataset and the class to character mapping and character to class mapping. """ with tf.io.gfile.GFile(path_to_file, 'rb') as train_data: text = train_data.read().decode(encoding='utf-8') # Create vocab vocab = sorted(set(text)) char2idx = {u: i for i, u in enumerate(vocab)} idx2char = np.array(vocab) # Split text into sequence length + 1 chucks to create examples text_as_int = np.array([char2idx[c] for c in text]) char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int) sequences = char_dataset.batch(seq_length+1, drop_remainder=True) def split_input_target(chunk): input_text = chunk[:-1] target_text = chunk[1:] return input_text, tf.one_hot(target_text, len(vocab)) dataset = sequences.map(split_input_target) dataset = dataset.shuffle(10000).repeat() dataset = dataset.batch(batch_size, drop_remainder=True) return dataset, idx2char, char2idx def build_model(vocab_size, embedding_dim=EMBEDDING_DIM, rnn_units=RNN_UNITS, batch_size=None, stateful=False, use_cudnn=True): """Builds the Shakespeare model. Args: vocab_size: The number of character classes in the input. embedding_dim: The dimension of the embedding space for each class. rnn_units: The number of RNN units in the layer. batch_size: When predicting, the batch size of the predictions. stateful: If true, the LSTM is stateful. Returns: A Keras Model. """ assert keras_utils.is_v2_0() LSTM = functools.partial(tf.keras.layers.LSTM, implementation=2) # By indirecting the activation through a lambda layer, the logic to dispatch # to CuDNN in V2 doesn't trigger and we force the LSTM to run in non-CuDNN # mode. lstm_activation = ('tanh' if use_cudnn else lambda x: tf.math.tanh(x)) batch_shape = [batch_size if stateful else None, None] return tf.keras.Sequential([ tf.keras.layers.Embedding(vocab_size, embedding_dim, batch_input_shape=batch_shape), LSTM(rnn_units, activation=lstm_activation, return_sequences=True, stateful=stateful, recurrent_initializer='glorot_uniform'), tf.keras.layers.Dense(vocab_size), tf.keras.layers.Softmax(dtype=tf.float32)]) def train_model(flags_obj, dataset, vocab_size, strategy, checkpoint_dir=None): """Trains a Shakespeare model. Args: flags_obj: An object containing parsed flag values.s dataset: the training data set. vocab_size: the number of unique character classes. strategy: distribution strategy to use. checkpoint_dir: if not None, the directory in which to make checkpoints. Returns: The training history and callbacks. """ if flags_obj.train_steps: train_steps = flags_obj.train_steps else: train_steps = BATCHES_PER_EPOCH // flags_obj.batch_size strategy_scope = distribution_utils.get_strategy_scope(strategy) with strategy_scope: model = build_model(vocab_size=vocab_size, batch_size=flags_obj.batch_size, use_cudnn=flags_obj.cudnn) # When keras_use_ctl is False, Model.fit() automatically applies # loss scaling so we don't need to create a LossScaleOptimizer. model.compile( optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.Recall(top_k=1, name='RecallAt1'), tf.keras.metrics.Recall(top_k=5, name='RecallAt5')], run_eagerly=flags_obj.run_eagerly) callbacks = [] if checkpoint_dir: checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}') checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_prefix, save_weights_only=True) callbacks.append(checkpoint_callback) time_callback = keras_utils.TimeHistory(flags_obj.batch_size, flags_obj.log_steps) callbacks.append(time_callback) history = model.fit(dataset, epochs=flags_obj.train_epochs, steps_per_epoch=train_steps, callbacks=callbacks, verbose=2) return history, callbacks def make_prediction(checkpoint_dir, length, context, idx2char, char2idx): """Make predictions from a Shakespeare model. Args: checkpoint_dir: the directory from which to load checkpoints length: the total length of the generated text (including the context). context: the initial text with which the LSTM is primed. idx2char: the character class to character mapping. char2idx: the character to character class mapping. Returns: A generated string of text of the given length. """ prediction_model = build_model( vocab_size=len(idx2char), batch_size=1, stateful=True) prediction_model.load_weights(tf.train.latest_checkpoint(checkpoint_dir)) prediction_model.build(tf.TensorShape([1, None])) input_eval = [char2idx[s] for s in context] input_eval = tf.expand_dims(input_eval, 0) text_generated = [] prediction_model.reset_states() for _ in range(length - len(context)): predictions = prediction_model(input_eval) predictions = tf.squeeze(predictions, 0) # We applied a softmax to the output of the model so that # tf.keras.metrics.Recall would work. We need logits for # tf.random.categorical, so we convert the probabilities back to log odds predictions = tf.math.log(predictions / (1 - predictions)) random_output = tf.random.categorical(predictions, num_samples=1) selected_id = random_output[-1, 0].numpy() input_eval = tf.expand_dims([selected_id], 0) text_generated.append(idx2char[selected_id]) return context + ''.join(text_generated) def run(flags_obj): """Run Shakespeare training and predict. Args: flags_obj: An object containing parsed flag values. Returns: Dictionary with status from the run. """ if not flags_obj.training_data: raise ValueError( 'Must set the path to a training data file. e.g download the following ' 'https://storage.googleapis.com/download.tensorflow.org/data/' 'shakespeare.txt') if flags_obj.dtype == 'fp16': policy = tf.keras.mixed_precision.experimental.Policy( 'mixed_float16', loss_scale=flags_core.get_loss_scale(flags_obj, default_for_fp16='dynamic')) tf.keras.mixed_precision.experimental.set_policy(policy) keras_utils.set_session_config( enable_eager=flags_obj.enable_eager, enable_xla=flags_obj.enable_xla) strategy = distribution_utils.get_distribution_strategy( distribution_strategy=flags_obj.distribution_strategy, num_gpus=flags_obj.num_gpus) dataset, idx2char, char2idx = get_dataset(flags_obj.training_data, batch_size=flags_obj.batch_size) stats = {} if flags_obj.train: history, callbacks = train_model(flags_obj, dataset, len(idx2char), strategy, checkpoint_dir=flags_obj.model_dir) stats['history'] = history.history stats['callbacks'] = callbacks if flags_obj.predict_context: if not flags_obj.model_dir: raise ValueError('Must set model_dir to get predictions.') print(make_prediction(flags_obj.model_dir, flags_obj.predict_length, flags_obj.predict_context, idx2char, char2idx)) return stats def main(_): flags_obj = flags.FLAGS run(flags_obj) if __name__ == '__main__': define_flags() app.run(main)
35.75
80
0.672922
db0922253dae1838663571fc9dff15a3f0189855
1,446
py
Python
joyful/mappings/dualshock4.py
cauebs/joyful
b501827fe6ee7da21e79c5dd8e1e9f5fef7fc674
[ "MIT" ]
null
null
null
joyful/mappings/dualshock4.py
cauebs/joyful
b501827fe6ee7da21e79c5dd8e1e9f5fef7fc674
[ "MIT" ]
null
null
null
joyful/mappings/dualshock4.py
cauebs/joyful
b501827fe6ee7da21e79c5dd8e1e9f5fef7fc674
[ "MIT" ]
null
null
null
from enum import Enum, auto class Labels(Enum): DPAD_X = auto() DPAD_Y = auto() L1_BUTTON = auto() L2_BUTTON = auto() L2_TRIGGER = auto() L3_X_AXIS = auto() L3_Y_AXIS = auto() L3_BUTTON = auto() SHARE = auto() OPTIONS = auto() START = auto() SELECT = auto() PLAYSTATION = auto() CROSS = auto() CIRCLE = auto() SQUARE = auto() TRIANGLE = auto() R1_BUTTON = auto() R2_BUTTON = auto() R2_TRIGGER = auto() R3_X_AXIS = auto() R3_Y_AXIS = auto() R3_BUTTON = auto() ACCEL_X = auto() ACCEL_Y = auto() ACCEL_Z = auto() GYRO_X = auto() GYRO_Y = auto() GYRO_Z = auto() MAPPING = { 0x00: Labels.L3_X_AXIS, 0x01: Labels.L3_Y_AXIS, 0x02: Labels.L2_TRIGGER, 0x03: Labels.R3_X_AXIS, 0x04: Labels.R3_Y_AXIS, 0x05: Labels.R2_TRIGGER, 0x10: Labels.DPAD_X, 0x11: Labels.DPAD_Y, 0x130: Labels.CROSS, 0x131: Labels.CIRCLE, 0x133: Labels.TRIANGLE, 0x134: Labels.SQUARE, 0x136: Labels.L1_BUTTON, 0x137: Labels.R1_BUTTON, 0x138: Labels.L2_BUTTON, 0x139: Labels.R2_BUTTON, 0x13a: Labels.SHARE, 0x13b: Labels.OPTIONS, 0x13c: Labels.PLAYSTATION, 0x13d: Labels.L3_BUTTON, 0x13e: Labels.R3_BUTTON, } MOTION = { 0x00: Labels.ACCEL_X, 0x01: Labels.ACCEL_Y, 0x02: Labels.ACCEL_Z, 0x03: Labels.GYRO_X, 0x04: Labels.GYRO_Y, 0x05: Labels.GYRO_Z, }
19.808219
30
0.607192
affd3c43f7b3cfa1966e92e5bca6a749e47121fa
9,125
py
Python
neutron/db/api.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
null
null
null
neutron/db/api.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
null
null
null
neutron/db/api.py
cleo4zheng/neutron
6d65318308edfd984bdd0ff1ac7fef9486a040f7
[ "Apache-2.0" ]
null
null
null
# Copyright 2011 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import copy from debtcollector import removals from neutron_lib import exceptions from oslo_config import cfg from oslo_db import api as oslo_db_api from oslo_db import exception as db_exc from oslo_db.sqlalchemy import enginefacade from oslo_log import log as logging from oslo_utils import excutils from osprofiler import opts as profiler_opts import osprofiler.sqlalchemy from pecan import util as p_util import six import sqlalchemy from sqlalchemy import event # noqa from sqlalchemy import exc as sql_exc from sqlalchemy.orm import exc import traceback from neutron._i18n import _LE from neutron.objects import exceptions as obj_exc def set_hook(engine): if (profiler_opts.is_trace_enabled() and profiler_opts.is_db_trace_enabled()): osprofiler.sqlalchemy.add_tracing(sqlalchemy, engine, 'neutron.db') context_manager = enginefacade.transaction_context() context_manager.configure(sqlite_fk=True) # TODO(ihrachys) the hook assumes options defined by osprofiler, and the only # public function that is provided by osprofiler that will register them is # set_defaults, that's why we call it here even though we don't need to change # defaults profiler_opts.set_defaults(cfg.CONF) context_manager.append_on_engine_create(set_hook) MAX_RETRIES = 10 LOG = logging.getLogger(__name__) def is_retriable(e): if getattr(e, '_RETRY_EXCEEDED', False): return False if _is_nested_instance(e, (db_exc.DBDeadlock, exc.StaleDataError, db_exc.DBConnectionError, db_exc.DBDuplicateEntry, db_exc.RetryRequest, obj_exc.NeutronDbObjectDuplicateEntry)): return True # looking savepoints mangled by deadlocks. see bug/1590298 for details. return _is_nested_instance(e, db_exc.DBError) and '1305' in str(e) _retry_db_errors = oslo_db_api.wrap_db_retry( max_retries=MAX_RETRIES, retry_interval=0.1, inc_retry_interval=True, exception_checker=is_retriable ) def _tag_retriables_as_unretriable(f): """Puts a flag on retriable exceptions so is_retriable returns False. This decorator can be used outside of a retry decorator to prevent decorators higher up from retrying again. """ @six.wraps(f) def wrapped(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: with excutils.save_and_reraise_exception(): if is_retriable(e): setattr(e, '_RETRY_EXCEEDED', True) return wrapped def _copy_if_lds(item): """Deepcopy lists/dicts/sets, leave everything else alone.""" return copy.deepcopy(item) if isinstance(item, (list, dict, set)) else item def retry_db_errors(f): """Nesting-safe retry decorator with auto-arg-copy and logging. Retry decorator for all functions which do not accept a context as an argument. If the function accepts a context, use 'retry_if_session_inactive' below. If retriable errors are retried and exceed the count, they will be tagged with a flag so is_retriable will no longer recognize them as retriable. This prevents multiple applications of this decorator (and/or the one below) from retrying the same exception. """ @_tag_retriables_as_unretriable @_retry_db_errors @six.wraps(f) def wrapped(*args, **kwargs): try: # copy mutable args and kwargs to make retries safe. this doesn't # prevent mutations of complex objects like the context or 'self' dup_args = [_copy_if_lds(a) for a in args] dup_kwargs = {k: _copy_if_lds(v) for k, v in kwargs.items()} return f(*dup_args, **dup_kwargs) except Exception as e: with excutils.save_and_reraise_exception(): if is_retriable(e): LOG.debug("Retry wrapper got retriable exception: %s", traceback.format_exc()) return wrapped def retry_if_session_inactive(context_var_name='context'): """Retries only if the session in the context is inactive. Calls a retry_db_errors wrapped version of the function if the context's session passed in is inactive, otherwise it just calls the function directly. This is useful to avoid retrying things inside of a transaction which is ineffective for DB races/errors. This should be used in all cases where retries are desired and the method accepts a context. """ def decorator(f): try: # NOTE(kevinbenton): we use pecan's util function here because it # deals with the horrors of finding args of already decorated # functions ctx_arg_index = p_util.getargspec(f).args.index(context_var_name) except ValueError: raise RuntimeError(_LE("Could not find position of var %s") % context_var_name) f_with_retry = retry_db_errors(f) @six.wraps(f) def wrapped(*args, **kwargs): # only use retry wrapper if we aren't nested in an active # transaction if context_var_name in kwargs: context = kwargs[context_var_name] else: context = args[ctx_arg_index] method = f if context.session.is_active else f_with_retry return method(*args, **kwargs) return wrapped return decorator def reraise_as_retryrequest(f): """Packs retriable exceptions into a RetryRequest.""" @six.wraps(f) def wrapped(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: with excutils.save_and_reraise_exception() as ctx: if is_retriable(e): ctx.reraise = False raise db_exc.RetryRequest(e) return wrapped def _is_nested_instance(e, etypes): """Check if exception or its inner excepts are an instance of etypes.""" if isinstance(e, etypes): return True if isinstance(e, exceptions.MultipleExceptions): return any(_is_nested_instance(i, etypes) for i in e.inner_exceptions) if isinstance(e, db_exc.DBError): return _is_nested_instance(e.inner_exception, etypes) return False @contextlib.contextmanager def exc_to_retry(etypes): try: yield except Exception as e: with excutils.save_and_reraise_exception() as ctx: if _is_nested_instance(e, etypes): ctx.reraise = False raise db_exc.RetryRequest(e) #TODO(akamyshnikova): when all places in the code, which use sessions/ # connections will be updated, this won't be needed @removals.remove(version='Ocata', removal_version='Pike', message="Usage of legacy facade is deprecated. Use " "get_reader_session or get_writer_session instead.") def get_session(autocommit=True, expire_on_commit=False, use_slave=False): """Helper method to grab session.""" return context_manager.get_legacy_facade().get_session( autocommit=autocommit, expire_on_commit=expire_on_commit, use_slave=use_slave) def get_reader_session(): """Helper to get reader session""" return context_manager.reader.get_sessionmaker()() def get_writer_session(): """Helper to get writer session""" return context_manager.writer.get_sessionmaker()() @contextlib.contextmanager def autonested_transaction(sess): """This is a convenience method to not bother with 'nested' parameter.""" if sess.is_active: session_context = sess.begin(nested=True) else: session_context = sess.begin(subtransactions=True) with session_context as tx: yield tx _REGISTERED_SQLA_EVENTS = [] def sqla_listen(*args): """Wrapper to track subscribers for test teardowns. SQLAlchemy has no "unsubscribe all" option for its event listener framework so we need to keep track of the subscribers by having them call through here for test teardowns. """ event.listen(*args) _REGISTERED_SQLA_EVENTS.append(args) def sqla_remove(*args): event.remove(*args) _REGISTERED_SQLA_EVENTS.remove(args) def sqla_remove_all(): for args in _REGISTERED_SQLA_EVENTS: try: event.remove(*args) except sql_exc.InvalidRequestError: # already removed pass del _REGISTERED_SQLA_EVENTS[:]
34.048507
79
0.688219
4b5b81c3390197b9849bea00bd9aedb3207c0229
3,164
py
Python
src/407. Trapping Rain Water II_learned.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
src/407. Trapping Rain Water II_learned.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
src/407. Trapping Rain Water II_learned.py
wisesky/LeetCode-Practice
65549f72c565d9f11641c86d6cef9c7988805817
[ "MIT" ]
null
null
null
from typing import List import heapq class Solution: def trapRainWater(self, heightMap: List[List[int]]) -> int: if len(heightMap) == 0: return 0 h = len(heightMap) w = len(heightMap[0]) visited = {} pq = [] for i in range(h): heapq.heappush(pq, (heightMap[i][0], (i, 0))) heapq.heappush(pq, (heightMap[i][w-1], (i, w-1))) visited[i, 0] = True visited[i, w-1] = True for j in range(1,w-1): heapq.heappush(pq, (heightMap[0][j], (0,j))) heapq.heappush(pq, (heightMap[h-1][j], (h-1,j))) visited[0, j] = True visited[h-1, j] = True h_max = 0 res = 0 while len(pq) > 0: value , (x, y) = heapq.heappop(pq) if value < h_max: res += h_max - value else: h_max = value up = (x-1, y) if x > 0 else None down = (x+1, y) if x < h-1 else None left = (x, y-1) if y > 0 else None right = (x, y+1) if y < w-1 else None # if up != None and not visited.get(up, False): # heapq.heappush(pq, (heightMap[up[0]][up[1]], up)) # visited[up] = True # if down!= None and not visited.get(down, False): # heapq.heappush(pq, (heightMap[down[0]][down[1]], down)) # visited[down] = True # if left != None and not visited.get(left, False): # heapq.heappush(pq, (heightMap[left[0]][left[1]], left)) # visited[left] = True # if right != None and not visited.get(right, False): # heapq.heappush(pq, (heightMap[right[0]][right[1]], right)) # visited[right] = True # optimization for rd in [up, down, left, right]: if rd != None and not visited.get(rd, False): heapq.heappush(pq, (heightMap[rd[0]][rd[1]], rd)) visited[rd] = True return res if __name__ == "__main__": so = Solution() heightMap = [ [1,4,3,1,3,2], [3,2,1,3,2,4], [2,3,3,2,3,1] ] # 14 heightMap = [ [12,13,1,12], [13,4,13,12], [13,8,10,12], [12,13,12,12], [13,13,13,13] ] # 3 heightMap = [ [5,5,5,1], [5,1,1,5], [5,1,5,5], [5,2,5,8] ] # 44 heightMap = [ [78,16,94,36], [87,93,50,22], [63,28,91,60], [64,27,41,27], [73,37,12,69], [68,30,83,31], [63,24,68,36] ] # 25 heightMap = [ [14,17,18,16,14,16], [17,3,10,2,3,8], [11,10,4,7,1,7], [13,7,2,9,8,10], [13,1,3,4,8,6], [20,3,3,9,10,8] ] # 11 # heightMap = [ # [14,20,11,19,19,16], # [11,10,7,4,9,6], # [17,2,2,6,10,9], # [15,9,2,1,4,1], # [15,5,5,5,8,7], # [14,2,8,6,10,7] # ] result = so.trapRainWater(heightMap) print(result)
26.14876
76
0.418458
d5609e6275c3b63d4fa48b8dd47fb85876df1fe2
7,484
py
Python
api/client/src/pcluster_client/model/ec2_ami_info.py
maclema/aws-parallelcluster
ade6e5e76201ee43c6e222fcd1c2891aba938838
[ "Apache-2.0" ]
279
2015-01-02T12:03:58.000Z
2018-11-05T07:58:55.000Z
api/client/src/pcluster_client/model/ec2_ami_info.py
maclema/aws-parallelcluster
ade6e5e76201ee43c6e222fcd1c2891aba938838
[ "Apache-2.0" ]
383
2015-01-04T18:52:06.000Z
2018-11-12T16:23:44.000Z
api/client/src/pcluster_client/model/ec2_ami_info.py
maclema/aws-parallelcluster
ade6e5e76201ee43c6e222fcd1c2891aba938838
[ "Apache-2.0" ]
127
2015-01-25T23:51:28.000Z
2018-11-04T04:50:29.000Z
""" ParallelCluster ParallelCluster API # noqa: E501 The version of the OpenAPI document: 3.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from pcluster_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from pcluster_client.model.ec2_ami_state import Ec2AmiState from pcluster_client.model.tag import Tag globals()['Ec2AmiState'] = Ec2AmiState globals()['Tag'] = Tag class Ec2AmiInfo(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'ami_id': (str,), # noqa: E501 'tags': ([Tag],), # noqa: E501 'ami_name': (str,), # noqa: E501 'architecture': (str,), # noqa: E501 'state': (Ec2AmiState,), # noqa: E501 'description': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'ami_id': 'amiId', # noqa: E501 'tags': 'tags', # noqa: E501 'ami_name': 'amiName', # noqa: E501 'architecture': 'architecture', # noqa: E501 'state': 'state', # noqa: E501 'description': 'description', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, ami_id, *args, **kwargs): # noqa: E501 """Ec2AmiInfo - a model defined in OpenAPI Args: ami_id (str): EC2 AMI id Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) tags ([Tag]): EC2 AMI Tags. [optional] # noqa: E501 ami_name (str): EC2 AMI name. [optional] # noqa: E501 architecture (str): EC2 AMI architecture. [optional] # noqa: E501 state (Ec2AmiState): [optional] # noqa: E501 description (str): EC2 AMI description. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.ami_id = ami_id for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
38.979167
110
0.576563
e3dccdec7ecd277cf4d201c33d6480a350f7635d
4,960
py
Python
test/functional/p2p_time_offset.py
nyerium-core/nyerium
0bc3b4da2c8cf1c96ab3910cff4c743ff09fcd1e
[ "MIT" ]
2
2019-08-06T13:37:38.000Z
2022-01-07T11:57:49.000Z
test/functional/p2p_time_offset.py
nyerium-core/nyerium
0bc3b4da2c8cf1c96ab3910cff4c743ff09fcd1e
[ "MIT" ]
5
2018-05-31T20:01:32.000Z
2018-09-21T22:55:04.000Z
test/functional/p2p_time_offset.py
nyerium-core/nyerium
0bc3b4da2c8cf1c96ab3910cff4c743ff09fcd1e
[ "MIT" ]
4
2018-06-03T07:09:44.000Z
2020-08-17T12:43:24.000Z
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The Nyerium developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import time from test_framework.test_framework import NyeriumTestFramework from test_framework.util import ( assert_equal, connect_nodes, set_node_times, ) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) class TimeOffsetTest(NyeriumTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 8 self.enable_mocktime() def setup_network(self): # don't connect nodes yet self.setup_nodes() def check_connected_nodes(self): ni = [node.getnetworkinfo() for node in self.connected_nodes] assert_equal([x['connections'] for x in ni], [2] * len(ni)) assert_equal([x['timeoffset'] for x in ni], [0] * len(ni)) def run_test(self): # Nodes synced but not connected self.mocktime = int(time.time()) set_node_times(self.nodes, self.mocktime) ni = [node.getnetworkinfo() for node in self.nodes] assert_equal([x['connections'] for x in ni], [0] * self.num_nodes) self.log.info("Nodes disconnected from each other. Time: %d" % self.mocktime) assert_equal([x['timeoffset'] for x in ni], [0] * self.num_nodes) self.log.info("Nodes have nTimeOffset 0") # Set node times. # nodes [1, 5]: set times to +10, +15, ..., +30 secs for i in range(1, 6): self.nodes[i].setmocktime(self.mocktime + 5 * (i + 1)) # nodes [6, 7]: set time to -5, -10 secs for i in range(6, 8): self.nodes[i].setmocktime(self.mocktime - 5 * (i - 5)) # connect nodes 1 and 2 self.log.info("Connecting with node-1 (+10 s) and node-2 (+15 s)...") connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) self.log.info("--> samples = [+0, +10, (+10), +15, +15]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 4) assert_equal(ni['timeoffset'], 10) self.connected_nodes = [self.nodes[1], self.nodes[2]] self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 3 self.log.info("Connecting with node-3 (+20 s). This will print the warning...") connect_nodes_bi(self.nodes, 0, 3) self.log.info("--> samples = [+0, +10, +10, (+15), +15, +20, +20]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 6) assert_equal(ni['timeoffset'], 15) self.connected_nodes.append(self.nodes[3]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 6 self.log.info("Connecting with node-6 (-5 s)...") connect_nodes_bi(self.nodes, 0, 6) self.log.info("--> samples = [-5, -5, +0, +10, (+10), +15, +15, +20, +20]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 8) assert_equal(ni['timeoffset'], 10) self.connected_nodes.append(self.nodes[6]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 4 self.log.info("Connecting with node-4 (+25 s). This will print the warning...") connect_nodes_bi(self.nodes, 0, 4) self.log.info("--> samples = [-5, -5, +0, +10, +10, (+15), +15, +20, +20, +25, +25]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 10) assert_equal(ni['timeoffset'], 15) self.connected_nodes.append(self.nodes[4]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # try to connect node 5 and check that it can't self.log.info("Trying to connect with node-5 (+30 s)...") connect_nodes_bi(self.nodes, 0, 5) ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 10) assert_equal(ni['timeoffset'], 15) self.log.info("Not connected.") self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 7 self.log.info("Connecting with node-7 (-10 s)...") connect_nodes_bi(self.nodes, 0, 7) self.log.info("--> samples = [-10, -10, -5, -5, +0, +10, (+10), +15, +15, +20, +20, +25, +25]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 12) assert_equal(ni['timeoffset'], 10) self.connected_nodes.append(self.nodes[6]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) if __name__ == '__main__': TimeOffsetTest().main()
40.991736
103
0.604637
2fb331b17734ead24561bf6eee1a4920680295c7
2,560
py
Python
tools/rm_subj.py
roshchupkin/hase
c7aa36459c53ccb5bd1f884bbc38df0cfebdf208
[ "Apache-2.0" ]
13
2016-03-25T12:22:03.000Z
2021-04-14T11:14:00.000Z
tools/rm_subj.py
roshchupkin/hase
c7aa36459c53ccb5bd1f884bbc38df0cfebdf208
[ "Apache-2.0" ]
8
2016-08-02T22:06:07.000Z
2019-12-10T08:42:22.000Z
tools/rm_subj.py
roshchupkin/hase
c7aa36459c53ccb5bd1f884bbc38df0cfebdf208
[ "Apache-2.0" ]
3
2019-12-03T12:49:46.000Z
2021-08-13T15:11:27.000Z
import os import h5py import pandas as pd import numpy as np import argparse import tables if __name__ == '__main__': parser = argparse.ArgumentParser(description='Script to remove subjects from HASE hdf5 files') parser.add_argument("-g", required=True, type=str, help="path/paths to genotype data folder") parser.add_argument('-study_name', type=str, required=True, default=None, help=' Study names') parser.add_argument('-exclude_ids', type=str, default=None, help='Table with IDs to exclude from data. Should have ID column') args = parser.parse_args() print args if args.exclude_ids is not None: df = pd.DataFrame.from_csv(args.snp_id_inc, index_col=None) print df.head() if 'ID' not in df.columns: raise ValueError('{} table does not have ID or columns'.format(args.exclude_ids)) df['ID'] = df.ID.astype(str) df_ids = pd.read_hdf(os.path.join(args.g, 'individuals', args.study_name + '.h5'), 'individuals') df_ids['individual'] = df_ids.individual.astype(str) info_index = df_ids.individual.isin(df.ID) remove_index = np.where(info_index == True)[0] keep_index = np.where(info_index == False)[0] if len(remove_index) == 0: print 'There is no ids to remove!' exit(0) if len(keep_index) == len(df_ids.individual): print "Need to remove everybody!!! " exit(0) individuals = df_ids.individual[~remove_index] chunk = pd.DataFrame.from_dict({"individual": individuals}) chunk.to_hdf(os.path.join(args.g, 'individuals', args.study_name + '.h5'), key='individuals', format='table', min_itemsize=25, complib='zlib', complevel=9) for g_file in os.listdir(os.path.join(args.g, 'genotype')): print g_file data = h5py.File(os.path.join(args.g, 'genotype', g_file), 'r')['genotype'][...] data = data[:, keep_index] h5_gen_file = tables.open_file( os.path.join(args.g, 'genotype', g_file), 'w', title=args.study_name) atom = tables.Float16Atom() genotype = h5_gen_file.create_carray(h5_gen_file.root, 'genotype', atom, (data.shape), title='Genotype', filters=tables.Filters(complevel=9, complib='zlib')) genotype[:] = data h5_gen_file.close()
40
117
0.591406
1dd113147cf4af844657ef03d56202202fd4db5e
15,265
py
Python
src/cmds/show.py
Flofie/chia-blockchain
d3013f1a392fc1761d975581a7b1d0770f92cb14
[ "Apache-2.0" ]
null
null
null
src/cmds/show.py
Flofie/chia-blockchain
d3013f1a392fc1761d975581a7b1d0770f92cb14
[ "Apache-2.0" ]
null
null
null
src/cmds/show.py
Flofie/chia-blockchain
d3013f1a392fc1761d975581a7b1d0770f92cb14
[ "Apache-2.0" ]
null
null
null
import click async def show_async( rpc_port: int, state: bool, show_connections: bool, exit_node: bool, add_connection: str, remove_connection: str, block_header_hash_by_height: str, block_by_header_hash: str, ) -> None: import aiohttp import time import traceback from time import localtime, struct_time from typing import List, Optional from src.consensus.block_record import BlockRecord from src.rpc.full_node_rpc_client import FullNodeRpcClient from src.server.outbound_message import NodeType from src.types.full_block import FullBlock from src.util.bech32m import encode_puzzle_hash from src.util.byte_types import hexstr_to_bytes from src.util.config import load_config from src.util.default_root import DEFAULT_ROOT_PATH from src.util.ints import uint16 try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if rpc_port is None: rpc_port = config["full_node"]["rpc_port"] client = await FullNodeRpcClient.create(self_hostname, uint16(rpc_port), DEFAULT_ROOT_PATH, config) if state: blockchain_state = await client.get_blockchain_state() if blockchain_state is None: print("There is no blockchain found yet. Try again shortly") return peak: Optional[BlockRecord] = blockchain_state["peak"] difficulty = blockchain_state["difficulty"] sub_slot_iters = blockchain_state["sub_slot_iters"] synced = blockchain_state["sync"]["synced"] sync_mode = blockchain_state["sync"]["sync_mode"] total_iters = peak.total_iters if peak is not None else 0 num_blocks: int = 10 if sync_mode: sync_max_block = blockchain_state["sync"]["sync_tip_height"] sync_current_block = blockchain_state["sync"]["sync_progress_height"] print( "Current Blockchain Status: Full Node syncing to block", sync_max_block, "\nCurrently synced to block:", sync_current_block, ) if synced: print("Current Blockchain Status: Full Node Synced") print("\nPeak: Hash:", peak.header_hash if peak is not None else "") elif peak is not None: print(f"Current Blockchain Status: Not Synced. Peak height: {peak.height}") else: print("\nSearching for an initial chain\n") print("You may be able to expedite with 'chia show -a host:port' using a known node.\n") if peak is not None: if peak.is_transaction_block: peak_time = peak.timestamp else: peak_hash = peak.header_hash curr = await client.get_block_record(peak_hash) while curr is not None and not curr.is_transaction_block: curr = await client.get_block_record(curr.prev_hash) peak_time = curr.timestamp peak_time_struct = struct_time(localtime(peak_time)) print( " Time:", f"{time.strftime('%a %b %d %Y %T %Z', peak_time_struct)}", f" Height: {peak.height:>10}\n", ) print("Estimated network space: ", end="") network_space_human_readable = blockchain_state["space"] / 1024 ** 4 if network_space_human_readable >= 1024: network_space_human_readable = network_space_human_readable / 1024 print(f"{network_space_human_readable:.3f} PiB") else: print(f"{network_space_human_readable:.3f} TiB") print(f"Current difficulty: {difficulty}") print(f"Current VDF sub_slot_iters: {sub_slot_iters}") print("Total iterations since the start of the blockchain:", total_iters) print("") print(" Height: | Hash:") added_blocks: List[BlockRecord] = [] curr = await client.get_block_record(peak.header_hash) while curr is not None and len(added_blocks) < num_blocks and curr.height > 0: added_blocks.append(curr) curr = await client.get_block_record(curr.prev_hash) for b in added_blocks: print(f"{b.height:>9} | {b.header_hash}") else: print("Blockchain has no blocks yet") # if called together with show_connections, leave a blank line if show_connections: print("") if show_connections: connections = await client.get_connections() print("Connections:") print( "Type IP Ports NodeID Last Connect" + " MiB Up|Dwn" ) for con in connections: last_connect_tuple = struct_time(localtime(con["last_message_time"])) last_connect = time.strftime("%b %d %T", last_connect_tuple) mb_down = con["bytes_read"] / (1024 * 1024) mb_up = con["bytes_written"] / (1024 * 1024) host = con["peer_host"] # Strip IPv6 brackets if host[0] == "[": host = host[1:39] # Nodetype length is 9 because INTRODUCER will be deprecated if NodeType(con["type"]) is NodeType.FULL_NODE: peak_height = con["peak_height"] peak_hash = con["peak_hash"] if peak_hash is None: peak_hash = "No Info" if peak_height is None: peak_height = 0 con_str = ( f"{NodeType(con['type']).name:9} {host:38} " f"{con['peer_port']:5}/{con['peer_server_port']:<5}" f" {con['node_id'].hex()[:8]}... " f"{last_connect} " f"{mb_up:7.1f}|{mb_down:<7.1f}" f"\n " f"-SB Height: {peak_height:8.0f} -Hash: {peak_hash[2:10]}..." ) else: con_str = ( f"{NodeType(con['type']).name:9} {host:38} " f"{con['peer_port']:5}/{con['peer_server_port']:<5}" f" {con['node_id'].hex()[:8]}... " f"{last_connect} " f"{mb_up:7.1f}|{mb_down:<7.1f}" ) print(con_str) # if called together with state, leave a blank line if state: print("") if exit_node: node_stop = await client.stop_node() print(node_stop, "Node stopped") if add_connection: if ":" not in add_connection: print("Enter a valid IP and port in the following format: 10.5.4.3:8000") else: ip, port = ( ":".join(add_connection.split(":")[:-1]), add_connection.split(":")[-1], ) print(f"Connecting to {ip}, {port}") try: await client.open_connection(ip, int(port)) except Exception: print(f"Failed to connect to {ip}:{port}") if remove_connection: result_txt = "" if len(remove_connection) != 8: result_txt = "Invalid NodeID. Do not include '.'" else: connections = await client.get_connections() for con in connections: if remove_connection == con["node_id"].hex()[:8]: print("Attempting to disconnect", "NodeID", remove_connection) try: await client.close_connection(con["node_id"]) except Exception: result_txt = f"Failed to disconnect NodeID {remove_connection}" else: result_txt = f"NodeID {remove_connection}... {NodeType(con['type']).name} " f"{con['peer_host']} disconnected" elif result_txt == "": result_txt = f"NodeID {remove_connection}... not found" print(result_txt) if block_header_hash_by_height != "": block_header = await client.get_block_record_by_height(block_header_hash_by_height) if block_header is not None: print(f"Header hash of block {block_header_hash_by_height}: " f"{block_header.header_hash.hex()}") else: print("Block height", block_header_hash_by_height, "not found") if block_by_header_hash != "": block: Optional[BlockRecord] = await client.get_block_record(hexstr_to_bytes(block_by_header_hash)) full_block: Optional[FullBlock] = await client.get_block(hexstr_to_bytes(block_by_header_hash)) # Would like to have a verbose flag for this if block is not None: assert full_block is not None prev_b = await client.get_block_record(block.prev_hash) if prev_b is not None: difficulty = block.weight - prev_b.weight else: difficulty = block.weight if block.is_transaction_block: assert full_block.transactions_info is not None block_time = struct_time( localtime( full_block.foliage_transaction_block.timestamp if full_block.foliage_transaction_block else None ) ) block_time_string = time.strftime("%a %b %d %Y %T %Z", block_time) cost = str(full_block.transactions_info.cost) tx_filter_hash = "Not a transaction block" if full_block.foliage_transaction_block: tx_filter_hash = full_block.foliage_transaction_block.filter_hash else: block_time_string = "Not a transaction block" cost = "Not a transaction block" tx_filter_hash = "Not a transaction block" print("Block at height", block.height, ":") address_prefix = config["network_overrides"]["config"][config["selected_network"]]["address_prefix"] farmer_address = encode_puzzle_hash(block.farmer_puzzle_hash, address_prefix) pool_address = encode_puzzle_hash(block.pool_puzzle_hash, address_prefix) print( f"Header Hash 0x{block.header_hash.hex()}\n" f"Timestamp {block_time_string}\n" f"Block Height {block.height}\n" f"Weight {block.weight}\n" f"Previous Block 0x{block.prev_hash.hex()}\n" f"Difficulty {difficulty}\n" f"Sub-slot iters {block.sub_slot_iters}\n" f"Cost {cost}\n" f"Total VDF Iterations {block.total_iters}\n" f"Is a Transaction Block?{block.is_transaction_block}\n" f"Deficit {block.deficit}\n" f"PoSpace 'k' Size {full_block.reward_chain_block.proof_of_space.size}\n" f"Plot Public Key 0x{full_block.reward_chain_block.proof_of_space.plot_public_key}\n" f"Pool Public Key 0x{full_block.reward_chain_block.proof_of_space.pool_public_key}\n" f"Pool Public Key " f"0x{full_block.reward_chain_block.proof_of_space.pool_contract_puzzle_hash}\n" f"{full_block.reward_chain_block.proof_of_space.pool_contract_puzzle_hash}\n" f"Tx Filter Hash {tx_filter_hash}\n" f"Farmer Address {farmer_address}\n" f"Pool Address {pool_address}\n" f"Fees Amount {block.fees}\n" ) else: print("Block with header hash", block_header_hash_by_height, "not found") except Exception as e: if isinstance(e, aiohttp.client_exceptions.ClientConnectorError): print(f"Connection error. Check if full node rpc is running at {rpc_port}") print("This is normal if full node is still starting up") else: tb = traceback.format_exc() print(f"Exception from 'show' {tb}") client.close() await client.await_closed() @click.command("show", short_help="Show node information") @click.option( "-p", "--rpc-port", help=( "Set the port where the Full Node is hosting the RPC interface. " "See the rpc_port under full_node in config.yaml" ), type=int, default=8555, show_default=True, ) @click.option( "-wp", "--wallet-rpc-port", help="Set the port where the Wallet is hosting the RPC interface. See the rpc_port under wallet in config.yaml", type=int, default=9256, show_default=True, ) @click.option("-s", "--state", help="Show the current state of the blockchain", is_flag=True, type=bool, default=False) @click.option( "-c", "--connections", help="List nodes connected to this Full Node", is_flag=True, type=bool, default=False ) @click.option("-e", "--exit-node", help="Shut down the running Full Node", is_flag=True, default=False) @click.option("-a", "--add-connection", help="Connect to another Full Node by ip:port", type=str, default="") @click.option( "-r", "--remove-connection", help="Remove a Node by the first 8 characters of NodeID", type=str, default="" ) @click.option( "-bh", "--block-header-hash-by-height", help="Look up a block header hash by block height", type=str, default="" ) @click.option("-b", "--block-by-header-hash", help="Look up a block by block header hash", type=str, default="") def show_cmd( rpc_port: int, wallet_rpc_port: int, state: bool, connections: bool, exit_node: bool, add_connection: str, remove_connection: str, block_header_hash_by_height: str, block_by_header_hash: str, ) -> None: import asyncio asyncio.run( show_async( rpc_port, state, connections, exit_node, add_connection, remove_connection, block_header_hash_by_height, block_by_header_hash, ) )
46.539634
119
0.541042
34cf699feaf63c14ab14f757bec38f2e6ec45490
970
py
Python
src/storage-preview/azext_storage_preview/vendored_sdks/azure_mgmt_preview_storage/v2018_03_01_preview/models/list_container_items.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
1
2019-05-10T19:58:09.000Z
2019-05-10T19:58:09.000Z
src/storage-preview/azext_storage_preview/vendored_sdks/azure_mgmt_preview_storage/v2018_03_01_preview/models/list_container_items.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
src/storage-preview/azext_storage_preview/vendored_sdks/azure_mgmt_preview_storage/v2018_03_01_preview/models/list_container_items.py
mayank88mahajan/azure-cli-extensions
8bd389a1877bffd14052bec5519ce75dc6fc34cf
[ "MIT" ]
1
2021-07-28T14:50:54.000Z
2021-07-28T14:50:54.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ListContainerItems(Model): """The list of blob containers. :param value: The list of blob containers. :type value: list[~azure.mgmt.storage.v2018_03_01_preview.models.ListContainerItem] """ _attribute_map = { 'value': {'key': 'value', 'type': '[ListContainerItem]'}, } def __init__(self, **kwargs): super(ListContainerItems, self).__init__(**kwargs) self.value = kwargs.get('value', None)
32.333333
76
0.589691
db280fea135ddb681a718266a153452220814710
1,924
py
Python
rest_framework_elasticsearch/es_serializer.py
xaviermathew/django-rest-elasticsearch
d8778165e2e42601b8c15c8901c5f58b3061a47c
[ "Apache-2.0" ]
219
2017-04-22T11:32:06.000Z
2021-06-04T10:33:28.000Z
rest_framework_elasticsearch/es_serializer.py
xaviermathew/django-rest-elasticsearch
d8778165e2e42601b8c15c8901c5f58b3061a47c
[ "Apache-2.0" ]
37
2017-06-27T15:43:31.000Z
2020-09-02T03:05:17.000Z
rest_framework_elasticsearch/es_serializer.py
xaviermathew/django-rest-elasticsearch
d8778165e2e42601b8c15c8901c5f58b3061a47c
[ "Apache-2.0" ]
47
2017-05-02T13:18:38.000Z
2022-02-07T08:54:43.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from rest_framework import serializers class BaseElasticSerializer(object): def es_instance(self): raise NotImplementedError def get_es_model(self): if not hasattr(self.Meta, 'es_model'): raise ValueError( 'Can not find es_model value' ) return self.Meta.es_model def save(self, using=None, index=None, validate=True, **kwargs): instance = self.es_instance() instance.save(using=using, index=index, validate=validate, **kwargs) def delete(self, using=None, index=None, **kwargs): instance = self.es_instance() instance.delete(using=using, index=index, **kwargs) class ElasticSerializer(BaseElasticSerializer, serializers.Serializer): def get_es_instace_pk(self, data): try: return data['id'] except KeyError: raise ValueError( 'Can not save object without id' ) def es_repr(self, data): data['meta'] = dict(id=self.get_es_instace_pk(data)) model = self.get_es_model() return model(**data) def es_instance(self): if not self.is_valid(): raise serializers.ValidationError(self.errors) return self.es_repr(self.data) class ElasticModelSerializer(BaseElasticSerializer, serializers.ModelSerializer): def get_es_instace_pk(self, instance): return instance.pk def es_repr(self, instance): data = self.to_representation(instance) data['meta'] = dict(id=self.get_es_instace_pk(instance)) model = self.get_es_model() return model(**data) def es_instance(self): if not self.instance: raise ValueError("Can't reproduce object") return self.es_repr(self.instance)
30.539683
76
0.628898
2f4c3b4af8211c237d8e989fcc6ae3a4839c9031
792
py
Python
content/pkg/deps/python/dassana/common/timing.py
gauravphoenix/dassana
d663e89353f439b1ff67193635f4c9c06babd104
[ "Apache-2.0" ]
1
2021-11-17T00:45:07.000Z
2021-11-17T00:45:07.000Z
content/pkg/deps/python/dassana/common/timing.py
MartinLiu2/dassana
23c5e6d4e380630945621e2979820a6d61335535
[ "Apache-2.0" ]
null
null
null
content/pkg/deps/python/dassana/common/timing.py
MartinLiu2/dassana
23c5e6d4e380630945621e2979820a6d61335535
[ "Apache-2.0" ]
null
null
null
import logging from functools import wraps from time import time from typing import Dict, List def timing(f, measurements: Dict[frozenset, List], args_measure_func=lambda x: None, kw_measure_func=lambda y: None): @wraps(f) def wrap(*args, **kw): nonlocal measurements ts = time() result = f(*args, **kw) te = time() measurement_time = te - ts logging.log(1, 'func:%r args:%r; kw: %r] took: %2.4f sec', args, kw, te - ts) freeze = frozenset([f.__name__, *args_measure_func(args), *kw_measure_func(kw)]) if freeze in measurements: msur = measurements[freeze] msur.append(measurement_time) else: measurements[freeze] = [measurement_time] return result return wrap
31.68
117
0.621212
7ba3ee75d440262bbb39ada016ada6d90a10bbf2
434
py
Python
scratch/scratch3.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
scratch/scratch3.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
scratch/scratch3.py
farooq-teqniqly/pakt-complete-python-course
01717bbe97181f70c38166b3dc82ba7b00098430
[ "MIT" ]
null
null
null
class MyTypeError(TypeError): def __init__(self, message: str, code: int): super().__init__(message) self._code = code @property def code(self) -> int: return self._code if __name__ == "__main__": error = MyTypeError("Waht?", 12345) print(error) print(error.code) """ Raises error because there is no setter. https://www.freecodecamp.org/news/python-property-decorator/ """ error.code = 234
21.7
64
0.665899