hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
304b8b9594f4e1bb2aaa5b3d57cf13f6031133c3
480
py
Python
mdl_scrapper/models/Search.py
dragneelfps/mdl_scrapper
cf9f8892d36e82713ee24b9727a728cf7a63faac
[ "MIT" ]
1
2020-04-30T13:27:43.000Z
2020-04-30T13:27:43.000Z
mdl_scrapper/models/Search.py
dragneelfps/mdl_scrapper
cf9f8892d36e82713ee24b9727a728cf7a63faac
[ "MIT" ]
null
null
null
mdl_scrapper/models/Search.py
dragneelfps/mdl_scrapper
cf9f8892d36e82713ee24b9727a728cf7a63faac
[ "MIT" ]
null
null
null
from dataclasses import dataclass from datetime import datetime from typing import List, Optional @dataclass class SearchDrama: id: int title: str cover_url: str ranking: Optional[int] score: Optional[float] description: str @dataclass class SearchResult: url: str dramas: List[SearchDrama] timestamp: datetime = datetime.now() def is_empty(self): return self.count() == 0 def count(self): return len(self.dramas)
17.777778
40
0.68125
77156a00d78d9568e8209ccfa2e1293a4d6611e8
5,281
py
Python
scripts/add_comp_self.py
shaunstoltz/kunlun
3974857ff88418db0ccc30284f67438d590546d1
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
scripts/add_comp_self.py
shaunstoltz/kunlun
3974857ff88418db0ccc30284f67438d590546d1
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
scripts/add_comp_self.py
shaunstoltz/kunlun
3974857ff88418db0ccc30284f67438d590546d1
[ "PostgreSQL", "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 ZettaDB inc. All rights reserved. # This source code is licensed under Apache 2.0 License, # combined with Common Clause Condition 1.0, as detailed in the NOTICE file. # add one or more computing nodes import os import os.path import mysql.connector import argparse import json import common import socket import add_comp_nodes import install_pg import sys import psycopg2 # config file format: # #[ # { # "id":1, # "name":"comp1", # "ip":"127.0.0.1", # "port":5431, # "user":"abc", # "password":"abc" # "datadir":"/data/pg_data_dir1" # } #] def gethostip(): hostname = socket.gethostname() ip = socket.gethostbyname(hostname) return ip def checkserver(sip, sport, suser, spass, sdb): conn = psycopg2.connect(host=sip, port=sport, user=suser, database=sdb, password=spass) conn.close() return conn def add_comp_self(install_path, config_template_file, mysql_conn_params, config_path, args): selfip = args.hostname meta_conn = mysql.connector.connect(**mysql_conn_params) meta_cursor = meta_conn.cursor() meta_cursor.execute("start transaction") stmt = "insert into comp_nodes_id_seq values();" meta_cursor.execute(stmt) stmt = "select last_insert_id();" meta_cursor.execute(stmt) row = meta_cursor.fetchone() meta_cursor.execute("commit") maxid = 1 if row is not None and row[0] is not None: maxid = int(row[0]) meta_cursor.close() meta_conn.close() selfobj = {"id" : maxid, "name" : "comp" + str(maxid), "ip" : selfip, "port" : args.port, "user": args.user, "password": args.password, "datadir" : args.datadir } selfarr = [selfobj] outf = open(config_path, "w") json.dump(selfarr, outf, indent=4) outf.close() if args.install: if args.docker: # install is not performed here currently, since the meta_config file needs to os.system("chmod a+rwx /kunlun/env.sh") os.system("chown -R postgres:postgres /pgdatadir") os.system("su postgres -c 'cd /kunlun && . ./env.sh; cd $PG_DIR/scripts; python2 install_pg.py --config=./%s --install_ids=%d' " % (config_path, maxid)) else: install_pg.install_pg(config_template_file, install_path, selfobj) conn = checkserver(selfip, args.port, args.user, args.password, 'postgres') if conn is None: raise Exception("Computing server is not installed correctly, please check the installation!") add_comp_nodes.add_computing_nodes(mysql_conn_params, args, config_path, [maxid], False) sys.stdout.flush() sys.stderr.flush() # Reset the comp_node_id. It should be removed when comp_node_id is removed from postgresql.conf if not args.install: cmd0 = "export PATH=" + install_path + "/bin:$PATH;" cmd1 = "export LD_LIBRARY_PATH=" + install_path + "/lib:$LD_LIBRARY_PATH;" if args.docker: os.system("sed -i 's/comp_node_id.*=.*/comp_node_id=%d/g' %s/postgresql.conf" % (maxid, args.datadir)) os.system("su postgres -c 'cd /kunlun && . ./env.sh && pg_ctl -D %s stop -m immediate' " % args.datadir) os.system("su postgres -c 'cd /kunlun && . ./env.sh && cd $PG_DIR/scripts && python2 start_pg.py port=%d' " % args.port) else: os.system("sed -i 's/comp_node_id.*=.*/comp_node_id=%d/g' %s/postgresql.conf" % (maxid, args.datadir)) os.system(cmd0 + cmd1 + "pg_ctl -D %s stop -m immediate " % args.datadir) # start_pg.py set the env well. os.system("python2 start_pg.py port=%d " % args.port) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Add current computing node to the cluster.') parser.add_argument('--meta_config', type=str, help="metadata cluster config file path") parser.add_argument('--cluster_name', type=str, help = "The cluster name") parser.add_argument('--user', type=str, help="The user name") parser.add_argument('--password', type=str, help="The password") parser.add_argument('--hostname', type=str, help="The hostname", default=gethostip()) parser.add_argument('--port', type=int, help="The port", default=5432) parser.add_argument('--datadir', type=str, help="The data directory", default='/pgdatadir') parser.add_argument('--install', help="install it first", default=False, action='store_true') parser.add_argument('--docker', help="process is in docker container", default=False, action='store_true') parser.add_argument('--ha_mode', type=str, default='mgr', choices=['mgr','no_rep']) args = parser.parse_args() meta_jsconf = open(args.meta_config) meta_jstr = meta_jsconf.read() meta_jscfg = json.loads(meta_jstr) install_path = os.path.dirname(os.getcwd()) config_template_file = install_path + "/resources/postgresql.conf" mysql_conn_params = {} mysql_conn_params = common.mysql_shard_check(meta_jscfg, args.ha_mode) mysql_conn_params['database'] = 'Kunlun_Metadata_DB' add_comp_self(install_path, config_template_file, mysql_conn_params, "self.json", args) print "Current computing node successfully added to cluster " + args.cluster_name
40.623077
164
0.666162
9cdce11ca44b41ac1ae1ca8acca27c66d63d769b
1,393
py
Python
snacks/test/test_nutriment.py
NicolasFlandrois/Pure-Beurre
b64db344e3eabed8b123a6127fe0d038da53ff6e
[ "MIT" ]
null
null
null
snacks/test/test_nutriment.py
NicolasFlandrois/Pure-Beurre
b64db344e3eabed8b123a6127fe0d038da53ff6e
[ "MIT" ]
7
2020-02-12T03:27:56.000Z
2022-03-12T00:12:09.000Z
snacks/test/test_nutriment.py
NicolasFlandrois/PurBeurre-LinuxDeploy
de0a6677647fd6df5f4856dc6ac42275dae6aff4
[ "MIT" ]
2
2020-01-17T11:23:27.000Z
2021-02-15T10:54:19.000Z
#!/usr/bin/python3.7 # UTF8 # Date: # Author: Nicolas Flandrois import json import urllib.request from io import BytesIO from snacks.nutriment import nutriments # Mock Testing Json API Open Food Facts def test_nutriments(monkeypatch): results = {"product": {"nutriments": { "sugars_unit": "g", "energy_100g": 1660, "proteins_100g": 8.97, "saturated-fat_unit": "g", "saturated-fat_100g": 1.28, "sodium_100g": 0.819, "proteins_unit": "g", "salt_100g": 2.05, "nutrition-score-fr_100g": 16, "fiber_unit": "g", "fiber_100g": 0, "energy_unit": "kcal", "sodium_unit": "g", "fat_unit": "g", "salt_unit": "g", "sugars_100g": 12.8, "fat_100g": 8.97, "carbohydrates_100g": 70.5 }, }, } def mockreturn(request): return BytesIO(json.dumps(results, sort_keys=True, indent=4, separators=(',', ': ')).encode()) monkeypatch.setattr(urllib.request, 'urlopen', mockreturn) test_ean = '1234567890123' assert results == nutriments(test_ean)
28.428571
68
0.470208
d5228f3d01182dd44e6d2a8a4e01af9a2e060943
11,918
py
Python
posthog/api/dashboard.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
posthog/api/dashboard.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
posthog/api/dashboard.py
alx-a/posthog
a76959bb2a7640ca8cf367a4d3a0e4ca67f65a5e
[ "MIT" ]
null
null
null
import secrets from typing import Any, Dict, Optional import posthoganalytics from django.db.models import Model, Prefetch, QuerySet from django.db.models.query_utils import Q from django.http import HttpRequest from django.shortcuts import get_object_or_404 from django.utils.timezone import now from django.views.decorators.clickjacking import xframe_options_exempt from rest_framework import authentication, response, serializers, viewsets from rest_framework.decorators import action from rest_framework.exceptions import AuthenticationFailed, NotFound from rest_framework.permissions import IsAuthenticated from rest_framework.request import Request from posthog.api.routing import StructuredViewSetMixin from posthog.api.shared import UserBasicSerializer from posthog.auth import PersonalAPIKeyAuthentication, PublicTokenAuthentication from posthog.helpers import create_dashboard_from_template from posthog.models import Dashboard, DashboardItem, Team from posthog.permissions import ProjectMembershipNecessaryPermissions from posthog.tasks.update_cache import update_dashboard_item_cache, update_dashboard_items_cache from posthog.utils import get_safe_cache, render_template, str_to_bool class DashboardSerializer(serializers.ModelSerializer): items = serializers.SerializerMethodField() created_by = UserBasicSerializer(read_only=True) use_template = serializers.CharField(write_only=True, allow_blank=True, required=False) class Meta: model = Dashboard fields = [ "id", "name", "description", "pinned", "items", "created_at", "created_by", "is_shared", "share_token", "deleted", "creation_mode", "use_template", "filters", "tags", ] read_only_fields = ("creation_mode",) def create(self, validated_data: Dict, *args: Any, **kwargs: Any) -> Dashboard: request = self.context["request"] validated_data["created_by"] = request.user team = Team.objects.get(id=self.context["team_id"]) use_template: str = validated_data.pop("use_template", None) creation_mode = "template" if use_template else "default" dashboard = Dashboard.objects.create(team=team, creation_mode=creation_mode, **validated_data) if use_template: try: create_dashboard_from_template(use_template, dashboard) except AttributeError: raise serializers.ValidationError({"use_template": "Invalid value provided."}) elif request.data.get("items"): for item in request.data["items"]: DashboardItem.objects.create( **{key: value for key, value in item.items() if key not in ("id", "deleted", "dashboard", "team")}, dashboard=dashboard, team=team, ) posthoganalytics.capture( request.user.distinct_id, "dashboard created", {**dashboard.get_analytics_metadata(), "from_template": bool(use_template), "template_key": use_template}, ) return dashboard def update(self, instance: Dashboard, validated_data: Dict, *args: Any, **kwargs: Any,) -> Dashboard: validated_data.pop("use_template", None) # Remove attribute if present if validated_data.get("is_shared") and not instance.share_token: instance.share_token = secrets.token_urlsafe(22) instance = super().update(instance, validated_data) if "request" in self.context: posthoganalytics.capture( self.context["request"].user.distinct_id, "dashboard updated", instance.get_analytics_metadata() ) return instance def get_items(self, dashboard: Dashboard): if self.context["view"].action == "list": return None if self.context["request"].GET.get("refresh"): update_dashboard_items_cache(dashboard) items = dashboard.items.filter(deleted=False).order_by("order").all() self.context.update({"dashboard": dashboard}) return DashboardItemSerializer(items, many=True, context=self.context).data class DashboardsViewSet(StructuredViewSetMixin, viewsets.ModelViewSet): legacy_team_compatibility = True # to be moved to a separate Legacy*ViewSet Class queryset = Dashboard.objects.all() serializer_class = DashboardSerializer authentication_classes = [ PublicTokenAuthentication, PersonalAPIKeyAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication, ] # Empty list means we can allow users to not be authenticated. permission_classes = [] # type: ignore def get_queryset(self) -> QuerySet: queryset = super().get_queryset().order_by("name") if self.action == "list": queryset = queryset.filter(deleted=False) queryset = queryset.prefetch_related( Prefetch("items", queryset=DashboardItem.objects.filter(deleted=False).order_by("order"),) ) if self.request.GET.get("share_token"): return queryset.filter(share_token=self.request.GET["share_token"]) elif self.request.user.is_authenticated and not self.request.user.team: raise NotFound() elif not self.request.user.is_authenticated or "team_id" not in self.get_parents_query_dict(): raise AuthenticationFailed(detail="You're not logged in, but also not using add share_token.") return queryset def retrieve(self, request: Request, *args: Any, **kwargs: Any) -> response.Response: pk = kwargs["pk"] queryset = self.get_queryset() dashboard = get_object_or_404(queryset, pk=pk) dashboard.last_accessed_at = now() dashboard.save() serializer = DashboardSerializer(dashboard, context={"view": self, "request": request}) return response.Response(serializer.data) def get_parents_query_dict(self) -> Dict[str, Any]: # to be moved to a separate Legacy*ViewSet Class if not self.request.user.is_authenticated or "share_token" in self.request.GET or not self.request.user.team: return {} return {"team_id": self.request.user.team.id} class DashboardItemSerializer(serializers.ModelSerializer): result = serializers.SerializerMethodField() last_refresh = serializers.SerializerMethodField() _get_result: Optional[Dict[str, Any]] = None class Meta: model = DashboardItem fields = [ "id", "short_id", "name", "description", "filters", "filters_hash", "order", "deleted", "dashboard", "layouts", "color", "last_refresh", "refreshing", "result", "is_sample", "saved", "created_at", "created_by", ] def create(self, validated_data: Dict, *args: Any, **kwargs: Any) -> DashboardItem: request = self.context["request"] team = Team.objects.get(id=self.context["team_id"]) validated_data.pop("last_refresh", None) # last_refresh sometimes gets sent if dashboard_item is duplicated if not validated_data.get("dashboard", None): dashboard_item = DashboardItem.objects.create(team=team, created_by=request.user, **validated_data) return dashboard_item elif validated_data["dashboard"].team == team: created_by = validated_data.pop("created_by", request.user) dashboard_item = DashboardItem.objects.create( team=team, last_refresh=now(), created_by=created_by, **validated_data ) return dashboard_item else: raise serializers.ValidationError("Dashboard not found") def update(self, instance: Model, validated_data: Dict, **kwargs) -> DashboardItem: # Remove is_sample if it's set as user has altered the sample configuration validated_data.setdefault("is_sample", False) return super().update(instance, validated_data) def get_result(self, dashboard_item: DashboardItem): # If it's more than a day old, don't return anything if dashboard_item.last_refresh and (now() - dashboard_item.last_refresh).days > 0: return None if not dashboard_item.filters_hash: return None if self.context["request"].GET.get("refresh"): update_dashboard_item_cache(dashboard_item, None) result = get_safe_cache(dashboard_item.filters_hash) if not result or result.get("task_id", None): return None return result.get("result") def get_last_refresh(self, dashboard_item: DashboardItem): if self.get_result(dashboard_item): return dashboard_item.last_refresh dashboard_item.last_refresh = None dashboard_item.save() return None def to_representation(self, instance): representation = super().to_representation(instance) representation["filters"] = instance.dashboard_filters(dashboard=self.context.get("dashboard")) return representation class DashboardItemsViewSet(StructuredViewSetMixin, viewsets.ModelViewSet): legacy_team_compatibility = True # to be moved to a separate Legacy*ViewSet Class queryset = DashboardItem.objects.all() serializer_class = DashboardItemSerializer permission_classes = [IsAuthenticated, ProjectMembershipNecessaryPermissions] def get_queryset(self) -> QuerySet: queryset = super().get_queryset() if self.action == "list": queryset = queryset.filter(deleted=False) queryset = self._filter_request(self.request, queryset) order = self.request.GET.get("order", None) if order: queryset = queryset.order_by(order) else: queryset = queryset.order_by("order") return queryset def _filter_request(self, request: Request, queryset: QuerySet) -> QuerySet: filters = request.GET.dict() for key in filters: if key == "saved": if str_to_bool(request.GET["saved"]): queryset = queryset.filter(Q(saved=True) | Q(dashboard__isnull=False)) else: queryset = queryset.filter(Q(saved=False)) elif key == "user": queryset = queryset.filter(created_by=request.user) elif key == "insight": queryset = queryset.filter(filters__insight=request.GET["insight"]) return queryset @action(methods=["patch"], detail=False) def layouts(self, request, **kwargs): team_id = self.team_id for data in request.data["items"]: self.queryset.filter(team_id=team_id, pk=data["id"]).update(layouts=data["layouts"]) serializer = self.get_serializer(self.queryset.filter(team_id=team_id), many=True) return response.Response(serializer.data) def retrieve(self, request: Request, *args: Any, **kwargs: Any) -> response.Response: pk = kwargs["pk"] queryset = self.get_queryset() dashboard_item = get_object_or_404(queryset, pk=pk) serializer = self.get_serializer(dashboard_item, context={"view": self, "request": request}) return response.Response(serializer.data) @xframe_options_exempt def shared_dashboard(request: HttpRequest, share_token: str): dashboard = get_object_or_404(Dashboard, is_shared=True, share_token=share_token) return render_template( "shared_dashboard.html", request=request, context={"dashboard": dashboard, "team_name": dashboard.team.name}, )
40.675768
119
0.663031
d707507a091303ce0392fb98cf16d6d15cc75e07
13,428
py
Python
wavepal/timefreq_analysis_prelims.py
metegenez/WAVEPAL
fa2bb91e2c7e63681ae4592929215c96bc523597
[ "MIT" ]
22
2017-03-09T20:46:31.000Z
2022-02-16T08:18:30.000Z
wavepal/timefreq_analysis_prelims.py
metegenez/WAVEPAL
fa2bb91e2c7e63681ae4592929215c96bc523597
[ "MIT" ]
6
2017-03-19T20:22:33.000Z
2021-01-05T11:41:31.000Z
wavepal/timefreq_analysis_prelims.py
metegenez/WAVEPAL
fa2bb91e2c7e63681ae4592929215c96bc523597
[ "MIT" ]
9
2017-11-06T18:00:31.000Z
2021-07-21T19:20:09.000Z
import numpy as np from tqdm import trange from dt_central import dt_central import copy def timefreq_analysis_prelims(time,tau,scale,w0,gauss_spread,eps,dt_GCD,shannonnyquistexclusionzone,weighted_CWT,smoothing_coeff,smoothing_type): """ timefreq_analysis_prelims returns some variables for the time-frequency analysis in 'Wavepal' class. Inputs: - time [1-dim numpy array of floats]: the times of the time series, distinct and in ascending order. - tau [1-dim numpy array of floats]: the times at which the CWT is to be computed, distinct and in ascending order. - scale [1-dim numpy array of floats]: the scales, distinct and in ascending order. - w0 [float]: the usual parameter for the Morlet wavelet controlling the time-frequency resolution. Minimal allowed value is w0=5.5. - gauss_spread [float]: parameter for the spread of gaussian. 2*gauss_spread*std (where std is the standard dev. of the gaussian) is the approximate SUPPORT (i.e. where the function is not zero) of a gaussian. Typical values are gauss_spread=3.0 (conservative choice) or sqrt(2.0) (value taken in Torrence and Compo, 1998, and some subsequent papers). This is used for the computation of the cone of influence and for the max. allowed scale. - eps [float]: parameter controlling the flexibility on the value of the border of the Shannon-Nyquist exclusion zone. Typical value is eps=1.0e-06. - dt_GCD [float]: the greatest common divisor of the time steps of the times in 'time'. - shannonnyquistexclusionzone [str - value=True or False]: activate or not the Shannon-Nyquist exclusion zone. - weighted_CWT [str - value=True or False]: True if weighted scalogram, or False if not. - smoothing_coeff [float]: smoothing the CWT is performed this way: at a given (tau,scale), the CWT_smoothed is the average of the CWT along neighbouring values of tau (at the same scale). The interval of those neighbouring values of tau is delimited by: tau-smoothing_coeff*std and tau+smoothing_coeff*std, where std is the standard deviation of the gaussian. Note that: -> the std depends on the scale. -> Near the edges of the time series or close the the Shannon-Nyquist exclusion zone, the full interval over tau-smoothing_coeff*std to tau+smoothing_coeff*std cannot be considered. In such case, the CWT_smoothed at (tau,scale) is either ignored (if smoothing_type='fixed') or the interval around tau is shortened (if smoothing_type='variable'). - smoothing_type [str - value='fixed' or 'variable']: See above the explanations for 'smoothing_coeff'. Outputs: - scale [1-dim numpy array of floats]: the scales on which the analysis is to be performed. - coi1 [1-dim numpy array of floats - size=scale.size]: cone of influence - left part - coi2 [1-dim numpy array of floats - size=scale.size]: cone of influence - right part - coi1_smooth [1-dim numpy array of floats - size=scale.size]: border of the forbidden zone on the left side. Only used if smoothing_type='fixed'. - coi2_smooth [1-dim numpy array of floats - size=scale.size]: border of the forbidden zone on the right side. Only used if smoothing_type='fixed'. - coi_smooth_ind [1-dim numpy array of ints - size=tau.size]: indices, of the vector 'tau', corresponding to coi1_smooth and coi2_smooth. - weight_cwt [numpy array of floats - dim=(tau.size,scale.size)]: the weights for the weighted scalogram. - scalelim1_ind [1-dim numpy array of ints - size=tau.size]: scale indices at the border of the Shannon-Nyquist exclusion zone. For a given tau, this is the first scale index for which the CWT is to be computed. - scalelim1_smooth [1-dim numpy array of floats - size=tau.size]: scales at the border of the Shannon-Nyquist exclusion zone when there is smoothing. N.B.: if smoothing_type='fixed' and if there is smoothing (smoothing_coeff>0), the Shannon zone is refined. - scalelim1_ind_smooth [1-dim numpy array of ints - size=tau.size]: indices of the scales in scalelim1_smooth, plus 1. For a given tau, this is the first scale index for which the CWT_smoothed is drawn. - Qmax [int]: maximum length over which smoothing is to be performed, expressed in number of indices of tau. - n_outside_scalelim1 [1-dim numpy array of ints - size=scale.size]: number of tau's outside the Shannon-Nyquist exclusion zone, for each scale. ----------------------------- This is part of WAVEPAL (C) 2016 G. Lenoir""" N=time.size J=scale.size Q=tau.size # Cone of influence coi1=time[0]+gauss_spread*w0*scale coi2=time[-1]-gauss_spread*w0*scale # Central time step dt_centr=dt_central(time) # Normal time step and timemid dt=np.zeros(N-1) timemid=np.zeros(N-1) for k in range(N-1): dt[k]=time[k+1]-time[k] timemid[k]=(time[k]+time[k+1])/2. # Weights for the CWT squared norm and Shannon-Nyquist exclusion zone print "Weights for the scalogram and Shannon-Nyquist exclusion zone:" dcon=1./2./w0**2 scalelim1=np.ones(Q)*dt_GCD/np.pi*(1.+eps) scalelim1_ind=np.zeros(Q,dtype=int) scalelim1_ind_ghost=np.zeros(Q,dtype=int) weight_cwt=-np.ones((Q,J)) if shannonnyquistexclusionzone is True and weighted_CWT is True: for k in trange(Q): tau_k=tau[k] time_ind0=0 time_ind1=N-1 for l in range(J-1,-1,-1): scale_l=scale[l] time_ind0=np.argmin(np.absolute(time[time_ind0:]-tau_k+3.*w0*scale_l))+time_ind0 time_ind1=np.argmin(np.absolute(time[:(time_ind1+1)]-tau_k-3.*w0*scale_l)) ind0=max(time_ind0-1,0) # take the index minus 1 ind1=min(time_ind1+1,N-1)+1 # take the index plus 1 mydt=dt[ind0:ind1-1] mytime=timemid[ind0:ind1-1]-tau_k hvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp1=sum(hvec*mydt)/sum(hvec) mytime=time[ind0:ind1]-tau_k mydt=dt_centr[ind0:ind1] gvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp2=sum(gvec*mydt)/sum(gvec) dtmp=max(dtmp1,dtmp2) if scale_l<=dtmp/np.pi*(1.+eps): scalelim1[k]=scale[l] scalelim1_ind[k]=l+1 break weight_cwt[k,l]=np.sqrt(2.*sum(gvec**2)/sum(gvec)**2) elif shannonnyquistexclusionzone is False and weighted_CWT is True: for k in trange(Q): tau_k=tau[k] time_ind0=0 time_ind1=N-1 Ipass=0 for l in range(J-1,-1,-1): scale_l=scale[l] time_ind0=np.argmin(np.absolute(time[time_ind0:]-tau_k+3.*w0*scale_l))+time_ind0 time_ind1=np.argmin(np.absolute(time[:(time_ind1+1)]-tau_k-3.*w0*scale_l)) ind0=max(time_ind0-1,0) # take the index minus 1 ind1=min(time_ind1+1,N-1)+1 # take the index plus 1 mydt=dt[ind0:ind1-1] mytime=timemid[ind0:ind1-1]-tau_k hvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp1=sum(hvec*mydt)/sum(hvec) mytime=time[ind0:ind1]-tau_k mydt=dt_centr[ind0:ind1] gvec=np.exp(-dcon/scale_l**2*mytime**2) weight_cwt[k,l]=np.sqrt(2.*sum(gvec**2)/sum(gvec)**2) dtmp2=sum(gvec*mydt)/sum(gvec) dtmp=max(dtmp1,dtmp2) if scale_l<=dtmp/np.pi*(1.+eps) and Ipass==0: scalelim1[k]=scale[l] scalelim1_ind_ghost[k]=l+1 Ipass=1 elif shannonnyquistexclusionzone is True and weighted_CWT is False: for k in trange(Q): tau_k=tau[k] time_ind0=0 time_ind1=N-1 for l in range(J-1,-1,-1): scale_l=scale[l] time_ind0=np.argmin(np.absolute(time[time_ind0:]-tau_k+3.*w0*scale_l))+time_ind0 time_ind1=np.argmin(np.absolute(time[:(time_ind1+1)]-tau_k-3.*w0*scale_l)) ind0=max(time_ind0-1,0) # take the index minus 1 ind1=min(time_ind1+1,N-1)+1 # take the index plus 1 mydt=dt[ind0:ind1-1] mytime=timemid[ind0:ind1-1]-tau_k hvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp1=sum(hvec*mydt)/sum(hvec) mytime=time[ind0:ind1]-tau_k mydt=dt_centr[ind0:ind1] gvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp2=sum(gvec*mydt)/sum(gvec) dtmp=max(dtmp1,dtmp2) if scale_l<=dtmp/np.pi*(1.+eps): scalelim1[k]=scale[l] scalelim1_ind[k]=l+1 break weight_cwt[k,l]=1. elif shannonnyquistexclusionzone is False and weighted_CWT is False: for k in trange(Q): tau_k=tau[k] time_ind0=0 time_ind1=N-1 Ipass=0 for l in range(J-1,-1,-1): scale_l=scale[l] time_ind0=np.argmin(np.absolute(time[time_ind0:]-tau_k+3.*w0*scale_l))+time_ind0 time_ind1=np.argmin(np.absolute(time[:(time_ind1+1)]-tau_k-3.*w0*scale_l)) ind0=max(time_ind0-1,0) # take the index minus 1 ind1=min(time_ind1+1,N-1)+1 # take the index plus 1 mydt=dt[ind0:ind1-1] mytime=timemid[ind0:ind1-1]-tau_k hvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp1=sum(hvec*mydt)/sum(hvec) mytime=time[ind0:ind1]-tau_k mydt=dt_centr[ind0:ind1] gvec=np.exp(-dcon/scale_l**2*mytime**2) dtmp2=sum(gvec*mydt)/sum(gvec) dtmp=max(dtmp1,dtmp2) weight_cwt[k,l]=1. if scale_l<=dtmp/np.pi*(1.+eps) and Ipass==0: scalelim1[k]=scale[l] scalelim1_ind_ghost[k]=l+1 Ipass=1 # redefine the scale and other variables because new min scale min_scalelim1_ind=min(scalelim1_ind) scale=copy.copy(scale[min_scalelim1_ind:]) coi1=copy.copy(coi1[min_scalelim1_ind:]) coi2=copy.copy(coi2[min_scalelim1_ind:]) weight_cwt=copy.copy(weight_cwt[:,min_scalelim1_ind:]) scalelim1_ind[:]=scalelim1_ind[:]-min_scalelim1_ind # Smoothing the CWT => parameters #print "Parameters for smoothing the CWT:" if shannonnyquistexclusionzone is True: if smoothing_type=="fixed": scalelim1_ind_max=np.amax(scalelim1_ind)-1 scalelim1_smooth=copy.copy(scalelim1) scalelim1_ind_smooth=copy.copy(scalelim1_ind) for k in range(Q): tau_k=tau[k] for l in range(scalelim1_ind_max,-1,-1): scale_l=scale[l] ind_left=np.argmin(np.absolute(tau-(tau_k-smoothing_coeff*w0*scale_l))) ind_right=np.argmin(np.absolute(tau-(tau_k+smoothing_coeff*w0*scale_l))) if np.sum(scalelim1[ind_left:(ind_right+1)]>=scale_l)>0: scalelim1_smooth[k]=scale[l] scalelim1_ind_smooth[k]=l+1 break # redefine the scale and other variables because new min scale min_scalelim1_ind_smooth=min(scalelim1_ind_smooth) scale=copy.copy(scale[min_scalelim1_ind_smooth:]) weight_cwt=copy.copy(weight_cwt[:,min_scalelim1_ind_smooth:]) scalelim1_ind[:]=scalelim1_ind[:]-min_scalelim1_ind_smooth scalelim1_ind_smooth[:]=scalelim1_ind_smooth[:]-min_scalelim1_ind_smooth # Redefine the cone of influence coi1_smooth=tau[0]+smoothing_coeff*w0*scale coi2_smooth=tau[-1]-smoothing_coeff*w0*scale coi1=time[0]+(smoothing_coeff+gauss_spread)*w0*scale coi2=time[-1]-(smoothing_coeff+gauss_spread)*w0*scale # Indices for cwt coi1_smooth and coi2_smooth J=scale.size coi_smooth_ind=np.zeros(Q,dtype=int) for k in range(Q): tau_k=tau[k] for l in range(J-1,scalelim1_ind_smooth[k]-1,-1): if tau_k>coi1_smooth[l] and tau_k<coi2_smooth[l]: coi_smooth_ind[k]=l break elif smoothing_type=="variable": scalelim1_smooth=copy.copy(scalelim1) scalelim1_ind_smooth=copy.copy(scalelim1_ind) coi1_smooth=time[0]*np.ones(coi1.size) coi2_smooth=time[-1]*np.ones(coi2.size) J=scale.size coi_smooth_ind=np.ones(Q,dtype=int)*(J-1) elif shannonnyquistexclusionzone is False: if smoothing_type=="fixed": scalelim1_ind_smooth=copy.copy(scalelim1_ind) scalelim1_ind_max=np.amax(scalelim1_ind_ghost)-1 scalelim1_smooth=copy.copy(scalelim1) for k in range(Q): tau_k=tau[k] for l in range(scalelim1_ind_max,-1,-1): scale_l=scale[l] ind_left=np.argmin(np.absolute(tau-(tau_k-smoothing_coeff*w0*scale_l))) ind_right=np.argmin(np.absolute(tau-(tau_k+smoothing_coeff*w0*scale_l))) if np.sum(scalelim1[ind_left:(ind_right+1)]>=scale_l)>0: scalelim1_smooth[k]=scale[l] break # Redefine the cone of influence coi1_smooth=tau[0]+smoothing_coeff*w0*scale coi2_smooth=tau[-1]-smoothing_coeff*w0*scale coi1=time[0]+(smoothing_coeff+gauss_spread)*w0*scale coi2=time[-1]-(smoothing_coeff+gauss_spread)*w0*scale # Indices for cwt coi1_smooth and coi2_smooth J=scale.size coi_smooth_ind=np.zeros(Q,dtype=int) for k in range(Q): tau_k=tau[k] for l in range(J-1,scalelim1_ind_smooth[k]-1,-1): if tau_k>coi1_smooth[l] and tau_k<coi2_smooth[l]: coi_smooth_ind[k]=l break elif smoothing_type=="variable": scalelim1_smooth=copy.copy(scalelim1) scalelim1_ind_smooth=copy.copy(scalelim1_ind) coi1_smooth=time[0]*np.ones(coi1.size) coi2_smooth=time[-1]*np.ones(coi2.size) J=scale.size coi_smooth_ind=np.ones(Q,dtype=int)*(J-1) # Computes the maximum length over which smoothing is to be performed - That naturally occurs at the highest scale Qmax=0 for k in range(Q): tau_k=tau[k] # Indices for cwt smoothing ind_left=np.argmin(np.absolute(tau-(tau_k-smoothing_coeff*w0*scale[-1]))) ind_right=np.argmin(np.absolute(tau-(tau_k+smoothing_coeff*w0*scale[-1]))) if smoothing_type=="fixed": # average the cwt over range(ind_left,ind_right+1) Qmax=np.maximum(Qmax,ind_right+1-ind_left) if smoothing_type=="variable": Qmax=np.maximum(Qmax,np.sum(scalelim1[ind_left:(ind_right+1)]<scale_l)) # number of tau[k]'s on which the CWT is to be computed (for each scale), i.e. outside the Shannon-Nyquist exclusion zone. n_outside_scalelim1=np.ones(J,dtype=int)*Q J=scale.size for l in range(J): count=0 for k in range(Q): if l>=scalelim1_ind[k]: count+=1 n_outside_scalelim1[l]=count return scale,coi1,coi2,coi1_smooth,coi2_smooth,coi_smooth_ind,weight_cwt,scalelim1_ind,scalelim1_smooth,scalelim1_ind_smooth,Qmax,n_outside_scalelim1
47.957143
443
0.725573
fd8f527b50d298fdffebd4917eb84703639dddbb
3,206
py
Python
nikola/plugins/task/tagcloud.py
vault-the/nikola
c7a556b587004df442fdc9127c07997715556265
[ "MIT" ]
1
2021-01-03T01:54:37.000Z
2021-01-03T01:54:37.000Z
nikola/plugins/task/tagcloud.py
vault-the/nikola
c7a556b587004df442fdc9127c07997715556265
[ "MIT" ]
13
2021-01-21T04:54:51.000Z
2022-03-21T04:15:56.000Z
nikola/plugins/task/tagcloud.py
vault-the/nikola
c7a556b587004df442fdc9127c07997715556265
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright © 2012-2018 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Render the tag cloud.""" import json import os from nikola.plugin_categories import Task from nikola import utils class RenderTagCloud(Task): """Classify the posts by tags.""" name = "render_tag_cloud" def gen_tasks(self): """Render the tag cloud.""" self.site.scan_posts() yield self.group_task() # Tag cloud json file tag_cloud_data = {} for tag, posts in self.site.posts_per_tag.items(): if tag in self.site.config['HIDDEN_TAGS']: continue tag_posts = dict(posts=[{'title': post.meta[post.default_lang]['title'], 'date': post.date.strftime('%m/%d/%Y'), 'isodate': post.date.isoformat(), 'url': post.permalink(post.default_lang)} for post in reversed(sorted(self.site.timeline, key=lambda post: post.date)) if tag in post.alltags]) tag_cloud_data[tag] = [len(posts), self.site.link( 'tag', tag, self.site.config['DEFAULT_LANG']), tag_posts] output_name = os.path.join(self.site.config['OUTPUT_FOLDER'], 'assets', 'js', 'tag_cloud_data.json') def write_tag_data(data): """Write tag data into JSON file, for use in tag clouds.""" utils.makedirs(os.path.dirname(output_name)) with open(output_name, 'w+') as fd: json.dump(data, fd, sort_keys=True) if self.site.config['WRITE_TAG_CLOUD']: task = { 'basename': str(self.name), 'name': str(output_name) } task['uptodate'] = [utils.config_changed(tag_cloud_data, 'nikola.plugins.task.tags:tagdata')] task['targets'] = [output_name] task['actions'] = [(write_tag_data, [tag_cloud_data])] task['clean'] = True yield utils.apply_filters(task, self.site.config['FILTERS'])
40.582278
112
0.620711
c762fdb9bc53742643ba4cd3dc217fe009af4d8c
4,390
py
Python
seapy/couplings/couplingsurfaceplateacoustical.py
FRidh/seapy
de63acdb3722c2558fc1ad1e1eca92abdd027932
[ "BSD-3-Clause" ]
8
2015-07-02T13:34:06.000Z
2021-05-17T21:34:07.000Z
seapy/couplings/couplingsurfaceplateacoustical.py
FRidh/seapy
de63acdb3722c2558fc1ad1e1eca92abdd027932
[ "BSD-3-Clause" ]
2
2015-11-09T17:16:07.000Z
2020-02-19T14:00:20.000Z
seapy/couplings/couplingsurfaceplateacoustical.py
FRidh/seapy
de63acdb3722c2558fc1ad1e1eca92abdd027932
[ "BSD-3-Clause" ]
2
2021-02-03T08:56:10.000Z
2022-01-22T02:21:43.000Z
import numpy as np from .coupling import Coupling def radiation_efficiency(coupling, component): """ Radiation efficiency of a plate to a cavity and vice versa. Where: * area of plate :math:`S = L_x L_y` * circumference of plate :math:`U = 2 (L_x + L_y)` * :math:`\\alpha = \\sqrt{\\frac{f}{f_c}}` When :math:`f < 0.5 f_c`: .. math:: g_1 = \\frac{4}{\\pi^4} (1 - 2 \\alpha^2) (1 - \\alpha^2)^(-0.5) When :math:`f > 0.5 f_c`: .. math:: g_1 = 0 .. math:: See TA2 Radiation plateapp_ta2 """ # component = self.subsystem_from.component f = np.array(component.frequency.center, dtype=complex) """Cast to complex numbers to prevent errors with sqrt further down.""" fc = coupling.critical_frequency lc = coupling.critical_wavelength Lx = component.length Ly = component.width S = component.area U = 2.0 * (Lx + Ly) fc_band = (fc > coupling.frequency.lower) * (fc < coupling.frequency.upper) f_lower = fc > coupling.frequency.upper f_upper = fc < coupling.frequency.lower alpha = np.sqrt(f / fc) g1 = ( 4.0 / np.pi ** 4.0 * (1.0 - 2.0 * alpha ** 2.0) / np.sqrt(1.0 - alpha ** 2.0) ) * (f < 0.5 * fc) g2 = ( 1.0 / (4.0 * np.pi ** 4.0) * ((1.0 - alpha ** 2) * np.log((1.0 + alpha) / (1.0 - alpha)) + 2.0 * alpha) / (1.0 - alpha ** 2.0) ** 1.5 ) sigma1 = lc ** 2.0 / S * (2.0 * g1 + U / lc * g2) sigma2 = np.sqrt(Lx / lc) + np.sqrt(Ly / lc) sigma3 = (1.0 - fc / f) ** (-0.5) sigma1 = np.nan_to_num(sigma1) sigma2 = np.nan_to_num(sigma2) sigma3 = np.nan_to_num(sigma3) """Replace NaN with zeros""" sigma = sigma1 * f_lower + sigma2 * fc_band + sigma3 * f_upper * (sigma3 < sigma2) sigma = np.real(np.nan_to_num(sigma)) return sigma def critical_frequency(subsystem_plate, subsystem_cavity): """ Critical frequency. .. math:: f_c = \\frac{ c_0^2 \\sqrt{3} } {\\ pi c_L h} .. math:: f_c = \\frac{f c_0^2}{c_B^2} See Craik, table 3.3, page 51. """ return ( subsystem_plate.frequency.center * ( subsystem_cavity.soundspeed_group / subsystem_plate.component.subsystem_bend.soundspeed_phase ) ** 2.0 ) # return subsystem_cavity.soundspeed_group**2.0 / (1.81818181 * subsystem_plate.component.subsystem_long.soundspeed_group * subsystem_plate.component.height) class CouplingSurfacePlateAcoustical(Coupling): """ A model describing the coupling between a plate and a cavity. """ @property def impedance_from(self): return self.subsystem_from.impedance @property def impedance_to(self): return self.subsystem_to.impedance @property def critical_frequency(self): """ Critical frequency. .. math:: f_c = \\frac{ c_0^2 } {1.8 c_L t} See BAC, 3.2.2 script. """ return critical_frequency(self.subsystem_from, self.subsystem_to) @property def critical_wavelength(self): """ Wavelength belonging to critical frequency. .. math:: \\lambda_c = c_{g} / f_c """ try: return self.subsystem_to.soundspeed_group / self.critical_frequency except FloatingPointError: return np.zeros(len(self.frequency)) @property def radiation_efficiency(self): """ Radiation efficiency of a plate for bending waves. """ return radiation_efficiency(self, self.subsystem_from.component) @property def clf(self): """ Coupling loss factor for plate to cavity radiation. .. math:: \\eta_{plate, cavity} = \\frac{\\rho_0 c_0 \\sigma}{\\omega m^{''}} .. attention:: Which speed of sound??? See BAC, equation 3.6 """ try: return ( self.subsystem_from.component.material.density * self.subsystem_to.soundspeed_group * self.radiation_efficiency / (self.frequency.angular * self.subsystem_from.component.mass_per_area) ) except (ZeroDivisionError, FloatingPointError): return np.zeros(len(self.frequency))
27.78481
161
0.569248
8a087ddd3b369759e6f991f6d256278369f48fa7
1,970
py
Python
features/steps/picture.py
just4jc/python-pptx
ec433085d84d48b5539c379e52eb3c279ab2cbc0
[ "MIT" ]
1
2019-01-24T11:50:05.000Z
2019-01-24T11:50:05.000Z
features/steps/picture.py
just4jc/python-pptx
ec433085d84d48b5539c379e52eb3c279ab2cbc0
[ "MIT" ]
4
2021-03-18T20:28:17.000Z
2022-03-11T23:18:51.000Z
features/steps/picture.py
just4jc/python-pptx
ec433085d84d48b5539c379e52eb3c279ab2cbc0
[ "MIT" ]
2
2016-02-11T20:12:33.000Z
2016-02-11T20:50:03.000Z
# encoding: utf-8 """ Gherkin step implementations for picture-related features. """ from __future__ import absolute_import from behave import given, when, then from pptx import Presentation from pptx.compat import BytesIO from pptx.package import Package from pptx.util import Inches from helpers import saved_pptx_path, test_image, test_pptx # given =================================================== @given('a picture of known position and size') def given_a_picture_of_known_position_and_size(context): prs = Presentation(test_pptx('shp-pos-and-size')) context.picture = prs.slides[1].shapes[0] # when ==================================================== @when('I add the image {filename} using shapes.add_picture()') def when_I_add_the_image_filename_using_shapes_add_picture(context, filename): shapes = context.slide.shapes shapes.add_picture(test_image(filename), Inches(1.25), Inches(1.25)) @when('I add the stream image {filename} using shapes.add_picture()') def when_I_add_the_stream_image_filename_using_add_picture(context, filename): shapes = context.slide.shapes with open(test_image(filename), 'rb') as f: stream = BytesIO(f.read()) shapes.add_picture(stream, Inches(1.25), Inches(1.25)) # then ==================================================== @then('a {ext} image part appears in the pptx file') def step_then_a_ext_image_part_appears_in_the_pptx_file(context, ext): pkg = Package().open(saved_pptx_path) partnames = [part.partname for part in pkg.parts] image_partname = '/ppt/media/image1.%s' % ext assert image_partname in partnames, ( 'got %s' % [p for p in partnames if 'image' in p] ) @then('the picture appears in the slide') def step_then_picture_appears_in_slide(context): prs = Presentation(saved_pptx_path) slide = prs.slides[0] shapes = slide.shapes cls_names = [sp.__class__.__name__ for sp in shapes] assert 'Picture' in cls_names
31.774194
78
0.683756
f6298b954d59ba2b3b924307468efe27e4705e59
1,661
py
Python
comparison/compare_sORF.py
Sung-Huan/ANNOgesic
af3de26f6c5ff9d2218f18a84bbc863a1bb95550
[ "0BSD" ]
26
2016-02-25T19:27:55.000Z
2022-01-22T09:54:59.000Z
comparison/compare_sORF.py
Sung-Huan/ANNOgesic
af3de26f6c5ff9d2218f18a84bbc863a1bb95550
[ "0BSD" ]
28
2018-11-22T19:51:06.000Z
2022-03-20T23:02:13.000Z
comparison/compare_sORF.py
Sung-Huan/ANNOgesic
af3de26f6c5ff9d2218f18a84bbc863a1bb95550
[ "0BSD" ]
18
2016-06-01T11:53:45.000Z
2021-12-27T03:41:03.000Z
#!/usr/bin/python import os import sys import csv import argparse from gff3 import Gff3Parser __author__ = "Sung-Huan Yu <sung-huan.yu@uni-wuerzburg.de>" __email__ = "sung-huan.yu@uni-wuerzburg.de" parser = argparse.ArgumentParser() parser.add_argument("-k","--benchmark_file",help="the benchmarking set of sORF") parser.add_argument("-p","--predict_file",help="ANNOgesic predicted sORF file") args = parser.parse_args() def main(): sorfs = [] pres = [] num_ref = 0 detect = 0 for sorf in Gff3Parser().entries(open(args.benchmark_file)): num_ref += 1 sorfs.append(sorf) for pre in Gff3Parser().entries(open(args.predict_file)): pres.append(pre) for sorf in sorfs: for pre in pres: if pre.strand == sorf.strand: if ((pre.start >= sorf.start) and ( pre.end <= sorf.end)) or ( (pre.start <= sorf.start) and ( pre.end >= sorf.end)) or ( (pre.start >= sorf.start) and ( pre.start <= sorf.end) and ( pre.end >= sorf.end)) or ( (pre.start <= sorf.start) and ( pre.end >= sorf.start) and ( pre.end <= sorf.end)): detect += 1 sorf.attributes["detect"] = True break print("the number of known sORFs which can be detected by ANNOgesic:" + str(detect)) print("the total number of known sORFs:" + str(num_ref)) print("the detection rate:"+ str(float(detect) / float(num_ref))) if __name__ == "__main__": main()
33.22
88
0.551475
60c1a18a03c2400c7a2fb81e76cd31900e92a194
4,412
py
Python
mh4.py
hanjae1122/Boggle
0921ac2ab916652fa176037c96c981625211e038
[ "MIT" ]
null
null
null
mh4.py
hanjae1122/Boggle
0921ac2ab916652fa176037c96c981625211e038
[ "MIT" ]
null
null
null
mh4.py
hanjae1122/Boggle
0921ac2ab916652fa176037c96c981625211e038
[ "MIT" ]
null
null
null
import sys import re import random import numpy as np import time DIM = 4 DICE = 'rifobx ifehey denows utoknd hmsrao lupets acitoa ylgkue qbmjoa \ ehispn vetign baliyt ezavnd ralesc uwilrg pacemd'.split() ALL_WORDS = [] DATAPATH = 'data/words_alpha.txt' # DATAPATH = 'data/new_dictionary.txt' try: TRIALS = int(sys.argv[1]) except (IndexError, ValueError): print("\nSetting number of trials to default of 1000") TRIALS = 1000 def score(roll): def solve(): for y, row in enumerate(s): for x, letter in enumerate(row): for result in extending(letter, ((x, y),)): yield result def extending(prefix, path): if prefix in words: yield (prefix, path) for (nx, ny) in neighbors(*path[-1]): if (nx, ny) not in path: prefix1 = prefix + s[ny][nx] if prefix1 in prefixes: for result in extending(prefix1, path + ((nx, ny),)): yield result def neighbors(x, y): for nx in range(max(0, x-1), min(x+2, DIM)): for ny in range(max(0, y-1), min(y+2, DIM)): yield (nx, ny) s = [roll[i:i+DIM] for i in range(0, DIM**2, DIM)] alphabet = ''.join(set(roll)) valid_word = re.compile('[' + alphabet + ']{3,}$', re.I).match words = [] for word in ALL_WORDS: if valid_word(word): words.append(word) prefixes = set(w[:i] for w in words for i in range(2, len(w)+1)) ans = [] for result in solve(): ans.append(result[0]) ans = set(ans) return len(ans), ans def swap(dice, roll, num): new_roll = roll.copy() new_dice = dice.copy() swaps = random.sample(range(DIM**2), num) for i in range(num-1): new_dice[swaps[i]] = dice[swaps[i+1]] new_dice[swaps[-1]] = dice[swaps[0]] for i in swaps: new_roll[i] = random.sample(new_dice[i], 1)[0] return new_dice, new_roll def sample_rolls(k): samples = {} for i in range(k): roll = [] dice = random.sample(DICE, DIM ** 2) for d in dice: roll.append(random.sample(d, 1)[0]) samples[''.join(roll)] = score(roll) return samples def print_roll(r): for row in [r[i:i+DIM] for i in range(0, DIM**2, DIM)]: print(row) def main(): print('\nRunning algorithm for {0} steps'.format(TRIALS)) print('\nReading in dictionary from {0}...'.format(DATAPATH)) with open(DATAPATH) as f: for word in f: w = word.rstrip() length = len(w) if length >= 3 and length <= DIM**2: # check if all q's are qu's if 'q' in w: is_q = False # if q appears as last letter, ignore for m in re.finditer('q', w): i = m.start() if w[i:(i+2)] != 'qu': is_q = True break if is_q: continue else: w = re.sub('qu', 'q', w) ALL_WORDS.append(w) print('Finished reading {0} words'.format(len(ALL_WORDS))) scores = {} max_words = [] dice = random.sample(DICE, DIM ** 2) roll = [random.sample(d, 1)[0] for d in dice] scores[''.join(roll)] = old = score(roll) start = time.time() msg_time = time.time() for i in range(TRIALS): if i == 0 or time.time() - msg_time >= 5: print('\nTrial {0}, Time elapsed: {1:.2f}' .format(i, time.time() - start)) print('Number of words found: {0:g}'.format(old[0])) print_roll(roll) msg_time = time.time() new_dice, new_roll = swap(dice, roll, 3) roll_key = ''.join(new_roll) if roll_key in scores: new = scores[roll_key] else: scores[roll_key] = new = score(new_roll) if random.uniform(0, 1) < (np.exp(new[0] - old[0])): max_words.append(new[0]) dice = new_dice roll = new_roll old = new roll_key = ''.join(roll) ans = scores[roll_key] print('\nFinal board arrangement has {0} words:' .format(ans[0])) print_roll(roll) print(ans[1]) if __name__ == '__main__': main()
28.101911
73
0.513826
664dc6d0aff4ffd0c6626424ce015c7f14dbc7b2
21,642
py
Python
test/functional/test_framework/util.py
badrkarni/saudicoin
18c221ef1eb576d52bec53dcd449d2c6766684a2
[ "MIT" ]
17
2018-01-17T01:39:21.000Z
2021-12-23T10:23:38.000Z
test/functional/test_framework/util.py
badrkarni/saudicoin
18c221ef1eb576d52bec53dcd449d2c6766684a2
[ "MIT" ]
4
2015-09-22T03:51:39.000Z
2017-12-28T21:03:49.000Z
test/functional/test_framework/util.py
badrkarni/saudicoin
18c221ef1eb576d52bec53dcd449d2c6766684a2
[ "MIT" ]
5
2016-06-25T10:13:37.000Z
2021-02-19T15:37:06.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Helpful routines for regression testing.""" from base64 import b64encode from binascii import hexlify, unhexlify from decimal import Decimal, ROUND_DOWN import hashlib import json import logging import os import random import re from subprocess import CalledProcessError import time from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException logger = logging.getLogger("TestFramework.utils") # Assert functions ################## def assert_fee_amount(fee, tx_size, fee_per_kB): """Assert the fee was in range""" target_fee = tx_size * fee_per_kB / 1000 if fee < target_fee: raise AssertionError("Fee of %s BTC too low! (Should be %s BTC)" % (str(fee), str(target_fee))) # allow the wallet's estimation to be at most 2 bytes off if fee > (tx_size + 2) * fee_per_kB / 1000: raise AssertionError("Fee of %s BTC too high! (Should be %s BTC)" % (str(fee), str(target_fee))) def assert_equal(thing1, thing2, *args): if thing1 != thing2 or any(thing1 != arg for arg in args): raise AssertionError("not(%s)" % " == ".join(str(arg) for arg in (thing1, thing2) + args)) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s" % (str(thing1), str(thing2))) def assert_greater_than_or_equal(thing1, thing2): if thing1 < thing2: raise AssertionError("%s < %s" % (str(thing1), str(thing2))) def assert_raises(exc, fun, *args, **kwds): assert_raises_message(exc, None, fun, *args, **kwds) def assert_raises_message(exc, message, fun, *args, **kwds): try: fun(*args, **kwds) except JSONRPCException: raise AssertionError("Use assert_raises_rpc_error() to test RPC failures") except exc as e: if message is not None and message not in e.error['message']: raise AssertionError("Expected substring not found:" + e.error['message']) except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) else: raise AssertionError("No exception raised") def assert_raises_process_error(returncode, output, fun, *args, **kwds): """Execute a process and asserts the process return code and output. Calls function `fun` with arguments `args` and `kwds`. Catches a CalledProcessError and verifies that the return code and output are as expected. Throws AssertionError if no CalledProcessError was raised or if the return code and output are not as expected. Args: returncode (int): the process return code. output (string): [a substring of] the process output. fun (function): the function to call. This should execute a process. args*: positional arguments for the function. kwds**: named arguments for the function. """ try: fun(*args, **kwds) except CalledProcessError as e: if returncode != e.returncode: raise AssertionError("Unexpected returncode %i" % e.returncode) if output not in e.output: raise AssertionError("Expected substring not found:" + e.output) else: raise AssertionError("No exception raised") def assert_raises_rpc_error(code, message, fun, *args, **kwds): """Run an RPC and verify that a specific JSONRPC exception code and message is raised. Calls function `fun` with arguments `args` and `kwds`. Catches a JSONRPCException and verifies that the error code and message are as expected. Throws AssertionError if no JSONRPCException was raised or if the error code/message are not as expected. Args: code (int), optional: the error code returned by the RPC call (defined in src/rpc/protocol.h). Set to None if checking the error code is not required. message (string), optional: [a substring of] the error string returned by the RPC call. Set to None if checking the error string is not required. fun (function): the function to call. This should be the name of an RPC. args*: positional arguments for the function. kwds**: named arguments for the function. """ assert try_rpc(code, message, fun, *args, **kwds), "No exception raised" def try_rpc(code, message, fun, *args, **kwds): """Tries to run an rpc command. Test against error code and message if the rpc fails. Returns whether a JSONRPCException was raised.""" try: fun(*args, **kwds) except JSONRPCException as e: # JSONRPCException was thrown as expected. Check the code and message values are correct. if (code is not None) and (code != e.error["code"]): raise AssertionError("Unexpected JSONRPC error code %i" % e.error["code"]) if (message is not None) and (message not in e.error['message']): raise AssertionError("Expected substring not found:" + e.error['message']) return True except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) else: return False def assert_is_hex_string(string): try: int(string, 16) except Exception as e: raise AssertionError( "Couldn't interpret %r as hexadecimal; raised: %s" % (string, e)) def assert_is_hash_string(string, length=64): if not isinstance(string, str): raise AssertionError("Expected a string, got type %r" % type(string)) elif length and len(string) != length: raise AssertionError( "String of length %d expected; got %d" % (length, len(string))) elif not re.match('[abcdef0-9]+$', string): raise AssertionError( "String %r contains invalid characters for a hash." % string) def assert_array_result(object_array, to_match, expected, should_not_find=False): """ Pass in array of JSON objects, a dictionary with key/value pairs to match against, and another dictionary with expected key/value pairs. If the should_not_find flag is true, to_match should not be found in object_array """ if should_not_find: assert_equal(expected, {}) num_matched = 0 for item in object_array: all_match = True for key, value in to_match.items(): if item[key] != value: all_match = False if not all_match: continue elif should_not_find: num_matched = num_matched + 1 for key, value in expected.items(): if item[key] != value: raise AssertionError("%s : expected %s=%s" % (str(item), str(key), str(value))) num_matched = num_matched + 1 if num_matched == 0 and not should_not_find: raise AssertionError("No objects matched %s" % (str(to_match))) if num_matched > 0 and should_not_find: raise AssertionError("Objects were found %s" % (str(to_match))) # Utility functions ################### def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n))) * 1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def count_bytes(hex_string): return len(bytearray.fromhex(hex_string)) def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hash256(byte_str): sha256 = hashlib.sha256() sha256.update(byte_str) sha256d = hashlib.sha256() sha256d.update(sha256.digest()) return sha256d.digest()[::-1] def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def satoshi_round(amount): return Decimal(amount).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf'), lock=None): if attempts == float('inf') and timeout == float('inf'): timeout = 60 attempt = 0 timeout += time.time() while attempt < attempts and time.time() < timeout: if lock: with lock: if predicate(): return else: if predicate(): return attempt += 1 time.sleep(0.05) # Print the cause of the timeout assert_greater_than(attempts, attempt) assert_greater_than(timeout, time.time()) raise RuntimeError('Unreachable') # RPC/P2P connection constants and functions ############################################ # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None def get_rpc_proxy(url, node_number, timeout=None, coveragedir=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( coveragedir, node_number) if coveragedir else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_url(datadir, i, rpchost=None): rpc_u, rpc_p = get_auth_cookie(datadir) host = '127.0.0.1' port = rpc_port(i) if rpchost: parts = rpchost.split(':') if len(parts) == 2: host, port = parts else: host = rpchost return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, host, int(port)) # Node functions ################ def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node" + str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "bitcoin.conf"), 'w', encoding='utf8') as f: f.write("regtest=1\n") f.write("port=" + str(p2p_port(n)) + "\n") f.write("rpcport=" + str(rpc_port(n)) + "\n") f.write("listenonion=0\n") return datadir def get_datadir_path(dirname, n): return os.path.join(dirname, "node" + str(n)) def get_auth_cookie(datadir): user = None password = None if os.path.isfile(os.path.join(datadir, "bitcoin.conf")): with open(os.path.join(datadir, "bitcoin.conf"), 'r', encoding='utf8') as f: for line in f: if line.startswith("rpcuser="): assert user is None # Ensure that there is only one rpcuser line user = line.split("=")[1].strip("\n") if line.startswith("rpcpassword="): assert password is None # Ensure that there is only one rpcpassword line password = line.split("=")[1].strip("\n") if os.path.isfile(os.path.join(datadir, "regtest", ".cookie")): with open(os.path.join(datadir, "regtest", ".cookie"), 'r') as f: userpass = f.read() split_userpass = userpass.split(':') user = split_userpass[0] password = split_userpass[1] if user is None or password is None: raise ValueError("No RPC credentials") return user, password def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node" + str(n_node), "regtest", logname) def get_bip9_status(node, key): info = node.getblockchaininfo() return info['bip9_softforks'][key] def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def disconnect_nodes(from_connection, node_num): for peer_id in [peer['id'] for peer in from_connection.getpeerinfo() if "testnode%d" % node_num in peer['subver']]: from_connection.disconnectnode(nodeid=peer_id) for _ in range(50): if [peer['id'] for peer in from_connection.getpeerinfo() if "testnode%d" % node_num in peer['subver']] == []: break time.sleep(0.1) else: raise AssertionError("timed out waiting for disconnect") def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:" + str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def sync_blocks(rpc_connections, *, wait=1, timeout=60): """ Wait until everybody has the same tip. sync_blocks needs to be called with an rpc_connections set that has least one node already synced to the latest, stable tip, otherwise there's a chance it might return before all nodes are stably synced. """ # Use getblockcount() instead of waitforblockheight() to determine the # initial max height because the two RPCs look at different internal global # variables (chainActive vs latestBlock) and the former gets updated # earlier. maxheight = max(x.getblockcount() for x in rpc_connections) start_time = cur_time = time.time() while cur_time <= start_time + timeout: tips = [r.waitforblockheight(maxheight, int(wait * 1000)) for r in rpc_connections] if all(t["height"] == maxheight for t in tips): if all(t["hash"] == tips[0]["hash"] for t in tips): return raise AssertionError("Block sync failed, mismatched block hashes:{}".format( "".join("\n {!r}".format(tip) for tip in tips))) cur_time = time.time() raise AssertionError("Block sync to height {} timed out:{}".format( maxheight, "".join("\n {!r}".format(tip) for tip in tips))) def sync_chain(rpc_connections, *, wait=1, timeout=60): """ Wait until everybody has the same best block """ while timeout > 0: best_hash = [x.getbestblockhash() for x in rpc_connections] if best_hash == [best_hash[0]] * len(best_hash): return time.sleep(wait) timeout -= wait raise AssertionError("Chain sync failed: Best block hashes don't match") def sync_mempools(rpc_connections, *, wait=1, timeout=60): """ Wait until everybody has the same transactions in their memory pools """ while timeout > 0: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match + 1 if num_match == len(rpc_connections): return time.sleep(wait) timeout -= wait raise AssertionError("Mempool sync failed") # Transaction/Block functions ############################# def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found" % (txid, str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >= 0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({"txid": t["txid"], "vout": t["vout"], "address": t["address"]}) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d" % (amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out + fee change = amount_in - amount if change > amount * 2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change / 2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment * random.randint(0, fee_variants) (total_in, inputs) = gather_inputs(from_node, amount + fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) # Helper to create at least "count" utxos # Pass in a fee that is sufficient for relay and mining new transactions. def create_confirmed_utxos(fee, node, count): to_generate = int(0.5 * count) + 101 while to_generate > 0: node.generate(min(25, to_generate)) to_generate -= 25 utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in range(iterations): t = utxos.pop() inputs = [] inputs.append({"txid": t["txid"], "vout": t["vout"]}) outputs = {} send_value = t['amount'] - fee outputs[addr1] = satoshi_round(send_value / 2) outputs[addr2] = satoshi_round(send_value / 2) raw_tx = node.createrawtransaction(inputs, outputs) signed_tx = node.signrawtransaction(raw_tx)["hex"] node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos # Create large OP_RETURN txouts that can be appended to a transaction # to make it large (helper for constructing large transactions). def gen_return_txouts(): # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create # So we have big transactions (and therefore can't fit very many into each block) # create one script_pubkey script_pubkey = "6a4d0200" # OP_RETURN OP_PUSH2 512 bytes for i in range(512): script_pubkey = script_pubkey + "01" # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change txouts = "81" for k in range(128): # add txout value txouts = txouts + "0000000000000000" # add length of script_pubkey txouts = txouts + "fd0402" # add script_pubkey txouts = txouts + script_pubkey return txouts def create_tx(node, coinbase, to_address, amount): inputs = [{"txid": coinbase, "vout": 0}] outputs = {to_address: amount} rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) assert_equal(signresult["complete"], True) return signresult["hex"] # Create a spend of each passed-in utxo, splicing in "txouts" to each raw # transaction to make it large. See gen_return_txouts() above. def create_lots_of_big_transactions(node, txouts, utxos, num, fee): addr = node.getnewaddress() txids = [] for _ in range(num): t = utxos.pop() inputs = [{"txid": t["txid"], "vout": t["vout"]}] outputs = {} change = t['amount'] - fee outputs[addr] = satoshi_round(change) rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + txouts newtx = newtx + rawtx[94:] signresult = node.signrawtransaction(newtx, None, None, "NONE") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids def mine_large_block(node, utxos=None): # generate a 66k transaction, # and 14 of them is close to the 1MB block limit num = 14 txouts = gen_return_txouts() utxos = utxos if utxos is not None else [] if len(utxos) < num: utxos.clear() utxos.extend(node.listunspent()) fee = 100 * node.getnetworkinfo()["relayfee"] create_lots_of_big_transactions(node, txouts, utxos, num, fee=fee) node.generate(1)
38.035149
119
0.650818
6b285890452b336c5e167cef2dd4926d1425af55
1,450
py
Python
vsutillib/vsutillib-media/setup.py
akai10tsuki/vsutillib
6d623171cc2a5c66a94fb508bfc312abeab49ff2
[ "MIT" ]
null
null
null
vsutillib/vsutillib-media/setup.py
akai10tsuki/vsutillib
6d623171cc2a5c66a94fb508bfc312abeab49ff2
[ "MIT" ]
null
null
null
vsutillib/vsutillib-media/setup.py
akai10tsuki/vsutillib
6d623171cc2a5c66a94fb508bfc312abeab49ff2
[ "MIT" ]
null
null
null
""" setup for vsutillib-media """ import io import os import shutil import sys from pathlib import Path from setuptools import setup from vsutillib import config sys.path.insert(0, os.path.abspath("../..")) ROOT = os.path.abspath(os.path.dirname(__file__)) PACKAGE = "media" def removeTmpDirs(): """ delete build directory setup was including files from other builds """ p = Path(".") eggDirs = [x for x in p.glob("*.egg-info") if x.is_dir()] eggDirs.append(Path("build")) for d in eggDirs: if d.is_dir(): shutil.rmtree(d) def readme(): """get README.rst""" try: with io.open(os.path.join(ROOT, "README.rst"), encoding="utf-8") as f: long_description = "\n" + f.read() except FileNotFoundError: long_description = "vsutillib." + PACKAGE + " sub package part of vsutillib" return long_description setup( name=config.NAME + "-" + PACKAGE, version=config.MEDIA_VERSION, description="vsutillib." + PACKAGE + " sub package part of vsutillib", long_description=readme(), author=config.AUTHOR, author_email=config.EMAIL, license="MIT", packages=["vsutillib." + PACKAGE, "vsutillib." + PACKAGE + ".classes"], install_requires=["pymediainfo" + config.PYMEDIAINFO_VERSION], zip_safe=False, url="https://pypi.org/project/vsutillib-" + PACKAGE + "/", python_requires=config.PYTHON_VERSION, ) removeTmpDirs()
23.770492
84
0.653793
02c7e260c64622b87b0cfc88669da2e31bce7fe1
5,066
py
Python
tests/toranj/test-009-insecure-traffic-join.py
JeffreyHayes/openthread
0dde90edcb0aafef5f4b5fc3d30e19f756e27ee4
[ "BSD-3-Clause" ]
2
2018-08-24T05:14:27.000Z
2018-09-25T03:02:36.000Z
tests/toranj/test-009-insecure-traffic-join.py
JeffreyHayes/openthread
0dde90edcb0aafef5f4b5fc3d30e19f756e27ee4
[ "BSD-3-Clause" ]
4
2016-09-09T17:10:04.000Z
2016-09-29T05:18:09.000Z
tests/toranj/test-009-insecure-traffic-join.py
turon/openthread
20145cb42fca90d791c4918475db28b7b91290d6
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2018, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import wpan from wpan import verify # ----------------------------------------------------------------------------------------------------------------------- # Test description: Check insecure data transmission during joining. test_name = __file__[:-3] if __file__.endswith('.py') else __file__ print('-' * 120) print('Starting \'{}\''.format(test_name)) # ----------------------------------------------------------------------------------------------------------------------- # Creating `wpan.Nodes` instances node1 = wpan.Node() node2 = wpan.Node() # ----------------------------------------------------------------------------------------------------------------------- # Init all nodes wpan.Node.init_all_nodes() # ----------------------------------------------------------------------------------------------------------------------- # Build network topology node1.form("insec-join-test") # ----------------------------------------------------------------------------------------------------------------------- # Test implementation insecure_port = 1234 NUM_MSGS = 4 # Make node1 joinable and set the insecure port node1.permit_join(duration_sec='100', port=str(insecure_port)) verify(node1.get(wpan.WPAN_NETWORK_ALLOW_JOIN) == 'true') # Join node1 network from node2 without setting the key node2.join_node(node1, should_set_key=False) verify(node2.get(wpan.WPAN_STATE) == wpan.STATE_CREDENTIALS_NEEDED) verify(node2.get(wpan.WPAN_NAME) == node1.get(wpan.WPAN_NAME)) verify(node2.get(wpan.WPAN_PANID) == node1.get(wpan.WPAN_PANID)) verify(node2.get(wpan.WPAN_XPANID) == node1.get(wpan.WPAN_XPANID)) ll1 = node1.get(wpan.WPAN_IP6_LINK_LOCAL_ADDRESS)[1:-1] ll2 = node2.get(wpan.WPAN_IP6_LINK_LOCAL_ADDRESS)[1:-1] # Send insecure traffic from node2 to node1 using link-local IP address # for src/dst and insecure port number sender = node2.prepare_tx(ll2, (ll1, insecure_port), "Hi (insecure)", NUM_MSGS) recver = node1.prepare_rx(sender) wpan.Node.perform_async_tx_rx() verify(sender.was_successful) verify(recver.was_successful) # Get the random src port number used by node1 and ensure node2 allows # insecure rx traffic on that port rx_port = recver.all_rx_msg[0][1][1] node2.permit_join(duration_sec='100', port=str(rx_port)) # Send insecure reply from node1 to node2 sender2 = node1.prepare_tx( (ll1, insecure_port), (ll2, rx_port), "Hi back! (insecure)", NUM_MSGS ) recver2 = node2.prepare_rx(sender2) wpan.Node.perform_async_tx_rx() verify(sender2.was_successful) verify(recver2.was_successful) # Now node2 fully joins the network (set the network key), check all # secure traffic exchange between the nodes node2.set(wpan.WPAN_KEY, node1.get(wpan.WPAN_KEY)[1:-1], binary_data=True) verify(node2.is_associated()) node1.permit_join('0') sender = node2.prepare_tx( ll2, (ll1, insecure_port), "Hi (now secure)", NUM_MSGS ) recver = node1.prepare_rx(sender) wpan.Node.perform_async_tx_rx() verify(sender.was_successful) verify(recver.was_successful) node2.permit_join('0') sender2 = node1.prepare_tx( (ll1, insecure_port), (ll2, rx_port), "Hi back! (secure now)", NUM_MSGS ) recver2 = node2.prepare_rx(sender2) wpan.Node.perform_async_tx_rx() verify(sender2.was_successful) verify(recver2.was_successful) # ----------------------------------------------------------------------------------------------------------------------- # Test finished wpan.Node.finalize_all_nodes() print('\'{}\' passed.'.format(test_name))
38.090226
121
0.656139
2590a825306e38455546da346a2aa06f48352c75
585
py
Python
13. group_by/group_by.py
jeury301/python-morsels
fdbe0b1c80120e2d1388808816538fea5dab8892
[ "MIT" ]
2
2018-08-21T10:29:57.000Z
2019-04-17T07:05:17.000Z
13. group_by/group_by.py
jeury301/python-morsels
fdbe0b1c80120e2d1388808816538fea5dab8892
[ "MIT" ]
null
null
null
13. group_by/group_by.py
jeury301/python-morsels
fdbe0b1c80120e2d1388808816538fea5dab8892
[ "MIT" ]
null
null
null
def default(n): return n def group_by(numbers, key_func=default): """Return a dict-like object containing items in the list grouped by key. Args: numbers (iterator): items to group by key key_func (function): function to group items by Returns: Dictionary of numbers grouped by key_func """ groups = {} for number in numbers: groups.setdefault(key_func(number), []) groups[key_func(number)].append(number) return groups if __name__ == "__main__": grouped = group_by([1, 2, 1, 3, 2, 1]) print(grouped)
25.434783
77
0.639316
e0d90dea5d8b95c3b844f22be12409961876d024
293
py
Python
recaptcha-python-2/mysite/core/models.py
sibtc/simple-recaptcha
224ef3994a398b04f9405bcdaeef339af31c7305
[ "MIT" ]
16
2017-02-21T13:57:26.000Z
2021-03-17T15:25:16.000Z
recaptcha-python-3/mysite/core/models.py
Cleyson/simple-recaptcha
224ef3994a398b04f9405bcdaeef339af31c7305
[ "MIT" ]
null
null
null
recaptcha-python-3/mysite/core/models.py
Cleyson/simple-recaptcha
224ef3994a398b04f9405bcdaeef339af31c7305
[ "MIT" ]
8
2018-03-21T04:11:52.000Z
2021-08-23T17:04:16.000Z
from __future__ import unicode_literals from django.db import models class Comment(models.Model): text = models.TextField(max_length=1000) created_at = models.DateTimeField(auto_now_add=True) class Meta: verbose_name = 'comment' verbose_name_plural = 'comments'
24.416667
56
0.737201
3febdbed2cceee5ffe77784387590de0447f0839
1,475
py
Python
src/probnum/diffeq/perturbed/step/_perturbedstepsolution.py
treid5/probnum
fabb51243d0952fbd35e542aeb5c2dc9a449ec81
[ "MIT" ]
1
2021-04-16T14:45:26.000Z
2021-04-16T14:45:26.000Z
src/probnum/diffeq/perturbed/step/_perturbedstepsolution.py
simeoncarstens/probnum
b69587b07e2fffbdcd4c850acc98bb3de97a6e0b
[ "MIT" ]
42
2021-03-08T07:20:40.000Z
2022-03-28T05:04:48.000Z
src/probnum/diffeq/perturbed/step/_perturbedstepsolution.py
JonathanWenger/probnum
1c5499883672cfa029c12045848ea04491c69e08
[ "MIT" ]
null
null
null
"""Output of PerturbedStepSolver.""" from typing import List, Optional import numpy as np from scipy.integrate._ivp import rk from probnum import randvars from probnum.diffeq import _odesolution from probnum.typing import FloatArgType class PerturbedStepSolution(_odesolution.ODESolution): """Probabilistic ODE solution corresponding to the :class:`PerturbedStepSolver`.""" def __init__( self, scales: List[float], locations: np.ndarray, states: randvars._RandomVariableList, interpolants: List[rk.DenseOutput], ): self.scales = scales self.interpolants = interpolants super().__init__(locations, states) def interpolate( self, t: FloatArgType, previous_index: Optional[FloatArgType] = None, next_index: Optional[FloatArgType] = None, ): # For the first state, no interpolation has to be performed. if t == self.locations[0]: return self.states[0] if t == self.locations[-1]: return self.states[-1] else: interpolant = self.interpolants[previous_index] relative_time = (t - self.locations[previous_index]) * self.scales[ previous_index ] previous_time = self.locations[previous_index] evaluation = interpolant(previous_time + relative_time) res_as_rv = randvars.Constant(evaluation) return res_as_rv
31.382979
87
0.648814
94c70ca440553f23d2b57a652e2a3bae54cb0a39
3,105
py
Python
sdk/servicebus/azure-mgmt-servicebus/azure/mgmt/servicebus/models/sb_namespace.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/servicebus/azure-mgmt-servicebus/azure/mgmt/servicebus/models/sb_namespace.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/servicebus/azure-mgmt-servicebus/azure/mgmt/servicebus/models/sb_namespace.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .tracked_resource import TrackedResource class SBNamespace(TrackedResource): """Description of a namespace resource. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id :vartype id: str :ivar name: Resource name :vartype name: str :ivar type: Resource type :vartype type: str :param location: Required. The Geo-location where the resource lives :type location: str :param tags: Resource tags :type tags: dict[str, str] :param sku: Properties of Sku :type sku: ~azure.mgmt.servicebus.models.SBSku :ivar provisioning_state: Provisioning state of the namespace. :vartype provisioning_state: str :ivar created_at: The time the namespace was created. :vartype created_at: datetime :ivar updated_at: The time the namespace was updated. :vartype updated_at: datetime :ivar service_bus_endpoint: Endpoint you can use to perform Service Bus operations. :vartype service_bus_endpoint: str :ivar metric_id: Identifier for Azure Insights metrics :vartype metric_id: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'location': {'required': True}, 'provisioning_state': {'readonly': True}, 'created_at': {'readonly': True}, 'updated_at': {'readonly': True}, 'service_bus_endpoint': {'readonly': True}, 'metric_id': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'sku': {'key': 'sku', 'type': 'SBSku'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'created_at': {'key': 'properties.createdAt', 'type': 'iso-8601'}, 'updated_at': {'key': 'properties.updatedAt', 'type': 'iso-8601'}, 'service_bus_endpoint': {'key': 'properties.serviceBusEndpoint', 'type': 'str'}, 'metric_id': {'key': 'properties.metricId', 'type': 'str'}, } def __init__(self, **kwargs): super(SBNamespace, self).__init__(**kwargs) self.sku = kwargs.get('sku', None) self.provisioning_state = None self.created_at = None self.updated_at = None self.service_bus_endpoint = None self.metric_id = None
37.865854
88
0.603865
712331465a4a56407fea5b488c35beb2415ee02f
24,197
py
Python
horizon/horizon/base.py
citrix-openstack/horizon
7987e68f135895728f891c2377b589f701d8106e
[ "Apache-2.0" ]
2
2015-05-18T13:50:21.000Z
2015-05-18T14:47:47.000Z
horizon/horizon/base.py
andrewsmedina/horizon
6892653c0573a6a55f359cce6c1796053ef65cbf
[ "Apache-2.0" ]
null
null
null
horizon/horizon/base.py
andrewsmedina/horizon
6892653c0573a6a55f359cce6c1796053ef65cbf
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Contains the core classes and functionality that makes Horizon what it is. This module is considered internal, and should not be relied on directly. Public APIs are made available through the :mod:`horizon` module and the classes contained therein. """ import copy import inspect import logging from django.conf import settings from django.conf.urls.defaults import patterns, url, include from django.contrib.auth.decorators import login_required from django.core.exceptions import ImproperlyConfigured from django.core.urlresolvers import reverse from django.utils.functional import SimpleLazyObject from django.utils.importlib import import_module from django.utils.module_loading import module_has_submodule from django.utils.translation import ugettext as _ from horizon.decorators import require_roles, _current_component LOG = logging.getLogger(__name__) # Default configuration dictionary. Do not mutate directly. Use copy.copy(). HORIZON_CONFIG = { # Allow for ordering dashboards; list or tuple if provided. 'dashboards': None, # Name of a default dashboard; defaults to first alphabetically if None 'default_dashboard': None, 'user_home': None, } def _decorate_urlconf(urlpatterns, decorator, *args, **kwargs): for pattern in urlpatterns: if getattr(pattern, 'callback', None): pattern._callback = decorator(pattern.callback, *args, **kwargs) if getattr(pattern, 'url_patterns', []): _decorate_urlconf(pattern.url_patterns, decorator, *args, **kwargs) class NotRegistered(Exception): pass class HorizonComponent(object): def __init__(self): super(HorizonComponent, self).__init__() if not self.slug: raise ImproperlyConfigured('Every %s must have a slug.' % self.__class__) def __unicode__(self): return getattr(self, 'name', u"Unnamed %s" % self.__class__.__name__) def _get_default_urlpatterns(self): package_string = '.'.join(self.__module__.split('.')[:-1]) if getattr(self, 'urls', None): try: mod = import_module('.%s' % self.urls, package_string) except ImportError: mod = import_module(self.urls) urlpatterns = mod.urlpatterns else: # Try importing a urls.py from the dashboard package if module_has_submodule(import_module(package_string), 'urls'): urls_mod = import_module('.urls', package_string) urlpatterns = urls_mod.urlpatterns else: urlpatterns = patterns('') return urlpatterns class Registry(object): def __init__(self): self._registry = {} if not getattr(self, '_registerable_class', None): raise ImproperlyConfigured('Subclasses of Registry must set a ' '"_registerable_class" property.') def _register(self, cls): """Registers the given class. If the specified class is already registered then it is ignored. """ if not inspect.isclass(cls): raise ValueError('Only classes may be registered.') elif not issubclass(cls, self._registerable_class): raise ValueError('Only %s classes or subclasses may be registered.' % self._registerable_class) if cls not in self._registry: cls._registered_with = self self._registry[cls] = cls() return self._registry[cls] def _unregister(self, cls): """Unregisters the given class. If the specified class isn't registered, ``NotRegistered`` will be raised. """ if not issubclass(cls, self._registerable_class): raise ValueError('Only %s classes or subclasses may be ' 'unregistered.' % self._registerable_class) if cls not in self._registry.keys(): raise NotRegistered('%s is not registered' % cls) del self._registry[cls] return True def _registered(self, cls): if inspect.isclass(cls) and issubclass(cls, self._registerable_class): cls = self._registry.get(cls, None) if cls: return cls else: # Allow for fetching by slugs as well. for registered in self._registry.values(): if registered.slug == cls: return registered class_name = self._registerable_class.__name__ if hasattr(self, "_registered_with"): parent = self._registered_with._registerable_class.__name__ raise NotRegistered('%(type)s with slug "%(slug)s" is not ' 'registered with %(parent)s "%(name)s".' % {"type": class_name, "slug": cls, "parent": parent, "name": self.name}) else: raise NotRegistered('%(type)s with slug "%(slug)s" is not ' 'registered.' % {"type": class_name, "slug": cls}) class Panel(HorizonComponent): """ A base class for defining Horizon dashboard panels. All Horizon dashboard panels should extend from this class. It provides the appropriate hooks for automatically constructing URLconfs, and providing role-based access control. .. attribute:: name The name of the panel. This will be displayed in the auto-generated navigation and various other places. Default: ``''``. .. attribute:: slug A unique "short name" for the panel. The slug is used as a component of the URL path for the panel. Default: ``''``. .. attribute: roles A list of role names, all of which a user must possess in order to access any view associated with this panel. This attribute is combined cumulatively with any roles required on the ``Dashboard`` class with which it is registered. .. attribute:: urls Path to a URLconf of views for this panel using dotted Python notation. If no value is specified, a file called ``urls.py`` living in the same package as the ``panel.py`` file is used. Default: ``None``. .. attribute:: nav .. method:: nav(context) The ``nav`` attribute can be either boolean value or a callable which accepts a ``RequestContext`` object as a single argument to control whether or not this panel should appear in automatically-generated navigation. Default: ``True``. .. attribute:: index_url_name The ``name`` argument for the URL pattern which corresponds to the index view for this ``Panel``. This is the view that :meth:`.Panel.get_absolute_url` will attempt to reverse. """ name = '' slug = '' urls = None nav = True index_url_name = "index" def __repr__(self): return "<Panel: %s>" % self.__unicode__() def get_absolute_url(self): """ Returns the default URL for this panel. The default URL is defined as the URL pattern with ``name="index"`` in the URLconf for this panel. """ try: return reverse('horizon:%s:%s:%s' % (self._registered_with.slug, self.slug, self.index_url_name)) except: # Logging here since this will often be called in a template # where the exception would be hidden. LOG.exception("Error reversing absolute URL for %s." % self) raise @property def _decorated_urls(self): urlpatterns = self._get_default_urlpatterns() # Apply access controls to all views in the patterns roles = getattr(self, 'roles', []) _decorate_urlconf(urlpatterns, require_roles, roles) _decorate_urlconf(urlpatterns, _current_component, panel=self) # Return the three arguments to django.conf.urls.defaults.include return urlpatterns, self.slug, self.slug class Dashboard(Registry, HorizonComponent): """ A base class for defining Horizon dashboards. All Horizon dashboards should extend from this base class. It provides the appropriate hooks for automatic discovery of :class:`~horizon.Panel` modules, automatically constructing URLconfs, and providing role-based access control. .. attribute:: name The name of the dashboard. This will be displayed in the auto-generated navigation and various other places. Default: ``''``. .. attribute:: slug A unique "short name" for the dashboard. The slug is used as a component of the URL path for the dashboard. Default: ``''``. .. attribute:: panels The ``panels`` attribute can be either a list containing the name of each panel **module** which should be loaded as part of this dashboard, or a dictionary of tuples which define groups of panels as in the following example:: class Syspanel(horizon.Dashboard): panels = {'System Panel': ('overview', 'instances', ...)} Automatically generated navigation will use the order of the modules in this attribute. Default: ``[]``. .. warning:: The values for this attribute should not correspond to the :attr:`~.Panel.name` attributes of the ``Panel`` classes. They should be the names of the Python modules in which the ``panel.py`` files live. This is used for the automatic loading and registration of ``Panel`` classes much like Django's ``ModelAdmin`` machinery. Panel modules must be listed in ``panels`` in order to be discovered by the automatic registration mechanism. .. attribute:: default_panel The name of the panel which should be treated as the default panel for the dashboard, i.e. when you visit the root URL for this dashboard, that's the panel that is displayed. Default: ``None``. .. attribute: roles A list of role names, all of which a user must possess in order to access any panel registered with this dashboard. This attribute is combined cumulatively with any roles required on individual :class:`~horizon.Panel` classes. .. attribute:: urls Optional path to a URLconf of additional views for this dashboard which are not connected to specific panels. Default: ``None``. .. attribute:: nav Optional boolean to control whether or not this dashboard should appear in automatically-generated navigation. Default: ``True``. .. attribute:: supports_tenants Optional boolean that indicates whether or not this dashboard includes support for projects/tenants. If set to ``True`` this dashboard's naviagtion will include a UI element that allows the user to select project/tenant. Default: ``False``. .. attribute:: public Boolean value to determine whether this dashboard can be viewed without being logged in. Defaults to ``False``. """ _registerable_class = Panel name = '' slug = '' urls = None panels = [] default_panel = None nav = True supports_tenants = False public = False def __repr__(self): return "<Dashboard: %s>" % self.__unicode__() def get_panel(self, panel): """ Returns the specified :class:`~horizon.Panel` instance registered with this dashboard. """ return self._registered(panel) def get_panels(self): """ Returns the :class:`~horizon.Panel` instances registered with this dashboard in order. """ registered = copy.copy(self._registry) if isinstance(self.panels, dict): panels = {} for heading, items in self.panels.iteritems(): panels.setdefault(heading, []) for item in items: panel = self._registered(item) panels[heading].append(panel) registered.pop(panel.__class__) if len(registered): panels.setdefault(_("Other"), []).extend(registered.values()) else: panels = [] for item in self.panels: panel = self._registered(item) panels.append(panel) registered.pop(panel.__class__) panels.extend(registered.values()) return panels def get_absolute_url(self): """ Returns the default URL for this dashboard. The default URL is defined as the URL pattern with ``name="index"`` in the URLconf for the :class:`~horizon.Panel` specified by :attr:`~horizon.Dashboard.default_panel`. """ try: return self._registered(self.default_panel).get_absolute_url() except: # Logging here since this will often be called in a template # where the exception would be hidden. LOG.exception("Error reversing absolute URL for %s." % self) raise @property def _decorated_urls(self): urlpatterns = self._get_default_urlpatterns() self._autodiscover() default_panel = None # Add in each panel's views except for the default view. for panel in self._registry.values(): if panel.slug == self.default_panel: default_panel = panel continue urlpatterns += patterns('', url(r'^%s/' % panel.slug, include(panel._decorated_urls))) # Now the default view, which should come last if not default_panel: raise NotRegistered('The default panel "%s" is not registered.' % self.default_panel) urlpatterns += patterns('', url(r'', include(default_panel._decorated_urls))) # Require login if not public. if not self.public: _decorate_urlconf(urlpatterns, login_required) # Apply access controls to all views in the patterns roles = getattr(self, 'roles', []) _decorate_urlconf(urlpatterns, require_roles, roles) _decorate_urlconf(urlpatterns, _current_component, dashboard=self) # Return the three arguments to django.conf.urls.defaults.include return urlpatterns, self.slug, self.slug def _autodiscover(self): """ Discovers panels to register from the current dashboard module. """ package = '.'.join(self.__module__.split('.')[:-1]) mod = import_module(package) panels = [] if isinstance(self.panels, dict): [panels.extend(values) for values in self.panels.values()] else: panels = self.panels for panel in panels: try: before_import_registry = copy.copy(self._registry) import_module('.%s.panel' % panel, package) except: self._registry = before_import_registry if module_has_submodule(mod, panel): raise @classmethod def register(cls, panel): """ Registers a :class:`~horizon.Panel` with this dashboard. """ from horizon import Horizon return Horizon.register_panel(cls, panel) @classmethod def unregister(cls, panel): """ Unregisters a :class:`~horizon.Panel` from this dashboard. """ from horizon import Horizon return Horizon.unregister_panel(cls, panel) class Workflow(object): def __init__(*args, **kwargs): raise NotImplementedError() class LazyURLPattern(SimpleLazyObject): def __iter__(self): if self._wrapped is None: self._setup() return iter(self._wrapped) def __reversed__(self): if self._wrapped is None: self._setup() return reversed(self._wrapped) class Site(Registry, HorizonComponent): """ The core OpenStack Dashboard class. """ # Required for registry _registerable_class = Dashboard name = "Horizon" namespace = 'horizon' slug = 'horizon' urls = 'horizon.site_urls' def __repr__(self): return u"<Site: %s>" % self.__unicode__() @property def _conf(self): conf = copy.copy(HORIZON_CONFIG) conf.update(getattr(settings, 'HORIZON_CONFIG', {})) return conf @property def dashboards(self): return self._conf['dashboards'] @property def default_dashboard(self): return self._conf['default_dashboard'] def register(self, dashboard): """ Registers a :class:`~horizon.Dashboard` with Horizon.""" return self._register(dashboard) def unregister(self, dashboard): """ Unregisters a :class:`~horizon.Dashboard` from Horizon. """ return self._unregister(dashboard) def registered(self, dashboard): return self._registered(dashboard) def register_panel(self, dashboard, panel): dash_instance = self.registered(dashboard) return dash_instance._register(panel) def unregister_panel(self, dashboard, panel): dash_instance = self.registered(dashboard) if not dash_instance: raise NotRegistered("The dashboard %s is not registered." % dashboard) return dash_instance._unregister(panel) def get_dashboard(self, dashboard): """ Returns the specified :class:`~horizon.Dashboard` instance. """ return self._registered(dashboard) def get_dashboards(self): """ Returns an ordered tuple of :class:`~horizon.Dashboard` modules. Orders dashboards according to the ``"dashboards"`` key in ``settings.HORIZON_CONFIG`` or else returns all registered dashboards in alphabetical order. Any remaining :class:`~horizon.Dashboard` classes registered with Horizon but not listed in ``settings.HORIZON_CONFIG['dashboards']`` will be appended to the end of the list alphabetically. """ if self.dashboards: registered = copy.copy(self._registry) dashboards = [] for item in self.dashboards: dashboard = self._registered(item) dashboards.append(dashboard) registered.pop(dashboard.__class__) if len(registered): extra = registered.values() extra.sort() dashboards.extend(extra) return dashboards else: dashboards = self._registry.values() dashboards.sort() return dashboards def get_default_dashboard(self): """ Returns the default :class:`~horizon.Dashboard` instance. If ``"default_dashboard"`` is specified in ``settings.HORIZON_CONFIG`` then that dashboard will be returned. If not, the first dashboard returned by :func:`~horizon.get_dashboards` will be returned. """ if self.default_dashboard: return self._registered(self.default_dashboard) elif len(self._registry): return self.get_dashboards()[0] else: raise NotRegistered("No dashboard modules have been registered.") def get_user_home(self, user): """ Returns the default URL for a particular user. This method can be used to customize where a user is sent when they log in, etc. By default it returns the value of :meth:`get_absolute_url`. An alternative function can be supplied to customize this behavior by specifying a either a URL or a function which returns a URL via the ``"user_home"`` key in ``settings.HORIZON_CONFIG``. Each of these would be valid:: {"user_home": "/home",} # A URL {"user_home": "my_module.get_user_home",} # Path to a function {"user_home": lambda user: "/" + user.name,} # A function This can be useful if the default dashboard may not be accessible to all users. """ user_home = self._conf['user_home'] if user_home: if callable(user_home): return user_home(user) elif isinstance(user_home, basestring): # Assume we've got a URL if there's a slash in it if user_home.find("/") != -1: return user_home else: mod, func = user_home.rsplit(".", 1) return getattr(import_module(mod), func)(user) # If it's not callable and not a string, it's wrong. raise ValueError('The user_home setting must be either a string ' 'or a callable object (e.g. a function).') else: return self.get_absolute_url() def get_absolute_url(self): """ Returns the default URL for Horizon's URLconf. The default URL is determined by calling :meth:`~horizon.Dashboard.get_absolute_url` on the :class:`~horizon.Dashboard` instance returned by :meth:`~horizon.get_default_dashboard`. """ return self.get_default_dashboard().get_absolute_url() @property def _lazy_urls(self): """ Lazy loading for URL patterns. This method avoids problems associated with attempting to evaluate the the URLconf before the settings module has been loaded. """ def url_patterns(): return self._urls()[0] return LazyURLPattern(url_patterns), self.namespace, self.slug def _urls(self): """ Constructs the URLconf for Horizon from registered Dashboards. """ urlpatterns = self._get_default_urlpatterns() self._autodiscover() # Add in each dashboard's views. for dash in self._registry.values(): urlpatterns += patterns('', url(r'^%s/' % dash.slug, include(dash._decorated_urls))) # Return the three arguments to django.conf.urls.defaults.include return urlpatterns, self.namespace, self.slug def _autodiscover(self): """ Discovers modules to register from ``settings.INSTALLED_APPS``. This makes sure that the appropriate modules get imported to register themselves with Horizon. """ if not getattr(self, '_registerable_class', None): raise ImproperlyConfigured('You must set a ' '"_registerable_class" property ' 'in order to use autodiscovery.') # Discover both dashboards and panels, in that order for mod_name in ('dashboard', 'panel'): for app in settings.INSTALLED_APPS: mod = import_module(app) try: before_import_registry = copy.copy(self._registry) import_module('%s.%s' % (app, mod_name)) except: self._registry = before_import_registry if module_has_submodule(mod, mod_name): raise # The one true Horizon Horizon = Site()
36.773556
79
0.616481
9d9a5b6d966a834ecdf85bf14d043892172391e8
4,745
py
Python
test_end_to_end_diff_text.py
jayantabh/Real-Time-Voice-Cloning
503f866c01a42feedad20ce7afa1a9f32abf8c31
[ "MIT" ]
null
null
null
test_end_to_end_diff_text.py
jayantabh/Real-Time-Voice-Cloning
503f866c01a42feedad20ce7afa1a9f32abf8c31
[ "MIT" ]
null
null
null
test_end_to_end_diff_text.py
jayantabh/Real-Time-Voice-Cloning
503f866c01a42feedad20ce7afa1a9f32abf8c31
[ "MIT" ]
null
null
null
from synthesizer.inference import Synthesizer from encoder import inference as encoder from vocoder import inference as vocoder from pathlib import Path import numpy as np import librosa from tqdm import tqdm import os import pickle import torch from Trained_Models.model import Network from sklearn.metrics import accuracy_score as acc my_encoder = Network().cuda() my_encoder.load_state_dict(torch.load("Trained_Models/Kev_Model.pwf")) encoder_weights = Path("encoder/saved_models/pretrained.pt") vocoder_weights = Path("vocoder/saved_models/pretrained/pretrained.pt") syn_dir = Path("synthesizer/saved_models/logs-pretrained/taco_pretrained") encoder.load_model(encoder_weights) synthesizer = Synthesizer(syn_dir) vocoder.load_model(vocoder_weights) ## Audio mel_window_length = 25 # In milliseconds mel_window_step = 10 # In milliseconds mel_n_channels = 40 sampling_rate = 16000 partials_n_frames = 160 # 1600 ms inference_n_frames = 80 # 800 ms vad_window_length = 30 # In milliseconds vad_moving_average_width = 8 vad_max_silence_length = 6 print( " \n\n ##### Loaded Weights #####") c_text = 0 c_audio = 0 npy_ctr = 1 all_ctr = 0 speaker = -1 y_pred = [] y = [] dataset_path = 'LibriSpeech/train-clean-100/' for i in tqdm(sorted(os.listdir(dataset_path))): speaker += 1 # print( i, " : ", c_audio) if all_ctr==100: break if i=='103': speaker -= 1 print("Skipped") continue print(i, speaker) path_i = dataset_path + i for j in os.listdir(path_i): path_j = path_i + "/"+ j sorted_paths = sorted(os.listdir(path_j)) ## Text Part ## texts_list = [] text_file_path = path_j+ "/" + sorted_paths[-1] with open(text_file_path) as fp: line = fp.readline() while line: #print(line.split('-')[2][5:]) texts_list.append(line) line = fp.readline() c_text += 1 ## Audio Part ## text_idx = 0 for num, k in enumerate(sorted_paths[:-1]): if num==5: # print(num,k,text_idx) with torch.no_grad(): text = texts_list[text_idx] in_fpath = path_j + "/" + k original_wav, sampling_rate = librosa.load(in_fpath) preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate) ''' ### frames = librosa.feature.melspectrogram(preprocessed_wav,sampling_rate,n_fft=int(sampling_rate * mel_window_length / 1000),hop_length=int(sampling_rate * mel_window_step / 1000),n_mels=mel_n_channels) frames = frames.astype(np.float32).T[:160,:] t = torch.Tensor(frames).unsqueeze(0).unsqueeze(0) embed = my_encoder(t.cuda(), embed=True) # y.append(embed.argmax().item()) # y_pred.append(speaker) embed_my = embed.cpu().numpy() # print("Embed.shape:",embed.shape, torch.type(embed)) # print("Og : ",op.shape, op.argmax(), speaker) ### ''' embed = encoder.embed_utterance(preprocessed_wav) # print("Type : ",(embed.max(),embed.min()),(embed_my.max(),embed_my.min())) # specs = synthesizer.synthesize_spectrograms([text], [np.abs(embed_my)/100]) specs = synthesizer.synthesize_spectrograms([text], [embed]) generated_wav = vocoder.infer_waveform(specs[0]) generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant") preprocessed_wav = encoder.preprocess_wav(generated_wav, synthesizer.sample_rate) frames = librosa.feature.melspectrogram(generated_wav,sampling_rate,n_fft=int(sampling_rate * mel_window_length / 1000),hop_length=int(sampling_rate * mel_window_step / 1000),n_mels=mel_n_channels) frames = frames.astype(np.float32).T[:160,:] t = torch.Tensor(frames).unsqueeze(0).unsqueeze(0) op = my_encoder(t.cuda()) print("Gen : ",op.shape, op.argmax(), speaker) y.append(op.argmax().item()) y_pred.append(speaker) all_ctr+=1 c_audio+=1 break text_idx+=1 break print(c_text, c_audio) print(y,y_pred) print(acc(y,y_pred))
37.362205
220
0.577871
847e08af317a561fa921458c0937f885e375b73b
10,059
py
Python
mecc/apps/utils/documents_generator/models/preview_mecc.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
null
null
null
mecc/apps/utils/documents_generator/models/preview_mecc.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
3
2021-03-19T10:36:10.000Z
2021-09-08T01:37:47.000Z
mecc/apps/utils/documents_generator/models/preview_mecc.py
unistra/eva
9f7bd8c44edbca05eb45b36cb5b8e658e53bc3c0
[ "Apache-2.0" ]
null
null
null
import re from django.db.models import Q from reportlab.lib import colors from reportlab.lib.enums import TA_CENTER, TA_JUSTIFY from reportlab.lib.styles import ParagraphStyle from reportlab.lib.units import cm from reportlab.platypus import Paragraph, Table, CondPageBreak from mecc.apps.rules.models import Rule from mecc.apps.training.models import SpecificParagraph, AdditionalParagraph from mecc.apps.utils.documents_generator.utils.pdf import filter_content from .preview_mecctable import PreviewMeccTable, LandscapeLeftNumberedCanvas class PreviewMecc(PreviewMeccTable): def __init__(self, trainings=None, reference='both'): super().__init__(trainings, reference) self.title_header = "Prévisualisation des MECC" def set_doc_title(self): self.title = "Previsualisation des MECC" def make_styles(self): super().make_styles() self.styles.add(ParagraphStyle( name='H1', fontSize=12, fontName="Helvetica-Bold", textColor=colors.steelblue, spaceBefore=5, spaceAfter=5, )) self.styles.add(ParagraphStyle( name='H2', fontSize=11, fontName="Helvetica-Bold", textColor=colors.steelblue, spaceBefore=3, spaceAfter=3, )) self.styles.add(ParagraphStyle( name='IndentedText', leftIndent=20 )) self.styles.add(ParagraphStyle( name='CenterNormal', fontSize=10, alignment=TA_CENTER )) self.styles.add(ParagraphStyle( name='Justify', alignment=TA_JUSTIFY )) self.styles.add(ParagraphStyle( name='Bullet_1', bulletIndent=25, bulletText="•" )) def build_doc(self): self.write_preview_header() self.write_landscape_training_infos() self.write_derogs_and_adds() self.story.append(CondPageBreak(8*cm)) self.write_table_title() self.write_mecctable() self.document.build( self.story, canvasmaker=LandscapeLeftNumberedCanvas ) pdf = self.buffer.getvalue() self.buffer.close() self.response.write(pdf) return self.response def write_derogs_and_adds(self, motivations=True): derogs = SpecificParagraph.objects.\ filter(training_id=self.training).\ order_by('paragraph_gen_id') adds = AdditionalParagraph.objects.filter(training_id=self.training) rules = Rule.objects.\ filter(code_year=self.training.code_year).\ filter( Q(id__in=[derog.rule_gen_id for derog in derogs]) \ | \ Q(id__in=[add.rule_gen_id for add in adds]) ) shared_adds = adds.filter(rule_gen_id__in=[derog.rule_gen_id for derog in derogs]) table_derogs = [] table_derogs_style = [ ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('TOPPADDING', (0, 0), (-1, -1), 0), ('BOTTOMPADDING', (0, 0), (-1, -1), 0), ('LEFTPADDING', (0, 0), (-1, -1), 0), ('RIGHTPADDING', (0, 0), (-1, -1), 0), # ('GRID', (0, 0), (-1, -1), 0.5, colors.green), ] subtable_style = [ ('TOPPADDING', (0, 0), (-1, -1), 0), ('BOTTOMPADDING', (0, 0), (-1, -1), 0), ('LEFTPADDING', (0, 0), (-1, -1), 0), ('RIGHTPADDING', (0, 0), (-1, -1), 0), # ('GRID', (0, 0), (-1, -1), 0.5, colors.red), ] count_lines = -1 self.story.append( Paragraph( "<para>Dérogations et alinéas additionnels</para>", self.styles['H1'] ) ) if rules: if derogs: for rule in rules.filter(id__in=[derog.rule_gen_id for derog in derogs]): count_lines += 1 table_derogs.append( [Paragraph( rule.label, style=self.styles['H2'] )] ) table_derogs_style.extend([ ('SPAN', (0, count_lines), (-1, count_lines)), ('TOPPADDING', (0, count_lines), (-1, count_lines), 0), ('BOTTOMPADDING', (0, count_lines), (-1, count_lines), 0), ]) for derog in derogs.filter(rule_gen_id=rule.id): count_lines += 1 table_derogs.append( [ Paragraph( "<para textColor=steelblue><b>(D)</b></para>", style=self.styles['CenterNormal'] ), Table( [[self.clean_up(derog.text_specific_paragraph)]], style=subtable_style, ), Paragraph( "<para textColor=red><u>Motif de la dérogation</u> : %s" \ % filter_content(derog.text_motiv), style=self.styles['Normal'] ) if motivations else '' ] ) table_derogs_style.extend([ ('TOPPADDING', (0, count_lines), (-1, count_lines), 3), ('BOTTOMPADDING', (0, count_lines), (-1, count_lines), 3), ('RIGHTPADDING', (1, count_lines), (1, count_lines), 3), ('LEFTPADDING', (2, count_lines), (2, count_lines), 3), ]) if motivations: table_derogs_style.append( ('LINEAFTER', (1, count_lines), (1, count_lines), 0.5, colors.red), ) if shared_adds and rule.id in [add.rule_gen_id for add in shared_adds]: add = shared_adds.get(rule_gen_id=derog.rule_gen_id).text_additional_paragraph count_lines += 1 table_derogs.append([ Paragraph( "<para textColor=green><b>(A)</b></para>", self.styles['CenterNormal'] ), Table( [[self.clean_up(add)]], style=subtable_style, ), "" ]) table_derogs_style.extend([ ('BOTTOMPADDING', (0, count_lines), (-1, count_lines), 3), ('RIGHTPADDING', (1, count_lines), (1, count_lines), 3), ]) if adds: if shared_adds: adds = adds.exclude(id__in=[add.id for add in shared_adds]) for rule in rules.filter(id__in=[add.rule_gen_id for add in adds]): count_lines += 1 table_derogs.append( [Paragraph( rule.label, style=self.styles['H2'] )] ) table_derogs_style.extend([ ('SPAN', (0, count_lines), (-1, count_lines)), ('TOPPADDING', (0, count_lines), (-1, count_lines), 0), ('BOTTOMPADDING', (0, count_lines), (-1, count_lines), 0), ]) for add in adds.filter(rule_gen_id=rule.id): count_lines += 1 table_derogs.append( [ Paragraph( "<para textColor=green><b>(A)</b></para>", style=self.styles['CenterNormal'] ), Table( [[self.clean_up(add.text_additional_paragraph)]], style=subtable_style, ), "" ] ) table_derogs_style.extend([ ('TOPPADDING', (0, count_lines), (-1, count_lines), 3), ('BOTTOMPADDING', (0, count_lines), (-1, count_lines), 3), ]) self.story.append( Table( table_derogs, style=table_derogs_style, colWidths=[1*cm, 16.30*cm, 8.35*cm] ) ) else: self.story.append( Paragraph( "Néant", self.styles['IndentedText'] ) ) def clean_up(self, text, style=''): """ Return correct string in order to be displayed as list """ text = filter_content(text) text = text.replace('\\r\\n', '<br/>') reg = re.compile(r'>(.*?)</(p|li)>') r = reg.findall(text.replace('r\\n\\', '<br><\\br>')) _list = [] for t, v in r: if v == 'li': _list.append(Paragraph( "<para %s leftIndent=40>%s</para>" % ( style, t), self.styles['Bullet_1'])) else: _list.append(Paragraph( "<para %s >%s</para>" % ( style, t), self.styles['Justify'])) return _list
40.236
102
0.435729
a781d77b7ecfd3c85b1653b281d14c4c1b29125c
2,455
py
Python
influxdb_client/domain/xy_geom.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
influxdb_client/domain/xy_geom.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
influxdb_client/domain/xy_geom.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
# coding: utf-8 """ Influx API Service. No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 0.1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class XYGeom(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ allowed enum values """ LINE = "line" STEP = "step" STACKED = "stacked" BAR = "bar" MONOTONEX = "monotoneX" """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { } attribute_map = { } def __init__(self): # noqa: E501,D401,D403 """XYGeom - a model defined in OpenAPI.""" # noqa: E501 self.discriminator = None def to_dict(self): """Return the model properties as a dict.""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Return the string representation of the model.""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`.""" return self.to_str() def __eq__(self, other): """Return true if both objects are equal.""" if not isinstance(other, XYGeom): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Return true if both objects are not equal.""" return not self == other
26.117021
120
0.550713
3244b045194193b124f57ca4278cb005038d6b3b
5,331
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ppp_ma_ssrp_cfg.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ppp_ma_ssrp_cfg.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/Cisco_IOS_XR_ppp_ma_ssrp_cfg.py
Maikor/ydk-py
b86c4a7c570ae3b2c5557d098420446df5de4929
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
""" Cisco_IOS_XR_ppp_ma_ssrp_cfg This module contains a collection of YANG definitions for Cisco IOS\-XR ppp\-ma\-ssrp package configuration. This module contains definitions for the following management objects\: ssrp\: Shared plane SSRP configuration data This YANG module augments the Cisco\-IOS\-XR\-config\-mda\-cfg, Cisco\-IOS\-XR\-ifmgr\-cfg modules with configuration data. Copyright (c) 2013\-2018 by Cisco Systems, Inc. All rights reserved. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class Ssrp(Entity): """ Shared plane SSRP configuration data .. attribute:: profiles Table of SSRP Profiles **type**\: :py:class:`Profiles <ydk.models.cisco_ios_xr.Cisco_IOS_XR_ppp_ma_ssrp_cfg.Ssrp.Profiles>` """ _prefix = 'ppp-ma-ssrp-cfg' _revision = '2015-11-09' def __init__(self): super(Ssrp, self).__init__() self._top_entity = None self.yang_name = "ssrp" self.yang_parent_name = "Cisco-IOS-XR-ppp-ma-ssrp-cfg" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("profiles", ("profiles", Ssrp.Profiles))]) self._leafs = OrderedDict() self.profiles = Ssrp.Profiles() self.profiles.parent = self self._children_name_map["profiles"] = "profiles" self._segment_path = lambda: "Cisco-IOS-XR-ppp-ma-ssrp-cfg:ssrp" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ssrp, [], name, value) class Profiles(Entity): """ Table of SSRP Profiles .. attribute:: profile SSRP Profile configuration **type**\: list of :py:class:`Profile <ydk.models.cisco_ios_xr.Cisco_IOS_XR_ppp_ma_ssrp_cfg.Ssrp.Profiles.Profile>` """ _prefix = 'ppp-ma-ssrp-cfg' _revision = '2015-11-09' def __init__(self): super(Ssrp.Profiles, self).__init__() self.yang_name = "profiles" self.yang_parent_name = "ssrp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("profile", ("profile", Ssrp.Profiles.Profile))]) self._leafs = OrderedDict() self.profile = YList(self) self._segment_path = lambda: "profiles" self._absolute_path = lambda: "Cisco-IOS-XR-ppp-ma-ssrp-cfg:ssrp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ssrp.Profiles, [], name, value) class Profile(Entity): """ SSRP Profile configuration .. attribute:: name (key) The name of the profile **type**\: str **pattern:** [\\w\\\-\\.\:,\_@#%$\\+=\\\|;]+ .. attribute:: max_hops This specifies the maximum number of hops for packets on the SSO channel **type**\: int **range:** 1..255 .. attribute:: peer_ipv4_address This specifies the remote end's IPv4\-address for the SSO channel **type**\: str **pattern:** (([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])\\.){3}([0\-9]\|[1\-9][0\-9]\|1[0\-9][0\-9]\|2[0\-4][0\-9]\|25[0\-5])(%[\\p{N}\\p{L}]+)? """ _prefix = 'ppp-ma-ssrp-cfg' _revision = '2015-11-09' def __init__(self): super(Ssrp.Profiles.Profile, self).__init__() self.yang_name = "profile" self.yang_parent_name = "profiles" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['name'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('name', (YLeaf(YType.str, 'name'), ['str'])), ('max_hops', (YLeaf(YType.uint32, 'max-hops'), ['int'])), ('peer_ipv4_address', (YLeaf(YType.str, 'peer-ipv4-address'), ['str'])), ]) self.name = None self.max_hops = None self.peer_ipv4_address = None self._segment_path = lambda: "profile" + "[name='" + str(self.name) + "']" self._absolute_path = lambda: "Cisco-IOS-XR-ppp-ma-ssrp-cfg:ssrp/profiles/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ssrp.Profiles.Profile, ['name', 'max_hops', 'peer_ipv4_address'], name, value) def clone_ptr(self): self._top_entity = Ssrp() return self._top_entity
32.705521
177
0.561433
9e6b461323d942e40f831c38a8163856c696185a
252
py
Python
src/apps/search/views.py
snicoper/snicoper.com
22c17b5ead6096227a3415770c0cbd2923f2f14a
[ "MIT" ]
2
2017-04-22T11:35:21.000Z
2017-09-01T19:49:59.000Z
src/apps/search/views.py
snicoper/snicoper.com
22c17b5ead6096227a3415770c0cbd2923f2f14a
[ "MIT" ]
null
null
null
src/apps/search/views.py
snicoper/snicoper.com
22c17b5ead6096227a3415770c0cbd2923f2f14a
[ "MIT" ]
null
null
null
from haystack.generic_views import SearchView from haystack.query import SearchQuerySet class ArticleSearchView(SearchView): template_name = 'search/search_article.html' queryset = SearchQuerySet().order_by('-create_at') paginate_by = 10
28
54
0.789683
8d9f11f2d6136cc94ddbd690ac99c4fb28ba63a8
4,407
py
Python
sts_wrldom/utils.py
BigBossAnwer/STS-Pipeline
952d2c577dd4b8a66c99b80a24589a98e20c2e60
[ "MIT" ]
null
null
null
sts_wrldom/utils.py
BigBossAnwer/STS-Pipeline
952d2c577dd4b8a66c99b80a24589a98e20c2e60
[ "MIT" ]
null
null
null
sts_wrldom/utils.py
BigBossAnwer/STS-Pipeline
952d2c577dd4b8a66c99b80a24589a98e20c2e60
[ "MIT" ]
null
null
null
import sys from pathlib import Path import numpy as np import pandas as pd def log_frame(df, name, tag): """Logs a dataframe as a .csv to $cwd/log Args: df: dataframe to log name (str): the name of the logged .csv tag (str): the tag of the logged .csv """ try: Path("log").mkdir(exist_ok=True) df.to_csv(str(Path("log", name + "_" + tag + ".csv")), index=False) except IOError: print("Error: Log write failed") except: print("Unexpected error: ", sys.exc_info()[0]) raise def write_results(df, name, tag): """Writes results (predictions) in the format requested as a .txt in $cwd/results Args: df: the results dataframe name (str): the name of the written .txt tag (str): the tag of the written .txt """ try: Path("results").mkdir(exist_ok=True) df.to_csv(str(Path("results", name + "_" + tag + ".txt")), sep="\t", index=False) except IOError: print("Error: Log write failed") except: print("Unexpected error: ", sys.exc_info()[0]) raise def rmse(predictions, targets): """Computes Root Mean Squared Error Args: predictions (list): a list of predicted labels targets (list): a list of gold labels Returns: numpy.float64: the RMSE between the predictions and the gold labels """ assert len(predictions) == len(targets) return np.sqrt(((predictions - targets) ** 2).mean()) def accuracy(predictions, targets): """Computes raw accuracy (True Predictions) / (All Predictions) Args: predictions (list): a list of predicted labels targets (list): a list of gold labels Returns: float: the raw accuracy between the predictions and the gold labels """ assert len(predictions) == len(targets) count_pos = 0 for predic, gold in zip(predictions, targets): if predic == gold: count_pos += 1 return float(count_pos) / len(targets) def get_scores(predictions, targets, prec=3): """Returns a dictionary containing overall and for each label their respective recall, precision, and F1 score Args: predictions (list): a list of predicted labels targets (list): a list of of gold labels prec (int, optional): precision of metric rounding. Defaults to 3. Returns: dict: a dictionary of metrics like: { "micro": { "recall": float, "precision": float, "fscore": float } "1": ... ... "5": ... } """ label_set = [1, 2, 3, 4, 5] classification_report = {} classification_report["micro"] = {"recall": 0.0, "precision": 0.0, "fscore": 0.0} for label in label_set: classification_report[label] = {"recall": 0.0, "precision": 0.0, "fscore": 0.0} tp, fp, fn = 0, 0, 0 for idx, gold in enumerate(targets): prediction = predictions[idx] if gold == prediction: if prediction == label: tp += 1 else: if prediction == label: fp += 1 else: fn += 1 try: recall = float(tp) / (tp + fn) except ZeroDivisionError: recall = 0.0 try: precision = float(tp) / (tp + fp) except ZeroDivisionError: precision = 0.0 try: fscore = 2 * precision * recall / (precision + recall) except ZeroDivisionError: fscore = 0.0 classification_report[label]["recall"] = round(recall, prec) classification_report[label]["precision"] = round(precision, prec) classification_report[label]["fscore"] = round(fscore, prec) classification_report["micro"]["recall"] += recall classification_report["micro"]["precision"] += precision classification_report["micro"]["fscore"] += fscore for key in classification_report["micro"].keys(): classification_report["micro"][key] /= len(label_set) classification_report["micro"][key] = round( classification_report["micro"][key], prec ) return classification_report
30.818182
89
0.561833
645ab4c0295f939b3b914e8132c093916b82f6d4
13,506
py
Python
python/ccxt/async_support/base/exchange.py
chiragmatkar/ccxt
d04a286a802fa1a59048a51eb91913bedd0dfdc6
[ "MIT" ]
null
null
null
python/ccxt/async_support/base/exchange.py
chiragmatkar/ccxt
d04a286a802fa1a59048a51eb91913bedd0dfdc6
[ "MIT" ]
null
null
null
python/ccxt/async_support/base/exchange.py
chiragmatkar/ccxt
d04a286a802fa1a59048a51eb91913bedd0dfdc6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- __version__ = '1.34.5' # ----------------------------------------------------------------------------- import asyncio import concurrent import socket import certifi import aiohttp import ssl import sys import yarl # ----------------------------------------------------------------------------- from ccxt.async_support.base.throttle import throttle # ----------------------------------------------------------------------------- from ccxt.base.errors import ExchangeError from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import RequestTimeout from ccxt.base.errors import NotSupported # ----------------------------------------------------------------------------- from ccxt.base.exchange import Exchange as BaseExchange # ----------------------------------------------------------------------------- __all__ = [ 'BaseExchange', 'Exchange', ] # ----------------------------------------------------------------------------- class Exchange(BaseExchange): def __init__(self, config={}): if 'asyncio_loop' in config: self.asyncio_loop = config['asyncio_loop'] self.asyncio_loop = self.asyncio_loop or asyncio.get_event_loop() self.aiohttp_trust_env = config.get('aiohttp_trust_env', self.aiohttp_trust_env) self.verify = config.get('verify', self.verify) self.own_session = 'session' not in config self.cafile = config.get('cafile', certifi.where()) super(Exchange, self).__init__(config) self.init_rest_rate_limiter() self.markets_loading = None self.reloading_markets = False def init_rest_rate_limiter(self): self.throttle = throttle(self.extend({ 'loop': self.asyncio_loop, }, self.tokenBucket)) def __del__(self): if self.session is not None: self.logger.warning(self.id + " requires to release all resources with an explicit call to the .close() coroutine. If you are using the exchange instance with async coroutines, add exchange.close() to your code into a place when you're done with the exchange and don't need the exchange instance anymore (at the end of your async coroutine).") if sys.version_info >= (3, 5): async def __aenter__(self): self.open() return self async def __aexit__(self, exc_type, exc, tb): await self.close() def open(self): if self.own_session and self.session is None: # Create our SSL context object with our CA cert file context = ssl.create_default_context(cafile=self.cafile) if self.verify else self.verify # Pass this SSL context to aiohttp and create a TCPConnector connector = aiohttp.TCPConnector(ssl=context, loop=self.asyncio_loop, enable_cleanup_closed=True) self.session = aiohttp.ClientSession(loop=self.asyncio_loop, connector=connector, trust_env=self.aiohttp_trust_env) async def close(self): if self.session is not None: if self.own_session: await self.session.close() self.session = None async def fetch2(self, path, api='public', method='GET', params={}, headers=None, body=None): """A better wrapper over request for deferred signing""" if self.enableRateLimit: await self.throttle(self.rateLimit) self.lastRestRequestTimestamp = self.milliseconds() request = self.sign(path, api, method, params, headers, body) return await self.fetch(request['url'], request['method'], request['headers'], request['body']) async def fetch(self, url, method='GET', headers=None, body=None): """Perform a HTTP request and return decoded JSON data""" request_headers = self.prepare_request_headers(headers) url = self.proxy + url if self.verbose: self.print("\nRequest:", method, url, headers, body) self.logger.debug("%s %s, Request: %s %s", method, url, headers, body) request_body = body encoded_body = body.encode() if body else None self.open() session_method = getattr(self.session, method.lower()) http_response = None http_status_code = None http_status_text = None json_response = None try: async with session_method(yarl.URL(url, encoded=True), data=encoded_body, headers=request_headers, timeout=(self.timeout / 1000), proxy=self.aiohttp_proxy) as response: http_response = await response.text() http_status_code = response.status http_status_text = response.reason json_response = self.parse_json(http_response) headers = response.headers if self.enableLastHttpResponse: self.last_http_response = http_response if self.enableLastResponseHeaders: self.last_response_headers = headers if self.enableLastJsonResponse: self.last_json_response = json_response if self.verbose: self.print("\nResponse:", method, url, http_status_code, headers, http_response) self.logger.debug("%s %s, Response: %s %s %s", method, url, http_status_code, headers, http_response) except socket.gaierror as e: raise ExchangeNotAvailable(method + ' ' + url) except concurrent.futures._base.TimeoutError as e: raise RequestTimeout(method + ' ' + url) except aiohttp.client_exceptions.ClientConnectionError as e: raise ExchangeNotAvailable(method + ' ' + url) except aiohttp.client_exceptions.ClientError as e: # base exception class raise ExchangeError(method + ' ' + url) self.handle_errors(http_status_code, http_status_text, url, method, headers, http_response, json_response, request_headers, request_body) self.handle_rest_errors(http_status_code, http_status_text, http_response, url, method) self.handle_rest_response(http_response, json_response, url, method) if json_response is not None: return json_response if self.is_text_response(headers): return http_response return response.content async def load_markets_helper(self, reload=False, params={}): if not reload: if self.markets: if not self.markets_by_id: return self.set_markets(self.markets) return self.markets currencies = None if self.has['fetchCurrencies']: currencies = await self.fetch_currencies() markets = await self.fetch_markets(params) return self.set_markets(markets, currencies) async def load_markets(self, reload=False, params={}): if (reload and not self.reloading_markets) or not self.markets_loading: self.reloading_markets = True coroutine = self.load_markets_helper(reload, params) # coroutines can only be awaited once so we wrap it in a task self.markets_loading = asyncio.ensure_future(coroutine) try: result = await self.markets_loading except Exception as e: self.reloading_markets = False self.markets_loading = None raise e self.reloading_markets = False return result async def fetch_fees(self): trading = {} funding = {} if self.has['fetchTradingFees']: trading = await self.fetch_trading_fees() if self.has['fetchFundingFees']: funding = await self.fetch_funding_fees() return { 'trading': trading, 'funding': funding, } async def load_fees(self, reload=False): if not reload: if self.loaded_fees != Exchange.loaded_fees: return self.loaded_fees self.loaded_fees = self.deep_extend(self.loaded_fees, await self.fetch_fees()) return self.loaded_fees async def fetch_markets(self, params={}): # markets are returned as a list # currencies are returned as a dict # this is for historical reasons # and may be changed for consistency later return self.to_array(self.markets) async def fetch_currencies(self, params={}): # markets are returned as a list # currencies are returned as a dict # this is for historical reasons # and may be changed for consistency later return self.currencies async def fetch_status(self, params={}): if self.has['fetchTime']: updated = await self.fetch_time(params) self.status['updated'] = updated return self.status async def fetch_order_status(self, id, symbol=None, params={}): order = await self.fetch_order(id, symbol, params) return order['status'] async def fetch_partial_balance(self, part, params={}): balance = await self.fetch_balance(params) return balance[part] async def fetch_l2_order_book(self, symbol, limit=None, params={}): orderbook = await self.fetch_order_book(symbol, limit, params) return self.extend(orderbook, { 'bids': self.sort_by(self.aggregate(orderbook['bids']), 0, True), 'asks': self.sort_by(self.aggregate(orderbook['asks']), 0), }) async def perform_order_book_request(self, market, limit=None, params={}): raise NotSupported(self.id + ' performOrderBookRequest not supported yet') async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) orderbook = await self.perform_order_book_request(market, limit, params) return self.parse_order_book(orderbook, market, limit, params) async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): if not self.has['fetchTrades']: raise NotSupported('fetch_ohlcv() not implemented yet') await self.load_markets() trades = await self.fetch_trades(symbol, since, limit, params) return self.build_ohlcv(trades, timeframe, since, limit) async def fetchOHLCV(self, symbol, timeframe='1m', since=None, limit=None, params={}): return await self.fetch_ohlcv(symbol, timeframe, since, limit, params) async def fetch_full_tickers(self, symbols=None, params={}): return await self.fetch_tickers(symbols, params) async def edit_order(self, id, symbol, *args): if not self.enableRateLimit: raise ExchangeError('updateOrder() requires enableRateLimit = true') await self.cancel_order(id, symbol) return await self.create_order(symbol, *args) async def create_order(self, symbol, type, side, amount, price=None, params={}): raise NotSupported('create_order() not supported yet') async def cancel_order(self, id, symbol=None, params={}): raise NotSupported('cancel_order() not supported yet') async def fetch_trading_fees(self, params={}): raise NotSupported('fetch_trading_fees() not supported yet') async def fetch_trading_fee(self, symbol, params={}): if not self.has['fetchTradingFees']: raise NotSupported('fetch_trading_fee() not supported yet') return await self.fetch_trading_fees(params) async def load_trading_limits(self, symbols=None, reload=False, params={}): if self.has['fetchTradingLimits']: if reload or not('limitsLoaded' in list(self.options.keys())): response = await self.fetch_trading_limits(symbols) for i in range(0, len(symbols)): symbol = symbols[i] self.markets[symbol] = self.deep_extend(self.markets[symbol], response[symbol]) self.options['limitsLoaded'] = self.milliseconds() return self.markets async def load_accounts(self, reload=False, params={}): if reload: self.accounts = await self.fetch_accounts(params) else: if self.accounts: return self.accounts else: self.accounts = await self.fetch_accounts(params) self.accountsById = self.index_by(self.accounts, 'id') return self.accounts async def fetch_ticker(self, symbol, params={}): raise NotSupported('fetch_ticker() not supported yet') async def fetch_transactions(self, code=None, since=None, limit=None, params={}): raise NotSupported('fetch_transactions() is not supported yet') async def fetch_deposits(self, code=None, since=None, limit=None, params={}): raise NotSupported('fetch_deposits() is not supported yet') async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): raise NotSupported('fetch_withdrawals() is not supported yet') async def fetch_deposit_address(self, code=None, since=None, limit=None, params={}): raise NotSupported('fetch_deposit_address() is not supported yet') async def sleep(self, milliseconds): return await asyncio.sleep(milliseconds / 1000)
42.471698
355
0.619725
ebaf6935a513a784b5d5b2c2f1a680b651f64d21
15,142
py
Python
goose/extractors/images.py
chyt/gisty-goose
b1ac57a8d859d3f34fec6d8e5062f9601cdf0fda
[ "Apache-2.0", "MIT" ]
1
2021-12-13T18:14:02.000Z
2021-12-13T18:14:02.000Z
goose/extractors/images.py
chyt/gisty-goose
b1ac57a8d859d3f34fec6d8e5062f9601cdf0fda
[ "Apache-2.0", "MIT" ]
null
null
null
goose/extractors/images.py
chyt/gisty-goose
b1ac57a8d859d3f34fec6d8e5062f9601cdf0fda
[ "Apache-2.0", "MIT" ]
1
2021-12-13T18:14:17.000Z
2021-12-13T18:14:17.000Z
# -*- coding: utf-8 -*- """\ This is a python port of "Goose" orignialy licensed to Gravity.com under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Python port was written by Xavier Grangier for Recrutae Gravity.com licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import re import os from six.moves.urllib.parse import urlparse, urljoin from goose.extractors import BaseExtractor from goose.image import Image from goose.utils import FileHelper from goose.utils.images import ImageUtils KNOWN_IMG_DOM_NAMES = [ "yn-story-related-media", "cnn_strylccimg300cntr", "big_photo", "ap-smallphoto-a", ] class DepthTraversal(object): def __init__(self, node, parent_depth, sibling_depth): self.node = node self.parent_depth = parent_depth self.sibling_depth = sibling_depth class ImageExtractor(BaseExtractor): def __init__(self, fetcher, config, article): super(ImageExtractor, self).__init__(config, article) self.fetcher = fetcher self.custom_site_mapping = {} self.load_customesite_mapping() # What's the minimum bytes for an image we'd accept is self.images_min_bytes = 4000 # the webpage url that we're extracting content from self.target_url = article.final_url # stores a hash of our url for # reference and image processing self.link_hash = article.link_hash # this lists all the known bad button names that we have self.badimages_names_re = re.compile( ".html|.gif|.ico|button|twitter.jpg|facebook.jpg|ap_buy_photo" "|digg.jpg|digg.png|delicious.png|facebook.png|reddit.jpg" "|doubleclick|diggthis|diggThis|adserver|/ads/|ec.atdmt.com" "|mediaplex.com|adsatt|view.atdmt" ) def get_best_image(self, doc, topNode): image = self.check_known_elements() if image: return image image = self.check_large_images(topNode, 0, 0) if image: return image image = self.check_meta_tag() if image: return image return Image() def check_meta_tag(self): # check link tag image = self.check_link_tag() if image: return image # check opengraph tag image = self.check_opengraph_tag() if image: return image def check_large_images(self, node, parent_depth_level, sibling_depth_level): """\ although slow the best way to determine the best image is to download them and check the actual dimensions of the image when on disk so we'll go through a phased approach... 1. get a list of ALL images from the parent node 2. filter out any bad image names that we know of (gifs, ads, etc..) 3. do a head request on each file to make sure it meets our bare requirements 4. any images left over let's do a full GET request, download em to disk and check their dimensions 5. Score images based on different factors like height/width and possibly things like color density """ good_images = self.get_image_candidates(node) if good_images: scored_images = self.fetch_images(good_images, parent_depth_level) if scored_images: highscore_image = sorted(scored_images.items(), key=lambda x: x[1], reverse=True)[0][0] main_image = Image() main_image.src = highscore_image.src main_image.width = highscore_image.width main_image.height = highscore_image.height main_image.extraction_type = "bigimage" main_image.confidence_score = 100 / len(scored_images) \ if len(scored_images) > 0 else 0 return main_image depth_obj = self.get_depth_level(node, parent_depth_level, sibling_depth_level) if depth_obj: return self.check_large_images(depth_obj.node, depth_obj.parent_depth, depth_obj.sibling_depth) return None def get_depth_level(self, node, parent_depth, sibling_depth): MAX_PARENT_DEPTH = 2 if parent_depth > MAX_PARENT_DEPTH: return None else: sibling_node = self.parser.previousSibling(node) if sibling_node is not None: return DepthTraversal(sibling_node, parent_depth, sibling_depth + 1) elif node is not None: parent = self.parser.getParent(node) if parent is not None: return DepthTraversal(parent, parent_depth + 1, 0) return None def fetch_images(self, images, depth_level): """\ download the images to temp disk and set their dimensions - we're going to score the images in the order in which they appear so images higher up will have more importance, - we'll count the area of the 1st image as a score of 1 and then calculate how much larger or small each image after it is - we'll also make sure to try and weed out banner type ad blocks that have big widths and small heights or vice versa - so if the image is 3rd found in the dom it's sequence score would be 1 / 3 = .33 * diff in area from the first image """ image_results = {} initial_area = float(0.0) total_score = float(0.0) cnt = float(1.0) MIN_WIDTH = 50 for image in images[:30]: src = self.parser.getAttribute(image, attr='src') src = self.build_image_path(src) local_image = self.get_local_image(src) width = local_image.width height = local_image.height src = local_image.src file_extension = local_image.file_extension if file_extension != '.gif' or file_extension != 'NA': if (depth_level >= 1 and local_image.width > 300) or depth_level < 1: if not self.is_banner_dimensions(width, height): if width > MIN_WIDTH: sequence_score = float(1.0 / cnt) area = float(width * height) total_score = float(0.0) if initial_area == 0: initial_area = area * float(1.48) total_score = 1 else: area_difference = float(area / initial_area) total_score = sequence_score * area_difference image_results.update({local_image: total_score}) cnt += 1 return image_results def get_image(self, element, src, score=100, extraction_type="N/A"): # build the Image object image = Image() image.src = self.build_image_path(src) image.extraction_type = extraction_type image.confidence_score = score # check if we have a local image # in order to add more information # on the Image object local_image = self.get_local_image(image.src) if local_image: image.bytes = local_image.bytes image.height = local_image.height image.width = local_image.width # return the image return image def is_banner_dimensions(self, width, height): """\ returns true if we think this is kind of a bannery dimension like 600 / 100 = 6 may be a fishy dimension for a good image """ if width == height: return False if width > height: diff = float(width / height) if diff > 5: return True if height > width: diff = float(height / width) if diff > 5: return True return False def get_node_images(self, node): images = self.parser.getElementsByTag(node, tag='img') if images is not None and len(images) < 1: return None return images def filter_bad_names(self, images): """\ takes a list of image elements and filters out the ones with bad names """ good_images = [] for image in images: if self.is_valid_filename(image): good_images.append(image) return good_images if len(good_images) > 0 else None def is_valid_filename(self, imageNode): """\ will check the image src against a list of bad image files we know of like buttons, etc... """ src = self.parser.getAttribute(imageNode, attr='src') if not src: return False if self.badimages_names_re.search(src): return False return True def get_image_candidates(self, node): good_images = [] filtered_images = [] images = self.get_node_images(node) if images: filtered_images = self.filter_bad_names(images) if filtered_images: good_images = self.get_images_bytesize_match(filtered_images) return good_images def get_images_bytesize_match(self, images): """\ loop through all the images and find the ones that have the best bytez to even make them a candidate """ cnt = 0 MAX_BYTES_SIZE = 15728640 good_images = [] for image in images: if cnt > 30: return good_images src = self.parser.getAttribute(image, attr='src') src = self.build_image_path(src) local_image = self.get_local_image(src) if local_image: bytes = local_image.bytes if (bytes == 0 or bytes > self.images_min_bytes) \ and bytes < MAX_BYTES_SIZE: good_images.append(image) else: images.remove(image) cnt += 1 return good_images if len(good_images) > 0 else None def get_node(self, node): return node if node else None def check_link_tag(self): """\ checks to see if we were able to find open link_src on this page """ node = self.article.raw_doc meta = self.parser.getElementsByTag(node, tag='link', attr='rel', value='image_src') for item in meta: src = self.parser.getAttribute(item, attr='href') if src: return self.get_image(item, src, extraction_type='linktag') return None def check_opengraph_tag(self): """\ checks to see if we were able to find open graph tags on this page """ node = self.article.raw_doc meta = self.parser.getElementsByTag(node, tag='meta', attr='property', value='og:image') for item in meta: src = self.parser.getAttribute(item, attr='content') if src: return self.get_image(item, src, extraction_type='opengraph') return None def get_local_image(self, src): """\ returns the bytes of the image file on disk """ return ImageUtils.store_image(self.fetcher, self.link_hash, src, self.config) def get_clean_domain(self): if self.article.domain: return self.article.domain.replace('www.', '') return None def check_known_elements(self): """\ in here we check for known image contains from sites we've checked out like yahoo, techcrunch, etc... that have * known places to look for good images. * TODO: enable this to use a series of settings files so people can define what the image ids/classes are on specific sites """ domain = self.get_clean_domain() if domain in self.custom_site_mapping.keys(): classes = self.custom_site_mapping.get(domain).split('|') for classname in classes: KNOWN_IMG_DOM_NAMES.append(classname) image = None doc = self.article.raw_doc def _check_elements(elements): image = None for element in elements: tag = self.parser.getTag(element) if tag == 'img': image = element return image else: images = self.parser.getElementsByTag(element, tag='img') if images: image = images[0] return image return image # check for elements with known id for css in KNOWN_IMG_DOM_NAMES: elements = self.parser.getElementsByTag(doc, attr="id", value=css) image = _check_elements(elements) if image is not None: src = self.parser.getAttribute(image, attr='src') if src: return self.get_image(image, src, score=90, extraction_type='known') # check for elements with known classes for css in KNOWN_IMG_DOM_NAMES: elements = self.parser.getElementsByTag(doc, attr='class', value=css) image = _check_elements(elements) if image is not None: src = self.parser.getAttribute(image, attr='src') if src: return self.get_image(image, src, score=90, extraction_type='known') return None def build_image_path(self, src): """\ This method will take an image path and build out the absolute path to that image * using the initial url we crawled so we can find a link to the image if they use relative urls like ../myimage.jpg """ o = urlparse(src) # we have a full url if o.hostname: return o.geturl() # we have a relative url return urljoin(self.target_url, src) def load_customesite_mapping(self): # TODO path = os.path.join('images', 'known-image-css.txt') data_file = FileHelper.loadResourceFile(path) lines = data_file.splitlines() for line in lines: domain, css = line.split('^') self.custom_site_mapping.update({domain: css})
36.138425
96
0.592128
13a5047e089e6ae401f20aaae852d450fb4928d3
135,485
py
Python
salt/state.py
diego-treitos/salt
d2aec156ff2ef48ac21b4db211efb43220c6465c
[ "Apache-2.0" ]
1
2020-10-19T11:49:49.000Z
2020-10-19T11:49:49.000Z
salt/state.py
diego-treitos/salt
d2aec156ff2ef48ac21b4db211efb43220c6465c
[ "Apache-2.0" ]
null
null
null
salt/state.py
diego-treitos/salt
d2aec156ff2ef48ac21b4db211efb43220c6465c
[ "Apache-2.0" ]
1
2020-10-19T11:49:50.000Z
2020-10-19T11:49:50.000Z
# -*- coding: utf-8 -*- ''' The module used to execute states in salt. A state is unlike a module execution in that instead of just executing a command it ensure that a certain state is present on the system. The data sent to the state calls is as follows: { 'state': '<state module name>', 'fun': '<state function name>', 'name': '<the name argument passed to all states>' 'argn': '<arbitrary argument, can have many of these>' } ''' # Import python libs from __future__ import absolute_import import os import sys import copy import site import fnmatch import logging import datetime import traceback # Import salt libs import salt.utils import salt.loader import salt.minion import salt.pillar import salt.fileclient import salt.utils.event import salt.utils.url import salt.syspaths as syspaths from salt.utils import context, immutabletypes from salt.template import compile_template, compile_template_str from salt.exceptions import SaltRenderError, SaltReqTimeoutError, SaltException from salt.utils.odict import OrderedDict, DefaultOrderedDict # Import third party libs # pylint: disable=import-error,no-name-in-module,redefined-builtin import salt.ext.six as six from salt.ext.six.moves import range # pylint: enable=import-error,no-name-in-module,redefined-builtin log = logging.getLogger(__name__) # These are keywords passed to state module functions which are to be used # by salt in this state module and not on the actual state module function STATE_REQUISITE_KEYWORDS = frozenset([ 'onchanges', 'onfail', 'prereq', 'prerequired', 'watch', 'require', 'listen', ]) STATE_REQUISITE_IN_KEYWORDS = frozenset([ 'onchanges_in', 'onfail_in', 'prereq_in', 'watch_in', 'require_in', 'listen_in', ]) STATE_RUNTIME_KEYWORDS = frozenset([ 'fun', 'state', 'check_cmd', 'failhard', 'onlyif', 'unless', 'order', 'prereq', 'prereq_in', 'prerequired', 'reload_modules', 'reload_grains', 'reload_pillar', 'fire_event', 'saltenv', 'use', 'use_in', '__env__', '__sls__', '__id__', '__pub_user', '__pub_arg', '__pub_jid', '__pub_fun', '__pub_tgt', '__pub_ret', '__pub_pid', '__pub_tgt_type', '__prereq__', ]) STATE_INTERNAL_KEYWORDS = STATE_REQUISITE_KEYWORDS.union(STATE_REQUISITE_IN_KEYWORDS).union(STATE_RUNTIME_KEYWORDS) def _odict_hashable(self): return id(self) OrderedDict.__hash__ = _odict_hashable def split_low_tag(tag): ''' Take a low tag and split it back into the low dict that it came from ''' state, id_, name, fun = tag.split('_|-') return {'state': state, '__id__': id_, 'name': name, 'fun': fun} def _gen_tag(low): ''' Generate the running dict tag string from the low data structure ''' return '{0[state]}_|-{0[__id__]}_|-{0[name]}_|-{0[fun]}'.format(low) def _l_tag(name, id_): low = {'name': 'listen_{0}'.format(name), '__id__': 'listen_{0}'.format(id_), 'state': 'Listen_Error', 'fun': 'Listen_Error'} return _gen_tag(low) def trim_req(req): ''' Trim any function off of a requisite ''' reqfirst = next(iter(req)) if '.' in reqfirst: return {reqfirst.split('.')[0]: req[reqfirst]} return req def state_args(id_, state, high): ''' Return a set of the arguments passed to the named state ''' args = set() if id_ not in high: return args if state not in high[id_]: return args for item in high[id_][state]: if not isinstance(item, dict): continue if len(item) != 1: continue args.add(next(iter(item))) return args def find_name(name, state, high): ''' Scan high data for the id referencing the given name ''' ext_id = '' if name in high: ext_id = name else: # We need to scan for the name for nid in high: if state in high[nid]: if isinstance( high[nid][state], list): for arg in high[nid][state]: if not isinstance(arg, dict): continue if len(arg) != 1: continue if arg[next(iter(arg))] == name: ext_id = nid return ext_id def format_log(ret): ''' Format the state into a log message ''' msg = '' if isinstance(ret, dict): # Looks like the ret may be a valid state return if 'changes' in ret: # Yep, looks like a valid state return chg = ret['changes'] if not chg: if ret['comment']: msg = ret['comment'] else: msg = 'No changes made for {0[name]}'.format(ret) elif isinstance(chg, dict): if 'diff' in chg: if isinstance(chg['diff'], six.string_types): msg = 'File changed:\n{0}'.format(chg['diff']) if all([isinstance(x, dict) for x in six.itervalues(chg)]): if all([('old' in x and 'new' in x) for x in six.itervalues(chg)]): msg = 'Made the following changes:\n' for pkg in chg: old = chg[pkg]['old'] if not old and old not in (False, None): old = 'absent' new = chg[pkg]['new'] if not new and new not in (False, None): new = 'absent' msg += '{0} changed from {1} to ' \ '{2}\n'.format(pkg, old, new) if not msg: msg = str(ret['changes']) if ret['result'] is True or ret['result'] is None: log.info(msg) else: log.error(msg) else: # catch unhandled data log.info(str(ret)) def master_compile(master_opts, minion_opts, grains, id_, saltenv): ''' Compile the master side low state data, and build the hidden state file ''' st_ = MasterHighState(master_opts, minion_opts, grains, id_, saltenv) return st_.compile_highstate() def ishashable(obj): try: hash(obj) except TypeError: return False return True class StateError(Exception): ''' Custom exception class. ''' pass class Compiler(object): ''' Class used to compile and manage the High Data structure ''' def __init__(self, opts): self.opts = opts self.rend = salt.loader.render(self.opts, {}) # We need __setstate__ and __getstate__ to avoid pickling errors since # 'self.rend' contains a function reference which is not picklable. # These methods are only used when pickling so will not be used on # non-Windows platforms. def __setstate__(self, state): self.__init__(state['opts']) def __getstate__(self): return {'opts': self.opts} def render_template(self, template, **kwargs): ''' Enforce the states in a template ''' high = compile_template( template, self.rend, self.opts['renderer'], **kwargs) if not high: return high return self.pad_funcs(high) def pad_funcs(self, high): ''' Turns dot delimited function refs into function strings ''' for name in high: if not isinstance(high[name], dict): if isinstance(high[name], six.string_types): # Is this is a short state? It needs to be padded! if '.' in high[name]: comps = high[name].split('.') if len(comps) >= 2: # Merge the comps comps[1] = '.'.join(comps[1:len(comps)]) high[name] = { # '__sls__': template, # '__env__': None, comps[0]: [comps[1]] } continue continue skeys = set() for key in sorted(high[name]): if key.startswith('_'): continue if not isinstance(high[name][key], list): continue if '.' in key: comps = key.split('.') if len(comps) >= 2: # Merge the comps comps[1] = '.'.join(comps[1:len(comps)]) # Salt doesn't support state files such as: # # /etc/redis/redis.conf: # file.managed: # - user: redis # - group: redis # - mode: 644 # file.comment: # - regex: ^requirepass if comps[0] in skeys: continue high[name][comps[0]] = high[name].pop(key) high[name][comps[0]].append(comps[1]) skeys.add(comps[0]) continue skeys.add(key) return high def verify_high(self, high): ''' Verify that the high data is viable and follows the data structure ''' errors = [] if not isinstance(high, dict): errors.append('High data is not a dictionary and is invalid') reqs = {} for name, body in six.iteritems(high): if name.startswith('__'): continue if not isinstance(name, six.string_types): errors.append( 'ID {0!r} in SLS {1!r} is not formed as a string, but is ' 'a {2}'.format(name, body['__sls__'], type(name).__name__) ) if not isinstance(body, dict): err = ('The type {0} in {1} is not formatted as a dictionary' .format(name, body)) errors.append(err) continue for state in body: if state.startswith('__'): continue if not isinstance(body[state], list): errors.append( 'State {0!r} in SLS {1!r} is not formed as a list' .format(name, body['__sls__']) ) else: fun = 0 if '.' in state: fun += 1 for arg in body[state]: if isinstance(arg, six.string_types): fun += 1 if ' ' in arg.strip(): errors.append(('The function "{0}" in state ' '"{1}" in SLS "{2}" has ' 'whitespace, a function with whitespace is ' 'not supported, perhaps this is an argument ' 'that is missing a ":"').format( arg, name, body['__sls__'])) elif isinstance(arg, dict): # The arg is a dict, if the arg is require or # watch, it must be a list. # # Add the requires to the reqs dict and check them # all for recursive requisites. argfirst = next(iter(arg)) if argfirst in ('require', 'watch', 'prereq'): if not isinstance(arg[argfirst], list): errors.append(('The {0}' ' statement in state {1!r} in SLS {2!r} ' 'needs to be formed as a list').format( argfirst, name, body['__sls__'] )) # It is a list, verify that the members of the # list are all single key dicts. else: reqs[name] = {'state': state} for req in arg[argfirst]: if not isinstance(req, dict): err = ('Requisite declaration {0}' ' in SLS {1} is not formed as a' ' single key dictionary').format( req, body['__sls__']) errors.append(err) continue req_key = next(iter(req)) req_val = req[req_key] if '.' in req_key: errors.append(( 'Invalid requisite type {0!r} ' 'in state {1!r}, in SLS ' '{2!r}. Requisite types must ' 'not contain dots, did you ' 'mean {3!r}?'.format( req_key, name, body['__sls__'], req_key[:req_key.find('.')] ) )) if not ishashable(req_val): errors.append(( 'Illegal requisite "{0}", ' 'is SLS {1}\n' ).format( str(req_val), body['__sls__'])) continue # Check for global recursive requisites reqs[name][req_val] = req_key # I am going beyond 80 chars on # purpose, this is just too much # of a pain to deal with otherwise if req_val in reqs: if name in reqs[req_val]: if reqs[req_val][name] == state: if reqs[req_val]['state'] == reqs[name][req_val]: err = ('A recursive ' 'requisite was found, SLS ' '"{0}" ID "{1}" ID "{2}"' ).format( body['__sls__'], name, req_val ) errors.append(err) # Make sure that there is only one key in the # dict if len(list(arg)) != 1: errors.append(('Multiple dictionaries ' 'defined in argument of state {0!r} in SLS' ' {1!r}').format( name, body['__sls__'])) if not fun: if state == 'require' or state == 'watch': continue errors.append(('No function declared in state {0!r} in' ' SLS {1!r}').format(state, body['__sls__'])) elif fun > 1: errors.append( 'Too many functions declared in state {0!r} in ' 'SLS {1!r}'.format(state, body['__sls__']) ) return errors def order_chunks(self, chunks): ''' Sort the chunk list verifying that the chunks follow the order specified in the order options. ''' cap = 1 for chunk in chunks: if 'order' in chunk: if not isinstance(chunk['order'], int): continue chunk_order = chunk['order'] if chunk_order > cap - 1 and chunk_order > 0: cap = chunk_order + 100 for chunk in chunks: if 'order' not in chunk: chunk['order'] = cap continue if not isinstance(chunk['order'], (int, float)): if chunk['order'] == 'last': chunk['order'] = cap + 1000000 else: chunk['order'] = cap if 'name_order' in chunk: chunk['order'] = chunk['order'] + chunk.pop('name_order') / 10000.0 if chunk['order'] < 0: chunk['order'] = cap + 1000000 + chunk['order'] chunks.sort(key=lambda chunk: (chunk['order'], '{0[state]}{0[name]}{0[fun]}'.format(chunk))) return chunks def compile_high_data(self, high): ''' "Compile" the high data as it is retrieved from the CLI or YAML into the individual state executor structures ''' chunks = [] for name, body in six.iteritems(high): if name.startswith('__'): continue for state, run in six.iteritems(body): funcs = set() names = set() if state.startswith('__'): continue chunk = {'state': state, 'name': name} if '__sls__' in body: chunk['__sls__'] = body['__sls__'] if '__env__' in body: chunk['__env__'] = body['__env__'] chunk['__id__'] = name for arg in run: if isinstance(arg, six.string_types): funcs.add(arg) continue if isinstance(arg, dict): for key, val in six.iteritems(arg): if key == 'names': names.update(val) continue else: chunk.update(arg) if names: name_order = 1 for entry in names: live = copy.deepcopy(chunk) if isinstance(entry, dict): low_name = next(six.iterkeys(entry)) live['name'] = low_name live.update(entry[low_name][0]) else: live['name'] = entry live['name_order'] = name_order name_order = name_order + 1 for fun in funcs: live['fun'] = fun chunks.append(live) else: live = copy.deepcopy(chunk) for fun in funcs: live['fun'] = fun chunks.append(live) chunks = self.order_chunks(chunks) return chunks def apply_exclude(self, high): ''' Read in the __exclude__ list and remove all excluded objects from the high data ''' if '__exclude__' not in high: return high ex_sls = set() ex_id = set() exclude = high.pop('__exclude__') for exc in exclude: if isinstance(exc, str): # The exclude statement is a string, assume it is an sls ex_sls.add(exc) if isinstance(exc, dict): # Explicitly declared exclude if len(exc) != 1: continue key = next(six.iterkeys(exc)) if key == 'sls': ex_sls.add(exc['sls']) elif key == 'id': ex_id.add(exc['id']) # Now the excludes have been simplified, use them if ex_sls: # There are sls excludes, find the associtaed ids for name, body in six.iteritems(high): if name.startswith('__'): continue if body.get('__sls__', '') in ex_sls: ex_id.add(name) for id_ in ex_id: if id_ in high: high.pop(id_) return high class State(object): ''' Class used to execute salt states ''' def __init__(self, opts, pillar=None, jid=None): if 'grains' not in opts: opts['grains'] = salt.loader.grains(opts) self.opts = opts self._pillar_override = pillar self.opts['pillar'] = self._gather_pillar() self.state_con = {} self.load_modules() self.active = set() self.mod_init = set() self.pre = {} self.__run_num = 0 self.jid = jid self.instance_id = str(id(self)) def _gather_pillar(self): ''' Whenever a state run starts, gather the pillar data fresh ''' pillar = salt.pillar.get_pillar( self.opts, self.opts['grains'], self.opts['id'], self.opts['environment'], pillar=self._pillar_override, pillarenv=self.opts.get('pillarenv') ) ret = pillar.compile_pillar() if self._pillar_override and isinstance(self._pillar_override, dict): ret.update(self._pillar_override) return ret def _mod_init(self, low): ''' Check the module initialization function, if this is the first run of a state package that has a mod_init function, then execute the mod_init function in the state module. ''' minit = '{0}.mod_init'.format(low['state']) if low['state'] not in self.mod_init: if minit in self.states: mret = self.states[minit](low) if not mret: return self.mod_init.add(low['state']) def _mod_aggregate(self, low, running, chunks): ''' Execute the aggregation systems to runtime modify the low chunk ''' agg_opt = self.functions['config.option']('state_aggregate') if low.get('aggregate') is True: agg_opt = low['aggregate'] if agg_opt is True: agg_opt = [low['state']] else: return low if low['state'] in agg_opt and not low.get('__agg__'): agg_fun = '{0}.mod_aggregate'.format(low['state']) if agg_fun in self.states: try: low = self.states[agg_fun](low, chunks, running) low['__agg__'] = True except TypeError: log.error('Failed to execute aggregate for state {0}'.format(low['state'])) return low def _run_check(self, low_data): ''' Check that unless doesn't return 0, and that onlyif returns a 0. ''' ret = {'result': False} cmd_opts = {} if 'shell' in self.opts['grains']: cmd_opts['shell'] = self.opts['grains'].get('shell') if 'onlyif' in low_data: if not isinstance(low_data['onlyif'], list): low_data_onlyif = [low_data['onlyif']] else: low_data_onlyif = low_data['onlyif'] for entry in low_data_onlyif: cmd = self.functions['cmd.retcode']( entry, ignore_retcode=True, python_shell=True, **cmd_opts) log.debug('Last command return code: {0}'.format(cmd)) if cmd != 0 and ret['result'] is False: ret.update({'comment': 'onlyif execution failed', 'skip_watch': True, 'result': True}) return ret elif cmd == 0: ret.update({'comment': 'onlyif execution succeeded', 'result': False}) return ret if 'unless' in low_data: if not isinstance(low_data['unless'], list): low_data_unless = [low_data['unless']] else: low_data_unless = low_data['unless'] for entry in low_data_unless: cmd = self.functions['cmd.retcode']( entry, ignore_retcode=True, python_shell=True, **cmd_opts) log.debug('Last command return code: {0}'.format(cmd)) if cmd == 0 and ret['result'] is False: ret.update({'comment': 'unless execution succeeded', 'skip_watch': True, 'result': True}) elif cmd != 0: ret.update({'comment': 'unless execution failed', 'result': False}) return ret # No reason to stop, return ret return ret def _run_check_cmd(self, low_data): ''' Alter the way a successful state run is determined ''' ret = {'result': False} cmd_opts = {} if 'shell' in self.opts['grains']: cmd_opts['shell'] = self.opts['grains'].get('shell') for entry in low_data['check_cmd']: cmd = self.functions['cmd.retcode']( entry, ignore_retcode=True, python_shell=True, **cmd_opts) log.debug('Last command return code: {0}'.format(cmd)) if cmd == 0 and ret['result'] is False: ret.update({'comment': 'check_cmd determined the state succeeded', 'result': True}) elif cmd != 0: ret.update({'comment': 'check_cmd determined the state failed', 'result': False}) return ret return ret def load_modules(self, data=None): ''' Load the modules into the state ''' log.info('Loading fresh modules for state activity') self.utils = salt.loader.utils(self.opts) self.functions = salt.loader.minion_mods(self.opts, self.state_con, utils=self.utils) if isinstance(data, dict): if data.get('provider', False): if isinstance(data['provider'], str): providers = [{data['state']: data['provider']}] elif isinstance(data['provider'], list): providers = data['provider'] else: providers = {} for provider in providers: for mod in provider: funcs = salt.loader.raw_mod(self.opts, provider[mod], self.functions) if funcs: for func in funcs: f_key = '{0}{1}'.format( mod, func[func.rindex('.'):] ) self.functions[f_key] = funcs[func] self.states = salt.loader.states(self.opts, self.functions) self.rend = salt.loader.render(self.opts, self.functions, states=self.states) def module_refresh(self): ''' Refresh all the modules ''' log.debug('Refreshing modules...') if self.opts['grains'].get('os') != 'MacOS': # In case a package has been installed into the current python # process 'site-packages', the 'site' module needs to be reloaded in # order for the newly installed package to be importable. try: reload(site) except RuntimeError: log.error('Error encountered during module reload. Modules were not reloaded.') self.load_modules() if not self.opts.get('local', False) and self.opts.get('multiprocessing', True): self.functions['saltutil.refresh_modules']() def check_refresh(self, data, ret): ''' Check to see if the modules for this state instance need to be updated, only update if the state is a file or a package and if it changed something. If the file function is managed check to see if the file is a possible module type, e.g. a python, pyx, or .so. Always refresh if the function is recurse, since that can lay down anything. ''' _reload_modules = False if data.get('reload_grains', False): log.debug('Refreshing grains...') self.opts['grains'] = salt.loader.grains(self.opts) _reload_modules = True if data.get('reload_pillar', False): log.debug('Refreshing pillar...') self.opts['pillar'] = self._gather_pillar() _reload_modules = True if data.get('reload_modules', False) or _reload_modules: # User explicitly requests a reload self.module_refresh() return if not ret['changes']: return if data['state'] == 'file': if data['fun'] == 'managed': if data['name'].endswith( ('.py', '.pyx', '.pyo', '.pyc', '.so')): self.module_refresh() elif data['fun'] == 'recurse': self.module_refresh() elif data['fun'] == 'symlink': if 'bin' in data['name']: self.module_refresh() elif data['state'] in ('pkg', 'ports'): self.module_refresh() def verify_ret(self, ret): ''' Verify the state return data ''' if not isinstance(ret, dict): raise SaltException( 'Malformed state return, return must be a dict' ) bad = [] for val in ['name', 'result', 'changes', 'comment']: if val not in ret: bad.append(val) if bad: raise SaltException( ('The following keys were not present in the state ' 'return: {0}' ).format(','.join(bad))) def verify_data(self, data): ''' Verify the data, return an error statement if something is wrong ''' errors = [] if 'state' not in data: errors.append('Missing "state" data') if 'fun' not in data: errors.append('Missing "fun" data') if 'name' not in data: errors.append('Missing "name" data') if data['name'] and not isinstance(data['name'], six.string_types): errors.append( 'ID {0!r} in SLS {1!r} is not formed as a string, but is ' 'a {2}'.format( data['name'], data['__sls__'], type(data['name']).__name__) ) if errors: return errors full = data['state'] + '.' + data['fun'] if full not in self.states: if '__sls__' in data: errors.append( 'State \'{0}\' was not found in SLS \'{1}\''.format( full, data['__sls__'] ) ) else: errors.append( 'Specified state \'{0}\' was not found'.format( full ) ) else: # First verify that the parameters are met aspec = salt.utils.args.get_function_argspec(self.states[full]) arglen = 0 deflen = 0 if isinstance(aspec.args, list): arglen = len(aspec.args) if isinstance(aspec.defaults, tuple): deflen = len(aspec.defaults) for ind in range(arglen - deflen): if aspec.args[ind] not in data: errors.append( 'Missing parameter {0} for state {1}'.format( aspec.args[ind], full ) ) # If this chunk has a recursive require, then it will cause a # recursive loop when executing, check for it reqdec = '' if 'require' in data: reqdec = 'require' if 'watch' in data: # Check to see if the service has a mod_watch function, if it does # not, then just require # to just require extend the require statement with the contents # of watch so that the mod_watch function is not called and the # requisite capability is still used if '{0}.mod_watch'.format(data['state']) not in self.states: if 'require' in data: data['require'].extend(data.pop('watch')) else: data['require'] = data.pop('watch') reqdec = 'require' else: reqdec = 'watch' if reqdec: for req in data[reqdec]: reqfirst = next(iter(req)) if data['state'] == reqfirst: if (fnmatch.fnmatch(data['name'], req[reqfirst]) or fnmatch.fnmatch(data['__id__'], req[reqfirst])): err = ('Recursive require detected in SLS {0} for' ' require {1} in ID {2}').format( data['__sls__'], req, data['__id__']) errors.append(err) return errors def verify_high(self, high): ''' Verify that the high data is viable and follows the data structure ''' errors = [] if not isinstance(high, dict): errors.append('High data is not a dictionary and is invalid') reqs = {} for name, body in six.iteritems(high): try: if name.startswith('__'): continue except AttributeError: pass if not isinstance(name, six.string_types): errors.append( 'ID {0!r} in SLS {1!r} is not formed as a string, but ' 'is a {2}. It may need to be quoted.'.format( name, body['__sls__'], type(name).__name__) ) if not isinstance(body, dict): err = ('The type {0} in {1} is not formatted as a dictionary' .format(name, body)) errors.append(err) continue for state in body: if state.startswith('__'): continue if body[state] is None: errors.append( 'ID {0!r} in SLS {1!r} contains a short declaration ' '({2}) with a trailing colon. When not passing any ' 'arguments to a state, the colon must be omitted.' .format(name, body['__sls__'], state) ) continue if not isinstance(body[state], list): errors.append( 'State {0!r} in SLS {1!r} is not formed as a list' .format(name, body['__sls__']) ) else: fun = 0 if '.' in state: fun += 1 for arg in body[state]: if isinstance(arg, six.string_types): fun += 1 if ' ' in arg.strip(): errors.append(('The function "{0}" in state ' '"{1}" in SLS "{2}" has ' 'whitespace, a function with whitespace is ' 'not supported, perhaps this is an argument ' 'that is missing a ":"').format( arg, name, body['__sls__'])) elif isinstance(arg, dict): # The arg is a dict, if the arg is require or # watch, it must be a list. # # Add the requires to the reqs dict and check them # all for recursive requisites. argfirst = next(iter(arg)) if argfirst == 'names': if not isinstance(arg[argfirst], list): errors.append( 'The \'names\' argument in state ' '{0!r} in SLS {1!r} needs to be ' 'formed as a list' .format(name, body['__sls__']) ) if argfirst in ('require', 'watch', 'prereq'): if not isinstance(arg[argfirst], list): errors.append( 'The {0} statement in state {1!r} in ' 'SLS {2!r} needs to be formed as a ' 'list'.format(argfirst, name, body['__sls__']) ) # It is a list, verify that the members of the # list are all single key dicts. else: reqs[name] = {'state': state} for req in arg[argfirst]: if not isinstance(req, dict): err = ('Requisite declaration {0}' ' in SLS {1} is not formed as a' ' single key dictionary').format( req, body['__sls__']) errors.append(err) continue req_key = next(iter(req)) req_val = req[req_key] if '.' in req_key: errors.append(( 'Invalid requisite type {0!r} ' 'in state {1!r}, in SLS ' '{2!r}. Requisite types must ' 'not contain dots, did you ' 'mean {3!r}?'.format( req_key, name, body['__sls__'], req_key[:req_key.find('.')] ) )) if not ishashable(req_val): errors.append(( 'Illegal requisite "{0}", ' 'please check your syntax.\n' ).format(str(req_val))) continue # Check for global recursive requisites reqs[name][req_val] = req_key # I am going beyond 80 chars on # purpose, this is just too much # of a pain to deal with otherwise if req_val in reqs: if name in reqs[req_val]: if reqs[req_val][name] == state: if reqs[req_val]['state'] == reqs[name][req_val]: err = ('A recursive ' 'requisite was found, SLS ' '"{0}" ID "{1}" ID "{2}"' ).format( body['__sls__'], name, req_val ) errors.append(err) # Make sure that there is only one key in the # dict if len(list(arg)) != 1: errors.append( 'Multiple dictionaries defined in ' 'argument of state {0!r} in SLS {1!r}' .format(name, body['__sls__']) ) if not fun: if state == 'require' or state == 'watch': continue errors.append( 'No function declared in state {0!r} in SLS {1!r}' .format(state, body['__sls__']) ) elif fun > 1: errors.append( 'Too many functions declared in state {0!r} in ' 'SLS {1!r}'.format(state, body['__sls__']) ) return errors def verify_chunks(self, chunks): ''' Verify the chunks in a list of low data structures ''' err = [] for chunk in chunks: err += self.verify_data(chunk) return err def order_chunks(self, chunks): ''' Sort the chunk list verifying that the chunks follow the order specified in the order options. ''' cap = 1 for chunk in chunks: if 'order' in chunk: if not isinstance(chunk['order'], int): continue chunk_order = chunk['order'] if chunk_order > cap - 1 and chunk_order > 0: cap = chunk_order + 100 for chunk in chunks: if 'order' not in chunk: chunk['order'] = cap continue if not isinstance(chunk['order'], (int, float)): if chunk['order'] == 'last': chunk['order'] = cap + 1000000 else: chunk['order'] = cap if 'name_order' in chunk: chunk['order'] = chunk['order'] + chunk.pop('name_order') / 10000.0 if chunk['order'] < 0: chunk['order'] = cap + 1000000 + chunk['order'] chunks.sort(key=lambda chunk: (chunk['order'], '{0[state]}{0[name]}{0[fun]}'.format(chunk))) return chunks def compile_high_data(self, high): ''' "Compile" the high data as it is retrieved from the CLI or YAML into the individual state executor structures ''' chunks = [] for name, body in six.iteritems(high): if name.startswith('__'): continue for state, run in six.iteritems(body): funcs = set() names = set() if state.startswith('__'): continue chunk = {'state': state, 'name': name} if '__sls__' in body: chunk['__sls__'] = body['__sls__'] if '__env__' in body: chunk['__env__'] = body['__env__'] chunk['__id__'] = name for arg in run: if isinstance(arg, six.string_types): funcs.add(arg) continue if isinstance(arg, dict): for key, val in six.iteritems(arg): if key == 'names': names.update(val) elif key == 'state': # Don't pass down a state override continue elif (key == 'name' and not isinstance(val, six.string_types)): # Invalid name, fall back to ID chunk[key] = name else: chunk[key] = val if names: name_order = 1 for entry in names: live = copy.deepcopy(chunk) if isinstance(entry, dict): low_name = next(six.iterkeys(entry)) live['name'] = low_name live.update(entry[low_name][0]) else: live['name'] = entry live['name_order'] = name_order name_order = name_order + 1 for fun in funcs: live['fun'] = fun chunks.append(live) else: live = copy.deepcopy(chunk) for fun in funcs: live['fun'] = fun chunks.append(live) chunks = self.order_chunks(chunks) return chunks def reconcile_extend(self, high): ''' Pull the extend data and add it to the respective high data ''' errors = [] if '__extend__' not in high: return high, errors ext = high.pop('__extend__') for ext_chunk in ext: for name, body in six.iteritems(ext_chunk): if name not in high: state_type = next( x for x in body if not x.startswith('__') ) # Check for a matching 'name' override in high data id_ = find_name(name, state_type, high) if id_: name = id_ else: errors.append( 'Cannot extend ID \'{0}\' in \'{1}:{2}\'. It is not ' 'part of the high state.\n' 'This is likely due to a missing include statement ' 'or an incorrectly typed ID.\nEnsure that a ' 'state with an ID of \'{0}\' is available\nin ' 'environment \'{1}\' and to SLS \'{2}\''.format( name, body.get('__env__', 'base'), body.get('__sls__', 'base')) ) continue for state, run in six.iteritems(body): if state.startswith('__'): continue if state not in high[name]: high[name][state] = run continue # high[name][state] is extended by run, both are lists for arg in run: update = False for hind in range(len(high[name][state])): if (isinstance(arg, six.string_types) and isinstance(high[name][state][hind], six.string_types)): # replacing the function, replace the index high[name][state].pop(hind) high[name][state].insert(hind, arg) update = True continue if (isinstance(arg, dict) and isinstance(high[name][state][hind], dict)): # It is an option, make sure the options match argfirst = next(iter(arg)) if (argfirst == next(iter(high[name][state][hind]))): # They match, check if the option is a # watch or require, append, otherwise # replace if (argfirst == 'require' or argfirst == 'watch'): # Extend the list (high[name][state][hind][argfirst] .extend(arg[argfirst])) update = True else: # Replace the value high[name][state][hind] = arg update = True if (argfirst == 'name' and next(iter(high[name][state][hind])) == 'names'): # If names are overwritten by name use the name high[name][state][hind] = arg if not update: high[name][state].append(arg) return high, errors def apply_exclude(self, high): ''' Read in the __exclude__ list and remove all excluded objects from the high data ''' if '__exclude__' not in high: return high ex_sls = set() ex_id = set() exclude = high.pop('__exclude__') for exc in exclude: if isinstance(exc, str): # The exclude statement is a string, assume it is an sls ex_sls.add(exc) if isinstance(exc, dict): # Explicitly declared exclude if len(exc) != 1: continue key = next(six.iterkeys(exc)) if key == 'sls': ex_sls.add(exc['sls']) elif key == 'id': ex_id.add(exc['id']) # Now the excludes have been simplified, use them if ex_sls: # There are sls excludes, find the associated ids for name, body in six.iteritems(high): if name.startswith('__'): continue sls = body.get('__sls__', '') if not sls: continue for ex_ in ex_sls: if fnmatch.fnmatch(sls, ex_): ex_id.add(name) for id_ in ex_id: if id_ in high: high.pop(id_) return high def requisite_in(self, high): ''' Extend the data reference with requisite_in arguments ''' req_in = set([ 'require_in', 'watch_in', 'onfail_in', 'onchanges_in', 'use', 'use_in', 'prereq', 'prereq_in', ]) req_in_all = req_in.union( set([ 'require', 'watch', 'onfail', 'onchanges', ])) extend = {} errors = [] for id_, body in six.iteritems(high): if not isinstance(body, dict): continue for state, run in six.iteritems(body): if state.startswith('__'): continue for arg in run: if isinstance(arg, dict): # It is not a function, verify that the arg is a # requisite in statement if len(arg) < 1: # Empty arg dict # How did we get this far? continue # Split out the components key = next(iter(arg)) if key not in req_in: continue rkey = key.split('_')[0] items = arg[key] if isinstance(items, dict): # Formatted as a single req_in for _state, name in six.iteritems(items): # Not a use requisite_in found = False if name not in extend: extend[name] = {} if '.' in _state: errors.append(( 'Invalid requisite in {0}: {1} for ' '{2}, in SLS {3!r}. Requisites must ' 'not contain dots, did you mean {4!r}?' .format( rkey, _state, name, body['__sls__'], _state[:_state.find('.')] ) )) _state = _state.split(".")[0] if _state not in extend[name]: extend[name][_state] = [] extend[name]['__env__'] = body['__env__'] extend[name]['__sls__'] = body['__sls__'] for ind in range(len(extend[name][_state])): if next(iter( extend[name][_state][ind])) == rkey: # Extending again extend[name][_state][ind][rkey].append( {state: id_} ) found = True if found: continue # The rkey is not present yet, create it extend[name][_state].append( {rkey: [{state: id_}]} ) if isinstance(items, list): # Formed as a list of requisite additions for ind in items: if not isinstance(ind, dict): # Malformed req_in continue if len(ind) < 1: continue _state = next(iter(ind)) name = ind[_state] if '.' in _state: errors.append(( 'Invalid requisite in {0}: {1} for ' '{2}, in SLS {3!r}. Requisites must ' 'not contain dots, did you mean {4!r}?' .format( rkey, _state, name, body['__sls__'], _state[:_state.find('.')] ) )) _state = _state.split(".")[0] if key == 'prereq_in': # Add prerequired to origin if id_ not in extend: extend[id_] = {} if state not in extend[id_]: extend[id_][state] = [] extend[id_][state].append( {'prerequired': [{_state: name}]} ) if key == 'prereq': # Add prerequired to prereqs ext_id = find_name(name, _state, high) if not ext_id: continue if ext_id not in extend: extend[ext_id] = {} if _state not in extend[ext_id]: extend[ext_id][_state] = [] extend[ext_id][_state].append( {'prerequired': [{state: id_}]} ) continue if key == 'use_in': # Add the running states args to the # use_in states ext_id = find_name(name, _state, high) if not ext_id: continue ext_args = state_args(ext_id, _state, high) if ext_id not in extend: extend[ext_id] = {} if _state not in extend[ext_id]: extend[ext_id][_state] = [] ignore_args = req_in_all.union(ext_args) for arg in high[id_][state]: if not isinstance(arg, dict): continue if len(arg) != 1: continue if next(iter(arg)) in ignore_args: continue # Don't use name or names if next(six.iterkeys(arg)) == 'name': continue if next(six.iterkeys(arg)) == 'names': continue extend[ext_id][_state].append(arg) continue if key == 'use': # Add the use state's args to the # running state ext_id = find_name(name, _state, high) if not ext_id: continue loc_args = state_args(id_, state, high) if id_ not in extend: extend[id_] = {} if state not in extend[id_]: extend[id_][state] = [] ignore_args = req_in_all.union(loc_args) for arg in high[ext_id][_state]: if not isinstance(arg, dict): continue if len(arg) != 1: continue if next(iter(arg)) in ignore_args: continue # Don't use name or names if next(six.iterkeys(arg)) == 'name': continue if next(six.iterkeys(arg)) == 'names': continue extend[id_][state].append(arg) continue found = False if name not in extend: extend[name] = {} if _state not in extend[name]: extend[name][_state] = [] extend[name]['__env__'] = body['__env__'] extend[name]['__sls__'] = body['__sls__'] for ind in range(len(extend[name][_state])): if next(iter( extend[name][_state][ind])) == rkey: # Extending again extend[name][_state][ind][rkey].append( {state: id_} ) found = True if found: continue # The rkey is not present yet, create it extend[name][_state].append( {rkey: [{state: id_}]} ) high['__extend__'] = [] for key, val in six.iteritems(extend): high['__extend__'].append({key: val}) req_in_high, req_in_errors = self.reconcile_extend(high) errors.extend(req_in_errors) return req_in_high, errors def call(self, low, chunks=None, running=None): ''' Call a state directly with the low data structure, verify data before processing. ''' start_time = datetime.datetime.now() log.info('Running state [{0}] at time {1}'.format(low['name'], start_time.time().isoformat())) errors = self.verify_data(low) if errors: ret = { 'result': False, 'name': low['name'], 'changes': {}, 'comment': '', } for err in errors: ret['comment'] += '{0}\n'.format(err) ret['__run_num__'] = self.__run_num self.__run_num += 1 format_log(ret) self.check_refresh(low, ret) return ret else: ret = {'result': False, 'name': low['name'], 'changes': {}} if not low.get('__prereq__'): log.info( 'Executing state {0[state]}.{0[fun]} for {0[name]}'.format( low ) ) if 'provider' in low: self.load_modules(low) state_func_name = '{0[state]}.{0[fun]}'.format(low) cdata = salt.utils.format_call( self.states[state_func_name], low, initial_ret={'full': state_func_name}, expected_extra_kws=STATE_INTERNAL_KEYWORDS ) inject_globals = { # Pass a copy of the running dictionary, the low state chunks and # the current state dictionaries. # We pass deep copies here because we don't want any misbehaving # state module to change these at runtime. '__low__': immutabletypes.freeze(low), '__running__': immutabletypes.freeze(running) if running else {}, '__instance_id__': self.instance_id, '__lowstate__': immutabletypes.freeze(chunks) if chunks else {} } if low.get('__prereq__'): test = sys.modules[self.states[cdata['full']].__module__].__opts__['test'] sys.modules[self.states[cdata['full']].__module__].__opts__['test'] = True try: # Let's get a reference to the salt environment to use within this # state call. # # If the state function accepts an 'env' keyword argument, it # allows the state to be overridden(we look for that in cdata). If # that's not found in cdata, we look for what we're being passed in # the original data, namely, the special dunder __env__. If that's # not found we default to 'base' if ('unless' in low and '{0[state]}.mod_run_check'.format(low) not in self.states) or \ ('onlyif' in low and '{0[state]}.mod_run_check'.format(low) not in self.states): ret.update(self._run_check(low)) if 'saltenv' in low: inject_globals['__env__'] = str(low['saltenv']) elif isinstance(cdata['kwargs'].get('env', None), six.string_types): # User is using a deprecated env setting which was parsed by # format_call. # We check for a string type since module functions which # allow setting the OS environ also make use of the "env" # keyword argument, which is not a string inject_globals['__env__'] = str(cdata['kwargs']['env']) elif '__env__' in low: # The user is passing an alternative environment using __env__ # which is also not the appropriate choice, still, handle it inject_globals['__env__'] = str(low['__env__']) else: # Let's use the default environment inject_globals['__env__'] = 'base' if 'result' not in ret or ret['result'] is False: with context.func_globals_inject(self.states[cdata['full']], **inject_globals): ret = self.states[cdata['full']](*cdata['args'], **cdata['kwargs']) if 'check_cmd' in low and '{0[state]}.mod_run_check_cmd'.format(low) not in self.states: ret.update(self._run_check_cmd(low)) self.verify_ret(ret) except Exception: trb = traceback.format_exc() # There are a number of possibilities to not have the cdata # populated with what we might have expected, so just be smart # enough to not raise another KeyError as the name is easily # guessable and fallback in all cases to present the real # exception to the user if len(cdata['args']) > 0: name = cdata['args'][0] elif 'name' in cdata['kwargs']: name = cdata['kwargs']['name'] else: name = low.get('name', low.get('__id__')) ret = { 'result': False, 'name': name, 'changes': {}, 'comment': 'An exception occurred in this state: {0}'.format( trb) } finally: if low.get('__prereq__'): sys.modules[self.states[cdata['full']].__module__].__opts__[ 'test'] = test # If format_call got any warnings, let's show them to the user if 'warnings' in cdata: ret.setdefault('warnings', []).extend(cdata['warnings']) if 'provider' in low: self.load_modules() if low.get('__prereq__'): low['__prereq__'] = False return ret ret['__run_num__'] = self.__run_num self.__run_num += 1 format_log(ret) self.check_refresh(low, ret) finish_time = datetime.datetime.now() ret['start_time'] = start_time.time().isoformat() delta = (finish_time - start_time) # duration in milliseconds.microseconds ret['duration'] = (delta.seconds * 1000000 + delta.microseconds)/1000.0 log.info('Completed state [{0}] at time {1}'.format(low['name'], finish_time.time().isoformat())) return ret def call_chunks(self, chunks): ''' Iterate over a list of chunks and call them, checking for requires. ''' running = {} for low in chunks: if '__FAILHARD__' in running: running.pop('__FAILHARD__') return running tag = _gen_tag(low) if tag not in running: running = self.call_chunk(low, running, chunks) if self.check_failhard(low, running): return running self.active = set() return running def check_failhard(self, low, running): ''' Check if the low data chunk should send a failhard signal ''' tag = _gen_tag(low) if (low.get('failhard', False) or self.opts['failhard'] and tag in running): return not running[tag]['result'] return False def check_requisite(self, low, running, chunks, pre=False): ''' Look into the running data to check the status of all requisite states ''' present = False # If mod_watch is not available make it a require if 'watch' in low: if '{0}.mod_watch'.format(low['state']) not in self.states: if 'require' in low: low['require'].extend(low.pop('watch')) else: low['require'] = low.pop('watch') else: present = True if 'require' in low: present = True if 'prerequired' in low: present = True if 'prereq' in low: present = True if 'onfail' in low: present = True if 'onchanges' in low: present = True if not present: return 'met', () reqs = { 'require': [], 'watch': [], 'prereq': [], 'onfail': [], 'onchanges': []} if pre: reqs['prerequired'] = [] for r_state in reqs: if r_state in low and low[r_state] is not None: for req in low[r_state]: req = trim_req(req) found = False for chunk in chunks: req_key = next(iter(req)) req_val = req[req_key] if req_val is None: continue if req_key == 'sls': # Allow requisite tracking of entire sls files if fnmatch.fnmatch(chunk['__sls__'], req_val): found = True reqs[r_state].append(chunk) continue if (fnmatch.fnmatch(chunk['name'], req_val) or fnmatch.fnmatch(chunk['__id__'], req_val)): if chunk['state'] == req_key: found = True reqs[r_state].append(chunk) if not found: return 'unmet', () fun_stats = set() for r_state, chunks in six.iteritems(reqs): if r_state == 'prereq': run_dict = self.pre else: run_dict = running for chunk in chunks: tag = _gen_tag(chunk) if tag not in run_dict: fun_stats.add('unmet') continue if r_state == 'onfail': if run_dict[tag]['result'] is True: fun_stats.add('onfail') continue else: if run_dict[tag]['result'] is False: fun_stats.add('fail') continue if r_state == 'onchanges': if not run_dict[tag]['changes']: fun_stats.add('onchanges') continue if r_state == 'watch' and run_dict[tag]['changes']: fun_stats.add('change') continue if r_state == 'prereq' and run_dict[tag]['result'] is None: fun_stats.add('premet') if r_state == 'prereq' and not run_dict[tag]['result'] is None: fun_stats.add('pre') else: fun_stats.add('met') if 'unmet' in fun_stats: status = 'unmet' elif 'fail' in fun_stats: status = 'fail' elif 'pre' in fun_stats: if 'premet' in fun_stats: status = 'met' else: status = 'pre' elif 'onfail' in fun_stats: status = 'onfail' elif 'onchanges' in fun_stats: status = 'onchanges' elif 'change' in fun_stats: status = 'change' else: status = 'met' return status, reqs def event(self, chunk_ret, length, fire_event=False): ''' Fire an event on the master bus If `fire_event` is set to True an event will be sent with the chunk name in the tag and the chunk result in the event data. If `fire_event` is set to a string such as `mystate/is/finished`, an event will be sent with the string added to the tag and the chunk result in the event data. If the `state_events` is set to True in the config, then after the chunk is evaluated an event will be set up to the master with the results. ''' if not self.opts.get('local') and (self.opts.get('state_events', True) or fire_event) and self.opts.get('master_uri'): ret = {'ret': chunk_ret} if fire_event is True: tag = salt.utils.event.tagify( [self.jid, self.opts['id'], str(chunk_ret['name'])], 'state_result' ) elif isinstance(fire_event, six.string_types): tag = salt.utils.event.tagify( [self.jid, self.opts['id'], str(fire_event)], 'state_result' ) else: tag = salt.utils.event.tagify( [self.jid, 'prog', self.opts['id'], str(chunk_ret['__run_num__'])], 'job' ) ret['len'] = length preload = {'jid': self.jid} self.functions['event.fire_master'](ret, tag, preload=preload) def call_chunk(self, low, running, chunks): ''' Check if a chunk has any requires, execute the requires and then the chunk ''' low = self._mod_aggregate(low, running, chunks) self._mod_init(low) tag = _gen_tag(low) if not low.get('prerequired'): self.active.add(tag) requisites = ['require', 'watch', 'prereq', 'onfail', 'onchanges'] if not low.get('__prereq__'): requisites.append('prerequired') status, reqs = self.check_requisite(low, running, chunks, True) else: status, reqs = self.check_requisite(low, running, chunks) if status == 'unmet': lost = {} reqs = [] for requisite in requisites: lost[requisite] = [] if requisite not in low: continue for req in low[requisite]: req = trim_req(req) found = False for chunk in chunks: req_key = next(iter(req)) req_val = req[req_key] if req_val is None: continue if req_key == 'sls': # Allow requisite tracking of entire sls files if fnmatch.fnmatch(chunk['__sls__'], req_val): if requisite == 'prereq': chunk['__prereq__'] = True reqs.append(chunk) found = True continue if (fnmatch.fnmatch(chunk['name'], req_val) or fnmatch.fnmatch(chunk['__id__'], req_val)): if chunk['state'] == req_key: if requisite == 'prereq': chunk['__prereq__'] = True elif requisite == 'prerequired': chunk['__prerequired__'] = True reqs.append(chunk) found = True if not found: lost[requisite].append(req) if lost['require'] or lost['watch'] or lost['prereq'] or lost['onfail'] or lost['onchanges'] or lost.get('prerequired'): comment = 'The following requisites were not found:\n' for requisite, lreqs in six.iteritems(lost): if not lreqs: continue comment += \ '{0}{1}:\n'.format(' ' * 19, requisite) for lreq in lreqs: req_key = next(iter(lreq)) req_val = lreq[req_key] comment += \ '{0}{1}: {2}\n'.format(' ' * 23, req_key, req_val) running[tag] = {'changes': {}, 'result': False, 'comment': comment, '__run_num__': self.__run_num, '__sls__': low['__sls__']} self.__run_num += 1 self.event(running[tag], len(chunks), fire_event=low.get('fire_event')) return running for chunk in reqs: # Check to see if the chunk has been run, only run it if # it has not been run already ctag = _gen_tag(chunk) if ctag not in running: if ctag in self.active: if chunk.get('__prerequired__'): # Prereq recusive, run this chunk with prereq on if tag not in self.pre: low['__prereq__'] = True self.pre[ctag] = self.call(low, chunks, running) return running else: return running elif ctag not in running: log.error('Recursive requisite found') running[tag] = { 'changes': {}, 'result': False, 'comment': 'Recursive requisite found', '__run_num__': self.__run_num, '__sls__': low['__sls__']} self.__run_num += 1 self.event(running[tag], len(chunks), fire_event=low.get('fire_event')) return running running = self.call_chunk(chunk, running, chunks) if self.check_failhard(chunk, running): running['__FAILHARD__'] = True return running if low.get('__prereq__'): status, reqs = self.check_requisite(low, running, chunks) self.pre[tag] = self.call(low, chunks, running) if not self.pre[tag]['changes'] and status == 'change': self.pre[tag]['changes'] = {'watch': 'watch'} self.pre[tag]['result'] = None else: running = self.call_chunk(low, running, chunks) if self.check_failhard(chunk, running): running['__FAILHARD__'] = True return running elif status == 'met': if low.get('__prereq__'): self.pre[tag] = self.call(low, chunks, running) else: running[tag] = self.call(low, chunks, running) elif status == 'fail': # if the requisite that failed was due to a prereq on this low state # show the normal error if tag in self.pre: running[tag] = self.pre[tag] running[tag]['__run_num__'] = self.__run_num running[tag]['__sls__'] = low['__sls__'] # otherwise the failure was due to a requisite down the chain else: # determine what the requisite failures where, and return # a nice error message failed_requisites = set() # look at all requisite types for a failure for req_lows in six.itervalues(reqs): for req_low in req_lows: req_tag = _gen_tag(req_low) req_ret = self.pre.get(req_tag, running.get(req_tag)) # if there is no run output for the requisite it # can't be the failure if req_ret is None: continue # If the result was False (not None) it was a failure if req_ret['result'] is False: # use SLS.ID for the key-- so its easier to find key = '{sls}.{_id}'.format(sls=req_low['__sls__'], _id=req_low['__id__']) failed_requisites.add(key) _cmt = 'One or more requisite failed: {0}'.format( ', '.join(str(i) for i in failed_requisites) ) running[tag] = { 'changes': {}, 'result': False, 'comment': _cmt, '__run_num__': self.__run_num, '__sls__': low['__sls__'] } self.__run_num += 1 elif status == 'change' and not low.get('__prereq__'): ret = self.call(low, chunks, running) if not ret['changes'] and not ret.get('skip_watch', False): low = low.copy() low['sfun'] = low['fun'] low['fun'] = 'mod_watch' low['__reqs__'] = reqs ret = self.call(low, chunks, running) running[tag] = ret elif status == 'pre': pre_ret = {'changes': {}, 'result': True, 'comment': 'No changes detected', '__run_num__': self.__run_num, '__sls__': low['__sls__']} running[tag] = pre_ret self.pre[tag] = pre_ret self.__run_num += 1 elif status == 'onfail': running[tag] = {'changes': {}, 'result': True, 'comment': 'State was not run because onfail req did not change', '__run_num__': self.__run_num, '__sls__': low['__sls__']} self.__run_num += 1 elif status == 'onchanges': running[tag] = {'changes': {}, 'result': True, 'comment': 'State was not run because onchanges req did not change', '__run_num__': self.__run_num, '__sls__': low['__sls__']} self.__run_num += 1 else: if low.get('__prereq__'): self.pre[tag] = self.call(low, chunks, running) else: running[tag] = self.call(low, chunks, running) if tag in running: self.event(running[tag], len(chunks), fire_event=low.get('fire_event')) return running def call_listen(self, chunks, running): ''' Find all of the listen routines and call the associated mod_watch runs ''' listeners = [] crefs = {} for chunk in chunks: crefs[(chunk['state'], chunk['name'])] = chunk crefs[(chunk['state'], chunk['__id__'])] = chunk if 'listen' in chunk: listeners.append({(chunk['state'], chunk['name']): chunk['listen']}) if 'listen_in' in chunk: for l_in in chunk['listen_in']: for key, val in six.iteritems(l_in): listeners.append({(key, val): [{chunk['state']: chunk['name']}]}) mod_watchers = [] errors = {} for l_dict in listeners: for key, val in six.iteritems(l_dict): for listen_to in val: if not isinstance(listen_to, dict): continue for lkey, lval in six.iteritems(listen_to): if (lkey, lval) not in crefs: rerror = {_l_tag(lkey, lval): { 'comment': 'Referenced state {0}: {1} does not exist'.format(lkey, lval), 'name': 'listen_{0}:{1}'.format(lkey, lval), 'result': False, 'changes': {} }} errors.update(rerror) continue to_tag = _gen_tag(crefs[(lkey, lval)]) if to_tag not in running: continue if running[to_tag]['changes']: if key not in crefs: rerror = {_l_tag(key[0], key[1]): {'comment': 'Referenced state {0}: {1} does not exist'.format(key[0], key[1]), 'name': 'listen_{0}:{1}'.format(key[0], key[1]), 'result': False, 'changes': {}}} errors.update(rerror) continue chunk = crefs[key] low = chunk.copy() low['sfun'] = chunk['fun'] low['fun'] = 'mod_watch' low['__id__'] = 'listener_{0}'.format(low['__id__']) for req in STATE_REQUISITE_KEYWORDS: if req in low: low.pop(req) mod_watchers.append(low) ret = self.call_chunks(mod_watchers) running.update(ret) for err in errors: errors[err]['__run_num__'] = self.__run_num self.__run_num += 1 running.update(errors) return running def call_high(self, high): ''' Process a high data call and ensure the defined states. ''' errors = [] # If there is extension data reconcile it high, ext_errors = self.reconcile_extend(high) errors += ext_errors errors += self.verify_high(high) if errors: return errors high, req_in_errors = self.requisite_in(high) errors += req_in_errors high = self.apply_exclude(high) # Verify that the high data is structurally sound if errors: return errors # Compile and verify the raw chunks chunks = self.compile_high_data(high) # Check for any disabled states disabled = {} if 'state_runs_disabled' in self.opts['grains']: _chunks = copy.deepcopy(chunks) for low in _chunks: state_ = '{0}.{1}'.format(low['state'], low['fun']) for pat in self.opts['grains']['state_runs_disabled']: if fnmatch.fnmatch(state_, pat): comment = ( 'The state function "{0}" is currently disabled by "{1}", ' 'to re-enable, run state.enable {1}.' ).format( state_, pat, ) _tag = _gen_tag(low) disabled[_tag] = {'changes': {}, 'result': False, 'comment': comment, '__run_num__': self.__run_num, '__sls__': low['__sls__']} self.__run_num += 1 chunks.remove(low) break # If there are extensions in the highstate, process them and update # the low data chunks if errors: return errors ret = dict(list(disabled.items()) + list(self.call_chunks(chunks).items())) ret = self.call_listen(chunks, ret) def _cleanup_accumulator_data(): accum_data_path = os.path.join( salt.utils.get_accumulator_dir(self.opts['cachedir']), self.instance_id ) try: os.remove(accum_data_path) log.debug('Deleted accumulator data file {0}'.format( accum_data_path) ) except OSError: log.debug('File {0} does not exist, no need to cleanup.'.format( accum_data_path) ) _cleanup_accumulator_data() return ret def render_template(self, high, template): errors = [] if not high: return high, errors if not isinstance(high, dict): errors.append( 'Template {0} does not render to a dictionary'.format(template) ) return high, errors invalid_items = ('include', 'exclude', 'extends') for item in invalid_items: if item in high: errors.append( 'The \'{0}\' declaration found on \'{1}\' is invalid when ' 'rendering single templates'.format(item, template) ) return high, errors for name in high: if not isinstance(high[name], dict): if isinstance(high[name], six.string_types): # Is this is a short state, it needs to be padded if '.' in high[name]: comps = high[name].split('.') high[name] = { # '__sls__': template, # '__env__': None, comps[0]: [comps[1]] } continue errors.append( 'ID {0} in template {1} is not a dictionary'.format( name, template ) ) continue skeys = set() for key in sorted(high[name]): if key.startswith('_'): continue if high[name][key] is None: errors.append( 'ID {0!r} in template {1} contains a short ' 'declaration ({2}) with a trailing colon. When not ' 'passing any arguments to a state, the colon must be ' 'omitted.'.format(name, template, key) ) continue if not isinstance(high[name][key], list): continue if '.' in key: comps = key.split('.') # Salt doesn't support state files such as: # # /etc/redis/redis.conf: # file.managed: # - user: redis # - group: redis # - mode: 644 # file.comment: # - regex: ^requirepass if comps[0] in skeys: errors.append( 'ID {0!r} in template {1!r} contains multiple ' 'state declarations of the same type' .format(name, template) ) continue high[name][comps[0]] = high[name].pop(key) high[name][comps[0]].append(comps[1]) skeys.add(comps[0]) continue skeys.add(key) return high, errors def call_template(self, template): ''' Enforce the states in a template ''' high = compile_template( template, self.rend, self.opts['renderer']) if not high: return high high, errors = self.render_template(high, template) if errors: return errors return self.call_high(high) def call_template_str(self, template): ''' Enforce the states in a template, pass the template as a string ''' high = compile_template_str( template, self.rend, self.opts['renderer']) if not high: return high high, errors = self.render_template(high, '<template-str>') if errors: return errors return self.call_high(high) class BaseHighState(object): ''' The BaseHighState is an abstract base class that is the foundation of running a highstate, extend it and add a self.state object of type State. When extending this class, please note that ``self.client`` and ``self.matcher`` should be instantiated and handled. ''' def __init__(self, opts): self.opts = self.__gen_opts(opts) self.iorder = 10000 self.avail = self.__gather_avail() self.serial = salt.payload.Serial(self.opts) self.building_highstate = {} def __gather_avail(self): ''' Gather the lists of available sls data from the master ''' avail = {} for saltenv in self._get_envs(): avail[saltenv] = self.client.list_states(saltenv) return avail def __gen_opts(self, opts): ''' The options used by the High State object are derived from options on the minion and the master, or just the minion if the high state call is entirely local. ''' # If the state is intended to be applied locally, then the local opts # should have all of the needed data, otherwise overwrite the local # data items with data from the master if 'local_state' in opts: if opts['local_state']: return opts mopts = self.client.master_opts() if not isinstance(mopts, dict): # An error happened on the master opts['renderer'] = 'yaml_jinja' opts['failhard'] = False opts['state_top'] = salt.utils.url.create('top.sls') opts['nodegroups'] = {} opts['file_roots'] = {'base': [syspaths.BASE_FILE_ROOTS_DIR]} else: opts['renderer'] = mopts['renderer'] opts['failhard'] = mopts.get('failhard', False) if mopts['state_top'].startswith('salt://'): opts['state_top'] = mopts['state_top'] elif mopts['state_top'].startswith('/'): opts['state_top'] = salt.utils.url.create(mopts['state_top'][1:]) else: opts['state_top'] = salt.utils.url.create(mopts['state_top']) opts['nodegroups'] = mopts.get('nodegroups', {}) opts['state_auto_order'] = mopts.get( 'state_auto_order', opts['state_auto_order']) opts['file_roots'] = mopts['file_roots'] opts['state_events'] = mopts.get('state_events') opts['state_aggregate'] = mopts.get('state_aggregate', opts.get('state_aggregate', False)) opts['jinja_lstrip_blocks'] = mopts.get('jinja_lstrip_blocks', False) opts['jinja_trim_blocks'] = mopts.get('jinja_trim_blocks', False) return opts def _get_envs(self): ''' Pull the file server environments out of the master options ''' envs = set(['base']) if 'file_roots' in self.opts: envs.update(list(self.opts['file_roots'])) return envs.union(set(self.client.envs())) def get_tops(self): ''' Gather the top files ''' tops = DefaultOrderedDict(list) include = DefaultOrderedDict(list) done = DefaultOrderedDict(list) found = 0 # did we find any contents in the top files? # Gather initial top files if self.opts['environment']: contents = self.client.cache_file( self.opts['state_top'], self.opts['environment'] ) if contents: found = 1 tops[self.opts['environment']] = [ compile_template( contents, self.state.rend, self.state.opts['renderer'], saltenv=self.opts['environment'] ) ] else: found = 0 for saltenv in self._get_envs(): contents = self.client.cache_file( self.opts['state_top'], saltenv ) if contents: found = found + 1 else: log.debug('No contents loaded for env: {0}'.format(saltenv)) tops[saltenv].append( compile_template( contents, self.state.rend, self.state.opts['renderer'], saltenv=saltenv ) ) if found == 0: log.error('No contents found in top file') # Search initial top files for includes for saltenv, ctops in six.iteritems(tops): for ctop in ctops: if 'include' not in ctop: continue for sls in ctop['include']: include[saltenv].append(sls) ctop.pop('include') # Go through the includes and pull out the extra tops and add them while include: pops = [] for saltenv, states in six.iteritems(include): pops.append(saltenv) if not states: continue for sls_match in states: for sls in fnmatch.filter(self.avail[saltenv], sls_match): if sls in done[saltenv]: continue tops[saltenv].append( compile_template( self.client.get_state( sls, saltenv ).get('dest', False), self.state.rend, self.state.opts['renderer'], saltenv=saltenv ) ) done[saltenv].append(sls) for saltenv in pops: if saltenv in include: include.pop(saltenv) return tops def merge_tops(self, tops): ''' Cleanly merge the top files ''' top = DefaultOrderedDict(OrderedDict) for ctops in six.itervalues(tops): for ctop in ctops: for saltenv, targets in six.iteritems(ctop): if saltenv == 'include': continue try: for tgt in targets: if tgt not in top[saltenv]: top[saltenv][tgt] = ctop[saltenv][tgt] continue matches = [] states = set() for comp in top[saltenv][tgt]: if isinstance(comp, dict): matches.append(comp) if isinstance(comp, six.string_types): states.add(comp) top[saltenv][tgt] = matches top[saltenv][tgt].extend(list(states)) except TypeError: raise SaltRenderError('Unable to render top file. No targets found.') return top def verify_tops(self, tops): ''' Verify the contents of the top file data ''' errors = [] if not isinstance(tops, dict): errors.append('Top data was not formed as a dict') # No further checks will work, bail out return errors for saltenv, matches in six.iteritems(tops): if saltenv == 'include': continue if not isinstance(saltenv, six.string_types): errors.append( 'Environment {0} in top file is not formed as a ' 'string'.format(saltenv) ) if saltenv == '': errors.append('Empty saltenv statement in top file') if not isinstance(matches, dict): errors.append( 'The top file matches for saltenv {0} are not ' 'formatted as a dict'.format(saltenv) ) for slsmods in six.itervalues(matches): if not isinstance(slsmods, list): errors.append('Malformed topfile (state declarations not ' 'formed as a list)') continue for slsmod in slsmods: if isinstance(slsmod, dict): # This value is a match option for val in six.itervalues(slsmod): if not val: errors.append( 'Improperly formatted top file matcher ' 'in saltenv {0}: {1} file'.format( slsmod, val ) ) elif isinstance(slsmod, six.string_types): # This is a sls module if not slsmod: errors.append( 'Environment {0} contains an empty sls ' 'index'.format(saltenv) ) return errors def get_top(self): ''' Returns the high data derived from the top file ''' tops = self.get_tops() return self.merge_tops(tops) def top_matches(self, top): ''' Search through the top high data for matches and return the states that this minion needs to execute. Returns: {'saltenv': ['state1', 'state2', ...]} ''' matches = {} # pylint: disable=cell-var-from-loop for saltenv, body in six.iteritems(top): if self.opts['environment']: if saltenv != self.opts['environment']: continue for match, data in six.iteritems(body): def _filter_matches(_match, _data, _opts): if isinstance(_data, six.string_types): _data = [_data] if self.matcher.confirm_top( _match, _data, _opts ): if saltenv not in matches: matches[saltenv] = [] for item in _data: if 'subfilter' in item: _tmpdata = item.pop('subfilter') for match, data in six.iteritems(_tmpdata): _filter_matches(match, data, _opts) if isinstance(item, six.string_types): matches[saltenv].append(item) _filter_matches(match, data, self.opts['nodegroups']) ext_matches = self.client.ext_nodes() for saltenv in ext_matches: if saltenv in matches: matches[saltenv] = list( set(ext_matches[saltenv]).union(matches[saltenv])) else: matches[saltenv] = ext_matches[saltenv] # pylint: enable=cell-var-from-loop return matches def load_dynamic(self, matches): ''' If autoload_dynamic_modules is True then automatically load the dynamic modules ''' if not self.opts['autoload_dynamic_modules']: return if self.opts.get('local', False): syncd = self.state.functions['saltutil.sync_all'](list(matches), refresh=False) else: syncd = self.state.functions['saltutil.sync_all'](list(matches), refresh=False) if syncd['grains']: self.opts['grains'] = salt.loader.grains(self.opts) self.state.opts['pillar'] = self.state._gather_pillar() self.state.module_refresh() def render_state(self, sls, saltenv, mods, matches, local=False): ''' Render a state file and retrieve all of the include states ''' errors = [] if not local: state_data = self.client.get_state(sls, saltenv) fn_ = state_data.get('dest', False) else: fn_ = sls if not os.path.isfile(fn_): errors.append( 'Specified SLS {0} on local filesystem cannot ' 'be found.'.format(sls) ) if not fn_: errors.append( 'Specified SLS {0} in saltenv {1} is not ' 'available on the salt master or through a configured ' 'fileserver'.format(sls, saltenv) ) state = None try: state = compile_template( fn_, self.state.rend, self.state.opts['renderer'], saltenv, sls, rendered_sls=mods ) except SaltRenderError as exc: msg = 'Rendering SLS \'{0}:{1}\' failed: {2}'.format( saltenv, sls, exc ) log.critical(msg) errors.append(msg) except Exception as exc: msg = 'Rendering SLS {0} failed, render error: {1}'.format( sls, exc ) log.critical( msg, # Show the traceback if the debug logging level is enabled exc_info_on_loglevel=logging.DEBUG ) errors.append('{0}\n{1}'.format(msg, traceback.format_exc())) try: mods.add('{0}:{1}'.format(saltenv, sls)) except AttributeError: pass if state: if not isinstance(state, dict): errors.append( 'SLS {0} does not render to a dictionary'.format(sls) ) else: include = [] if 'include' in state: if not isinstance(state['include'], list): err = ('Include Declaration in SLS {0} is not formed ' 'as a list'.format(sls)) errors.append(err) else: include = state.pop('include') self._handle_extend(state, sls, saltenv, errors) self._handle_exclude(state, sls, saltenv, errors) self._handle_state_decls(state, sls, saltenv, errors) for inc_sls in include: # inc_sls may take the form of: # 'sls.to.include' <- same as {<saltenv>: 'sls.to.include'} # {<env_key>: 'sls.to.include'} # {'_xenv': 'sls.to.resolve'} xenv_key = '_xenv' if isinstance(inc_sls, dict): env_key, inc_sls = inc_sls.popitem() else: env_key = saltenv if env_key not in self.avail: msg = ('Nonexistent saltenv {0!r} found in include ' 'of {1!r} within SLS \'{2}:{3}\'' .format(env_key, inc_sls, saltenv, sls)) log.error(msg) errors.append(msg) continue if inc_sls.startswith('.'): p_comps = sls.split('.') if state_data.get('source', '').endswith('/init.sls'): inc_sls = sls + inc_sls else: inc_sls = '.'.join(p_comps[:-1]) + inc_sls if env_key != xenv_key: # Resolve inc_sls in the specified environment if env_key in matches or fnmatch.filter(self.avail[env_key], inc_sls): resolved_envs = [env_key] else: resolved_envs = [] else: # Resolve inc_sls in the subset of environment matches resolved_envs = [ aenv for aenv in matches if fnmatch.filter(self.avail[aenv], inc_sls) ] # An include must be resolved to a single environment, or # the include must exist in the current environment if len(resolved_envs) == 1 or saltenv in resolved_envs: # Match inc_sls against the available states in the # resolved env, matching wildcards in the process. If # there were no matches, then leave inc_sls as the # target so that the next recursion of render_state # will recognize the error. sls_targets = fnmatch.filter( self.avail[saltenv], inc_sls ) or [inc_sls] for sls_target in sls_targets: r_env = resolved_envs[0] if len(resolved_envs) == 1 else saltenv mod_tgt = '{0}:{1}'.format(r_env, sls_target) if mod_tgt not in mods: nstate, err = self.render_state( sls_target, r_env, mods, matches ) if nstate: self.merge_included_states(state, nstate, errors) state.update(nstate) if err: errors.extend(err) else: msg = '' if not resolved_envs: msg = ('Unknown include: Specified SLS {0}: {1} is not available on the salt ' 'master in saltenv(s): {2} ' ).format(env_key, inc_sls, ', '.join(matches) if env_key == xenv_key else env_key) elif len(resolved_envs) > 1: msg = ('Ambiguous include: Specified SLS {0}: {1} is available on the salt master ' 'in multiple available saltenvs: {2}' ).format(env_key, inc_sls, ', '.join(resolved_envs)) log.critical(msg) errors.append(msg) try: self._handle_iorder(state) except TypeError: log.critical('Could not render SLS {0}. Syntax error detected.'.format(sls)) else: state = {} return state, errors def _handle_iorder(self, state): ''' Take a state and apply the iorder system ''' if self.opts['state_auto_order']: for name in state: for s_dec in state[name]: if not isinstance(s_dec, six.string_types): # PyDSL OrderedDict? continue if not isinstance(state[name], dict): # Include's or excludes as lists? continue if not isinstance(state[name][s_dec], list): # Bad syntax, let the verify seq pick it up later on continue found = False if s_dec.startswith('_'): continue for arg in state[name][s_dec]: if isinstance(arg, dict): if len(arg) > 0: if next(six.iterkeys(arg)) == 'order': found = True if not found: if not isinstance(state[name][s_dec], list): # quite certainly a syntax error, managed elsewhere continue state[name][s_dec].append( {'order': self.iorder} ) self.iorder += 1 return state def _handle_state_decls(self, state, sls, saltenv, errors): ''' Add sls and saltenv components to the state ''' for name in state: if not isinstance(state[name], dict): if name == '__extend__': continue if name == '__exclude__': continue if isinstance(state[name], six.string_types): # Is this is a short state, it needs to be padded if '.' in state[name]: comps = state[name].split('.') state[name] = {'__sls__': sls, '__env__': saltenv, comps[0]: [comps[1]]} continue errors.append( 'ID {0} in SLS {1} is not a dictionary'.format(name, sls) ) continue skeys = set() for key in state[name]: if key.startswith('_'): continue if not isinstance(state[name][key], list): continue if '.' in key: comps = key.split('.') # Salt doesn't support state files such as: # # /etc/redis/redis.conf: # file.managed: # - source: salt://redis/redis.conf # - user: redis # - group: redis # - mode: 644 # file.comment: # - regex: ^requirepass if comps[0] in skeys: errors.append( 'ID {0!r} in SLS {1!r} contains multiple state ' 'declarations of the same type'.format(name, sls) ) continue state[name][comps[0]] = state[name].pop(key) state[name][comps[0]].append(comps[1]) skeys.add(comps[0]) continue skeys.add(key) if '__sls__' not in state[name]: state[name]['__sls__'] = sls if '__env__' not in state[name]: state[name]['__env__'] = saltenv def _handle_extend(self, state, sls, saltenv, errors): ''' Take the extend dec out of state and apply to the highstate global dec ''' if 'extend' in state: ext = state.pop('extend') if not isinstance(ext, dict): errors.append(('Extension value in SLS {0!r} is not a ' 'dictionary').format(sls)) return for name in ext: if not isinstance(ext[name], dict): errors.append(('Extension name {0!r} in SLS {1!r} is ' 'not a dictionary' .format(name, sls))) continue if '__sls__' not in ext[name]: ext[name]['__sls__'] = sls if '__env__' not in ext[name]: ext[name]['__env__'] = saltenv for key in ext[name]: if key.startswith('_'): continue if not isinstance(ext[name][key], list): continue if '.' in key: comps = key.split('.') ext[name][comps[0]] = ext[name].pop(key) ext[name][comps[0]].append(comps[1]) state.setdefault('__extend__', []).append(ext) def _handle_exclude(self, state, sls, saltenv, errors): ''' Take the exclude dec out of the state and apply it to the highstate global dec ''' if 'exclude' in state: exc = state.pop('exclude') if not isinstance(exc, list): err = ('Exclude Declaration in SLS {0} is not formed ' 'as a list'.format(sls)) errors.append(err) state.setdefault('__exclude__', []).extend(exc) def render_highstate(self, matches): ''' Gather the state files and render them into a single unified salt high data structure. ''' highstate = self.building_highstate all_errors = [] mods = set() statefiles = [] for saltenv, states in six.iteritems(matches): for sls_match in states: try: statefiles = fnmatch.filter(self.avail[saltenv], sls_match) except KeyError: all_errors.extend(['No matching salt environment for environment {0!r} found'.format(saltenv)]) # if we did not found any sls in the fileserver listing, this # may be because the sls was generated or added later, we can # try to directly execute it, and if it fails, anyway it will # return the former error if not statefiles: statefiles = [sls_match] for sls in statefiles: r_env = '{0}:{1}'.format(saltenv, sls) if r_env in mods: continue state, errors = self.render_state( sls, saltenv, mods, matches) if state: self.merge_included_states(highstate, state, errors) for i, error in enumerate(errors[:]): if 'is not available' in error: # match SLS foobar in environment this_sls = 'SLS {0} in saltenv'.format( sls_match) if this_sls in error: errors[i] = ( 'No matching sls found for {0!r} ' 'in env {1!r}'.format(sls_match, saltenv)) all_errors.extend(errors) self.clean_duplicate_extends(highstate) return highstate, all_errors def clean_duplicate_extends(self, highstate): if '__extend__' in highstate: highext = [] for items in (six.iteritems(ext) for ext in highstate['__extend__']): for item in items: if item not in highext: highext.append(item) highstate['__extend__'] = [{t[0]: t[1]} for t in highext] def merge_included_states(self, highstate, state, errors): # The extend members can not be treated as globally unique: if '__extend__' in state: highstate.setdefault('__extend__', []).extend(state.pop('__extend__')) if '__exclude__' in state: highstate.setdefault('__exclude__', []).extend(state.pop('__exclude__')) for id_ in state: if id_ in highstate: if highstate[id_] != state[id_]: errors.append(( 'Detected conflicting IDs, SLS' ' IDs need to be globally unique.\n The' ' conflicting ID is {0!r} and is found in SLS' ' \'{1}:{2}\' and SLS \'{3}:{4}\'').format( id_, highstate[id_]['__env__'], highstate[id_]['__sls__'], state[id_]['__env__'], state[id_]['__sls__']) ) try: highstate.update(state) except ValueError: errors.append( 'Error when rendering state with contents: {0}'.format(state) ) def _check_pillar(self, force=False): ''' Check the pillar for errors, refuse to run the state if there are errors in the pillar and return the pillar errors ''' if force: return True if '_errors' in self.state.opts['pillar']: return False return True def matches_whitelist(self, matches, whitelist): ''' Reads over the matches and returns a matches dict with just the ones that are in the whitelist ''' if not whitelist: return matches ret_matches = {} if not isinstance(whitelist, list): whitelist = whitelist.split(',') for env in matches: for sls in matches[env]: if sls in whitelist: ret_matches[env] = ret_matches[env] if env in ret_matches else [] ret_matches[env].append(sls) return ret_matches def call_highstate(self, exclude=None, cache=None, cache_name='highstate', force=False, whitelist=None): ''' Run the sequence to execute the salt highstate for this minion ''' # Check that top file exists tag_name = 'no_|-states_|-states_|-None' ret = {tag_name: { 'result': False, 'comment': 'No states found for this minion', 'name': 'No States', 'changes': {}, '__run_num__': 0, }} cfn = os.path.join( self.opts['cachedir'], '{0}.cache.p'.format(cache_name) ) if cache: if os.path.isfile(cfn): with salt.utils.fopen(cfn, 'rb') as fp_: high = self.serial.load(fp_) return self.state.call_high(high) # File exists so continue err = [] try: top = self.get_top() except SaltRenderError as err: ret[tag_name]['comment'] = err.error return ret except Exception: trb = traceback.format_exc() err.append(trb) return err err += self.verify_tops(top) matches = self.top_matches(top) if not matches: msg = ('No Top file or external nodes data matches found') ret[tag_name]['comment'] = msg return ret matches = self.matches_whitelist(matches, whitelist) self.load_dynamic(matches) if not self._check_pillar(force): err += ['Pillar failed to render with the following messages:'] err += self.state.opts['pillar']['_errors'] else: high, errors = self.render_highstate(matches) if exclude: if isinstance(exclude, str): exclude = exclude.split(',') if '__exclude__' in high: high['__exclude__'].extend(exclude) else: high['__exclude__'] = exclude err += errors if err: return err if not high: return ret cumask = os.umask(0o77) try: if salt.utils.is_windows(): # Make sure cache file isn't read-only self.state.functions['cmd.run']('attrib -R "{0}"'.format(cfn), output_loglevel='quiet') with salt.utils.fopen(cfn, 'w+b') as fp_: try: self.serial.dump(high, fp_) except TypeError: # Can't serialize pydsl pass except (IOError, OSError): msg = 'Unable to write to "state.highstate" cache file {0}' log.error(msg.format(cfn)) os.umask(cumask) return self.state.call_high(high) def compile_highstate(self): ''' Return just the highstate or the errors ''' err = [] top = self.get_top() err += self.verify_tops(top) matches = self.top_matches(top) high, errors = self.render_highstate(matches) err += errors if err: return err return high def compile_low_chunks(self): ''' Compile the highstate but don't run it, return the low chunks to see exactly what the highstate will execute ''' top = self.get_top() matches = self.top_matches(top) high, errors = self.render_highstate(matches) # If there is extension data reconcile it high, ext_errors = self.state.reconcile_extend(high) errors += ext_errors # Verify that the high data is structurally sound errors += self.state.verify_high(high) high, req_in_errors = self.state.requisite_in(high) errors += req_in_errors high = self.state.apply_exclude(high) if errors: return errors # Compile and verify the raw chunks chunks = self.state.compile_high_data(high) return chunks class HighState(BaseHighState): ''' Generate and execute the salt "High State". The High State is the compound state derived from a group of template files stored on the salt master or in the local cache. ''' # a stack of active HighState objects during a state.highstate run stack = [] def __init__(self, opts, pillar=None, jid=None): self.opts = opts self.client = salt.fileclient.get_file_client(self.opts) BaseHighState.__init__(self, opts) self.state = State(self.opts, pillar, jid) self.matcher = salt.minion.Matcher(self.opts) # tracks all pydsl state declarations globally across sls files self._pydsl_all_decls = {} # a stack of current rendering Sls objects, maintained and used by the pydsl renderer. self._pydsl_render_stack = [] def push_active(self): self.stack.append(self) @classmethod def clear_active(cls): # Nuclear option # # Blow away the entire stack. Used primarily by the test runner but also # useful in custom wrappers of the HighState class, to reset the stack # to a fresh state. cls.stack = [] @classmethod def pop_active(cls): cls.stack.pop() @classmethod def get_active(cls): try: return cls.stack[-1] except IndexError: return None class MasterState(State): ''' Create a State object for master side compiling ''' def __init__(self, opts, minion): State.__init__(self, opts) def load_modules(self, data=None): ''' Load the modules into the state ''' log.info('Loading fresh modules for state activity') # Load a modified client interface that looks like the interface used # from the minion, but uses remote execution # self.functions = salt.client.FunctionWrapper( self.opts, self.opts['id'] ) # Load the states, but they should not be used in this class apart # from inspection self.states = salt.loader.states(self.opts, self.functions) self.rend = salt.loader.render(self.opts, self.functions, states=self.states) class MasterHighState(HighState): ''' Execute highstate compilation from the master ''' def __init__(self, master_opts, minion_opts, grains, id_, saltenv=None, env=None): if isinstance(env, six.string_types): salt.utils.warn_until( 'Boron', 'Passing a salt environment should be done using \'saltenv\' ' 'not \'env\'. This functionality will be removed in Salt ' 'Boron.' ) # Backwards compatibility saltenv = env # Force the fileclient to be local opts = copy.deepcopy(minion_opts) opts['file_client'] = 'local' opts['file_roots'] = master_opts['master_roots'] opts['renderer'] = master_opts['renderer'] opts['state_top'] = master_opts['state_top'] opts['id'] = id_ opts['grains'] = grains HighState.__init__(self, opts) class RemoteHighState(object): ''' Manage gathering the data from the master ''' def __init__(self, opts, grains): self.opts = opts self.grains = grains self.serial = salt.payload.Serial(self.opts) # self.auth = salt.crypt.SAuth(opts) self.channel = salt.transport.Channel.factory(self.opts['master_uri']) def compile_master(self): ''' Return the state data from the master ''' load = {'grains': self.grains, 'opts': self.opts, 'cmd': '_master_state'} try: return self.channel.send(load, tries=3, timeout=72000) except SaltReqTimeoutError: return {}
42.352298
132
0.429516
c9cdaea928d556d5bb4a188c3f7a08ca162b5e63
882
py
Python
data.py
hossainsadman/lstm-stock-predictor
6d91acac3054d5b870142cae8db0ae4f8e3810d3
[ "MIT" ]
null
null
null
data.py
hossainsadman/lstm-stock-predictor
6d91acac3054d5b870142cae8db0ae4f8e3810d3
[ "MIT" ]
null
null
null
data.py
hossainsadman/lstm-stock-predictor
6d91acac3054d5b870142cae8db0ae4f8e3810d3
[ "MIT" ]
null
null
null
import os from dotenv import load_dotenv import urllib.request import json import pandas as pd import datetime load_dotenv() ALPHA_API_KEY = os.getenv('ALPHA_API_KEY') TICKER = 'QCOM' url = "https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=%s&outputsize=full&apikey=%s" %(TICKER, ALPHA_API_KEY) data_file = '%s.csv' %TICKER if not os.path.exists(data_file): data = json.loads(urllib.request.urlopen(url).read().decode()) data = data['Time Series (Daily)'] df = pd.DataFrame(columns=['Date','Low','High','Close','Open']) for i, j in data.items(): date = datetime.datetime.strptime(i, '%Y-%m-%d') data_row = [date.date(), float(j['3. low']), float(j['2. high']), float(j['4. close']), float(j['1. open'])] df.loc[-1,:] = data_row df.index += 1 df.to_csv(data_file, index=False) data = pd.read_csv(data_file)
31.5
129
0.663265
6a9f3d628d7b9f1d9b737302c3dbe2ccc6bb3760
476
py
Python
tests/models/test_projects.py
onaio/tasking
5faff50a2f3575f0df91a6b20afe37d43a592381
[ "Apache-2.0" ]
6
2018-05-07T14:40:26.000Z
2020-02-26T11:41:58.000Z
tests/models/test_projects.py
onaio/tasking
5faff50a2f3575f0df91a6b20afe37d43a592381
[ "Apache-2.0" ]
95
2018-05-08T08:34:23.000Z
2020-01-24T08:36:13.000Z
tests/models/test_projects.py
onaio/tasking
5faff50a2f3575f0df91a6b20afe37d43a592381
[ "Apache-2.0" ]
2
2018-06-15T02:17:53.000Z
2018-09-28T06:04:37.000Z
""" Test for Project model """ from django.test import TestCase from model_mommy import mommy class TestProject(TestCase): """ Test class for TaskProject models """ def test_project_model_str(self): """ Test __str__ method of Project model """ livestock_task_list = mommy.make("tasking.Project", name="Livestock tasks") expected = "Livestock tasks" self.assertEqual(expected, livestock_task_list.__str__())
21.636364
83
0.665966
1145f97734923b9ab12e913cb72982c2e5a536fb
1,612
py
Python
API/src/main/resources/Lib/robot/reporting/stringcache.py
TagExpress/SikuliX1
de9da11794dd94b3821eddc5c01b534d3f2fe828
[ "MIT" ]
null
null
null
API/src/main/resources/Lib/robot/reporting/stringcache.py
TagExpress/SikuliX1
de9da11794dd94b3821eddc5c01b534d3f2fe828
[ "MIT" ]
null
null
null
API/src/main/resources/Lib/robot/reporting/stringcache.py
TagExpress/SikuliX1
de9da11794dd94b3821eddc5c01b534d3f2fe828
[ "MIT" ]
null
null
null
# Copyright (c) 2010-2020, sikuli.org, sikulix.com - MIT license # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from robot.utils import compress_text class StringIndex(int): pass class StringCache(object): _compress_threshold = 80 _use_compressed_threshold = 1.1 _zero_index = StringIndex(0) def __init__(self): self._cache = OrderedDict({'*': self._zero_index}) def add(self, text): if not text: return self._zero_index text = self._encode(text) if text not in self._cache: self._cache[text] = StringIndex(len(self._cache)) return self._cache[text] def _encode(self, text): raw = self._raw(text) if raw in self._cache or len(raw) < self._compress_threshold: return raw compressed = compress_text(text) if len(compressed) * self._use_compressed_threshold < len(raw): return compressed return raw def _raw(self, text): return '*'+text def dump(self): return tuple(self._cache)
29.851852
75
0.673697
5ac3be6178eb2fed901a3dc5818e30b8e4364dd7
676
py
Python
sigtrac/devices/models.py
nyaruka/sigtrac
edee5851047f6159d61c541e41848ff2b4bb58b1
[ "MIT" ]
null
null
null
sigtrac/devices/models.py
nyaruka/sigtrac
edee5851047f6159d61c541e41848ff2b4bb58b1
[ "MIT" ]
null
null
null
sigtrac/devices/models.py
nyaruka/sigtrac
edee5851047f6159d61c541e41848ff2b4bb58b1
[ "MIT" ]
null
null
null
from django.db import models from smartmin.models import SmartModel DEVICE_CHOICES = (('WEB', "Web Browser"), ('AND', "Android Phone"), ('IOS', "iPhone")) class Device(models.Model): device_type = models.CharField(max_length=16, choices=DEVICE_CHOICES, help_text="What kind of device this is") uuid = models.CharField(max_length=40, help_text="The unique id for this device") created_on = models.DateTimeField(auto_now_add=True, help_text="When this report was created") def __unicode__(self): return self.uuid
35.578947
79
0.58432
26a19ed7a6df66264afab1f5f526bb740c36e6f6
2,285
py
Python
GoogleCodeJam/SpeakingInTongues_2012_Qualification/Decoder.py
otkaverappa/AdventureOfCode
a2c3f08f5deadca70a998b43b341eb31def7fa8f
[ "Apache-2.0" ]
null
null
null
GoogleCodeJam/SpeakingInTongues_2012_Qualification/Decoder.py
otkaverappa/AdventureOfCode
a2c3f08f5deadca70a998b43b341eb31def7fa8f
[ "Apache-2.0" ]
null
null
null
GoogleCodeJam/SpeakingInTongues_2012_Qualification/Decoder.py
otkaverappa/AdventureOfCode
a2c3f08f5deadca70a998b43b341eb31def7fa8f
[ "Apache-2.0" ]
null
null
null
import unittest import string class Decoder: def __init__( self, ioSampleList ): self.decoderMap = dict() for sourceList, targetList in ioSampleList: assert len( sourceList ) == len( targetList ) for i in range( len( sourceList ) ): S, T = sourceList[ i ], targetList[ i ] if S.isspace(): assert S == T continue if S in self.decoderMap: assert self.decoderMap[ S ] == T continue self.decoderMap[ S ] = T expectedCount = len( string.ascii_lowercase ) assert len( self.decoderMap ) in (expectedCount, expectedCount - 1) if len( self.decoderMap ) == expectedCount - 1: S = set.difference( set( string.ascii_lowercase ), set( self.decoderMap.keys() ) ).pop() T = set.difference( set( string.ascii_lowercase ), set( self.decoderMap.values() ) ).pop() self.decoderMap[ S ] = T def decode( self, inputString ): decodedCharList = list( inputString ) for i in range( len( inputString ) ): if inputString[ i ].isspace(): continue decodedCharList[ i ] = self.decoderMap[ inputString[ i ] ] return ''.join( decodedCharList ) class DecoderTest( unittest.TestCase ): def test_decode( self ): inputStringList = list() with open( 'tests/small.in' ) as inputFile: T = int( inputFile.readline().strip() ) for _ in range( T ): inputStringList.append( inputFile.readline().strip() ) solutionList = list() with open( 'tests/small.ans' ) as solutionFile: for line in solutionFile.readlines(): solutionList.append( line.strip() ) assert len( solutionList ) == T ioSampleList = list() ioSampleList.append( ('y qee', 'a zoo') ) ioSampleList.append( ('ejp mysljylc kd kxveddknmc re jsicpdrysi', 'our language is impossible to understand') ) ioSampleList.append( ('rbcpc ypc rtcsra dkh wyfrepkym veddknkmkrkcd', 'there are twenty six factorial possibilities') ) ioSampleList.append( ('de kr kd eoya kw aej tysr re ujdr lkgc jv', 'so it is okay if you want to just give up') ) decoder = Decoder( ioSampleList ) for i in range( T ): decodedText = decoder.decode( inputStringList[ i ] ) print( 'Testcase {} Text: {}'.format( i + 1, decodedText ) ) self.assertEqual( 'Case #{}: {}'.format( i + 1, decodedText ), solutionList[ i ] ) if __name__ == '__main__': unittest.main()
35.703125
121
0.674836
53d620b41031ca6c845551d0f00c2902702d669a
23,376
py
Python
sklearn/tests/test_calibration.py
emarkou/scikit-learn
d73822f84f2832dcc25f0ff58769f60871a78025
[ "BSD-3-Clause" ]
3
2019-11-18T13:47:42.000Z
2021-08-22T23:37:47.000Z
sklearn/tests/test_calibration.py
emarkou/scikit-learn
d73822f84f2832dcc25f0ff58769f60871a78025
[ "BSD-3-Clause" ]
12
2021-03-06T23:42:46.000Z
2021-04-04T00:10:42.000Z
sklearn/tests/test_calibration.py
emarkou/scikit-learn
d73822f84f2832dcc25f0ff58769f60871a78025
[ "BSD-3-Clause" ]
2
2017-06-27T12:40:35.000Z
2021-08-22T23:37:35.000Z
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # License: BSD 3 clause import pytest import numpy as np from numpy.testing import assert_allclose from scipy import sparse from sklearn.base import BaseEstimator from sklearn.dummy import DummyClassifier from sklearn.model_selection import LeaveOneOut, train_test_split from sklearn.utils._testing import (assert_array_almost_equal, assert_almost_equal, assert_array_equal, ignore_warnings) from sklearn.utils.extmath import softmax from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification, make_blobs from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import KFold, cross_val_predict from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.isotonic import IsotonicRegression from sklearn.feature_extraction import DictVectorizer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV, _CalibratedClassifier from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @pytest.fixture(scope="module") def data(): X, y = make_classification( n_samples=200, n_features=6, random_state=42 ) return X, y @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration(data, method, ensemble): # Test calibration objects with isotonic and sigmoid n_samples = 100 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble) with pytest.raises(ValueError): cal_clf.fit(X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) # Note that this fit overwrites the fit on the entire training # set cal_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(y_test, prob_pos_cal_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_cal_clf, 1 - prob_pos_cal_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss((y_test + 1) % 2, prob_pos_cal_clf_relabeled)) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_bad_method(data, ensemble): # Check only "isotonic" and "sigmoid" are accepted as methods X, y = data clf = LinearSVC() clf_invalid_method = CalibratedClassifierCV( clf, method="foo", ensemble=ensemble ) with pytest.raises(ValueError): clf_invalid_method.fit(X, y) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_regressor(data, ensemble): # `base-estimator` should provide either decision_function or # predict_proba (most regressors, for instance, should fail) X, y = data clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), ensemble=ensemble) with pytest.raises(RuntimeError): clf_base_regressor.fit(X, y) def test_calibration_default_estimator(data): # Check base_estimator default is LinearSVC X, y = data calib_clf = CalibratedClassifierCV(cv=2) calib_clf.fit(X, y) base_est = calib_clf.calibrated_classifiers_[0].base_estimator assert isinstance(base_est, LinearSVC) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_cv_splitter(data, ensemble): # Check when `cv` is a CV splitter X, y = data splits = 5 kfold = KFold(n_splits=splits) calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble) assert isinstance(calib_clf.cv, KFold) assert calib_clf.cv.n_splits == splits calib_clf.fit(X, y) expected_n_clf = splits if ensemble else 1 assert len(calib_clf.calibrated_classifiers_) == expected_n_clf @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_sample_weight(data, method, ensemble): n_samples = 100 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV( base_estimator, method=method, ensemble=ensemble ) calibrated_clf.fit(X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert diff > 0.1 @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) def test_parallel_execution(data, method, ensemble): """Test parallel calibration""" X, y = data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) base_estimator = LinearSVC(random_state=42) cal_clf_parallel = CalibratedClassifierCV( base_estimator, method=method, n_jobs=2, ensemble=ensemble ) cal_clf_parallel.fit(X_train, y_train) probs_parallel = cal_clf_parallel.predict_proba(X_test) cal_clf_sequential = CalibratedClassifierCV( base_estimator, method=method, n_jobs=1, ensemble=ensemble ) cal_clf_sequential.fit(X_train, y_train) probs_sequential = cal_clf_sequential.predict_proba(X_test) assert_allclose(probs_parallel, probs_sequential) @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) @pytest.mark.parametrize('ensemble', [True, False]) # increase the number of RNG seeds to assess the statistical stability of this # test: @pytest.mark.parametrize('seed', range(2)) def test_calibration_multiclass(method, ensemble, seed): def multiclass_brier(y_true, proba_pred, n_classes): Y_onehot = np.eye(n_classes)[y_true] return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0] # Test calibration for multiclass with classifier that implements # only decision function. clf = LinearSVC(random_state=7) X, y = make_blobs(n_samples=500, n_features=100, random_state=seed, centers=10, cluster_std=15.0) # Use an unbalanced dataset by collapsing 8 clusters into one class # to make the naive calibration based on a softmax more unlikely # to work. y[y > 2] = 2 n_classes = np.unique(y).shape[0] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) # Check probabilities sum to 1 assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that the dataset is not too trivial, otherwise it's hard # to get interesting calibration data during the internal # cross-validation loop. assert 0.65 < clf.score(X_test, y_test) < 0.95 # Check that the accuracy of the calibrated model is never degraded # too much compared to the original classifier. assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test) # Check that Brier loss of calibrated classifier is smaller than # loss obtained by naively turning OvR decision function to # probabilities via a softmax uncalibrated_brier = \ multiclass_brier(y_test, softmax(clf.decision_function(X_test)), n_classes=n_classes) calibrated_brier = multiclass_brier(y_test, probas, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier clf = RandomForestClassifier(n_estimators=30, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) uncalibrated_brier = multiclass_brier(y_test, clf_probs, n_classes=n_classes) cal_clf = CalibratedClassifierCV( clf, method=method, cv=5, ensemble=ensemble ) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) calibrated_brier = multiclass_brier(y_test, cal_clf_probs, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier def test_calibration_zero_probability(): # Test an edge case where _CalibratedClassifier avoids numerical errors # in the multiclass normalization step if all the calibrators output # are zero all at once for a given sample and instead fallback to uniform # probabilities. class ZeroCalibrator(): # This function is called from _CalibratedClassifier.predict_proba. def predict(self, X): return np.zeros(X.shape[0]) X, y = make_blobs(n_samples=50, n_features=10, random_state=7, centers=10, cluster_std=15.0) clf = DummyClassifier().fit(X, y) calibrator = ZeroCalibrator() cal_clf = _CalibratedClassifier( base_estimator=clf, calibrators=[calibrator], classes=clf.classes_) probas = cal_clf.predict_proba(X) # Check that all probabilities are uniformly 1. / clf.n_classes_ assert_allclose(probas, 1. / clf.n_classes_) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() # Check error if clf not prefit unfit_clf = CalibratedClassifierCV(clf, cv="prefit") with pytest.raises(NotFittedError): unfit_clf.fit(X_calib, y_calib) clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: cal_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = cal_clf.predict_proba(this_X_test) y_pred = cal_clf.predict(this_X_test) prob_pos_cal_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert (brier_score_loss(y_test, prob_pos_clf) > brier_score_loss(y_test, prob_pos_cal_clf)) @pytest.mark.parametrize('method', ['sigmoid', 'isotonic']) def test_calibration_ensemble_false(data, method): # Test that `ensemble=False` is the same as using predictions from # `cross_val_predict` to train calibrator. X, y = data clf = LinearSVC(random_state=7) cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False) cal_clf.fit(X, y) cal_probas = cal_clf.predict_proba(X) # Get probas manually unbiased_preds = cross_val_predict( clf, X, y, cv=3, method='decision_function' ) if method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') else: calibrator = _SigmoidCalibration() calibrator.fit(unbiased_preds, y) # Use `clf` fit on all data clf.fit(X, y) clf_df = clf.decision_function(X) manual_probas = calibrator.predict(clf_df) assert_allclose(cal_probas[:, 1], manual_probas) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays with pytest.raises(ValueError): _SigmoidCalibration().fit(np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert len(prob_true) == len(prob_pred) assert len(prob_true) == 2 assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False with pytest.raises(ValueError): calibration_curve([1.1], [-0.1], normalize=False) # test that quantiles work as expected y_true2 = np.array([0, 0, 0, 0, 1, 1]) y_pred2 = np.array([0., 0.1, 0.2, 0.5, 0.9, 1.]) prob_true_quantile, prob_pred_quantile = calibration_curve( y_true2, y_pred2, n_bins=2, strategy='quantile') assert len(prob_true_quantile) == len(prob_pred_quantile) assert len(prob_true_quantile) == 2 assert_almost_equal(prob_true_quantile, [0, 2 / 3]) assert_almost_equal(prob_pred_quantile, [0.1, 0.8]) # Check that error is raised when invalid strategy is selected with pytest.raises(ValueError): calibration_curve(y_true2, y_pred2, strategy='percentile') @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_nan_imputer(ensemble): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', SimpleImputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV( clf, cv=2, method='isotonic', ensemble=ensemble ) clf_c.fit(X, y) clf_c.predict(X) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_prob_sum(ensemble): # Test that sum of probabilities is 1. A non-regression test for # issue #7796 num_classes = 2 X, y = make_classification(n_samples=10, n_features=5, n_classes=num_classes) clf = LinearSVC(C=1.0, random_state=7) clf_prob = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) clf_prob.fit(X, y) probs = clf_prob.predict_proba(X) assert_array_almost_equal(probs.sum(axis=1), np.ones(probs.shape[0])) @pytest.mark.parametrize('ensemble', [True, False]) def test_calibration_less_classes(ensemble): # Test to check calibration works fine when train set in a test-train # split does not contain all classes # Since this test uses LOO, at each iteration train set will not contain a # class label X = np.random.randn(10, 5) y = np.arange(10) clf = LinearSVC(C=1.0, random_state=7) cal_clf = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) cal_clf.fit(X, y) for i, calibrated_classifier in \ enumerate(cal_clf.calibrated_classifiers_): proba = calibrated_classifier.predict_proba(X) if ensemble: # Check that the unobserved class has proba=0 assert_array_equal(proba[:, i], np.zeros(len(y))) # Check for all other classes proba>0 assert np.all(proba[:, :i] > 0) assert np.all(proba[:, i + 1:] > 0) else: # Check `proba` are all 1/n_classes assert np.allclose(proba, 1 / proba.shape[0]) @ignore_warnings(category=FutureWarning) @pytest.mark.parametrize('X', [np.random.RandomState(42).randn(15, 5, 2), np.random.RandomState(42).randn(15, 5, 2, 6)]) def test_calibration_accepts_ndarray(X): """Test that calibration accepts n-dimensional arrays as input""" y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0] class MockTensorClassifier(BaseEstimator): """A toy estimator that accepts tensor inputs""" def fit(self, X, y): self.classes_ = np.unique(y) return self def decision_function(self, X): # toy decision function that just needs to have the right shape: return X.reshape(X.shape[0], -1).sum(axis=1) calibrated_clf = CalibratedClassifierCV(MockTensorClassifier()) # we should be able to fit this classifier with no error calibrated_clf.fit(X, y) @pytest.fixture def dict_data(): dict_data = [ {'state': 'NY', 'age': 'adult'}, {'state': 'TX', 'age': 'adult'}, {'state': 'VT', 'age': 'child'}, ] text_labels = [1, 0, 1] return dict_data, text_labels @pytest.fixture def dict_data_pipeline(dict_data): X, y = dict_data pipeline_prefit = Pipeline([ ('vectorizer', DictVectorizer()), ('clf', RandomForestClassifier()) ]) return pipeline_prefit.fit(X, y) def test_calibration_dict_pipeline(dict_data, dict_data_pipeline): """Test that calibration works in prefit pipeline with transformer `X` is not array-like, sparse matrix or dataframe at the start. See https://github.com/scikit-learn/scikit-learn/issues/8710 Also test it can predict without running into validation errors. See https://github.com/scikit-learn/scikit-learn/issues/19637 """ X, y = dict_data clf = dict_data_pipeline calib_clf = CalibratedClassifierCV(clf, cv='prefit') calib_clf.fit(X, y) # Check attributes are obtained from fitted estimator assert_array_equal(calib_clf.classes_, clf.classes_) # Neither the pipeline nor the calibration meta-estimator # expose the n_features_in_ check on this kind of data. assert not hasattr(clf, 'n_features_in_') assert not hasattr(calib_clf, 'n_features_in_') # Ensure that no error is thrown with predict and predict_proba calib_clf.predict(X) calib_clf.predict_proba(X) @pytest.mark.parametrize('clf, cv', [ pytest.param(LinearSVC(C=1), 2), pytest.param(LinearSVC(C=1), 'prefit'), ]) def test_calibration_attributes(clf, cv): # Check that `n_features_in_` and `classes_` attributes created properly X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) if cv == 'prefit': clf = clf.fit(X, y) calib_clf = CalibratedClassifierCV(clf, cv=cv) calib_clf.fit(X, y) if cv == 'prefit': assert_array_equal(calib_clf.classes_, clf.classes_) assert calib_clf.n_features_in_ == clf.n_features_in_ else: classes = LabelEncoder().fit(y).classes_ assert_array_equal(calib_clf.classes_, classes) assert calib_clf.n_features_in_ == X.shape[1] def test_calibration_inconsistent_prefit_n_features_in(): # Check that `n_features_in_` from prefit base estimator # is consistent with training set X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) clf = LinearSVC(C=1).fit(X, y) calib_clf = CalibratedClassifierCV(clf, cv='prefit') msg = "X has 3 features, but LinearSVC is expecting 5 features as input." with pytest.raises(ValueError, match=msg): calib_clf.fit(X[:, :3], y) # FIXME: remove in 1.1 def test_calibrated_classifier_cv_deprecation(data): # Check that we raise the proper deprecation warning if accessing # `calibrators_` from the `_CalibratedClassifier`. X, y = data calib_clf = CalibratedClassifierCV(cv=2).fit(X, y) with pytest.warns(FutureWarning): calibrators = calib_clf.calibrated_classifiers_[0].calibrators_ for clf1, clf2 in zip( calibrators, calib_clf.calibrated_classifiers_[0].calibrators ): assert clf1 is clf2
38.321311
79
0.678046
798947b492027e7e927b2f35dad5f62b5a8b5411
3,586
py
Python
google/cloud/secretmanager/v1/secretmanager-v1-py/noxfile.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
google/cloud/secretmanager/v1/secretmanager-v1-py/noxfile.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
6
2021-02-02T23:46:11.000Z
2021-11-15T01:46:02.000Z
google/cloud/secretmanager/v1/secretmanager-v1-py/noxfile.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pathlib import shutil import subprocess import sys import nox # type: ignore CURRENT_DIRECTORY = pathlib.Path(__file__).parent.absolute() LOWER_BOUND_CONSTRAINTS_FILE = CURRENT_DIRECTORY / "constraints.txt" PACKAGE_NAME = subprocess.check_output([sys.executable, "setup.py", "--name"], encoding="utf-8") nox.sessions = [ "unit", "cover", "mypy", "check_lower_bounds" # exclude update_lower_bounds from default "docs", ] @nox.session(python=['3.6', '3.7', '3.8', '3.9']) def unit(session): """Run the unit test suite.""" session.install('coverage', 'pytest', 'pytest-cov', 'asyncmock', 'pytest-asyncio') session.install('-e', '.') session.run( 'py.test', '--quiet', '--cov=google/cloud/secretmanager_v1/', '--cov-config=.coveragerc', '--cov-report=term', '--cov-report=html', os.path.join('tests', 'unit', ''.join(session.posargs)) ) @nox.session(python='3.7') def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs (not system test runs), and then erases coverage data. """ session.install("coverage", "pytest-cov") session.run("coverage", "report", "--show-missing", "--fail-under=100") session.run("coverage", "erase") @nox.session(python=['3.6', '3.7']) def mypy(session): """Run the type checker.""" session.install('mypy', 'types-pkg_resources') session.install('.') session.run( 'mypy', '--explicit-package-bases', 'google', ) @nox.session def update_lower_bounds(session): """Update lower bounds in constraints.txt to match setup.py""" session.install('google-cloud-testutils') session.install('.') session.run( 'lower-bound-checker', 'update', '--package-name', PACKAGE_NAME, '--constraints-file', str(LOWER_BOUND_CONSTRAINTS_FILE), ) @nox.session def check_lower_bounds(session): """Check lower bounds in setup.py are reflected in constraints file""" session.install('google-cloud-testutils') session.install('.') session.run( 'lower-bound-checker', 'check', '--package-name', PACKAGE_NAME, '--constraints-file', str(LOWER_BOUND_CONSTRAINTS_FILE), ) @nox.session(python='3.6') def docs(session): """Build the docs for this library.""" session.install("-e", ".") session.install("sphinx<3.0.0", "alabaster", "recommonmark") shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", "-W", # warnings as errors "-T", # show full traceback on exception "-N", # no colors "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), )
26.962406
96
0.62744
17bd310ab2fb9541b92d2e10dc784049f6c950b4
4,735
py
Python
jax_dft/jax_dft/losses_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
jax_dft/jax_dft/losses_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
jax_dft/jax_dft/losses_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for jax_dft.losses.""" from absl.testing import absltest from jax.config import config import jax.numpy as jnp import numpy as np from jax_dft import losses # Set the default dtype as float64 config.update('jax_enable_x64', True) class LossesTest(absltest.TestCase): def test_trajectory_mse_wrong_predict_ndim(self): with self.assertRaisesRegex( ValueError, 'The size of the shape of predict should be ' 'greater or equal to 2, got 1'): losses.trajectory_mse( target=jnp.array([[0.2, 0.2, 0.2, 0.2], [0.6, 0.6, 0.6, 0.6]]), predict=jnp.array([0.6, 0.6, 0.6, 0.6]), discount=1.) def test_trajectory_mse_wrong_predict_target_ndim_difference(self): with self.assertRaisesRegex( ValueError, 'The size of the shape of predict should be greater than ' 'the size of the shape of target by 1, ' r'but got predict \(2\) and target \(2\)'): losses.trajectory_mse( target=jnp.array([[0.2, 0.2, 0.2, 0.2], [0.6, 0.6, 0.6, 0.6]]), predict=jnp.array([[0.2, 0.2, 0.2, 0.2], [0.6, 0.6, 0.6, 0.6]]), discount=1.) def test_density_mse(self): self.assertAlmostEqual( float(losses.mean_square_error( target=jnp.array([[0.2, 0.2, 0.2, 0.2], [0.6, 0.6, 0.6, 0.6]]), predict=jnp.array([[0.4, 0.5, 0.2, 0.3], [0.6, 0.6, 0.6, 0.6]]))), # (( # (0.4 - 0.2) ** 2 + (0.5 - 0.2) ** 2 # + (0.2 - 0.2) ** 2 + (0.3 - 0.2) ** 2 # ) / 4 + 0) / 2 = 0.0175 0.0175) def test_energy_mse(self): self.assertAlmostEqual( float(losses.mean_square_error( target=jnp.array([[0.2, 0.6]]), predict=jnp.array([[0.4, 0.7]]))), # ((0.4 - 0.2) ** 2 + (0.7 - 0.6) ** 2) / 2 = 0.025 0.025) def test_get_discount_coefficients(self): np.testing.assert_allclose( losses._get_discount_coefficients(num_steps=4, discount=0.8), [0.512, 0.64, 0.8, 1.]) def test_trajectory_mse_on_density(self): self.assertAlmostEqual( float(losses.trajectory_mse( target=jnp.array([[0.2, 0.2, 0.2, 0.2], [0.6, 0.6, 0.6, 0.6]]), predict=jnp.array([ [[0.4, 0.5, 0.2, 0.3], [0.3, 0.3, 0.2, 0.2], [0.3, 0.3, 0.3, 0.2]], [[0.6, 0.6, 0.6, 0.6], [0.6, 0.6, 0.6, 0.5], [0.6, 0.6, 0.6, 0.6]]]), discount=0.6)), # First sample in the batch: # ( # (0.4 - 0.2) ** 2 + (0.5 - 0.2) ** 2 # + (0.2 - 0.2) ** 2 + (0.3 - 0.2) ** 2 # ) / 4 * 0.6 * 0.6 # + ( # (0.3 - 0.2) ** 2 + (0.3 - 0.2) ** 2 # + (0.2 - 0.2) ** 2 + (0.2 - 0.2) ** 2 # ) / 4 * 0.6 # + ( # (0.3 - 0.2) ** 2 + (0.3 - 0.2) ** 2 # + (0.3 - 0.2) ** 2 + (0.2 - 0.2) ** 2 # ) / 4 = 0.0231 # Second sample in the batch: # ( # (0.6 - 0.6) ** 2 + (0.6 - 0.6) ** 2 # + (0.6 - 0.6) ** 2 + (0.6 - 0.6) ** 2 # ) / 4 * 0.6 * 0.6 # + ( # (0.6 - 0.6) ** 2 + (0.6 - 0.6) ** 2 # + (0.6 - 0.6) ** 2 + (0.5 - 0.6) ** 2 # ) / 4 * 0.6 # + ( # (0.6 - 0.6) ** 2 + (0.6 - 0.6) ** 2 # + (0.6 - 0.6) ** 2 + (0.6 - 0.6) ** 2 # ) / 4 = 0.0015 # Loss: # (0.0231 + 0.0015) / 2 = 0.0123 0.0123) def test_trajectory_mse_on_energy(self): self.assertAlmostEqual( float(losses.trajectory_mse( target=jnp.array([0.2, 0.6]), predict=jnp.array([[0.4, 0.3, 0.2], [0.7, 0.7, 0.7]]), discount=0.6)), # First sample in the batch: # ((0.4 - 0.2) ** 2 * 0.6 * 0.6 # + (0.3 - 0.2) ** 2 * 0.6 + (0.2 - 0.2) ** 2) = 0.0204 # Second sample in the batch: # ((0.7 - 0.6) ** 2 * 0.6 * 0.6 # + (0.7 - 0.6) ** 2 * 0.6 + (0.7 - 0.6) ** 2) = 0.0196 # Loss: # (0.0204 + 0.0196) / 2 = 0.02 0.02) if __name__ == '__main__': absltest.main()
34.064748
78
0.485744
47f63d016686121879c41568357ea79c17f4566a
5,509
py
Python
example/example/settings.py
stenius/django-hunger
712684dd6ff8b776db6c3245ec0a134e9cd7a66b
[ "BSD-3-Clause" ]
37
2015-01-05T16:07:20.000Z
2021-08-09T18:01:12.000Z
example/example/settings.py
stenius/django-hunger
712684dd6ff8b776db6c3245ec0a134e9cd7a66b
[ "BSD-3-Clause" ]
16
2015-01-02T14:58:29.000Z
2021-06-10T17:30:49.000Z
example/example/settings.py
stenius/django-hunger
712684dd6ff8b776db6c3245ec0a134e9cd7a66b
[ "BSD-3-Clause" ]
12
2015-01-02T15:04:16.000Z
2020-06-07T13:02:36.000Z
# Django settings for example project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'example.sqlite', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'y#rmfqpl68yg!=!ue7^(y^^sdbfrph-p*$oc0398$m@ayff@c6' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'hunger.middleware.BetaMiddleware', ) ROOT_URLCONF = 'example.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'example.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # One-week activation window; you may, of course, use a different value. ACCOUNT_ACTIVATION_DAYS = 7 EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' HUNGER_ALWAYS_ALLOW_VIEWS = ( 'registration_activation_complete', 'registration_activate', 'registration_complete', 'registration_disallowed', 'registration_register', 'home', ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.admindocs', 'registration', 'hunger', 'example', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
32.791667
108
0.691051
6a616fa066cd931ee6fa8fd30af51848c2e98180
4,191
py
Python
alien/collection.py
palexandremello/GPyM
10daa25e4d68d527c799f6bf99225b4992e43319
[ "MIT" ]
1
2021-03-08T15:47:52.000Z
2021-03-08T15:47:52.000Z
build/lib/GPyM/alien/collection.py
palexandremello/GPyM
10daa25e4d68d527c799f6bf99225b4992e43319
[ "MIT" ]
1
2019-01-08T17:56:27.000Z
2019-01-08T17:56:27.000Z
build/lib/GPyM/alien/collection.py
palexandremello/GPyM
10daa25e4d68d527c799f6bf99225b4992e43319
[ "MIT" ]
null
null
null
#! /usr/bin/python import os,sys from io import StringIO from numpy import load, save, array from numpy.lib.format import open_memmap #def cached(mode='normal',cacheName=None,cacheDir='./cached',compress='lz4'): def cached(name=None, cdir='./cached', compress=False, mode='cached', verbose=True, purge_empty_file=True): ''' mode : in ['cached', # read from cached file if exists 'skip' , # skip caching process 'update' # force to update cached file ] or False compress : in ['lz4', False] ''' def wrapper(func): def inner(*args, **kwargs): mode = wrapper.mode name = wrapper.name cdir = wrapper.cdir compress = wrapper.compress verbose = wrapper.verbose if mode in [False, 'skip'] : return func( *args, **kwargs ) if name == None : name = func.__name__ if not os.path.exists(cdir) : os.makedirs(cdir) cachePath = os.path.join(cdir, name) if compress : import lz4 if os.path.exists( cachePath ) and mode != 'update': if compress == 'lz4': cached = StringIO( lz4.loads( open(cachePath,'r').read() ) ) else: cached = cachePath #cached = open(cachePath,'r') if verbose: print ('\t!! Cached from %s'%cachePath) aOut = load( cached ) if aOut.shape != () or purge_empty_file == False: return aOut else: os.remove( cachePath ) raise ValueError ('empty cache file (erased): %s'%(cachePath)) if os.path.exists( cachePath ) == False or mode == 'update': aOut = func( *args, **kwargs ) if compress == 'lz4': cached = StringIO() save( cached, aOut ) open(cachePath,'w').write( lz4.dumps( cached.getvalue() ) ) else: fCache = open(cachePath,'wb') save( fCache, aOut ) fCache.close() if verbose: print ('\t!! Cached to %s'%cachePath) return aOut raise KeyError('failed exception handling for %s and %s'%( cachePath, mode )) return inner wrapper.name = name wrapper.mode = mode wrapper.cdir = cdir wrapper.compress = compress wrapper.verbose = verbose return wrapper # push_cache, pop_cache def push_cache(aOut,varName,itrmCode,timeCode,cacheDir=None,ow=False): if cacheDir == None: baseDir = './cached/%s.%s'%(varName,itrmCode) else: baseDir = cacheDir if not os.path.exists(baseDir): os.makedirs(baseDir) outPath = os.path.join(baseDir,'%s.%s.%s.npy'%(varName,itrmCode,timeCode)) if os.path.exists(outPath) and ow == False: # file size and array size compare [ToDo] return False else: save(outPath, aOut.astype('float32')) # better dtype treatment [ToDo] return True def pop_cache(varName,itrmCode,timeCode,func,args,cacheDir=None,cache=True,mmap=None,returnTF=False): if cacheDir == None: baseDir = './%s.%s'%(varName,itrmCode) else: baseDir = cacheDir srcPath = os.path.join(baseDir,'%s.%s.%s.npy'%(varName,itrmCode,timeCode)) if os.path.exists(srcPath) and cache != 'ow': aSrc = load(srcPath, mmap_mode=mmap) else: # replace None with srcPath to cache if func == open_memmap: if not os.path.exists(baseDir): os.makedirs(baseDir) aSrc= func(srcPath, *args) else: aSrc = func(*args) ow = True if cache == 'ow' else False if cache == True: push_cache(aSrc,varName,itrmCode,timeCode,cacheDir=cacheDir,ow=ow) if returnTF : return aSrc,False else : return aSrc
29.723404
107
0.524457
0289bad5728f65310e0e375e28fdc85258bae863
1,309
py
Python
SayuBot/helper/mongo_connect.py
TaprisSugarbell/SayUbot
8c8beea35af3229d24cdbdd7b03063e9c52a4346
[ "MIT" ]
null
null
null
SayuBot/helper/mongo_connect.py
TaprisSugarbell/SayUbot
8c8beea35af3229d24cdbdd7b03063e9c52a4346
[ "MIT" ]
null
null
null
SayuBot/helper/mongo_connect.py
TaprisSugarbell/SayUbot
8c8beea35af3229d24cdbdd7b03063e9c52a4346
[ "MIT" ]
null
null
null
import os from dotenv import load_dotenv from .mongo_db import * # Variables load_dotenv() URI = os.getenv("URI") async def confirm(user_db, data=None): if data is None: data = {} return user_db.find(data) async def add_(user_db, data=None): if data is None: data = {} return user_db.insert_one(data) async def update_(user_db, old_data=None, new_data=None): if old_data is None: old_data = {} if new_data is None: new_data = {} return user_db.update_one(old_data, new_data) async def remove_(user_db, data=None): if data is None: data = {} return user_db.delete_one(data) def confirm_ofdb(user_db, data=None): if data is None: data = {} return user_db.find(data) def add_ofdb(user_db, data=None): if data is None: data = {} return user_db.insert_one(data) def update_ofdb(user_db, old_data=None, new_data=None): if old_data is None: old_data = {} if new_data is None: new_data = {} return user_db.update_one(old_data, new_data) def remove_ofdb(user_db, data=None): if data is None: data = {} return user_db.delete_one(data) def remove_many(user_db, data=None): if data is None: data = {} return user_db.delete_many(data)
19.833333
57
0.644003
d95609461e5c7bec13a9db646f0fec586a4e130f
1,646
py
Python
src/data_utils/utils.py
NoOneUST/COMP5212
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
3
2020-04-05T06:50:46.000Z
2020-04-05T08:20:33.000Z
src/data_utils/utils.py
NoOneUST/COMP5212Project
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
2
2021-05-21T16:24:54.000Z
2022-02-10T01:21:54.000Z
src/data_utils/utils.py
NoOneUST/COMP5212Project
171b564f08841e426545f58e3b52870c0e090586
[ "MIT" ]
1
2020-06-15T16:22:20.000Z
2020-06-15T16:22:20.000Z
# This file is for all utility functions import os import pickle import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def save(toBeSaved, filename, mode='wb'): dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) file = open(filename, mode) pickle.dump(toBeSaved, file, protocol=4) # protocol 4 allows large size object, it's the default since python 3.8 file.close() def load(filename, mode='rb'): file = open(filename, mode) loaded = pickle.load(file) file.close() return loaded def pad_sents(sents, pad_token=0, max_len=512): sents_padded = [] lens = get_lens(sents) max_len = min(max(lens), max_len) sents_padded = [] new_len = [] for i, l in enumerate(lens): if l > max_len: l = max_len new_len.append(l) sents_padded.append(sents[i][:l] + [pad_token] * (max_len - l)) return sents_padded, new_len def sort_sents(sents, reverse=True): sents.sort(key=(lambda s: len(s)), reverse=reverse) return sents def get_mask(sents, unmask_idx=1, mask_idx=0, max_len=512): lens = get_lens(sents) max_len = min(max(lens), max_len) mask = [] for l in lens: if l > max_len: l = max_len mask.append([unmask_idx] * l + [mask_idx] * (max_len - l)) return mask def get_lens(sents): return [len(sent) for sent in sents] def get_max_len(sents): max_len = max([len(sent) for sent in sents]) return max_len def truncate_sents(self, sents, length): sents = [sent[:length] for sent in sents] return sents
26.983607
117
0.648846
ad1c2678690b6d50f0643b1acbca097ffe30ae5d
1,581
py
Python
estimated_demo/plot_spec.py
IPCV/VocaLiST
57d8df6252e1badeb00874591aa2cb9111557468
[ "MIT" ]
null
null
null
estimated_demo/plot_spec.py
IPCV/VocaLiST
57d8df6252e1badeb00874591aa2cb9111557468
[ "MIT" ]
null
null
null
estimated_demo/plot_spec.py
IPCV/VocaLiST
57d8df6252e1badeb00874591aa2cb9111557468
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import librosa import librosa.display import os import pydub from pathlib import Path NFFT = 1022 HOP_LENGTH = 256 TARGET_SAMPLING_RATE = 16384 wav_files = Path('.').rglob('*.wav') for file in wav_files: file_path = file.as_posix() """ if ('mod' in file_path) or (('6Ws1WKA4z2k_0_35_to_0_48' in file_path) \ or ('cttFanV0o7c_0_07_to_2_44' in file_path) \ or ('pRh9rKd2j64_0_15_to_0_55' in file_path) \ or ('sEnTMgzw8ow_1_5_to_2_07' in file_path) \ or ('sEnTMgzw8ow_1_29_to_1_47' in file_path) \ or ('sEnTMgzw8ow_2_38_to_2_53' in file_path) \ or ('tcol' in file_path) \ or ('vyu3HU3XWi4_2_04_to_2_14' in file_path)): """ if ('mod' in file_path): file_name = os.path.basename(file_path) folder_path = os.path.dirname(file_path) output_path = os.path.join(folder_path, file_name[:-4] + '.png') y, sr = librosa.load(file_path, sr=16384) sound = pydub.AudioSegment.from_wav(file_path) sound.export(file_path[:-4]+'.mp3', format="mp3") stft = librosa.stft(y, n_fft=NFFT, hop_length=HOP_LENGTH) D = librosa.amplitude_to_db(np.absolute(stft), ref=np.max) librosa.display.specshow(D, sr=sr, hop_length=HOP_LENGTH, x_axis='time', cmap='Reds', y_axis='linear') plt.ylabel(None) plt.xlabel(None) plt.savefig(output_path, bbox_inches='tight') #plt.show()
36.767442
110
0.635674
cad4dc2f6dadc96da099c0329e57d4c624316ba0
10,255
py
Python
src/twisted/plugins/cowrie_plugin.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
src/twisted/plugins/cowrie_plugin.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
src/twisted/plugins/cowrie_plugin.py
GreyNoise-Intelligence/cowrie
d2a9b30f5fd23428baf32e2de1d24e944cf8cde7
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2015 Michel Oosterhof <michel@oosterhof.net> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The names of the author(s) may not be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. import os import sys from backend_pool.pool_server import PoolServerFactory from twisted._version import __version__ as __twisted_version__ from twisted.application import service from twisted.application.service import IServiceMaker from twisted.cred import portal from twisted.internet import reactor from twisted.logger import ILogObserver, globalLogPublisher from twisted.plugin import IPlugin from twisted.python import log, usage from zope.interface import implementer, provider import cowrie.core.checkers import cowrie.core.realm import cowrie.ssh.factory import cowrie.telnet.factory from cowrie import core from cowrie._version import __version__ as __cowrie_version__ from cowrie.core.config import CowrieConfig from cowrie.core.utils import create_endpoint_services, get_endpoints_from_section from cowrie.pool_interface.handler import PoolHandler if __twisted_version__.major < 17: raise ImportError( "Your version of Twisted is too old. Please ensure your virtual environment is set up correctly." ) class Options(usage.Options): """ This defines commandline options and flags """ # The '-c' parameters is currently ignored optParameters = [] optFlags = [["help", "h", "Display this help and exit."]] @provider(ILogObserver) def importFailureObserver(event): if "failure" in event and event["failure"].type is ImportError: log.err( "ERROR: %s. Please run `pip install -U -r requirements.txt` " "from Cowrie's install directory and virtualenv to install " "the new dependency" % event["failure"].value.message ) globalLogPublisher.addObserver(importFailureObserver) @implementer(IServiceMaker, IPlugin) class CowrieServiceMaker: tapname = "cowrie" description = "She sells sea shells by the sea shore." options = Options output_plugins = None def __init__(self): self.topService = None self.pool_handler = None # ssh is enabled by default self.enableSSH = CowrieConfig().getboolean("ssh", "enabled", fallback=True) # telnet is disabled by default self.enableTelnet = CowrieConfig().getboolean( "telnet", "enabled", fallback=False ) # pool is disabled by default, but need to check this setting in case user only wants to run the pool self.pool_only = CowrieConfig().getboolean( "backend_pool", "pool_only", fallback=False ) def makeService(self, options): """ Construct a TCPServer from a factory defined in Cowrie. """ if options["help"] is True: print( """Usage: twistd [options] cowrie [-h] Options: -h, --help print this help message. Makes a Cowrie SSH/Telnet honeypot. """ ) sys.exit(1) if os.name == "posix" and os.getuid() == 0: print("ERROR: You must not run cowrie as root!") sys.exit(1) tz = CowrieConfig().get("honeypot", "timezone", fallback="UTC") # `system` means use the system time zone if tz != "system": os.environ["TZ"] = tz log.msg("Python Version {}".format(str(sys.version).replace("\n", ""))) log.msg( "Twisted Version {}.{}.{}".format( __twisted_version__.major, __twisted_version__.minor, __twisted_version__.micro, ) ) log.msg( "Cowrie Version {}.{}.{}".format( __cowrie_version__.major, __cowrie_version__.minor, __cowrie_version__.micro, ) ) # check configurations if not self.enableTelnet and not self.enableSSH and not self.pool_only: print( "ERROR: You must at least enable SSH or Telnet, or run the backend pool" ) sys.exit(1) # Load output modules self.output_plugins = [] for x in CowrieConfig().sections(): if not x.startswith("output_"): continue if CowrieConfig().getboolean(x, "enabled") is False: continue engine = x.split("_")[1] try: output = __import__( f"cowrie.output.{engine}", globals(), locals(), ["output"] ).Output() log.addObserver(output.emit) self.output_plugins.append(output) log.msg(f"Loaded output engine: {engine}") except ImportError as e: log.err( f"Failed to load output engine: {engine} due to ImportError: {e}" ) log.msg( f"Please install the dependencies for {engine} listed in requirements-output.txt" ) except Exception: log.err() log.msg(f"Failed to load output engine: {engine}") self.topService = service.MultiService() application = service.Application("cowrie") self.topService.setServiceParent(application) # initialise VM pool handling - only if proxy AND pool set to enabled, and pool is to be deployed here # or also enabled if pool_only is true backend_type = CowrieConfig().get("honeypot", "backend", fallback="shell") proxy_backend = CowrieConfig().get("proxy", "backend", fallback="simple") if (backend_type == "proxy" and proxy_backend == "pool") or self.pool_only: # in this case we need to set some kind of pool connection local_pool = ( CowrieConfig().get("proxy", "pool", fallback="local") == "local" ) pool_host = CowrieConfig().get("proxy", "pool_host", fallback="127.0.0.1") pool_port = CowrieConfig().getint("proxy", "pool_port", fallback=6415) if local_pool or self.pool_only: # start a pool locally f = PoolServerFactory() f.tac = self listen_endpoints = get_endpoints_from_section( CowrieConfig(), "backend_pool", 6415 ) create_endpoint_services(reactor, self.topService, listen_endpoints, f) pool_host = "127.0.0.1" # force use of local interface # either way (local or remote) we set up a client to the pool # unless this instance has no SSH and Telnet (pool only) if (self.enableTelnet or self.enableSSH) and not self.pool_only: self.pool_handler = PoolHandler(pool_host, pool_port, self) else: # we initialise the services directly self.pool_ready() return self.topService def pool_ready(self): backend = CowrieConfig().get("honeypot", "backend", fallback="shell") # this method is never called if self.pool_only is False, # since we do not start the pool handler that would call it if self.enableSSH: factory = cowrie.ssh.factory.CowrieSSHFactory(backend, self.pool_handler) factory.tac = self factory.portal = portal.Portal(core.realm.HoneyPotRealm()) factory.portal.registerChecker(core.checkers.HoneypotPublicKeyChecker()) factory.portal.registerChecker(core.checkers.HoneypotPasswordChecker()) if CowrieConfig().getboolean("ssh", "auth_none_enabled", fallback=False): factory.portal.registerChecker(core.checkers.HoneypotNoneChecker()) if CowrieConfig().has_section("ssh"): listen_endpoints = get_endpoints_from_section( CowrieConfig(), "ssh", 2222 ) else: listen_endpoints = get_endpoints_from_section( CowrieConfig(), "honeypot", 2222 ) create_endpoint_services( reactor, self.topService, listen_endpoints, factory ) if self.enableTelnet: f = cowrie.telnet.factory.HoneyPotTelnetFactory(backend, self.pool_handler) f.tac = self f.portal = portal.Portal(core.realm.HoneyPotRealm()) f.portal.registerChecker(core.checkers.HoneypotPasswordChecker()) listen_endpoints = get_endpoints_from_section( CowrieConfig(), "telnet", 2223 ) create_endpoint_services(reactor, self.topService, listen_endpoints, f) # Now construct an object which *provides* the relevant interfaces # The name of this variable is irrelevant, as long as there is *some* # name bound to a provider of IPlugin and IServiceMaker. serviceMaker = CowrieServiceMaker()
37.981481
110
0.637933
9ece9ebf1ab707d374708beae2a7622c7536124a
571
py
Python
example.py
lijielife/carp
376e1a03da6594a567ddf15dde76008a4b126647
[ "MIT" ]
1
2021-03-02T15:48:57.000Z
2021-03-02T15:48:57.000Z
example.py
lijielife/carp
376e1a03da6594a567ddf15dde76008a4b126647
[ "MIT" ]
null
null
null
example.py
lijielife/carp
376e1a03da6594a567ddf15dde76008a4b126647
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from carp import context from carp import util from carp import render ## sync 数据 context.sync_history_bar() ## 获取stocks list symbols = context.get_stock_list() print(symbols) basic = context.get_basic() print(context.get_date_bars('000002', '2015-11-11', '2018-05-11', freq = util.FREQ_DAY)) print(context.get_count_bars('000002', None, limit = 20, freq = util.FREQ_DAY)) r = render.StockBarRender.create('000002', '2017-10-10', '2018-03-20', util.FREQ_DAY) page = render.WebPage('test') page.add(r) page.show()
19.033333
88
0.711033
4352a944808cc79870e942f94f656d843fa960bc
806
py
Python
plotly/validators/scatter/_unselected.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/scatter/_unselected.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/scatter/_unselected.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class UnselectedValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name='unselected', parent_name='scatter', **kwargs ): super(UnselectedValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop('data_class_str', 'Unselected'), data_docs=kwargs.pop( 'data_docs', """ marker plotly.graph_objs.scatter.unselected.Marker instance or dict with compatible properties textfont plotly.graph_objs.scatter.unselected.Textfont instance or dict with compatible properties """ ), **kwargs )
32.24
74
0.609181
7b7b18a8ae64666710395926c57ec74abb88bd2f
386
py
Python
src/DocClustering/heuristics/pubmed.py
jd-s/DocClustering
a7d4acff8464f960558cf9cc6d03de78d07d56bf
[ "Apache-2.0" ]
null
null
null
src/DocClustering/heuristics/pubmed.py
jd-s/DocClustering
a7d4acff8464f960558cf9cc6d03de78d07d56bf
[ "Apache-2.0" ]
null
null
null
src/DocClustering/heuristics/pubmed.py
jd-s/DocClustering
a7d4acff8464f960558cf9cc6d03de78d07d56bf
[ "Apache-2.0" ]
null
null
null
from bs4 import BeautifulSoup import requests def get_year(id): r = requests.get('https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&id='+str(id)) html = r.text # Setup the BeautifulSoup Parser soup = BeautifulSoup(html, 'html.parser') year = soup.findAll(attrs={"name" : "PubDate"}) value = "0000" for val in year: value = val.text return int(value[0:4])
27.571429
102
0.712435
3f27c92ef40a5bd0e612a1feeebd853238c49340
745
py
Python
notifier/grabbers/crwle.py
thejeshpr/notifier
c9c8df0bea1e772a7f5f72cd8d67ac67bd3803ca
[ "MIT" ]
null
null
null
notifier/grabbers/crwle.py
thejeshpr/notifier
c9c8df0bea1e772a7f5f72cd8d67ac67bd3803ca
[ "MIT" ]
null
null
null
notifier/grabbers/crwle.py
thejeshpr/notifier
c9c8df0bea1e772a7f5f72cd8d67ac67bd3803ca
[ "MIT" ]
null
null
null
import urllib.parse from notifier.grabbers.base import Base, Internet class Crwle(object): @staticmethod def sync(obj: Base, *args, **kwargs): soup = Internet.get_soup_phjs(obj.sync_type.base_url) links = soup.find_all('a', {'class':'o-eZTujG o-fyWCgU'}) for a in links[::-1]: link = a.get('href') url = urllib.parse.urljoin(obj.sync_type.base_url, link) name = a.text.strip() obj.add_text_task( unique_key=url, name=name, url=url, data=dict(text=url) )
29.8
80
0.448322
aefff09fae62f37955948fc01028a260336e4d33
8,069
py
Python
python/ray/tests/test_cancel.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
39
2021-02-02T23:09:31.000Z
2022-03-28T16:39:12.000Z
python/ray/tests/test_cancel.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
84
2021-03-06T08:02:56.000Z
2022-03-05T08:07:19.000Z
python/ray/tests/test_cancel.py
77loopin/ray
9322f6aab53f4ca5baf5a3573e1ffde12feae519
[ "Apache-2.0" ]
20
2021-02-05T05:51:39.000Z
2022-03-04T21:13:24.000Z
import random import sys import time import pytest import ray from ray.exceptions import TaskCancelledError, RayTaskError, \ GetTimeoutError, WorkerCrashedError, \ ObjectLostError from ray.test_utils import SignalActor def valid_exceptions(use_force): if use_force: return (RayTaskError, TaskCancelledError, WorkerCrashedError, ObjectLostError) else: return (RayTaskError, TaskCancelledError) @pytest.mark.parametrize("use_force", [True, False]) def test_cancel_chain(ray_start_regular, use_force): signaler = SignalActor.remote() @ray.remote def wait_for(t): return ray.get(t[0]) obj1 = wait_for.remote([signaler.wait.remote()]) obj2 = wait_for.remote([obj1]) obj3 = wait_for.remote([obj2]) obj4 = wait_for.remote([obj3]) assert len(ray.wait([obj1], timeout=.1)[0]) == 0 ray.cancel(obj1, force=use_force) for ob in [obj1, obj2, obj3, obj4]: with pytest.raises(valid_exceptions(use_force)): ray.get(ob) signaler2 = SignalActor.remote() obj1 = wait_for.remote([signaler2.wait.remote()]) obj2 = wait_for.remote([obj1]) obj3 = wait_for.remote([obj2]) obj4 = wait_for.remote([obj3]) assert len(ray.wait([obj3], timeout=.1)[0]) == 0 ray.cancel(obj3, force=use_force) for ob in [obj3, obj4]: with pytest.raises(valid_exceptions(use_force)): ray.get(ob) with pytest.raises(GetTimeoutError): ray.get(obj1, timeout=.1) with pytest.raises(GetTimeoutError): ray.get(obj2, timeout=.1) signaler2.send.remote() ray.get(obj1) @pytest.mark.parametrize("use_force", [True, False]) def test_cancel_multiple_dependents(ray_start_regular, use_force): signaler = SignalActor.remote() @ray.remote def wait_for(t): return ray.get(t[0]) head = wait_for.remote([signaler.wait.remote()]) deps = [] for _ in range(3): deps.append(wait_for.remote([head])) assert len(ray.wait([head], timeout=.1)[0]) == 0 ray.cancel(head, force=use_force) for d in deps: with pytest.raises(valid_exceptions(use_force)): ray.get(d) head2 = wait_for.remote([signaler.wait.remote()]) deps2 = [] for _ in range(3): deps2.append(wait_for.remote([head])) for d in deps2: ray.cancel(d, force=use_force) for d in deps2: with pytest.raises(valid_exceptions(use_force)): ray.get(d) signaler.send.remote() ray.get(head2) @pytest.mark.parametrize("use_force", [True, False]) def test_single_cpu_cancel(shutdown_only, use_force): ray.init(num_cpus=1) signaler = SignalActor.remote() @ray.remote def wait_for(t): return ray.get(t[0]) obj1 = wait_for.remote([signaler.wait.remote()]) obj2 = wait_for.remote([obj1]) obj3 = wait_for.remote([obj2]) indep = wait_for.remote([signaler.wait.remote()]) assert len(ray.wait([obj3], timeout=.1)[0]) == 0 ray.cancel(obj3, force=use_force) with pytest.raises(valid_exceptions(use_force)): ray.get(obj3) ray.cancel(obj1, force=use_force) for d in [obj1, obj2]: with pytest.raises(valid_exceptions(use_force)): ray.get(d) signaler.send.remote() ray.get(indep) @pytest.mark.parametrize("use_force", [True, False]) def test_comprehensive(ray_start_regular, use_force): signaler = SignalActor.remote() @ray.remote def wait_for(t): ray.get(t[0]) return "Result" @ray.remote def combine(a, b): return str(a) + str(b) a = wait_for.remote([signaler.wait.remote()]) b = wait_for.remote([signaler.wait.remote()]) combo = combine.remote(a, b) a2 = wait_for.remote([a]) assert len(ray.wait([a, b, a2, combo], timeout=1)[0]) == 0 ray.cancel(a, force=use_force) with pytest.raises(valid_exceptions(use_force)): ray.get(a, timeout=10) with pytest.raises(valid_exceptions(use_force)): ray.get(a2, timeout=10) signaler.send.remote() with pytest.raises(valid_exceptions(use_force)): ray.get(combo) # Running this test with use_force==False is flaky. # TODO(ilr): Look into the root of this flakiness. @pytest.mark.parametrize("use_force", [True]) def test_stress(shutdown_only, use_force): ray.init(num_cpus=1) @ray.remote def infinite_sleep(y): if y: while True: time.sleep(1 / 10) first = infinite_sleep.remote(True) sleep_or_no = [random.randint(0, 1) for _ in range(100)] tasks = [infinite_sleep.remote(i) for i in sleep_or_no] cancelled = set() # Randomly kill queued tasks (infinitely sleeping or not). for t in tasks: if random.random() > 0.5: ray.cancel(t, force=use_force) cancelled.add(t) ray.cancel(first, force=use_force) cancelled.add(first) for done in cancelled: with pytest.raises(valid_exceptions(use_force)): ray.get(done, timeout=120) # Kill all infinitely sleeping tasks (queued or not). for indx, t in enumerate(tasks): if sleep_or_no[indx]: ray.cancel(t, force=use_force) cancelled.add(t) for indx, t in enumerate(tasks): if t in cancelled: with pytest.raises(valid_exceptions(use_force)): ray.get(t, timeout=120) else: ray.get(t, timeout=120) @pytest.mark.parametrize("use_force", [True, False]) def test_fast(shutdown_only, use_force): ray.init(num_cpus=2) @ray.remote def fast(y): return y signaler = SignalActor.remote() ids = list() for _ in range(100): x = fast.remote("a") # NOTE If a non-force Cancellation is attempted in the time # between a worker receiving a task and the worker executing # that task (specifically the python execution), Cancellation # can fail. time.sleep(0.1) ray.cancel(x, force=use_force) ids.append(x) @ray.remote def wait_for(y): return y sig = signaler.wait.remote() for _ in range(5000): x = wait_for.remote(sig) ids.append(x) for idx in range(100, 5100): if random.random() > 0.95: ray.cancel(ids[idx], force=use_force) signaler.send.remote() for i, obj_ref in enumerate(ids): try: ray.get(obj_ref, timeout=120) except Exception as e: assert isinstance( e, valid_exceptions(use_force)), f"Failure on iteration: {i}" @pytest.mark.parametrize("use_force", [True, False]) def test_remote_cancel(ray_start_regular, use_force): signaler = SignalActor.remote() @ray.remote def wait_for(y): return ray.get(y[0]) @ray.remote def remote_wait(sg): return [wait_for.remote([sg[0]])] sig = signaler.wait.remote() outer = remote_wait.remote([sig]) inner = ray.get(outer)[0] with pytest.raises(GetTimeoutError): ray.get(inner, timeout=1) ray.cancel(inner, force=use_force) with pytest.raises(valid_exceptions(use_force)): ray.get(inner, timeout=10) @pytest.mark.parametrize("use_force", [True, False]) def test_recursive_cancel(shutdown_only, use_force): ray.init(num_cpus=4) @ray.remote(num_cpus=1) def inner(): while True: time.sleep(0.1) @ray.remote(num_cpus=1) def outer(): x = [inner.remote()] print(x) while True: time.sleep(0.1) @ray.remote(num_cpus=4) def many_resources(): return 300 outer_fut = outer.remote() many_fut = many_resources.remote() with pytest.raises(GetTimeoutError): ray.get(many_fut, timeout=1) ray.cancel(outer_fut) with pytest.raises(valid_exceptions(use_force)): ray.get(outer_fut, timeout=10) assert ray.get(many_fut, timeout=30) if __name__ == "__main__": sys.exit(pytest.main(["-v", __file__]))
26.283388
77
0.629446
5b349a0a5c079357a78fed800a07cc4451658207
55,135
py
Python
src/azure-cli/azure/cli/command_modules/storage/_help.py
dyna-dot/azure-cli
47d67e6e47a574a82b53c181084b29479aa92d51
[ "MIT" ]
1
2019-10-01T10:29:15.000Z
2019-10-01T10:29:15.000Z
src/azure-cli/azure/cli/command_modules/storage/_help.py
dyna-dot/azure-cli
47d67e6e47a574a82b53c181084b29479aa92d51
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/storage/_help.py
dyna-dot/azure-cli
47d67e6e47a574a82b53c181084b29479aa92d51
[ "MIT" ]
1
2019-11-25T19:33:05.000Z
2019-11-25T19:33:05.000Z
# coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=unused-import # pylint: disable=line-too-long, too-many-lines helps['storage'] = """ type: group short-summary: Manage Azure Cloud Storage resources. """ helps['storage account'] = """ type: group short-summary: Manage storage accounts. """ helps['storage account create'] = """ type: command short-summary: Create a storage account. long-summary: > The SKU of the storage account defaults to 'Standard_RAGRS'. examples: - name: Create a storage account 'MyStorageAccount' in resource group 'MyResourceGroup' in the West US region with locally redundant storage. text: az storage account create -n MyStorageAccount -g MyResourceGroup -l westus --sku Standard_LRS unsupported-profiles: 2017-03-09-profile - name: Create a storage account 'MyStorageAccount' in resource group 'MyResourceGroup' in the West US region with locally redundant storage. text: az storage account create -n MyStorageAccount -g MyResourceGroup -l westus --account-type Standard_LRS supported-profiles: 2017-03-09-profile """ helps['storage account delete'] = """ type: command short-summary: Delete a storage account. examples: - name: Delete a storage account using a resource ID. text: az storage account delete --ids /subscriptions/{SubID}/resourceGroups/{ResourceGroup}/providers/Microsoft.Storage/storageAccounts/{StorageAccount} - name: Delete a storage account using an account name and resource group. text: az storage account delete -n MyStorageAccount -g MyResourceGroup """ helps['storage account generate-sas'] = """ type: command parameters: - name: --services short-summary: 'The storage services the SAS is applicable for. Allowed values: (b)lob (f)ile (q)ueue (t)able. Can be combined.' - name: --resource-types short-summary: 'The resource types the SAS is applicable for. Allowed values: (s)ervice (c)ontainer (o)bject. Can be combined.' - name: --expiry short-summary: Specifies the UTC datetime (Y-m-d'T'H:M'Z') at which the SAS becomes invalid. - name: --start short-summary: Specifies the UTC datetime (Y-m-d'T'H:M'Z') at which the SAS becomes valid. Defaults to the time of the request. - name: --account-name short-summary: 'Storage account name. Must be used in conjunction with either storage account key or a SAS token. Environment Variable: AZURE_STORAGE_ACCOUNT' examples: - name: Generate a sas token for the account that is valid for queue and table services on Linux. text: | end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'` az storage account generate-sas --permissions cdlruwap --account-name MyStorageAccount --services qt --resource-types sco --expiry $end -o tsv - name: Generate a sas token for the account that is valid for queue and table services on MacOS. text: | end=`date -v+30M '+%Y-%m-%dT%H:%MZ'` az storage account generate-sas --permissions cdlruwap --account-name MyStorageAccount --services qt --resource-types sco --expiry $end -o tsv - name: Generates a shared access signature for the account (autogenerated) text: az storage account generate-sas --account-key 00000000 --account-name MyStorageAccount --expiry 2020-01-01 --https-only --permissions acuw --resource-types co --services bfqt crafted: true """ helps['storage account keys'] = """ type: group short-summary: Manage storage account keys. """ helps['storage account keys list'] = """ type: command short-summary: List the primary and secondary keys for a storage account. examples: - name: List the primary and secondary keys for a storage account. text: az storage account keys list -g MyResourceGroup -n MyStorageAccount """ helps['storage account list'] = """ type: command short-summary: List storage accounts. examples: - name: List all storage accounts in a subscription. text: az storage account list - name: List all storage accounts in a resource group. text: az storage account list -g MyResourceGroup """ helps['storage account management-policy'] = """ type: group short-summary: Manage storage account management policies. """ helps['storage account management-policy create'] = """ type: command short-summary: Creates the data policy rules associated with the specified storage account. """ helps['storage account management-policy update'] = """ type: command short-summary: Updates the data policy rules associated with the specified storage account. """ helps['storage account network-rule'] = """ type: group short-summary: Manage network rules. """ helps['storage account network-rule add'] = """ type: command short-summary: Add a network rule. long-summary: > Rules can be created for an IPv4 address, address range (CIDR format), or a virtual network subnet. examples: - name: Create a rule to allow a specific address-range. text: az storage account network-rule add -g myRg --account-name mystorageaccount --ip-address 23.45.1.0/24 - name: Create a rule to allow access for a subnet. text: az storage account network-rule add -g myRg --account-name mystorageaccount --vnet myvnet --subnet mysubnet """ helps['storage account network-rule list'] = """ type: command short-summary: List network rules. examples: - name: List network rules. (autogenerated) text: az storage account network-rule list --account-name MyAccount --resource-group MyResourceGroup crafted: true """ helps['storage account network-rule remove'] = """ type: command short-summary: Remove a network rule. examples: - name: Remove a network rule. (autogenerated) text: az storage account network-rule remove --account-name MyAccount --resource-group MyResourceGroup --subnet mysubnet crafted: true - name: Remove a network rule. (autogenerated) text: az storage account network-rule remove --account-name MyAccount --ip-address 23.45.1.0/24 --resource-group MyResourceGroup crafted: true """ helps['storage account revoke-delegation-keys'] = """ type: command short-summary: Revoke all user delegation keys for a storage account. examples: - name: Revoke all user delegation keys for a storage account by resource ID. text: az storage account revoke-delegation-keys --ids /subscriptions/{SubID}/resourceGroups/{ResourceGroup}/providers/Microsoft.Storage/storageAccounts/{StorageAccount} - name: Revoke all user delegation keys for a storage account 'MyStorageAccount' in resource group 'MyResourceGroup' in the West US region with locally redundant storage. text: az storage account revoke-delegation-keys -n MyStorageAccount -g MyResourceGroup """ helps['storage account show'] = """ type: command short-summary: Show storage account properties. examples: - name: Show properties for a storage account by resource ID. text: az storage account show --ids /subscriptions/{SubID}/resourceGroups/{ResourceGroup}/providers/Microsoft.Storage/storageAccounts/{StorageAccount} - name: Show properties for a storage account using an account name and resource group. text: az storage account show -g MyResourceGroup -n MyStorageAccount """ helps['storage account show-connection-string'] = """ type: command short-summary: Get the connection string for a storage account. examples: - name: Get a connection string for a storage account. text: az storage account show-connection-string -g MyResourceGroup -n MyStorageAccount - name: Get the connection string for a storage account. (autogenerated) text: az storage account show-connection-string --name MyStorageAccount --resource-group MyResourceGroup --subscription MySubscription crafted: true """ helps['storage account show-usage'] = """ type: command short-summary: Show the current count and limit of the storage accounts under the subscription. examples: - name: Show the current count and limit of the storage accounts under the subscription. (autogenerated) text: az storage account show-usage --location westus2 crafted: true """ helps['storage account update'] = """ type: command short-summary: Update the properties of a storage account. examples: - name: Update the properties of a storage account. (autogenerated) text: az storage account update --default-action Allow --name MyStorageAccount --resource-group MyResourceGroup crafted: true """ helps['storage blob'] = """ type: group short-summary: Manage object storage for unstructured data (blobs). """ helps['storage blob copy'] = """ type: group short-summary: Manage blob copy operations. Use `az storage blob show` to check the status of the blobs. """ helps['storage blob copy start'] = """ type: command short-summary: Copies a blob asynchronously. Use `az storage blob show` to check the status of the blobs. examples: - name: Copies a blob asynchronously. Use `az storage blob show` to check the status of the blobs. (autogenerated) text: az storage blob copy start --account-key 00000000 --account-name MyAccount --destination-blob MyDestinationBlob --destination-container MyDestinationContainer --source-uri https://storage.blob.core.windows.net/photos crafted: true """ helps['storage blob copy start-batch'] = """ type: command short-summary: Copy multiple blobs or files to a blob container. Use `az storage blob show` to check the status of the blobs. parameters: - name: --destination-container -c type: string short-summary: The blob container where the selected source files or blobs will be copied to. - name: --pattern type: string short-summary: The pattern used for globbing files or blobs in the source. The supported patterns are '*', '?', '[seq', and '[!seq]'. - name: --dryrun type: bool short-summary: List the files or blobs to be uploaded. No actual data transfer will occur. - name: --source-account-name type: string short-summary: The source storage account from which the files or blobs are copied to the destination. If omitted, the source account is used. - name: --source-account-key type: string short-summary: The account key for the source storage account. - name: --source-container type: string short-summary: The source container from which blobs are copied. - name: --source-share type: string short-summary: The source share from which files are copied. - name: --source-uri type: string short-summary: A URI specifying a file share or blob container from which the files or blobs are copied. long-summary: If the source is in another account, the source must either be public or be authenticated by using a shared access signature. - name: --source-sas type: string short-summary: The shared access signature for the source storage account. examples: - name: Copy multiple blobs or files to a blob container. Use `az storage blob show` to check the status of the blobs. (autogenerated) text: az storage blob copy start-batch --account-key 00000000 --account-name MyAccount --destination-container MyDestinationContainer --source-account-key MySourceKey --source-account-name MySourceAccount --source-container MySourceContainer crafted: true """ helps['storage blob delete'] = """ type: command short-summary: Mark a blob or snapshot for deletion. long-summary: > The blob is marked for later deletion during garbage collection. In order to delete a blob, all of its snapshots must also be deleted. Both can be removed at the same time. examples: - name: Delete a blob. text: az storage blob delete -c MyContainer -n MyBlob """ helps['storage blob delete-batch'] = """ type: command short-summary: Delete blobs from a blob container recursively. parameters: - name: --source -s type: string short-summary: The blob container from where the files will be deleted. long-summary: The source can be the container URL or the container name. When the source is the container URL, the storage account name will be parsed from the URL. - name: --pattern type: string short-summary: The pattern used for globbing files or blobs in the source. The supported patterns are '*', '?', '[seq]', and '[!seq]'. - name: --dryrun type: bool short-summary: Show the summary of the operations to be taken instead of actually deleting the file(s). long-summary: If this is specified, it will ignore all the Precondition Arguments that include --if-modified-since and --if-unmodified-since. So the file(s) will be deleted with the command without --dryrun may be different from the result list with --dryrun flag on. - name: --if-match type: string short-summary: An ETag value, or the wildcard character (*). Specify this header to perform the operation only if the resource's ETag matches the value specified. - name: --if-none-match type: string short-summary: An ETag value, or the wildcard character (*). long-summary: Specify this header to perform the operation only if the resource's ETag does not match the value specified. Specify the wildcard character (*) to perform the operation only if the resource does not exist, and fail the operation if it does exist. examples: - name: Delete all blobs ending with ".py" in a container that have not been modified for 10 days. text: | date=`date -d "10 days ago" '+%Y-%m-%dT%H:%MZ'` az storage blob delete-batch -s MyContainer --account-name MyStorageAccount --pattern *.py --if-unmodified-since $date """ helps['storage blob download-batch'] = """ type: command short-summary: Download blobs from a blob container recursively. parameters: - name: --source -s type: string short-summary: The blob container from where the files will be downloaded. long-summary: The source can be the container URL or the container name. When the source is the container URL, the storage account name will be parsed from the URL. - name: --destination -d type: string short-summary: The existing destination folder for this download operation. - name: --pattern type: string short-summary: The pattern used for globbing files or blobs in the source. The supported patterns are '*', '?', '[seq]', and '[!seq]'. - name: --dryrun type: bool short-summary: Show the summary of the operations to be taken instead of actually downloading the file(s). examples: - name: Download all blobs that end with .py text: az storage blob download-batch -d . --pattern *.py -s MyContainer --account-name MyStorageAccount """ helps['storage blob exists'] = """ type: command short-summary: Check for the existence of a blob in a container. parameters: - name: --name -n short-summary: The blob name. examples: - name: Check for the existence of a blob in a container. (autogenerated) text: az storage blob exists --account-key 00000000 --account-name MyAccount --container-name MyContainer --name MyBlob crafted: true """ helps['storage blob generate-sas'] = """ type: command short-summary: Generates a shared access signature for the blob. examples: - name: Generate a sas token for a blob with read-only permissions. text: | end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'` az storage blob generate-sas --account-name MyStorageAccount -c MyContainer -n MyBlob --permissions r --expiry $end --https-only - name: Generates a shared access signature for the blob. (autogenerated) text: az storage blob generate-sas --account-key 00000000 --account-name MyStorageAccount --container-name MyContainer --expiry 2018-01-01T00:00:00Z --name MyBlob --permissions r crafted: true """ helps['storage blob incremental-copy'] = """ type: group short-summary: Manage blob incremental copy operations. """ helps['storage blob incremental-copy start'] = """ type: command short-summary: Copies an incremental copy of a blob asynchronously. long-summary: This operation returns a copy operation properties object, including a copy ID you can use to check or abort the copy operation. The Blob service copies blobs on a best-effort basis. The source blob for an incremental copy operation must be a page blob. Call get_blob_properties on the destination blob to check the status of the copy operation. The final blob will be committed when the copy completes. examples: - name: Upload all files that end with .py unless blob exists and has been modified since given date. text: az storage blob incremental-copy start --source-container MySourceContainer --source-blob MyBlob --source-account-name MySourceAccount --source-account-key MySourceKey --source-snapshot MySnapshot --destination-container MyDestinationContainer --destination-blob MyDestinationBlob - name: Copies an incremental copy of a blob asynchronously. (autogenerated) text: az storage blob incremental-copy start --account-key 00000000 --account-name MyAccount --destination-blob MyDestinationBlob --destination-container MyDestinationContainer --source-account-key MySourceKey --source-account-name MySourceAccount --source-blob MyBlob --source-container MySourceContainer --source-snapshot MySnapshot crafted: true """ helps['storage blob lease'] = """ type: group short-summary: Manage storage blob leases. """ helps['storage blob list'] = """ type: command short-summary: List blobs in a given container. parameters: - name: --include short-summary: 'Specifies additional datasets to include: (c)opy-info, (m)etadata, (s)napshots, (d)eleted-soft. Can be combined.' examples: - name: List all storage blobs in a container whose names start with 'foo'; will match names such as 'foo', 'foobar', and 'foo/bar' text: az storage blob list -c MyContainer --prefix foo """ helps['storage blob metadata'] = """ type: group short-summary: Manage blob metadata. """ helps['storage blob service-properties'] = """ type: group short-summary: Manage storage blob service properties. """ helps['storage blob service-properties delete-policy'] = """ type: group short-summary: Manage storage blob delete-policy service properties. """ helps['storage blob service-properties delete-policy show'] = """ type: command short-summary: Show the storage blob delete-policy. examples: - name: Show the storage blob delete-policy. (autogenerated) text: az storage blob service-properties delete-policy show --account-name MyAccount crafted: true """ helps['storage blob service-properties delete-policy update'] = """ type: command short-summary: Update the storage blob delete-policy. examples: - name: Update the storage blob delete-policy. (autogenerated) text: az storage blob service-properties delete-policy update --account-name MyAccount --days-retained 7 --enable true crafted: true """ helps['storage blob service-properties update'] = """ type: command short-summary: Update storage blob service properties. examples: - name: Update storage blob service properties. (autogenerated) text: az storage blob service-properties update --404-document error.html --account-name MyAccount --index-document index.html --static-website true crafted: true """ helps['storage blob set-tier'] = """ type: command short-summary: Set the block or page tiers on the blob. parameters: - name: --type -t short-summary: The blob type - name: --tier short-summary: The tier value to set the blob to. - name: --timeout short-summary: The timeout parameter is expressed in seconds. This method may make multiple calls to the Azure service and the timeout will apply to each call individually. long-summary: > For block blob this command only supports block blob on standard storage accounts. For page blob, this command only supports for page blobs on premium accounts. examples: - name: Set the block or page tiers on the blob. (autogenerated) text: az storage blob set-tier --account-key 00000000 --account-name MyAccount --container-name MyContainer --name MyBlob --tier P10 crafted: true """ helps['storage blob show'] = """ type: command short-summary: Get the details of a blob. examples: - name: Show all properties of a blob. text: az storage blob show -c MyContainer -n MyBlob - name: Get the details of a blob (autogenerated) text: az storage blob show --account-name MyAccount --container-name MyContainer --name MyBlob crafted: true """ helps['storage blob sync'] = """ type: command short-summary: Sync blobs recursively to a storage blob container. long-summary: Sync command depends on Azcopy, which only works for 64-bit Operating System now. We will support 32-bit Operating System soon. examples: - name: Sync a single blob to a container. text: az storage blob sync -c MyContainer --account-name MyStorageAccount -s "path/to/file" -d NewBlob - name: Sync a directory to a container. text: az storage blob sync -c MyContainer --account-name MyStorageAccount -s "path/to/directory" """ helps['storage blob upload'] = """ type: command short-summary: Upload a file to a storage blob. long-summary: Creates a new blob from a file path, or updates the content of an existing blob with automatic chunking and progress notifications. parameters: - name: --type -t short-summary: Defaults to 'page' for *.vhd files, or 'block' otherwise. - name: --maxsize-condition short-summary: The max length in bytes permitted for an append blob. - name: --validate-content short-summary: Specifies that an MD5 hash shall be calculated for each chunk of the blob and verified by the service when the chunk has arrived. - name: --tier short-summary: A page blob tier value to set the blob to. The tier correlates to the size of the blob and number of allowed IOPS. This is only applicable to page blobs on premium storage accounts. examples: - name: Upload to a blob. text: az storage blob upload -f /path/to/file -c MyContainer -n MyBlob """ helps['storage blob upload-batch'] = """ type: command short-summary: Upload files from a local directory to a blob container. parameters: - name: --source -s type: string short-summary: The directory where the files to be uploaded are located. - name: --destination -d type: string short-summary: The blob container where the files will be uploaded. long-summary: The destination can be the container URL or the container name. When the destination is the container URL, the storage account name will be parsed from the URL. - name: --pattern type: string short-summary: The pattern used for globbing files or blobs in the source. The supported patterns are '*', '?', '[seq]', and '[!seq]'. - name: --dryrun type: bool short-summary: Show the summary of the operations to be taken instead of actually uploading the file(s). - name: --if-match type: string short-summary: An ETag value, or the wildcard character (*). Specify this header to perform the operation only if the resource's ETag matches the value specified. - name: --if-none-match type: string short-summary: An ETag value, or the wildcard character (*). long-summary: Specify this header to perform the operation only if the resource's ETag does not match the value specified. Specify the wildcard character (*) to perform the operation only if the resource does not exist, and fail the operation if it does exist. - name: --validate-content short-summary: Specifies that an MD5 hash shall be calculated for each chunk of the blob and verified by the service when the chunk has arrived. - name: --type -t short-summary: Defaults to 'page' for *.vhd files, or 'block' otherwise. The setting will override blob types for every file. - name: --maxsize-condition short-summary: The max length in bytes permitted for an append blob. - name: --lease-id short-summary: The active lease id for the blob examples: - name: Upload all files that end with .py unless blob exists and has been modified since given date. text: az storage blob upload-batch -d MyContainer --account-name MyStorageAccount -s directory_path --pattern *.py --if-unmodified-since 2018-08-27T20:51Z """ helps['storage blob url'] = """ type: command short-summary: Create the url to access a blob. examples: - name: Create the url to access a blob (autogenerated) text: az storage blob url --connection-string $connectionString --container-name container1 --name blob1 crafted: true - name: Create the url to access a blob (autogenerated) text: az storage blob url --account-name storageacct --container-name container1 --name blob1 crafted: true """ helps['storage container'] = """ type: group short-summary: Manage blob storage containers. """ helps['storage container create'] = """ type: command short-summary: Create a container in a storage account. long-summary: > By default, container data is private ("off") to the account owner. Use "blob" to allow public read access for blobs. Use "container" to allow public read and list access to the entire container. You can configure the --public-access using `az storage container set-permission -n CONTAINER_NAME --public-access blob/container/off`. examples: - name: Create a storage container in a storage account. text: az storage container create -n MyStorageContainer - name: Create a storage container in a storage account and return an error if the container already exists. text: az storage container create -n MyStorageContainer --fail-on-exist - name: Create a storage container in a storage account and allow public read access for blobs. text: az storage container create -n MyStorageContainer --public-access blob """ helps['storage container delete'] = """ type: command short-summary: Marks the specified container for deletion. long-summary: > The container and any blobs contained within it are later deleted during garbage collection. examples: - name: Marks the specified container for deletion. (autogenerated) text: az storage container delete --account-key 00000000 --account-name MyAccount --name MyContainer crafted: true """ helps['storage container exists'] = """ type: command short-summary: Check for the existence of a storage container. examples: - name: Check for the existence of a storage container. (autogenerated) text: az storage container exists --account-name MyAccount --name MyContainer crafted: true """ helps['storage container generate-sas'] = """ type: command short-summary: Generate a SAS token for a storage container. examples: - name: Generate a sas token for blob container and use it to upload a blob. text: | end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'` sas=`az storage container generate-sas -n MyContainer --account-name MyStorageAccount --https-only --permissions dlrw --expiry $end -o tsv` az storage blob upload -n MyBlob -c MyContainer --account-name MyStorageAccount -f file.txt --sas-token $sas - name: Generates a shared access signature for the container (autogenerated) text: az storage container generate-sas --account-key 00000000 --account-name MyStorageAccount --expiry 2020-01-01 --name MyContainer --permissions dlrw crafted: true """ helps['storage container immutability-policy'] = """ type: group short-summary: Manage container immutability policies. """ helps['storage container lease'] = """ type: group short-summary: Manage blob storage container leases. """ helps['storage container legal-hold'] = """ type: group short-summary: Manage container legal holds. """ helps['storage container legal-hold show'] = """ type: command short-summary: Get the legal hold properties of a container. examples: - name: Get the legal hold properties of a container. (autogenerated) text: az storage container legal-hold show --account-name MyAccount --container-name MyContainer crafted: true """ helps['storage container list'] = """ type: command short-summary: List containers in a storage account. """ helps['storage container metadata'] = """ type: group short-summary: Manage container metadata. """ helps['storage container policy'] = """ type: group short-summary: Manage container stored access policies. """ helps['storage copy'] = """ type: command short-summary: Copy files or directories to or from Azure storage. long-summary: Copy command depends on Azcopy, which only works for 64-bit Operating System now. We will support 32-bit Operating System soon. examples: - name: Upload a single file to Azure Blob using url. text: az storage copy -s /path/to/file.txt -d https://[account].blob.core.windows.net/[container]/[path/to/blob] - name: Upload a single file to Azure Blob using account name and container name. text: az storage copy --source-local-path /path/to/file.txt --destination-account-name mystorageaccount --destination-container mycontainer - name: Upload a single file to Azure Blob with MD5 hash of the file content and save it as the blob's Content-MD5 property. text: az storage copy -s /path/to/file.txt -d https://[account].blob.core.windows.net/[container]/[path/to/blob] --put-md5 - name: Upload an entire directory to Azure Blob using url. text: az storage copy -s /path/to/dir -d https://[account].blob.core.windows.net/[container]/[path/to/directory] --recursive - name: Upload an entire directory to Azure Blob using account name and container name. text: az storage copy --source-local-path /path/to/dir --destination-account-name mystorageaccount --destination-container mycontainer --recursive - name: Upload a set of files to Azure Blob using wildcards with url. text: az storage copy -s /path/*foo/*bar/*.pdf -d https://[account].blob.core.windows.net/[container]/[path/to/directory] - name: Upload a set of files to Azure Blob using wildcards with account name and container name. text: az storage copy --source-local-path /path/*foo/*bar/*.pdf --destination-account-name mystorageaccount --destination-container mycontainer - name: Upload files and directories to Azure Blob using wildcards with url. text: az storage copy -s /path/*foo/*bar* -d https://[account].blob.core.windows.net/[container]/[path/to/directory] --recursive - name: Upload files and directories to Azure Blob using wildcards with account name and container name. text: az storage copy --source-local-path /path/*foo/*bar* --destination-account-name mystorageaccount --destination-container mycontainer --recursive - name: Download a single file from Azure Blob using url, and you can also specify your storage account and container information as above. text: az storage copy -s https://[account].blob.core.windows.net/[container]/[path/to/blob] -d /path/to/file.txt - name: Download an entire directory from Azure Blob, and you can also specify your storage account and container information as above. text: az storage copy -s https://[account].blob.core.windows.net/[container]/[path/to/directory] -d /path/to/dir --recursive - name: Download a set of files from Azure Blob using wildcards, and you can also specify your storage account and container information as above. text: az storage copy -s https://[account].blob.core.windows.net/[container]/foo* -d /path/to/dir --recursive - name: Copy a single blob to another blob, and you can also specify the storage account and container information of source and destination as above. text: az storage copy -s https://[srcaccount].blob.core.windows.net/[container]/[path/to/blob] -d https://[destaccount].blob.core.windows.net/[container]/[path/to/blob] - name: Copy an entire account data from blob account to another blob account, and you can also specify the storage account and container information of source and destination as above. text: az storage copy -s https://[srcaccount].blob.core.windows.net -d https://[destaccount].blob.core.windows.net --recursive - name: Copy a single object from S3 with access key to blob, and you can also specify your storage account and container information as above. text: az storage copy -s https://s3.amazonaws.com/[bucket]/[object] -d https://[destaccount].blob.core.windows.net/[container]/[path/to/blob] - name: Copy an entire directory from S3 with access key to blob virtual directory, and you can also specify your storage account and container information as above. text: az storage copy -s https://s3.amazonaws.com/[bucket]/[folder] -d https://[destaccount].blob.core.windows.net/[container]/[path/to/directory] --recursive - name: Copy all buckets in S3 service with access key to blob account, and you can also specify your storage account information as above. text: az storage copy -s https://s3.amazonaws.com/ -d https://[destaccount].blob.core.windows.net --recursive - name: Copy all buckets in a S3 region with access key to blob account, and you can also specify your storage account information as above. text: az storage copy -s https://s3-[region].amazonaws.com/ -d https://[destaccount].blob.core.windows.net --recursive - name: Upload a single file to Azure File Share using url. text: az storage copy -s /path/to/file.txt -d https://[account].file.core.windows.net/[share]/[path/to/file] - name: Upload a single file to Azure File Share using account name and share name. text: az storage copy --source-local-path /path/to/file.txt --destination-account-name mystorageaccount --destination-share myshare - name: Upload an entire directory to Azure File Share using url. text: az storage copy -s /path/to/dir -d https://[account].file.core.windows.net/[share]/[path/to/directory] --recursive - name: Upload an entire directory to Azure File Share using account name and container name. text: az storage copy --source-local-path /path/to/dir --destination-account-name mystorageaccount --destination-share myshare --recursive - name: Upload a set of files to Azure File Share using wildcards with account name and share name. text: az storage copy --source-local-path /path/*foo/*bar/*.pdf --destination-account-name mystorageaccount --destination-share myshare - name: Upload files and directories to Azure File Share using wildcards with url. text: az storage copy -s /path/*foo/*bar* -d https://[account].file.core.windows.net/[share]/[path/to/directory] --recursive - name: Upload files and directories to Azure File Share using wildcards with account name and share name. text: az storage copy --source-local-path /path/*foo/*bar* --destination-account-name mystorageaccount --destination-share myshare --recursive - name: Download a single file from Azure File Share using url, and you can also specify your storage account and share information as above. text: az storage copy -s https://[account].file.core.windows.net/[share]/[path/to/file] -d /path/to/file.txt - name: Download an entire directory from Azure File Share, and you can also specify your storage account and share information as above. text: az storage copy -s https://[account].file.core.windows.net/[share]/[path/to/directory] -d /path/to/dir --recursive - name: Download a set of files from Azure File Share using wildcards, and you can also specify your storage account and share information as above. text: az storage copy -s https://[account].file.core.windows.net/[share]/foo* -d /path/to/dir --recursive """ helps['storage cors'] = """ type: group short-summary: Manage storage service Cross-Origin Resource Sharing (CORS). """ helps['storage cors add'] = """ type: command short-summary: Add a CORS rule to a storage account. parameters: - name: --services short-summary: > The storage service(s) to add rules to. Allowed options are: (b)lob, (f)ile, (q)ueue, (t)able. Can be combined. - name: --max-age short-summary: The maximum number of seconds the client/browser should cache a preflight response. - name: --origins short-summary: Space-separated list of origin domains that will be allowed via CORS, or '*' to allow all domains. - name: --methods short-summary: Space-separated list of HTTP methods allowed to be executed by the origin. - name: --allowed-headers short-summary: Space-separated list of response headers allowed to be part of the cross-origin request. - name: --exposed-headers short-summary: Space-separated list of response headers to expose to CORS clients. """ helps['storage cors clear'] = """ type: command short-summary: Remove all CORS rules from a storage account. parameters: - name: --services short-summary: > The storage service(s) to remove rules from. Allowed options are: (b)lob, (f)ile, (q)ueue, (t)able. Can be combined. examples: - name: Remove all CORS rules from a storage account. (autogenerated) text: az storage cors clear --account-name MyAccount --services bfqt crafted: true """ helps['storage cors list'] = """ type: command short-summary: List all CORS rules for a storage account. parameters: - name: --services short-summary: > The storage service(s) to list rules for. Allowed options are: (b)lob, (f)ile, (q)ueue, (t)able. Can be combined. """ helps['storage directory'] = """ type: group short-summary: Manage file storage directories. """ helps['storage directory exists'] = """ type: command short-summary: Check for the existence of a storage directory. examples: - name: Check for the existence of a storage directory. (autogenerated) text: az storage directory exists --account-key 00000000 --account-name MyAccount --name MyDirectory --share-name MyShare crafted: true """ helps['storage directory list'] = """ type: command short-summary: List directories in a share. examples: - name: List directories in a share. (autogenerated) text: az storage directory list --share-name MyShare crafted: true """ helps['storage directory metadata'] = """ type: group short-summary: Manage file storage directory metadata. """ helps['storage entity'] = """ type: group short-summary: Manage table storage entities. """ helps['storage entity insert'] = """ type: command short-summary: Insert an entity into a table. parameters: - name: --table-name -t type: string short-summary: The name of the table to insert the entity into. - name: --entity -e type: list short-summary: Space-separated list of key=value pairs. Must contain a PartitionKey and a RowKey. long-summary: The PartitionKey and RowKey must be unique within the table, and may be up to 64Kb in size. If using an integer value as a key, convert it to a fixed-width string which can be canonically sorted. For example, convert the integer value 1 to the string value "0000001" to ensure proper sorting. - name: --if-exists type: string short-summary: Behavior when an entity already exists for the specified PartitionKey and RowKey. - name: --timeout short-summary: The server timeout, expressed in seconds. examples: - name: Insert an entity into a table. (autogenerated) text: az storage entity insert --connection-string $connectionString --entity PartitionKey=AAA RowKey=BBB Content=ASDF2 --table-name MyTable crafted: true """ helps['storage entity query'] = """ type: command short-summary: List entities which satisfy a query. parameters: - name: --marker type: list short-summary: Space-separated list of key=value pairs. Must contain a nextpartitionkey and a nextrowkey. long-summary: This value can be retrieved from the next_marker field of a previous generator object if max_results was specified and that generator has finished enumerating results. If specified, this generator will begin returning results from the point where the previous generator stopped. examples: - name: List entities which satisfy a query. (autogenerated) text: az storage entity query --table-name MyTable crafted: true """ helps['storage file'] = """ type: group short-summary: Manage file shares that use the SMB 3.0 protocol. """ helps['storage file copy'] = """ type: group short-summary: Manage file copy operations. """ helps['storage file copy start-batch'] = """ type: command short-summary: Copy multiple files or blobs to a file share. parameters: - name: --destination-share type: string short-summary: The file share where the source data is copied to. - name: --destination-path type: string short-summary: The directory where the source data is copied to. If omitted, data is copied to the root directory. - name: --pattern type: string short-summary: The pattern used for globbing files and blobs. The supported patterns are '*', '?', '[seq', and '[!seq]'. - name: --dryrun type: bool short-summary: List the files and blobs to be copied. No actual data transfer will occur. - name: --source-account-name type: string short-summary: The source storage account to copy the data from. If omitted, the destination account is used. - name: --source-account-key type: string short-summary: The account key for the source storage account. If omitted, the active login is used to determine the account key. - name: --source-container type: string short-summary: The source container blobs are copied from. - name: --source-share type: string short-summary: The source share files are copied from. - name: --source-uri type: string short-summary: A URI that specifies a the source file share or blob container. long-summary: If the source is in another account, the source must either be public or authenticated via a shared access signature. - name: --source-sas type: string short-summary: The shared access signature for the source storage account. """ helps['storage file delete-batch'] = """ type: command short-summary: Delete files from an Azure Storage File Share. parameters: - name: --source -s type: string short-summary: The source of the file delete operation. The source can be the file share URL or the share name. - name: --pattern type: string short-summary: The pattern used for file globbing. The supported patterns are '*', '?', '[seq]', and '[!seq]'. - name: --dryrun type: bool short-summary: List the files and blobs to be deleted. No actual data deletion will occur. examples: - name: Delete files from an Azure Storage File Share. (autogenerated) text: az storage file delete-batch --account-key 00000000 --account-name MyAccount --source /path/to/file crafted: true """ helps['storage file download-batch'] = """ type: command short-summary: Download files from an Azure Storage File Share to a local directory in a batch operation. parameters: - name: --source -s type: string short-summary: The source of the file download operation. The source can be the file share URL or the share name. - name: --destination -d type: string short-summary: The local directory where the files are downloaded to. This directory must already exist. - name: --pattern type: string short-summary: The pattern used for file globbing. The supported patterns are '*', '?', '[seq]', and '[!seq]'. - name: --dryrun type: bool short-summary: List the files and blobs to be downloaded. No actual data transfer will occur. - name: --max-connections type: integer short-summary: The maximum number of parallel connections to use. Default value is 1. - name: --snapshot type: string short-summary: A string that represents the snapshot version, if applicable. - name: --validate-content type: bool short-summary: If set, calculates an MD5 hash for each range of the file for validation. long-summary: > The storage service checks the hash of the content that has arrived is identical to the hash that was sent. This is mostly valuable for detecting bitflips during transfer if using HTTP instead of HTTPS. This hash is not stored. examples: - name: Download files from an Azure Storage File Share to a local directory in a batch operation. (autogenerated) text: az storage file download-batch --account-key 00000000 --account-name MyAccount --destination . --no-progress --source /path/to/file crafted: true """ helps['storage file exists'] = """ type: command short-summary: Check for the existence of a file. examples: - name: Check for the existence of a file. (autogenerated) text: az storage file exists --account-key 00000000 --account-name MyAccount --path path/file.txt --share-name MyShare crafted: true """ helps['storage file generate-sas'] = """ type: command examples: - name: Generate a sas token for a file. text: | end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'` az storage file generate-sas -p path/file.txt -s MyShare --account-name MyStorageAccount --permissions rcdw --https-only --expiry $end """ helps['storage file list'] = """ type: command short-summary: List files and directories in a share. parameters: - name: --exclude-dir type: bool short-summary: List only files in the given share. examples: - name: List files and directories in a share. (autogenerated) text: az storage file list --share-name MyShare crafted: true """ helps['storage file metadata'] = """ type: group short-summary: Manage file metadata. """ helps['storage file upload'] = """ type: command short-summary: Upload a file to a share that uses the SMB 3.0 protocol. long-summary: Creates or updates an Azure file from a source path with automatic chunking and progress notifications. examples: - name: Upload to a local file to a share. text: az storage file upload -s MyShare --source /path/to/file - name: Upload a file to a share that uses the SMB 3.0 protocol. (autogenerated) text: az storage file upload --account-key 00000000 --account-name MyStorageAccount --path path/file.txt --share-name MyShare --source /path/to/file crafted: true """ helps['storage file upload-batch'] = """ type: command short-summary: Upload files from a local directory to an Azure Storage File Share in a batch operation. parameters: - name: --source -s type: string short-summary: The directory to upload files from. - name: --destination -d type: string short-summary: The destination of the upload operation. long-summary: The destination can be the file share URL or the share name. When the destination is the share URL, the storage account name is parsed from the URL. - name: --destination-path type: string short-summary: The directory where the source data is copied to. If omitted, data is copied to the root directory. - name: --pattern type: string short-summary: The pattern used for file globbing. The supported patterns are '*', '?', '[seq', and '[!seq]'. - name: --dryrun type: bool short-summary: List the files and blobs to be uploaded. No actual data transfer will occur. - name: --max-connections type: integer short-summary: The maximum number of parallel connections to use. Default value is 1. - name: --validate-content type: bool short-summary: If set, calculates an MD5 hash for each range of the file for validation. long-summary: > The storage service checks the hash of the content that has arrived is identical to the hash that was sent. This is mostly valuable for detecting bitflips during transfer if using HTTP instead of HTTPS. This hash is not stored. examples: - name: Upload files from a local directory to an Azure Storage File Share in a batch operation. (autogenerated) text: az storage file upload-batch --account-key 00000000 --account-name MyAccount --destination . --source /path/to/file crafted: true """ helps['storage file url'] = """ type: command short-summary: Create the url to access a file. examples: - name: Create the url to access a file. (autogenerated) text: az storage file url --account-name MyAccount --path path/file.txt --share-name MyShare crafted: true """ helps['storage logging'] = """ type: group short-summary: Manage storage service logging information. """ helps['storage logging show'] = """ type: command short-summary: Show logging settings for a storage account. parameters: - name: --services short-summary: 'The storage services from which to retrieve logging info: (b)lob (q)ueue (t)able. Can be combined.' """ helps['storage logging update'] = """ type: command short-summary: Update logging settings for a storage account. parameters: - name: --services short-summary: 'The storage service(s) for which to update logging info: (b)lob (q)ueue (t)able. Can be combined.' - name: --log short-summary: 'The operations for which to enable logging: (r)ead (w)rite (d)elete. Can be combined.' - name: --retention short-summary: Number of days for which to retain logs. 0 to disable. - name: --version short-summary: Version of the logging schema. """ helps['storage message'] = """ type: group short-summary: Manage queue storage messages. """ helps['storage metrics'] = """ type: group short-summary: Manage storage service metrics. """ helps['storage metrics show'] = """ type: command short-summary: Show metrics settings for a storage account. parameters: - name: --services short-summary: 'The storage services from which to retrieve metrics info: (b)lob (q)ueue (t)able. Can be combined.' - name: --interval short-summary: Filter the set of metrics to retrieve by time interval examples: - name: Show metrics settings for a storage account. (autogenerated) text: az storage metrics show --account-key 00000000 --account-name MyAccount crafted: true """ helps['storage metrics update'] = """ type: command short-summary: Update metrics settings for a storage account. parameters: - name: --services short-summary: 'The storage services from which to retrieve metrics info: (b)lob (q)ueue (t)able. Can be combined.' - name: --hour short-summary: Update the hourly metrics - name: --minute short-summary: Update the by-minute metrics - name: --api short-summary: Specify whether to include API in metrics. Applies to both hour and minute metrics if both are specified. Must be specified if hour or minute metrics are enabled and being updated. - name: --retention short-summary: Number of days for which to retain metrics. 0 to disable. Applies to both hour and minute metrics if both are specified. examples: - name: Update metrics settings for a storage account. (autogenerated) text: az storage metrics update --account-name MyAccount --api true --hour true --minute true --retention 10 --services bfqt crafted: true """ helps['storage queue'] = """ type: group short-summary: Manage storage queues. """ helps['storage queue list'] = """ type: command short-summary: List queues in a storage account. """ helps['storage queue metadata'] = """ type: group short-summary: Manage the metadata for a storage queue. """ helps['storage queue policy'] = """ type: group short-summary: Manage shared access policies for a storage queue. """ helps['storage remove'] = """ type: command short-summary: Delete blobs or files from Azure Storage. long-summary: To delete blobs, both the source must either be public or be authenticated by using a shared access signature. Remove command depends on Azcopy, which only works for 64-bit Operating System now. We will support 32-bit Operating System soon. examples: - name: Remove a single blob. text: az storage remove -c MyContainer -n MyBlob - name: Remove an entire virtual directory. text: az storage remove -c MyContainer -n path/to/directory --recursive - name: Remove only the top blobs inside a virtual directory but not its sub-directories. text: az storage remove -c MyContainer -n path/to/directory - name: Remove a subset of blobs in a virtual directory (For example, only jpg and pdf files, or if the blob name is "exactName"). text: az storage remove -c MyContainer -n path/to/directory --recursive --include "*.jpg;*.pdf;exactName" - name: Remove an entire virtual directory but exclude certain blobs from the scope (For example, every blob that starts with foo or ends with bar). text: az storage remove -c MyContainer -n path/to/directory --recursive --include "foo*;*bar" - name: Remove a single file. text: az storage remove -s MyShare -p MyFile - name: Remove an entire directory. text: az storage remove -s MyShare -p path/to/directory --recursive """ helps['storage share'] = """ type: group short-summary: Manage file shares. """ helps['storage share create'] = """ type: command short-summary: Creates a new share under the specified account. examples: - name: Creates a new share under the specified account. (autogenerated) text: az storage share create --name MyFileShare crafted: true """ helps['storage share exists'] = """ type: command short-summary: Check for the existence of a file share. examples: - name: Check for the existence of a file share. (autogenerated) text: az storage share exists --account-key 00000000 --account-name MyAccount --name MyFileShare crafted: true """ helps['storage share generate-sas'] = """ type: command examples: - name: Generate a sas token for a fileshare and use it to upload a file. text: | end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'` sas=`az storage share generate-sas -n MyShare --account-name MyStorageAccount --https-only --permissions dlrw --expiry $end -o tsv` az storage file upload -s MyShare --account-name MyStorageAccount --source file.txt --sas-token $sas - name: Generates a shared access signature for the share. (autogenerated) text: az storage share generate-sas --account-key 00000000 --account-name MyStorageAccount --expiry 2037-12-31T23:59:00Z --name MyShare --permissions dlrw crafted: true """ helps['storage share list'] = """ type: command short-summary: List the file shares in a storage account. """ helps['storage share metadata'] = """ type: group short-summary: Manage the metadata of a file share. """ helps['storage share policy'] = """ type: group short-summary: Manage shared access policies of a storage file share. """ helps['storage share url'] = """ type: command short-summary: Create a URI to access a file share. examples: - name: Create a URI to access a file share. (autogenerated) text: az storage share url --account-key 00000000 --account-name MyAccount --name MyFileShare crafted: true """ helps['storage table'] = """ type: group short-summary: Manage NoSQL key-value storage. """ helps['storage table list'] = """ type: command short-summary: List tables in a storage account. """ helps['storage table policy'] = """ type: group short-summary: Manage shared access policies of a storage table. """
46.883503
417
0.730716
edf4c2fd0ecfec983c06c0451053401dec89d98f
7,002
py
Python
asteroid/data/whamr_dataset.py
groadabike/asteroid
276d98346ab791d904fbfe79b9b8e374392dd128
[ "MIT" ]
1
2020-12-18T02:42:23.000Z
2020-12-18T02:42:23.000Z
asteroid/data/whamr_dataset.py
groadabike/asteroid
276d98346ab791d904fbfe79b9b8e374392dd128
[ "MIT" ]
null
null
null
asteroid/data/whamr_dataset.py
groadabike/asteroid
276d98346ab791d904fbfe79b9b8e374392dd128
[ "MIT" ]
null
null
null
import torch from torch.utils import data import json import os import numpy as np import soundfile as sf from .wsj0_mix import wsj0_license from .wham_dataset import wham_noise_license DATASET = "WHAMR" # WHAMR tasks # Many tasks can be considered with this dataset, we only consider the 4 core # separation tasks presented in the paper for now. sep_clean = { "mixture": "mix_clean_anechoic", "sources": ["s1_anechoic", "s2_anechoic"], "infos": [], "default_nsrc": 2, } sep_noisy = { "mixture": "mix_both_anechoic", "sources": ["s1_anechoic", "s2_anechoic"], "infos": ["noise"], "default_nsrc": 2, } sep_reverb = { "mixture": "mix_clean_reverb", "sources": ["s1_anechoic", "s2_anechoic"], "infos": [], "default_nsrc": 2, } sep_reverb_noisy = { "mixture": "mix_both_reverb", "sources": ["s1_anechoic", "s2_anechoic"], "infos": ["noise"], "default_nsrc": 2, } WHAMR_TASKS = { "sep_clean": sep_clean, "sep_noisy": sep_noisy, "sep_reverb": sep_reverb, "sep_reverb_noisy": sep_reverb_noisy, } # Support both order, confusion is easy WHAMR_TASKS["sep_noisy_reverb"] = WHAMR_TASKS["sep_reverb_noisy"] class WhamRDataset(data.Dataset): """Dataset class for WHAMR source separation and speech enhancement tasks. Args: json_dir (str): The path to the directory containing the json files. task (str): One of ``'sep_clean'``, ``'sep_noisy'``, ``'sep_reverb'`` or ``'sep_reverb_noisy'``. * ``'sep_clean'`` for two-speaker clean (anechoic) source separation. * ``'sep_noisy'`` for two-speaker noisy (anechoic) source separation. * ``'sep_reverb'`` for two-speaker clean reverberant source separation. * ``'sep_reverb_noisy'`` for two-speaker noisy reverberant source separation. sample_rate (int, optional): The sampling rate of the wav files. segment (float, optional): Length of the segments used for training, in seconds. If None, use full utterances (e.g. for test). nondefault_nsrc (int, optional): Number of sources in the training targets. If None, defaults to one for enhancement tasks and two for separation tasks. References - "WHAMR!: Noisy and Reverberant Single-Channel Speech Separation", Maciejewski et al. 2020 """ dataset_name = "WHAMR" def __init__(self, json_dir, task, sample_rate=8000, segment=4.0, nondefault_nsrc=None): super(WhamRDataset, self).__init__() if task not in WHAMR_TASKS.keys(): raise ValueError( "Unexpected task {}, expected one of " "{}".format(task, WHAMR_TASKS.keys()) ) # Task setting self.json_dir = json_dir self.task = task self.task_dict = WHAMR_TASKS[task] self.sample_rate = sample_rate self.seg_len = None if segment is None else int(segment * sample_rate) if not nondefault_nsrc: self.n_src = self.task_dict["default_nsrc"] else: assert nondefault_nsrc >= self.task_dict["default_nsrc"] self.n_src = nondefault_nsrc self.like_test = self.seg_len is None # Load json files mix_json = os.path.join(json_dir, self.task_dict["mixture"] + ".json") sources_json = [ os.path.join(json_dir, source + ".json") for source in self.task_dict["sources"] ] with open(mix_json, "r") as f: mix_infos = json.load(f) sources_infos = [] for src_json in sources_json: with open(src_json, "r") as f: sources_infos.append(json.load(f)) # Filter out short utterances only when segment is specified orig_len = len(mix_infos) drop_utt, drop_len = 0, 0 if not self.like_test: for i in range(len(mix_infos) - 1, -1, -1): # Go backward if mix_infos[i][1] < self.seg_len: drop_utt += 1 drop_len += mix_infos[i][1] del mix_infos[i] for src_inf in sources_infos: del src_inf[i] print( "Drop {} utts({:.2f} h) from {} (shorter than {} samples)".format( drop_utt, drop_len / sample_rate / 36000, orig_len, self.seg_len ) ) self.mix = mix_infos # Handle the case n_src > default_nsrc while len(sources_infos) < self.n_src: sources_infos.append([None for _ in range(len(self.mix))]) self.sources = sources_infos def __add__(self, wham): if self.n_src != wham.n_src: raise ValueError( "Only datasets having the same number of sources" "can be added together. Received " "{} and {}".format(self.n_src, wham.n_src) ) if self.seg_len != wham.seg_len: self.seg_len = min(self.seg_len, wham.seg_len) print( "Segment length mismatched between the two Dataset" "passed one the smallest to the sum." ) self.mix = self.mix + wham.mix self.sources = [a + b for a, b in zip(self.sources, wham.sources)] def __len__(self): return len(self.mix) def __getitem__(self, idx): """Gets a mixture/sources pair. Returns: mixture, vstack([source_arrays]) """ # Random start if self.mix[idx][1] == self.seg_len or self.like_test: rand_start = 0 else: rand_start = np.random.randint(0, self.mix[idx][1] - self.seg_len) if self.like_test: stop = None else: stop = rand_start + self.seg_len # Load mixture x, _ = sf.read(self.mix[idx][0], start=rand_start, stop=stop, dtype="float32") seg_len = torch.as_tensor([len(x)]) # Load sources source_arrays = [] for src in self.sources: if src[idx] is None: # Target is filled with zeros if n_src > default_nsrc s = np.zeros((seg_len,)) else: s, _ = sf.read(src[idx][0], start=rand_start, stop=stop, dtype="float32") source_arrays.append(s) sources = torch.from_numpy(np.vstack(source_arrays)) return torch.from_numpy(x), sources def get_infos(self): """Get dataset infos (for publishing models). Returns: dict, dataset infos with keys `dataset`, `task` and `licences`. """ infos = dict() infos["dataset"] = self.dataset_name infos["task"] = self.task if self.task == "sep_clean": data_license = [wsj0_license] else: data_license = [wsj0_license, wham_noise_license] infos["licenses"] = data_license return infos
35.543147
92
0.583262
f639caba89cbeed027f38e18461415ec704e813a
216
py
Python
htmlBuilds/htmlSupport.py
skylarkgit/sql2phpclass
a79e7f3cfda8cb41ba00e8cbba0de33e9be759d6
[ "MIT" ]
null
null
null
htmlBuilds/htmlSupport.py
skylarkgit/sql2phpclass
a79e7f3cfda8cb41ba00e8cbba0de33e9be759d6
[ "MIT" ]
null
null
null
htmlBuilds/htmlSupport.py
skylarkgit/sql2phpclass
a79e7f3cfda8cb41ba00e8cbba0de33e9be759d6
[ "MIT" ]
null
null
null
import sys sys.path.append("..") from htmlBuilds.htmlTemplates import * from htmlBuilds.mytemplate import * from lib.fileOps import * def wrapForm(code): return TAG('div',code,ATTR('class','archonFormWrapper'))
24
60
0.75
49165010a7b6f79eb946882978a1277348ab638a
909
py
Python
setup.py
llamm-de/miraculix
61fb1e533ea83a746c86f6c91720886e856a84cc
[ "MIT" ]
null
null
null
setup.py
llamm-de/miraculix
61fb1e533ea83a746c86f6c91720886e856a84cc
[ "MIT" ]
null
null
null
setup.py
llamm-de/miraculix
61fb1e533ea83a746c86f6c91720886e856a84cc
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as file: long_description = file.read() setuptools.setup( name='Miraculix', version='0.0.1', author='Lukas Lamm', author_email='lukas.lamm@ifam.rwth-aachen.de', url='https://www.ifam.rwth-aachen.de', packages=setuptools.find_packages(), scripts=[], description='A handy tool for examination processes at RWTH Aachen University', long_description=long_description, long_description_content_type="text/markdown", install_requires=[ "randomuser", "docxtpl", ], python_requires='>=3.5', license='LICENSE.md', classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "License :: MIT License", "Operating System :: OS Independent", ], include_package_data=True, )
29.322581
83
0.641364
4646be50a9300508c569d1195e588979715dc78e
445
py
Python
tests/test_storage_redis.py
alvistack/ionrock-cachecontrol
09992a140edca2602cf8230370fc8b28566a069b
[ "Apache-2.0" ]
null
null
null
tests/test_storage_redis.py
alvistack/ionrock-cachecontrol
09992a140edca2602cf8230370fc8b28566a069b
[ "Apache-2.0" ]
null
null
null
tests/test_storage_redis.py
alvistack/ionrock-cachecontrol
09992a140edca2602cf8230370fc8b28566a069b
[ "Apache-2.0" ]
null
null
null
# SPDX-FileCopyrightText: 2015 Eric Larson # # SPDX-License-Identifier: Apache-2.0 from datetime import datetime from mock import Mock from cachecontrol.caches import RedisCache class TestRedisCache(object): def setup(self): self.conn = Mock() self.cache = RedisCache(self.conn) def test_set_expiration(self): self.cache.set("foo", "bar", expires=datetime(2014, 2, 2)) assert self.conn.setex.called
22.25
66
0.701124
a443057dd78efef1b4abad99a0c0a45af42596e1
11,801
py
Python
src/genome.py
snowyukischnee/simple-neat-implementation
335bbd1e47af792e5b3fd773d44b141db244d5e3
[ "MIT" ]
null
null
null
src/genome.py
snowyukischnee/simple-neat-implementation
335bbd1e47af792e5b3fd773d44b141db244d5e3
[ "MIT" ]
null
null
null
src/genome.py
snowyukischnee/simple-neat-implementation
335bbd1e47af792e5b3fd773d44b141db244d5e3
[ "MIT" ]
null
null
null
from typing import Any, Dict, Tuple from genes import DefaultNodeGene, DefaultConnectionGene, NeuralNodeGene, NeuralConnectionGene, BaseGene import activation_functions import aggregation_functions import random class DefaultGenome(object): def __init__(self, key: Any): self.key: Any = key self.nodes: Dict[int, BaseGene] = {} self.connections: Dict[Tuple[int, int], BaseGene] = {} self.fitness: float = None def configure_new(self, config: object) -> None: for nk in getattr(config, 'output_keys'): self.nodes[nk] = self.create_node(config, nk) def configure_crossover(self, parent1: Any, parent2: Any, config: object) -> None: assert isinstance(parent1.fitness, float) and isinstance(parent2.fitness, float) if parent1.fitness < parent2.fitness: parent1, parent2 = parent2, parent1 for nk1, ng1 in parent1.nodes.items(): ng2 = parent2.nodes.get(nk1) if ng2 is None: self.nodes[nk1] = ng1.copy() else: self.nodes[nk1] = ng1.crossover(ng2) for ck1, cg1 in parent1.connections.items(): cg2 = parent2.connections.get(ck1) if cg2 is None: self.connections[ck1] = cg1.copy() else: self.connections[ck1] = cg1.crossover(cg2) def distance(self, other: Any, config: object) -> Any: node_distance = 0. if (len(self.nodes) > 0) or (len(other.nodes) > 0): disjoint_nodes = 0 for k2 in other.nodes: if k2 not in self.nodes: disjoint_nodes += 1 # node in other genome but not this genome for k1, n1 in self.nodes.items(): n2 = other.nodes.get(k1) if n2 is None: disjoint_nodes += 1 # node in this genome but not other genome else: node_distance += n1.distance(n2) node_distance = (node_distance + disjoint_nodes) / max(len(self.nodes), len(other.nodes)) # mean distance connection_distance = 0. if (len(self.connections) > 0) or (len(other.connections) > 0): disjoint_connections = 0 for k2 in other.connections: if k2 not in self.connections: disjoint_connections += 1 # connection in other genome but not this genome for k1, n1 in self.connections.items(): n2 = other.connections.get(k1) if n2 is None: disjoint_connections += 1 # connection in this genome but not other genome else: connection_distance += n1.distance(n2) connection_distance = (connection_distance + disjoint_connections) / max(len(self.connections), len(other.connections)) # mean distance distance = node_distance + connection_distance return distance def mutate(self, config: object) -> None: add_node_mutation_prob = getattr(config, 'add_node_mutation_prob', 0.0) del_node_mutation_prob = getattr(config, 'del_node_mutation_prob', 0.0) add_connection_mutation_prob = getattr(config, 'add_connection_mutation_prob', 0.0) del_connection_mutation_prob = getattr(config, 'del_connection_mutation_prob', 0.0) if random.random() < add_node_mutation_prob: self.mutate_add_node(config) if random.random() < del_node_mutation_prob: self.mutate_del_node(config) if random.random() < add_connection_mutation_prob: self.mutate_add_connection(config) if random.random() < del_connection_mutation_prob: self.mutate_del_connection(config) for ng in self.nodes.values(): ng.mutate(config) for cg in self.connections.values(): cg.mutate(config) def mutate_add_node(self, config: object) -> None: if len(self.connections) == 0: return conn_to_split = random.choice(list(self.connections.values())) new_node_key = len(self.nodes) nng = self.create_node(config, new_node_key) self.nodes[new_node_key] = nng conn_to_split.enabled = False inode_key, onode_key = conn_to_split.key new_connection_1 = self.create_connection(config, inode_key, new_node_key) new_connection_1.weight = 1.0 new_connection_1.enabled = True self.connections[new_connection_1.key] = new_connection_1 new_connection_2 = self.create_connection(config, new_node_key, onode_key) new_connection_2.weight = conn_to_split.weight new_connection_1.enabled = True self.connections[new_connection_2.key] = new_connection_2 def mutate_del_node(self, config: object) -> None: available_node_keys = [nk for nk in self.nodes.keys() if nk not in getattr(config, 'output_keys')] if len(available_node_keys) == 0: return del_node_key = random.choice(available_node_keys) # delete connection that connected to 'will be deleted' node for ck, cg in self.connections.items(): if del_node_key in ck: del self.connections[ck] del self.nodes[del_node_key] def mutate_add_connection(self, config: object) -> None: available_onode_keys = list(self.nodes.keys()) available_inode_keys = list(set(available_onode_keys + getattr(config, 'input_keys'))) connection_inode = random.choice(available_inode_keys) connection_onode = random.choice(available_onode_keys) connection_key = (connection_inode, connection_onode) if connection_key in self.connections: return if (connection_inode in getattr(config, 'output_keys')) and (connection_onode in getattr(config, 'output_keys')): return # STILL NOT UNDERSTAND, COMMENTED # if config.feed_forward and creates_cycle(list(self.connections.keys()), connection_key): # return ncg = self.create_connection(config, connection_inode, connection_onode) self.connections[ncg.key] = ncg def mutate_del_connection(self, config: object) -> None: if len(self.connections) > 0: del_connection_key = random.choice(list(self.connections.keys())) del self.connections[del_connection_key] @staticmethod def create_node(config: object, key: int) -> Any: new_node = getattr(config, 'node_gene_type')(key) new_node.init_attributes(config) return new_node @staticmethod def create_connection(config: object, inode_key: int, onode_key: int) -> Any: new_connection = getattr(config, 'connection_gene_type')((inode_key, onode_key)) new_connection.init_attributes(config) return new_connection if __name__ == '__main__': y = { 'node_gene_type': NeuralNodeGene, 'connection_gene_type': NeuralConnectionGene, 'genome_type': DefaultGenome, 'compatibility_weight_coefficient': 1.0, 'compatibility_disjoint_coefficient': 1.0, 'num_inputs': 2, 'input_keys': [-1, -2], 'output_keys': [0], 'num_outputs': 1, 'add_node_mutation_prob': 0.99, 'del_node_mutation_prob': 0.1, 'add_connection_mutation_prob': 0.99, 'del_connection_mutation_prob': 0.1, 'weight_init_type': 'normal', 'weight_default_value': 0.0, 'weight_mean': 0.0, 'weight_stdev': 1.0, 'weight_max_value': 2.0, 'weight_min_value': -2.0, 'weight_mutation_power': 1.0, 'weight_mutation_rate': 0.6, 'weight_replace_rate': 0.2, 'response_init_type': 'normal', 'response_default_value': 0.0, 'response_mean': 0.0, 'response_stdev': 1.0, 'response_max_value': 2.0, 'response_min_value': -2.0, 'response_mutation_power': 1.0, 'response_mutation_rate': 0.6, 'response_replace_rate': 0.2, 'bias_init_type': 'normal', 'bias_default_value': 0.0, 'bias_mean': 0.0, 'bias_stdev': 1.0, 'bias_max_value': 2.0, 'bias_min_value': -2.0, 'bias_mutation_power': 1.0, 'bias_mutation_rate': 0.6, 'bias_replace_rate': 0.2, 'activation_function_def': { 'sigmoid': activation_functions.SigmoidActivationFunction, 'tanh': activation_functions.TanhActivationFunction, 'relu': activation_functions.ReluActivationFunction, 'gauss': activation_functions.GaussianActivationFunction }, 'aggregation_function_def': { 'sum': aggregation_functions.SumAggregationFunction, 'mean': aggregation_functions.MeanAggregationFunction, 'product': aggregation_functions.ProductAggregationFunction } } from collections import namedtuple yp = namedtuple('config', y.keys())(*y.values()) # class Config(object): # node_gene_type = NeuralNodeGene # connection_gene_type = NeuralConnectionGene # genome_type = DefaultGenome # compatibility_weight_coefficient = 1.0 # compatibility_disjoint_coefficient = 1.0 # num_inputs = 2 # input_keys = [-1, -2] # output_keys = [0] # num_outputs = 1 # add_node_mutation_prob = 0.99 # del_node_mutation_prob = 0.1 # add_connection_mutation_prob = 0.99 # del_connection_mutation_prob = 0.1 # # weight_init_type = 'normal' # weight_default_value = 0.0 # weight_mean = 0.0 # weight_stdev = 1.0 # weight_max_value = 2.0 # weight_min_value = -2.0 # weight_mutation_power = 1.0 # weight_mutation_rate = 0.6 # weight_replace_rate = 0.2 # # response_init_type = 'normal' # response_default_value = 0.0 # response_mean = 0.0 # response_stdev = 1.0 # response_max_value = 2.0 # response_min_value = -2.0 # response_mutation_power = 1.0 # response_mutation_rate = 0.6 # response_replace_rate = 0.2 # # bias_init_type = 'normal' # bias_default_value = 0.0 # bias_mean = 0.0 # bias_stdev = 1.0 # bias_max_value = 2.0 # bias_min_value = -2.0 # bias_mutation_power = 1.0 # bias_mutation_rate = 0.6 # bias_replace_rate = 0.2 # # activation_function_def = { # 'sigmoid': activation_functions.SigmoidActivationFunction, # 'tanh': activation_functions.TanhActivationFunction, # 'relu': activation_functions.ReluActivationFunction, # 'gauss': activation_functions.GaussianActivationFunction # } # aggregation_function_def = { # 'sum': aggregation_functions.SumAggregationFunction, # 'mean': aggregation_functions.MeanAggregationFunction, # 'product': aggregation_functions.ProductAggregationFunction # } # yp = Config() x = DefaultGenome('test_genome') x.configure_new(yp) x.mutate_add_connection(yp) x.mutate_add_connection(yp) x.mutate_add_connection(yp) x.mutate_add_node(yp) x.mutate_add_node(yp) ng = x.create_node(yp, 3) x.nodes[ng.key] = ng from utils import required_for_output print(x.connections.keys(), x.nodes.keys()) print(required_for_output(yp.input_keys, yp.output_keys, list(x.connections.keys()))) xx = x.nodes.get(2) print(xx.activation, xx.aggregation, xx.response, xx.bias) print(xx.forward(yp, [1., 2., 4.])) print(xx._grad_items_history) print(xx.backward(yp, 3.)) print(xx._grad_items_history)
41.847518
148
0.630116
87a18129f2bf51406f39ab0b632921c0f51782e1
627
py
Python
app/constants.py
nashahzad/jira-scraper
a42705e3e2055d21728e5fadfc8fd93e378c4c89
[ "Apache-2.0" ]
12
2021-07-07T17:19:29.000Z
2021-09-26T17:29:05.000Z
app/constants.py
nashahzad/jira-sprint-analytics
a42705e3e2055d21728e5fadfc8fd93e378c4c89
[ "Apache-2.0" ]
null
null
null
app/constants.py
nashahzad/jira-sprint-analytics
a42705e3e2055d21728e5fadfc8fd93e378c4c89
[ "Apache-2.0" ]
null
null
null
from enum import Enum class SprintStates(Enum): ACTIVE = "ACTIVE" CLOSED = "CLOSED" FUTURE = "FUTURE" class IssueTypeEnum(Enum): STORY = "Story" TASK = "Task" BUG = "Bug" REPORT_COLUMNS = [ "Sprint", "Commitment", "Completed", "4-Sprint Average", "Scope Change", "Planned Capacity", "Capacity Achieved", "4-Sprint Capacity Achieved", "4-Sprint Smoothed Average", "Unpointed Issues", "Unpointed Stories", "Unpointed Tasks", "Bug Tickets", "Priority Points", "Non-Priority Points", ] DEFAULT_STORY_POINTS_FIELD_NAME = "customfield_10591"
17.914286
53
0.629984
13c082c48fb4689c0dff47a8a54be20e79da1fd9
1,809
py
Python
strawberryfields/circuitspecs/fock.py
egbQuantum/strawberryfields
674e4fe2de5e5dd791a77f1cd219009120dcbbbf
[ "Apache-2.0" ]
null
null
null
strawberryfields/circuitspecs/fock.py
egbQuantum/strawberryfields
674e4fe2de5e5dd791a77f1cd219009120dcbbbf
[ "Apache-2.0" ]
5
2020-09-26T01:27:24.000Z
2022-02-10T02:13:49.000Z
strawberryfields/circuitspecs/fock.py
egbQuantum/strawberryfields
674e4fe2de5e5dd791a77f1cd219009120dcbbbf
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Circuit specifications for the Fock simulator backend.""" from .circuit_specs import CircuitSpecs class FockSpecs(CircuitSpecs): """Circuit specifications for the Fock backend.""" short_name = 'fock' modes = None local = True remote = True interactive = True primitives = { # meta operations "All", "_New_modes", "_Delete", # state preparations "Vacuum", "Coherent", "Squeezed", "DisplacedSqueezed", "Thermal", "Fock", "Catstate", "Ket", "DensityMatrix", # measurements "MeasureFock", "MeasureHomodyne", # channels "LossChannel", # single mode gates "Dgate", "Xgate", "Zgate", "Sgate", "Rgate", "Vgate", "Kgate", "Fouriergate", "BSgate", "CKgate", } decompositions = { "Interferometer": {}, "GraphEmbed": {}, "BipartiteGraphEmbed": {}, "GaussianTransform": {}, "Gaussian": {}, "Pgate": {}, "S2gate": {}, "CXgate": {}, "CZgate": {}, "MZgate": {}, }
25.125
74
0.572692
7b7538852c508cf21af68c1077f003cbc7b28433
2,974
py
Python
app.py
mehulmakwana97/react-crud
95d23d05ba0e80fc6724c851a8b9a9eafdd26891
[ "Apache-2.0" ]
null
null
null
app.py
mehulmakwana97/react-crud
95d23d05ba0e80fc6724c851a8b9a9eafdd26891
[ "Apache-2.0" ]
null
null
null
app.py
mehulmakwana97/react-crud
95d23d05ba0e80fc6724c851a8b9a9eafdd26891
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env /usr/local/bin/python2 from flask import Flask, render_template, jsonify, make_response, request, current_app from datetime import timedelta from functools import update_wrapper app = Flask(__name__, static_folder='build', static_url_path='') @app.route('/') def root(): return app.send_static_file('index.html') @app.route('/peoples', methods=['GET', 'OPTIONS']) def get_persons(): return jsonify({ "status" : "success", "output" : [ { "id": "1", "name" : "Chintan Kotadia", "username" :"chintankotadia13@gmail.com", "company" : "ish", "company_role" :"html/css coder", "phone" :"49874646", "notes" :"My notes", "mobile" :"9497654654" }, { "id": "2", "name" : "Marcus Hodgson", "username" :"marcus@ish.com", "company" : "ish", "company_role" :"developer", "phone" :"987897544", "notes" :"Not available", "mobile" :"9797464876" }, { "id": "3", "name" : "Stephen McIlwaine", "username" :"Stephen@ish.com", "company" : "ish", "company_role" :"java developer", "phone" :"5464979646", "notes" :"Busy", "mobile" :"9797464797" }, { "id": "4", "name" : "Aristedes Maniatis", "username" :"ari@ish.com.au", "company" : "ish", "company_role" :"developer", "phone" :"554879645", "notes" :"employees scrum", "mobile" :"9849476469" } ] }) @app.route('/data/people/view/<int:id>') def view_person(id): return jsonify( { "status": "success", "output": { "people": { "id": id, "name": "Chintan Kotadia", "username":"chintankotadia13@gmail.com", "company": "ish", "company_role":"html/css coder", "phone":"49874646", "notes":"My notes", "mobile":"9497654654" } } } ) @app.route('/data/people/update/<int:id>') def update_person(id): return jsonify( { "status": "success", "output": { "message": "People updated successfully", "people": { "id": "1", "name": "Chintan Kotadia", "username":"chintankotadia13@gmail.com", "company": "ish", "company_role":"html/css coder", "phone":"49874646", "notes":"My notes", "mobile":"9497654654" } } } ) @app.route('/data/people/delete/<int:id>') def delete_person(id): return jsonify( { 'status':"success", 'output':{ 'message':"People deleted successfully" }}) @app.route('/data/company/get/<search>') def search_company(search): return jsonify( { "status": "success", "output": { "message": "Companies fetched successfully", "output": [ { "id": "1", "name": "ish" }, { "id": "2", "name": "weasydney" } ] } } ) if __name__ == '__main__': app.run(debug=True)
22.530303
86
0.528917
1c1791f47d749fa394e08d5d6b0755274f9c57c1
1,989
py
Python
test/test_storage_volume_utilization_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
21
2018-03-29T14:20:35.000Z
2021-10-13T05:11:41.000Z
test/test_storage_volume_utilization_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
14
2018-01-30T15:45:46.000Z
2022-02-23T14:23:21.000Z
test/test_storage_volume_utilization_ref.py
sdnit-se/intersight-python
551f7685c0f76bb8af60ec83ffb6f9672d49a4ae
[ "Apache-2.0" ]
18
2018-01-03T15:09:56.000Z
2021-07-16T02:21:54.000Z
# coding: utf-8 """ Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. # noqa: E501 The version of the OpenAPI document: 1.0.9-1295 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import intersight from intersight.models.storage_volume_utilization_ref import StorageVolumeUtilizationRef # noqa: E501 from intersight.rest import ApiException class TestStorageVolumeUtilizationRef(unittest.TestCase): """StorageVolumeUtilizationRef unit test stubs""" def setUp(self): pass def tearDown(self): pass def testStorageVolumeUtilizationRef(self): """Test StorageVolumeUtilizationRef""" # FIXME: construct object with mandatory attributes with example values # model = intersight.models.storage_volume_utilization_ref.StorageVolumeUtilizationRef() # noqa: E501 pass if __name__ == '__main__': unittest.main()
52.342105
1,052
0.788336
cc105445751504aeb7dc13364485212f86e1d24b
319
py
Python
src/kuas_api/kuas/__init__.py
JohnSounder/AP-API
9e1fa4d7de1d844b453cd6b86faefba8bf051c3c
[ "MIT" ]
1
2015-07-19T04:18:37.000Z
2015-07-19T04:18:37.000Z
src/kuas_api/kuas/__init__.py
JohnSounder/AP-API
9e1fa4d7de1d844b453cd6b86faefba8bf051c3c
[ "MIT" ]
18
2015-09-05T11:14:17.000Z
2015-10-18T08:09:33.000Z
src/kuas_api/kuas/__init__.py
JohnSounder/AP-API
9e1fa4d7de1d844b453cd6b86faefba8bf051c3c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """This module provide three kuas online system api. AP system, bus system, and leave system. Module AP ========= .. automodule:: kuas_api.kuas.ap :members: Module Bus ========== .. automodule:: kuas_api.kuas.bus :members: """ __license__ = "MIT" __docformat__ = "reStructuredText"
15.95
52
0.642633
183d1a37e1b08cfab545f0373942ac143972d479
34,860
py
Python
test/unit/test_parser.py
sethwoodworth/dbt
68babfb4bbd016e198bb09ac8dfd5dc71760ef7e
[ "Apache-2.0" ]
1
2020-10-25T00:13:50.000Z
2020-10-25T00:13:50.000Z
test/unit/test_parser.py
azhard/dbt
9cd7cbc9e35e5a7c8c4f17a3d113263f4421ab55
[ "Apache-2.0" ]
null
null
null
test/unit/test_parser.py
azhard/dbt
9cd7cbc9e35e5a7c8c4f17a3d113263f4421ab55
[ "Apache-2.0" ]
null
null
null
import unittest from unittest import mock import os import yaml import dbt.flags import dbt.parser from dbt.exceptions import CompilationException from dbt.parser import ( ModelParser, MacroParser, DataTestParser, SchemaParser, ParseResult, SnapshotParser, AnalysisParser ) from dbt.parser.schemas import ( TestablePatchParser, SourceParser, AnalysisPatchParser, MacroPatchParser ) from dbt.parser.search import FileBlock from dbt.parser.schema_test_builders import YamlBlock from dbt.parser.manifest import process_docs, process_sources, process_refs from dbt.node_types import NodeType from dbt.contracts.graph.manifest import ( Manifest, FilePath, SourceFile, FileHash ) from dbt.contracts.graph.model_config import ( NodeConfig, TestConfig, TimestampSnapshotConfig, SnapshotStrategy, ) from dbt.contracts.graph.parsed import ( ParsedModelNode, ParsedMacro, ParsedNodePatch, ParsedSourceDefinition, DependsOn, ColumnInfo, ParsedDataTestNode, ParsedSnapshotNode, ParsedAnalysisNode, ParsedDocumentation, UnpatchedSourceDefinition ) from dbt.contracts.graph.unparsed import ( FreshnessThreshold, ExternalTable, Docs ) from .utils import config_from_parts_or_dicts, normalize, generate_name_macros def get_abs_os_path(unix_path): return normalize(os.path.abspath(unix_path)) class BaseParserTest(unittest.TestCase): maxDiff = None def _generate_macros(self): name_sql = {} for component in ('database', 'schema', 'alias'): if component == 'alias': source = 'node.name' else: source = f'target.{component}' name = f'generate_{component}_name' sql = f'{{% macro {name}(value, node) %}} {{% if value %}} {{{{ value }}}} {{% else %}} {{{{ {source} }}}} {{% endif %}} {{% endmacro %}}' name_sql[name] = sql for name, sql in name_sql.items(): pm = ParsedMacro( name=name, resource_type=NodeType.Macro, unique_id=f'macro.root.{name}', package_name='root', original_file_path=normalize('macros/macro.sql'), root_path=get_abs_os_path('./dbt_modules/root'), path=normalize('macros/macro.sql'), macro_sql=sql, ) yield pm def setUp(self): dbt.flags.STRICT_MODE = True dbt.flags.WARN_ERROR = True self.maxDiff = None profile_data = { 'target': 'test', 'quoting': {}, 'outputs': { 'test': { 'type': 'redshift', 'host': 'localhost', 'schema': 'analytics', 'user': 'test', 'pass': 'test', 'dbname': 'test', 'port': 1, } } } root_project = { 'name': 'root', 'version': '0.1', 'profile': 'test', 'project-root': normalize('/usr/src/app'), } self.root_project_config = config_from_parts_or_dicts( project=root_project, profile=profile_data, cli_vars='{"test_schema_name": "foo"}' ) snowplow_project = { 'name': 'snowplow', 'version': '0.1', 'profile': 'test', 'project-root': get_abs_os_path('./dbt_modules/snowplow'), } self.snowplow_project_config = config_from_parts_or_dicts( project=snowplow_project, profile=profile_data ) self.all_projects = { 'root': self.root_project_config, 'snowplow': self.snowplow_project_config } self.root_project_config.dependencies = self.all_projects self.snowplow_project_config.dependencies = self.all_projects self.patcher = mock.patch('dbt.context.providers.get_adapter') self.factory = self.patcher.start() self.parser_patcher = mock.patch('dbt.parser.base.get_adapter') self.factory_parser = self.parser_patcher.start() self.macro_manifest = Manifest.from_macros( macros={m.unique_id: m for m in generate_name_macros('root')} ) def tearDown(self): self.parser_patcher.stop() self.patcher.stop() def file_block_for(self, data: str, filename: str, searched: str): root_dir = get_abs_os_path('./dbt_modules/snowplow') filename = normalize(filename) path = FilePath( searched_path=searched, relative_path=filename, project_root=root_dir, ) source_file = SourceFile( path=path, checksum=FileHash.from_contents(data), ) source_file.contents = data return FileBlock(file=source_file) def assert_has_results_length(self, results, files=1, macros=0, nodes=0, sources=0, docs=0, patches=0, disabled=0): self.assertEqual(len(results.files), files) self.assertEqual(len(results.macros), macros) self.assertEqual(len(results.nodes), nodes) self.assertEqual(len(results.sources), sources) self.assertEqual(len(results.docs), docs) self.assertEqual(len(results.patches), patches) self.assertEqual(sum(len(v) for v in results.disabled.values()), disabled) SINGLE_TABLE_SOURCE = ''' version: 2 sources: - name: my_source tables: - name: my_table ''' SINGLE_TABLE_SOURCE_TESTS = ''' version: 2 sources: - name: my_source tables: - name: my_table description: A description of my table columns: - name: color tests: - not_null: severity: WARN - accepted_values: values: ['red', 'blue', 'green'] ''' SINGLE_TABLE_MODEL_TESTS = ''' version: 2 models: - name: my_model description: A description of my model columns: - name: color description: The color value tests: - not_null: severity: WARN - accepted_values: values: ['red', 'blue', 'green'] - foreign_package.test_case: arg: 100 ''' SINGLE_TABLE_SOURCE_PATCH = ''' version: 2 sources: - name: my_source overrides: snowplow tables: - name: my_table columns: - name: id tests: - not_null - unique ''' class SchemaParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = SchemaParser( results=ParseResult.rpc(), project=self.snowplow_project_config, root_project=self.root_project_config, macro_manifest=self.macro_manifest, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'models') def yaml_block_for(self, test_yml: str, filename: str): file_block = self.file_block_for(data=test_yml, filename=filename) return YamlBlock.from_file_block( src=file_block, data=yaml.safe_load(test_yml), ) class SchemaParserSourceTest(SchemaParserTest): def test__read_basic_source(self): block = self.yaml_block_for(SINGLE_TABLE_SOURCE, 'test_one.yml') analysis_blocks = AnalysisPatchParser(self.parser, block, 'analyses').parse() model_blocks = TestablePatchParser(self.parser, block, 'models').parse() source_blocks = SourceParser(self.parser, block, 'sources').parse() macro_blocks = MacroPatchParser(self.parser, block, 'macros').parse() self.assertEqual(len(analysis_blocks), 0) self.assertEqual(len(model_blocks), 0) self.assertEqual(len(source_blocks), 0) self.assertEqual(len(macro_blocks), 0) self.assertEqual(len(list(self.parser.results.patches)), 0) self.assertEqual(len(list(self.parser.results.nodes)), 0) results = list(self.parser.results.sources.values()) self.assertEqual(len(results), 1) self.assertEqual(results[0].source.name, 'my_source') self.assertEqual(results[0].table.name, 'my_table') self.assertEqual(results[0].table.description, '') self.assertEqual(len(results[0].table.columns), 0) def test__parse_basic_source(self): block = self.file_block_for(SINGLE_TABLE_SOURCE, 'test_one.yml') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, sources=1) src = list(self.parser.results.sources.values())[0] assert isinstance(src, UnpatchedSourceDefinition) assert src.package_name == 'snowplow' assert src.source.name == 'my_source' assert src.table.name == 'my_table' assert src.resource_type == NodeType.Source assert src.fqn == ['snowplow', 'my_source', 'my_table'] def test__read_basic_source_tests(self): block = self.yaml_block_for(SINGLE_TABLE_SOURCE_TESTS, 'test_one.yml') analysis_tests = AnalysisPatchParser(self.parser, block, 'analyses').parse() model_tests = TestablePatchParser(self.parser, block, 'models').parse() source_tests = SourceParser(self.parser, block, 'sources').parse() macro_tests = MacroPatchParser(self.parser, block, 'macros').parse() self.assertEqual(len(analysis_tests), 0) self.assertEqual(len(model_tests), 0) self.assertEqual(len(source_tests), 0) self.assertEqual(len(macro_tests), 0) self.assertEqual(len(list(self.parser.results.nodes)), 0) self.assertEqual(len(list(self.parser.results.patches)), 0) self.assertEqual(len(list(self.parser.results.source_patches)), 0) results = list(self.parser.results.sources.values()) self.assertEqual(len(results), 1) self.assertEqual(results[0].source.name, 'my_source') self.assertEqual(results[0].table.name, 'my_table') self.assertEqual(results[0].table.description, 'A description of my table') self.assertEqual(len(results[0].table.columns), 1) def test__parse_basic_source_tests(self): block = self.file_block_for(SINGLE_TABLE_SOURCE_TESTS, 'test_one.yml') self.parser.parse_file(block) self.assertEqual(len(self.parser.results.nodes), 0) self.assertEqual(len(self.parser.results.sources), 1) self.assertEqual(len(self.parser.results.patches), 0) src = list(self.parser.results.sources.values())[0] self.assertEqual(src.source.name, 'my_source') self.assertEqual(src.source.schema, None) self.assertEqual(src.table.name, 'my_table') self.assertEqual(src.table.description, 'A description of my table') tests = [ self.parser.parse_source_test(src, test, col) for test, col in src.get_tests() ] tests.sort(key=lambda n: n.unique_id) self.assertEqual(tests[0].config.severity, 'ERROR') self.assertEqual(tests[0].tags, ['schema']) self.assertEqual(tests[0].sources, [['my_source', 'my_table']]) self.assertEqual(tests[0].column_name, 'color') self.assertEqual(tests[0].fqn, ['snowplow', 'schema_test', tests[0].name]) self.assertEqual(tests[1].config.severity, 'WARN') self.assertEqual(tests[1].tags, ['schema']) self.assertEqual(tests[1].sources, [['my_source', 'my_table']]) self.assertEqual(tests[1].column_name, 'color') self.assertEqual(tests[1].fqn, ['snowplow', 'schema_test', tests[1].name]) path = get_abs_os_path('./dbt_modules/snowplow/models/test_one.yml') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].nodes, []) self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].sources, ['source.snowplow.my_source.my_table']) self.assertEqual(self.parser.results.files[path].source_patches, []) def test__read_source_patch(self): block = self.yaml_block_for(SINGLE_TABLE_SOURCE_PATCH, 'test_one.yml') analysis_tests = AnalysisPatchParser(self.parser, block, 'analyses').parse() model_tests = TestablePatchParser(self.parser, block, 'models').parse() source_tests = SourceParser(self.parser, block, 'sources').parse() macro_tests = MacroPatchParser(self.parser, block, 'macros').parse() self.assertEqual(len(analysis_tests), 0) self.assertEqual(len(model_tests), 0) self.assertEqual(len(source_tests), 0) self.assertEqual(len(macro_tests), 0) self.assertEqual(len(list(self.parser.results.nodes)), 0) self.assertEqual(len(list(self.parser.results.patches)), 0) self.assertEqual(len(list(self.parser.results.sources)), 0) results = list(self.parser.results.source_patches.values()) self.assertEqual(len(results), 1) self.assertEqual(results[0].name, 'my_source') self.assertEqual(results[0].overrides, 'snowplow') self.assertIsNone(results[0].description) self.assertEqual(len(results[0].tables), 1) table = results[0].tables[0] self.assertEqual(table.name, 'my_table') self.assertIsNone(table.description) self.assertEqual(len(table.columns), 1) self.assertEqual(len(table.columns[0].tests), 2) class SchemaParserModelsTest(SchemaParserTest): def test__read_basic_model_tests(self): block = self.yaml_block_for(SINGLE_TABLE_MODEL_TESTS, 'test_one.yml') self.parser.parse_file(block) self.assertEqual(len(list(self.parser.results.patches)), 1) self.assertEqual(len(list(self.parser.results.sources)), 0) self.assertEqual(len(list(self.parser.results.nodes)), 3) def test__parse_basic_model_tests(self): block = self.file_block_for(SINGLE_TABLE_MODEL_TESTS, 'test_one.yml') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, patches=1, nodes=3) patch = list(self.parser.results.patches.values())[0] self.assertEqual(len(patch.columns), 1) self.assertEqual(patch.name, 'my_model') self.assertEqual(patch.description, 'A description of my model') expected_patch = ParsedNodePatch( name='my_model', description='A description of my model', columns={'color': ColumnInfo(name='color', description='The color value')}, original_file_path=normalize('models/test_one.yml'), meta={}, yaml_key='models', package_name='snowplow', docs=Docs(show=True), ) self.assertEqual(patch, expected_patch) tests = sorted(self.parser.results.nodes.values(), key=lambda n: n.unique_id) self.assertEqual(tests[0].config.severity, 'ERROR') self.assertEqual(tests[0].tags, ['schema']) self.assertEqual(tests[0].refs, [['my_model']]) self.assertEqual(tests[0].column_name, 'color') self.assertEqual(tests[0].package_name, 'snowplow') self.assertTrue(tests[0].name.startswith('accepted_values_')) self.assertEqual(tests[0].fqn, ['snowplow', 'schema_test', tests[0].name]) self.assertEqual(tests[0].unique_id.split('.'), ['test', 'snowplow', tests[0].name]) self.assertEqual(tests[0].test_metadata.name, 'accepted_values') self.assertIsNone(tests[0].test_metadata.namespace) self.assertEqual( tests[0].test_metadata.kwargs, { 'column_name': 'color', 'model': "{{ ref('my_model') }}", 'values': ['red', 'blue', 'green'], } ) # foreign packages are a bit weird, they include the macro package # name in the test name self.assertEqual(tests[1].config.severity, 'ERROR') self.assertEqual(tests[1].tags, ['schema']) self.assertEqual(tests[1].refs, [['my_model']]) self.assertEqual(tests[1].column_name, 'color') self.assertEqual(tests[1].column_name, 'color') self.assertEqual(tests[1].fqn, ['snowplow', 'schema_test', tests[1].name]) self.assertTrue(tests[1].name.startswith('foreign_package_test_case_')) self.assertEqual(tests[1].package_name, 'snowplow') self.assertEqual(tests[1].unique_id.split('.'), ['test', 'snowplow', tests[1].name]) self.assertEqual(tests[1].test_metadata.name, 'test_case') self.assertEqual(tests[1].test_metadata.namespace, 'foreign_package') self.assertEqual( tests[1].test_metadata.kwargs, { 'column_name': 'color', 'model': "{{ ref('my_model') }}", 'arg': 100, }, ) self.assertEqual(tests[2].config.severity, 'WARN') self.assertEqual(tests[2].tags, ['schema']) self.assertEqual(tests[2].refs, [['my_model']]) self.assertEqual(tests[2].column_name, 'color') self.assertEqual(tests[2].package_name, 'snowplow') self.assertTrue(tests[2].name.startswith('not_null_')) self.assertEqual(tests[2].fqn, ['snowplow', 'schema_test', tests[2].name]) self.assertEqual(tests[2].unique_id.split('.'), ['test', 'snowplow', tests[2].name]) self.assertEqual(tests[2].test_metadata.name, 'not_null') self.assertIsNone(tests[2].test_metadata.namespace) self.assertEqual( tests[2].test_metadata.kwargs, { 'column_name': 'color', 'model': "{{ ref('my_model') }}", }, ) path = get_abs_os_path('./dbt_modules/snowplow/models/test_one.yml') self.assertIn(path, self.parser.results.files) self.assertEqual(sorted(self.parser.results.files[path].nodes), [t.unique_id for t in tests]) self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].patches, ['my_model']) class ModelParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = ModelParser( results=ParseResult.rpc(), project=self.snowplow_project_config, root_project=self.root_project_config, macro_manifest=self.macro_manifest, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'models') def test_basic(self): raw_sql = '{{ config(materialized="table") }}select 1 as id' block = self.file_block_for(raw_sql, 'nested/model_1.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, nodes=1) node = list(self.parser.results.nodes.values())[0] expected = ParsedModelNode( alias='model_1', name='model_1', database='test', schema='analytics', resource_type=NodeType.Model, unique_id='model.snowplow.model_1', fqn=['snowplow', 'nested', 'model_1'], package_name='snowplow', original_file_path=normalize('models/nested/model_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), config=NodeConfig(materialized='table'), path=normalize('nested/model_1.sql'), raw_sql=raw_sql, ) self.assertEqual(node, expected) path = get_abs_os_path('./dbt_modules/snowplow/models/nested/model_1.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].nodes, ['model.snowplow.model_1']) def test_parse_error(self): block = self.file_block_for('{{ SYNTAX ERROR }}', 'nested/model_1.sql') with self.assertRaises(CompilationException): self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, files=0) class SnapshotParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = SnapshotParser( results=ParseResult.rpc(), project=self.snowplow_project_config, root_project=self.root_project_config, macro_manifest=self.macro_manifest, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'snapshots') def test_parse_error(self): block = self.file_block_for('{% snapshot foo %}select 1 as id{%snapshot bar %}{% endsnapshot %}', 'nested/snap_1.sql') with self.assertRaises(CompilationException): self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, files=0) def test_single_block(self): raw_sql = '''{{ config(unique_key="id", target_schema="analytics", target_database="dbt", strategy="timestamp", updated_at="last_update") }} select 1 as id, now() as last_update''' full_file = ''' {{% snapshot foo %}}{}{{% endsnapshot %}} '''.format(raw_sql) block = self.file_block_for(full_file, 'nested/snap_1.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, nodes=1) node = list(self.parser.results.nodes.values())[0] expected = ParsedSnapshotNode( alias='foo', name='foo', # the `database` entry is overrridden by the target_database config database='dbt', schema='analytics', resource_type=NodeType.Snapshot, unique_id='snapshot.snowplow.foo', fqn=['snowplow', 'nested', 'snap_1', 'foo'], package_name='snowplow', original_file_path=normalize('snapshots/nested/snap_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), config=TimestampSnapshotConfig( strategy=SnapshotStrategy.Timestamp, updated_at='last_update', target_database='dbt', target_schema='analytics', unique_key='id', materialized='snapshot', ), path=normalize('nested/snap_1.sql'), raw_sql=raw_sql, ) self.assertEqual(node, expected) path = get_abs_os_path('./dbt_modules/snowplow/snapshots/nested/snap_1.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].nodes, ['snapshot.snowplow.foo']) def test_multi_block(self): raw_1 = ''' {{ config(unique_key="id", target_schema="analytics", target_database="dbt", strategy="timestamp", updated_at="last_update") }} select 1 as id, now() as last_update ''' raw_2 = ''' {{ config(unique_key="id", target_schema="analytics", target_database="dbt", strategy="timestamp", updated_at="last_update") }} select 2 as id, now() as last_update ''' full_file = ''' {{% snapshot foo %}}{}{{% endsnapshot %}} {{% snapshot bar %}}{}{{% endsnapshot %}} '''.format(raw_1, raw_2) block = self.file_block_for(full_file, 'nested/snap_1.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, nodes=2) nodes = sorted(self.parser.results.nodes.values(), key=lambda n: n.name) expect_foo = ParsedSnapshotNode( alias='foo', name='foo', database='dbt', schema='analytics', resource_type=NodeType.Snapshot, unique_id='snapshot.snowplow.foo', fqn=['snowplow', 'nested', 'snap_1', 'foo'], package_name='snowplow', original_file_path=normalize('snapshots/nested/snap_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), config=TimestampSnapshotConfig( strategy=SnapshotStrategy.Timestamp, updated_at='last_update', target_database='dbt', target_schema='analytics', unique_key='id', materialized='snapshot', ), path=normalize('nested/snap_1.sql'), raw_sql=raw_1, ) expect_bar = ParsedSnapshotNode( alias='bar', name='bar', database='dbt', schema='analytics', resource_type=NodeType.Snapshot, unique_id='snapshot.snowplow.bar', fqn=['snowplow', 'nested', 'snap_1', 'bar'], package_name='snowplow', original_file_path=normalize('snapshots/nested/snap_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), config=TimestampSnapshotConfig( strategy=SnapshotStrategy.Timestamp, updated_at='last_update', target_database='dbt', target_schema='analytics', unique_key='id', materialized='snapshot', ), path=normalize('nested/snap_1.sql'), raw_sql=raw_2, ) self.assertEqual(nodes[0], expect_bar) self.assertEqual(nodes[1], expect_foo) path = get_abs_os_path('./dbt_modules/snowplow/snapshots/nested/snap_1.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(sorted(self.parser.results.files[path].nodes), ['snapshot.snowplow.bar', 'snapshot.snowplow.foo']) class MacroParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = MacroParser( results=ParseResult.rpc(), project=self.snowplow_project_config, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'macros') def test_single_block(self): raw_sql = '{% macro foo(a, b) %}a ~ b{% endmacro %}' block = self.file_block_for(raw_sql, 'macro.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, macros=1) macro = list(self.parser.results.macros.values())[0] expected = ParsedMacro( name='foo', resource_type=NodeType.Macro, unique_id='macro.snowplow.foo', package_name='snowplow', original_file_path=normalize('macros/macro.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), path=normalize('macros/macro.sql'), macro_sql=raw_sql, ) self.assertEqual(macro, expected) path = get_abs_os_path('./dbt_modules/snowplow/macros/macro.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].macros, ['macro.snowplow.foo']) def test_multiple_blocks(self): raw_sql = '{% macro foo(a, b) %}a ~ b{% endmacro %}\n{% macro bar(c, d) %}c + d{% endmacro %}' block = self.file_block_for(raw_sql, 'macro.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, macros=2) macros = sorted(self.parser.results.macros.values(), key=lambda m: m.name) expected_bar = ParsedMacro( name='bar', resource_type=NodeType.Macro, unique_id='macro.snowplow.bar', package_name='snowplow', original_file_path=normalize('macros/macro.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), path=normalize('macros/macro.sql'), macro_sql='{% macro bar(c, d) %}c + d{% endmacro %}', ) expected_foo = ParsedMacro( name='foo', resource_type=NodeType.Macro, unique_id='macro.snowplow.foo', package_name='snowplow', original_file_path=normalize('macros/macro.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), path=normalize('macros/macro.sql'), macro_sql='{% macro foo(a, b) %}a ~ b{% endmacro %}', ) self.assertEqual(macros, [expected_bar, expected_foo]) path = get_abs_os_path('./dbt_modules/snowplow/macros/macro.sql') self.assertIn(path, self.parser.results.files) self.assertEqual( sorted(self.parser.results.files[path].macros), ['macro.snowplow.bar', 'macro.snowplow.foo'], ) class DataTestParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = DataTestParser( results=ParseResult.rpc(), project=self.snowplow_project_config, root_project=self.root_project_config, macro_manifest=self.macro_manifest, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'tests') def test_basic(self): raw_sql = 'select * from {{ ref("blah") }} limit 0' block = self.file_block_for(raw_sql, 'test_1.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, nodes=1) node = list(self.parser.results.nodes.values())[0] expected = ParsedDataTestNode( alias='test_1', name='test_1', database='test', schema='analytics', resource_type=NodeType.Test, unique_id='test.snowplow.test_1', fqn=['snowplow', 'data_test', 'test_1'], package_name='snowplow', original_file_path=normalize('tests/test_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), refs=[['blah']], config=TestConfig(severity='ERROR'), tags=['data'], path=normalize('data_test/test_1.sql'), raw_sql=raw_sql, ) self.assertEqual(node, expected) path = get_abs_os_path('./dbt_modules/snowplow/tests/test_1.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].nodes, ['test.snowplow.test_1']) class AnalysisParserTest(BaseParserTest): def setUp(self): super().setUp() self.parser = AnalysisParser( results=ParseResult.rpc(), project=self.snowplow_project_config, root_project=self.root_project_config, macro_manifest=self.macro_manifest, ) def file_block_for(self, data, filename): return super().file_block_for(data, filename, 'analyses') def test_basic(self): raw_sql = 'select 1 as id' block = self.file_block_for(raw_sql, 'nested/analysis_1.sql') self.parser.parse_file(block) self.assert_has_results_length(self.parser.results, nodes=1) node = list(self.parser.results.nodes.values())[0] expected = ParsedAnalysisNode( alias='analysis_1', name='analysis_1', database='test', schema='analytics', resource_type=NodeType.Analysis, unique_id='analysis.snowplow.analysis_1', fqn=['snowplow', 'analysis', 'nested', 'analysis_1'], package_name='snowplow', original_file_path=normalize('analyses/nested/analysis_1.sql'), root_path=get_abs_os_path('./dbt_modules/snowplow'), depends_on=DependsOn(), config=NodeConfig(), path=normalize('analysis/nested/analysis_1.sql'), raw_sql=raw_sql, ) self.assertEqual(node, expected) path = get_abs_os_path('./dbt_modules/snowplow/analyses/nested/analysis_1.sql') self.assertIn(path, self.parser.results.files) self.assertEqual(self.parser.results.files[path].nodes, ['analysis.snowplow.analysis_1']) class ProcessingTest(BaseParserTest): def setUp(self): super().setUp() x_depends_on = mock.MagicMock() y_depends_on = mock.MagicMock() x_uid = 'model.project.x' y_uid = 'model.otherproject.y' src_uid = 'source.thirdproject.src.tbl' self.x_node = mock.MagicMock( __class__=ParsedModelNode, package_name='project', search_name='x', config=mock.MagicMock(enabled=True), refs=[], sources=[['src', 'tbl']], unique_id=x_uid, resource_type=NodeType.Model, depends_on=x_depends_on, description='other_project: {{ doc("otherproject", "my_doc") }}', ) self.y_node = mock.MagicMock( __class__=ParsedModelNode, package_name='otherproject', search_name='y', config=mock.MagicMock(enabled=True), refs=[['x']], sources=[], unique_id=y_uid, resource_type=NodeType.Model, depends_on=y_depends_on, description='{{ doc("my_doc") }}', ) self.src_node = mock.MagicMock( __class__=ParsedSourceDefinition, package_name='project', search_name='src.tbl', config=mock.MagicMock(enabled=True), resource_type=NodeType.Source, unique_id=src_uid, ) nodes = { x_uid: self.x_node, y_uid: self.y_node, } sources = { src_uid: self.src_node, } docs = { 'otherproject.my_doc': mock.MagicMock( __class__=ParsedDocumentation, resource_type=NodeType.Documentation, search_name='my_doc', package_name='otherproject', block_contents='some docs', ) } self.manifest = Manifest( nodes=nodes, sources=sources, macros={}, docs=docs, disabled=[], files={}, generated_at=mock.MagicMock() ) def test_process_docs(self): process_docs(self.manifest, self.root_project_config) self.assertEqual(self.x_node.description, 'other_project: some docs') self.assertEqual(self.y_node.description, 'some docs') def test_process_sources(self): process_sources(self.manifest, 'project') self.x_node.depends_on.nodes.append.assert_called_once_with('source.thirdproject.src.tbl') def test_process_refs(self): process_refs(self.manifest, 'project') self.y_node.depends_on.nodes.append.assert_called_once_with('model.project.x')
40.487805
150
0.611044
6355544d3660c7c7411af12bc1ea0b5d84b39cbb
2,700
py
Python
demo_train.py
shubham0704/MeshCNN
0085e06ab6b06402344130af4e25f0038918bb73
[ "MIT" ]
null
null
null
demo_train.py
shubham0704/MeshCNN
0085e06ab6b06402344130af4e25f0038918bb73
[ "MIT" ]
null
null
null
demo_train.py
shubham0704/MeshCNN
0085e06ab6b06402344130af4e25f0038918bb73
[ "MIT" ]
null
null
null
import time from options.demo_train_options import TrainOptions from data import DataLoader from models import create_model from util.writer import Writer from test import run_test import pdb from torch.profiler import profile, record_function, ProfilerActivity if __name__ == '__main__': opt = TrainOptions().parse() dataset = DataLoader(opt) dataset_size = len(dataset) print('#training meshes = %d' % dataset_size) # pdb.set_trace() model = create_model(opt) # for i, data in enumerate(dataset): # model.set_input(data) writer = Writer(opt) total_steps = 0 for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): epoch_start_time = time.time() iter_data_time = time.time() epoch_iter = 0 for i, data in enumerate(dataset): iter_start_time = time.time() if total_steps % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_steps += opt.batch_size epoch_iter += opt.batch_size with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], profile_memory=True, record_shapes=True ) as prof: model.set_input(data) model.optimize_parameters() print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10)) print(prof.key_averages(group_by_stack_n=5).table(sort_by="self_cuda_time_total", row_limit=2)) if total_steps % opt.print_freq == 0: loss = model.loss t = (time.time() - iter_start_time) / opt.batch_size writer.print_current_losses(epoch, epoch_iter, loss, t, t_data) writer.plot_loss(loss, epoch, epoch_iter, dataset_size) if i % opt.save_latest_freq == 0: print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) model.save_network('latest') iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save_network('latest') model.save_network(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) model.update_learning_rate() if opt.verbose_plot: writer.plot_model_wts(model, epoch) if epoch % opt.run_test_freq == 0: acc = run_test(epoch) writer.plot_acc(acc, epoch) writer.close()
36.486486
107
0.612593
8306ee39baa9c41d5b790a15dc36c675b8aa992c
1,461
py
Python
linkpath.py
riceissa/ea-forum-reader
c340db63705ee2eb1dc64281fd6d2701451372b5
[ "CC0-1.0" ]
8
2018-11-10T19:52:55.000Z
2022-01-19T20:43:15.000Z
linkpath.py
riceissa/ea-forum-reader
c340db63705ee2eb1dc64281fd6d2701451372b5
[ "CC0-1.0" ]
40
2018-11-23T22:19:05.000Z
2021-08-03T17:02:33.000Z
linkpath.py
riceissa/ea-forum-reader
c340db63705ee2eb1dc64281fd6d2701451372b5
[ "CC0-1.0" ]
3
2018-11-24T06:04:28.000Z
2020-05-23T09:28:40.000Z
#!/usr/bin/env python3 import config PATH_STYLE = config.PATH_STYLE def posts(postid, postslug="", display_format="html"): if postid is None: postid = "" if PATH_STYLE == "localhost": if display_format == "html": return "./posts.php?id=" + postid else: return "./posts.php?id=" + postid + "&amp;format=" + display_format else: if display_format == "html": return "/posts/" + postid + "/" + postslug else: return "/posts/" + postid + "/" + postslug + "?format=" + display_format def users(userslug, display_format="html"): if PATH_STYLE == "localhost": return "./users.php?id=" + userslug + ("&amp;format=" + display_format if display_format != "html" else "") else: return "/users/" + userslug + ("?format=" + display_format if display_format != "html" else "") def userlist(sort="karma", display_format="html"): if PATH_STYLE == "localhost": if display_format != "html": return "./userlist.php?sort=" + sort + "&amp;format=" + display_format else: return "./userlist.php?sort=" + sort else: if display_format != "html": return "/userlist?sort=" + sort + "&amp;format=" + display_format else: return "/userlist?sort=" + sort def search(): if PATH_STYLE == "localhost": return "./search.php" else: return "/search.php"
32.466667
115
0.569473
95a2660524516838445794f92b484267e4d12378
2,570
py
Python
evodcinv/_io/_helpers.py
keurfonluu/evodcinv
d7059ebdbdea00a1819dfdcdd5820387c72d0125
[ "BSD-3-Clause" ]
9
2021-12-11T09:48:33.000Z
2022-03-20T10:32:25.000Z
evodcinv/_io/_helpers.py
keurfonluu/evodcinv
d7059ebdbdea00a1819dfdcdd5820387c72d0125
[ "BSD-3-Clause" ]
2
2021-12-13T00:14:24.000Z
2021-12-16T09:11:11.000Z
evodcinv/_io/_helpers.py
keurfonluu/evodcinv
d7059ebdbdea00a1819dfdcdd5820387c72d0125
[ "BSD-3-Clause" ]
2
2021-12-21T07:36:39.000Z
2022-02-25T13:12:52.000Z
import os _extension_to_filetype = {} _reader_map = {} _writer_map = {} def register(file_format, extensions, reader, writer=None): """ Register a new input format. Parameters ---------- file_format : str File format to register. extensions : array_like List of extensions to associate to the new format. reader : callable Read fumction. writer : callable or None, optional, default None Write function. """ for ext in extensions: _extension_to_filetype[ext] = file_format if reader is not None: _reader_map[file_format] = reader if writer is not None: _writer_map[file_format] = writer def read(filename, file_format=None, **kwargs): """ Read inversion results. Parameters ---------- filename : str Input file name. file_format : str ('h5', 'json') or None, optional, default None Input file format. Returns ------- :class:`evodcinv.InversionResult` Inversion results. """ if not isinstance(filename, str): raise TypeError() if file_format is None: file_format = filetype_from_filename(filename, _extension_to_filetype) else: if file_format not in _reader_map: raise ValueError() return _reader_map[file_format](filename, **kwargs) def write(filename, result, file_format=None, **kwargs): """ Write TOUGH input file. Parameters ---------- filename : str Output file name. result : :class:`evodcinv.InversionResult` Inversion results to export. file_format : str ('h5', 'json') or None, optional, default None Output file format. Other Parameters ---------------- compression_opts : int, optional, default 4 Only if ``file_format = "h5"``. Compression level for gzip compression. May be an integer from 0 to 9. indent : int, str or None, optional, default None Only if ``file_format = "json"``. Indent level. """ if not isinstance(filename, str): raise TypeError() if file_format is None: file_format = filetype_from_filename(filename, _extension_to_filetype) else: if file_format not in _reader_map: raise ValueError() _writer_map[file_format](filename, result, **kwargs) def filetype_from_filename(filename, ext_to_fmt): """Determine file type from its extension.""" ext = os.path.splitext(filename)[1].lower() return ext_to_fmt[ext] if ext in ext_to_fmt.keys() else ""
24.951456
110
0.636576
31e7c706ec9c73c20a63dbaa86e441ee1db8cc8a
4,170
py
Python
tests/components/vera/common.py
SmarthomeNinja/core
f4b8a95205ea7d4126fc5e704da532cd8eed937e
[ "Apache-2.0" ]
6
2020-07-18T16:33:25.000Z
2021-09-26T09:52:04.000Z
tests/components/vera/common.py
SmarthomeNinja/core
f4b8a95205ea7d4126fc5e704da532cd8eed937e
[ "Apache-2.0" ]
47
2020-07-23T07:14:33.000Z
2022-03-31T06:01:46.000Z
tests/components/vera/common.py
SmarthomeNinja/core
f4b8a95205ea7d4126fc5e704da532cd8eed937e
[ "Apache-2.0" ]
5
2020-03-29T00:29:13.000Z
2021-09-06T20:58:40.000Z
"""Common code for tests.""" from typing import Callable, Dict, NamedTuple, Tuple import pyvera as pv from homeassistant.components.vera.const import CONF_CONTROLLER, DOMAIN from homeassistant.core import HomeAssistant from homeassistant.setup import async_setup_component from tests.async_mock import MagicMock from tests.common import MockConfigEntry SetupCallback = Callable[[pv.VeraController, dict], None] class ControllerData(NamedTuple): """Test data about a specific vera controller.""" controller: pv.VeraController update_callback: Callable class ComponentData(NamedTuple): """Test data about the vera component.""" controller_data: ControllerData class ControllerConfig(NamedTuple): """Test config for mocking a vera controller.""" config: Dict options: Dict config_from_file: bool serial_number: str devices: Tuple[pv.VeraDevice, ...] scenes: Tuple[pv.VeraScene, ...] setup_callback: SetupCallback def new_simple_controller_config( config: dict = None, options: dict = None, config_from_file=False, serial_number="1111", devices: Tuple[pv.VeraDevice, ...] = (), scenes: Tuple[pv.VeraScene, ...] = (), setup_callback: SetupCallback = None, ) -> ControllerConfig: """Create simple contorller config.""" return ControllerConfig( config=config or {CONF_CONTROLLER: "http://127.0.0.1:123"}, options=options, config_from_file=config_from_file, serial_number=serial_number, devices=devices, scenes=scenes, setup_callback=setup_callback, ) class ComponentFactory: """Factory class.""" def __init__(self, vera_controller_class_mock): """Initialize the factory.""" self.vera_controller_class_mock = vera_controller_class_mock async def configure_component( self, hass: HomeAssistant, controller_config: ControllerConfig ) -> ComponentData: """Configure the component with specific mock data.""" component_config = { **(controller_config.config or {}), **(controller_config.options or {}), } controller = MagicMock(spec=pv.VeraController) # type: pv.VeraController controller.base_url = component_config.get(CONF_CONTROLLER) controller.register = MagicMock() controller.start = MagicMock() controller.stop = MagicMock() controller.refresh_data = MagicMock() controller.temperature_units = "C" controller.serial_number = controller_config.serial_number controller.get_devices = MagicMock(return_value=controller_config.devices) controller.get_scenes = MagicMock(return_value=controller_config.scenes) for vera_obj in controller.get_devices() + controller.get_scenes(): vera_obj.vera_controller = controller controller.get_devices.reset_mock() controller.get_scenes.reset_mock() if controller_config.setup_callback: controller_config.setup_callback(controller) self.vera_controller_class_mock.return_value = controller hass_config = {} # Setup component through config file import. if controller_config.config_from_file: hass_config[DOMAIN] = component_config # Setup Home Assistant. assert await async_setup_component(hass, DOMAIN, hass_config) await hass.async_block_till_done() # Setup component through config flow. if not controller_config.config_from_file: entry = MockConfigEntry( domain=DOMAIN, data=component_config, options={}, unique_id="12345" ) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() update_callback = ( controller.register.call_args_list[0][0][1] if controller.register.call_args_list else None ) return ComponentData( controller_data=ControllerData( controller=controller, update_callback=update_callback ) )
31.590909
83
0.682974
5af29fabd129e5cb6d8074754e3d59018c81251b
1,719
py
Python
nncf/tensorflow/pruning/callbacks.py
vshampor/nncf
4916668308f6a151794b1953fa759d0154ba16ef
[ "Apache-2.0" ]
null
null
null
nncf/tensorflow/pruning/callbacks.py
vshampor/nncf
4916668308f6a151794b1953fa759d0154ba16ef
[ "Apache-2.0" ]
null
null
null
nncf/tensorflow/pruning/callbacks.py
vshampor/nncf
4916668308f6a151794b1953fa759d0154ba16ef
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from nncf.common.statistics import NNCFStatistics from nncf.tensorflow.callbacks.statistics_callback import StatisticsCallback class PruningStatisticsCallback(StatisticsCallback): """ Callback for logging pruning compression statistics to tensorboard and stdout. """ def _prepare_for_tensorboard(self, stats: NNCFStatistics): base_prefix = '2.compression/statistics' detailed_prefix = '3.compression_details/statistics' ms = stats.filter_pruning.model_statistics tensorboard_stats = { f'{base_prefix}/algo_current_pruning_level': stats.filter_pruning.current_pruning_level, f'{base_prefix}/model_FLOPS_pruning_level': ms.flops_pruning_level, f'{base_prefix}/model_params_pruning_level': ms.params_pruning_level, f'{base_prefix}/model_filters_pruning_level': ms.filter_pruning_level, } for ls in ms.pruned_layers_summary: layer_name, pruning_level = ls.name, ls.filter_pruning_level tensorboard_stats[f'{detailed_prefix}/{layer_name}/pruning_level'] = pruning_level return tensorboard_stats
42.975
100
0.749273
5e71d3b0054d9368519bff71d526a585a50693b9
68
py
Python
sheetwork/__init__.py
bastienboutonnet/sheetwork
7aa757ed12375ddd2c56502b721d91146d22b7ea
[ "MIT" ]
9
2020-12-10T12:12:42.000Z
2021-11-24T20:56:36.000Z
sheetwork/__init__.py
bastienboutonnet/sheetwork
7aa757ed12375ddd2c56502b721d91146d22b7ea
[ "MIT" ]
266
2020-04-19T10:50:19.000Z
2022-03-14T22:12:43.000Z
sheetwork/__init__.py
bastienboutonnet/sheetwork
7aa757ed12375ddd2c56502b721d91146d22b7ea
[ "MIT" ]
3
2020-04-25T18:11:20.000Z
2020-12-21T09:36:34.000Z
"""Version module and init for sheetwork.""" __version__ = "1.0.7"
17
44
0.676471
935560a67bf01e97bb10abaa9d69053eb6f960dc
2,532
py
Python
app/tests/test_b1_get_github_urls.py
OmarThinks/Gemography-Challenge-1
79da3c6f1a79a8d9834d302be4bbafd2b4190a8c
[ "MIT" ]
null
null
null
app/tests/test_b1_get_github_urls.py
OmarThinks/Gemography-Challenge-1
79da3c6f1a79a8d9834d302be4bbafd2b4190a8c
[ "MIT" ]
null
null
null
app/tests/test_b1_get_github_urls.py
OmarThinks/Gemography-Challenge-1
79da3c6f1a79a8d9834d302be4bbafd2b4190a8c
[ "MIT" ]
null
null
null
import unittest from rest_api.serializers import GithubSearchRepoSerializer """ Here we will test the queries builder """ """ To run the tests pytest pytest -rP pytest -rP --junitxml=test-reports/junit.xml --html=test-reports/pytest_report.html --self-contained-html """ class QueriesBuilderTestCase(unittest.TestCase): def test_000(self): self.assertEqual( "{date_format} {order_format} {page}".format( date_format="123", order_format="456", page=1), "123 456 1") self.assertEqual("https://api.github.com/search/repositories?q=created:>{date_format}&sort=stars&order={order_format}&per_page=100&page={page}".format( date_format = "123", order_format = "456", page = 1), "https://api.github.com/search/repositories?q=created:>123&sort=stars&order=456&per_page=100&page=1" ) mysrt = "https://api.github.com/search/repositories?"+"q=created:>{date_format}&sort=stars&order={order_format}"+"&per_page=100&page={page}" mysrt.format(date_format = "123", order_format = "456", page = 1) #print(mysrt) print("test_000:testing string formatting") def test_001(self): serializer = GithubSearchRepoSerializer(data ={ "date" : "2019-04-29", "order" : "asc", "records":99 }) serializer.is_valid() queries = serializer.get_github_urls() self.assertEqual(queries, [ "https://api.github.com/search/repositories?"+ "q=created:>2019-04-29&sort=stars&order=asc"+ "&per_page=100&page=1"]) print("test_001:asc one page") def test_002(self): serializer = GithubSearchRepoSerializer(data ={ "date" : "2019-04-29", "order" : "desc", "records":100 }) serializer.is_valid() queries = serializer.get_github_urls() #print(queries) self.assertEqual(queries, [ "https://api.github.com/search/repositories?"+ "q=created:>2019-04-29&sort=stars&order=desc"+ "&per_page=100&page=1"]) print("test_002:decs one page on the edge") def test_003(self): serializer = GithubSearchRepoSerializer(data ={ "date" : "2019-04-29", "order" : "desc", "records":101 }) serializer.is_valid() queries = serializer.get_github_urls() self.assertEqual(queries, [ "https://api.github.com/search/repositories?"+ "q=created:>2019-04-29&sort=stars&order=desc"+ "&per_page=100&page=1", "https://api.github.com/search/repositories?"+ "q=created:>2019-04-29&sort=stars&order=desc"+ "&per_page=100&page=2" ]) print("test_003:decs 2 pages") # Make the tests conveniently executable if __name__ == "__main__": unittest.main()
28.133333
153
0.691943
b5b23767bc452d1d161330f945974af76c7faa29
3,337
py
Python
tronx/modules/group.py
TronUb/Tron
55b5067a34cf2849913647533d7d035cab64568e
[ "MIT" ]
4
2022-03-07T07:27:04.000Z
2022-03-29T05:59:57.000Z
tronx/modules/group.py
TronUb/Tron
55b5067a34cf2849913647533d7d035cab64568e
[ "MIT" ]
null
null
null
tronx/modules/group.py
TronUb/Tron
55b5067a34cf2849913647533d7d035cab64568e
[ "MIT" ]
3
2022-03-05T15:24:51.000Z
2022-03-14T08:48:05.000Z
import asyncio from pyrogram.raw import functions from pyrogram.types import Message from tronx import app, gen app.CMD_HELP.update( {"group" : ( "group", { "bgroup [group name]" : "Creates a basic group.", "sgroup [group name]" : "Creates a super group.", "unread" : "Mark a chat as unread in your telegram folders.", "channel [channel name]" : "Create a channel through this command." } ) } ) @app.on_message(gen(["bgroup", "bgp"], allow =["sudo"])) async def basicgroup_handler(_, m: Message): grpname = None users = None if app.long() == 1: return await app.send_edit(f"Usage: `{app.PREFIX}bgroup mygroupname`", delme=4) elif app.long() > 1: grpname = m.text.split(None, 1)[1] users = "@TheRealPhoenixBot" elif app.long() > 2: grpname = m.text.split(None, 1)[1] users = m.text.split(None, 2)[2].split() else: grpname = False users = "@TheRealPhoenixBot" # required try: if grpname: await app.send_edit(f"Creating a new basic group: `{grpname}`") group = await app.create_group(title=f"{grpname}", users=users) await app.send_edit(f"**Created a new basic group:** [{grpname}]({(await app.get_chat(group.id)).invite_link})") else: await app.send_edit("No group name is provided.", text_type=["mono"], delme=4) except Exception as e: await app.error(e) @app.on_message(gen(["sgroup", "sgp"], allow =["sudo"])) async def supergroup_handler(_, m: Message): grpname = None about = None if app.long() == 1: return await app.send_edit(f"`Usage: {app.PREFIX}sgroup mygroupname`", delme=4) elif app.long() > 1: grpname = m.text.split(None, 1)[1] about = "" elif app.long() > 2: grpname = m.text.split(None, 1)[1] about = m.text.split(None, 2)[2] else: grpname = False about = "" try: if grpname: await app.send_edit(f"Creating a new super group: `{grpname}`") group = await app.create_supergroup(title=f"{grpname}", description=about) await app.send_edit(f"**Created a new super group:** [{grpname}]({(await app.get_chat(group.id)).invite_link})") else: await app.send_edit("No group name is provided.", text_type=["mono"], delme=4) except Exception as e: await app.error(e) @app.on_message(gen(["unread", "un"], allow =["sudo"])) async def unreadchat_handler(_, m: Message): try: await asyncio.gather( m.delete(), app.invoke( functions.messages.MarkDialogUnread( peer=await app.resolve_peer(m.chat.id), unread=True ) ), ) except Exception as e: await app.error(e) @app.on_message(gen("channel", allow =["sudo"])) async def channel_handler(_, m: Message): chname = None about = None if app.long() == 1: return await app.send_edit(f"Usage: `{app.PREFIX}channel [channel name]`", delme=4) elif app.long() > 1: chname = m.text.split(None, 1)[1] about = "" elif app.long() > 2: chname = m.text.split(None, 1)[1] about = m.text.split(None, 2)[2] try: if chname: await app.send_edit(f"Creating your channel: `{chname}`") response = await app.create_channel(title=f"{chname}", description=about) if response: await app.send_edit(f"**Created a new channel:** [{chname}]({(await app.get_chat(response.id)).invite_link})", disable_web_page_preview=True) else: await app.send_edit("Couldn't create a channel.") except Exception as e: await app.error(e)
26.275591
145
0.66407
cb30e36d51b5be1b53857d2833cb520e7a706a79
2,233
py
Python
data/detection/total_text.py
JinGyeSetBirdsFree/FudanOCR
e6b18b0eefaf832b2eb7198f5df79e00bd4cee36
[ "MIT" ]
25
2020-02-29T12:14:10.000Z
2020-04-24T07:56:06.000Z
data/detection/total_text.py
dun933/FudanOCR
fd79b679044ea23fd9eb30691453ed0805d2e98b
[ "MIT" ]
33
2020-12-10T19:15:39.000Z
2022-03-12T00:17:30.000Z
data/detection/total_text.py
dun933/FudanOCR
fd79b679044ea23fd9eb30691453ed0805d2e98b
[ "MIT" ]
4
2020-02-29T12:14:18.000Z
2020-04-12T12:26:50.000Z
import scipy.io as io import numpy as np import os import copy from model.detection_model.TextSnake_pytorch.dataset.data_util import pil_load_img from model.detection_model.TextSnake_pytorch.dataset.dataload import TextDataset, TextInstance from model.detection_model.TextSnake_pytorch.dataset.read_json import read_json, read_dict class TotalText(TextDataset): def __init__(self, data_root, ignore_list=None, is_training=True, transform=None): super().__init__(transform) self.data_root = data_root self.is_training = is_training if ignore_list: with open(ignore_list) as f: ignore_list = f.readlines() ignore_list = [line.strip() for line in ignore_list] else: ignore_list = [] # self.image_root = os.path.join(data_root, 'train_images') self.image_root = os.path.join(data_root, 'train_images' if is_training else 'test_images') # self.image_root = os.path.join(data_root, 'crop_images_new') self.image_list = os.listdir(self.image_root) self.image_list = list(filter(lambda img: img.replace('.jpg', '') not in ignore_list, self.image_list)) self.annotation_path = os.path.join(data_root, 'train_labels.json') # self.annotation_path = os.path.join(data_root, 'crop_result_js.json') self.data_dict = read_json(self.annotation_path) def __getitem__(self, item): image_id = self.image_list[item] image_path = os.path.join(self.image_root, image_id) # Read image data image = pil_load_img(image_path) image_shape = image.shape # Read annotation polygons = read_dict(self.data_dict, image_id) if self.transform: image, polygons = self.transform(image, copy.copy(polygons)) # Todo: may be bug here for i, polygon in enumerate(polygons): if not polygon['illegibility']: polygon.find_bottom_and_sideline(polygon.points) return self.get_training_data(image, polygons, image_id=image_id, image_path=image_path, image_shape=image_shape) def __len__(self): return len(self.image_list)
39.875
111
0.675325
45f51594865128c08e49b37d5c555864470bda1c
555
py
Python
peeper/config/amk.py
raceup/peeper
95005b279bf94c2e6435c6a0e0db3c456b971861
[ "MIT" ]
1
2019-05-13T02:47:14.000Z
2019-05-13T02:47:14.000Z
peeper/config/amk.py
raceup/peeper
95005b279bf94c2e6435c6a0e0db3c456b971861
[ "MIT" ]
null
null
null
peeper/config/amk.py
raceup/peeper
95005b279bf94c2e6435c6a0e0db3c456b971861
[ "MIT" ]
null
null
null
from enum import Enum class Motors(Enum): FL = 3 FR = 2 RL = 1 RR = 0 AMK_VALUES_1_CAN_IDS = ['283', '284', '287', '288'] AMK_VALUES_2_CAN_IDS = ['285', '286', '289', '28a'] AMK_SETPOINTS_CAN_IDS = ['184', '185', '188', '189'] AMK_VALUES_1 = { motor: AMK_VALUES_1_CAN_IDS[motor.value] for motor in Motors } AMK_VALUES_2 = { motor: AMK_VALUES_2_CAN_IDS[motor.value] for motor in Motors } AMK_SETPOINTS = { motor: AMK_SETPOINTS_CAN_IDS[motor.value] for motor in Motors } MOTOR_LABELS = ["FL", "FR", "RL", "RR"]
19.137931
52
0.636036
2a7cb2046853778cd21b61291cf80b384b7cf40a
518
py
Python
lexlib/__init__.py
cranndarach/wordutils
f1e2288df1924a12e6d018786e9797dabec2656a
[ "MIT" ]
4
2017-03-03T00:36:13.000Z
2020-03-10T18:58:18.000Z
lexlib/__init__.py
cranndarach/wordutils
f1e2288df1924a12e6d018786e9797dabec2656a
[ "MIT" ]
3
2016-12-30T02:47:45.000Z
2018-08-14T22:43:06.000Z
lexlib/__init__.py
cranndarach/wordutils
f1e2288df1924a12e6d018786e9797dabec2656a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ Set of utilities for research involving words. """ # copyright: 2016-2019 R. Steiner # license: MIT License from .io import * from .neighbors import * from .structure import * from .utilities import * __all__ = ["check_neighbors", "get_words", "clusters", "clusters_word", "get_cv", "get_neighbor_dict", "get_neighbor_pairs", "get_neighbor_positions", "get_neighbor_types", "get_neighbors", "nsyll_list", "nsyll_word", "filter_by_nsyll", "filter_words"]
27.263158
75
0.69305
da6bb512fea156a72ded3134302fb2739d27dcde
1,690
py
Python
src/rabbitmq/RabbitSpider.py
gendobr/scrapy-boilerplate
5695e5310ac27be35b76a20593cb987d51eccd28
[ "MIT" ]
null
null
null
src/rabbitmq/RabbitSpider.py
gendobr/scrapy-boilerplate
5695e5310ac27be35b76a20593cb987d51eccd28
[ "MIT" ]
null
null
null
src/rabbitmq/RabbitSpider.py
gendobr/scrapy-boilerplate
5695e5310ac27be35b76a20593cb987d51eccd28
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import logging import os import re import sys import time import pika import scrapy from scrapy.utils.project import get_project_settings class RabbitSpider: def __init__(self, *args, **kwargs): settings = get_project_settings() self.rabbitmq_connect(settings) def rabbitmq_connect(self, settings): logging.getLogger("pika").setLevel(os.getenv("PIKA_LOG_LEVEL")) parameters = pika.ConnectionParameters( host=settings.get("RABBITMQ_HOST"), port=settings.get("RABBITMQ_PORT"), virtual_host=settings.get("RABBITMQ_VIRTUAL_HOST"), credentials=pika.credentials.PlainCredentials( username=settings.get("RABBITMQ_USER"), password=settings.get("RABBITMQ_PASS"), ), heartbeat=0, ) self.connection = pika.BlockingConnection(parameters) self.channel = self.connection.channel() self.channel.basic_qos( prefetch_count=int(settings.get("CONCURRENT_REQUESTS", 1)) ) def prepare_request(self): raise NotImplementedError def next_request(self): queue_name = os.getenv("PUSHER_QUEUE", "") while True: stats = self.channel.queue_declare(queue=queue_name, durable=True) if stats.method.message_count > 0: method, header_frame, body = self.channel.basic_get(queue_name) if body: return self.prepare_request(method, header_frame, body) else: self.logger.warning("No messages in the queue, waiting...") time.sleep(30)
30.727273
79
0.628994
59f922033600c7c4d9d83dab9324f431101daa2d
2,088
py
Python
operators/crossplane/python/pulumi_pulumi_kubernetes_crds_operators_crossplane/provider.py
pulumi/pulumi-kubernetes-crds
372c4c0182f6b899af82d6edaad521aa14f22150
[ "Apache-2.0" ]
null
null
null
operators/crossplane/python/pulumi_pulumi_kubernetes_crds_operators_crossplane/provider.py
pulumi/pulumi-kubernetes-crds
372c4c0182f6b899af82d6edaad521aa14f22150
[ "Apache-2.0" ]
2
2020-09-18T17:12:23.000Z
2020-12-30T19:40:56.000Z
operators/crossplane/python/pulumi_pulumi_kubernetes_crds_operators_crossplane/provider.py
pulumi/pulumi-kubernetes-crds
372c4c0182f6b899af82d6edaad521aa14f22150
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by crd2pulumi. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from . import _utilities, _tables __all__ = ['Provider'] class Provider(pulumi.ProviderResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, __props__=None, __name__=None, __opts__=None): """ Create a Crds resource with the given unique name, props, and options. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() super(Provider, __self__).__init__( 'pulumi_kubernetes_crds_operators_crossplane', resource_name, __props__, opts) def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
37.963636
134
0.645594
25235c8b7ae203face175993654de2903237b787
25,651
py
Python
python/cucim/src/cucim/skimage/filters/edges.py
aasthajh/cucim
a95cc5c4ab25beffeac42d642dea8cb1bbf21408
[ "Apache-2.0" ]
131
2021-04-09T19:02:10.000Z
2022-03-25T08:49:11.000Z
python/cucim/src/cucim/skimage/filters/edges.py
aasthajh/cucim
a95cc5c4ab25beffeac42d642dea8cb1bbf21408
[ "Apache-2.0" ]
222
2021-04-12T07:15:14.000Z
2022-03-31T20:01:01.000Z
python/cucim/src/cucim/skimage/filters/edges.py
aasthajh/cucim
a95cc5c4ab25beffeac42d642dea8cb1bbf21408
[ "Apache-2.0" ]
34
2021-04-09T18:54:13.000Z
2022-03-29T12:59:26.000Z
""" Sobel and Prewitt filters originally part of CellProfiler, code licensed under both GPL and BSD licenses. Website: http://www.cellprofiler.org Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2011 Broad Institute All rights reserved. Original author: Lee Kamentsky """ import math import cupy as cp import numpy as np from cupyx.scipy import ndimage as ndi from .. import img_as_float from .._shared.utils import check_nD from ..restoration.uft import laplacian # n-dimensional filter weights SOBEL_EDGE = np.array([1, 0, -1]) SOBEL_SMOOTH = np.array([1, 2, 1]) / 4 HSOBEL_WEIGHTS = SOBEL_EDGE.reshape((3, 1)) * SOBEL_SMOOTH.reshape((1, 3)) VSOBEL_WEIGHTS = HSOBEL_WEIGHTS.T SCHARR_EDGE = np.array([1, 0, -1]) SCHARR_SMOOTH = np.array([3, 10, 3]) / 16 HSCHARR_WEIGHTS = SCHARR_EDGE.reshape((3, 1)) * SCHARR_SMOOTH.reshape((1, 3)) VSCHARR_WEIGHTS = HSCHARR_WEIGHTS.T PREWITT_EDGE = np.array([1, 0, -1]) PREWITT_SMOOTH = np.full((3,), 1 / 3) HPREWITT_WEIGHTS = (PREWITT_EDGE.reshape((3, 1)) * PREWITT_SMOOTH.reshape((1, 3))) VPREWITT_WEIGHTS = HPREWITT_WEIGHTS.T # 2D-only filter weights # fmt: off ROBERTS_PD_WEIGHTS = np.array([[1, 0], [0, -1]], dtype=np.double) ROBERTS_ND_WEIGHTS = np.array([[0, 1], [-1, 0]], dtype=np.double) # fmt: on # These filter weights can be found in Farid & Simoncelli (2004), # Table 1 (3rd and 4th row). Additional decimal places were computed # using the code found at https://www.cs.dartmouth.edu/farid/ # fmt: off p = np.array([[0.0376593171958126, 0.249153396177344, 0.426374573253687, 0.249153396177344, 0.0376593171958126]]) d1 = np.array([[0.109603762960254, 0.276690988455557, 0, -0.276690988455557, -0.109603762960254]]) # fmt: on HFARID_WEIGHTS = d1.T * p VFARID_WEIGHTS = np.copy(HFARID_WEIGHTS.T) def _mask_filter_result(result, mask): """Return result after masking. Input masks are eroded so that mask areas in the original image don't affect values in the result. """ if mask is not None: erosion_selem = ndi.generate_binary_structure(mask.ndim, mask.ndim) mask = ndi.binary_erosion(mask, erosion_selem, border_value=0) result *= mask return result def _kernel_shape(ndim, dim): """Return list of `ndim` 1s except at position `dim`, where value is -1. Parameters ---------- ndim : int The number of dimensions of the kernel shape. dim : int The axis of the kernel to expand to shape -1. Returns ------- shape : list of int The requested shape. Examples -------- >>> _kernel_shape(2, 0) [-1, 1] >>> _kernel_shape(3, 1) [1, -1, 1] >>> _kernel_shape(4, -1) [1, 1, 1, -1] """ shape = [1] * ndim shape[dim] = -1 return shape def _reshape_nd(arr, ndim, dim): """Reshape a 1D array to have n dimensions, all singletons but one. Parameters ---------- arr : array, shape (N,) Input array ndim : int Number of desired dimensions of reshaped array. dim : int Which dimension/axis will not be singleton-sized. Returns ------- arr_reshaped : array, shape ([1, ...], N, [1,...]) View of `arr` reshaped to the desired shape. Examples -------- >>> arr = cp.random.random(7) >>> _reshape_nd(arr, 2, 0).shape (7, 1) >>> _reshape_nd(arr, 3, 1).shape (1, 7, 1) >>> _reshape_nd(arr, 4, -1).shape (1, 1, 1, 7) """ kernel_shape = _kernel_shape(ndim, dim) return cp.reshape(arr, kernel_shape) def _generic_edge_filter(image, *, smooth_weights, edge_weights=[1, 0, -1], axis=None, mode='reflect', cval=0.0, mask=None): """Apply a generic, n-dimensional edge filter. The filter is computed by applying the edge weights along one dimension and the smoothing weights along all other dimensions. If no axis is given, or a tuple of axes is given the filter is computed along all axes in turn, and the magnitude is computed as the square root of the average square magnitude of all the axes. Parameters ---------- image : array The input image. smooth_weights : array of float The smoothing weights for the filter. These are applied to dimensions orthogonal to the edge axis. edge_weights : 1D array of float, optional The weights to compute the edge along the chosen axes. axis : int or sequence of int, optional Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:: edge_mag = np.sqrt(sum([_generic_edge_filter(image, ..., axis=i)**2 for i in range(image.ndim)]) / image.ndim) The magnitude is also computed if axis is a sequence. mode : str or sequence of str, optional The boundary mode for the convolution. See `scipy.ndimage.convolve` for a description of the modes. This can be either a single boundary mode or one boundary mode per axis. cval : float, optional When `mode` is ``'constant'``, this is the constant used in values outside the boundary of the image data. """ ndim = image.ndim if axis is None: axes = list(range(ndim)) elif np.isscalar(axis): axes = [axis] else: axes = axis return_magnitude = len(axes) > 1 float_dtype = cp.promote_types(image.dtype, np.float16) # TODO: file an upstream scikit-image PR casting weights in this manner edge_weights = cp.asarray(edge_weights, dtype=float_dtype) smooth_weights = cp.asarray(smooth_weights, dtype=float_dtype) if return_magnitude: edge_weights /= math.sqrt(ndim) # CuPy Backend: Apply the smoothing and edge convolutions separably # rather than forming an n-dimensional kernel. This is # moderately faster for large 2D images and substantially # faster in 3D and higher dimensions. for i, edge_dim in enumerate(axes): ax_output = ndi.convolve1d(image, edge_weights, axis=edge_dim, mode=mode, output=float_dtype) smooth_axes = list(set(range(ndim)) - {edge_dim}) for smooth_dim in smooth_axes: # TODO: why did this benchmark slower if output=ax_output was used? ax_output = ndi.convolve1d(ax_output, smooth_weights, axis=smooth_dim, mode=mode, output=float_dtype) if return_magnitude: ax_output *= ax_output if i == 0: output = ax_output else: output += ax_output if return_magnitude: cp.sqrt(output, out=output) return output def sobel(image, mask=None, *, axis=None, mode='reflect', cval=0.0): """Find edges in an image using the Sobel filter. Parameters ---------- image : array The input image. mask : array of bool, optional Clip the output image to this mask. (Values where mask=0 will be set to 0.) axis : int or sequence of int, optional Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:: sobel_mag = np.sqrt(sum([sobel(image, axis=i)**2 for i in range(image.ndim)]) / image.ndim) The magnitude is also computed if axis is a sequence. mode : str or sequence of str, optional The boundary mode for the convolution. See `scipy.ndimage.convolve` for a description of the modes. This can be either a single boundary mode or one boundary mode per axis. cval : float, optional When `mode` is ``'constant'``, this is the constant used in values outside the boundary of the image data. Returns ------- output : array of float The Sobel edge map. See also -------- scharr, prewitt, canny References ---------- .. [1] D. Kroon, 2009, Short Paper University Twente, Numerical Optimization of Kernel Based Image Derivatives. .. [2] https://en.wikipedia.org/wiki/Sobel_operator Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import filters >>> camera = cp.array(data.camera()) >>> edges = filters.sobel(camera) """ image = img_as_float(image) output = _generic_edge_filter(image, smooth_weights=SOBEL_SMOOTH, axis=axis, mode=mode, cval=cval) output = _mask_filter_result(output, mask) return output def sobel_h(image, mask=None): """Find the horizontal edges of an image using the Sobel transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Sobel edge map. Notes ----- We use the following kernel:: 1 2 1 0 0 0 -1 -2 -1 """ check_nD(image, 2) return sobel(image, mask=mask, axis=0) def sobel_v(image, mask=None): """Find the vertical edges of an image using the Sobel transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Sobel edge map. Notes ----- We use the following kernel:: 1 0 -1 2 0 -2 1 0 -1 """ check_nD(image, 2) return sobel(image, mask=mask, axis=1) def scharr(image, mask=None, *, axis=None, mode='reflect', cval=0.0): """Find the edge magnitude using the Scharr transform. Parameters ---------- image : array The input image. mask : array of bool, optional Clip the output image to this mask. (Values where mask=0 will be set to 0.) axis : int or sequence of int, optional Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:: sch_mag = np.sqrt(sum([scharr(image, axis=i)**2 for i in range(image.ndim)]) / image.ndim) The magnitude is also computed if axis is a sequence. mode : str or sequence of str, optional The boundary mode for the convolution. See `scipy.ndimage.convolve` for a description of the modes. This can be either a single boundary mode or one boundary mode per axis. cval : float, optional When `mode` is ``'constant'``, this is the constant used in values outside the boundary of the image data. Returns ------- output : array of float The Scharr edge map. See also -------- sobel, prewitt, canny Notes ----- The Scharr operator has a better rotation invariance than other edge filters such as the Sobel or the Prewitt operators. References ---------- .. [1] D. Kroon, 2009, Short Paper University Twente, Numerical Optimization of Kernel Based Image Derivatives. .. [2] https://en.wikipedia.org/wiki/Sobel_operator#Alternative_operators Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import filters >>> camera = cp.array(data.camera()) >>> edges = filters.scharr(camera) """ image = img_as_float(image) output = _generic_edge_filter(image, smooth_weights=SCHARR_SMOOTH, axis=axis, mode=mode, cval=cval) output = _mask_filter_result(output, mask) return output def scharr_h(image, mask=None): """Find the horizontal edges of an image using the Scharr transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Scharr edge map. Notes ----- We use the following kernel:: 3 10 3 0 0 0 -3 -10 -3 References ---------- .. [1] D. Kroon, 2009, Short Paper University Twente, Numerical Optimization of Kernel Based Image Derivatives. """ check_nD(image, 2) return scharr(image, mask=mask, axis=0) def scharr_v(image, mask=None): """Find the vertical edges of an image using the Scharr transform. Parameters ---------- image : 2-D array Image to process mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Scharr edge map. Notes ----- We use the following kernel:: 3 0 -3 10 0 -10 3 0 -3 References ---------- .. [1] D. Kroon, 2009, Short Paper University Twente, Numerical Optimization of Kernel Based Image Derivatives. """ check_nD(image, 2) return scharr(image, mask=mask, axis=1) def prewitt(image, mask=None, *, axis=None, mode='reflect', cval=0.0): """Find the edge magnitude using the Prewitt transform. Parameters ---------- image : array The input image. mask : array of bool, optional Clip the output image to this mask. (Values where mask=0 will be set to 0.) axis : int or sequence of int, optional Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:: prw_mag = np.sqrt(sum([prewitt(image, axis=i)**2 for i in range(image.ndim)]) / image.ndim) The magnitude is also computed if axis is a sequence. mode : str or sequence of str, optional The boundary mode for the convolution. See `scipy.ndimage.convolve` for a description of the modes. This can be either a single boundary mode or one boundary mode per axis. cval : float, optional When `mode` is ``'constant'``, this is the constant used in values outside the boundary of the image data. Returns ------- output : array of float The Prewitt edge map. See also -------- sobel, scharr Notes ----- The edge magnitude depends slightly on edge directions, since the approximation of the gradient operator by the Prewitt operator is not completely rotation invariant. For a better rotation invariance, the Scharr operator should be used. The Sobel operator has a better rotation invariance than the Prewitt operator, but a worse rotation invariance than the Scharr operator. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import filters >>> camera = cp.array(data.camera()) >>> edges = filters.prewitt(camera) """ image = img_as_float(image) output = _generic_edge_filter(image, smooth_weights=PREWITT_SMOOTH, axis=axis, mode=mode, cval=cval) output = _mask_filter_result(output, mask) return output def prewitt_h(image, mask=None): """Find the horizontal edges of an image using the Prewitt transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Prewitt edge map. Notes ----- We use the following kernel:: 1/3 1/3 1/3 0 0 0 -1/3 -1/3 -1/3 """ check_nD(image, 2) return prewitt(image, mask=mask, axis=0) def prewitt_v(image, mask=None): """Find the vertical edges of an image using the Prewitt transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Prewitt edge map. Notes ----- We use the following kernel:: 1/3 0 -1/3 1/3 0 -1/3 1/3 0 -1/3 """ check_nD(image, 2) return prewitt(image, mask=mask, axis=1) def roberts(image, mask=None): """Find the edge magnitude using Roberts' cross operator. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Roberts' Cross edge map. See also -------- sobel, scharr, prewitt, feature.canny Examples -------- >>> import cupy as cp >>> from skimage import data >>> camera = cp.array(data.camera()) >>> from cucim.skimage import filters >>> edges = filters.roberts(camera) """ check_nD(image, 2) # CuPy Backend: refactored this section slightly for efficiency with CuPy pos_diag_sq = roberts_pos_diag(image, mask) pos_diag_sq *= pos_diag_sq out = roberts_neg_diag(image, mask) out *= out out += pos_diag_sq cp.sqrt(out, out=out) out /= math.sqrt(2) return out def roberts_pos_diag(image, mask=None): """Find the cross edges of an image using Roberts' cross operator. The kernel is applied to the input image to produce separate measurements of the gradient component one orientation. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Robert's edge map. Notes ----- We use the following kernel:: 1 0 0 -1 """ check_nD(image, 2) image = img_as_float(image) # CuPy Backend: allow float16 & float32 filtering weights = cp.array(ROBERTS_PD_WEIGHTS, dtype=image.dtype) result = ndi.convolve(image, weights) return _mask_filter_result(result, mask) def roberts_neg_diag(image, mask=None): """Find the cross edges of an image using the Roberts' Cross operator. The kernel is applied to the input image to produce separate measurements of the gradient component one orientation. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Robert's edge map. Notes ----- We use the following kernel:: 0 1 -1 0 """ check_nD(image, 2) image = img_as_float(image) # CuPy Backend: allow float16 & float32 filtering weights = cp.array(ROBERTS_ND_WEIGHTS, dtype=image.dtype) result = ndi.convolve(image, weights) return _mask_filter_result(result, mask) def laplace(image, ksize=3, mask=None): """Find the edges of an image using the Laplace operator. Parameters ---------- image : ndarray Image to process. ksize : int, optional Define the size of the discrete Laplacian operator such that it will have a size of (ksize,) * image.ndim. mask : ndarray, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : ndarray The Laplace edge map. Notes ----- The Laplacian operator is generated using the function skimage.restoration.uft.laplacian(). """ image = img_as_float(image) # TODO: File an upstream bug for scikit-image. ksize does not appear to # actually be used and is hard-coded to 3 in `laplacian`. if ksize != 3: raise NotImplementedError("only ksize=3 is supported") # Create the discrete Laplacian operator - We keep only the real part of # the filter laplace_op = laplacian(image.ndim, None, dtype=image.dtype) result = ndi.convolve(image, laplace_op) return _mask_filter_result(result, mask) def farid(image, *, mask=None): """Find the edge magnitude using the Farid transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Farid edge map. See also -------- sobel, prewitt, canny Notes ----- Take the square root of the sum of the squares of the horizontal and vertical derivatives to get a magnitude that is somewhat insensitive to direction. Similar to the Scharr operator, this operator is designed with a rotation invariance constraint. References ---------- .. [1] Farid, H. and Simoncelli, E. P., "Differentiation of discrete multidimensional signals", IEEE Transactions on Image Processing 13(4): 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` .. [2] Wikipedia, "Farid and Simoncelli Derivatives." Available at: <https://en.wikipedia.org/wiki/Image_derivatives#Farid_and_Simoncelli_Derivatives> Examples -------- >>> import cupy as cp >>> from skimage import data >>> camera = cp.array(data.camera()) >>> from cucim.skimage import filters >>> edges = filters.farid(camera) """ check_nD(image, 2) # CuPy Backend: refactored this section slightly for efficiency with CuPy h_sq = farid_h(image, mask=mask) h_sq *= h_sq out = farid_v(image, mask=mask) out *= out out += h_sq cp.sqrt(out, out=out) out /= math.sqrt(2) return out def farid_h(image, *, mask=None): """Find the horizontal edges of an image using the Farid transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Farid edge map. Notes ----- The kernel was constructed using the 5-tap weights from [1]. References ---------- .. [1] Farid, H. and Simoncelli, E. P., "Differentiation of discrete multidimensional signals", IEEE Transactions on Image Processing 13(4): 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` .. [2] Farid, H. and Simoncelli, E. P. "Optimally rotation-equivariant directional derivative kernels", In: 7th International Conference on Computer Analysis of Images and Patterns, Kiel, Germany. Sep, 1997. """ check_nD(image, 2) image = img_as_float(image) result = ndi.convolve(image, cp.array(HFARID_WEIGHTS, dtype=image.dtype)) return _mask_filter_result(result, mask) def farid_v(image, *, mask=None): """Find the vertical edges of an image using the Farid transform. Parameters ---------- image : 2-D array Image to process. mask : 2-D array, optional An optional mask to limit the application to a certain area. Note that pixels surrounding masked regions are also masked to prevent masked regions from affecting the result. Returns ------- output : 2-D array The Farid edge map. Notes ----- The kernel was constructed using the 5-tap weights from [1]. References ---------- .. [1] Farid, H. and Simoncelli, E. P., "Differentiation of discrete multidimensional signals", IEEE Transactions on Image Processing 13(4): 496-508, 2004. :DOI:`10.1109/TIP.2004.823819` """ check_nD(image, 2) image = img_as_float(image) result = ndi.convolve(image, cp.array(VFARID_WEIGHTS, dtype=image.dtype)) return _mask_filter_result(result, mask)
29.89627
93
0.625629
7436cf3a18ce2abbc2b2acfc30e00db33568c8f2
3,283
py
Python
team_9/cocos/cocos/audio/pygame/__init__.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
1
2019-09-15T18:59:49.000Z
2019-09-15T18:59:49.000Z
team_9/cocos/cocos/audio/pygame/__init__.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
null
null
null
team_9/cocos/cocos/audio/pygame/__init__.py
Donnyvdm/dojo19
3cf043a84e3ad6d3c4d59cd9c50b160e1ff03400
[ "BSD-3-Clause" ]
null
null
null
# pygame - Python Game Library # Copyright (C) 2000-2001 Pete Shinners # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Library General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Library General Public License for more details. # # You should have received a copy of the GNU Library General Public # License along with this library; if not, write to the Free # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Pete Shinners # pete@shinners.org """Top-level Pygame module. Pygame is a set of Python modules designed for writing games. It is written on top of the excellent SDL library. This allows you to create fully featured games and multimedia programs in the Python language. The package is highly portable, with games running on Windows, MacOS, OS X, BeOS, FreeBSD, IRIX, and Linux. """ from __future__ import division, print_function, unicode_literals import six __docformat__ = 'restructuredtext' __version__ = '$Id: __init__.py 899 2006-08-04 16:52:18Z aholkner $' import os import sys class MissingModule: def __init__(self, name, info='', urgent=0): self.name = name self.info = str(info) self.urgent = urgent if urgent: self.warn() def __getattr__(self, var): if not self.urgent: self.warn() self.urgent = 1 MissingPygameModule = "%s module not available" % self.name raise NotImplementedError(MissingPygameModule) if six.PY2: def __nonzero__(self): return 0 else: def __bool__(self): return 0 def warn(self): if self.urgent: type = 'import' else: type = 'use' message = '%s %s: %s' % (type, self.name, self.info) try: import warnings if self.urgent: level = 4 else: level = 3 warnings.warn(message, RuntimeWarning, level) except ImportError: print(message) # we need to import like this, each at a time. the cleanest way to import # our modules is with the import command (not the __import__ function) # first, the "required" modules # from pygame.array import * from cocos.audio.pygame.base import * from cocos.audio.pygame.version import * __version__ = ver # next, the "standard" modules # we still allow them to be missing for stripped down pygame distributions try: import cocos.audio.pygame.mixer except (ImportError, IOError) as msg: mixer = MissingModule("mixer", msg, 0) # there's also a couple "internal" modules not needed # by users, but putting them here helps "dependency finder" # programs get everything they need (like py2exe) try: import cocos.audio.pygame.mixer_music del cocos.audio.pygame.mixer_music except (ImportError, IOError): pass # cleanup namespace del os, sys, # TODO rwobject, surflock, MissingModule, copy_reg
30.682243
75
0.68413
84d4e45fa77dd01254666fbf8e6759229c3f8c9b
4,411
py
Python
lib/ayeaye/connectors/json_connector.py
Aye-Aye-Dev/AyeAye
8fd7c6cdb4313fffce9d0c21dd02391821c512da
[ "Apache-2.0" ]
5
2020-02-04T12:54:15.000Z
2022-02-15T11:14:35.000Z
lib/ayeaye/connectors/json_connector.py
Aye-Aye-Dev/AyeAye
8fd7c6cdb4313fffce9d0c21dd02391821c512da
[ "Apache-2.0" ]
null
null
null
lib/ayeaye/connectors/json_connector.py
Aye-Aye-Dev/AyeAye
8fd7c6cdb4313fffce9d0c21dd02391821c512da
[ "Apache-2.0" ]
1
2020-11-09T08:47:34.000Z
2020-11-09T08:47:34.000Z
""" Created on 15 Apr 2020 @author: si """ import json import os from ayeaye.connectors.base import DataConnector, AccessMode from ayeaye.pinnate import Pinnate class JsonConnector(DataConnector): engine_type = "json://" def __init__(self, *args, **kwargs): """ Single JSON file loaded into memory and made available as a :class:`Pinnate` object. For args: @see :class:`connectors.base.DataConnector` additional args for JsonConnector None Connection information- engine_url format is json://<filesystem absolute path>[;encoding=<character encoding>][;indent=<spaces when pretty printing write output>] e.g. json:///data/my_project/the_data.json;encoding=latin-1 """ super().__init__(*args, **kwargs) self._doc = None self._encoding = None self._engine_params = None @property def engine_params(self): if self._engine_params is None: self._engine_params = self.ignition._decode_filesystem_engine_url( self.engine_url, optional_args=["encoding", "indent"] ) if "encoding" in self._engine_params: self._encoding = self.engine_params.encoding for typed_param in ["indent"]: if typed_param in self.engine_params: self.engine_params[typed_param] = int(self.engine_params[typed_param]) return self._engine_params @property def encoding(self): """ default encoding. 'sig' means don't include the unicode BOM """ if self._encoding is None: ep = self.engine_params self._encoding = ep.encoding if "encoding" in ep else "utf-8-sig" return self._encoding def close_connection(self): self._doc = None def connect(self): """ When in AccessMode.READ, read the contents of the file into a :class:`Pinnate` instance that is available as self.data. In AccessMode.WRITE mode connect() doesn't do anything because file handles aren't kept open by the JsonConnector. The write operation is in :method:`_data_write`. """ if self._doc is None: file_path = self.engine_params.file_path if ( self.access in [AccessMode.READ, AccessMode.READWRITE] and os.path.isfile(file_path) and os.access(file_path, os.R_OK) ): with open(file_path, "r", encoding=self.encoding) as f: as_native = json.load(f) self._doc = Pinnate(as_native) else: raise ValueError(f"Attempt to read '{file_path}' which isn't readable") def __len__(self): raise NotImplementedError("TODO") def __getitem__(self, key): raise NotImplementedError("TODO") def __iter__(self): raise NotImplementedError("Not an iterative dataset. Use .data instead.") def _data_read(self): self.connect() return self._doc def _data_write(self, new_data): """ Set the contents of a JSON file. `new_data` can be an instance of :class:`Pinnate` or any python datatype that will serialise into JSON. Will raise TypeError if the data can't be serialised to JSON. @param new_data: (mixed, see description) """ if self.access not in [AccessMode.WRITE, AccessMode.READWRITE]: raise ValueError("Write attempted on dataset opened in READ mode.") json_args = {} if "indent" in self.engine_params: json_args["indent"] = self.engine_params["indent"] if isinstance(new_data, Pinnate): as_json = json.dumps(new_data.as_dict(), **json_args) else: as_json = json.dumps(new_data, **json_args) # Data is written to disk immediately. The file handle isn't left open. # @see :method:`connect`. with open(self.engine_params.file_path, "w", encoding=self.encoding) as f: f.write(as_json) data = property(fget=_data_read, fset=_data_write) @property def datasource_exists(self): """ Returns: (bool) if the datasource referred to in self.engine_url exists. """ return os.path.exists(self.engine_params.file_path)
31.963768
129
0.614827
1a0da544c4dfc429aede6343c02d17cb5cd52d6a
19,024
py
Python
main.py
LiYingwei/CondenseNet
8a86cdb755a8667e4096698bdc2859ae4487c979
[ "MIT" ]
null
null
null
main.py
LiYingwei/CondenseNet
8a86cdb755a8667e4096698bdc2859ae4487c979
[ "MIT" ]
null
null
null
main.py
LiYingwei/CondenseNet
8a86cdb755a8667e4096698bdc2859ae4487c979
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import argparse import os import shutil import time import math import warnings import models from utils import convert_model, measure_model parser = argparse.ArgumentParser(description='PyTorch Condensed Convolutional Networks') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--model', default='condensenet', type=str, metavar='M', help='model to train the dataset') parser.add_argument('-j', '--workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=120, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate (default: 0.1)') parser.add_argument('--lr-type', default='cosine', type=str, metavar='T', help='learning rate strategy (default: cosine)', choices=['cosine', 'multistep']) parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum (default: 0.9)') parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model (default: false)') parser.add_argument('--no-save-model', dest='no_save_model', action='store_true', help='only save best model (default: false)') parser.add_argument('--manual-seed', default=0, type=int, metavar='N', help='manual seed (default: 0)') parser.add_argument('--gpu', help='gpu available') parser.add_argument('--savedir', type=str, metavar='PATH', default='results/savedir', help='path to save result and checkpoint (default: results/savedir)') parser.add_argument('--resume', action='store_true', help='use latest checkpoint if have any (default: none)') parser.add_argument('--stages', type=str, metavar='STAGE DEPTH', help='per layer depth') parser.add_argument('--bottleneck', default=4, type=int, metavar='B', help='bottleneck (default: 4)') parser.add_argument('--group-1x1', type=int, metavar='G', default=4, help='1x1 group convolution (default: 4)') parser.add_argument('--group-3x3', type=int, metavar='G', default=4, help='3x3 group convolution (default: 4)') parser.add_argument('--condense-factor', type=int, metavar='C', default=4, help='condense factor (default: 4)') parser.add_argument('--growth', type=str, metavar='GROWTH RATE', help='per layer growth') parser.add_argument('--reduction', default=0.5, type=float, metavar='R', help='transition reduction (default: 0.5)') parser.add_argument('--dropout-rate', default=0, type=float, help='drop out (default: 0)') parser.add_argument('--group-lasso-lambda', default=0., type=float, metavar='LASSO', help='group lasso loss weight (default: 0)') parser.add_argument('--evaluate', action='store_true', help='evaluate model on validation set (default: false)') parser.add_argument('--convert-from', default=None, type=str, metavar='PATH', help='path to saved checkpoint (default: none)') parser.add_argument('--evaluate-from', default=None, type=str, metavar='PATH', help='path to saved checkpoint (default: none)') parser.add_argument('--shuffle1', action='store_true') parser.add_argument('--shuffle2', action='store_true') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu args.stages = list(map(int, args.stages.split('-'))) args.growth = list(map(int, args.growth.split('-'))) if args.condense_factor is None: args.condense_factor = args.group_1x1 if args.data == 'cifar10': args.num_classes = 10 elif args.data == 'cifar100': args.num_classes = 100 else: args.num_classes = 1000 warnings.filterwarnings("ignore") import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets torch.manual_seed(args.manual_seed) torch.cuda.manual_seed_all(args.manual_seed) best_prec1 = 0 def main(): global args, best_prec1 ### Calculate FLOPs & Param model = getattr(models, args.model)(args) print(model) if args.data in ['cifar10', 'cifar100']: IMAGE_SIZE = 32 else: IMAGE_SIZE = 224 n_flops, n_params = measure_model(model, IMAGE_SIZE, IMAGE_SIZE) print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6)) args.filename = "%s_%s_%s.txt" % \ (args.model, int(n_params), int(n_flops)) del (model) print(args) ### Create model model = getattr(models, args.model)(args) if args.model.startswith('alexnet') or args.model.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() ### Define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=True) ### Optionally resume from a checkpoint if args.resume: checkpoint = load_checkpoint(args) if checkpoint is not None: args.start_epoch = checkpoint['epoch'] + 1 best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) ### Optionally convert from a model if args.convert_from is not None: args.evaluate = True state_dict = torch.load(args.convert_from)['state_dict'] model.load_state_dict(state_dict) model = model.cpu().module convert_model(model, args) model = nn.DataParallel(model).cuda() head, tail = os.path.split(args.convert_from) tail = "converted_" + tail torch.save({'state_dict': model.state_dict()}, os.path.join(head, tail)) ### Optionally evaluate from a model if args.evaluate_from is not None: args.evaluate = True state_dict = torch.load(args.evaluate_from)['state_dict'] model.load_state_dict(state_dict) cudnn.benchmark = True ### Data loading if args.data == "cifar10": normalize = transforms.Normalize(mean=[0.4914, 0.4824, 0.4467], std=[0.2471, 0.2435, 0.2616]) train_set = datasets.CIFAR10('../data', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) val_set = datasets.CIFAR10('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize, ])) elif args.data == "cifar100": normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408], std=[0.2675, 0.2565, 0.2761]) train_set = datasets.CIFAR100('../data', train=True, download=True, transform=transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) val_set = datasets.CIFAR100('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), normalize, ])) else: traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_set = datasets.ImageFolder(traindir, transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) val_set = datasets.ImageFolder(valdir, transforms.Compose([ transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( val_set, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion) return for epoch in range(args.start_epoch, args.epochs): ### Train for one epoch tr_prec1, tr_prec5, loss, lr = \ train(train_loader, model, criterion, optimizer, epoch) ### Evaluate on validation set val_prec1, val_prec5 = validate(val_loader, model, criterion) ### Remember best prec@1 and save checkpoint is_best = val_prec1 < best_prec1 best_prec1 = max(val_prec1, best_prec1) model_filename = 'checkpoint_%03d.pth.tar' % epoch save_checkpoint({ 'epoch': epoch, 'model': args.model, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, args, is_best, model_filename, "%.4f %.4f %.4f %.4f %.4f %.4f\n" % (val_prec1, val_prec5, tr_prec1, tr_prec5, loss, lr)) ### Convert model and test model = model.cpu().module convert_model(model, args) model = nn.DataParallel(model).cuda() print(model) validate(val_loader, model, criterion) n_flops, n_params = measure_model(model, IMAGE_SIZE, IMAGE_SIZE) print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6)) return def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() learned_module_list = [] ### Switch to train mode model.train() ### Find all learned convs to prepare for group lasso loss for m in model.modules(): if m.__str__().startswith('LearnedGroupConv'): learned_module_list.append(m) running_lr = None end = time.time() for i, (input, target) in enumerate(train_loader): progress = float(epoch * len(train_loader) + i) / \ (args.epochs * len(train_loader)) args.progress = progress ### Adjust learning rate lr = adjust_learning_rate(optimizer, epoch, args, batch=i, nBatch=len(train_loader), method=args.lr_type) if running_lr is None: running_lr = lr ### Measure data loading time data_time.update(time.time() - end) target = target.cuda(async=True) input_var = torch.autograd.Variable(input) target_var = torch.autograd.Variable(target) ### Compute output output = model(input_var, progress) loss = criterion(output, target_var) ### Add group lasso loss if args.group_lasso_lambda > 0: lasso_loss = 0 for m in learned_module_list: lasso_loss = lasso_loss + m.lasso_loss loss = loss + args.group_lasso_lambda * lasso_loss ### Measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.data.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) ### Compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() ### Measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f}\t' # ({batch_time.avg:.3f}) ' 'Data {data_time.val:.3f}\t' # ({data_time.avg:.3f}) ' 'Loss {loss.val:.4f}\t' # ({loss.avg:.4f}) ' 'Prec@1 {top1.val:.3f}\t' # ({top1.avg:.3f}) ' 'Prec@5 {top5.val:.3f}\t' # ({top5.avg:.3f})' 'lr {lr: .4f}'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5, lr=lr)) return 100. - top1.avg, 100. - top5.avg, losses.avg, running_lr def validate(val_loader, model, criterion): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() ### Switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): target = target.cuda(async=True) input_var = torch.autograd.Variable(input, volatile=True) target_var = torch.autograd.Variable(target, volatile=True) ### Compute output output = model(input_var) loss = criterion(output, target_var) ### Measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.data.item(), input.size(0)) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) ### Measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return 100. - top1.avg, 100. - top5.avg def load_checkpoint(args): model_dir = os.path.join(args.savedir, 'save_models') latest_filename = os.path.join(model_dir, 'latest.txt') if os.path.exists(latest_filename): with open(latest_filename, 'r') as fin: model_filename = fin.readlines()[0] else: return None print("=> loading checkpoint '{}'".format(model_filename)) state = torch.load(model_filename) print("=> loaded checkpoint '{}'".format(model_filename)) return state def save_checkpoint(state, args, is_best, filename, result): print(args) result_filename = os.path.join(args.savedir, args.filename) model_dir = os.path.join(args.savedir, 'save_models') model_filename = os.path.join(model_dir, filename) latest_filename = os.path.join(model_dir, 'latest.txt') best_filename = os.path.join(model_dir, 'model_best.pth.tar') os.makedirs(args.savedir, exist_ok=True) os.makedirs(model_dir, exist_ok=True) print("=> saving checkpoint '{}'".format(model_filename)) with open(result_filename, 'a') as fout: fout.write(result) torch.save(state, model_filename) with open(latest_filename, 'w') as fout: fout.write(model_filename) if args.no_save_model: shutil.move(model_filename, best_filename) elif is_best: shutil.copyfile(model_filename, best_filename) print("=> saved checkpoint '{}'".format(model_filename)) return class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, args, batch=None, nBatch=None, method='cosine'): if method == 'cosine': T_total = args.epochs * nBatch T_cur = (epoch % args.epochs) * nBatch + batch lr = 0.5 * args.lr * (1 + math.cos(math.pi * T_cur / T_total)) elif method == 'multistep': if args.data in ['cifar10', 'cifar100']: lr, decay_rate = args.lr, 0.1 if epoch >= args.epochs * 0.75: lr *= decay_rate ** 2 elif epoch >= args.epochs * 0.5: lr *= decay_rate else: """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
39.305785
95
0.587731
09a3b7aed9428f560b9c0e8a358c4809a490cffc
9,220
py
Python
tests/components/energy/test_websocket_api.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
7
2019-08-15T13:36:58.000Z
2020-03-18T10:46:29.000Z
tests/components/energy/test_websocket_api.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
tests/components/energy/test_websocket_api.py
winning1120xx/home-assistant
53d4c0ce2d374b5e97bbdc37742656c27adf8eea
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Test the Energy websocket API.""" from unittest.mock import AsyncMock, Mock import pytest from homeassistant.components.energy import data, is_configured from homeassistant.setup import async_setup_component from tests.common import MockConfigEntry, flush_store, mock_platform @pytest.fixture(autouse=True) async def setup_integration(hass): """Set up the integration.""" assert await async_setup_component( hass, "energy", {"recorder": {"db_url": "sqlite://"}} ) @pytest.fixture def mock_energy_platform(hass): """Mock an energy platform.""" hass.config.components.add("some_domain") mock_platform( hass, "some_domain.energy", Mock( async_get_solar_forecast=AsyncMock( return_value={ "wh_hours": { "2021-06-27T13:00:00+00:00": 12, "2021-06-27T14:00:00+00:00": 8, } } ) ), ) async def test_get_preferences_no_data(hass, hass_ws_client) -> None: """Test we get error if no preferences set.""" client = await hass_ws_client(hass) await client.send_json({"id": 5, "type": "energy/get_prefs"}) msg = await client.receive_json() assert msg["id"] == 5 assert not msg["success"] assert msg["error"] == {"code": "not_found", "message": "No prefs"} async def test_get_preferences_default(hass, hass_ws_client, hass_storage) -> None: """Test we get preferences.""" assert not await is_configured(hass) manager = await data.async_get_manager(hass) manager.data = data.EnergyManager.default_preferences() client = await hass_ws_client(hass) assert not await is_configured(hass) await client.send_json({"id": 5, "type": "energy/get_prefs"}) msg = await client.receive_json() assert msg["id"] == 5 assert msg["success"] assert msg["result"] == data.EnergyManager.default_preferences() async def test_save_preferences( hass, hass_ws_client, hass_storage, mock_energy_platform ) -> None: """Test we can save preferences.""" client = await hass_ws_client(hass) # Test saving default prefs is also valid. default_prefs = data.EnergyManager.default_preferences() await client.send_json({"id": 5, "type": "energy/save_prefs", **default_prefs}) msg = await client.receive_json() assert msg["id"] == 5 assert msg["success"] assert msg["result"] == default_prefs new_prefs = { "energy_sources": [ { "type": "grid", "flow_from": [ { "stat_energy_from": "sensor.heat_pump_meter", "stat_cost": "heat_pump_kwh_cost", "entity_energy_from": None, "entity_energy_price": None, "number_energy_price": None, }, { "stat_energy_from": "sensor.heat_pump_meter_2", "stat_cost": None, "entity_energy_from": "sensor.heat_pump_meter_2", "entity_energy_price": None, "number_energy_price": 0.20, }, ], "flow_to": [ { "stat_energy_to": "sensor.return_to_grid_peak", "stat_compensation": None, "entity_energy_to": None, "entity_energy_price": None, "number_energy_price": None, }, { "stat_energy_to": "sensor.return_to_grid_offpeak", "stat_compensation": None, "entity_energy_to": "sensor.return_to_grid_offpeak", "entity_energy_price": None, "number_energy_price": 0.20, }, ], "cost_adjustment_day": 1.2, }, { "type": "solar", "stat_energy_from": "my_solar_production", "config_entry_solar_forecast": ["predicted_config_entry"], }, { "type": "battery", "stat_energy_from": "my_battery_draining", "stat_energy_to": "my_battery_charging", }, ], "device_consumption": [{"stat_consumption": "some_device_usage"}], } await client.send_json({"id": 6, "type": "energy/save_prefs", **new_prefs}) msg = await client.receive_json() assert msg["id"] == 6 assert msg["success"] assert msg["result"] == new_prefs assert data.STORAGE_KEY not in hass_storage, "expected not to be written yet" await flush_store((await data.async_get_manager(hass))._store) assert hass_storage[data.STORAGE_KEY]["data"] == new_prefs assert await is_configured(hass) # Verify info reflects data. await client.send_json({"id": 7, "type": "energy/info"}) msg = await client.receive_json() assert msg["id"] == 7 assert msg["success"] assert msg["result"] == { "cost_sensors": { "sensor.heat_pump_meter_2": "sensor.heat_pump_meter_2_cost", "sensor.return_to_grid_offpeak": "sensor.return_to_grid_offpeak_compensation", }, "solar_forecast_domains": ["some_domain"], } # Prefs with limited options new_prefs_2 = { "energy_sources": [ { "type": "grid", "flow_from": [ { "stat_energy_from": "sensor.heat_pump_meter", "stat_cost": None, "entity_energy_from": None, "entity_energy_price": None, "number_energy_price": None, } ], "flow_to": [], "cost_adjustment_day": 1.2, }, { "type": "solar", "stat_energy_from": "my_solar_production", "config_entry_solar_forecast": None, }, ], } await client.send_json({"id": 8, "type": "energy/save_prefs", **new_prefs_2}) msg = await client.receive_json() assert msg["id"] == 8 assert msg["success"] assert msg["result"] == {**new_prefs, **new_prefs_2} async def test_handle_duplicate_from_stat(hass, hass_ws_client) -> None: """Test we handle duplicate from stats.""" client = await hass_ws_client(hass) await client.send_json( { "id": 5, "type": "energy/save_prefs", "energy_sources": [ { "type": "grid", "flow_from": [ { "stat_energy_from": "sensor.heat_pump_meter", "stat_cost": None, "entity_energy_from": None, "entity_energy_price": None, "number_energy_price": None, }, { "stat_energy_from": "sensor.heat_pump_meter", "stat_cost": None, "entity_energy_from": None, "entity_energy_price": None, "number_energy_price": None, }, ], "flow_to": [], "cost_adjustment_day": 0, }, ], } ) msg = await client.receive_json() assert msg["id"] == 5 assert not msg["success"] assert msg["error"]["code"] == "invalid_format" async def test_validate(hass, hass_ws_client) -> None: """Test we can validate the preferences.""" client = await hass_ws_client(hass) await client.send_json({"id": 5, "type": "energy/validate"}) msg = await client.receive_json() assert msg["id"] == 5 assert msg["success"] assert msg["result"] == { "energy_sources": [], "device_consumption": [], } async def test_get_solar_forecast(hass, hass_ws_client, mock_energy_platform) -> None: """Test we get preferences.""" entry = MockConfigEntry(domain="some_domain") entry.add_to_hass(hass) manager = await data.async_get_manager(hass) manager.data = data.EnergyManager.default_preferences() manager.data["energy_sources"].append( { "type": "solar", "stat_energy_from": "my_solar_production", "config_entry_solar_forecast": [entry.entry_id], } ) client = await hass_ws_client(hass) await client.send_json({"id": 5, "type": "energy/solar_forecast"}) msg = await client.receive_json() assert msg["id"] == 5 assert msg["success"] assert msg["result"] == { entry.entry_id: { "wh_hours": { "2021-06-27T13:00:00+00:00": 12, "2021-06-27T14:00:00+00:00": 8, } } }
31.575342
90
0.526139
3d87fa55617200f65337dab0221e0c5dd72d9f6d
1,952
py
Python
var/spack/repos/builtin/packages/folly/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
3
2021-09-29T02:14:40.000Z
2022-01-27T20:50:36.000Z
var/spack/repos/builtin/packages/folly/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
6
2022-01-08T08:41:11.000Z
2022-03-14T19:28:07.000Z
var/spack/repos/builtin/packages/folly/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Folly(CMakePackage): """Folly (acronymed loosely after Facebook Open Source Library) is a library of C++11 components designed with practicality and efficiency in mind. Folly contains a variety of core library components used extensively at Facebook. In particular, it's often a dependency of Facebook's other open source C++ efforts and place where those projects can share code. """ homepage = "https://github.com/facebook/folly" url = "https://github.com/facebook/folly/releases/download/v2021.05.24.00/folly-v2021.05.24.00.tar.gz" version('2021.05.24.00', sha256='9d308adefe4670637f5c7d96309b3b394ac3fa129bc954f5dfbdd8b741c02aad') # CMakePackage Dependency depends_on('pkgconfig', type='build') # folly requires gcc 4.9+ and a version of boost compiled with >= C++14 # TODO: Specify the boost components variant('cxxstd', default='14', values=('14', '17'), multi=False, description='Use the specified C++ standard when building.') depends_on('boost+context+container cxxstd=14', when='cxxstd=14') depends_on('boost+context+container cxxstd=17', when='cxxstd=17') # required dependencies depends_on('gflags') depends_on('glog') depends_on('double-conversion') depends_on('libevent') depends_on('fmt') # optional dependencies variant('libdwarf', default=False, description="Optional Dependency") variant('elfutils', default=False, description="Optional Dependency") variant('libunwind', default=False, description="Optional Dependency") depends_on('libdwarf', when='+libdwarf') depends_on('elfutils', when='+elfutils') depends_on('libunwind', when='+libunwind') configure_directory = 'folly'
39.836735
130
0.724898
4ae4aa56e63181f6bed66154b5e62f3507c0a7eb
391,250
py
Python
nbdev_scipy/_modidx.py
fastai/nbdev-index
6fb8e36160d88b71c6e1f86562f741274558c74f
[ "Apache-2.0" ]
2
2020-11-12T03:47:24.000Z
2021-01-17T01:02:10.000Z
nbdev_scipy/_modidx.py
fastai/nbdev-index
6fb8e36160d88b71c6e1f86562f741274558c74f
[ "Apache-2.0" ]
28
2021-02-15T08:40:38.000Z
2022-03-20T03:07:28.000Z
nbdev_scipy/_modidx.py
fastai/nbdev-index
6fb8e36160d88b71c6e1f86562f741274558c74f
[ "Apache-2.0" ]
2
2020-12-03T16:50:55.000Z
2021-02-19T05:47:08.000Z
# Autogenerated by get_module_idx.py d = { 'syms': { 'scipy': { 'scipy.cluster': 'https://docs.scipy.org/doc/scipy/reference/cluster.html#module-scipy.cluster', 'scipy.constants': 'https://docs.scipy.org/doc/scipy/reference/constants.html#module-scipy.constants', 'scipy.fft': 'https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft', 'scipy.fftpack': 'https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack', 'scipy.integrate': 'https://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate', 'scipy.interpolate': 'https://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate', 'scipy.io': 'https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io', 'scipy.linalg': 'https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg', 'scipy.misc': 'https://docs.scipy.org/doc/scipy/reference/misc.html#module-scipy.misc', 'scipy.ndimage': 'https://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage', 'scipy.odr': 'https://docs.scipy.org/doc/scipy/reference/odr.html#module-scipy.odr', 'scipy.optimize': 'https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize', 'scipy.signal': 'https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal', 'scipy.sparse': 'https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse', 'scipy.spatial': 'https://docs.scipy.org/doc/scipy/reference/spatial.html#module-scipy.spatial', 'scipy.special': 'https://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special', 'scipy.stats': 'https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats', 'scipy.LowLevelCallable': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.html#scipy.LowLevelCallable', 'scipy.LowLevelCallable.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.__getitem__.html#scipy.LowLevelCallable.__getitem__', 'scipy.LowLevelCallable.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.__len__.html#scipy.LowLevelCallable.__len__', 'scipy.LowLevelCallable.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.__mul__.html#scipy.LowLevelCallable.__mul__', 'scipy.LowLevelCallable.count': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.count.html#scipy.LowLevelCallable.count', 'scipy.LowLevelCallable.from_cython': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.from_cython.html#scipy.LowLevelCallable.from_cython', 'scipy.LowLevelCallable.function': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.function.html#scipy.LowLevelCallable.function', 'scipy.LowLevelCallable.index': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.index.html#scipy.LowLevelCallable.index', 'scipy.LowLevelCallable.signature': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.signature.html#scipy.LowLevelCallable.signature', 'scipy.LowLevelCallable.user_data': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.user_data.html#scipy.LowLevelCallable.user_data'}, 'scipy.cluster': { 'scipy.cluster.hierarchy': 'https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html#module-scipy.cluster.hierarchy', 'scipy.cluster.vq': 'https://docs.scipy.org/doc/scipy/reference/cluster.vq.html#module-scipy.cluster.vq'}, 'scipy.fftpack': { 'scipy.fftpack.convolve': 'https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack.convolve', 'scipy.fftpack.cc_diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cc_diff.html#scipy.fftpack.cc_diff', 'scipy.fftpack.cs_diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cs_diff.html#scipy.fftpack.cs_diff', 'scipy.fftpack.dct': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html#scipy.fftpack.dct', 'scipy.fftpack.dctn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html#scipy.fftpack.dctn', 'scipy.fftpack.diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.diff.html#scipy.fftpack.diff', 'scipy.fftpack.dst': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst', 'scipy.fftpack.dstn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dstn.html#scipy.fftpack.dstn', 'scipy.fftpack.fft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft', 'scipy.fftpack.fft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2', 'scipy.fftpack.fftfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftfreq.html#scipy.fftpack.fftfreq', 'scipy.fftpack.fftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn', 'scipy.fftpack.fftshift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftshift.html#scipy.fftpack.fftshift', 'scipy.fftpack.hilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.hilbert.html#scipy.fftpack.hilbert', 'scipy.fftpack.idct': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idct.html#scipy.fftpack.idct', 'scipy.fftpack.idctn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idctn.html#scipy.fftpack.idctn', 'scipy.fftpack.idst': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idst.html#scipy.fftpack.idst', 'scipy.fftpack.idstn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idstn.html#scipy.fftpack.idstn', 'scipy.fftpack.ifft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft', 'scipy.fftpack.ifft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2', 'scipy.fftpack.ifftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn', 'scipy.fftpack.ifftshift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftshift.html#scipy.fftpack.ifftshift', 'scipy.fftpack.ihilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ihilbert.html#scipy.fftpack.ihilbert', 'scipy.fftpack.irfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft', 'scipy.fftpack.itilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.itilbert.html#scipy.fftpack.itilbert', 'scipy.fftpack.next_fast_len': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.next_fast_len.html#scipy.fftpack.next_fast_len', 'scipy.fftpack.rfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft', 'scipy.fftpack.rfftfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq', 'scipy.fftpack.sc_diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.sc_diff.html#scipy.fftpack.sc_diff', 'scipy.fftpack.shift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.shift.html#scipy.fftpack.shift', 'scipy.fftpack.ss_diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ss_diff.html#scipy.fftpack.ss_diff', 'scipy.fftpack.tilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.tilbert.html#scipy.fftpack.tilbert'}, 'scipy.io': { 'scipy.io.arff': 'https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.arff', 'scipy.io.wavfile': 'https://docs.scipy.org/doc/scipy/reference/io.html#module-scipy.io.wavfile', 'scipy.io.FortranFile': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.html#scipy.io.FortranFile', 'scipy.io.netcdf_file': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.html#scipy.io.netcdf_file', 'scipy.io.netcdf_variable': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.html#scipy.io.netcdf_variable', 'scipy.io.FortranEOFError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranEOFError.html#scipy.io.FortranEOFError.with_traceback', 'scipy.io.FortranFile.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.close.html#scipy.io.FortranFile.close', 'scipy.io.FortranFile.read_ints': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.read_ints.html#scipy.io.FortranFile.read_ints', 'scipy.io.FortranFile.read_reals': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.read_reals.html#scipy.io.FortranFile.read_reals', 'scipy.io.FortranFile.read_record': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.read_record.html#scipy.io.FortranFile.read_record', 'scipy.io.FortranFile.write_record': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFile.write_record.html#scipy.io.FortranFile.write_record', 'scipy.io.FortranFormattingError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.FortranFormattingError.html#scipy.io.FortranFormattingError.with_traceback', 'scipy.io.netcdf_file.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.close.html#scipy.io.netcdf_file.close', 'scipy.io.netcdf_file.createDimension': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.createDimension.html#scipy.io.netcdf_file.createDimension', 'scipy.io.netcdf_file.createVariable': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.createVariable.html#scipy.io.netcdf_file.createVariable', 'scipy.io.netcdf_file.flush': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.flush.html#scipy.io.netcdf_file.flush', 'scipy.io.netcdf_file.sync': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.sync.html#scipy.io.netcdf_file.sync', 'scipy.io.netcdf_variable.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.__getitem__.html#scipy.io.netcdf_variable.__getitem__', 'scipy.io.netcdf_variable.assignValue': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.assignValue.html#scipy.io.netcdf_variable.assignValue', 'scipy.io.netcdf_variable.getValue': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.getValue.html#scipy.io.netcdf_variable.getValue', 'scipy.io.netcdf_variable.isrec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.isrec.html#scipy.io.netcdf_variable.isrec', 'scipy.io.netcdf_variable.itemsize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.itemsize.html#scipy.io.netcdf_variable.itemsize', 'scipy.io.netcdf_variable.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.shape.html#scipy.io.netcdf_variable.shape', 'scipy.io.netcdf_variable.typecode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_variable.typecode.html#scipy.io.netcdf_variable.typecode', 'scipy.io.hb_read': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.hb_read.html#scipy.io.hb_read', 'scipy.io.hb_write': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.hb_write.html#scipy.io.hb_write', 'scipy.io.loadmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat', 'scipy.io.mminfo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.mminfo.html#scipy.io.mminfo', 'scipy.io.mmread': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.mmread.html#scipy.io.mmread', 'scipy.io.mmwrite': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.mmwrite.html#scipy.io.mmwrite', 'scipy.io.readsav': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.readsav.html#scipy.io.readsav', 'scipy.io.savemat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.savemat.html#scipy.io.savemat', 'scipy.io.whosmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.whosmat.html#scipy.io.whosmat'}, 'scipy.linalg': { 'scipy.linalg.blas': 'https://docs.scipy.org/doc/scipy/reference/linalg.blas.html#module-scipy.linalg.blas', 'scipy.linalg.cython_blas': 'https://docs.scipy.org/doc/scipy/reference/linalg.cython_blas.html#module-scipy.linalg.cython_blas', 'scipy.linalg.cython_lapack': 'https://docs.scipy.org/doc/scipy/reference/linalg.cython_lapack.html#module-scipy.linalg.cython_lapack', 'scipy.linalg.interpolative': 'https://docs.scipy.org/doc/scipy/reference/linalg.interpolative.html#module-scipy.linalg.interpolative', 'scipy.linalg.lapack': 'https://docs.scipy.org/doc/scipy/reference/linalg.lapack.html#module-scipy.linalg.lapack', 'scipy.linalg.LinAlgError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.LinAlgError.html#scipy.linalg.LinAlgError.with_traceback', 'scipy.linalg.LinAlgWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.LinAlgWarning.html#scipy.linalg.LinAlgWarning.with_traceback', 'scipy.linalg.block_diag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag', 'scipy.linalg.cdf2rdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cdf2rdf.html#scipy.linalg.cdf2rdf', 'scipy.linalg.cho_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor', 'scipy.linalg.cho_solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve', 'scipy.linalg.cho_solve_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve_banded.html#scipy.linalg.cho_solve_banded', 'scipy.linalg.cholesky': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky.html#scipy.linalg.cholesky', 'scipy.linalg.cholesky_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded', 'scipy.linalg.circulant': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html#scipy.linalg.circulant', 'scipy.linalg.clarkson_woodruff_transform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.clarkson_woodruff_transform.html#scipy.linalg.clarkson_woodruff_transform', 'scipy.linalg.companion': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.companion.html#scipy.linalg.companion', 'scipy.linalg.convolution_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix', 'scipy.linalg.coshm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.coshm.html#scipy.linalg.coshm', 'scipy.linalg.cosm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cosm.html#scipy.linalg.cosm', 'scipy.linalg.cossin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cossin.html#scipy.linalg.cossin', 'scipy.linalg.det': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.det.html#scipy.linalg.det', 'scipy.linalg.dft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.dft.html#scipy.linalg.dft', 'scipy.linalg.diagsvd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.diagsvd.html#scipy.linalg.diagsvd', 'scipy.linalg.eig': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html#scipy.linalg.eig', 'scipy.linalg.eig_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig_banded.html#scipy.linalg.eig_banded', 'scipy.linalg.eigh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh', 'scipy.linalg.eigh_tridiagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh_tridiagonal.html#scipy.linalg.eigh_tridiagonal', 'scipy.linalg.eigvals': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals.html#scipy.linalg.eigvals', 'scipy.linalg.eigvals_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals_banded.html#scipy.linalg.eigvals_banded', 'scipy.linalg.eigvalsh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh.html#scipy.linalg.eigvalsh', 'scipy.linalg.eigvalsh_tridiagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh_tridiagonal.html#scipy.linalg.eigvalsh_tridiagonal', 'scipy.linalg.expm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html#scipy.linalg.expm', 'scipy.linalg.expm_cond': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_cond.html#scipy.linalg.expm_cond', 'scipy.linalg.expm_frechet': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_frechet.html#scipy.linalg.expm_frechet', 'scipy.linalg.fiedler': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler', 'scipy.linalg.fiedler_companion': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion', 'scipy.linalg.find_best_blas_type': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.find_best_blas_type.html#scipy.linalg.find_best_blas_type', 'scipy.linalg.fractional_matrix_power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fractional_matrix_power.html#scipy.linalg.fractional_matrix_power', 'scipy.linalg.funm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.funm.html#scipy.linalg.funm', 'scipy.linalg.get_blas_funcs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_blas_funcs.html#scipy.linalg.get_blas_funcs', 'scipy.linalg.get_lapack_funcs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_lapack_funcs.html#scipy.linalg.get_lapack_funcs', 'scipy.linalg.hadamard': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard', 'scipy.linalg.hankel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html#scipy.linalg.hankel', 'scipy.linalg.helmert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.helmert.html#scipy.linalg.helmert', 'scipy.linalg.hessenberg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hessenberg.html#scipy.linalg.hessenberg', 'scipy.linalg.hilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert', 'scipy.linalg.inv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html#scipy.linalg.inv', 'scipy.linalg.invhilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invhilbert.html#scipy.linalg.invhilbert', 'scipy.linalg.invpascal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invpascal.html#scipy.linalg.invpascal', 'scipy.linalg.khatri_rao': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.khatri_rao.html#scipy.linalg.khatri_rao', 'scipy.linalg.kron': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.kron.html#scipy.linalg.kron', 'scipy.linalg.ldl': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ldl.html#scipy.linalg.ldl', 'scipy.linalg.leslie': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.leslie.html#scipy.linalg.leslie', 'scipy.linalg.logm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.logm.html#scipy.linalg.logm', 'scipy.linalg.lstsq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq', 'scipy.linalg.lu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu.html#scipy.linalg.lu', 'scipy.linalg.lu_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor', 'scipy.linalg.lu_solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve', 'scipy.linalg.matrix_balance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matrix_balance.html#scipy.linalg.matrix_balance', 'scipy.linalg.norm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.norm.html#scipy.linalg.norm', 'scipy.linalg.null_space': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.null_space.html#scipy.linalg.null_space', 'scipy.linalg.ordqz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ordqz.html#scipy.linalg.ordqz', 'scipy.linalg.orth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orth.html#scipy.linalg.orth', 'scipy.linalg.orthogonal_procrustes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orthogonal_procrustes.html#scipy.linalg.orthogonal_procrustes', 'scipy.linalg.pascal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pascal.html#scipy.linalg.pascal', 'scipy.linalg.pinv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinv.html#scipy.linalg.pinv', 'scipy.linalg.pinv2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinv2.html#scipy.linalg.pinv2', 'scipy.linalg.pinvh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh', 'scipy.linalg.polar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.polar.html#scipy.linalg.polar', 'scipy.linalg.qr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html#scipy.linalg.qr', 'scipy.linalg.qr_delete': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_delete.html#scipy.linalg.qr_delete', 'scipy.linalg.qr_insert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html#scipy.linalg.qr_insert', 'scipy.linalg.qr_multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_multiply.html#scipy.linalg.qr_multiply', 'scipy.linalg.qr_update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_update.html#scipy.linalg.qr_update', 'scipy.linalg.qz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qz.html#scipy.linalg.qz', 'scipy.linalg.rq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rq.html#scipy.linalg.rq', 'scipy.linalg.rsf2csf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rsf2csf.html#scipy.linalg.rsf2csf', 'scipy.linalg.schur': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur', 'scipy.linalg.signm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.signm.html#scipy.linalg.signm', 'scipy.linalg.sinhm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinhm.html#scipy.linalg.sinhm', 'scipy.linalg.sinm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinm.html#scipy.linalg.sinm', 'scipy.linalg.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve', 'scipy.linalg.solve_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html#scipy.linalg.solve_banded', 'scipy.linalg.solve_circulant': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_circulant.html#scipy.linalg.solve_circulant', 'scipy.linalg.solve_continuous_are': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_are.html#scipy.linalg.solve_continuous_are', 'scipy.linalg.solve_continuous_lyapunov': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_lyapunov.html#scipy.linalg.solve_continuous_lyapunov', 'scipy.linalg.solve_discrete_are': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html#scipy.linalg.solve_discrete_are', 'scipy.linalg.solve_discrete_lyapunov': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_lyapunov.html#scipy.linalg.solve_discrete_lyapunov', 'scipy.linalg.solve_sylvester': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_sylvester.html#scipy.linalg.solve_sylvester', 'scipy.linalg.solve_toeplitz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_toeplitz.html#scipy.linalg.solve_toeplitz', 'scipy.linalg.solve_triangular': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular', 'scipy.linalg.solveh_banded': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solveh_banded.html#scipy.linalg.solveh_banded', 'scipy.linalg.sqrtm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sqrtm.html#scipy.linalg.sqrtm', 'scipy.linalg.subspace_angles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.subspace_angles.html#scipy.linalg.subspace_angles', 'scipy.linalg.svd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd', 'scipy.linalg.svdvals': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals', 'scipy.linalg.tanhm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanhm.html#scipy.linalg.tanhm', 'scipy.linalg.tanm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanm.html#scipy.linalg.tanm', 'scipy.linalg.toeplitz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz', 'scipy.linalg.tri': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tri.html#scipy.linalg.tri', 'scipy.linalg.tril': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tril.html#scipy.linalg.tril', 'scipy.linalg.triu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.triu.html#scipy.linalg.triu'}, 'scipy.optimize': { 'scipy.optimize.cython_optimize': 'https://docs.scipy.org/doc/scipy/reference/optimize.cython_optimize.html#module-scipy.optimize.cython_optimize', 'scipy.optimize.nonlin': 'https://docs.scipy.org/doc/scipy/reference/optimize.nonlin.html#module-scipy.optimize.nonlin', 'scipy.optimize.BFGS': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.html#scipy.optimize.BFGS', 'scipy.optimize.Bounds': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.Bounds.html#scipy.optimize.Bounds', 'scipy.optimize.HessianUpdateStrategy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.HessianUpdateStrategy.html#scipy.optimize.HessianUpdateStrategy', 'scipy.optimize.LbfgsInvHessProduct': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.html#scipy.optimize.LbfgsInvHessProduct', 'scipy.optimize.LinearConstraint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LinearConstraint.html#scipy.optimize.LinearConstraint', 'scipy.optimize.NonlinearConstraint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.NonlinearConstraint.html#scipy.optimize.NonlinearConstraint', 'scipy.optimize.OptimizeResult': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html#scipy.optimize.OptimizeResult', 'scipy.optimize.RootResults': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.RootResults.html#scipy.optimize.RootResults', 'scipy.optimize.SR1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.SR1.html#scipy.optimize.SR1', 'scipy.optimize.BFGS.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.dot.html#scipy.optimize.BFGS.dot', 'scipy.optimize.BFGS.get_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.get_matrix.html#scipy.optimize.BFGS.get_matrix', 'scipy.optimize.BFGS.initialize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.initialize.html#scipy.optimize.BFGS.initialize', 'scipy.optimize.BFGS.update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.update.html#scipy.optimize.BFGS.update', 'scipy.optimize.HessianUpdateStrategy.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.HessianUpdateStrategy.dot.html#scipy.optimize.HessianUpdateStrategy.dot', 'scipy.optimize.HessianUpdateStrategy.get_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.HessianUpdateStrategy.get_matrix.html#scipy.optimize.HessianUpdateStrategy.get_matrix', 'scipy.optimize.HessianUpdateStrategy.initialize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.HessianUpdateStrategy.initialize.html#scipy.optimize.HessianUpdateStrategy.initialize', 'scipy.optimize.HessianUpdateStrategy.update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.HessianUpdateStrategy.update.html#scipy.optimize.HessianUpdateStrategy.update', 'scipy.optimize.LbfgsInvHessProduct.H': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.H.html#scipy.optimize.LbfgsInvHessProduct.H', 'scipy.optimize.LbfgsInvHessProduct.T': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.T.html#scipy.optimize.LbfgsInvHessProduct.T', 'scipy.optimize.LbfgsInvHessProduct.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.__call__.html#scipy.optimize.LbfgsInvHessProduct.__call__', 'scipy.optimize.LbfgsInvHessProduct.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.__mul__.html#scipy.optimize.LbfgsInvHessProduct.__mul__', 'scipy.optimize.LbfgsInvHessProduct.adjoint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.adjoint.html#scipy.optimize.LbfgsInvHessProduct.adjoint', 'scipy.optimize.LbfgsInvHessProduct.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.dot.html#scipy.optimize.LbfgsInvHessProduct.dot', 'scipy.optimize.LbfgsInvHessProduct.matmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.matmat.html#scipy.optimize.LbfgsInvHessProduct.matmat', 'scipy.optimize.LbfgsInvHessProduct.matvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.matvec.html#scipy.optimize.LbfgsInvHessProduct.matvec', 'scipy.optimize.LbfgsInvHessProduct.rmatmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.rmatmat.html#scipy.optimize.LbfgsInvHessProduct.rmatmat', 'scipy.optimize.LbfgsInvHessProduct.rmatvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.rmatvec.html#scipy.optimize.LbfgsInvHessProduct.rmatvec', 'scipy.optimize.LbfgsInvHessProduct.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.todense.html#scipy.optimize.LbfgsInvHessProduct.todense', 'scipy.optimize.LbfgsInvHessProduct.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.LbfgsInvHessProduct.transpose.html#scipy.optimize.LbfgsInvHessProduct.transpose', 'scipy.optimize.OptimizeResult.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.__getitem__.html#scipy.optimize.OptimizeResult.__getitem__', 'scipy.optimize.OptimizeResult.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.__len__.html#scipy.optimize.OptimizeResult.__len__', 'scipy.optimize.OptimizeResult.clear': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.clear.html#scipy.optimize.OptimizeResult.clear', 'scipy.optimize.OptimizeResult.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.copy.html#scipy.optimize.OptimizeResult.copy', 'scipy.optimize.OptimizeResult.fromkeys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.fromkeys.html#scipy.optimize.OptimizeResult.fromkeys', 'scipy.optimize.OptimizeResult.get': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.get.html#scipy.optimize.OptimizeResult.get', 'scipy.optimize.OptimizeResult.items': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.items.html#scipy.optimize.OptimizeResult.items', 'scipy.optimize.OptimizeResult.keys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.keys.html#scipy.optimize.OptimizeResult.keys', 'scipy.optimize.OptimizeResult.pop': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.pop.html#scipy.optimize.OptimizeResult.pop', 'scipy.optimize.OptimizeResult.popitem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.popitem.html#scipy.optimize.OptimizeResult.popitem', 'scipy.optimize.OptimizeResult.setdefault': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.setdefault.html#scipy.optimize.OptimizeResult.setdefault', 'scipy.optimize.OptimizeResult.update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.update.html#scipy.optimize.OptimizeResult.update', 'scipy.optimize.OptimizeResult.values': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.values.html#scipy.optimize.OptimizeResult.values', 'scipy.optimize.OptimizeWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeWarning.html#scipy.optimize.OptimizeWarning.with_traceback', 'scipy.optimize.SR1.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.SR1.dot.html#scipy.optimize.SR1.dot', 'scipy.optimize.SR1.get_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.SR1.get_matrix.html#scipy.optimize.SR1.get_matrix', 'scipy.optimize.SR1.initialize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.SR1.initialize.html#scipy.optimize.SR1.initialize', 'scipy.optimize.SR1.update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.SR1.update.html#scipy.optimize.SR1.update', 'scipy.optimize.anderson': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.anderson.html#scipy.optimize.anderson', 'scipy.optimize.approx_fprime': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.approx_fprime.html#scipy.optimize.approx_fprime', 'scipy.optimize.basinhopping': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html#scipy.optimize.basinhopping', 'scipy.optimize.bisect': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html#scipy.optimize.bisect', 'scipy.optimize.bracket': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bracket.html#scipy.optimize.bracket', 'scipy.optimize.brent': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brent.html#scipy.optimize.brent', 'scipy.optimize.brenth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brenth.html#scipy.optimize.brenth', 'scipy.optimize.brentq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html#scipy.optimize.brentq', 'scipy.optimize.broyden1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.broyden1.html#scipy.optimize.broyden1', 'scipy.optimize.broyden2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.broyden2.html#scipy.optimize.broyden2', 'scipy.optimize.brute': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html#scipy.optimize.brute', 'scipy.optimize.check_grad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.check_grad.html#scipy.optimize.check_grad', 'scipy.optimize.curve_fit': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit', 'scipy.optimize.diagbroyden': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.diagbroyden.html#scipy.optimize.diagbroyden', 'scipy.optimize.differential_evolution': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution', 'scipy.optimize.dual_annealing': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html#scipy.optimize.dual_annealing', 'scipy.optimize.excitingmixing': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.excitingmixing.html#scipy.optimize.excitingmixing', 'scipy.optimize.fixed_point': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fixed_point.html#scipy.optimize.fixed_point', 'scipy.optimize.fmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html#scipy.optimize.fmin', 'scipy.optimize.fmin_bfgs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_bfgs.html#scipy.optimize.fmin_bfgs', 'scipy.optimize.fmin_cg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cg.html#scipy.optimize.fmin_cg', 'scipy.optimize.fmin_cobyla': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cobyla.html#scipy.optimize.fmin_cobyla', 'scipy.optimize.fmin_l_bfgs_b': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html#scipy.optimize.fmin_l_bfgs_b', 'scipy.optimize.fmin_ncg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_ncg.html#scipy.optimize.fmin_ncg', 'scipy.optimize.fmin_powell': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_powell.html#scipy.optimize.fmin_powell', 'scipy.optimize.fmin_slsqp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_slsqp.html#scipy.optimize.fmin_slsqp', 'scipy.optimize.fmin_tnc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_tnc.html#scipy.optimize.fmin_tnc', 'scipy.optimize.fminbound': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fminbound.html#scipy.optimize.fminbound', 'scipy.optimize.fsolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve', 'scipy.optimize.golden': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.golden.html#scipy.optimize.golden', 'scipy.optimize.least_squares': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares', 'scipy.optimize.leastsq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq', 'scipy.optimize.line_search': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html#scipy.optimize.line_search', 'scipy.optimize.linear_sum_assignment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html#scipy.optimize.linear_sum_assignment', 'scipy.optimize.linearmixing': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linearmixing.html#scipy.optimize.linearmixing', 'scipy.optimize.linprog': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html#scipy.optimize.linprog', 'scipy.optimize.linprog_verbose_callback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog_verbose_callback.html#scipy.optimize.linprog_verbose_callback', 'scipy.optimize.lsq_linear': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.lsq_linear.html#scipy.optimize.lsq_linear', 'scipy.optimize.minimize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize', 'scipy.optimize.minimize_scalar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html#scipy.optimize.minimize_scalar', 'scipy.optimize.newton': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html#scipy.optimize.newton', 'scipy.optimize.newton_krylov': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton_krylov.html#scipy.optimize.newton_krylov', 'scipy.optimize.nnls': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html#scipy.optimize.nnls', 'scipy.optimize.ridder': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.ridder.html#scipy.optimize.ridder', 'scipy.optimize.root': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root', 'scipy.optimize.root_scalar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html#scipy.optimize.root_scalar', 'scipy.optimize.rosen': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.rosen.html#scipy.optimize.rosen', 'scipy.optimize.rosen_der': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.rosen_der.html#scipy.optimize.rosen_der', 'scipy.optimize.rosen_hess': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.rosen_hess.html#scipy.optimize.rosen_hess', 'scipy.optimize.rosen_hess_prod': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.rosen_hess_prod.html#scipy.optimize.rosen_hess_prod', 'scipy.optimize.shgo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.shgo.html#scipy.optimize.shgo', 'scipy.optimize.show_options': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.show_options.html#scipy.optimize.show_options', 'scipy.optimize.toms748': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.toms748.html#scipy.optimize.toms748'}, 'scipy.signal': { 'scipy.signal.windows': 'https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows', 'scipy.signal.StateSpace': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace', 'scipy.signal.TransferFunction': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction', 'scipy.signal.ZerosPolesGain': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain', 'scipy.signal.dlti': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.html#scipy.signal.dlti', 'scipy.signal.lti': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.html#scipy.signal.lti', 'scipy.signal.BadCoefficients.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.BadCoefficients.html#scipy.signal.BadCoefficients.with_traceback', 'scipy.signal.StateSpace.A': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.A.html#scipy.signal.StateSpace.A', 'scipy.signal.StateSpace.B': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.B.html#scipy.signal.StateSpace.B', 'scipy.signal.StateSpace.C': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.C.html#scipy.signal.StateSpace.C', 'scipy.signal.StateSpace.D': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.D.html#scipy.signal.StateSpace.D', 'scipy.signal.StateSpace.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.__mul__.html#scipy.signal.StateSpace.__mul__', 'scipy.signal.StateSpace.dt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.dt.html#scipy.signal.StateSpace.dt', 'scipy.signal.StateSpace.poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.poles.html#scipy.signal.StateSpace.poles', 'scipy.signal.StateSpace.to_ss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.to_ss.html#scipy.signal.StateSpace.to_ss', 'scipy.signal.StateSpace.to_tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.to_tf.html#scipy.signal.StateSpace.to_tf', 'scipy.signal.StateSpace.to_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.to_zpk.html#scipy.signal.StateSpace.to_zpk', 'scipy.signal.StateSpace.zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.zeros.html#scipy.signal.StateSpace.zeros', 'scipy.signal.TransferFunction.den': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.den.html#scipy.signal.TransferFunction.den', 'scipy.signal.TransferFunction.dt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.dt.html#scipy.signal.TransferFunction.dt', 'scipy.signal.TransferFunction.num': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.num.html#scipy.signal.TransferFunction.num', 'scipy.signal.TransferFunction.poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.poles.html#scipy.signal.TransferFunction.poles', 'scipy.signal.TransferFunction.to_ss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.to_ss.html#scipy.signal.TransferFunction.to_ss', 'scipy.signal.TransferFunction.to_tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.to_tf.html#scipy.signal.TransferFunction.to_tf', 'scipy.signal.TransferFunction.to_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.to_zpk.html#scipy.signal.TransferFunction.to_zpk', 'scipy.signal.TransferFunction.zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.zeros.html#scipy.signal.TransferFunction.zeros', 'scipy.signal.ZerosPolesGain.dt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.dt.html#scipy.signal.ZerosPolesGain.dt', 'scipy.signal.ZerosPolesGain.gain': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.gain.html#scipy.signal.ZerosPolesGain.gain', 'scipy.signal.ZerosPolesGain.poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.poles.html#scipy.signal.ZerosPolesGain.poles', 'scipy.signal.ZerosPolesGain.to_ss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.to_ss.html#scipy.signal.ZerosPolesGain.to_ss', 'scipy.signal.ZerosPolesGain.to_tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.to_tf.html#scipy.signal.ZerosPolesGain.to_tf', 'scipy.signal.ZerosPolesGain.to_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.to_zpk.html#scipy.signal.ZerosPolesGain.to_zpk', 'scipy.signal.ZerosPolesGain.zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.zeros.html#scipy.signal.ZerosPolesGain.zeros', 'scipy.signal.dlti.bode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.bode.html#scipy.signal.dlti.bode', 'scipy.signal.dlti.dt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.dt.html#scipy.signal.dlti.dt', 'scipy.signal.dlti.freqresp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.freqresp.html#scipy.signal.dlti.freqresp', 'scipy.signal.dlti.impulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.impulse.html#scipy.signal.dlti.impulse', 'scipy.signal.dlti.output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.output.html#scipy.signal.dlti.output', 'scipy.signal.dlti.poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.poles.html#scipy.signal.dlti.poles', 'scipy.signal.dlti.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.step.html#scipy.signal.dlti.step', 'scipy.signal.dlti.zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.zeros.html#scipy.signal.dlti.zeros', 'scipy.signal.lti.bode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.bode.html#scipy.signal.lti.bode', 'scipy.signal.lti.dt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.dt.html#scipy.signal.lti.dt', 'scipy.signal.lti.freqresp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.freqresp.html#scipy.signal.lti.freqresp', 'scipy.signal.lti.impulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.impulse.html#scipy.signal.lti.impulse', 'scipy.signal.lti.output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.output.html#scipy.signal.lti.output', 'scipy.signal.lti.poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.poles.html#scipy.signal.lti.poles', 'scipy.signal.lti.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.step.html#scipy.signal.lti.step', 'scipy.signal.lti.to_discrete': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.to_discrete.html#scipy.signal.lti.to_discrete', 'scipy.signal.lti.zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.zeros.html#scipy.signal.lti.zeros', 'scipy.signal.abcd_normalize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.abcd_normalize.html#scipy.signal.abcd_normalize', 'scipy.signal.argrelextrema': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html#scipy.signal.argrelextrema', 'scipy.signal.argrelmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax', 'scipy.signal.argrelmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin', 'scipy.signal.band_stop_obj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj', 'scipy.signal.bessel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bessel.html#scipy.signal.bessel', 'scipy.signal.besselap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.besselap.html#scipy.signal.besselap', 'scipy.signal.bilinear': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear.html#scipy.signal.bilinear', 'scipy.signal.bilinear_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear_zpk.html#scipy.signal.bilinear_zpk', 'scipy.signal.bode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bode.html#scipy.signal.bode', 'scipy.signal.bspline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bspline.html#scipy.signal.bspline', 'scipy.signal.buttap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttap.html#scipy.signal.buttap', 'scipy.signal.butter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter', 'scipy.signal.buttord': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttord.html#scipy.signal.buttord', 'scipy.signal.cascade': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cascade.html#scipy.signal.cascade', 'scipy.signal.cheb1ap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ap.html#scipy.signal.cheb1ap', 'scipy.signal.cheb1ord': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord', 'scipy.signal.cheb2ap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ap.html#scipy.signal.cheb2ap', 'scipy.signal.cheb2ord': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord', 'scipy.signal.cheby1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby1.html#scipy.signal.cheby1', 'scipy.signal.cheby2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby2.html#scipy.signal.cheby2', 'scipy.signal.check_COLA': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_COLA.html#scipy.signal.check_COLA', 'scipy.signal.check_NOLA': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html#scipy.signal.check_NOLA', 'scipy.signal.chirp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.chirp.html#scipy.signal.chirp', 'scipy.signal.choose_conv_method': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.choose_conv_method.html#scipy.signal.choose_conv_method', 'scipy.signal.cmplx_sort': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cmplx_sort.html#scipy.signal.cmplx_sort', 'scipy.signal.coherence': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.coherence.html#scipy.signal.coherence', 'scipy.signal.cont2discrete': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete', 'scipy.signal.convolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve', 'scipy.signal.convolve2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d', 'scipy.signal.correlate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html#scipy.signal.correlate', 'scipy.signal.correlate2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html#scipy.signal.correlate2d', 'scipy.signal.csd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html#scipy.signal.csd', 'scipy.signal.cspline1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d.html#scipy.signal.cspline1d', 'scipy.signal.cspline1d_eval': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d_eval.html#scipy.signal.cspline1d_eval', 'scipy.signal.cspline2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline2d.html#scipy.signal.cspline2d', 'scipy.signal.cubic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cubic.html#scipy.signal.cubic', 'scipy.signal.cwt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cwt.html#scipy.signal.cwt', 'scipy.signal.daub': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.daub.html#scipy.signal.daub', 'scipy.signal.dbode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dbode.html#scipy.signal.dbode', 'scipy.signal.decimate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html#scipy.signal.decimate', 'scipy.signal.deconvolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.deconvolve.html#scipy.signal.deconvolve', 'scipy.signal.detrend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html#scipy.signal.detrend', 'scipy.signal.dfreqresp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dfreqresp.html#scipy.signal.dfreqresp', 'scipy.signal.dimpulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dimpulse.html#scipy.signal.dimpulse', 'scipy.signal.dlsim': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html#scipy.signal.dlsim', 'scipy.signal.dstep': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dstep.html#scipy.signal.dstep', 'scipy.signal.ellip': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html#scipy.signal.ellip', 'scipy.signal.ellipap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipap.html#scipy.signal.ellipap', 'scipy.signal.ellipord': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipord.html#scipy.signal.ellipord', 'scipy.signal.fftconvolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve', 'scipy.signal.filtfilt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt', 'scipy.signal.find_peaks': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks', 'scipy.signal.find_peaks_cwt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html#scipy.signal.find_peaks_cwt', 'scipy.signal.findfreqs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.findfreqs.html#scipy.signal.findfreqs', 'scipy.signal.firls': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firls.html#scipy.signal.firls', 'scipy.signal.firwin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html#scipy.signal.firwin', 'scipy.signal.firwin2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin2.html#scipy.signal.firwin2', 'scipy.signal.freqresp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqresp.html#scipy.signal.freqresp', 'scipy.signal.freqs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html#scipy.signal.freqs', 'scipy.signal.freqs_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs_zpk.html#scipy.signal.freqs_zpk', 'scipy.signal.freqz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz', 'scipy.signal.freqz_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz_zpk.html#scipy.signal.freqz_zpk', 'scipy.signal.gauss_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gauss_spline.html#scipy.signal.gauss_spline', 'scipy.signal.gausspulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gausspulse.html#scipy.signal.gausspulse', 'scipy.signal.get_window': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window', 'scipy.signal.group_delay': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.group_delay.html#scipy.signal.group_delay', 'scipy.signal.hilbert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html#scipy.signal.hilbert', 'scipy.signal.hilbert2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2', 'scipy.signal.iirdesign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign', 'scipy.signal.iirfilter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter', 'scipy.signal.iirnotch': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html#scipy.signal.iirnotch', 'scipy.signal.iirpeak': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirpeak.html#scipy.signal.iirpeak', 'scipy.signal.impulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html#scipy.signal.impulse', 'scipy.signal.impulse2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse2.html#scipy.signal.impulse2', 'scipy.signal.invres': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invres.html#scipy.signal.invres', 'scipy.signal.invresz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invresz.html#scipy.signal.invresz', 'scipy.signal.istft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.istft.html#scipy.signal.istft', 'scipy.signal.kaiser_atten': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten', 'scipy.signal.kaiser_beta': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta', 'scipy.signal.kaiserord': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord', 'scipy.signal.lfilter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter', 'scipy.signal.lfilter_zi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter_zi.html#scipy.signal.lfilter_zi', 'scipy.signal.lfiltic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfiltic.html#scipy.signal.lfiltic', 'scipy.signal.lombscargle': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html#scipy.signal.lombscargle', 'scipy.signal.lp2bp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp', 'scipy.signal.lp2bp_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp_zpk.html#scipy.signal.lp2bp_zpk', 'scipy.signal.lp2bs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs', 'scipy.signal.lp2bs_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs_zpk.html#scipy.signal.lp2bs_zpk', 'scipy.signal.lp2hp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp', 'scipy.signal.lp2hp_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp_zpk.html#scipy.signal.lp2hp_zpk', 'scipy.signal.lp2lp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp', 'scipy.signal.lp2lp_zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp_zpk.html#scipy.signal.lp2lp_zpk', 'scipy.signal.lsim': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim.html#scipy.signal.lsim', 'scipy.signal.lsim2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim2.html#scipy.signal.lsim2', 'scipy.signal.max_len_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.max_len_seq.html#scipy.signal.max_len_seq', 'scipy.signal.medfilt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html#scipy.signal.medfilt', 'scipy.signal.medfilt2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt2d.html#scipy.signal.medfilt2d', 'scipy.signal.minimum_phase': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.minimum_phase.html#scipy.signal.minimum_phase', 'scipy.signal.morlet': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet.html#scipy.signal.morlet', 'scipy.signal.morlet2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet2.html#scipy.signal.morlet2', 'scipy.signal.normalize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.normalize.html#scipy.signal.normalize', 'scipy.signal.oaconvolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.oaconvolve.html#scipy.signal.oaconvolve', 'scipy.signal.order_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.order_filter.html#scipy.signal.order_filter', 'scipy.signal.peak_prominences': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html#scipy.signal.peak_prominences', 'scipy.signal.peak_widths': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_widths.html#scipy.signal.peak_widths', 'scipy.signal.periodogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram', 'scipy.signal.place_poles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html#scipy.signal.place_poles', 'scipy.signal.qmf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qmf.html#scipy.signal.qmf', 'scipy.signal.qspline1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d.html#scipy.signal.qspline1d', 'scipy.signal.qspline1d_eval': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d_eval.html#scipy.signal.qspline1d_eval', 'scipy.signal.qspline2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline2d.html#scipy.signal.qspline2d', 'scipy.signal.quadratic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.quadratic.html#scipy.signal.quadratic', 'scipy.signal.remez': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.remez.html#scipy.signal.remez', 'scipy.signal.resample': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html#scipy.signal.resample', 'scipy.signal.resample_poly': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html#scipy.signal.resample_poly', 'scipy.signal.residue': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residue.html#scipy.signal.residue', 'scipy.signal.residuez': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residuez.html#scipy.signal.residuez', 'scipy.signal.ricker': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ricker.html#scipy.signal.ricker', 'scipy.signal.savgol_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs', 'scipy.signal.savgol_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter', 'scipy.signal.sawtooth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sawtooth.html#scipy.signal.sawtooth', 'scipy.signal.sepfir2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d', 'scipy.signal.sos2tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2tf.html#scipy.signal.sos2tf', 'scipy.signal.sos2zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2zpk.html#scipy.signal.sos2zpk', 'scipy.signal.sosfilt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt', 'scipy.signal.sosfilt_zi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt_zi.html#scipy.signal.sosfilt_zi', 'scipy.signal.sosfiltfilt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt', 'scipy.signal.sosfreqz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfreqz.html#scipy.signal.sosfreqz', 'scipy.signal.spectrogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html#scipy.signal.spectrogram', 'scipy.signal.spline_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spline_filter.html#scipy.signal.spline_filter', 'scipy.signal.square': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.square.html#scipy.signal.square', 'scipy.signal.ss2tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf', 'scipy.signal.ss2zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk', 'scipy.signal.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step.html#scipy.signal.step', 'scipy.signal.step2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step2.html#scipy.signal.step2', 'scipy.signal.stft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.signal.stft', 'scipy.signal.sweep_poly': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sweep_poly.html#scipy.signal.sweep_poly', 'scipy.signal.symiirorder1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder1.html#scipy.signal.symiirorder1', 'scipy.signal.symiirorder2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder2.html#scipy.signal.symiirorder2', 'scipy.signal.tf2sos': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2sos.html#scipy.signal.tf2sos', 'scipy.signal.tf2ss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss', 'scipy.signal.tf2zpk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk', 'scipy.signal.unique_roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots', 'scipy.signal.unit_impulse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unit_impulse.html#scipy.signal.unit_impulse', 'scipy.signal.upfirdn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html#scipy.signal.upfirdn', 'scipy.signal.vectorstrength': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.vectorstrength.html#scipy.signal.vectorstrength', 'scipy.signal.welch': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch', 'scipy.signal.wiener': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener', 'scipy.signal.zpk2sos': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2sos.html#scipy.signal.zpk2sos', 'scipy.signal.zpk2ss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss', 'scipy.signal.zpk2tf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf'}, 'scipy.sparse': { 'scipy.sparse.csgraph': 'https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html#module-scipy.sparse.csgraph', 'scipy.sparse.linalg': 'https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html#module-scipy.sparse.linalg', 'scipy.sparse.bsr_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.html#scipy.sparse.bsr_matrix', 'scipy.sparse.coo_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix', 'scipy.sparse.csc_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix', 'scipy.sparse.csr_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix', 'scipy.sparse.dia_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix', 'scipy.sparse.dok_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html#scipy.sparse.dok_matrix', 'scipy.sparse.lil_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix', 'scipy.sparse.spmatrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix', 'scipy.sparse.SparseEfficiencyWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseEfficiencyWarning.html#scipy.sparse.SparseEfficiencyWarning.with_traceback', 'scipy.sparse.SparseWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseWarning.html#scipy.sparse.SparseWarning.with_traceback', 'scipy.sparse.bsr_matrix.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.__getitem__.html#scipy.sparse.bsr_matrix.__getitem__', 'scipy.sparse.bsr_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.__len__.html#scipy.sparse.bsr_matrix.__len__', 'scipy.sparse.bsr_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.__mul__.html#scipy.sparse.bsr_matrix.__mul__', 'scipy.sparse.bsr_matrix.arcsin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.arcsin.html#scipy.sparse.bsr_matrix.arcsin', 'scipy.sparse.bsr_matrix.arcsinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.arcsinh.html#scipy.sparse.bsr_matrix.arcsinh', 'scipy.sparse.bsr_matrix.arctan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.arctan.html#scipy.sparse.bsr_matrix.arctan', 'scipy.sparse.bsr_matrix.arctanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.arctanh.html#scipy.sparse.bsr_matrix.arctanh', 'scipy.sparse.bsr_matrix.argmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.argmax.html#scipy.sparse.bsr_matrix.argmax', 'scipy.sparse.bsr_matrix.argmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.argmin.html#scipy.sparse.bsr_matrix.argmin', 'scipy.sparse.bsr_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.asformat.html#scipy.sparse.bsr_matrix.asformat', 'scipy.sparse.bsr_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.asfptype.html#scipy.sparse.bsr_matrix.asfptype', 'scipy.sparse.bsr_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.astype.html#scipy.sparse.bsr_matrix.astype', 'scipy.sparse.bsr_matrix.blocksize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.blocksize.html#scipy.sparse.bsr_matrix.blocksize', 'scipy.sparse.bsr_matrix.ceil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.ceil.html#scipy.sparse.bsr_matrix.ceil', 'scipy.sparse.bsr_matrix.check_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.check_format.html#scipy.sparse.bsr_matrix.check_format', 'scipy.sparse.bsr_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.conj.html#scipy.sparse.bsr_matrix.conj', 'scipy.sparse.bsr_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.conjugate.html#scipy.sparse.bsr_matrix.conjugate', 'scipy.sparse.bsr_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.copy.html#scipy.sparse.bsr_matrix.copy', 'scipy.sparse.bsr_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.count_nonzero.html#scipy.sparse.bsr_matrix.count_nonzero', 'scipy.sparse.bsr_matrix.deg2rad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.deg2rad.html#scipy.sparse.bsr_matrix.deg2rad', 'scipy.sparse.bsr_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.diagonal.html#scipy.sparse.bsr_matrix.diagonal', 'scipy.sparse.bsr_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.dot.html#scipy.sparse.bsr_matrix.dot', 'scipy.sparse.bsr_matrix.dtype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.dtype.html#scipy.sparse.bsr_matrix.dtype', 'scipy.sparse.bsr_matrix.eliminate_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.eliminate_zeros.html#scipy.sparse.bsr_matrix.eliminate_zeros', 'scipy.sparse.bsr_matrix.expm1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.expm1.html#scipy.sparse.bsr_matrix.expm1', 'scipy.sparse.bsr_matrix.floor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.floor.html#scipy.sparse.bsr_matrix.floor', 'scipy.sparse.bsr_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getH.html#scipy.sparse.bsr_matrix.getH', 'scipy.sparse.bsr_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.get_shape.html#scipy.sparse.bsr_matrix.get_shape', 'scipy.sparse.bsr_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getcol.html#scipy.sparse.bsr_matrix.getcol', 'scipy.sparse.bsr_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getformat.html#scipy.sparse.bsr_matrix.getformat', 'scipy.sparse.bsr_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getmaxprint.html#scipy.sparse.bsr_matrix.getmaxprint', 'scipy.sparse.bsr_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getnnz.html#scipy.sparse.bsr_matrix.getnnz', 'scipy.sparse.bsr_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.getrow.html#scipy.sparse.bsr_matrix.getrow', 'scipy.sparse.bsr_matrix.has_canonical_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.has_canonical_format.html#scipy.sparse.bsr_matrix.has_canonical_format', 'scipy.sparse.bsr_matrix.has_sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.has_sorted_indices.html#scipy.sparse.bsr_matrix.has_sorted_indices', 'scipy.sparse.bsr_matrix.log1p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.log1p.html#scipy.sparse.bsr_matrix.log1p', 'scipy.sparse.bsr_matrix.matmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.matmat.html#scipy.sparse.bsr_matrix.matmat', 'scipy.sparse.bsr_matrix.matvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.matvec.html#scipy.sparse.bsr_matrix.matvec', 'scipy.sparse.bsr_matrix.max': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.max.html#scipy.sparse.bsr_matrix.max', 'scipy.sparse.bsr_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.maximum.html#scipy.sparse.bsr_matrix.maximum', 'scipy.sparse.bsr_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.mean.html#scipy.sparse.bsr_matrix.mean', 'scipy.sparse.bsr_matrix.min': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.min.html#scipy.sparse.bsr_matrix.min', 'scipy.sparse.bsr_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.minimum.html#scipy.sparse.bsr_matrix.minimum', 'scipy.sparse.bsr_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.multiply.html#scipy.sparse.bsr_matrix.multiply', 'scipy.sparse.bsr_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.nnz.html#scipy.sparse.bsr_matrix.nnz', 'scipy.sparse.bsr_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.nonzero.html#scipy.sparse.bsr_matrix.nonzero', 'scipy.sparse.bsr_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.power.html#scipy.sparse.bsr_matrix.power', 'scipy.sparse.bsr_matrix.prune': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.prune.html#scipy.sparse.bsr_matrix.prune', 'scipy.sparse.bsr_matrix.rad2deg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.rad2deg.html#scipy.sparse.bsr_matrix.rad2deg', 'scipy.sparse.bsr_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.reshape.html#scipy.sparse.bsr_matrix.reshape', 'scipy.sparse.bsr_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.resize.html#scipy.sparse.bsr_matrix.resize', 'scipy.sparse.bsr_matrix.rint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.rint.html#scipy.sparse.bsr_matrix.rint', 'scipy.sparse.bsr_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.set_shape.html#scipy.sparse.bsr_matrix.set_shape', 'scipy.sparse.bsr_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.setdiag.html#scipy.sparse.bsr_matrix.setdiag', 'scipy.sparse.bsr_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.shape.html#scipy.sparse.bsr_matrix.shape', 'scipy.sparse.bsr_matrix.sign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sign.html#scipy.sparse.bsr_matrix.sign', 'scipy.sparse.bsr_matrix.sin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sin.html#scipy.sparse.bsr_matrix.sin', 'scipy.sparse.bsr_matrix.sinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sinh.html#scipy.sparse.bsr_matrix.sinh', 'scipy.sparse.bsr_matrix.sort_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sort_indices.html#scipy.sparse.bsr_matrix.sort_indices', 'scipy.sparse.bsr_matrix.sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sorted_indices.html#scipy.sparse.bsr_matrix.sorted_indices', 'scipy.sparse.bsr_matrix.sqrt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sqrt.html#scipy.sparse.bsr_matrix.sqrt', 'scipy.sparse.bsr_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sum.html#scipy.sparse.bsr_matrix.sum', 'scipy.sparse.bsr_matrix.sum_duplicates': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.sum_duplicates.html#scipy.sparse.bsr_matrix.sum_duplicates', 'scipy.sparse.bsr_matrix.tan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tan.html#scipy.sparse.bsr_matrix.tan', 'scipy.sparse.bsr_matrix.tanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tanh.html#scipy.sparse.bsr_matrix.tanh', 'scipy.sparse.bsr_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.toarray.html#scipy.sparse.bsr_matrix.toarray', 'scipy.sparse.bsr_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tobsr.html#scipy.sparse.bsr_matrix.tobsr', 'scipy.sparse.bsr_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tocoo.html#scipy.sparse.bsr_matrix.tocoo', 'scipy.sparse.bsr_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tocsc.html#scipy.sparse.bsr_matrix.tocsc', 'scipy.sparse.bsr_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tocsr.html#scipy.sparse.bsr_matrix.tocsr', 'scipy.sparse.bsr_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.todense.html#scipy.sparse.bsr_matrix.todense', 'scipy.sparse.bsr_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.todia.html#scipy.sparse.bsr_matrix.todia', 'scipy.sparse.bsr_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.todok.html#scipy.sparse.bsr_matrix.todok', 'scipy.sparse.bsr_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.tolil.html#scipy.sparse.bsr_matrix.tolil', 'scipy.sparse.bsr_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.transpose.html#scipy.sparse.bsr_matrix.transpose', 'scipy.sparse.bsr_matrix.trunc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.trunc.html#scipy.sparse.bsr_matrix.trunc', 'scipy.sparse.coo_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.__len__.html#scipy.sparse.coo_matrix.__len__', 'scipy.sparse.coo_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.__mul__.html#scipy.sparse.coo_matrix.__mul__', 'scipy.sparse.coo_matrix.arcsin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.arcsin.html#scipy.sparse.coo_matrix.arcsin', 'scipy.sparse.coo_matrix.arcsinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.arcsinh.html#scipy.sparse.coo_matrix.arcsinh', 'scipy.sparse.coo_matrix.arctan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.arctan.html#scipy.sparse.coo_matrix.arctan', 'scipy.sparse.coo_matrix.arctanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.arctanh.html#scipy.sparse.coo_matrix.arctanh', 'scipy.sparse.coo_matrix.argmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.argmax.html#scipy.sparse.coo_matrix.argmax', 'scipy.sparse.coo_matrix.argmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.argmin.html#scipy.sparse.coo_matrix.argmin', 'scipy.sparse.coo_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.asformat.html#scipy.sparse.coo_matrix.asformat', 'scipy.sparse.coo_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.asfptype.html#scipy.sparse.coo_matrix.asfptype', 'scipy.sparse.coo_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.astype.html#scipy.sparse.coo_matrix.astype', 'scipy.sparse.coo_matrix.ceil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.ceil.html#scipy.sparse.coo_matrix.ceil', 'scipy.sparse.coo_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.conj.html#scipy.sparse.coo_matrix.conj', 'scipy.sparse.coo_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.conjugate.html#scipy.sparse.coo_matrix.conjugate', 'scipy.sparse.coo_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.copy.html#scipy.sparse.coo_matrix.copy', 'scipy.sparse.coo_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.count_nonzero.html#scipy.sparse.coo_matrix.count_nonzero', 'scipy.sparse.coo_matrix.deg2rad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.deg2rad.html#scipy.sparse.coo_matrix.deg2rad', 'scipy.sparse.coo_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.diagonal.html#scipy.sparse.coo_matrix.diagonal', 'scipy.sparse.coo_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.dot.html#scipy.sparse.coo_matrix.dot', 'scipy.sparse.coo_matrix.dtype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.dtype.html#scipy.sparse.coo_matrix.dtype', 'scipy.sparse.coo_matrix.eliminate_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.eliminate_zeros.html#scipy.sparse.coo_matrix.eliminate_zeros', 'scipy.sparse.coo_matrix.expm1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.expm1.html#scipy.sparse.coo_matrix.expm1', 'scipy.sparse.coo_matrix.floor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.floor.html#scipy.sparse.coo_matrix.floor', 'scipy.sparse.coo_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getH.html#scipy.sparse.coo_matrix.getH', 'scipy.sparse.coo_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.get_shape.html#scipy.sparse.coo_matrix.get_shape', 'scipy.sparse.coo_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getcol.html#scipy.sparse.coo_matrix.getcol', 'scipy.sparse.coo_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getformat.html#scipy.sparse.coo_matrix.getformat', 'scipy.sparse.coo_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getmaxprint.html#scipy.sparse.coo_matrix.getmaxprint', 'scipy.sparse.coo_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getnnz.html#scipy.sparse.coo_matrix.getnnz', 'scipy.sparse.coo_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.getrow.html#scipy.sparse.coo_matrix.getrow', 'scipy.sparse.coo_matrix.log1p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.log1p.html#scipy.sparse.coo_matrix.log1p', 'scipy.sparse.coo_matrix.max': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.max.html#scipy.sparse.coo_matrix.max', 'scipy.sparse.coo_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.maximum.html#scipy.sparse.coo_matrix.maximum', 'scipy.sparse.coo_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.mean.html#scipy.sparse.coo_matrix.mean', 'scipy.sparse.coo_matrix.min': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.min.html#scipy.sparse.coo_matrix.min', 'scipy.sparse.coo_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.minimum.html#scipy.sparse.coo_matrix.minimum', 'scipy.sparse.coo_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.multiply.html#scipy.sparse.coo_matrix.multiply', 'scipy.sparse.coo_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.nnz.html#scipy.sparse.coo_matrix.nnz', 'scipy.sparse.coo_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.nonzero.html#scipy.sparse.coo_matrix.nonzero', 'scipy.sparse.coo_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.power.html#scipy.sparse.coo_matrix.power', 'scipy.sparse.coo_matrix.rad2deg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.rad2deg.html#scipy.sparse.coo_matrix.rad2deg', 'scipy.sparse.coo_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.reshape.html#scipy.sparse.coo_matrix.reshape', 'scipy.sparse.coo_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.resize.html#scipy.sparse.coo_matrix.resize', 'scipy.sparse.coo_matrix.rint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.rint.html#scipy.sparse.coo_matrix.rint', 'scipy.sparse.coo_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.set_shape.html#scipy.sparse.coo_matrix.set_shape', 'scipy.sparse.coo_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.setdiag.html#scipy.sparse.coo_matrix.setdiag', 'scipy.sparse.coo_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.shape.html#scipy.sparse.coo_matrix.shape', 'scipy.sparse.coo_matrix.sign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sign.html#scipy.sparse.coo_matrix.sign', 'scipy.sparse.coo_matrix.sin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sin.html#scipy.sparse.coo_matrix.sin', 'scipy.sparse.coo_matrix.sinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sinh.html#scipy.sparse.coo_matrix.sinh', 'scipy.sparse.coo_matrix.sqrt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sqrt.html#scipy.sparse.coo_matrix.sqrt', 'scipy.sparse.coo_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sum.html#scipy.sparse.coo_matrix.sum', 'scipy.sparse.coo_matrix.sum_duplicates': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sum_duplicates.html#scipy.sparse.coo_matrix.sum_duplicates', 'scipy.sparse.coo_matrix.tan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tan.html#scipy.sparse.coo_matrix.tan', 'scipy.sparse.coo_matrix.tanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tanh.html#scipy.sparse.coo_matrix.tanh', 'scipy.sparse.coo_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.toarray.html#scipy.sparse.coo_matrix.toarray', 'scipy.sparse.coo_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tobsr.html#scipy.sparse.coo_matrix.tobsr', 'scipy.sparse.coo_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocoo.html#scipy.sparse.coo_matrix.tocoo', 'scipy.sparse.coo_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsc.html#scipy.sparse.coo_matrix.tocsc', 'scipy.sparse.coo_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsr.html#scipy.sparse.coo_matrix.tocsr', 'scipy.sparse.coo_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.todense.html#scipy.sparse.coo_matrix.todense', 'scipy.sparse.coo_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.todia.html#scipy.sparse.coo_matrix.todia', 'scipy.sparse.coo_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.todok.html#scipy.sparse.coo_matrix.todok', 'scipy.sparse.coo_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tolil.html#scipy.sparse.coo_matrix.tolil', 'scipy.sparse.coo_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.transpose.html#scipy.sparse.coo_matrix.transpose', 'scipy.sparse.coo_matrix.trunc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.trunc.html#scipy.sparse.coo_matrix.trunc', 'scipy.sparse.csc_matrix.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.__getitem__.html#scipy.sparse.csc_matrix.__getitem__', 'scipy.sparse.csc_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.__len__.html#scipy.sparse.csc_matrix.__len__', 'scipy.sparse.csc_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.__mul__.html#scipy.sparse.csc_matrix.__mul__', 'scipy.sparse.csc_matrix.arcsin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.arcsin.html#scipy.sparse.csc_matrix.arcsin', 'scipy.sparse.csc_matrix.arcsinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.arcsinh.html#scipy.sparse.csc_matrix.arcsinh', 'scipy.sparse.csc_matrix.arctan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.arctan.html#scipy.sparse.csc_matrix.arctan', 'scipy.sparse.csc_matrix.arctanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.arctanh.html#scipy.sparse.csc_matrix.arctanh', 'scipy.sparse.csc_matrix.argmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.argmax.html#scipy.sparse.csc_matrix.argmax', 'scipy.sparse.csc_matrix.argmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.argmin.html#scipy.sparse.csc_matrix.argmin', 'scipy.sparse.csc_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.asformat.html#scipy.sparse.csc_matrix.asformat', 'scipy.sparse.csc_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.asfptype.html#scipy.sparse.csc_matrix.asfptype', 'scipy.sparse.csc_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.astype.html#scipy.sparse.csc_matrix.astype', 'scipy.sparse.csc_matrix.ceil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.ceil.html#scipy.sparse.csc_matrix.ceil', 'scipy.sparse.csc_matrix.check_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.check_format.html#scipy.sparse.csc_matrix.check_format', 'scipy.sparse.csc_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.conj.html#scipy.sparse.csc_matrix.conj', 'scipy.sparse.csc_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.conjugate.html#scipy.sparse.csc_matrix.conjugate', 'scipy.sparse.csc_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.copy.html#scipy.sparse.csc_matrix.copy', 'scipy.sparse.csc_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.count_nonzero.html#scipy.sparse.csc_matrix.count_nonzero', 'scipy.sparse.csc_matrix.deg2rad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.deg2rad.html#scipy.sparse.csc_matrix.deg2rad', 'scipy.sparse.csc_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.diagonal.html#scipy.sparse.csc_matrix.diagonal', 'scipy.sparse.csc_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.dot.html#scipy.sparse.csc_matrix.dot', 'scipy.sparse.csc_matrix.dtype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.dtype.html#scipy.sparse.csc_matrix.dtype', 'scipy.sparse.csc_matrix.eliminate_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.eliminate_zeros.html#scipy.sparse.csc_matrix.eliminate_zeros', 'scipy.sparse.csc_matrix.expm1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.expm1.html#scipy.sparse.csc_matrix.expm1', 'scipy.sparse.csc_matrix.floor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.floor.html#scipy.sparse.csc_matrix.floor', 'scipy.sparse.csc_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getH.html#scipy.sparse.csc_matrix.getH', 'scipy.sparse.csc_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.get_shape.html#scipy.sparse.csc_matrix.get_shape', 'scipy.sparse.csc_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getcol.html#scipy.sparse.csc_matrix.getcol', 'scipy.sparse.csc_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getformat.html#scipy.sparse.csc_matrix.getformat', 'scipy.sparse.csc_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getmaxprint.html#scipy.sparse.csc_matrix.getmaxprint', 'scipy.sparse.csc_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getnnz.html#scipy.sparse.csc_matrix.getnnz', 'scipy.sparse.csc_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.getrow.html#scipy.sparse.csc_matrix.getrow', 'scipy.sparse.csc_matrix.has_canonical_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.has_canonical_format.html#scipy.sparse.csc_matrix.has_canonical_format', 'scipy.sparse.csc_matrix.has_sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.has_sorted_indices.html#scipy.sparse.csc_matrix.has_sorted_indices', 'scipy.sparse.csc_matrix.log1p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.log1p.html#scipy.sparse.csc_matrix.log1p', 'scipy.sparse.csc_matrix.max': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.max.html#scipy.sparse.csc_matrix.max', 'scipy.sparse.csc_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.maximum.html#scipy.sparse.csc_matrix.maximum', 'scipy.sparse.csc_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.mean.html#scipy.sparse.csc_matrix.mean', 'scipy.sparse.csc_matrix.min': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.min.html#scipy.sparse.csc_matrix.min', 'scipy.sparse.csc_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.minimum.html#scipy.sparse.csc_matrix.minimum', 'scipy.sparse.csc_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.multiply.html#scipy.sparse.csc_matrix.multiply', 'scipy.sparse.csc_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.nnz.html#scipy.sparse.csc_matrix.nnz', 'scipy.sparse.csc_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.nonzero.html#scipy.sparse.csc_matrix.nonzero', 'scipy.sparse.csc_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.power.html#scipy.sparse.csc_matrix.power', 'scipy.sparse.csc_matrix.prune': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.prune.html#scipy.sparse.csc_matrix.prune', 'scipy.sparse.csc_matrix.rad2deg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.rad2deg.html#scipy.sparse.csc_matrix.rad2deg', 'scipy.sparse.csc_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.reshape.html#scipy.sparse.csc_matrix.reshape', 'scipy.sparse.csc_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.resize.html#scipy.sparse.csc_matrix.resize', 'scipy.sparse.csc_matrix.rint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.rint.html#scipy.sparse.csc_matrix.rint', 'scipy.sparse.csc_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.set_shape.html#scipy.sparse.csc_matrix.set_shape', 'scipy.sparse.csc_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.setdiag.html#scipy.sparse.csc_matrix.setdiag', 'scipy.sparse.csc_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.shape.html#scipy.sparse.csc_matrix.shape', 'scipy.sparse.csc_matrix.sign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sign.html#scipy.sparse.csc_matrix.sign', 'scipy.sparse.csc_matrix.sin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sin.html#scipy.sparse.csc_matrix.sin', 'scipy.sparse.csc_matrix.sinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sinh.html#scipy.sparse.csc_matrix.sinh', 'scipy.sparse.csc_matrix.sort_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sort_indices.html#scipy.sparse.csc_matrix.sort_indices', 'scipy.sparse.csc_matrix.sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sorted_indices.html#scipy.sparse.csc_matrix.sorted_indices', 'scipy.sparse.csc_matrix.sqrt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sqrt.html#scipy.sparse.csc_matrix.sqrt', 'scipy.sparse.csc_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum.html#scipy.sparse.csc_matrix.sum', 'scipy.sparse.csc_matrix.sum_duplicates': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates', 'scipy.sparse.csc_matrix.tan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tan.html#scipy.sparse.csc_matrix.tan', 'scipy.sparse.csc_matrix.tanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tanh.html#scipy.sparse.csc_matrix.tanh', 'scipy.sparse.csc_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.toarray.html#scipy.sparse.csc_matrix.toarray', 'scipy.sparse.csc_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tobsr.html#scipy.sparse.csc_matrix.tobsr', 'scipy.sparse.csc_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tocoo.html#scipy.sparse.csc_matrix.tocoo', 'scipy.sparse.csc_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tocsc.html#scipy.sparse.csc_matrix.tocsc', 'scipy.sparse.csc_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tocsr.html#scipy.sparse.csc_matrix.tocsr', 'scipy.sparse.csc_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.todense.html#scipy.sparse.csc_matrix.todense', 'scipy.sparse.csc_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.todia.html#scipy.sparse.csc_matrix.todia', 'scipy.sparse.csc_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.todok.html#scipy.sparse.csc_matrix.todok', 'scipy.sparse.csc_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.tolil.html#scipy.sparse.csc_matrix.tolil', 'scipy.sparse.csc_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.transpose.html#scipy.sparse.csc_matrix.transpose', 'scipy.sparse.csc_matrix.trunc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.trunc.html#scipy.sparse.csc_matrix.trunc', 'scipy.sparse.csr_matrix.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.__getitem__.html#scipy.sparse.csr_matrix.__getitem__', 'scipy.sparse.csr_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.__len__.html#scipy.sparse.csr_matrix.__len__', 'scipy.sparse.csr_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.__mul__.html#scipy.sparse.csr_matrix.__mul__', 'scipy.sparse.csr_matrix.arcsin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.arcsin.html#scipy.sparse.csr_matrix.arcsin', 'scipy.sparse.csr_matrix.arcsinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.arcsinh.html#scipy.sparse.csr_matrix.arcsinh', 'scipy.sparse.csr_matrix.arctan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.arctan.html#scipy.sparse.csr_matrix.arctan', 'scipy.sparse.csr_matrix.arctanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.arctanh.html#scipy.sparse.csr_matrix.arctanh', 'scipy.sparse.csr_matrix.argmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.argmax.html#scipy.sparse.csr_matrix.argmax', 'scipy.sparse.csr_matrix.argmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.argmin.html#scipy.sparse.csr_matrix.argmin', 'scipy.sparse.csr_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.asformat.html#scipy.sparse.csr_matrix.asformat', 'scipy.sparse.csr_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.asfptype.html#scipy.sparse.csr_matrix.asfptype', 'scipy.sparse.csr_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.astype.html#scipy.sparse.csr_matrix.astype', 'scipy.sparse.csr_matrix.ceil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.ceil.html#scipy.sparse.csr_matrix.ceil', 'scipy.sparse.csr_matrix.check_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.check_format.html#scipy.sparse.csr_matrix.check_format', 'scipy.sparse.csr_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.conj.html#scipy.sparse.csr_matrix.conj', 'scipy.sparse.csr_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.conjugate.html#scipy.sparse.csr_matrix.conjugate', 'scipy.sparse.csr_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.copy.html#scipy.sparse.csr_matrix.copy', 'scipy.sparse.csr_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.count_nonzero.html#scipy.sparse.csr_matrix.count_nonzero', 'scipy.sparse.csr_matrix.deg2rad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.deg2rad.html#scipy.sparse.csr_matrix.deg2rad', 'scipy.sparse.csr_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.diagonal.html#scipy.sparse.csr_matrix.diagonal', 'scipy.sparse.csr_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.dot.html#scipy.sparse.csr_matrix.dot', 'scipy.sparse.csr_matrix.dtype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.dtype.html#scipy.sparse.csr_matrix.dtype', 'scipy.sparse.csr_matrix.eliminate_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.eliminate_zeros.html#scipy.sparse.csr_matrix.eliminate_zeros', 'scipy.sparse.csr_matrix.expm1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.expm1.html#scipy.sparse.csr_matrix.expm1', 'scipy.sparse.csr_matrix.floor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.floor.html#scipy.sparse.csr_matrix.floor', 'scipy.sparse.csr_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getH.html#scipy.sparse.csr_matrix.getH', 'scipy.sparse.csr_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.get_shape.html#scipy.sparse.csr_matrix.get_shape', 'scipy.sparse.csr_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getcol.html#scipy.sparse.csr_matrix.getcol', 'scipy.sparse.csr_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getformat.html#scipy.sparse.csr_matrix.getformat', 'scipy.sparse.csr_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getmaxprint.html#scipy.sparse.csr_matrix.getmaxprint', 'scipy.sparse.csr_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getnnz.html#scipy.sparse.csr_matrix.getnnz', 'scipy.sparse.csr_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.getrow.html#scipy.sparse.csr_matrix.getrow', 'scipy.sparse.csr_matrix.has_canonical_format': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.has_canonical_format.html#scipy.sparse.csr_matrix.has_canonical_format', 'scipy.sparse.csr_matrix.has_sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.has_sorted_indices.html#scipy.sparse.csr_matrix.has_sorted_indices', 'scipy.sparse.csr_matrix.log1p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.log1p.html#scipy.sparse.csr_matrix.log1p', 'scipy.sparse.csr_matrix.max': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.max.html#scipy.sparse.csr_matrix.max', 'scipy.sparse.csr_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.maximum.html#scipy.sparse.csr_matrix.maximum', 'scipy.sparse.csr_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.mean.html#scipy.sparse.csr_matrix.mean', 'scipy.sparse.csr_matrix.min': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.min.html#scipy.sparse.csr_matrix.min', 'scipy.sparse.csr_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.minimum.html#scipy.sparse.csr_matrix.minimum', 'scipy.sparse.csr_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.multiply.html#scipy.sparse.csr_matrix.multiply', 'scipy.sparse.csr_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.nnz.html#scipy.sparse.csr_matrix.nnz', 'scipy.sparse.csr_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.nonzero.html#scipy.sparse.csr_matrix.nonzero', 'scipy.sparse.csr_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.power.html#scipy.sparse.csr_matrix.power', 'scipy.sparse.csr_matrix.prune': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.prune.html#scipy.sparse.csr_matrix.prune', 'scipy.sparse.csr_matrix.rad2deg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.rad2deg.html#scipy.sparse.csr_matrix.rad2deg', 'scipy.sparse.csr_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.reshape.html#scipy.sparse.csr_matrix.reshape', 'scipy.sparse.csr_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.resize.html#scipy.sparse.csr_matrix.resize', 'scipy.sparse.csr_matrix.rint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.rint.html#scipy.sparse.csr_matrix.rint', 'scipy.sparse.csr_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.set_shape.html#scipy.sparse.csr_matrix.set_shape', 'scipy.sparse.csr_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.setdiag.html#scipy.sparse.csr_matrix.setdiag', 'scipy.sparse.csr_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.shape.html#scipy.sparse.csr_matrix.shape', 'scipy.sparse.csr_matrix.sign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sign.html#scipy.sparse.csr_matrix.sign', 'scipy.sparse.csr_matrix.sin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sin.html#scipy.sparse.csr_matrix.sin', 'scipy.sparse.csr_matrix.sinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sinh.html#scipy.sparse.csr_matrix.sinh', 'scipy.sparse.csr_matrix.sort_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sort_indices.html#scipy.sparse.csr_matrix.sort_indices', 'scipy.sparse.csr_matrix.sorted_indices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sorted_indices.html#scipy.sparse.csr_matrix.sorted_indices', 'scipy.sparse.csr_matrix.sqrt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sqrt.html#scipy.sparse.csr_matrix.sqrt', 'scipy.sparse.csr_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum.html#scipy.sparse.csr_matrix.sum', 'scipy.sparse.csr_matrix.sum_duplicates': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum_duplicates.html#scipy.sparse.csr_matrix.sum_duplicates', 'scipy.sparse.csr_matrix.tan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tan.html#scipy.sparse.csr_matrix.tan', 'scipy.sparse.csr_matrix.tanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tanh.html#scipy.sparse.csr_matrix.tanh', 'scipy.sparse.csr_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html#scipy.sparse.csr_matrix.toarray', 'scipy.sparse.csr_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tobsr.html#scipy.sparse.csr_matrix.tobsr', 'scipy.sparse.csr_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tocoo.html#scipy.sparse.csr_matrix.tocoo', 'scipy.sparse.csr_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tocsc.html#scipy.sparse.csr_matrix.tocsc', 'scipy.sparse.csr_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tocsr.html#scipy.sparse.csr_matrix.tocsr', 'scipy.sparse.csr_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.todense.html#scipy.sparse.csr_matrix.todense', 'scipy.sparse.csr_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.todia.html#scipy.sparse.csr_matrix.todia', 'scipy.sparse.csr_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.todok.html#scipy.sparse.csr_matrix.todok', 'scipy.sparse.csr_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.tolil.html#scipy.sparse.csr_matrix.tolil', 'scipy.sparse.csr_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.transpose.html#scipy.sparse.csr_matrix.transpose', 'scipy.sparse.csr_matrix.trunc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.trunc.html#scipy.sparse.csr_matrix.trunc', 'scipy.sparse.dia_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.__len__.html#scipy.sparse.dia_matrix.__len__', 'scipy.sparse.dia_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.__mul__.html#scipy.sparse.dia_matrix.__mul__', 'scipy.sparse.dia_matrix.arcsin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.arcsin.html#scipy.sparse.dia_matrix.arcsin', 'scipy.sparse.dia_matrix.arcsinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.arcsinh.html#scipy.sparse.dia_matrix.arcsinh', 'scipy.sparse.dia_matrix.arctan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.arctan.html#scipy.sparse.dia_matrix.arctan', 'scipy.sparse.dia_matrix.arctanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.arctanh.html#scipy.sparse.dia_matrix.arctanh', 'scipy.sparse.dia_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.asformat.html#scipy.sparse.dia_matrix.asformat', 'scipy.sparse.dia_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.asfptype.html#scipy.sparse.dia_matrix.asfptype', 'scipy.sparse.dia_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.astype.html#scipy.sparse.dia_matrix.astype', 'scipy.sparse.dia_matrix.ceil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.ceil.html#scipy.sparse.dia_matrix.ceil', 'scipy.sparse.dia_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.conj.html#scipy.sparse.dia_matrix.conj', 'scipy.sparse.dia_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.conjugate.html#scipy.sparse.dia_matrix.conjugate', 'scipy.sparse.dia_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.copy.html#scipy.sparse.dia_matrix.copy', 'scipy.sparse.dia_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.count_nonzero.html#scipy.sparse.dia_matrix.count_nonzero', 'scipy.sparse.dia_matrix.deg2rad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.deg2rad.html#scipy.sparse.dia_matrix.deg2rad', 'scipy.sparse.dia_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.diagonal.html#scipy.sparse.dia_matrix.diagonal', 'scipy.sparse.dia_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.dot.html#scipy.sparse.dia_matrix.dot', 'scipy.sparse.dia_matrix.dtype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.dtype.html#scipy.sparse.dia_matrix.dtype', 'scipy.sparse.dia_matrix.expm1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.expm1.html#scipy.sparse.dia_matrix.expm1', 'scipy.sparse.dia_matrix.floor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.floor.html#scipy.sparse.dia_matrix.floor', 'scipy.sparse.dia_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getH.html#scipy.sparse.dia_matrix.getH', 'scipy.sparse.dia_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.get_shape.html#scipy.sparse.dia_matrix.get_shape', 'scipy.sparse.dia_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getcol.html#scipy.sparse.dia_matrix.getcol', 'scipy.sparse.dia_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getformat.html#scipy.sparse.dia_matrix.getformat', 'scipy.sparse.dia_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getmaxprint.html#scipy.sparse.dia_matrix.getmaxprint', 'scipy.sparse.dia_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getnnz.html#scipy.sparse.dia_matrix.getnnz', 'scipy.sparse.dia_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.getrow.html#scipy.sparse.dia_matrix.getrow', 'scipy.sparse.dia_matrix.log1p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.log1p.html#scipy.sparse.dia_matrix.log1p', 'scipy.sparse.dia_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.maximum.html#scipy.sparse.dia_matrix.maximum', 'scipy.sparse.dia_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.mean.html#scipy.sparse.dia_matrix.mean', 'scipy.sparse.dia_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.minimum.html#scipy.sparse.dia_matrix.minimum', 'scipy.sparse.dia_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.multiply.html#scipy.sparse.dia_matrix.multiply', 'scipy.sparse.dia_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.nnz.html#scipy.sparse.dia_matrix.nnz', 'scipy.sparse.dia_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.nonzero.html#scipy.sparse.dia_matrix.nonzero', 'scipy.sparse.dia_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.power.html#scipy.sparse.dia_matrix.power', 'scipy.sparse.dia_matrix.rad2deg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.rad2deg.html#scipy.sparse.dia_matrix.rad2deg', 'scipy.sparse.dia_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.reshape.html#scipy.sparse.dia_matrix.reshape', 'scipy.sparse.dia_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.resize.html#scipy.sparse.dia_matrix.resize', 'scipy.sparse.dia_matrix.rint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.rint.html#scipy.sparse.dia_matrix.rint', 'scipy.sparse.dia_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.set_shape.html#scipy.sparse.dia_matrix.set_shape', 'scipy.sparse.dia_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.setdiag.html#scipy.sparse.dia_matrix.setdiag', 'scipy.sparse.dia_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.shape.html#scipy.sparse.dia_matrix.shape', 'scipy.sparse.dia_matrix.sign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.sign.html#scipy.sparse.dia_matrix.sign', 'scipy.sparse.dia_matrix.sin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.sin.html#scipy.sparse.dia_matrix.sin', 'scipy.sparse.dia_matrix.sinh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.sinh.html#scipy.sparse.dia_matrix.sinh', 'scipy.sparse.dia_matrix.sqrt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.sqrt.html#scipy.sparse.dia_matrix.sqrt', 'scipy.sparse.dia_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.sum.html#scipy.sparse.dia_matrix.sum', 'scipy.sparse.dia_matrix.tan': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tan.html#scipy.sparse.dia_matrix.tan', 'scipy.sparse.dia_matrix.tanh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tanh.html#scipy.sparse.dia_matrix.tanh', 'scipy.sparse.dia_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.toarray.html#scipy.sparse.dia_matrix.toarray', 'scipy.sparse.dia_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tobsr.html#scipy.sparse.dia_matrix.tobsr', 'scipy.sparse.dia_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tocoo.html#scipy.sparse.dia_matrix.tocoo', 'scipy.sparse.dia_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tocsc.html#scipy.sparse.dia_matrix.tocsc', 'scipy.sparse.dia_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tocsr.html#scipy.sparse.dia_matrix.tocsr', 'scipy.sparse.dia_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.todense.html#scipy.sparse.dia_matrix.todense', 'scipy.sparse.dia_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.todia.html#scipy.sparse.dia_matrix.todia', 'scipy.sparse.dia_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.todok.html#scipy.sparse.dia_matrix.todok', 'scipy.sparse.dia_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.tolil.html#scipy.sparse.dia_matrix.tolil', 'scipy.sparse.dia_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.transpose.html#scipy.sparse.dia_matrix.transpose', 'scipy.sparse.dia_matrix.trunc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.trunc.html#scipy.sparse.dia_matrix.trunc', 'scipy.sparse.dok_matrix.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.__getitem__.html#scipy.sparse.dok_matrix.__getitem__', 'scipy.sparse.dok_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.__len__.html#scipy.sparse.dok_matrix.__len__', 'scipy.sparse.dok_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.__mul__.html#scipy.sparse.dok_matrix.__mul__', 'scipy.sparse.dok_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.asformat.html#scipy.sparse.dok_matrix.asformat', 'scipy.sparse.dok_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.asfptype.html#scipy.sparse.dok_matrix.asfptype', 'scipy.sparse.dok_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.astype.html#scipy.sparse.dok_matrix.astype', 'scipy.sparse.dok_matrix.clear': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.clear.html#scipy.sparse.dok_matrix.clear', 'scipy.sparse.dok_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.conj.html#scipy.sparse.dok_matrix.conj', 'scipy.sparse.dok_matrix.conjtransp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.conjtransp.html#scipy.sparse.dok_matrix.conjtransp', 'scipy.sparse.dok_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.conjugate.html#scipy.sparse.dok_matrix.conjugate', 'scipy.sparse.dok_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.copy.html#scipy.sparse.dok_matrix.copy', 'scipy.sparse.dok_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.count_nonzero.html#scipy.sparse.dok_matrix.count_nonzero', 'scipy.sparse.dok_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.diagonal.html#scipy.sparse.dok_matrix.diagonal', 'scipy.sparse.dok_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.dot.html#scipy.sparse.dok_matrix.dot', 'scipy.sparse.dok_matrix.fromkeys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.fromkeys.html#scipy.sparse.dok_matrix.fromkeys', 'scipy.sparse.dok_matrix.get': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.get.html#scipy.sparse.dok_matrix.get', 'scipy.sparse.dok_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getH.html#scipy.sparse.dok_matrix.getH', 'scipy.sparse.dok_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.get_shape.html#scipy.sparse.dok_matrix.get_shape', 'scipy.sparse.dok_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getcol.html#scipy.sparse.dok_matrix.getcol', 'scipy.sparse.dok_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getformat.html#scipy.sparse.dok_matrix.getformat', 'scipy.sparse.dok_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getmaxprint.html#scipy.sparse.dok_matrix.getmaxprint', 'scipy.sparse.dok_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getnnz.html#scipy.sparse.dok_matrix.getnnz', 'scipy.sparse.dok_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.getrow.html#scipy.sparse.dok_matrix.getrow', 'scipy.sparse.dok_matrix.items': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.items.html#scipy.sparse.dok_matrix.items', 'scipy.sparse.dok_matrix.keys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.keys.html#scipy.sparse.dok_matrix.keys', 'scipy.sparse.dok_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.maximum.html#scipy.sparse.dok_matrix.maximum', 'scipy.sparse.dok_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.mean.html#scipy.sparse.dok_matrix.mean', 'scipy.sparse.dok_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.minimum.html#scipy.sparse.dok_matrix.minimum', 'scipy.sparse.dok_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.multiply.html#scipy.sparse.dok_matrix.multiply', 'scipy.sparse.dok_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.nnz.html#scipy.sparse.dok_matrix.nnz', 'scipy.sparse.dok_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.nonzero.html#scipy.sparse.dok_matrix.nonzero', 'scipy.sparse.dok_matrix.pop': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.pop.html#scipy.sparse.dok_matrix.pop', 'scipy.sparse.dok_matrix.popitem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.popitem.html#scipy.sparse.dok_matrix.popitem', 'scipy.sparse.dok_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.power.html#scipy.sparse.dok_matrix.power', 'scipy.sparse.dok_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.reshape.html#scipy.sparse.dok_matrix.reshape', 'scipy.sparse.dok_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.resize.html#scipy.sparse.dok_matrix.resize', 'scipy.sparse.dok_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.set_shape.html#scipy.sparse.dok_matrix.set_shape', 'scipy.sparse.dok_matrix.setdefault': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.setdefault.html#scipy.sparse.dok_matrix.setdefault', 'scipy.sparse.dok_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.setdiag.html#scipy.sparse.dok_matrix.setdiag', 'scipy.sparse.dok_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.shape.html#scipy.sparse.dok_matrix.shape', 'scipy.sparse.dok_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.sum.html#scipy.sparse.dok_matrix.sum', 'scipy.sparse.dok_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.toarray.html#scipy.sparse.dok_matrix.toarray', 'scipy.sparse.dok_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.tobsr.html#scipy.sparse.dok_matrix.tobsr', 'scipy.sparse.dok_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.tocoo.html#scipy.sparse.dok_matrix.tocoo', 'scipy.sparse.dok_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.tocsc.html#scipy.sparse.dok_matrix.tocsc', 'scipy.sparse.dok_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.tocsr.html#scipy.sparse.dok_matrix.tocsr', 'scipy.sparse.dok_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.todense.html#scipy.sparse.dok_matrix.todense', 'scipy.sparse.dok_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.todia.html#scipy.sparse.dok_matrix.todia', 'scipy.sparse.dok_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.todok.html#scipy.sparse.dok_matrix.todok', 'scipy.sparse.dok_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.tolil.html#scipy.sparse.dok_matrix.tolil', 'scipy.sparse.dok_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.transpose.html#scipy.sparse.dok_matrix.transpose', 'scipy.sparse.dok_matrix.update': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.update.html#scipy.sparse.dok_matrix.update', 'scipy.sparse.dok_matrix.values': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.values.html#scipy.sparse.dok_matrix.values', 'scipy.sparse.lil_matrix.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.__getitem__.html#scipy.sparse.lil_matrix.__getitem__', 'scipy.sparse.lil_matrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.__len__.html#scipy.sparse.lil_matrix.__len__', 'scipy.sparse.lil_matrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.__mul__.html#scipy.sparse.lil_matrix.__mul__', 'scipy.sparse.lil_matrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.asformat.html#scipy.sparse.lil_matrix.asformat', 'scipy.sparse.lil_matrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.asfptype.html#scipy.sparse.lil_matrix.asfptype', 'scipy.sparse.lil_matrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.astype.html#scipy.sparse.lil_matrix.astype', 'scipy.sparse.lil_matrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.conj.html#scipy.sparse.lil_matrix.conj', 'scipy.sparse.lil_matrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.conjugate.html#scipy.sparse.lil_matrix.conjugate', 'scipy.sparse.lil_matrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.copy.html#scipy.sparse.lil_matrix.copy', 'scipy.sparse.lil_matrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.count_nonzero.html#scipy.sparse.lil_matrix.count_nonzero', 'scipy.sparse.lil_matrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.diagonal.html#scipy.sparse.lil_matrix.diagonal', 'scipy.sparse.lil_matrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.dot.html#scipy.sparse.lil_matrix.dot', 'scipy.sparse.lil_matrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getH.html#scipy.sparse.lil_matrix.getH', 'scipy.sparse.lil_matrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.get_shape.html#scipy.sparse.lil_matrix.get_shape', 'scipy.sparse.lil_matrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getcol.html#scipy.sparse.lil_matrix.getcol', 'scipy.sparse.lil_matrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getformat.html#scipy.sparse.lil_matrix.getformat', 'scipy.sparse.lil_matrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getmaxprint.html#scipy.sparse.lil_matrix.getmaxprint', 'scipy.sparse.lil_matrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getnnz.html#scipy.sparse.lil_matrix.getnnz', 'scipy.sparse.lil_matrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getrow.html#scipy.sparse.lil_matrix.getrow', 'scipy.sparse.lil_matrix.getrowview': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.getrowview.html#scipy.sparse.lil_matrix.getrowview', 'scipy.sparse.lil_matrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.maximum.html#scipy.sparse.lil_matrix.maximum', 'scipy.sparse.lil_matrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.mean.html#scipy.sparse.lil_matrix.mean', 'scipy.sparse.lil_matrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.minimum.html#scipy.sparse.lil_matrix.minimum', 'scipy.sparse.lil_matrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.multiply.html#scipy.sparse.lil_matrix.multiply', 'scipy.sparse.lil_matrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.nnz.html#scipy.sparse.lil_matrix.nnz', 'scipy.sparse.lil_matrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.nonzero.html#scipy.sparse.lil_matrix.nonzero', 'scipy.sparse.lil_matrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.power.html#scipy.sparse.lil_matrix.power', 'scipy.sparse.lil_matrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.reshape.html#scipy.sparse.lil_matrix.reshape', 'scipy.sparse.lil_matrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.resize.html#scipy.sparse.lil_matrix.resize', 'scipy.sparse.lil_matrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.set_shape.html#scipy.sparse.lil_matrix.set_shape', 'scipy.sparse.lil_matrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.setdiag.html#scipy.sparse.lil_matrix.setdiag', 'scipy.sparse.lil_matrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.shape.html#scipy.sparse.lil_matrix.shape', 'scipy.sparse.lil_matrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.sum.html#scipy.sparse.lil_matrix.sum', 'scipy.sparse.lil_matrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.toarray.html#scipy.sparse.lil_matrix.toarray', 'scipy.sparse.lil_matrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.tobsr.html#scipy.sparse.lil_matrix.tobsr', 'scipy.sparse.lil_matrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.tocoo.html#scipy.sparse.lil_matrix.tocoo', 'scipy.sparse.lil_matrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.tocsc.html#scipy.sparse.lil_matrix.tocsc', 'scipy.sparse.lil_matrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.tocsr.html#scipy.sparse.lil_matrix.tocsr', 'scipy.sparse.lil_matrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.todense.html#scipy.sparse.lil_matrix.todense', 'scipy.sparse.lil_matrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.todia.html#scipy.sparse.lil_matrix.todia', 'scipy.sparse.lil_matrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.todok.html#scipy.sparse.lil_matrix.todok', 'scipy.sparse.lil_matrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.tolil.html#scipy.sparse.lil_matrix.tolil', 'scipy.sparse.lil_matrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.transpose.html#scipy.sparse.lil_matrix.transpose', 'scipy.sparse.spmatrix.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.__len__.html#scipy.sparse.spmatrix.__len__', 'scipy.sparse.spmatrix.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.__mul__.html#scipy.sparse.spmatrix.__mul__', 'scipy.sparse.spmatrix.asformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.asformat.html#scipy.sparse.spmatrix.asformat', 'scipy.sparse.spmatrix.asfptype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.asfptype.html#scipy.sparse.spmatrix.asfptype', 'scipy.sparse.spmatrix.astype': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.astype.html#scipy.sparse.spmatrix.astype', 'scipy.sparse.spmatrix.conj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.conj.html#scipy.sparse.spmatrix.conj', 'scipy.sparse.spmatrix.conjugate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.conjugate.html#scipy.sparse.spmatrix.conjugate', 'scipy.sparse.spmatrix.copy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.copy.html#scipy.sparse.spmatrix.copy', 'scipy.sparse.spmatrix.count_nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.count_nonzero.html#scipy.sparse.spmatrix.count_nonzero', 'scipy.sparse.spmatrix.diagonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.diagonal.html#scipy.sparse.spmatrix.diagonal', 'scipy.sparse.spmatrix.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.dot.html#scipy.sparse.spmatrix.dot', 'scipy.sparse.spmatrix.getH': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getH.html#scipy.sparse.spmatrix.getH', 'scipy.sparse.spmatrix.get_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.get_shape.html#scipy.sparse.spmatrix.get_shape', 'scipy.sparse.spmatrix.getcol': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getcol.html#scipy.sparse.spmatrix.getcol', 'scipy.sparse.spmatrix.getformat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getformat.html#scipy.sparse.spmatrix.getformat', 'scipy.sparse.spmatrix.getmaxprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getmaxprint.html#scipy.sparse.spmatrix.getmaxprint', 'scipy.sparse.spmatrix.getnnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getnnz.html#scipy.sparse.spmatrix.getnnz', 'scipy.sparse.spmatrix.getrow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.getrow.html#scipy.sparse.spmatrix.getrow', 'scipy.sparse.spmatrix.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.maximum.html#scipy.sparse.spmatrix.maximum', 'scipy.sparse.spmatrix.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.mean.html#scipy.sparse.spmatrix.mean', 'scipy.sparse.spmatrix.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.minimum.html#scipy.sparse.spmatrix.minimum', 'scipy.sparse.spmatrix.multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.multiply.html#scipy.sparse.spmatrix.multiply', 'scipy.sparse.spmatrix.nnz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.nnz.html#scipy.sparse.spmatrix.nnz', 'scipy.sparse.spmatrix.nonzero': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.nonzero.html#scipy.sparse.spmatrix.nonzero', 'scipy.sparse.spmatrix.power': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.power.html#scipy.sparse.spmatrix.power', 'scipy.sparse.spmatrix.reshape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.reshape.html#scipy.sparse.spmatrix.reshape', 'scipy.sparse.spmatrix.resize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.resize.html#scipy.sparse.spmatrix.resize', 'scipy.sparse.spmatrix.set_shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.set_shape.html#scipy.sparse.spmatrix.set_shape', 'scipy.sparse.spmatrix.setdiag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.setdiag.html#scipy.sparse.spmatrix.setdiag', 'scipy.sparse.spmatrix.shape': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.shape.html#scipy.sparse.spmatrix.shape', 'scipy.sparse.spmatrix.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.sum.html#scipy.sparse.spmatrix.sum', 'scipy.sparse.spmatrix.toarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.toarray.html#scipy.sparse.spmatrix.toarray', 'scipy.sparse.spmatrix.tobsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.tobsr.html#scipy.sparse.spmatrix.tobsr', 'scipy.sparse.spmatrix.tocoo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.tocoo.html#scipy.sparse.spmatrix.tocoo', 'scipy.sparse.spmatrix.tocsc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.tocsc.html#scipy.sparse.spmatrix.tocsc', 'scipy.sparse.spmatrix.tocsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.tocsr.html#scipy.sparse.spmatrix.tocsr', 'scipy.sparse.spmatrix.todense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.todense.html#scipy.sparse.spmatrix.todense', 'scipy.sparse.spmatrix.todia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.todia.html#scipy.sparse.spmatrix.todia', 'scipy.sparse.spmatrix.todok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.todok.html#scipy.sparse.spmatrix.todok', 'scipy.sparse.spmatrix.tolil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.tolil.html#scipy.sparse.spmatrix.tolil', 'scipy.sparse.spmatrix.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.transpose.html#scipy.sparse.spmatrix.transpose', 'scipy.sparse.block_diag': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.block_diag.html#scipy.sparse.block_diag', 'scipy.sparse.bmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bmat.html#scipy.sparse.bmat', 'scipy.sparse.diags': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.diags.html#scipy.sparse.diags', 'scipy.sparse.eye': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.eye.html#scipy.sparse.eye', 'scipy.sparse.find': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html#scipy.sparse.find', 'scipy.sparse.hstack': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.hstack.html#scipy.sparse.hstack', 'scipy.sparse.identity': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.identity.html#scipy.sparse.identity', 'scipy.sparse.issparse': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html#scipy.sparse.issparse', 'scipy.sparse.isspmatrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix.html#scipy.sparse.isspmatrix', 'scipy.sparse.isspmatrix_bsr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_bsr.html#scipy.sparse.isspmatrix_bsr', 'scipy.sparse.isspmatrix_coo': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_coo.html#scipy.sparse.isspmatrix_coo', 'scipy.sparse.isspmatrix_csc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csc.html#scipy.sparse.isspmatrix_csc', 'scipy.sparse.isspmatrix_csr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csr.html#scipy.sparse.isspmatrix_csr', 'scipy.sparse.isspmatrix_dia': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dia.html#scipy.sparse.isspmatrix_dia', 'scipy.sparse.isspmatrix_dok': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dok.html#scipy.sparse.isspmatrix_dok', 'scipy.sparse.isspmatrix_lil': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_lil.html#scipy.sparse.isspmatrix_lil', 'scipy.sparse.kron': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kron.html#scipy.sparse.kron', 'scipy.sparse.kronsum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kronsum.html#scipy.sparse.kronsum', 'scipy.sparse.load_npz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.load_npz.html#scipy.sparse.load_npz', 'scipy.sparse.rand': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.rand.html#scipy.sparse.rand', 'scipy.sparse.random': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.random.html#scipy.sparse.random', 'scipy.sparse.save_npz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.save_npz.html#scipy.sparse.save_npz', 'scipy.sparse.spdiags': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags', 'scipy.sparse.tril': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.tril.html#scipy.sparse.tril', 'scipy.sparse.triu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.triu.html#scipy.sparse.triu', 'scipy.sparse.vstack': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.vstack.html#scipy.sparse.vstack'}, 'scipy.spatial': { 'scipy.spatial.distance': 'https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance', 'scipy.spatial.transform': 'https://docs.scipy.org/doc/scipy/reference/spatial.transform.html#module-scipy.spatial.transform', 'scipy.spatial.ConvexHull': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html#scipy.spatial.ConvexHull', 'scipy.spatial.Delaunay': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html#scipy.spatial.Delaunay', 'scipy.spatial.HalfspaceIntersection': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.html#scipy.spatial.HalfspaceIntersection', 'scipy.spatial.KDTree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html#scipy.spatial.KDTree', 'scipy.spatial.Rectangle': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.html#scipy.spatial.Rectangle', 'scipy.spatial.SphericalVoronoi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.SphericalVoronoi.html#scipy.spatial.SphericalVoronoi', 'scipy.spatial.Voronoi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.html#scipy.spatial.Voronoi', 'scipy.spatial.cKDTree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html#scipy.spatial.cKDTree', 'scipy.spatial.ConvexHull.add_points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.add_points.html#scipy.spatial.ConvexHull.add_points', 'scipy.spatial.ConvexHull.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.close.html#scipy.spatial.ConvexHull.close', 'scipy.spatial.ConvexHull.points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.points.html#scipy.spatial.ConvexHull.points', 'scipy.spatial.ConvexHull.vertices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.vertices.html#scipy.spatial.ConvexHull.vertices', 'scipy.spatial.Delaunay.add_points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.add_points.html#scipy.spatial.Delaunay.add_points', 'scipy.spatial.Delaunay.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.close.html#scipy.spatial.Delaunay.close', 'scipy.spatial.Delaunay.convex_hull': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.convex_hull.html#scipy.spatial.Delaunay.convex_hull', 'scipy.spatial.Delaunay.find_simplex': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.find_simplex.html#scipy.spatial.Delaunay.find_simplex', 'scipy.spatial.Delaunay.lift_points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.lift_points.html#scipy.spatial.Delaunay.lift_points', 'scipy.spatial.Delaunay.plane_distance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.plane_distance.html#scipy.spatial.Delaunay.plane_distance', 'scipy.spatial.Delaunay.points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.points.html#scipy.spatial.Delaunay.points', 'scipy.spatial.Delaunay.transform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.transform.html#scipy.spatial.Delaunay.transform', 'scipy.spatial.Delaunay.vertex_neighbor_vertices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.vertex_neighbor_vertices.html#scipy.spatial.Delaunay.vertex_neighbor_vertices', 'scipy.spatial.Delaunay.vertex_to_simplex': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.vertex_to_simplex.html#scipy.spatial.Delaunay.vertex_to_simplex', 'scipy.spatial.HalfspaceIntersection.add_halfspaces': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.add_halfspaces.html#scipy.spatial.HalfspaceIntersection.add_halfspaces', 'scipy.spatial.HalfspaceIntersection.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.close.html#scipy.spatial.HalfspaceIntersection.close', 'scipy.spatial.HalfspaceIntersection.dual_vertices': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.dual_vertices.html#scipy.spatial.HalfspaceIntersection.dual_vertices', 'scipy.spatial.HalfspaceIntersection.halfspaces': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.HalfspaceIntersection.halfspaces.html#scipy.spatial.HalfspaceIntersection.halfspaces', 'scipy.spatial.KDTree.count_neighbors': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.count_neighbors.html#scipy.spatial.KDTree.count_neighbors', 'scipy.spatial.KDTree.query': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html#scipy.spatial.KDTree.query', 'scipy.spatial.KDTree.query_ball_point': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query_ball_point.html#scipy.spatial.KDTree.query_ball_point', 'scipy.spatial.KDTree.query_ball_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query_ball_tree.html#scipy.spatial.KDTree.query_ball_tree', 'scipy.spatial.KDTree.query_pairs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query_pairs.html#scipy.spatial.KDTree.query_pairs', 'scipy.spatial.KDTree.sparse_distance_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.sparse_distance_matrix.html#scipy.spatial.KDTree.sparse_distance_matrix', 'scipy.spatial.Rectangle.max_distance_point': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.max_distance_point.html#scipy.spatial.Rectangle.max_distance_point', 'scipy.spatial.Rectangle.max_distance_rectangle': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.max_distance_rectangle.html#scipy.spatial.Rectangle.max_distance_rectangle', 'scipy.spatial.Rectangle.min_distance_point': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.min_distance_point.html#scipy.spatial.Rectangle.min_distance_point', 'scipy.spatial.Rectangle.min_distance_rectangle': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.min_distance_rectangle.html#scipy.spatial.Rectangle.min_distance_rectangle', 'scipy.spatial.Rectangle.split': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.split.html#scipy.spatial.Rectangle.split', 'scipy.spatial.Rectangle.volume': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Rectangle.volume.html#scipy.spatial.Rectangle.volume', 'scipy.spatial.SphericalVoronoi.calculate_areas': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.SphericalVoronoi.calculate_areas.html#scipy.spatial.SphericalVoronoi.calculate_areas', 'scipy.spatial.SphericalVoronoi.sort_vertices_of_regions': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.SphericalVoronoi.sort_vertices_of_regions.html#scipy.spatial.SphericalVoronoi.sort_vertices_of_regions', 'scipy.spatial.Voronoi.add_points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.add_points.html#scipy.spatial.Voronoi.add_points', 'scipy.spatial.Voronoi.close': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.close.html#scipy.spatial.Voronoi.close', 'scipy.spatial.Voronoi.points': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.points.html#scipy.spatial.Voronoi.points', 'scipy.spatial.Voronoi.ridge_dict': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.ridge_dict.html#scipy.spatial.Voronoi.ridge_dict', 'scipy.spatial.cKDTree.count_neighbors': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.count_neighbors.html#scipy.spatial.cKDTree.count_neighbors', 'scipy.spatial.cKDTree.query': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.query.html#scipy.spatial.cKDTree.query', 'scipy.spatial.cKDTree.query_ball_point': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.query_ball_point.html#scipy.spatial.cKDTree.query_ball_point', 'scipy.spatial.cKDTree.query_ball_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.query_ball_tree.html#scipy.spatial.cKDTree.query_ball_tree', 'scipy.spatial.cKDTree.query_pairs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.query_pairs.html#scipy.spatial.cKDTree.query_pairs', 'scipy.spatial.cKDTree.sparse_distance_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.sparse_distance_matrix.html#scipy.spatial.cKDTree.sparse_distance_matrix', 'scipy.spatial.convex_hull_plot_2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.convex_hull_plot_2d.html#scipy.spatial.convex_hull_plot_2d', 'scipy.spatial.delaunay_plot_2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.delaunay_plot_2d.html#scipy.spatial.delaunay_plot_2d', 'scipy.spatial.distance_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance_matrix.html#scipy.spatial.distance_matrix', 'scipy.spatial.geometric_slerp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.geometric_slerp.html#scipy.spatial.geometric_slerp', 'scipy.spatial.minkowski_distance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.minkowski_distance.html#scipy.spatial.minkowski_distance', 'scipy.spatial.minkowski_distance_p': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.minkowski_distance_p.html#scipy.spatial.minkowski_distance_p', 'scipy.spatial.procrustes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.procrustes.html#scipy.spatial.procrustes', 'scipy.spatial.tsearch': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.tsearch.html#scipy.spatial.tsearch', 'scipy.spatial.voronoi_plot_2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.voronoi_plot_2d.html#scipy.spatial.voronoi_plot_2d'}, 'scipy.special': { 'scipy.special.cython_special': 'https://docs.scipy.org/doc/scipy/reference/special.cython_special.html#module-scipy.special.cython_special', 'scipy.special.errstate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.errstate.html#scipy.special.errstate', 'scipy.special.SpecialFunctionError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.SpecialFunctionError.html#scipy.special.SpecialFunctionError.with_traceback', 'scipy.special.SpecialFunctionWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.SpecialFunctionWarning.html#scipy.special.SpecialFunctionWarning.with_traceback', 'scipy.special.ai_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ai_zeros.html#scipy.special.ai_zeros', 'scipy.special.assoc_laguerre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.assoc_laguerre.html#scipy.special.assoc_laguerre', 'scipy.special.bei_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bei_zeros.html#scipy.special.bei_zeros', 'scipy.special.beip_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beip_zeros.html#scipy.special.beip_zeros', 'scipy.special.ber_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ber_zeros.html#scipy.special.ber_zeros', 'scipy.special.bernoulli': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bernoulli.html#scipy.special.bernoulli', 'scipy.special.berp_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.berp_zeros.html#scipy.special.berp_zeros', 'scipy.special.bi_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bi_zeros.html#scipy.special.bi_zeros', 'scipy.special.chebyc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyc.html#scipy.special.chebyc', 'scipy.special.chebys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebys.html#scipy.special.chebys', 'scipy.special.chebyt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyt.html#scipy.special.chebyt', 'scipy.special.chebyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyu.html#scipy.special.chebyu', 'scipy.special.clpmn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.clpmn.html#scipy.special.clpmn', 'scipy.special.comb': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.comb.html#scipy.special.comb', 'scipy.special.diric': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.diric.html#scipy.special.diric', 'scipy.special.ellip_harm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm.html#scipy.special.ellip_harm', 'scipy.special.ellip_harm_2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm_2.html#scipy.special.ellip_harm_2', 'scipy.special.ellip_normal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_normal.html#scipy.special.ellip_normal', 'scipy.special.erf_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erf_zeros.html#scipy.special.erf_zeros', 'scipy.special.euler': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.euler.html#scipy.special.euler', 'scipy.special.factorial': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial.html#scipy.special.factorial', 'scipy.special.factorial2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial2.html#scipy.special.factorial2', 'scipy.special.factorialk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorialk.html#scipy.special.factorialk', 'scipy.special.fresnel_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnel_zeros.html#scipy.special.fresnel_zeros', 'scipy.special.fresnelc_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnelc_zeros.html#scipy.special.fresnelc_zeros', 'scipy.special.fresnels_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnels_zeros.html#scipy.special.fresnels_zeros', 'scipy.special.gegenbauer': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gegenbauer.html#scipy.special.gegenbauer', 'scipy.special.genlaguerre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.genlaguerre.html#scipy.special.genlaguerre', 'scipy.special.geterr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.geterr.html#scipy.special.geterr', 'scipy.special.h1vp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h1vp.html#scipy.special.h1vp', 'scipy.special.h2vp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h2vp.html#scipy.special.h2vp', 'scipy.special.hermite': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermite.html#scipy.special.hermite', 'scipy.special.hermitenorm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermitenorm.html#scipy.special.hermitenorm', 'scipy.special.ivp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ivp.html#scipy.special.ivp', 'scipy.special.jacobi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jacobi.html#scipy.special.jacobi', 'scipy.special.jn_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html#scipy.special.jn_zeros', 'scipy.special.jnjnp_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnjnp_zeros.html#scipy.special.jnjnp_zeros', 'scipy.special.jnp_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnp_zeros.html#scipy.special.jnp_zeros', 'scipy.special.jnyn_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnyn_zeros.html#scipy.special.jnyn_zeros', 'scipy.special.jvp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jvp.html#scipy.special.jvp', 'scipy.special.kei_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kei_zeros.html#scipy.special.kei_zeros', 'scipy.special.keip_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.keip_zeros.html#scipy.special.keip_zeros', 'scipy.special.kelvin_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kelvin_zeros.html#scipy.special.kelvin_zeros', 'scipy.special.ker_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ker_zeros.html#scipy.special.ker_zeros', 'scipy.special.kerp_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kerp_zeros.html#scipy.special.kerp_zeros', 'scipy.special.kvp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kvp.html#scipy.special.kvp', 'scipy.special.laguerre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.laguerre.html#scipy.special.laguerre', 'scipy.special.lambertw': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html#scipy.special.lambertw', 'scipy.special.legendre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.legendre.html#scipy.special.legendre', 'scipy.special.lmbda': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lmbda.html#scipy.special.lmbda', 'scipy.special.log_softmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html#scipy.special.log_softmax', 'scipy.special.logsumexp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html#scipy.special.logsumexp', 'scipy.special.lpmn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmn.html#scipy.special.lpmn', 'scipy.special.lpn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpn.html#scipy.special.lpn', 'scipy.special.lqmn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqmn.html#scipy.special.lqmn', 'scipy.special.lqn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqn.html#scipy.special.lqn', 'scipy.special.mathieu_even_coef': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_even_coef.html#scipy.special.mathieu_even_coef', 'scipy.special.mathieu_odd_coef': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_odd_coef.html#scipy.special.mathieu_odd_coef', 'scipy.special.multigammaln': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.multigammaln.html#scipy.special.multigammaln', 'scipy.special.obl_cv_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_cv_seq.html#scipy.special.obl_cv_seq', 'scipy.special.pbdn_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdn_seq.html#scipy.special.pbdn_seq', 'scipy.special.pbdv_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdv_seq.html#scipy.special.pbdv_seq', 'scipy.special.pbvv_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbvv_seq.html#scipy.special.pbvv_seq', 'scipy.special.perm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.perm.html#scipy.special.perm', 'scipy.special.polygamma': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.polygamma.html#scipy.special.polygamma', 'scipy.special.pro_cv_seq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_cv_seq.html#scipy.special.pro_cv_seq', 'scipy.special.riccati_jn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_jn.html#scipy.special.riccati_jn', 'scipy.special.riccati_yn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_yn.html#scipy.special.riccati_yn', 'scipy.special.roots_chebyc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyc.html#scipy.special.roots_chebyc', 'scipy.special.roots_chebys': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebys.html#scipy.special.roots_chebys', 'scipy.special.roots_chebyt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyt.html#scipy.special.roots_chebyt', 'scipy.special.roots_chebyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyu.html#scipy.special.roots_chebyu', 'scipy.special.roots_gegenbauer': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_gegenbauer.html#scipy.special.roots_gegenbauer', 'scipy.special.roots_genlaguerre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_genlaguerre.html#scipy.special.roots_genlaguerre', 'scipy.special.roots_hermite': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermite.html#scipy.special.roots_hermite', 'scipy.special.roots_hermitenorm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermitenorm.html#scipy.special.roots_hermitenorm', 'scipy.special.roots_jacobi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi', 'scipy.special.roots_laguerre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_laguerre.html#scipy.special.roots_laguerre', 'scipy.special.roots_legendre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_legendre.html#scipy.special.roots_legendre', 'scipy.special.roots_sh_chebyt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyt.html#scipy.special.roots_sh_chebyt', 'scipy.special.roots_sh_chebyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyu.html#scipy.special.roots_sh_chebyu', 'scipy.special.roots_sh_jacobi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_jacobi.html#scipy.special.roots_sh_jacobi', 'scipy.special.roots_sh_legendre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_legendre.html#scipy.special.roots_sh_legendre', 'scipy.special.seterr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.seterr.html#scipy.special.seterr', 'scipy.special.sh_chebyt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyt.html#scipy.special.sh_chebyt', 'scipy.special.sh_chebyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyu.html#scipy.special.sh_chebyu', 'scipy.special.sh_jacobi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_jacobi.html#scipy.special.sh_jacobi', 'scipy.special.sh_legendre': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_legendre.html#scipy.special.sh_legendre', 'scipy.special.sinc': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sinc.html#scipy.special.sinc', 'scipy.special.softmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.softmax.html#scipy.special.softmax', 'scipy.special.spherical_in': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_in.html#scipy.special.spherical_in', 'scipy.special.spherical_jn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_jn.html#scipy.special.spherical_jn', 'scipy.special.spherical_kn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_kn.html#scipy.special.spherical_kn', 'scipy.special.spherical_yn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html#scipy.special.spherical_yn', 'scipy.special.y0_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y0_zeros.html#scipy.special.y0_zeros', 'scipy.special.y1_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1_zeros.html#scipy.special.y1_zeros', 'scipy.special.y1p_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1p_zeros.html#scipy.special.y1p_zeros', 'scipy.special.yn_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yn_zeros.html#scipy.special.yn_zeros', 'scipy.special.ynp_zeros': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ynp_zeros.html#scipy.special.ynp_zeros', 'scipy.special.yvp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yvp.html#scipy.special.yvp', 'scipy.special.zeta': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zeta.html#scipy.special.zeta'}, 'scipy.stats': { 'scipy.stats.mstats': 'https://docs.scipy.org/doc/scipy/reference/stats.mstats.html#module-scipy.stats.mstats', 'scipy.stats.gaussian_kde': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde', 'scipy.stats.rv_continuous': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.html#scipy.stats.rv_continuous', 'scipy.stats.rv_discrete': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html#scipy.stats.rv_discrete', 'scipy.stats.rv_histogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.html#scipy.stats.rv_histogram', 'scipy.stats.F_onewayBadInputSizesWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.F_onewayBadInputSizesWarning.html#scipy.stats.F_onewayBadInputSizesWarning.with_traceback', 'scipy.stats.F_onewayConstantInputWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.F_onewayConstantInputWarning.html#scipy.stats.F_onewayConstantInputWarning.with_traceback', 'scipy.stats.PearsonRConstantInputWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.PearsonRConstantInputWarning.html#scipy.stats.PearsonRConstantInputWarning.with_traceback', 'scipy.stats.PearsonRNearConstantInputWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.PearsonRNearConstantInputWarning.html#scipy.stats.PearsonRNearConstantInputWarning.with_traceback', 'scipy.stats.SpearmanRConstantInputWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.SpearmanRConstantInputWarning.html#scipy.stats.SpearmanRConstantInputWarning.with_traceback', 'scipy.stats.gaussian_kde.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.__call__.html#scipy.stats.gaussian_kde.__call__', 'scipy.stats.gaussian_kde.covariance_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.covariance_factor.html#scipy.stats.gaussian_kde.covariance_factor', 'scipy.stats.gaussian_kde.evaluate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.evaluate.html#scipy.stats.gaussian_kde.evaluate', 'scipy.stats.gaussian_kde.integrate_box': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.integrate_box.html#scipy.stats.gaussian_kde.integrate_box', 'scipy.stats.gaussian_kde.integrate_box_1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.integrate_box_1d.html#scipy.stats.gaussian_kde.integrate_box_1d', 'scipy.stats.gaussian_kde.integrate_gaussian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.integrate_gaussian.html#scipy.stats.gaussian_kde.integrate_gaussian', 'scipy.stats.gaussian_kde.integrate_kde': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.integrate_kde.html#scipy.stats.gaussian_kde.integrate_kde', 'scipy.stats.gaussian_kde.logpdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.logpdf.html#scipy.stats.gaussian_kde.logpdf', 'scipy.stats.gaussian_kde.neff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.neff.html#scipy.stats.gaussian_kde.neff', 'scipy.stats.gaussian_kde.pdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.pdf.html#scipy.stats.gaussian_kde.pdf', 'scipy.stats.gaussian_kde.resample': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.resample.html#scipy.stats.gaussian_kde.resample', 'scipy.stats.gaussian_kde.scotts_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.scotts_factor.html#scipy.stats.gaussian_kde.scotts_factor', 'scipy.stats.gaussian_kde.set_bandwidth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.set_bandwidth.html#scipy.stats.gaussian_kde.set_bandwidth', 'scipy.stats.gaussian_kde.silverman_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.silverman_factor.html#scipy.stats.gaussian_kde.silverman_factor', 'scipy.stats.gaussian_kde.weights': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.weights.html#scipy.stats.gaussian_kde.weights', 'scipy.stats.rv_continuous.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.__call__.html#scipy.stats.rv_continuous.__call__', 'scipy.stats.rv_continuous.cdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.cdf.html#scipy.stats.rv_continuous.cdf', 'scipy.stats.rv_continuous.entropy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.entropy.html#scipy.stats.rv_continuous.entropy', 'scipy.stats.rv_continuous.expect': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.expect.html#scipy.stats.rv_continuous.expect', 'scipy.stats.rv_continuous.fit': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit', 'scipy.stats.rv_continuous.fit_loc_scale': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit_loc_scale.html#scipy.stats.rv_continuous.fit_loc_scale', 'scipy.stats.rv_continuous.freeze': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.freeze.html#scipy.stats.rv_continuous.freeze', 'scipy.stats.rv_continuous.interval': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.interval.html#scipy.stats.rv_continuous.interval', 'scipy.stats.rv_continuous.isf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.isf.html#scipy.stats.rv_continuous.isf', 'scipy.stats.rv_continuous.logcdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.logcdf.html#scipy.stats.rv_continuous.logcdf', 'scipy.stats.rv_continuous.logpdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.logpdf.html#scipy.stats.rv_continuous.logpdf', 'scipy.stats.rv_continuous.logsf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.logsf.html#scipy.stats.rv_continuous.logsf', 'scipy.stats.rv_continuous.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.mean.html#scipy.stats.rv_continuous.mean', 'scipy.stats.rv_continuous.median': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.median.html#scipy.stats.rv_continuous.median', 'scipy.stats.rv_continuous.moment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.moment.html#scipy.stats.rv_continuous.moment', 'scipy.stats.rv_continuous.nnlf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.nnlf.html#scipy.stats.rv_continuous.nnlf', 'scipy.stats.rv_continuous.pdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.pdf.html#scipy.stats.rv_continuous.pdf', 'scipy.stats.rv_continuous.ppf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.ppf.html#scipy.stats.rv_continuous.ppf', 'scipy.stats.rv_continuous.random_state': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.random_state.html#scipy.stats.rv_continuous.random_state', 'scipy.stats.rv_continuous.rvs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.rvs.html#scipy.stats.rv_continuous.rvs', 'scipy.stats.rv_continuous.sf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.sf.html#scipy.stats.rv_continuous.sf', 'scipy.stats.rv_continuous.stats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.stats.html#scipy.stats.rv_continuous.stats', 'scipy.stats.rv_continuous.std': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.std.html#scipy.stats.rv_continuous.std', 'scipy.stats.rv_continuous.support': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.support.html#scipy.stats.rv_continuous.support', 'scipy.stats.rv_continuous.var': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.var.html#scipy.stats.rv_continuous.var', 'scipy.stats.rv_discrete.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.__call__.html#scipy.stats.rv_discrete.__call__', 'scipy.stats.rv_discrete.cdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.cdf.html#scipy.stats.rv_discrete.cdf', 'scipy.stats.rv_discrete.entropy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.entropy.html#scipy.stats.rv_discrete.entropy', 'scipy.stats.rv_discrete.expect': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.expect.html#scipy.stats.rv_discrete.expect', 'scipy.stats.rv_discrete.freeze': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.freeze.html#scipy.stats.rv_discrete.freeze', 'scipy.stats.rv_discrete.interval': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.interval.html#scipy.stats.rv_discrete.interval', 'scipy.stats.rv_discrete.isf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.isf.html#scipy.stats.rv_discrete.isf', 'scipy.stats.rv_discrete.logcdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.logcdf.html#scipy.stats.rv_discrete.logcdf', 'scipy.stats.rv_discrete.logpmf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.logpmf.html#scipy.stats.rv_discrete.logpmf', 'scipy.stats.rv_discrete.logsf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.logsf.html#scipy.stats.rv_discrete.logsf', 'scipy.stats.rv_discrete.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.mean.html#scipy.stats.rv_discrete.mean', 'scipy.stats.rv_discrete.median': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.median.html#scipy.stats.rv_discrete.median', 'scipy.stats.rv_discrete.moment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.moment.html#scipy.stats.rv_discrete.moment', 'scipy.stats.rv_discrete.pmf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.pmf.html#scipy.stats.rv_discrete.pmf', 'scipy.stats.rv_discrete.ppf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.ppf.html#scipy.stats.rv_discrete.ppf', 'scipy.stats.rv_discrete.random_state': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.random_state.html#scipy.stats.rv_discrete.random_state', 'scipy.stats.rv_discrete.rvs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.rvs.html#scipy.stats.rv_discrete.rvs', 'scipy.stats.rv_discrete.sf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.sf.html#scipy.stats.rv_discrete.sf', 'scipy.stats.rv_discrete.stats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.stats.html#scipy.stats.rv_discrete.stats', 'scipy.stats.rv_discrete.std': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.std.html#scipy.stats.rv_discrete.std', 'scipy.stats.rv_discrete.support': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.support.html#scipy.stats.rv_discrete.support', 'scipy.stats.rv_discrete.var': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.var.html#scipy.stats.rv_discrete.var', 'scipy.stats.rv_histogram.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.__call__.html#scipy.stats.rv_histogram.__call__', 'scipy.stats.rv_histogram.cdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.cdf.html#scipy.stats.rv_histogram.cdf', 'scipy.stats.rv_histogram.entropy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.entropy.html#scipy.stats.rv_histogram.entropy', 'scipy.stats.rv_histogram.expect': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.expect.html#scipy.stats.rv_histogram.expect', 'scipy.stats.rv_histogram.fit': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.fit.html#scipy.stats.rv_histogram.fit', 'scipy.stats.rv_histogram.fit_loc_scale': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.fit_loc_scale.html#scipy.stats.rv_histogram.fit_loc_scale', 'scipy.stats.rv_histogram.freeze': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.freeze.html#scipy.stats.rv_histogram.freeze', 'scipy.stats.rv_histogram.interval': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.interval.html#scipy.stats.rv_histogram.interval', 'scipy.stats.rv_histogram.isf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.isf.html#scipy.stats.rv_histogram.isf', 'scipy.stats.rv_histogram.logcdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.logcdf.html#scipy.stats.rv_histogram.logcdf', 'scipy.stats.rv_histogram.logpdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.logpdf.html#scipy.stats.rv_histogram.logpdf', 'scipy.stats.rv_histogram.logsf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.logsf.html#scipy.stats.rv_histogram.logsf', 'scipy.stats.rv_histogram.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.mean.html#scipy.stats.rv_histogram.mean', 'scipy.stats.rv_histogram.median': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.median.html#scipy.stats.rv_histogram.median', 'scipy.stats.rv_histogram.moment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.moment.html#scipy.stats.rv_histogram.moment', 'scipy.stats.rv_histogram.nnlf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.nnlf.html#scipy.stats.rv_histogram.nnlf', 'scipy.stats.rv_histogram.pdf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.pdf.html#scipy.stats.rv_histogram.pdf', 'scipy.stats.rv_histogram.ppf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.ppf.html#scipy.stats.rv_histogram.ppf', 'scipy.stats.rv_histogram.random_state': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.random_state.html#scipy.stats.rv_histogram.random_state', 'scipy.stats.rv_histogram.rvs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.rvs.html#scipy.stats.rv_histogram.rvs', 'scipy.stats.rv_histogram.sf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.sf.html#scipy.stats.rv_histogram.sf', 'scipy.stats.rv_histogram.stats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.stats.html#scipy.stats.rv_histogram.stats', 'scipy.stats.rv_histogram.std': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.std.html#scipy.stats.rv_histogram.std', 'scipy.stats.rv_histogram.support': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.support.html#scipy.stats.rv_histogram.support', 'scipy.stats.rv_histogram.var': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.var.html#scipy.stats.rv_histogram.var', 'scipy.stats.anderson': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html#scipy.stats.anderson', 'scipy.stats.anderson_ksamp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson_ksamp.html#scipy.stats.anderson_ksamp', 'scipy.stats.ansari': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ansari.html#scipy.stats.ansari', 'scipy.stats.bartlett': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html#scipy.stats.bartlett', 'scipy.stats.bayes_mvs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bayes_mvs.html#scipy.stats.bayes_mvs', 'scipy.stats.binned_statistic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic.html#scipy.stats.binned_statistic', 'scipy.stats.binned_statistic_2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_2d.html#scipy.stats.binned_statistic_2d', 'scipy.stats.binned_statistic_dd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_dd.html#scipy.stats.binned_statistic_dd', 'scipy.stats.binom_test': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom_test.html#scipy.stats.binom_test', 'scipy.stats.boxcox': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html#scipy.stats.boxcox', 'scipy.stats.boxcox_llf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf', 'scipy.stats.boxcox_normmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normmax.html#scipy.stats.boxcox_normmax', 'scipy.stats.boxcox_normplot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normplot.html#scipy.stats.boxcox_normplot', 'scipy.stats.brunnermunzel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.brunnermunzel.html#scipy.stats.brunnermunzel', 'scipy.stats.chi2_contingency': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html#scipy.stats.chi2_contingency', 'scipy.stats.chisquare': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html#scipy.stats.chisquare', 'scipy.stats.circmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circmean.html#scipy.stats.circmean', 'scipy.stats.circstd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circstd.html#scipy.stats.circstd', 'scipy.stats.circvar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circvar.html#scipy.stats.circvar', 'scipy.stats.combine_pvalues': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.combine_pvalues.html#scipy.stats.combine_pvalues', 'scipy.stats.cumfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cumfreq.html#scipy.stats.cumfreq', 'scipy.stats.describe': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.describe.html#scipy.stats.describe', 'scipy.stats.energy_distance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.energy_distance.html#scipy.stats.energy_distance', 'scipy.stats.entropy': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html#scipy.stats.entropy', 'scipy.stats.epps_singleton_2samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.epps_singleton_2samp.html#scipy.stats.epps_singleton_2samp', 'scipy.stats.f_oneway': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway', 'scipy.stats.find_repeats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.find_repeats.html#scipy.stats.find_repeats', 'scipy.stats.fisher_exact': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact', 'scipy.stats.fligner': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fligner.html#scipy.stats.fligner', 'scipy.stats.friedmanchisquare': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare', 'scipy.stats.gmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gmean.html#scipy.stats.gmean', 'scipy.stats.gstd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gstd.html#scipy.stats.gstd', 'scipy.stats.hmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hmean.html#scipy.stats.hmean', 'scipy.stats.iqr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.iqr.html#scipy.stats.iqr', 'scipy.stats.itemfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.itemfreq.html#scipy.stats.itemfreq', 'scipy.stats.jarque_bera': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.jarque_bera.html#scipy.stats.jarque_bera', 'scipy.stats.kendalltau': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau', 'scipy.stats.kruskal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html#scipy.stats.kruskal', 'scipy.stats.ks_1samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_1samp.html#scipy.stats.ks_1samp', 'scipy.stats.ks_2samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp', 'scipy.stats.kstat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstat.html#scipy.stats.kstat', 'scipy.stats.kstatvar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstatvar.html#scipy.stats.kstatvar', 'scipy.stats.kstest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html#scipy.stats.kstest', 'scipy.stats.kurtosis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis', 'scipy.stats.kurtosistest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html#scipy.stats.kurtosistest', 'scipy.stats.levene': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html#scipy.stats.levene', 'scipy.stats.linregress': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html#scipy.stats.linregress', 'scipy.stats.mannwhitneyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu', 'scipy.stats.median_abs_deviation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_abs_deviation.html#scipy.stats.median_abs_deviation', 'scipy.stats.median_absolute_deviation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_absolute_deviation.html#scipy.stats.median_absolute_deviation', 'scipy.stats.median_test': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_test.html#scipy.stats.median_test', 'scipy.stats.mode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html#scipy.stats.mode', 'scipy.stats.moment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moment.html#scipy.stats.moment', 'scipy.stats.mood': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mood.html#scipy.stats.mood', 'scipy.stats.multiscale_graphcorr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multiscale_graphcorr.html#scipy.stats.multiscale_graphcorr', 'scipy.stats.mvsdist': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mvsdist.html#scipy.stats.mvsdist', 'scipy.stats.normaltest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html#scipy.stats.normaltest', 'scipy.stats.obrientransform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.obrientransform.html#scipy.stats.obrientransform', 'scipy.stats.pearsonr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr', 'scipy.stats.percentileofscore': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.percentileofscore.html#scipy.stats.percentileofscore', 'scipy.stats.pointbiserialr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr', 'scipy.stats.power_divergence': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.power_divergence.html#scipy.stats.power_divergence', 'scipy.stats.ppcc_max': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_max.html#scipy.stats.ppcc_max', 'scipy.stats.ppcc_plot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_plot.html#scipy.stats.ppcc_plot', 'scipy.stats.probplot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html#scipy.stats.probplot', 'scipy.stats.rankdata': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rankdata.html#scipy.stats.rankdata', 'scipy.stats.ranksums': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ranksums.html#scipy.stats.ranksums', 'scipy.stats.relfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.relfreq.html#scipy.stats.relfreq', 'scipy.stats.rvs_ratio_uniforms': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rvs_ratio_uniforms.html#scipy.stats.rvs_ratio_uniforms', 'scipy.stats.scoreatpercentile': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile', 'scipy.stats.sem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html#scipy.stats.sem', 'scipy.stats.shapiro': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html#scipy.stats.shapiro', 'scipy.stats.siegelslopes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.siegelslopes.html#scipy.stats.siegelslopes', 'scipy.stats.sigmaclip': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html#scipy.stats.sigmaclip', 'scipy.stats.skew': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew', 'scipy.stats.skewtest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html#scipy.stats.skewtest', 'scipy.stats.spearmanr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html#scipy.stats.spearmanr', 'scipy.stats.theilslopes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.theilslopes.html#scipy.stats.theilslopes', 'scipy.stats.tiecorrect': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tiecorrect.html#scipy.stats.tiecorrect', 'scipy.stats.tmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmax.html#scipy.stats.tmax', 'scipy.stats.tmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean', 'scipy.stats.tmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmin.html#scipy.stats.tmin', 'scipy.stats.trim1': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim1.html#scipy.stats.trim1', 'scipy.stats.trim_mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html#scipy.stats.trim_mean', 'scipy.stats.trimboth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trimboth.html#scipy.stats.trimboth', 'scipy.stats.tsem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tsem.html#scipy.stats.tsem', 'scipy.stats.tstd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tstd.html#scipy.stats.tstd', 'scipy.stats.ttest_1samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html#scipy.stats.ttest_1samp', 'scipy.stats.ttest_ind': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html#scipy.stats.ttest_ind', 'scipy.stats.ttest_ind_from_stats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats', 'scipy.stats.ttest_rel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html#scipy.stats.ttest_rel', 'scipy.stats.tvar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tvar.html#scipy.stats.tvar', 'scipy.stats.variation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.variation.html#scipy.stats.variation', 'scipy.stats.wasserstein_distance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html#scipy.stats.wasserstein_distance', 'scipy.stats.weightedtau': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html#scipy.stats.weightedtau', 'scipy.stats.wilcoxon': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon', 'scipy.stats.yeojohnson': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html#scipy.stats.yeojohnson', 'scipy.stats.yeojohnson_llf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_llf.html#scipy.stats.yeojohnson_llf', 'scipy.stats.yeojohnson_normmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normmax.html#scipy.stats.yeojohnson_normmax', 'scipy.stats.yeojohnson_normplot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normplot.html#scipy.stats.yeojohnson_normplot', 'scipy.stats.zmap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zmap.html#scipy.stats.zmap', 'scipy.stats.zscore': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html#scipy.stats.zscore'}, 'scipy.cluster.hierarchy': { 'scipy.cluster.hierarchy.ClusterNode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.html#scipy.cluster.hierarchy.ClusterNode', 'scipy.cluster.hierarchy.ClusterNode.get_count': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.get_count.html#scipy.cluster.hierarchy.ClusterNode.get_count', 'scipy.cluster.hierarchy.ClusterNode.get_id': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.get_id.html#scipy.cluster.hierarchy.ClusterNode.get_id', 'scipy.cluster.hierarchy.ClusterNode.get_left': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.get_left.html#scipy.cluster.hierarchy.ClusterNode.get_left', 'scipy.cluster.hierarchy.ClusterNode.get_right': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.get_right.html#scipy.cluster.hierarchy.ClusterNode.get_right', 'scipy.cluster.hierarchy.ClusterNode.is_leaf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.is_leaf.html#scipy.cluster.hierarchy.ClusterNode.is_leaf', 'scipy.cluster.hierarchy.ClusterNode.pre_order': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ClusterNode.pre_order.html#scipy.cluster.hierarchy.ClusterNode.pre_order', 'scipy.cluster.hierarchy.average': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.average.html#scipy.cluster.hierarchy.average', 'scipy.cluster.hierarchy.centroid': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.centroid.html#scipy.cluster.hierarchy.centroid', 'scipy.cluster.hierarchy.complete': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.complete.html#scipy.cluster.hierarchy.complete', 'scipy.cluster.hierarchy.cophenet': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.cophenet.html#scipy.cluster.hierarchy.cophenet', 'scipy.cluster.hierarchy.correspond': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.correspond.html#scipy.cluster.hierarchy.correspond', 'scipy.cluster.hierarchy.cut_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.cut_tree.html#scipy.cluster.hierarchy.cut_tree', 'scipy.cluster.hierarchy.dendrogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html#scipy.cluster.hierarchy.dendrogram', 'scipy.cluster.hierarchy.fcluster': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html#scipy.cluster.hierarchy.fcluster', 'scipy.cluster.hierarchy.fclusterdata': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fclusterdata.html#scipy.cluster.hierarchy.fclusterdata', 'scipy.cluster.hierarchy.from_mlab_linkage': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.from_mlab_linkage.html#scipy.cluster.hierarchy.from_mlab_linkage', 'scipy.cluster.hierarchy.inconsistent': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.inconsistent.html#scipy.cluster.hierarchy.inconsistent', 'scipy.cluster.hierarchy.is_isomorphic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.is_isomorphic.html#scipy.cluster.hierarchy.is_isomorphic', 'scipy.cluster.hierarchy.is_monotonic': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.is_monotonic.html#scipy.cluster.hierarchy.is_monotonic', 'scipy.cluster.hierarchy.is_valid_im': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.is_valid_im.html#scipy.cluster.hierarchy.is_valid_im', 'scipy.cluster.hierarchy.is_valid_linkage': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.is_valid_linkage.html#scipy.cluster.hierarchy.is_valid_linkage', 'scipy.cluster.hierarchy.leaders': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.leaders.html#scipy.cluster.hierarchy.leaders', 'scipy.cluster.hierarchy.leaves_list': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.leaves_list.html#scipy.cluster.hierarchy.leaves_list', 'scipy.cluster.hierarchy.linkage': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage', 'scipy.cluster.hierarchy.maxRstat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.maxRstat.html#scipy.cluster.hierarchy.maxRstat', 'scipy.cluster.hierarchy.maxdists': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.maxdists.html#scipy.cluster.hierarchy.maxdists', 'scipy.cluster.hierarchy.maxinconsts': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.maxinconsts.html#scipy.cluster.hierarchy.maxinconsts', 'scipy.cluster.hierarchy.median': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.median.html#scipy.cluster.hierarchy.median', 'scipy.cluster.hierarchy.num_obs_linkage': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.num_obs_linkage.html#scipy.cluster.hierarchy.num_obs_linkage', 'scipy.cluster.hierarchy.optimal_leaf_ordering': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.optimal_leaf_ordering.html#scipy.cluster.hierarchy.optimal_leaf_ordering', 'scipy.cluster.hierarchy.set_link_color_palette': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.set_link_color_palette.html#scipy.cluster.hierarchy.set_link_color_palette', 'scipy.cluster.hierarchy.single': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.single.html#scipy.cluster.hierarchy.single', 'scipy.cluster.hierarchy.to_mlab_linkage': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.to_mlab_linkage.html#scipy.cluster.hierarchy.to_mlab_linkage', 'scipy.cluster.hierarchy.to_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.to_tree.html#scipy.cluster.hierarchy.to_tree', 'scipy.cluster.hierarchy.ward': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.ward.html#scipy.cluster.hierarchy.ward', 'scipy.cluster.hierarchy.weighted': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.weighted.html#scipy.cluster.hierarchy.weighted'}, 'scipy.integrate': { 'scipy.integrate.BDF': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.BDF.html#scipy.integrate.BDF', 'scipy.integrate.DOP853': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.html#scipy.integrate.DOP853', 'scipy.integrate.DenseOutput': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DenseOutput.html#scipy.integrate.DenseOutput', 'scipy.integrate.LSODA': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.LSODA.html#scipy.integrate.LSODA', 'scipy.integrate.OdeSolution': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolution.html#scipy.integrate.OdeSolution', 'scipy.integrate.OdeSolver': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolver.html#scipy.integrate.OdeSolver', 'scipy.integrate.RK23': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK23.html#scipy.integrate.RK23', 'scipy.integrate.RK45': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.html#scipy.integrate.RK45', 'scipy.integrate.Radau': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.html#scipy.integrate.Radau', 'scipy.integrate.complex_ode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.html#scipy.integrate.complex_ode', 'scipy.integrate.ode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html#scipy.integrate.ode', 'scipy.integrate.AccuracyWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.AccuracyWarning.html#scipy.integrate.AccuracyWarning.with_traceback', 'scipy.integrate.BDF.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.BDF.dense_output.html#scipy.integrate.BDF.dense_output', 'scipy.integrate.BDF.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.BDF.step.html#scipy.integrate.BDF.step', 'scipy.integrate.BDF.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.BDF.step_size.html#scipy.integrate.BDF.step_size', 'scipy.integrate.DOP853.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.dense_output.html#scipy.integrate.DOP853.dense_output', 'scipy.integrate.DOP853.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.step.html#scipy.integrate.DOP853.step', 'scipy.integrate.DOP853.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DOP853.step_size.html#scipy.integrate.DOP853.step_size', 'scipy.integrate.DenseOutput.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.DenseOutput.__call__.html#scipy.integrate.DenseOutput.__call__', 'scipy.integrate.IntegrationWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.IntegrationWarning.html#scipy.integrate.IntegrationWarning.with_traceback', 'scipy.integrate.LSODA.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.LSODA.dense_output.html#scipy.integrate.LSODA.dense_output', 'scipy.integrate.LSODA.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.LSODA.step.html#scipy.integrate.LSODA.step', 'scipy.integrate.LSODA.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.LSODA.step_size.html#scipy.integrate.LSODA.step_size', 'scipy.integrate.OdeSolution.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolution.__call__.html#scipy.integrate.OdeSolution.__call__', 'scipy.integrate.OdeSolver.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolver.dense_output.html#scipy.integrate.OdeSolver.dense_output', 'scipy.integrate.OdeSolver.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolver.step.html#scipy.integrate.OdeSolver.step', 'scipy.integrate.OdeSolver.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.OdeSolver.step_size.html#scipy.integrate.OdeSolver.step_size', 'scipy.integrate.RK23.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK23.dense_output.html#scipy.integrate.RK23.dense_output', 'scipy.integrate.RK23.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK23.step.html#scipy.integrate.RK23.step', 'scipy.integrate.RK23.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK23.step_size.html#scipy.integrate.RK23.step_size', 'scipy.integrate.RK45.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.dense_output.html#scipy.integrate.RK45.dense_output', 'scipy.integrate.RK45.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.step.html#scipy.integrate.RK45.step', 'scipy.integrate.RK45.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.RK45.step_size.html#scipy.integrate.RK45.step_size', 'scipy.integrate.Radau.dense_output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.dense_output.html#scipy.integrate.Radau.dense_output', 'scipy.integrate.Radau.step': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.step.html#scipy.integrate.Radau.step', 'scipy.integrate.Radau.step_size': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.Radau.step_size.html#scipy.integrate.Radau.step_size', 'scipy.integrate.complex_ode.get_return_code': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.get_return_code.html#scipy.integrate.complex_ode.get_return_code', 'scipy.integrate.complex_ode.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.integrate.html#scipy.integrate.complex_ode.integrate', 'scipy.integrate.complex_ode.set_f_params': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.set_f_params.html#scipy.integrate.complex_ode.set_f_params', 'scipy.integrate.complex_ode.set_initial_value': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.set_initial_value.html#scipy.integrate.complex_ode.set_initial_value', 'scipy.integrate.complex_ode.set_integrator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.set_integrator.html#scipy.integrate.complex_ode.set_integrator', 'scipy.integrate.complex_ode.set_jac_params': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.set_jac_params.html#scipy.integrate.complex_ode.set_jac_params', 'scipy.integrate.complex_ode.set_solout': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.set_solout.html#scipy.integrate.complex_ode.set_solout', 'scipy.integrate.complex_ode.successful': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.successful.html#scipy.integrate.complex_ode.successful', 'scipy.integrate.complex_ode.y': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.complex_ode.y.html#scipy.integrate.complex_ode.y', 'scipy.integrate.ode.get_return_code': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.get_return_code.html#scipy.integrate.ode.get_return_code', 'scipy.integrate.ode.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.integrate.html#scipy.integrate.ode.integrate', 'scipy.integrate.ode.set_f_params': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.set_f_params.html#scipy.integrate.ode.set_f_params', 'scipy.integrate.ode.set_initial_value': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.set_initial_value.html#scipy.integrate.ode.set_initial_value', 'scipy.integrate.ode.set_integrator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.set_integrator.html#scipy.integrate.ode.set_integrator', 'scipy.integrate.ode.set_jac_params': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.set_jac_params.html#scipy.integrate.ode.set_jac_params', 'scipy.integrate.ode.set_solout': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.set_solout.html#scipy.integrate.ode.set_solout', 'scipy.integrate.ode.successful': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.successful.html#scipy.integrate.ode.successful', 'scipy.integrate.ode.y': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.y.html#scipy.integrate.ode.y', 'scipy.integrate.cumtrapz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.cumtrapz.html#scipy.integrate.cumtrapz', 'scipy.integrate.dblquad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.dblquad.html#scipy.integrate.dblquad', 'scipy.integrate.fixed_quad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.fixed_quad.html#scipy.integrate.fixed_quad', 'scipy.integrate.newton_cotes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.newton_cotes.html#scipy.integrate.newton_cotes', 'scipy.integrate.nquad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.nquad.html#scipy.integrate.nquad', 'scipy.integrate.odeint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html#scipy.integrate.odeint', 'scipy.integrate.quad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html#scipy.integrate.quad', 'scipy.integrate.quad_explain': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad_explain.html#scipy.integrate.quad_explain', 'scipy.integrate.quad_vec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad_vec.html#scipy.integrate.quad_vec', 'scipy.integrate.quadrature': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quadrature.html#scipy.integrate.quadrature', 'scipy.integrate.romb': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romb.html#scipy.integrate.romb', 'scipy.integrate.romberg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html#scipy.integrate.romberg', 'scipy.integrate.simps': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.simps.html#scipy.integrate.simps', 'scipy.integrate.solve_bvp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html#scipy.integrate.solve_bvp', 'scipy.integrate.solve_ivp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp', 'scipy.integrate.tplquad': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.tplquad.html#scipy.integrate.tplquad', 'scipy.integrate.trapz': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz'}, 'scipy.interpolate': { 'scipy.interpolate.Akima1DInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.html#scipy.interpolate.Akima1DInterpolator', 'scipy.interpolate.BPoly': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.html#scipy.interpolate.BPoly', 'scipy.interpolate.BSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline', 'scipy.interpolate.BarycentricInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.html#scipy.interpolate.BarycentricInterpolator', 'scipy.interpolate.BivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.html#scipy.interpolate.BivariateSpline', 'scipy.interpolate.CloughTocher2DInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator', 'scipy.interpolate.CubicHermiteSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.html#scipy.interpolate.CubicHermiteSpline', 'scipy.interpolate.CubicSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html#scipy.interpolate.CubicSpline', 'scipy.interpolate.InterpolatedUnivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html#scipy.interpolate.InterpolatedUnivariateSpline', 'scipy.interpolate.KroghInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.html#scipy.interpolate.KroghInterpolator', 'scipy.interpolate.LSQBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.html#scipy.interpolate.LSQBivariateSpline', 'scipy.interpolate.LSQSphereBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.html#scipy.interpolate.LSQSphereBivariateSpline', 'scipy.interpolate.LSQUnivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.html#scipy.interpolate.LSQUnivariateSpline', 'scipy.interpolate.LinearNDInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html#scipy.interpolate.LinearNDInterpolator', 'scipy.interpolate.NdPPoly': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html#scipy.interpolate.NdPPoly', 'scipy.interpolate.NearestNDInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.html#scipy.interpolate.NearestNDInterpolator', 'scipy.interpolate.PPoly': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly', 'scipy.interpolate.PchipInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html#scipy.interpolate.PchipInterpolator', 'scipy.interpolate.Rbf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html#scipy.interpolate.Rbf', 'scipy.interpolate.RectBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy.interpolate.RectBivariateSpline', 'scipy.interpolate.RectSphereBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.html#scipy.interpolate.RectSphereBivariateSpline', 'scipy.interpolate.RegularGridInterpolator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator', 'scipy.interpolate.SmoothBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.html#scipy.interpolate.SmoothBivariateSpline', 'scipy.interpolate.SmoothSphereBivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.html#scipy.interpolate.SmoothSphereBivariateSpline', 'scipy.interpolate.UnivariateSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline', 'scipy.interpolate.interp1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d', 'scipy.interpolate.interp2d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d', 'scipy.interpolate.Akima1DInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.__call__.html#scipy.interpolate.Akima1DInterpolator.__call__', 'scipy.interpolate.Akima1DInterpolator.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.antiderivative.html#scipy.interpolate.Akima1DInterpolator.antiderivative', 'scipy.interpolate.Akima1DInterpolator.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.construct_fast.html#scipy.interpolate.Akima1DInterpolator.construct_fast', 'scipy.interpolate.Akima1DInterpolator.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.derivative.html#scipy.interpolate.Akima1DInterpolator.derivative', 'scipy.interpolate.Akima1DInterpolator.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.extend.html#scipy.interpolate.Akima1DInterpolator.extend', 'scipy.interpolate.Akima1DInterpolator.from_bernstein_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.from_bernstein_basis.html#scipy.interpolate.Akima1DInterpolator.from_bernstein_basis', 'scipy.interpolate.Akima1DInterpolator.from_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.from_spline.html#scipy.interpolate.Akima1DInterpolator.from_spline', 'scipy.interpolate.Akima1DInterpolator.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.integrate.html#scipy.interpolate.Akima1DInterpolator.integrate', 'scipy.interpolate.Akima1DInterpolator.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.roots.html#scipy.interpolate.Akima1DInterpolator.roots', 'scipy.interpolate.Akima1DInterpolator.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.solve.html#scipy.interpolate.Akima1DInterpolator.solve', 'scipy.interpolate.BPoly.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.__call__.html#scipy.interpolate.BPoly.__call__', 'scipy.interpolate.BPoly.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.antiderivative.html#scipy.interpolate.BPoly.antiderivative', 'scipy.interpolate.BPoly.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.construct_fast.html#scipy.interpolate.BPoly.construct_fast', 'scipy.interpolate.BPoly.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.derivative.html#scipy.interpolate.BPoly.derivative', 'scipy.interpolate.BPoly.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.extend.html#scipy.interpolate.BPoly.extend', 'scipy.interpolate.BPoly.from_derivatives': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.from_derivatives.html#scipy.interpolate.BPoly.from_derivatives', 'scipy.interpolate.BPoly.from_power_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.from_power_basis.html#scipy.interpolate.BPoly.from_power_basis', 'scipy.interpolate.BPoly.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.integrate.html#scipy.interpolate.BPoly.integrate', 'scipy.interpolate.BSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.__call__.html#scipy.interpolate.BSpline.__call__', 'scipy.interpolate.BSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.antiderivative.html#scipy.interpolate.BSpline.antiderivative', 'scipy.interpolate.BSpline.basis_element': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.basis_element.html#scipy.interpolate.BSpline.basis_element', 'scipy.interpolate.BSpline.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.construct_fast.html#scipy.interpolate.BSpline.construct_fast', 'scipy.interpolate.BSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.derivative.html#scipy.interpolate.BSpline.derivative', 'scipy.interpolate.BSpline.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.integrate.html#scipy.interpolate.BSpline.integrate', 'scipy.interpolate.BSpline.tck': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.tck.html#scipy.interpolate.BSpline.tck', 'scipy.interpolate.BarycentricInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.__call__.html#scipy.interpolate.BarycentricInterpolator.__call__', 'scipy.interpolate.BarycentricInterpolator.add_xi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.add_xi.html#scipy.interpolate.BarycentricInterpolator.add_xi', 'scipy.interpolate.BarycentricInterpolator.set_yi': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.set_yi.html#scipy.interpolate.BarycentricInterpolator.set_yi', 'scipy.interpolate.BivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.__call__.html#scipy.interpolate.BivariateSpline.__call__', 'scipy.interpolate.BivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.ev.html#scipy.interpolate.BivariateSpline.ev', 'scipy.interpolate.BivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.get_coeffs.html#scipy.interpolate.BivariateSpline.get_coeffs', 'scipy.interpolate.BivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.get_knots.html#scipy.interpolate.BivariateSpline.get_knots', 'scipy.interpolate.BivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.get_residual.html#scipy.interpolate.BivariateSpline.get_residual', 'scipy.interpolate.BivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.integral.html#scipy.interpolate.BivariateSpline.integral', 'scipy.interpolate.CloughTocher2DInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.__call__.html#scipy.interpolate.CloughTocher2DInterpolator.__call__', 'scipy.interpolate.CubicHermiteSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.__call__.html#scipy.interpolate.CubicHermiteSpline.__call__', 'scipy.interpolate.CubicHermiteSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.antiderivative.html#scipy.interpolate.CubicHermiteSpline.antiderivative', 'scipy.interpolate.CubicHermiteSpline.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.construct_fast.html#scipy.interpolate.CubicHermiteSpline.construct_fast', 'scipy.interpolate.CubicHermiteSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.derivative.html#scipy.interpolate.CubicHermiteSpline.derivative', 'scipy.interpolate.CubicHermiteSpline.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.extend.html#scipy.interpolate.CubicHermiteSpline.extend', 'scipy.interpolate.CubicHermiteSpline.from_bernstein_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.from_bernstein_basis.html#scipy.interpolate.CubicHermiteSpline.from_bernstein_basis', 'scipy.interpolate.CubicHermiteSpline.from_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.from_spline.html#scipy.interpolate.CubicHermiteSpline.from_spline', 'scipy.interpolate.CubicHermiteSpline.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.integrate.html#scipy.interpolate.CubicHermiteSpline.integrate', 'scipy.interpolate.CubicHermiteSpline.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.roots.html#scipy.interpolate.CubicHermiteSpline.roots', 'scipy.interpolate.CubicHermiteSpline.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.solve.html#scipy.interpolate.CubicHermiteSpline.solve', 'scipy.interpolate.CubicSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.__call__.html#scipy.interpolate.CubicSpline.__call__', 'scipy.interpolate.CubicSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.antiderivative.html#scipy.interpolate.CubicSpline.antiderivative', 'scipy.interpolate.CubicSpline.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.construct_fast.html#scipy.interpolate.CubicSpline.construct_fast', 'scipy.interpolate.CubicSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.derivative.html#scipy.interpolate.CubicSpline.derivative', 'scipy.interpolate.CubicSpline.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.extend.html#scipy.interpolate.CubicSpline.extend', 'scipy.interpolate.CubicSpline.from_bernstein_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.from_bernstein_basis.html#scipy.interpolate.CubicSpline.from_bernstein_basis', 'scipy.interpolate.CubicSpline.from_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.from_spline.html#scipy.interpolate.CubicSpline.from_spline', 'scipy.interpolate.CubicSpline.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.integrate.html#scipy.interpolate.CubicSpline.integrate', 'scipy.interpolate.CubicSpline.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.roots.html#scipy.interpolate.CubicSpline.roots', 'scipy.interpolate.CubicSpline.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.solve.html#scipy.interpolate.CubicSpline.solve', 'scipy.interpolate.InterpolatedUnivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.__call__.html#scipy.interpolate.InterpolatedUnivariateSpline.__call__', 'scipy.interpolate.InterpolatedUnivariateSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.antiderivative.html#scipy.interpolate.InterpolatedUnivariateSpline.antiderivative', 'scipy.interpolate.InterpolatedUnivariateSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.derivative.html#scipy.interpolate.InterpolatedUnivariateSpline.derivative', 'scipy.interpolate.InterpolatedUnivariateSpline.derivatives': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.derivatives.html#scipy.interpolate.InterpolatedUnivariateSpline.derivatives', 'scipy.interpolate.InterpolatedUnivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.get_coeffs.html#scipy.interpolate.InterpolatedUnivariateSpline.get_coeffs', 'scipy.interpolate.InterpolatedUnivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.get_knots.html#scipy.interpolate.InterpolatedUnivariateSpline.get_knots', 'scipy.interpolate.InterpolatedUnivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.get_residual.html#scipy.interpolate.InterpolatedUnivariateSpline.get_residual', 'scipy.interpolate.InterpolatedUnivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.integral.html#scipy.interpolate.InterpolatedUnivariateSpline.integral', 'scipy.interpolate.InterpolatedUnivariateSpline.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.roots.html#scipy.interpolate.InterpolatedUnivariateSpline.roots', 'scipy.interpolate.InterpolatedUnivariateSpline.set_smoothing_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.set_smoothing_factor.html#scipy.interpolate.InterpolatedUnivariateSpline.set_smoothing_factor', 'scipy.interpolate.InterpolatedUnivariateSpline.validate_input': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.validate_input.html#scipy.interpolate.InterpolatedUnivariateSpline.validate_input', 'scipy.interpolate.KroghInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.__call__.html#scipy.interpolate.KroghInterpolator.__call__', 'scipy.interpolate.KroghInterpolator.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.derivative.html#scipy.interpolate.KroghInterpolator.derivative', 'scipy.interpolate.KroghInterpolator.derivatives': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.derivatives.html#scipy.interpolate.KroghInterpolator.derivatives', 'scipy.interpolate.LSQBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.__call__.html#scipy.interpolate.LSQBivariateSpline.__call__', 'scipy.interpolate.LSQBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.ev.html#scipy.interpolate.LSQBivariateSpline.ev', 'scipy.interpolate.LSQBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.get_coeffs.html#scipy.interpolate.LSQBivariateSpline.get_coeffs', 'scipy.interpolate.LSQBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.get_knots.html#scipy.interpolate.LSQBivariateSpline.get_knots', 'scipy.interpolate.LSQBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.get_residual.html#scipy.interpolate.LSQBivariateSpline.get_residual', 'scipy.interpolate.LSQBivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.integral.html#scipy.interpolate.LSQBivariateSpline.integral', 'scipy.interpolate.LSQSphereBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.__call__.html#scipy.interpolate.LSQSphereBivariateSpline.__call__', 'scipy.interpolate.LSQSphereBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.ev.html#scipy.interpolate.LSQSphereBivariateSpline.ev', 'scipy.interpolate.LSQSphereBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.get_coeffs.html#scipy.interpolate.LSQSphereBivariateSpline.get_coeffs', 'scipy.interpolate.LSQSphereBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.get_knots.html#scipy.interpolate.LSQSphereBivariateSpline.get_knots', 'scipy.interpolate.LSQSphereBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.get_residual.html#scipy.interpolate.LSQSphereBivariateSpline.get_residual', 'scipy.interpolate.LSQUnivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.__call__.html#scipy.interpolate.LSQUnivariateSpline.__call__', 'scipy.interpolate.LSQUnivariateSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.antiderivative.html#scipy.interpolate.LSQUnivariateSpline.antiderivative', 'scipy.interpolate.LSQUnivariateSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.derivative.html#scipy.interpolate.LSQUnivariateSpline.derivative', 'scipy.interpolate.LSQUnivariateSpline.derivatives': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.derivatives.html#scipy.interpolate.LSQUnivariateSpline.derivatives', 'scipy.interpolate.LSQUnivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.get_coeffs.html#scipy.interpolate.LSQUnivariateSpline.get_coeffs', 'scipy.interpolate.LSQUnivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.get_knots.html#scipy.interpolate.LSQUnivariateSpline.get_knots', 'scipy.interpolate.LSQUnivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.get_residual.html#scipy.interpolate.LSQUnivariateSpline.get_residual', 'scipy.interpolate.LSQUnivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.integral.html#scipy.interpolate.LSQUnivariateSpline.integral', 'scipy.interpolate.LSQUnivariateSpline.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.roots.html#scipy.interpolate.LSQUnivariateSpline.roots', 'scipy.interpolate.LSQUnivariateSpline.set_smoothing_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.set_smoothing_factor.html#scipy.interpolate.LSQUnivariateSpline.set_smoothing_factor', 'scipy.interpolate.LSQUnivariateSpline.validate_input': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.validate_input.html#scipy.interpolate.LSQUnivariateSpline.validate_input', 'scipy.interpolate.LinearNDInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.__call__.html#scipy.interpolate.LinearNDInterpolator.__call__', 'scipy.interpolate.NdPPoly.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.__call__.html#scipy.interpolate.NdPPoly.__call__', 'scipy.interpolate.NdPPoly.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.antiderivative.html#scipy.interpolate.NdPPoly.antiderivative', 'scipy.interpolate.NdPPoly.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.construct_fast.html#scipy.interpolate.NdPPoly.construct_fast', 'scipy.interpolate.NdPPoly.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.derivative.html#scipy.interpolate.NdPPoly.derivative', 'scipy.interpolate.NdPPoly.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.integrate.html#scipy.interpolate.NdPPoly.integrate', 'scipy.interpolate.NdPPoly.integrate_1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.integrate_1d.html#scipy.interpolate.NdPPoly.integrate_1d', 'scipy.interpolate.NearestNDInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.__call__.html#scipy.interpolate.NearestNDInterpolator.__call__', 'scipy.interpolate.PPoly.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.__call__.html#scipy.interpolate.PPoly.__call__', 'scipy.interpolate.PPoly.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.antiderivative.html#scipy.interpolate.PPoly.antiderivative', 'scipy.interpolate.PPoly.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.construct_fast.html#scipy.interpolate.PPoly.construct_fast', 'scipy.interpolate.PPoly.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.derivative.html#scipy.interpolate.PPoly.derivative', 'scipy.interpolate.PPoly.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.extend.html#scipy.interpolate.PPoly.extend', 'scipy.interpolate.PPoly.from_bernstein_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.from_bernstein_basis.html#scipy.interpolate.PPoly.from_bernstein_basis', 'scipy.interpolate.PPoly.from_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.from_spline.html#scipy.interpolate.PPoly.from_spline', 'scipy.interpolate.PPoly.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.integrate.html#scipy.interpolate.PPoly.integrate', 'scipy.interpolate.PPoly.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.roots.html#scipy.interpolate.PPoly.roots', 'scipy.interpolate.PPoly.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.solve.html#scipy.interpolate.PPoly.solve', 'scipy.interpolate.PchipInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.__call__.html#scipy.interpolate.PchipInterpolator.__call__', 'scipy.interpolate.PchipInterpolator.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.antiderivative.html#scipy.interpolate.PchipInterpolator.antiderivative', 'scipy.interpolate.PchipInterpolator.construct_fast': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.construct_fast.html#scipy.interpolate.PchipInterpolator.construct_fast', 'scipy.interpolate.PchipInterpolator.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.derivative.html#scipy.interpolate.PchipInterpolator.derivative', 'scipy.interpolate.PchipInterpolator.extend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.extend.html#scipy.interpolate.PchipInterpolator.extend', 'scipy.interpolate.PchipInterpolator.from_bernstein_basis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.from_bernstein_basis.html#scipy.interpolate.PchipInterpolator.from_bernstein_basis', 'scipy.interpolate.PchipInterpolator.from_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.from_spline.html#scipy.interpolate.PchipInterpolator.from_spline', 'scipy.interpolate.PchipInterpolator.integrate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.integrate.html#scipy.interpolate.PchipInterpolator.integrate', 'scipy.interpolate.PchipInterpolator.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.roots.html#scipy.interpolate.PchipInterpolator.roots', 'scipy.interpolate.PchipInterpolator.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.solve.html#scipy.interpolate.PchipInterpolator.solve', 'scipy.interpolate.Rbf.A': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.A.html#scipy.interpolate.Rbf.A', 'scipy.interpolate.Rbf.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.__call__.html#scipy.interpolate.Rbf.__call__', 'scipy.interpolate.RectBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.__call__.html#scipy.interpolate.RectBivariateSpline.__call__', 'scipy.interpolate.RectBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.ev.html#scipy.interpolate.RectBivariateSpline.ev', 'scipy.interpolate.RectBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.get_coeffs.html#scipy.interpolate.RectBivariateSpline.get_coeffs', 'scipy.interpolate.RectBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.get_knots.html#scipy.interpolate.RectBivariateSpline.get_knots', 'scipy.interpolate.RectBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.get_residual.html#scipy.interpolate.RectBivariateSpline.get_residual', 'scipy.interpolate.RectBivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.integral.html#scipy.interpolate.RectBivariateSpline.integral', 'scipy.interpolate.RectSphereBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.__call__.html#scipy.interpolate.RectSphereBivariateSpline.__call__', 'scipy.interpolate.RectSphereBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.ev.html#scipy.interpolate.RectSphereBivariateSpline.ev', 'scipy.interpolate.RectSphereBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.get_coeffs.html#scipy.interpolate.RectSphereBivariateSpline.get_coeffs', 'scipy.interpolate.RectSphereBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.get_knots.html#scipy.interpolate.RectSphereBivariateSpline.get_knots', 'scipy.interpolate.RectSphereBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.get_residual.html#scipy.interpolate.RectSphereBivariateSpline.get_residual', 'scipy.interpolate.RegularGridInterpolator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.__call__.html#scipy.interpolate.RegularGridInterpolator.__call__', 'scipy.interpolate.SmoothBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.__call__.html#scipy.interpolate.SmoothBivariateSpline.__call__', 'scipy.interpolate.SmoothBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.ev.html#scipy.interpolate.SmoothBivariateSpline.ev', 'scipy.interpolate.SmoothBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.get_coeffs.html#scipy.interpolate.SmoothBivariateSpline.get_coeffs', 'scipy.interpolate.SmoothBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.get_knots.html#scipy.interpolate.SmoothBivariateSpline.get_knots', 'scipy.interpolate.SmoothBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.get_residual.html#scipy.interpolate.SmoothBivariateSpline.get_residual', 'scipy.interpolate.SmoothBivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.integral.html#scipy.interpolate.SmoothBivariateSpline.integral', 'scipy.interpolate.SmoothSphereBivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.__call__.html#scipy.interpolate.SmoothSphereBivariateSpline.__call__', 'scipy.interpolate.SmoothSphereBivariateSpline.ev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.ev.html#scipy.interpolate.SmoothSphereBivariateSpline.ev', 'scipy.interpolate.SmoothSphereBivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.get_coeffs.html#scipy.interpolate.SmoothSphereBivariateSpline.get_coeffs', 'scipy.interpolate.SmoothSphereBivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.get_knots.html#scipy.interpolate.SmoothSphereBivariateSpline.get_knots', 'scipy.interpolate.SmoothSphereBivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.get_residual.html#scipy.interpolate.SmoothSphereBivariateSpline.get_residual', 'scipy.interpolate.UnivariateSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.__call__.html#scipy.interpolate.UnivariateSpline.__call__', 'scipy.interpolate.UnivariateSpline.antiderivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.antiderivative.html#scipy.interpolate.UnivariateSpline.antiderivative', 'scipy.interpolate.UnivariateSpline.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.derivative.html#scipy.interpolate.UnivariateSpline.derivative', 'scipy.interpolate.UnivariateSpline.derivatives': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.derivatives.html#scipy.interpolate.UnivariateSpline.derivatives', 'scipy.interpolate.UnivariateSpline.get_coeffs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.get_coeffs.html#scipy.interpolate.UnivariateSpline.get_coeffs', 'scipy.interpolate.UnivariateSpline.get_knots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.get_knots.html#scipy.interpolate.UnivariateSpline.get_knots', 'scipy.interpolate.UnivariateSpline.get_residual': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.get_residual.html#scipy.interpolate.UnivariateSpline.get_residual', 'scipy.interpolate.UnivariateSpline.integral': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.integral.html#scipy.interpolate.UnivariateSpline.integral', 'scipy.interpolate.UnivariateSpline.roots': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.roots.html#scipy.interpolate.UnivariateSpline.roots', 'scipy.interpolate.UnivariateSpline.set_smoothing_factor': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.set_smoothing_factor.html#scipy.interpolate.UnivariateSpline.set_smoothing_factor', 'scipy.interpolate.UnivariateSpline.validate_input': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.validate_input.html#scipy.interpolate.UnivariateSpline.validate_input', 'scipy.interpolate.interp1d.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.__call__.html#scipy.interpolate.interp1d.__call__', 'scipy.interpolate.interp1d.fill_value': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.fill_value.html#scipy.interpolate.interp1d.fill_value', 'scipy.interpolate.interp2d.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.__call__.html#scipy.interpolate.interp2d.__call__', 'scipy.interpolate.approximate_taylor_polynomial': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.approximate_taylor_polynomial.html#scipy.interpolate.approximate_taylor_polynomial', 'scipy.interpolate.barycentric_interpolate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.barycentric_interpolate.html#scipy.interpolate.barycentric_interpolate', 'scipy.interpolate.bisplev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplev.html#scipy.interpolate.bisplev', 'scipy.interpolate.bisplrep': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplrep.html#scipy.interpolate.bisplrep', 'scipy.interpolate.griddata': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata', 'scipy.interpolate.insert': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.insert.html#scipy.interpolate.insert', 'scipy.interpolate.interpn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interpn.html#scipy.interpolate.interpn', 'scipy.interpolate.krogh_interpolate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.krogh_interpolate.html#scipy.interpolate.krogh_interpolate', 'scipy.interpolate.lagrange': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.lagrange.html#scipy.interpolate.lagrange', 'scipy.interpolate.make_interp_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_interp_spline.html#scipy.interpolate.make_interp_spline', 'scipy.interpolate.make_lsq_spline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_lsq_spline.html#scipy.interpolate.make_lsq_spline', 'scipy.interpolate.pade': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pade.html#scipy.interpolate.pade', 'scipy.interpolate.pchip_interpolate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html#scipy.interpolate.pchip_interpolate', 'scipy.interpolate.spalde': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.spalde.html#scipy.interpolate.spalde', 'scipy.interpolate.splantider': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splantider.html#scipy.interpolate.splantider', 'scipy.interpolate.splder': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splder.html#scipy.interpolate.splder', 'scipy.interpolate.splev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html#scipy.interpolate.splev', 'scipy.interpolate.splint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splint.html#scipy.interpolate.splint', 'scipy.interpolate.splprep': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html#scipy.interpolate.splprep', 'scipy.interpolate.splrep': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep', 'scipy.interpolate.sproot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.sproot.html#scipy.interpolate.sproot'}, 'scipy.io.arff': { 'scipy.io.arff.MetaData': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.MetaData.html#scipy.io.arff.MetaData', 'scipy.io.arff.ArffError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.ArffError.html#scipy.io.arff.ArffError.with_traceback', 'scipy.io.arff.MetaData.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.MetaData.__getitem__.html#scipy.io.arff.MetaData.__getitem__', 'scipy.io.arff.MetaData.names': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.MetaData.names.html#scipy.io.arff.MetaData.names', 'scipy.io.arff.MetaData.types': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.MetaData.types.html#scipy.io.arff.MetaData.types', 'scipy.io.arff.ParseArffError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.ParseArffError.html#scipy.io.arff.ParseArffError.with_traceback', 'scipy.io.arff.loadarff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.arff.loadarff.html#scipy.io.arff.loadarff'}, 'scipy.odr': { 'scipy.odr.Data': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Data.html#scipy.odr.Data', 'scipy.odr.Model': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Model.html#scipy.odr.Model', 'scipy.odr.ODR': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.ODR.html#scipy.odr.ODR', 'scipy.odr.Output': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Output.html#scipy.odr.Output', 'scipy.odr.RealData': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.RealData.html#scipy.odr.RealData', 'scipy.odr.Data.set_meta': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Data.set_meta.html#scipy.odr.Data.set_meta', 'scipy.odr.Model.set_meta': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Model.set_meta.html#scipy.odr.Model.set_meta', 'scipy.odr.ODR.restart': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.ODR.restart.html#scipy.odr.ODR.restart', 'scipy.odr.ODR.run': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.ODR.run.html#scipy.odr.ODR.run', 'scipy.odr.ODR.set_iprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.ODR.set_iprint.html#scipy.odr.ODR.set_iprint', 'scipy.odr.ODR.set_job': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.ODR.set_job.html#scipy.odr.ODR.set_job', 'scipy.odr.OdrError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.OdrError.html#scipy.odr.OdrError.with_traceback', 'scipy.odr.OdrStop.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.OdrStop.html#scipy.odr.OdrStop.with_traceback', 'scipy.odr.OdrWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.OdrWarning.html#scipy.odr.OdrWarning.with_traceback', 'scipy.odr.Output.pprint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.Output.pprint.html#scipy.odr.Output.pprint', 'scipy.odr.RealData.set_meta': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.RealData.set_meta.html#scipy.odr.RealData.set_meta', 'scipy.odr.odr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.odr.html#scipy.odr.odr', 'scipy.odr.polynomial': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.odr.polynomial.html#scipy.odr.polynomial'}, 'scipy.sparse.linalg': { 'scipy.sparse.linalg.LinearOperator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator', 'scipy.sparse.linalg.SuperLU': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.SuperLU.html#scipy.sparse.linalg.SuperLU', 'scipy.sparse.linalg.ArpackError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.ArpackError.html#scipy.sparse.linalg.ArpackError.with_traceback', 'scipy.sparse.linalg.ArpackNoConvergence.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.ArpackNoConvergence.html#scipy.sparse.linalg.ArpackNoConvergence.with_traceback', 'scipy.sparse.linalg.LinearOperator.H': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.H.html#scipy.sparse.linalg.LinearOperator.H', 'scipy.sparse.linalg.LinearOperator.T': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.T.html#scipy.sparse.linalg.LinearOperator.T', 'scipy.sparse.linalg.LinearOperator.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.__call__.html#scipy.sparse.linalg.LinearOperator.__call__', 'scipy.sparse.linalg.LinearOperator.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.__mul__.html#scipy.sparse.linalg.LinearOperator.__mul__', 'scipy.sparse.linalg.LinearOperator.adjoint': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.adjoint.html#scipy.sparse.linalg.LinearOperator.adjoint', 'scipy.sparse.linalg.LinearOperator.dot': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.dot.html#scipy.sparse.linalg.LinearOperator.dot', 'scipy.sparse.linalg.LinearOperator.matmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.matmat.html#scipy.sparse.linalg.LinearOperator.matmat', 'scipy.sparse.linalg.LinearOperator.matvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.matvec.html#scipy.sparse.linalg.LinearOperator.matvec', 'scipy.sparse.linalg.LinearOperator.rmatmat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.rmatmat.html#scipy.sparse.linalg.LinearOperator.rmatmat', 'scipy.sparse.linalg.LinearOperator.rmatvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.rmatvec.html#scipy.sparse.linalg.LinearOperator.rmatvec', 'scipy.sparse.linalg.LinearOperator.transpose': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.transpose.html#scipy.sparse.linalg.LinearOperator.transpose', 'scipy.sparse.linalg.MatrixRankWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.MatrixRankWarning.html#scipy.sparse.linalg.MatrixRankWarning.with_traceback', 'scipy.sparse.linalg.SuperLU.solve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.SuperLU.solve.html#scipy.sparse.linalg.SuperLU.solve', 'scipy.sparse.linalg.aslinearoperator': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.aslinearoperator.html#scipy.sparse.linalg.aslinearoperator', 'scipy.sparse.linalg.bicg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicg.html#scipy.sparse.linalg.bicg', 'scipy.sparse.linalg.bicgstab': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab', 'scipy.sparse.linalg.cg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.sparse.linalg.cg', 'scipy.sparse.linalg.cgs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs', 'scipy.sparse.linalg.eigs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs', 'scipy.sparse.linalg.eigsh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh', 'scipy.sparse.linalg.expm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm.html#scipy.sparse.linalg.expm', 'scipy.sparse.linalg.expm_multiply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm_multiply.html#scipy.sparse.linalg.expm_multiply', 'scipy.sparse.linalg.factorized': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.factorized.html#scipy.sparse.linalg.factorized', 'scipy.sparse.linalg.gcrotmk': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gcrotmk.html#scipy.sparse.linalg.gcrotmk', 'scipy.sparse.linalg.gmres': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres', 'scipy.sparse.linalg.inv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.inv.html#scipy.sparse.linalg.inv', 'scipy.sparse.linalg.lgmres': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lgmres.html#scipy.sparse.linalg.lgmres', 'scipy.sparse.linalg.lobpcg': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html#scipy.sparse.linalg.lobpcg', 'scipy.sparse.linalg.lsmr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr', 'scipy.sparse.linalg.lsqr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr', 'scipy.sparse.linalg.minres': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.minres.html#scipy.sparse.linalg.minres', 'scipy.sparse.linalg.norm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm', 'scipy.sparse.linalg.onenormest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.onenormest.html#scipy.sparse.linalg.onenormest', 'scipy.sparse.linalg.qmr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.qmr.html#scipy.sparse.linalg.qmr', 'scipy.sparse.linalg.spilu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu', 'scipy.sparse.linalg.splu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu', 'scipy.sparse.linalg.spsolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html#scipy.sparse.linalg.spsolve', 'scipy.sparse.linalg.spsolve_triangular': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve_triangular.html#scipy.sparse.linalg.spsolve_triangular', 'scipy.sparse.linalg.svds': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds', 'scipy.sparse.linalg.use_solver': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.use_solver.html#scipy.sparse.linalg.use_solver'}, 'scipy.spatial.transform': { 'scipy.spatial.transform.Rotation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html#scipy.spatial.transform.Rotation', 'scipy.spatial.transform.RotationSpline': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.RotationSpline.html#scipy.spatial.transform.RotationSpline', 'scipy.spatial.transform.Slerp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Slerp.html#scipy.spatial.transform.Slerp', 'scipy.spatial.transform.Rotation.__getitem__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.__getitem__.html#scipy.spatial.transform.Rotation.__getitem__', 'scipy.spatial.transform.Rotation.__len__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.__len__.html#scipy.spatial.transform.Rotation.__len__', 'scipy.spatial.transform.Rotation.__mul__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.__mul__.html#scipy.spatial.transform.Rotation.__mul__', 'scipy.spatial.transform.Rotation.align_vectors': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.html#scipy.spatial.transform.Rotation.align_vectors', 'scipy.spatial.transform.Rotation.apply': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.apply.html#scipy.spatial.transform.Rotation.apply', 'scipy.spatial.transform.Rotation.as_dcm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.as_dcm.html#scipy.spatial.transform.Rotation.as_dcm', 'scipy.spatial.transform.Rotation.as_euler': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.as_euler.html#scipy.spatial.transform.Rotation.as_euler', 'scipy.spatial.transform.Rotation.as_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.as_matrix.html#scipy.spatial.transform.Rotation.as_matrix', 'scipy.spatial.transform.Rotation.as_quat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.as_quat.html#scipy.spatial.transform.Rotation.as_quat', 'scipy.spatial.transform.Rotation.as_rotvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.as_rotvec.html#scipy.spatial.transform.Rotation.as_rotvec', 'scipy.spatial.transform.Rotation.create_group': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.create_group.html#scipy.spatial.transform.Rotation.create_group', 'scipy.spatial.transform.Rotation.from_dcm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.from_dcm.html#scipy.spatial.transform.Rotation.from_dcm', 'scipy.spatial.transform.Rotation.from_euler': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.from_euler.html#scipy.spatial.transform.Rotation.from_euler', 'scipy.spatial.transform.Rotation.from_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.from_matrix.html#scipy.spatial.transform.Rotation.from_matrix', 'scipy.spatial.transform.Rotation.from_quat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.from_quat.html#scipy.spatial.transform.Rotation.from_quat', 'scipy.spatial.transform.Rotation.from_rotvec': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.from_rotvec.html#scipy.spatial.transform.Rotation.from_rotvec', 'scipy.spatial.transform.Rotation.identity': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.identity.html#scipy.spatial.transform.Rotation.identity', 'scipy.spatial.transform.Rotation.inv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.inv.html#scipy.spatial.transform.Rotation.inv', 'scipy.spatial.transform.Rotation.magnitude': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.magnitude.html#scipy.spatial.transform.Rotation.magnitude', 'scipy.spatial.transform.Rotation.match_vectors': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.match_vectors.html#scipy.spatial.transform.Rotation.match_vectors', 'scipy.spatial.transform.Rotation.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.mean.html#scipy.spatial.transform.Rotation.mean', 'scipy.spatial.transform.Rotation.random': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.random.html#scipy.spatial.transform.Rotation.random', 'scipy.spatial.transform.Rotation.reduce': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.reduce.html#scipy.spatial.transform.Rotation.reduce', 'scipy.spatial.transform.RotationSpline.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.RotationSpline.__call__.html#scipy.spatial.transform.RotationSpline.__call__', 'scipy.spatial.transform.Slerp.__call__': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Slerp.__call__.html#scipy.spatial.transform.Slerp.__call__'}, 'scipy.constants': { 'scipy.constants.ConstantWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.ConstantWarning.html#scipy.constants.ConstantWarning.with_traceback', 'scipy.constants.convert_temperature': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.convert_temperature.html#scipy.constants.convert_temperature', 'scipy.constants.find': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.find.html#scipy.constants.find', 'scipy.constants.lambda2nu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.lambda2nu.html#scipy.constants.lambda2nu', 'scipy.constants.nu2lambda': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.nu2lambda.html#scipy.constants.nu2lambda', 'scipy.constants.precision': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.precision.html#scipy.constants.precision', 'scipy.constants.unit': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.unit.html#scipy.constants.unit', 'scipy.constants.value': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.constants.value.html#scipy.constants.value'}, 'scipy.io.wavfile': { 'scipy.io.wavfile.WavFileWarning.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.WavFileWarning.html#scipy.io.wavfile.WavFileWarning.with_traceback', 'scipy.io.wavfile.read': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.read.html#scipy.io.wavfile.read', 'scipy.io.wavfile.write': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html#scipy.io.wavfile.write'}, 'scipy.sparse.csgraph': { 'scipy.sparse.csgraph.NegativeCycleError.with_traceback': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.NegativeCycleError.html#scipy.sparse.csgraph.NegativeCycleError.with_traceback', 'scipy.sparse.csgraph.bellman_ford': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.bellman_ford.html#scipy.sparse.csgraph.bellman_ford', 'scipy.sparse.csgraph.breadth_first_order': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_order.html#scipy.sparse.csgraph.breadth_first_order', 'scipy.sparse.csgraph.breadth_first_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_tree.html#scipy.sparse.csgraph.breadth_first_tree', 'scipy.sparse.csgraph.connected_components': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html#scipy.sparse.csgraph.connected_components', 'scipy.sparse.csgraph.construct_dist_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.construct_dist_matrix.html#scipy.sparse.csgraph.construct_dist_matrix', 'scipy.sparse.csgraph.csgraph_from_dense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_dense.html#scipy.sparse.csgraph.csgraph_from_dense', 'scipy.sparse.csgraph.csgraph_from_masked': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_masked.html#scipy.sparse.csgraph.csgraph_from_masked', 'scipy.sparse.csgraph.csgraph_masked_from_dense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_masked_from_dense.html#scipy.sparse.csgraph.csgraph_masked_from_dense', 'scipy.sparse.csgraph.csgraph_to_dense': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_dense.html#scipy.sparse.csgraph.csgraph_to_dense', 'scipy.sparse.csgraph.csgraph_to_masked': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_masked.html#scipy.sparse.csgraph.csgraph_to_masked', 'scipy.sparse.csgraph.depth_first_order': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_order.html#scipy.sparse.csgraph.depth_first_order', 'scipy.sparse.csgraph.depth_first_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_tree.html#scipy.sparse.csgraph.depth_first_tree', 'scipy.sparse.csgraph.dijkstra': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.dijkstra.html#scipy.sparse.csgraph.dijkstra', 'scipy.sparse.csgraph.floyd_warshall': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.floyd_warshall.html#scipy.sparse.csgraph.floyd_warshall', 'scipy.sparse.csgraph.johnson': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.johnson.html#scipy.sparse.csgraph.johnson', 'scipy.sparse.csgraph.laplacian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.laplacian.html#scipy.sparse.csgraph.laplacian', 'scipy.sparse.csgraph.maximum_bipartite_matching': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html#scipy.sparse.csgraph.maximum_bipartite_matching', 'scipy.sparse.csgraph.maximum_flow': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_flow.html#scipy.sparse.csgraph.maximum_flow', 'scipy.sparse.csgraph.minimum_spanning_tree': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.minimum_spanning_tree.html#scipy.sparse.csgraph.minimum_spanning_tree', 'scipy.sparse.csgraph.reconstruct_path': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reconstruct_path.html#scipy.sparse.csgraph.reconstruct_path', 'scipy.sparse.csgraph.reverse_cuthill_mckee': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reverse_cuthill_mckee.html#scipy.sparse.csgraph.reverse_cuthill_mckee', 'scipy.sparse.csgraph.shortest_path': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.shortest_path.html#scipy.sparse.csgraph.shortest_path', 'scipy.sparse.csgraph.structural_rank': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.structural_rank.html#scipy.sparse.csgraph.structural_rank'}, 'scipy.cluster.vq': { 'scipy.cluster.vq.kmeans': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans.html#scipy.cluster.vq.kmeans', 'scipy.cluster.vq.kmeans2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html#scipy.cluster.vq.kmeans2', 'scipy.cluster.vq.vq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.vq.html#scipy.cluster.vq.vq', 'scipy.cluster.vq.whiten': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.whiten.html#scipy.cluster.vq.whiten'}, 'scipy.fft': { 'scipy.fft.dct': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct', 'scipy.fft.dctn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dctn.html#scipy.fft.dctn', 'scipy.fft.dst': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst', 'scipy.fft.dstn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dstn.html#scipy.fft.dstn', 'scipy.fft.fft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft', 'scipy.fft.fft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2', 'scipy.fft.fftfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftfreq.html#scipy.fft.fftfreq', 'scipy.fft.fftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn', 'scipy.fft.fftshift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftshift.html#scipy.fft.fftshift', 'scipy.fft.get_workers': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.get_workers.html#scipy.fft.get_workers', 'scipy.fft.hfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft', 'scipy.fft.hfft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft2.html#scipy.fft.hfft2', 'scipy.fft.hfftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfftn.html#scipy.fft.hfftn', 'scipy.fft.idct': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct', 'scipy.fft.idctn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idctn.html#scipy.fft.idctn', 'scipy.fft.idst': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst', 'scipy.fft.idstn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idstn.html#scipy.fft.idstn', 'scipy.fft.ifft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft', 'scipy.fft.ifft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2', 'scipy.fft.ifftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn', 'scipy.fft.ifftshift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftshift.html#scipy.fft.ifftshift', 'scipy.fft.ihfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft', 'scipy.fft.ihfft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft2.html#scipy.fft.ihfft2', 'scipy.fft.ihfftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfftn.html#scipy.fft.ihfftn', 'scipy.fft.irfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft', 'scipy.fft.irfft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2', 'scipy.fft.irfftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn', 'scipy.fft.next_fast_len': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len', 'scipy.fft.register_backend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend', 'scipy.fft.rfft': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft', 'scipy.fft.rfft2': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2', 'scipy.fft.rfftfreq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftfreq.html#scipy.fft.rfftfreq', 'scipy.fft.rfftn': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn', 'scipy.fft.set_backend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_backend.html#scipy.fft.set_backend', 'scipy.fft.set_global_backend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_global_backend.html#scipy.fft.set_global_backend', 'scipy.fft.set_workers': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_workers.html#scipy.fft.set_workers', 'scipy.fft.skip_backend': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.skip_backend.html#scipy.fft.skip_backend'}, 'scipy.fftpack.convolve': { 'scipy.fftpack.convolve.convolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.convolve.convolve.html#scipy.fftpack.convolve.convolve', 'scipy.fftpack.convolve.convolve_z': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.convolve.convolve_z.html#scipy.fftpack.convolve.convolve_z', 'scipy.fftpack.convolve.destroy_convolve_cache': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.convolve.destroy_convolve_cache.html#scipy.fftpack.convolve.destroy_convolve_cache', 'scipy.fftpack.convolve.init_convolution_kernel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.convolve.init_convolution_kernel.html#scipy.fftpack.convolve.init_convolution_kernel'}, 'scipy.linalg.blas': { 'scipy.linalg.blas.find_best_blas_type': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.blas.find_best_blas_type.html#scipy.linalg.blas.find_best_blas_type', 'scipy.linalg.blas.get_blas_funcs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.blas.get_blas_funcs.html#scipy.linalg.blas.get_blas_funcs'}, 'scipy.linalg.interpolative': { 'scipy.linalg.interpolative.estimate_rank': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.estimate_rank.html#scipy.linalg.interpolative.estimate_rank', 'scipy.linalg.interpolative.estimate_spectral_norm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.estimate_spectral_norm.html#scipy.linalg.interpolative.estimate_spectral_norm', 'scipy.linalg.interpolative.estimate_spectral_norm_diff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.estimate_spectral_norm_diff.html#scipy.linalg.interpolative.estimate_spectral_norm_diff', 'scipy.linalg.interpolative.id_to_svd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.id_to_svd.html#scipy.linalg.interpolative.id_to_svd', 'scipy.linalg.interpolative.interp_decomp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.interp_decomp.html#scipy.linalg.interpolative.interp_decomp', 'scipy.linalg.interpolative.rand': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.rand.html#scipy.linalg.interpolative.rand', 'scipy.linalg.interpolative.reconstruct_interp_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.reconstruct_interp_matrix.html#scipy.linalg.interpolative.reconstruct_interp_matrix', 'scipy.linalg.interpolative.reconstruct_matrix_from_id': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.reconstruct_matrix_from_id.html#scipy.linalg.interpolative.reconstruct_matrix_from_id', 'scipy.linalg.interpolative.reconstruct_skel_matrix': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.reconstruct_skel_matrix.html#scipy.linalg.interpolative.reconstruct_skel_matrix', 'scipy.linalg.interpolative.seed': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.seed.html#scipy.linalg.interpolative.seed', 'scipy.linalg.interpolative.svd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.interpolative.svd.html#scipy.linalg.interpolative.svd'}, 'scipy.linalg.lapack': { 'scipy.linalg.lapack.cgegv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.cgegv.html#scipy.linalg.lapack.cgegv', 'scipy.linalg.lapack.dgegv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.dgegv.html#scipy.linalg.lapack.dgegv', 'scipy.linalg.lapack.get_lapack_funcs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.get_lapack_funcs.html#scipy.linalg.lapack.get_lapack_funcs', 'scipy.linalg.lapack.sgegv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.sgegv.html#scipy.linalg.lapack.sgegv', 'scipy.linalg.lapack.zgegv': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lapack.zgegv.html#scipy.linalg.lapack.zgegv'}, 'scipy.misc': { 'scipy.misc.ascent': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.ascent.html#scipy.misc.ascent', 'scipy.misc.central_diff_weights': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.central_diff_weights.html#scipy.misc.central_diff_weights', 'scipy.misc.derivative': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html#scipy.misc.derivative', 'scipy.misc.electrocardiogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.electrocardiogram.html#scipy.misc.electrocardiogram', 'scipy.misc.face': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.face.html#scipy.misc.face'}, 'scipy.ndimage': { 'scipy.ndimage.affine_transform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html#scipy.ndimage.affine_transform', 'scipy.ndimage.binary_closing': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_closing.html#scipy.ndimage.binary_closing', 'scipy.ndimage.binary_dilation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html#scipy.ndimage.binary_dilation', 'scipy.ndimage.binary_erosion': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html#scipy.ndimage.binary_erosion', 'scipy.ndimage.binary_fill_holes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html#scipy.ndimage.binary_fill_holes', 'scipy.ndimage.binary_hit_or_miss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_hit_or_miss.html#scipy.ndimage.binary_hit_or_miss', 'scipy.ndimage.binary_opening': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_opening.html#scipy.ndimage.binary_opening', 'scipy.ndimage.binary_propagation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_propagation.html#scipy.ndimage.binary_propagation', 'scipy.ndimage.black_tophat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.black_tophat.html#scipy.ndimage.black_tophat', 'scipy.ndimage.center_of_mass': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass', 'scipy.ndimage.convolve': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve', 'scipy.ndimage.convolve1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d', 'scipy.ndimage.correlate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate.html#scipy.ndimage.correlate', 'scipy.ndimage.correlate1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate1d.html#scipy.ndimage.correlate1d', 'scipy.ndimage.distance_transform_bf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_bf.html#scipy.ndimage.distance_transform_bf', 'scipy.ndimage.distance_transform_cdt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_cdt.html#scipy.ndimage.distance_transform_cdt', 'scipy.ndimage.distance_transform_edt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html#scipy.ndimage.distance_transform_edt', 'scipy.ndimage.extrema': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.extrema.html#scipy.ndimage.extrema', 'scipy.ndimage.find_objects': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.find_objects.html#scipy.ndimage.find_objects', 'scipy.ndimage.fourier_ellipsoid': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_ellipsoid.html#scipy.ndimage.fourier_ellipsoid', 'scipy.ndimage.fourier_gaussian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_gaussian.html#scipy.ndimage.fourier_gaussian', 'scipy.ndimage.fourier_shift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_shift.html#scipy.ndimage.fourier_shift', 'scipy.ndimage.fourier_uniform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_uniform.html#scipy.ndimage.fourier_uniform', 'scipy.ndimage.gaussian_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter', 'scipy.ndimage.gaussian_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d', 'scipy.ndimage.gaussian_gradient_magnitude': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_gradient_magnitude.html#scipy.ndimage.gaussian_gradient_magnitude', 'scipy.ndimage.gaussian_laplace': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_laplace.html#scipy.ndimage.gaussian_laplace', 'scipy.ndimage.generate_binary_structure': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generate_binary_structure.html#scipy.ndimage.generate_binary_structure', 'scipy.ndimage.generic_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html#scipy.ndimage.generic_filter', 'scipy.ndimage.generic_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter1d.html#scipy.ndimage.generic_filter1d', 'scipy.ndimage.generic_gradient_magnitude': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_gradient_magnitude.html#scipy.ndimage.generic_gradient_magnitude', 'scipy.ndimage.generic_laplace': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_laplace.html#scipy.ndimage.generic_laplace', 'scipy.ndimage.geometric_transform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.geometric_transform.html#scipy.ndimage.geometric_transform', 'scipy.ndimage.grey_closing': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_closing.html#scipy.ndimage.grey_closing', 'scipy.ndimage.grey_dilation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_dilation.html#scipy.ndimage.grey_dilation', 'scipy.ndimage.grey_erosion': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_erosion.html#scipy.ndimage.grey_erosion', 'scipy.ndimage.grey_opening': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_opening.html#scipy.ndimage.grey_opening', 'scipy.ndimage.histogram': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.histogram.html#scipy.ndimage.histogram', 'scipy.ndimage.iterate_structure': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.iterate_structure.html#scipy.ndimage.iterate_structure', 'scipy.ndimage.label': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html#scipy.ndimage.label', 'scipy.ndimage.labeled_comprehension': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.labeled_comprehension.html#scipy.ndimage.labeled_comprehension', 'scipy.ndimage.laplace': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.laplace.html#scipy.ndimage.laplace', 'scipy.ndimage.map_coordinates': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates', 'scipy.ndimage.maximum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum.html#scipy.ndimage.maximum', 'scipy.ndimage.maximum_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html#scipy.ndimage.maximum_filter', 'scipy.ndimage.maximum_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter1d.html#scipy.ndimage.maximum_filter1d', 'scipy.ndimage.maximum_position': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_position.html#scipy.ndimage.maximum_position', 'scipy.ndimage.mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.mean.html#scipy.ndimage.mean', 'scipy.ndimage.median': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median.html#scipy.ndimage.median', 'scipy.ndimage.median_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter', 'scipy.ndimage.minimum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum.html#scipy.ndimage.minimum', 'scipy.ndimage.minimum_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter.html#scipy.ndimage.minimum_filter', 'scipy.ndimage.minimum_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter1d.html#scipy.ndimage.minimum_filter1d', 'scipy.ndimage.minimum_position': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_position.html#scipy.ndimage.minimum_position', 'scipy.ndimage.morphological_gradient': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html#scipy.ndimage.morphological_gradient', 'scipy.ndimage.morphological_laplace': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_laplace.html#scipy.ndimage.morphological_laplace', 'scipy.ndimage.percentile_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter', 'scipy.ndimage.prewitt': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.prewitt.html#scipy.ndimage.prewitt', 'scipy.ndimage.rank_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rank_filter.html#scipy.ndimage.rank_filter', 'scipy.ndimage.rotate': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rotate.html#scipy.ndimage.rotate', 'scipy.ndimage.shift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift', 'scipy.ndimage.sobel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html#scipy.ndimage.sobel', 'scipy.ndimage.spline_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter.html#scipy.ndimage.spline_filter', 'scipy.ndimage.spline_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter1d.html#scipy.ndimage.spline_filter1d', 'scipy.ndimage.standard_deviation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.standard_deviation.html#scipy.ndimage.standard_deviation', 'scipy.ndimage.sum': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sum.html#scipy.ndimage.sum', 'scipy.ndimage.uniform_filter': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html#scipy.ndimage.uniform_filter', 'scipy.ndimage.uniform_filter1d': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html#scipy.ndimage.uniform_filter1d', 'scipy.ndimage.variance': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.variance.html#scipy.ndimage.variance', 'scipy.ndimage.watershed_ift': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html#scipy.ndimage.watershed_ift', 'scipy.ndimage.white_tophat': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.white_tophat.html#scipy.ndimage.white_tophat', 'scipy.ndimage.zoom': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html#scipy.ndimage.zoom'}, 'scipy.signal.windows': { 'scipy.signal.windows.barthann': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.barthann.html#scipy.signal.windows.barthann', 'scipy.signal.windows.bartlett': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.bartlett.html#scipy.signal.windows.bartlett', 'scipy.signal.windows.blackman': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.blackman.html#scipy.signal.windows.blackman', 'scipy.signal.windows.blackmanharris': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.blackmanharris.html#scipy.signal.windows.blackmanharris', 'scipy.signal.windows.bohman': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.bohman.html#scipy.signal.windows.bohman', 'scipy.signal.windows.boxcar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.boxcar.html#scipy.signal.windows.boxcar', 'scipy.signal.windows.chebwin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.chebwin.html#scipy.signal.windows.chebwin', 'scipy.signal.windows.cosine': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.cosine.html#scipy.signal.windows.cosine', 'scipy.signal.windows.dpss': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.dpss.html#scipy.signal.windows.dpss', 'scipy.signal.windows.exponential': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.exponential.html#scipy.signal.windows.exponential', 'scipy.signal.windows.flattop': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.flattop.html#scipy.signal.windows.flattop', 'scipy.signal.windows.gaussian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.gaussian.html#scipy.signal.windows.gaussian', 'scipy.signal.windows.general_cosine': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.general_cosine.html#scipy.signal.windows.general_cosine', 'scipy.signal.windows.general_gaussian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.general_gaussian.html#scipy.signal.windows.general_gaussian', 'scipy.signal.windows.general_hamming': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.general_hamming.html#scipy.signal.windows.general_hamming', 'scipy.signal.windows.get_window': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html#scipy.signal.windows.get_window', 'scipy.signal.windows.hamming': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hamming.html#scipy.signal.windows.hamming', 'scipy.signal.windows.hann': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hann.html#scipy.signal.windows.hann', 'scipy.signal.windows.hanning': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hanning.html#scipy.signal.windows.hanning', 'scipy.signal.windows.kaiser': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.kaiser.html#scipy.signal.windows.kaiser', 'scipy.signal.windows.nuttall': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.nuttall.html#scipy.signal.windows.nuttall', 'scipy.signal.windows.parzen': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.parzen.html#scipy.signal.windows.parzen', 'scipy.signal.windows.slepian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.slepian.html#scipy.signal.windows.slepian', 'scipy.signal.windows.triang': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.triang.html#scipy.signal.windows.triang', 'scipy.signal.windows.tukey': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.tukey.html#scipy.signal.windows.tukey'}, 'scipy.spatial.distance': { 'scipy.spatial.distance.braycurtis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.braycurtis.html#scipy.spatial.distance.braycurtis', 'scipy.spatial.distance.canberra': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.canberra.html#scipy.spatial.distance.canberra', 'scipy.spatial.distance.cdist': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html#scipy.spatial.distance.cdist', 'scipy.spatial.distance.chebyshev': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.chebyshev.html#scipy.spatial.distance.chebyshev', 'scipy.spatial.distance.cityblock': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html#scipy.spatial.distance.cityblock', 'scipy.spatial.distance.correlation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.correlation.html#scipy.spatial.distance.correlation', 'scipy.spatial.distance.cosine': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html#scipy.spatial.distance.cosine', 'scipy.spatial.distance.dice': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.dice.html#scipy.spatial.distance.dice', 'scipy.spatial.distance.directed_hausdorff': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html#scipy.spatial.distance.directed_hausdorff', 'scipy.spatial.distance.euclidean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean.html#scipy.spatial.distance.euclidean', 'scipy.spatial.distance.hamming': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html#scipy.spatial.distance.hamming', 'scipy.spatial.distance.is_valid_dm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.is_valid_dm.html#scipy.spatial.distance.is_valid_dm', 'scipy.spatial.distance.is_valid_y': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.is_valid_y.html#scipy.spatial.distance.is_valid_y', 'scipy.spatial.distance.jaccard': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jaccard.html#scipy.spatial.distance.jaccard', 'scipy.spatial.distance.jensenshannon': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html#scipy.spatial.distance.jensenshannon', 'scipy.spatial.distance.kulsinski': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.kulsinski.html#scipy.spatial.distance.kulsinski', 'scipy.spatial.distance.mahalanobis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html#scipy.spatial.distance.mahalanobis', 'scipy.spatial.distance.minkowski': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.minkowski.html#scipy.spatial.distance.minkowski', 'scipy.spatial.distance.num_obs_dm': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.num_obs_dm.html#scipy.spatial.distance.num_obs_dm', 'scipy.spatial.distance.num_obs_y': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.num_obs_y.html#scipy.spatial.distance.num_obs_y', 'scipy.spatial.distance.pdist': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist', 'scipy.spatial.distance.rogerstanimoto': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.rogerstanimoto.html#scipy.spatial.distance.rogerstanimoto', 'scipy.spatial.distance.russellrao': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.russellrao.html#scipy.spatial.distance.russellrao', 'scipy.spatial.distance.seuclidean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.seuclidean.html#scipy.spatial.distance.seuclidean', 'scipy.spatial.distance.sokalmichener': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.sokalmichener.html#scipy.spatial.distance.sokalmichener', 'scipy.spatial.distance.sokalsneath': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.sokalsneath.html#scipy.spatial.distance.sokalsneath', 'scipy.spatial.distance.sqeuclidean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.sqeuclidean.html#scipy.spatial.distance.sqeuclidean', 'scipy.spatial.distance.squareform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.squareform.html#scipy.spatial.distance.squareform', 'scipy.spatial.distance.wminkowski': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.wminkowski.html#scipy.spatial.distance.wminkowski', 'scipy.spatial.distance.yule': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.yule.html#scipy.spatial.distance.yule'}, 'scipy.stats.contingency': { 'scipy.stats.contingency.expected_freq': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.expected_freq.html#scipy.stats.contingency.expected_freq', 'scipy.stats.contingency.margins': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.contingency.margins.html#scipy.stats.contingency.margins'}, 'scipy.stats.mstats': { 'scipy.stats.mstats.argstoarray': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.argstoarray.html#scipy.stats.mstats.argstoarray', 'scipy.stats.mstats.brunnermunzel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.brunnermunzel.html#scipy.stats.mstats.brunnermunzel', 'scipy.stats.mstats.chisquare': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.chisquare.html#scipy.stats.mstats.chisquare', 'scipy.stats.mstats.compare_medians_ms': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.compare_medians_ms.html#scipy.stats.mstats.compare_medians_ms', 'scipy.stats.mstats.count_tied_groups': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.count_tied_groups.html#scipy.stats.mstats.count_tied_groups', 'scipy.stats.mstats.describe': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.describe.html#scipy.stats.mstats.describe', 'scipy.stats.mstats.f_oneway': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.f_oneway.html#scipy.stats.mstats.f_oneway', 'scipy.stats.mstats.find_repeats': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.find_repeats.html#scipy.stats.mstats.find_repeats', 'scipy.stats.mstats.friedmanchisquare': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.friedmanchisquare.html#scipy.stats.mstats.friedmanchisquare', 'scipy.stats.mstats.gmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.gmean.html#scipy.stats.mstats.gmean', 'scipy.stats.mstats.hdmedian': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.hdmedian.html#scipy.stats.mstats.hdmedian', 'scipy.stats.mstats.hdquantiles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.hdquantiles.html#scipy.stats.mstats.hdquantiles', 'scipy.stats.mstats.hdquantiles_sd': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.hdquantiles_sd.html#scipy.stats.mstats.hdquantiles_sd', 'scipy.stats.mstats.hmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.hmean.html#scipy.stats.mstats.hmean', 'scipy.stats.mstats.idealfourths': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.idealfourths.html#scipy.stats.mstats.idealfourths', 'scipy.stats.mstats.kendalltau': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kendalltau.html#scipy.stats.mstats.kendalltau', 'scipy.stats.mstats.kendalltau_seasonal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kendalltau_seasonal.html#scipy.stats.mstats.kendalltau_seasonal', 'scipy.stats.mstats.kruskal': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kruskal.html#scipy.stats.mstats.kruskal', 'scipy.stats.mstats.kruskalwallis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kruskalwallis.html#scipy.stats.mstats.kruskalwallis', 'scipy.stats.mstats.ks_1samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ks_1samp.html#scipy.stats.mstats.ks_1samp', 'scipy.stats.mstats.ks_2samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ks_2samp.html#scipy.stats.mstats.ks_2samp', 'scipy.stats.mstats.ks_twosamp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ks_twosamp.html#scipy.stats.mstats.ks_twosamp', 'scipy.stats.mstats.kstest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kstest.html#scipy.stats.mstats.kstest', 'scipy.stats.mstats.kurtosis': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kurtosis.html#scipy.stats.mstats.kurtosis', 'scipy.stats.mstats.kurtosistest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.kurtosistest.html#scipy.stats.mstats.kurtosistest', 'scipy.stats.mstats.linregress': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.linregress.html#scipy.stats.mstats.linregress', 'scipy.stats.mstats.mannwhitneyu': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mannwhitneyu.html#scipy.stats.mstats.mannwhitneyu', 'scipy.stats.mstats.median_cihs': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.median_cihs.html#scipy.stats.mstats.median_cihs', 'scipy.stats.mstats.meppf': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.meppf.html#scipy.stats.mstats.meppf', 'scipy.stats.mstats.mjci': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mjci.html#scipy.stats.mstats.mjci', 'scipy.stats.mstats.mode': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mode.html#scipy.stats.mstats.mode', 'scipy.stats.mstats.moment': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.moment.html#scipy.stats.mstats.moment', 'scipy.stats.mstats.mquantiles': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles', 'scipy.stats.mstats.mquantiles_cimj': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles_cimj.html#scipy.stats.mstats.mquantiles_cimj', 'scipy.stats.mstats.msign': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.msign.html#scipy.stats.mstats.msign', 'scipy.stats.mstats.normaltest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.normaltest.html#scipy.stats.mstats.normaltest', 'scipy.stats.mstats.obrientransform': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.obrientransform.html#scipy.stats.mstats.obrientransform', 'scipy.stats.mstats.pearsonr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.pearsonr.html#scipy.stats.mstats.pearsonr', 'scipy.stats.mstats.plotting_positions': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.plotting_positions.html#scipy.stats.mstats.plotting_positions', 'scipy.stats.mstats.pointbiserialr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.pointbiserialr.html#scipy.stats.mstats.pointbiserialr', 'scipy.stats.mstats.rankdata': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.rankdata.html#scipy.stats.mstats.rankdata', 'scipy.stats.mstats.rsh': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.rsh.html#scipy.stats.mstats.rsh', 'scipy.stats.mstats.scoreatpercentile': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.scoreatpercentile.html#scipy.stats.mstats.scoreatpercentile', 'scipy.stats.mstats.sem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.sem.html#scipy.stats.mstats.sem', 'scipy.stats.mstats.sen_seasonal_slopes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.sen_seasonal_slopes.html#scipy.stats.mstats.sen_seasonal_slopes', 'scipy.stats.mstats.siegelslopes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.siegelslopes.html#scipy.stats.mstats.siegelslopes', 'scipy.stats.mstats.skew': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.skew.html#scipy.stats.mstats.skew', 'scipy.stats.mstats.skewtest': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.skewtest.html#scipy.stats.mstats.skewtest', 'scipy.stats.mstats.spearmanr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.spearmanr.html#scipy.stats.mstats.spearmanr', 'scipy.stats.mstats.theilslopes': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.theilslopes.html#scipy.stats.mstats.theilslopes', 'scipy.stats.mstats.tmax': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.tmax.html#scipy.stats.mstats.tmax', 'scipy.stats.mstats.tmean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.tmean.html#scipy.stats.mstats.tmean', 'scipy.stats.mstats.tmin': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.tmin.html#scipy.stats.mstats.tmin', 'scipy.stats.mstats.trim': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trim.html#scipy.stats.mstats.trim', 'scipy.stats.mstats.trima': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trima.html#scipy.stats.mstats.trima', 'scipy.stats.mstats.trimboth': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimboth.html#scipy.stats.mstats.trimboth', 'scipy.stats.mstats.trimmed_mean': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimmed_mean.html#scipy.stats.mstats.trimmed_mean', 'scipy.stats.mstats.trimmed_mean_ci': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimmed_mean_ci.html#scipy.stats.mstats.trimmed_mean_ci', 'scipy.stats.mstats.trimmed_std': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimmed_std.html#scipy.stats.mstats.trimmed_std', 'scipy.stats.mstats.trimmed_stde': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimmed_stde.html#scipy.stats.mstats.trimmed_stde', 'scipy.stats.mstats.trimmed_var': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimmed_var.html#scipy.stats.mstats.trimmed_var', 'scipy.stats.mstats.trimr': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimr.html#scipy.stats.mstats.trimr', 'scipy.stats.mstats.trimtail': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trimtail.html#scipy.stats.mstats.trimtail', 'scipy.stats.mstats.tsem': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.tsem.html#scipy.stats.mstats.tsem', 'scipy.stats.mstats.ttest_1samp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ttest_1samp.html#scipy.stats.mstats.ttest_1samp', 'scipy.stats.mstats.ttest_ind': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ttest_ind.html#scipy.stats.mstats.ttest_ind', 'scipy.stats.mstats.ttest_onesamp': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ttest_onesamp.html#scipy.stats.mstats.ttest_onesamp', 'scipy.stats.mstats.ttest_rel': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.ttest_rel.html#scipy.stats.mstats.ttest_rel', 'scipy.stats.mstats.tvar': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.tvar.html#scipy.stats.mstats.tvar', 'scipy.stats.mstats.variation': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.variation.html#scipy.stats.mstats.variation', 'scipy.stats.mstats.winsorize': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.winsorize.html#scipy.stats.mstats.winsorize', 'scipy.stats.mstats.zmap': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.zmap.html#scipy.stats.mstats.zmap', 'scipy.stats.mstats.zscore': 'https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.zscore.html#scipy.stats.mstats.zscore'}}, 'settings': {'lib_path': 'nbdev_scipy'}}
185.514462
302
0.681224
71c55f66f473fe60da7f556a02120b7fdc8316c0
6,286
py
Python
cmake/templates/_setup_util.py
po1/catkin
85556d6776337e9cb1970f0f1733687dbbcb8a42
[ "BSD-3-Clause" ]
null
null
null
cmake/templates/_setup_util.py
po1/catkin
85556d6776337e9cb1970f0f1733687dbbcb8a42
[ "BSD-3-Clause" ]
null
null
null
cmake/templates/_setup_util.py
po1/catkin
85556d6776337e9cb1970f0f1733687dbbcb8a42
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. '''This file only exists for backward compatibility with workspaces built with catkin 0.5.58 or older.''' from __future__ import print_function import argparse import os import sys CATKIN_MARKER_FILE = '.catkin' def get_workspaces(include_fuerte=False): ''' Based on CMAKE_PREFIX_PATH return all catkin workspaces :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` ''' # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' paths = [path for path in os.environ.get(env_name, '').split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte'))] return workspaces def get_reversed_workspaces(exclude=None): '''Return a newline separated list of workspaces in CMAKE_PREFIX_PATH in reverse order and remove any occurrences of EXCLUDE.''' paths = [p for p in reversed(get_workspaces()) if p != exclude] return '\n'.join(paths) def prefix_env(name, new_paths_str): ''' Return the prefix to prepend to the environment variable NAME, adding any path in NEW_PATHS_STR without creating duplicate or empty items. ''' environ_paths = [i for i in os.environ.get(name, '').split(os.pathsep) if i] checked_paths = [] new_paths = [v for v in new_paths_str.split(os.pathsep) if v != ''] for path in new_paths: # exclude any path already in env and any path we already added if path not in environ_paths and path not in checked_paths: checked_paths.append(path) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def remove_from_env(name, subfolder): ''' For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolder: str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. ''' env_paths = [path for path in os.environ.get(name, '').split(os.pathsep) if path] if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in get_workspaces(include_fuerte=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) return os.pathsep.join(env_paths) def _parse_arguments(): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--get-reversed-workspaces', action='store_true', help='Get workspaces based on CMAKE_PREFIX_PATH in reverse order') group.add_argument('--prefix', action='store_true', help='Prepend a unique value to an environment variable') group.add_argument('--remove', action='store_true', help='Remove the prefix for each workspace in CMAKE_PREFIX_PATH from the environment variable') parser.add_argument('--name', nargs='?', help='The name of the environment variable') parser.add_argument('--value', help='The value') args = parser.parse_args() # verify correct argument combination if (args.prefix or args.remove) and args.name is None: raise RuntimeError('Argument "--name" must be passed for "%s"' % ('--prefix' if args.prefix else '--remove')) if args.get_reversed_workspaces and args.name is not None: raise RuntimeError('Argument "--name" must not be passed for "--get-reversed-workspaces"') return args if __name__ == '__main__': try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) exit(1) # dispatch to requested operation if args.get_reversed_workspaces: print(get_reversed_workspaces(args.value)) elif args.prefix: print(prefix_env(args.name, args.value)) elif args.remove: print(remove_from_env(args.name, args.value))
44.58156
158
0.719695
c4b84cb644212b613cbded9e818199120821c78c
6,140
py
Python
Test/MakingText.py
shpkc/DailyBigdata
66fe0fa7b73d054e8b14975a655fdb40b11be014
[ "Apache-2.0" ]
null
null
null
Test/MakingText.py
shpkc/DailyBigdata
66fe0fa7b73d054e8b14975a655fdb40b11be014
[ "Apache-2.0" ]
16
2020-01-28T22:54:04.000Z
2022-03-11T23:53:56.000Z
Test/MakingText.py
shpkc/DailyBigdata
66fe0fa7b73d054e8b14975a655fdb40b11be014
[ "Apache-2.0" ]
null
null
null
def Text(): import pandas as pd from datetime import timedelta,date import os today = int(date.today().strftime('%Y%m%d')) yesterday = date.today() - timedelta(1) yesterday = int(yesterday.strftime('%Y%m%d')) month = int(date.today().strftime('%m')) day = int(date.today().strftime('%d')) os.mkdir('./Crawled Data/{}/text'.format(today)) dataframe = pd.read_csv('./Crawled Data/{}/{}_KTR_KTS_dataframe'.format(today, today)) dataframe = dataframe.drop_duplicates(subset = "Keyword") dataframe = dataframe.sort_values(by='Total_KTR', ascending=False).iloc[0:20] keywords = dataframe.iloc[0:10]['Keyword'].values.tolist() KTR = dataframe.iloc[0:10]['Total_KTR_change'].values.tolist() KTS = dataframe.iloc[0:10]['KTS_change'].values.tolist() related_keywords = dataframe['Related_Keywords'].iloc[0:10].values.tolist() main_text = "[📰Daily Bigdata , {}/{}]\n\n[🌏오늘의 키워드🌏]\n\n\ 1. {}\n\ 2. {}\n\ 3. {}\n\ 4. {}\n\ 5. {}\n\ 6. {}\n\ 7. {}\n\ 8. {}\n\ 9. {}\n\ 10. {}\n\n\ [💵오늘의 증시💵]\n\ 코스피 2,230.50(+1.84)\n\ 코스닥 743.38(-3.95)\n\ 환   율 1,125.0(-1.0)\n\ \n\ 📌영상으로 보고 싶으시다면?\n\ 데일리 빅데이터 유튜브!!📌\n\ \n\n\ 🚨 데일리 빅데이터를 이용한 투자 피해에는 책임을 지지 않으며 🚨\n\ 분석 자료의 해석은 개인마다 다를 수 있습니다".format(month, day,\ keywords[0],keywords[1],keywords[2],keywords[3],\ keywords[4],keywords[5],keywords[6],keywords[7],\ keywords[8],keywords[9]) file = open("./Crawled Data/{}/text/{}_main_text.txt".format(today,today), "w") file.write(main_text) file.close() top1_5_text = "🔎 종합 키워드 분석 TOP1~5\n\ \n\ 1. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 2. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 3. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 4. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 5. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 📌영상으로 보고 싶으시다면?\n\ 데일리 빅데이터 유튜브!!📌".format(keywords[0], KTR[0], KTS[0], related_keywords[0],\ keywords[1], KTR[1], KTS[1], related_keywords[1],\ keywords[2], KTR[2], KTS[2], related_keywords[2],\ keywords[3], KTR[3], KTS[3], related_keywords[3],\ keywords[4], KTR[4], KTS[4], related_keywords[4]) file = open("./Crawled Data/{}/text/{}_top1_5_text.txt".format(today,today), "w") file.write(top1_5_text) file.close() url_dataframe = pd.read_csv('./Crawled Data/{}/{}_max_url'.format(today, today)) max_url = '' for keyword in keywords: for i in range(80): if keyword == url_dataframe.iloc[i]['Keyword']: max_url = max_url+keyword+' '+url_dataframe.iloc[i]['Max_Url']+'\n' break file = open("./Crawled Data/{}/text/{}_max_url.txt".format(today,today), "w") file.write(max_url) file.close() top6_10_text = "🔎 종합 키워드 분석 TOP1~5\n\ \n\ 6. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 7. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 8. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 9. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 10. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 📌영상으로 보고 싶으시다면?\n\ 데일리 빅데이터 유튜브!!📌".format(keywords[5], KTR[5], KTS[5], related_keywords[5],\ keywords[6], KTR[6], KTS[6], related_keywords[6],\ keywords[7], KTR[7], KTS[7], related_keywords[7],\ keywords[8], KTR[8], KTS[8], related_keywords[8],\ keywords[9], KTR[9], KTS[9], related_keywords[9]) file = open("./Crawled Data/{}/text/{}_top6_10_text.txt".format(today,today), "w") file.write(top6_10_text) file.close() today_KTR_KTS = pd.read_csv('./Crawled Data/{}/{}_KTR_KTS_dataframe'.format(today, today)) topics = ['society', 'politics', 'economic', 'foreign', 'culture', 'entertain', 'sports', 'digital'] topics_emoji = ['🌉','⚖','💲','🌏','🎼','🎤','⚽','💻'] topics_kr = ['사회', '정치', '경제', '국제', '문화', '연예', '스포츠', 'IT'] kr_index = 0 for topic in topics: dataframe = today_KTR_KTS[today_KTR_KTS['Topic'] == topic].sort_values(by='Total_KTR', ascending=False) keywords = dataframe.iloc[0:10]['Keyword'].values.tolist() KTR = dataframe.iloc[0:10]['Total_KTR_change'].values.tolist() KTS = dataframe.iloc[0:10]['KTS_change'].values.tolist() related_keywords = dataframe['Related_Keywords'].iloc[0:10].values.tolist() text = "{} {} 키워드\n\n\ 1. {}\n\ 2. {}\n\ 3. {}\n\ 4. {}\n\ 5. {}\n\ 6. {}\n\ 7. {}\n\ 8. {}\n\ 9. {}\n\ 10. {}\n\ \n\ [🔎키워드 분석🔍]\n\n\ 1. {}\n\ 관심도 * : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 2. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 3. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 4. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 5. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 6. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 7. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 8. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 9. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ 10. {}\n\ 관심도 : {}\n\ 감정도 : {}\n\ {}\n\ \n\ * = 당일 평균 키워드 대비 백분율\n\ \n\ 📌영상으로 보고 싶으시다면?\n\ 데일리 빅데이터 유튜브!!📌".format(topics_emoji[kr_index], topics_kr[kr_index],\ keywords[0],keywords[1],keywords[2],keywords[3],\ keywords[4],keywords[5],keywords[6],keywords[7],\ keywords[8],keywords[9],\ keywords[0],KTR[0],KTS[0],related_keywords[0],\ keywords[1],KTR[1],KTS[1],related_keywords[1],\ keywords[2],KTR[2],KTS[2],related_keywords[2],\ keywords[3],KTR[3],KTS[3],related_keywords[3],\ keywords[4],KTR[4],KTS[4],related_keywords[4],\ keywords[5],KTR[5],KTS[5],related_keywords[5],\ keywords[6],KTR[6],KTS[6],related_keywords[6],\ keywords[7],KTR[7],KTS[7],related_keywords[7],\ keywords[8],KTR[8],KTS[8],related_keywords[8],\ keywords[9],KTR[9],KTS[9],related_keywords[9]) kr_index+=1 file = open("./Crawled Data/{}/text/{}_{}_text.txt".format(today,today, topic), "w") file.write(text) file.close() print("모든 작업 완료")
25.061224
111
0.516938
1557cd0d2497af89771497ea109c453a92cf22db
11,532
py
Python
privex/helpers/setuppy/bump.py
Privex/python-helpers
1c976ce5b0e2c5241ea0bdf330bd6701b5e31153
[ "X11" ]
12
2019-06-18T11:17:41.000Z
2021-09-13T23:00:21.000Z
privex/helpers/setuppy/bump.py
Privex/python-helpers
1c976ce5b0e2c5241ea0bdf330bd6701b5e31153
[ "X11" ]
1
2019-10-13T07:34:44.000Z
2019-10-13T07:34:44.000Z
privex/helpers/setuppy/bump.py
Privex/python-helpers
1c976ce5b0e2c5241ea0bdf330bd6701b5e31153
[ "X11" ]
4
2019-10-10T10:15:09.000Z
2021-05-16T01:55:48.000Z
""" Automated Python package version bumping Summary ------- Included is a standalone function :py:func:`.bump_version` - which when called, loads the file :py:attr:`.settings.VERSION_FILE` , extracts the current version, bumps the requested part of the version, then replaces the version line inside of the file so that it contains the newly bumped version. There's also a setup.py command class :py:class:`.BumpCommand` which allows you to use :py:func:`.bump_version` as a ``setup.py`` command, making it simple to increment your package's version without having to manually edit the file. If the package :py:mod:`semver` is detected, the version bumping helper :py:func:`.bump_version` becomes available. If the module :py:mod:`distutils` is detected, the setup.py command class :py:class:`.BumpCommand` also becomes available. How to version your package for best compatibility -------------------------------------------------- To avoid having to write your own version detection / replacement functions, we recommend placing your package version inside of a python module file, such as ``__init__.py`` - as the string variable ``VERSION`` Example, ``mypackage/__init__.py`` .. code-block:: python from mypackage.somemodule import x from mypackage.othermodule import y VERSION = '1.2.3' If you cannot store your package version this way for some reason, then you can write a custom detection/replacement function and register it as the default. See the docs for :py:func:`.bump_version` to learn how to write a custom version detection/replacement function. Using the BumpCommand distutils command in your setup.py -------------------------------------------------------- For :class:`.BumpCommand` to function, you must at least set :py:attr:`privex.helpers.settings.VERSION_FILE` to an absolute path to the file which contains your package version attribute. If your package version isn't defined as shown in the previous section on how to version your package, then you'll **also need to set up custom version detection/replacement functions**. (see docs at :py:func:`.bump_version`) Below is an example ``setup.py`` file, which configures the VERSION_FILE setting to point to ``mypackage/__init__.py`` relative to the folder setup.py is in, then calls :py:func:`setuptools.setup` with the package version and command dictionary. .. code-block:: python from os import join, dirname, abspath from setuptools import setup, find_packages from privex.helpers import settings, BumpCommand # If you placed your version in your package __init__ then you can import it for use in setup.py building from mypackage import VERSION # This results in an absolute path to the folder where this setup.py file is contained BASE_DIR = dirname(abspath(__file__)) # The file which contains "VERSION = '1.2.3'" settings.VERSION_FILE = join(BASE_DIR, 'mypackage', '__init__.py') # Register BumpCommand as a command in your setup() function. setup( version=VERSION, cmdclass={ 'bump': BumpCommand }, ); Basic usage of the bump command with setup.py --------------------------------------------- Once you've configured :py:attr:`privex.helpers.settings.VERSION_FILE` and registered the command class in the ``setup()`` function, you can now use the ``bump`` command from your ``setup.py`` and it will automatically bump your version. Below is an example of basic usage. If you need more help on usage, type ``./setup.py bump --help`` - or for detailed documentation on the command, see the class documentation :class:`.BumpCommand` .. code-block:: bash ./setup.py bump --patch # Bumping 'patch' version part # Updating version stored in file @ /tmp/helpers/privex/helpers/__init__.py # Package version has been bumped from 2.0.0 to 2.0.1 and written to the file # /tmp/helpers/privex/helpers/__init__.py ./setup.py bump --minor # ... version has been bumped from 2.0.0 to 2.1.0 and written to the file ... """ import re import logging import semver from privex.helpers import settings try: from privex.helpers.setuppy.commands import BumpCommand except ImportError: pass log = logging.getLogger(__name__) _find_ver = re.compile(r'VERSION = \'?\"?([0-9a-zA-Z-._]+)\'?\"?') """Regex used for finding/replacing version line""" def version_replace(data: str, old_version: str, new_version: str) -> str: """ Replace the version line in ``data`` containing ``old_version`` with a version line containing ``new_version`` Example:: >>> data = "# Example\\nVERSION = '1.2.3' # Some comment" >>> version_replace(data=data, old_version='1.2.3', new_version='1.3.0') "# Example\\nVERSION = '1.3.0' # Some comment" As shown in the above example, it shouldn't affect surrounding lines, or even in-line comments. Note: ``old_version`` isn't really used by this function. It exists for compatibility with user drop-in replacement functions that may need to know the old version to replace it. :param str data: The string contents containing ``VERSION = 'x.y.z'`` :param str old_version: The existing version number, e.g. ``'1.2.3'`` :param str new_version: The new version to replace it with, e.g. ``'1.3.0'`` :return str replaced: ``data`` with the VERSION line updated. """ return _find_ver.sub(f"VERSION = '{new_version}'", data) def get_current_ver(data: str = None): return str(_find_ver.search(data).group(1)) default_replace_func = version_replace """If no version replacement function is passed to :py:func:`.bump_version`, then this function will be used.""" default_current_ver = get_current_ver """If no version retrieval function is passed to :py:func:`.bump_version`, then this function will be used.""" def bump_version(part='patch', dry=False, **kwargs): """ Bump semver version and replace version line inside of :py:attr:`.settings.VERSION_FILE` * Obtains the current package version using ``version_func`` * Uses :py:mod:`semver` to increment the ``part`` portion and resets any lower portions to zero * Reads the file :py:attr:`.settings.VERSION_FILE` and passes it to ``replace_func`` along with the original version and new bumped version to obtain the modified file contents. * Writes the file contents containing the updated version number back to :py:attr:`.settings.VERSION_FILE` Basic usage: >>> from privex.helpers import settings, setuppy >>> bump_version('minor') If you want to use this function outside of privex-helpers, for your own package/project, ensure you adjust the settings and version functions as required. To change the file which contains your package version, as well as the function used to get the current version:: >>> import mypackage >>> from privex.helpers import settings >>> settings.VERSION_FILE = '/home/john/mypackage/mypackage/__init__.py' If you use the same version line format at privex-helpers, like this:: VERSION = '1.2.3' # In-line comments are fine, as are double quotes instead of single quotes. Then you don't need to make a custom version retrieval or replacement function. Otherwise... this is how you write and register a custom version retrieval and replacement function: .. code-block:: python :force: import re from privex.helpers.setuppy import bump # Regex to find the string: version='x.y.z' # and extract the version x.y.z on it's own. my_regex = re.compile(r'version=\'?\"?([0-9a-zA-Z-._]+)\'?\"?') def my_version_finder(data: str): return str(my_regex.search(data).group(1)) # Set your function `my_version_finder` as the default used to obtain the current package version bump.default_current_ver = my_version_finder def my_version_replacer(data: str, old_version: str, new_version: str): # This is an example of a version replacer if you just put your version straight into setup.py return data.replace(f"version='{old_version}'", f"version='{new_version}'") # Alternatively use regex substitution return my_regex.sub(f"version='{new_version}'", data) # Set your function `my_version_replacer` as the default used to replace the version in a file. bump.default_replace_func = my_version_replacer :param bool dry: If set to ``True``, will only return the modified file contents instead of overwriting the file :py:attr:`.settings.VERSION_FILE` :param str part: The part of the version to bump: ``patch``, ``minor``, ``major``, ``build`` or ``prerelease`` :key callable replace_func: Custom version replacement function. Should take the arguments (data, old_version, new_version) and return ``data`` with the version line replaced. :key callable version_func: Custom version retrieval function. Takes no args, returns curr version as a string. :key str token: If using part ``build`` or ``prerelease``, this overrides the version token :return: """ replace_func = kwargs.get('replace_func', default_replace_func) get_version = kwargs.get('version_func', default_current_ver) ver_path = settings.VERSION_FILE log.debug('Reading file %s to replace version line', ver_path) with open(ver_path) as fp: ver_file = str(fp.read()) curr_ver = get_version(ver_file) new_ver = _bump_version(version=curr_ver, part=part, **kwargs) log.debug('Current version: %s ||| Bumped version: %s', curr_ver, new_ver) new_ver_file = replace_func(data=ver_file, old_version=curr_ver, new_version=new_ver) if dry: log.debug('Dry kwarg was True. Returning modified file instead of outputting it.') return new_ver_file log.debug('Attempting to write updated contents back to %s', ver_path) with open(ver_path, 'w') as fp: fp.write(new_ver_file) return new_ver, curr_ver def _bump_version(version: str, part: str, **kwargs) -> str: """ Bumps the semver part ``part`` in the version ``version`` and returns it as a string. Used internally by :py:func:`.bump_version` >>> _bump_version('1.2.3', 'minor') '1.3.0' :param version: The version to bump as a string e.g. ``'1.2.3'``` :param part: The part of the version to bump, e.g. ``minor`` or ``major`` :key str token: If using part ``build`` or ``prerelease``, this overrides the version token :raises AttributeError: If ``part`` isn't a supported version part. :return str new_ver: The bumped version number """ bumps = dict( minor=semver.bump_minor, major=semver.bump_major, patch=semver.bump_patch, build=semver.bump_build, prerelease=semver.bump_prerelease, pre=semver.bump_prerelease, ) if part not in bumps: raise AttributeError(f'The "part" argument must be one of the following: {",".join(bumps.keys())}') ver_args = dict(version=version) if 'token' in kwargs: ver_args['token'] = kwargs['token'] print('_bump_version token:', ver_args['token']) new_ver = bumps[part](**ver_args) return new_ver
40.749117
118
0.681495
9ffa53f322962c61cd4104b4de552e87188b6a42
2,907
py
Python
pyzoo/zoo/examples/tensorflow/tfpark/tf_optimizer/train_lenet.py
respecteverything/analytics-zoo
a8843c73c24b5026d93d46fa9268eb41a958cf6d
[ "Apache-2.0" ]
null
null
null
pyzoo/zoo/examples/tensorflow/tfpark/tf_optimizer/train_lenet.py
respecteverything/analytics-zoo
a8843c73c24b5026d93d46fa9268eb41a958cf6d
[ "Apache-2.0" ]
null
null
null
pyzoo/zoo/examples/tensorflow/tfpark/tf_optimizer/train_lenet.py
respecteverything/analytics-zoo
a8843c73c24b5026d93d46fa9268eb41a958cf6d
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import tensorflow as tf from zoo import init_nncontext from zoo.tfpark import TFOptimizer, TFDataset from bigdl.optim.optimizer import * import numpy as np import sys from bigdl.dataset import mnist from bigdl.dataset.transformer import * sys.path.append("/tmp/models/slim") # add the slim library from nets import lenet slim = tf.contrib.slim def main(max_epoch, data_num): sc = init_nncontext() # get data, pre-process and create TFDataset def get_data_rdd(dataset): (images_data, labels_data) = mnist.read_data_sets("/tmp/mnist", dataset) image_rdd = sc.parallelize(images_data[:data_num]) labels_rdd = sc.parallelize(labels_data[:data_num]) rdd = image_rdd.zip(labels_rdd) \ .map(lambda rec_tuple: [normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), np.array(rec_tuple[1])]) return rdd training_rdd = get_data_rdd("train") testing_rdd = get_data_rdd("test") dataset = TFDataset.from_rdd(training_rdd, names=["features", "labels"], shapes=[[28, 28, 1], []], types=[tf.float32, tf.int32], batch_size=280, val_rdd=testing_rdd ) # construct the model from TFDataset images, labels = dataset.tensors with slim.arg_scope(lenet.lenet_arg_scope()): logits, end_points = lenet.lenet(images, num_classes=10, is_training=True) loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)) # create a optimizer optimizer = TFOptimizer.from_loss(loss, Adam(1e-3), val_outputs=[logits], val_labels=[labels], val_method=Top1Accuracy(), model_dir="/tmp/lenet/") # kick off training optimizer.optimize(end_trigger=MaxEpoch(max_epoch)) saver = tf.train.Saver() saver.save(optimizer.sess, "/tmp/lenet/model") if __name__ == '__main__': max_epoch = 5 data_num = 60000 if len(sys.argv) > 1: max_epoch = int(sys.argv[1]) data_num = int(sys.argv[2]) main(max_epoch, data_num)
35.024096
96
0.632267
c0c3218d0657d99331263bbd770e36ce83c68438
201
py
Python
siteforms/__init__.py
idlesign/django-siteforms
86661d6f899e842c32802511ac0a13db1eed671d
[ "BSD-3-Clause" ]
16
2020-06-23T19:41:35.000Z
2020-08-15T14:34:21.000Z
siteforms/__init__.py
idlesign/django-siteforms
86661d6f899e842c32802511ac0a13db1eed671d
[ "BSD-3-Clause" ]
null
null
null
siteforms/__init__.py
idlesign/django-siteforms
86661d6f899e842c32802511ac0a13db1eed671d
[ "BSD-3-Clause" ]
null
null
null
VERSION = (0, 9, 1) """Application version number tuple.""" VERSION_STR = '.'.join(map(str, VERSION)) """Application version number string.""" default_app_config = 'siteforms.apps.SiteformsConfig'
20.1
53
0.711443
c2367d086225c9deb31a3de5b85f100c466e3e59
1,709
py
Python
server/gists.py
macobo/grader-webapp
2d5c5511472792d21f864de47267e33ddbd17c90
[ "MIT" ]
1
2021-11-02T16:38:29.000Z
2021-11-02T16:38:29.000Z
server/gists.py
macobo/grader-webapp
2d5c5511472792d21f864de47267e33ddbd17c90
[ "MIT" ]
null
null
null
server/gists.py
macobo/grader-webapp
2d5c5511472792d21f864de47267e33ddbd17c90
[ "MIT" ]
null
null
null
from server import app, db from flask import Blueprint, request, jsonify, abort from .utils import dump_json mod = Blueprint('gists', __name__) import string import random def id_generator(size=8, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def free_name(collection = None): while True: _id = id_generator() if not collection.find_one({ "name": _id }): return _id @mod.route('/api/gists', methods=['GET']) @dump_json def list_gists(): gists = db.db.gists return {"results" : list(gists.find({"post.public": True}))} @app.route('/api/gists/<name>', methods=['GET']) @dump_json def get_gist(name): app.logger.info(name) post = db.db.gists.find_one({ "name": name }, sort=[("version", -1)]) if post is None: abort(404) return post @app.route('/api/gists', methods=['POST']) @dump_json def post_gist(): post_data, name = request.json['post'], request.json.get('name', None) app.logger.debug(request.json) data = {"name": name, "post": post_data, "versions": [post_data], "version": 1} if not name: data['name'] = free_name(db.db.gists) else: post = db.db.gists.find_one({"name": name}, sort=[("version", -1)]) if post: data = post data['version'] += 1 data['post'] = post_data data['versions'].append(post_data) db.db.gists.save(data) return data @app.route('/api/gists/<name>/update_name', methods=['POST']) @dump_json def update_gist(name): post = db.db.gists.find_one({"name": name}) post['name'] = request.json['new_name'] db.db.gists.save(post) return post
29.982456
83
0.627267
beb09787ec93c789daf795e01d19d0edd395647b
3,893
py
Python
tests/unit/s3/test_lifecycle.py
ChimeraCoder/boto
fa886a95e0f2c09b15e0f10c7244a9b02df9007d
[ "MIT" ]
1
2021-08-13T09:07:07.000Z
2021-08-13T09:07:07.000Z
tests/unit/s3/test_lifecycle.py
ChimeraCoder/boto
fa886a95e0f2c09b15e0f10c7244a9b02df9007d
[ "MIT" ]
null
null
null
tests/unit/s3/test_lifecycle.py
ChimeraCoder/boto
fa886a95e0f2c09b15e0f10c7244a9b02df9007d
[ "MIT" ]
null
null
null
# Copyright (c) 2012 Amazon.com, Inc. or its affiliates. All Rights Reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # from tests.unit import AWSMockServiceTestCase from boto.s3.connection import S3Connection from boto.s3.bucket import Bucket from boto.s3.lifecycle import Rule, Lifecycle, Transition class TestS3LifeCycle(AWSMockServiceTestCase): connection_class = S3Connection def default_body(self): return """ <LifecycleConfiguration> <Rule> <ID>rule-1</ID> <Prefix>prefix/foo</Prefix> <Status>Enabled</Status> <Transition> <Days>30</Days> <StorageClass>GLACIER</StorageClass> </Transition> <Expiration> <Days>365</Days> </Expiration> </Rule> <Rule> <ID>rule-2</ID> <Prefix>prefix/bar</Prefix> <Status>Disabled</Status> <Transition> <Date>2012-12-31T00:00:000Z</Date> <StorageClass>GLACIER</StorageClass> </Transition> </Rule> </LifecycleConfiguration> """ def test_parse_lifecycle_response(self): self.set_http_response(status_code=200) bucket = Bucket(self.service_connection, 'mybucket') response = bucket.get_lifecycle_config() self.assertEqual(len(response), 2) rule = response[0] self.assertEqual(rule.id, 'rule-1') self.assertEqual(rule.prefix, 'prefix/foo') self.assertEqual(rule.status, 'Enabled') self.assertEqual(rule.expiration, 365) transition = rule.transition self.assertEqual(transition.days, 30) self.assertEqual(transition.storage_class, 'GLACIER') self.assertEqual(response[1].transition.date, '2012-12-31T00:00:000Z') def test_expiration_with_no_transition(self): lifecycle = Lifecycle() lifecycle.add_rule('myid', 'prefix', 'Enabled', 30) xml = lifecycle.to_xml() self.assertIn('<Expiration><Days>30</Days></Expiration>', xml) def test_expiration_is_optional(self): t = Transition(days=30, storage_class='GLACIER') r = Rule('myid', 'prefix', 'Enabled', expiration=None, transition=t) xml = r.to_xml() self.assertIn( '<Transition><StorageClass>GLACIER</StorageClass><Days>30</Days>', xml) def test_expiration_with_expiration_and_transition(self): t = Transition(date='2012-11-30T00:00:000Z', storage_class='GLACIER') r = Rule('myid', 'prefix', 'Enabled', expiration=30, transition=t) xml = r.to_xml() self.assertIn( '<Transition><StorageClass>GLACIER</StorageClass>' '<Date>2012-11-30T00:00:000Z</Date>', xml) self.assertIn('<Expiration><Days>30</Days></Expiration>', xml)
40.134021
78
0.653994
85b54e94e86ccf7d9c76c326e191c3bc4de9fa8c
3,505
py
Python
sly/apps/shrink/tests/test_forms.py
ppolle/sly
3458b5c58a75c65fdc72b91430e56ec37d2060e0
[ "MIT" ]
null
null
null
sly/apps/shrink/tests/test_forms.py
ppolle/sly
3458b5c58a75c65fdc72b91430e56ec37d2060e0
[ "MIT" ]
3
2021-03-19T23:38:19.000Z
2021-06-10T23:02:29.000Z
sly/apps/shrink/tests/test_forms.py
ppolle/sly
3458b5c58a75c65fdc72b91430e56ec37d2060e0
[ "MIT" ]
null
null
null
from django.test import TestCase from sly.apps.shrink.forms import UrlForm, RegisterUserForm, UserAuthForm # Create your tests here. class UrlFormTests(TestCase): def test_valid_form(self): data = { 'url': 'https://www.nation.co.ke/lifestyle/1190-1190-5p56avz/index.html', 'short_code':'weifbwie' } form = UrlForm(data=data) self.assertTrue(form.is_valid()) def test_form_valid_without_short_code_field(self): data = { 'url':'https://www.nation.co.ke/lifestyle/1190-1190-5p56avz/index.html' } form = UrlForm(data=data) self.assertTrue(form.is_valid()) def test_form_invalid(self): data = { 'short_code':'test' } form = UrlForm(data=data) if form.errors.items(): error = dict(form.errors.items()) self.assertTrue(error.keys(), error.values()) self.assertFalse(form.is_valid()) def test_invalid_url(self): data = { 'url':'abc' } form = UrlForm(data=data) if form.errors.items(): error = dict(form.errors.items()) self.assertEqual(error['url'][0], "This field has to be a proper URL") self.assertFalse(form.is_valid()) def test_ommit_own_url(self): data = { 'url':'http://example.com' } form = UrlForm(data=data) if form.errors.items(): error = dict(form.errors.items()) self.assertEqual(error['url'][0], "You cannot shorten a URL from this site") self.assertFalse(form.is_valid()) def test_a_short_code_cant_be_used_twice(self): data = { 'url': 'https://www.nation.co.ke/lifestyle/1190-1190-5p56avz/index.html', 'short_code':'weifbwie' } form = UrlForm(data=data) if form.errors.items(): error = dict(form.errors.items) self.assertTrue(error['short_code'][0], "A short url with that shortcode already exists, please try another code") self.assertTrue(form.is_valid()) class UserAuthFormTests(TestCase): def test_valid_form(self): data = { 'username':'ppolle', 'password1':'password' } form = UserAuthForm(data=data) if form.errors.items(): field, error = form.errors.items()[0] self.assertTrue(field, error) self.assertTrue(form.is_valid()) def test_invalid_form(self): data = { 'username':'ppolle'} form = UserAuthForm(data=data) if form.errors.items(): error = dict(form.errors.items()) self.assertTrue(error.keys(), error.values()) self.assertFalse(form.is_valid()) class RegisterUserFormTests(TestCase): def test_form_valid(self): data = {'first_name':'Peter', 'last_name':'Polle', 'email':'peterpolle@gmail.com', 'password1':'iamTHEBIGBOSS1234', 'password2':'iamTHEBIGBOSS1234', 'username':'ppolle' } form = RegisterUserForm(data=data) if form.errors.items(): field, error = form.errors.items()[0] self.assertEqual(field, error) self.assertTrue(form.is_valid()) def test_form_invalid(self): data = {'first_name':'Peter', 'last_name':'Polle', 'email':'peter@polle@gmail.com', 'password1':'iamTHEBIGBOSS1234', 'password2':'iamTHEBIGBOSS1234', } form = RegisterUserForm(data=data) self.assertFalse(form.is_valid()) def test_password1_must_be_equal_to_password2(self): data = {'first_name':'Peter', 'last_name':'Polle', 'email':'peterpolle@gmail.com', 'password1':'iamTHEBIGBOSS1234', 'password2':'iamTHEBIGBOSS123', 'username':'ppolle' } form = RegisterUserForm(data=data) if form.errors.items(): error = dict(form.errors.items()) self.assertEqual(error['password2'][0], "The two password fields didn't match.") self.assertFalse(form.is_valid())
26.353383
117
0.692725
8132157b345baf58142efc8ec4f98b590c18473f
1,625
py
Python
backintime/candles_providers/timeframe_dump/timeframe_dump.py
akim-mukhtarov/backtesting
2d0491b919885eeddd62c4079c9c7292381cb4f9
[ "MIT" ]
null
null
null
backintime/candles_providers/timeframe_dump/timeframe_dump.py
akim-mukhtarov/backtesting
2d0491b919885eeddd62c4079c9c7292381cb4f9
[ "MIT" ]
null
null
null
backintime/candles_providers/timeframe_dump/timeframe_dump.py
akim-mukhtarov/backtesting
2d0491b919885eeddd62c4079c9c7292381cb4f9
[ "MIT" ]
null
null
null
from .timeframe_dump_scheme import TimeframeDumpScheme from .utils import to_candle from ..candles_provider import CandlesProvider from ...timeframes import Timeframes import pandas as pd import datetime class TimeframeDump(CandlesProvider): def __init__( self, filename: str, timeframe_tag: Timeframes, scheme: TimeframeDumpScheme = TimeframeDumpScheme() ): # scheme specifies indexes to use for fetching candle' open time and OHLC info self._scheme = scheme self._data = pd.read_csv( filename, sep=';', parse_dates=[scheme.open_time_idx, scheme.close_time_idx] ) self._gen = None super().__init__(timeframe_tag) def current_date(self): if not self._start_date: return None ticks = self.get_ticks() time_passed = datetime.timedelta( seconds=ticks*self.candle_duration()) return self._start_date + time_passed def next(self) -> None: if not self._gen: self._gen = iter(self._data.iterrows()) _, row = next(self._gen) open_time = row[self._scheme.open_time_idx] if self._start_date: # skip rows until desired date while open_time < self._start_date: _, row = next(self._gen) open_time = row[self._scheme.open_time_idx] self._candle_buffer.open_time = open_time to_candle(row, scheme, self._candle_buffer) self._tick_counter.increment()
30.660377
87
0.606769
cf2610e897d3ed060d971132dfa54b8cc97e7eb2
23,401
py
Python
bansync/bansync.py
jack1142/SinbadCogs-1
e0f24c0dbc3f845aa7a37ca96d00ee59494911ca
[ "BSD-Source-Code" ]
null
null
null
bansync/bansync.py
jack1142/SinbadCogs-1
e0f24c0dbc3f845aa7a37ca96d00ee59494911ca
[ "BSD-Source-Code" ]
null
null
null
bansync/bansync.py
jack1142/SinbadCogs-1
e0f24c0dbc3f845aa7a37ca96d00ee59494911ca
[ "BSD-Source-Code" ]
null
null
null
from __future__ import annotations import asyncio import io import json import logging from datetime import datetime from typing import ( AsyncIterator, Collection, Dict, Generator, List, Optional, Set, Tuple, Union, cast, ) import discord from discord.ext.commands import Greedy from redbot.core import checks, commands from redbot.core.bot import Red from redbot.core.config import Config from redbot.core.data_manager import cog_data_path from redbot.core.modlog import create_case from redbot.core.utils.chat_formatting import box, pagify from .converters import MentionOrID, ParserError, SyndicatedConverter GuildList = List[discord.Guild] GuildSet = Set[discord.Guild] UserLike = Union[discord.Member, discord.User] def mock_user(idx: int) -> UserLike: return cast(discord.User, discord.Object(id=idx)) class AddOnceHandler(logging.FileHandler): """ Red's hot reload logic will break my logging if I don't do this. """ log = logging.getLogger("red.sinbadcogs.bansync") for handler in log.handlers: # Red hotreload shit.... can't use isinstance, need to check not already added. if handler.__class__.__name__ == "AddOnceHandler": break else: fp = cog_data_path(raw_name="BanSync") / "unhandled_exceptions.log" handler = AddOnceHandler(fp) formatter = logging.Formatter( "[%(asctime)s] [%(levelname)s] %(name)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S", style="%", ) handler.setFormatter(formatter) log.addHandler(handler) class BanSync(commands.Cog): """ Synchronize your bans. """ __version__ = "340.0.0" async def red_delete_data_for_user(self, **kwargs): """ Nothing to delete """ return def format_help_for_context(self, ctx): pre_processed = super().format_help_for_context(ctx) return f"{pre_processed}\nCog Version: {self.__version__}" def __init__(self, bot: Red, *args, **kwargs): super().__init__(*args, **kwargs) self.bot: Red = bot self.config = Config.get_conf(self, identifier=78631113035100160) self.config.register_global( excluded_from_automatic=[], per_request_base_ratelimit=0.02, # Approximately accurate. fractional_usage=0.5, opted_into_automatic=[], ) @commands.group() async def bansyncset(self, ctx: commands.Context): """ Options for bansync """ pass @checks.guildowner_or_permissions(administrator=True) @commands.guild_only() @bansyncset.command() async def automaticoptout(self, ctx: commands.GuildContext): """ This allows you to opt a server out of being selected for some actions The current things it will prevent: mjolnir|globalban bansync with automatic destinations syndicatebans with automatic destinations Things it will not prevent: bansync with an explicit choice to include the server. syndicatebans with explicit destinations The default (as of April 29, 2020) is being opted out. No settings for the prior version were re-purposed, and will require a new opt-in. This is due to a specific question in the application process for verified bots and ensuring that this cog can be used on those bots. """ async with self.config.opted_into_automatic() as opts: if ctx.guild.id not in opts: return await ctx.send( "This server is not currently opted into automatic actions." ) opts.remove(ctx.guild.id) await ctx.tick() @checks.guildowner_or_permissions(administrator=True) @commands.guild_only() @bansyncset.command() async def automaticoptin(self, ctx: commands.GuildContext): """ This allows you to opt into certain automatic actions. The current things it will opt into: mjolnir|globalban bansync with automatic destinations syndicatebans with automatic destinations Things which do not require an opt-in: bansync with an explicit choice to include the server. syndicatebans with explicit destinations The default (as of April 29, 2020) is being opted out. No settings for the prior version were re-purposed, and will require a new opt-in. This is due to a specific question in the application process for verified bots and ensuring that this cog can be used on those bots. """ async with self.config.opted_into_automatic() as opts: if ctx.guild.id in opts: return await ctx.send( "This server has already opted into automatic actions." ) opts.append(ctx.guild.id) await ctx.tick() @commands.bot_has_permissions(ban_members=True, attach_files=True) @checks.admin_or_permissions(ban_members=True) @commands.guild_only() @commands.command(name="exportbans") async def exportbans(self, ctx: commands.GuildContext): """ Exports current servers bans to json """ bans = await ctx.guild.bans() data = [b.user.id for b in bans] to_file = json.dumps(data).encode() fp = io.BytesIO(to_file) fp.seek(0) filename = f"{ctx.message.id}-bans.json" try: await ctx.send( ctx.author.mention, files=[discord.File(fp, filename=filename)] ) except discord.HTTPException: await ctx.send( ( "You have a very interesting ban list to be too large to send, open an issue." ) ) @commands.bot_has_permissions(ban_members=True) @checks.admin_or_permissions(ban_members=True) @commands.guild_only() @commands.command(name="importbans") async def importbans(self, ctx: commands.GuildContext): """ Imports bans from json """ if not ctx.message.attachments: return await ctx.send( "You definitely need to supply me an exported ban list to be imported." ) fp = io.BytesIO() a = ctx.message.attachments[0] await a.save(fp) try: data = json.load(fp) if not isinstance(data, list) or not all(isinstance(x, int) for x in data): raise TypeError() from None except (json.JSONDecodeError, TypeError): return await ctx.send("That wasn't an exported ban list") current_bans = await ctx.guild.bans() to_ban = set(data) - {b.user.id for b in current_bans} if not to_ban: return await ctx.send( "That list doesn't contain anybody not already banned." ) async with ctx.typing(): exit_codes = [ await self.ban_or_hackban( ctx.guild, idx, mod=ctx.author, reason=f"Imported ban by {ctx.author}({ctx.author.id})", ) for idx in to_ban ] if all(exit_codes): await ctx.message.add_reaction("\N{HAMMER}") elif not any(exit_codes): await ctx.send("You are not worthy") else: await ctx.send( "I got some of those, but other's couldn't be banned for some reason." ) @commands.command(name="bulkban") async def bulkban(self, ctx: commands.Context, *ids: int): """ bulk global bans by id """ rsn = f"Global ban authorized by {ctx.author}({ctx.author.id})" async with ctx.typing(): results = {i: await self.targeted_global_ban(ctx, i, rsn) for i in set(ids)} if all(results.values()): await ctx.message.add_reaction("\N{HAMMER}") elif not any(results.values()): await ctx.send("You are not worthy") else: await ctx.send( "I got some of those, but other's couldn't be banned for some reason." ) async def can_sync(self, guild: discord.Guild, mod: UserLike) -> bool: """ Determines if the specified user should be considered allowed to sync bans to the specified guild Parameters ---------- guild: discord.Guild mod: discord.User Returns ------- bool Whether the user is considered to be allowed to sync bans to the specified guild """ if not guild.me.guild_permissions.ban_members: return False mod_member = guild.get_member(mod.id) if mod_member: if mod_member.guild_permissions.ban_members: return True if await self.bot.is_admin(mod_member): return True if await self.bot.is_owner(mod): return True return False async def ban_filter( self, guild: discord.Guild, mod: UserLike, target: discord.abc.Snowflake ) -> bool: """ Determines if the specified user can ban another specified user in a guild Parameters ---------- guild: discord.Guild mod: discord.User target: discord.User Returns ------- bool """ # TODO: rewrite more maintainibly. is_owner: bool = await self.bot.is_owner(mod) mod_member = guild.get_member(mod.id) if mod_member is None and not is_owner: return False # noted below lines contain a superflous condition covered above to help mypy can_ban: bool = guild.me.guild_permissions.ban_members if not is_owner and mod_member is not None: # note can_ban &= mod_member.guild_permissions.ban_members target_m = guild.get_member(target.id) if target_m is not None and mod_member is not None: # note can_ban &= guild.me.top_role > target_m.top_role or guild.me == guild.owner can_ban &= target_m != guild.owner if not is_owner: can_ban &= ( mod_member.top_role > target_m.top_role or mod_member == guild.owner ) return can_ban async def ban_or_hackban( self, guild: discord.Guild, _id: int, *, mod: UserLike, reason: Optional[str] = None, ) -> bool: """ Attempts to ban a user in a guild, supressing errors and just returning a success or fail Parameters ---------- guild: discord.Guild _id: int mod: discord.User reason: :obj:`str`, optional Returns ------- bool Whether the ban was successful """ member: Optional[UserLike] = guild.get_member(_id) reason = reason or "Ban synchronization" if member is None: member = mock_user(_id) if not await self.ban_filter(guild, mod, member): return False try: await guild.ban(member, reason=reason, delete_message_days=0) except discord.HTTPException: return False else: await create_case( self.bot, guild, datetime.utcnow(), "ban", member, mod, reason ) return True async def guild_discovery( self, ctx: commands.Context, *, excluded: Optional[Collection[discord.Guild]] = None, considered: Optional[Collection[discord.Guild]] = None, ) -> AsyncIterator[discord.Guild]: """ Fetches guilds which can be considered for synchronization in the current context (lazily) Parameters ---------- ctx: commands.Context excluded: Set[discord.Guild] considered: Set[discord.Guild Yields ------- discord.Guild The next guild for use """ considered, excluded = considered or (), excluded or () for g in sorted(considered, key=lambda s: s.name): if g not in excluded and await self.can_sync(g, ctx.author): yield g async def interactive(self, ctx: commands.Context, excluded: GuildSet): guilds = [ g async for g in self.guild_discovery( ctx, excluded=excluded, considered=self.bot.guilds ) ] if not guilds: return -1 output = "\n".join( ( *(f"{i}: {guild.name}" for i, guild in enumerate(guilds, 1)), ( "Select a server to add to the sync list by number, " "or -1 to stop adding servers" ), ) ) page_gen = cast(Generator[str, None, None], pagify(output, delims=["\n"])) try: for page in page_gen: await ctx.send(box(page)) finally: page_gen.close() def pred(m): return m.channel == ctx.channel and m.author == ctx.author try: message = await self.bot.wait_for("message", check=pred, timeout=60) except asyncio.TimeoutError: return -2 else: try: message = int(message.content.strip()) if message == -1: return -1 return guilds[message - 1] except (ValueError, IndexError): await ctx.send("That wasn't a valid choice") return None async def process_sync( self, *, usr: discord.User, sources: GuildSet, dests: GuildSet, auto: bool = False, shred_ratelimits: bool = False, ) -> None: """ Processes a synchronization of bans Parameters ---------- usr: discord.User The user who authorized the synchronization sources: Set[discord.Guild] The guilds to sync from dests: Set[discord.Guild] The guilds to sync to auto: bool defaults as false, if provided destinations are augmented by the set of guilds which are not a source. shred_ratelimits: bool defaults false, allows for bypassing anti-choke measures. """ bans: Dict[int, Set[discord.User]] = {} banlist: Set[discord.User] = set() if auto: opt_ins: List[int] = await self.config.opted_into_automatic() dests = {g for g in dests if g.id in opt_ins} guilds: GuildSet = sources | dests for guild in guilds: bans[guild.id] = set() try: g_bans = {x.user for x in await guild.bans()} except discord.HTTPException as exc: log.exception( "Unhandled exception during ban synchronization", exc_info=exc ) else: bans[guild.id].update(g_bans) if guild in sources: banlist.update(g_bans) tasks = [] if shred_ratelimits and await self.bot.is_owner(usr): artificial_delay = 0.0 else: base_limt: float = await self.config.per_request_base_ratelimit() fractional_usage: float = await self.config.fractional_usage() artificial_delay = (base_limt / fractional_usage) * len(dests) for guild in dests: to_ban = banlist - bans[guild.id] tasks.append( self.do_bans_for_guild( guild=guild, mod=usr, targets=to_ban, artificial_delay=artificial_delay, ) ) await asyncio.gather(*tasks) async def do_bans_for_guild( self, *, guild: discord.Guild, mod: discord.User, targets: Set[discord.User], artificial_delay: float, ): """ This exists to speed up large syncs and consume ratelimits concurrently """ count = 0 for target in targets: if await self.ban_filter(guild, mod, target): await self.ban_or_hackban( guild, target.id, mod=mod, reason="Ban synchronization" ) if artificial_delay: await asyncio.sleep(artificial_delay) else: count += 1 if count % 10: # This is a safety measure to run infrequently # but only if no per ban delay is there already. await asyncio.sleep(0.1) @commands.command(name="bansync") async def ban_sync(self, ctx, auto=False): """ syncs bans across servers """ guilds: GuildSet = set() if not auto: while True: s = await self.interactive(ctx, guilds) if s == -1: break if s == -2: return await ctx.send("You took too long, try again later") if s is not None: guilds.add(s) elif auto is True: opt_ins = await self.config.opted_into_automatic() guilds = { g for g in self.bot.guilds if g.id in opt_ins and await self.can_sync(g, ctx.author) } if len(guilds) < 2: return await ctx.send("I need at least two servers to sync") async with ctx.typing(): await self.process_sync(usr=ctx.author, sources=guilds, dests=guilds) await ctx.tick() @checks.is_owner() @commands.command(name="syndicatebans") async def syndicated_bansync(self, ctx, *, query: SyndicatedConverter): """ Push bans from one or more servers to one or more others. This is not bi-directional, use `[p]bansync` for that. Usage: `[p]syndicatebans --sources id(s) [--destinations id(s) | --auto-destinations]` """ async with ctx.typing(): kwargs = query.to_dict() await self.process_sync(**kwargs) await ctx.tick() @syndicated_bansync.error async def syndicated_converter_handler( self, ctx, wrapped_error: commands.CommandError ): """ Parameters ---------- ctx: commands.Context wrapped_error: commmands.CommandError """ error = getattr(wrapped_error, "original", wrapped_error) if isinstance(error, ParserError): if error.args: await ctx.send(error.args[0]) else: await ctx.bot.on_command_error(ctx, wrapped_error, unhandled_by_cog=True) @commands.command(name="mjolnir", aliases=["globalban"]) async def mjolnir(self, ctx, users: Greedy[MentionOrID], *, reason: str = ""): """ Swing the heaviest of ban hammers """ async with ctx.typing(): banned = [ await self.targeted_global_ban(ctx, user.id, rsn=reason) for user in users ] if any(banned): await ctx.message.add_reaction("\N{HAMMER}") else: await ctx.send("You are not worthy") @commands.command() async def unglobalban(self, ctx, users: Greedy[MentionOrID], *, reason: str = ""): """ To issue forgiveness. Or to fix a fuckup. """ async def unban( guild: discord.Guild, *user_ids: int, rsn: Optional[str] = None ) -> Tuple[discord.Guild, Set[int]]: failures = set() it = iter(user_ids) for user_id in it: try: await guild.unban(discord.Object(id=user_id), reason=rsn) except discord.NotFound: pass # Not banned, don't count this as a failure except discord.Forbidden: failures.add(user_id) break # This can happen due to 2FA or a permission cache issue except discord.HTTPException as exc: log.exception( "Details of failed ban for user id %d in guild with id %d", user_id, guild.id, exc_info=exc, ) break for skipped_by_break in it: failures.add(skipped_by_break) return guild, failures to_consider: GuildSet = { g for g in self.bot.guilds if g.id in await self.config.opted_into_automatic() } guilds = [ g async for g in self.guild_discovery( ctx, excluded=None, considered=to_consider ) ] if not guilds: return await ctx.send( "No guilds are currently opted into automatic actions " "(Manual unbans or opt-ins required)" ) uids = [u.id for u in users] tasks = [unban(guild, *uids, rsn=(reason or None)) for guild in guilds] async with ctx.typing(): results = await asyncio.gather(*tasks) body = "\n\n".join( f"Unsuccessful unbans (by user ID) in guild: " f"{guild.name}({guild.id}):\n{', '.join(map(str, fails))}" for (guild, fails) in results if fails ) if not body: return await ctx.tick() message = ( f"Some unbans were unsuccesful, see below for a list of failures.\n\n{body}" ) page_gen = cast(Generator[str, None, None], pagify(message)) try: for page in page_gen: await ctx.send(page) finally: page_gen.close() async def targeted_global_ban( self, ctx: commands.Context, user: Union[discord.Member, int], rsn: Optional[str] = None, ) -> bool: """ Bans a user everywhere the current moderator is allowed to, except the exclusions in config Parameters ---------- ctx: commands.Context context the ban was issued from. user: Union[discord.Member, int] the target of the ban rsn: :obj:`str`, optional the reason to pass to discord for the ban. Returns ------- bool Whether the user was banned from at least 1 guild by this action. """ # passing an empty string reason to the gateway is bad. rsn = rsn or None _id: int = getattr(user, "id", user) opt_ins: GuildSet = { g for g in self.bot.guilds if g.id in await self.config.opted_into_automatic() } exit_codes = [ await self.ban_or_hackban(guild, _id, mod=ctx.author, reason=rsn) async for guild in self.guild_discovery(ctx, considered=opt_ins) ] return any(exit_codes)
31.665765
98
0.559421
dae43a42eb15816cf6cd611868e1746cbb365fae
42
py
Python
pdip/integrator/connection/types/sql/dialects/oracle/__init__.py
ahmetcagriakca/pdip
c4c16d5666a740154cabdc6762cd44d98b7bdde8
[ "MIT" ]
2
2021-12-09T21:07:46.000Z
2021-12-11T22:18:01.000Z
pdip/integrator/connection/types/sql/dialects/oracle/__init__.py
PythonDataIntegrator/pdip
c4c16d5666a740154cabdc6762cd44d98b7bdde8
[ "MIT" ]
null
null
null
pdip/integrator/connection/types/sql/dialects/oracle/__init__.py
PythonDataIntegrator/pdip
c4c16d5666a740154cabdc6762cd44d98b7bdde8
[ "MIT" ]
3
2021-11-15T00:47:00.000Z
2021-12-17T11:35:45.000Z
from .oracle_dialect import OracleDialect
21
41
0.880952
381b50cf2a4cabf03c93428f21fb58bb95b5316e
1,135
py
Python
classgrade/gradapp/migrations/0004_auto_20160921_2150.py
classgrade/classgrade
144dcfc9579e6858ff4aa79835c76b9611ed73b2
[ "MIT" ]
5
2016-11-15T17:46:27.000Z
2022-01-10T08:06:17.000Z
classgrade/gradapp/migrations/0004_auto_20160921_2150.py
classgrade/classgrade
144dcfc9579e6858ff4aa79835c76b9611ed73b2
[ "MIT" ]
21
2016-11-07T14:58:22.000Z
2021-02-02T21:41:12.000Z
classgrade/gradapp/migrations/0004_auto_20160921_2150.py
classgrade/classgrade
144dcfc9579e6858ff4aa79835c76b9611ed73b2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-09-21 21:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gradapp', '0003_assignmentype_title'), ] operations = [ migrations.RemoveField( model_name='assignmentype', name='list_student', ), migrations.AddField( model_name='assignmentype', name='list_students', field=models.FileField(blank=True, null=True, upload_to=''), ), migrations.AlterField( model_name='assignment', name='document', field=models.FileField(blank=True, null=True, upload_to=''), ), migrations.AlterField( model_name='assignmentype', name='file_type', field=models.CharField(default='ipynb', max_length=20), ), migrations.AlterField( model_name='assignmentype', name='title', field=models.CharField(default='', max_length=100), ), ]
28.375
72
0.577093
0fdadc5b5bfe8c596acdef7379a4f49c6522a956
4,441
py
Python
dependencies/pystache/pystache/loader.py
charlesmchen/typefacet
8c6db26d0c599ece16f3704696811275120a4044
[ "Apache-2.0" ]
21
2015-01-16T05:10:02.000Z
2021-06-11T20:48:15.000Z
dependencies/pystache/pystache/loader.py
charlesmchen/typefacet
8c6db26d0c599ece16f3704696811275120a4044
[ "Apache-2.0" ]
1
2019-09-09T12:10:27.000Z
2020-05-22T10:12:14.000Z
dependencies/pystache/pystache/loader.py
charlesmchen/typefacet
8c6db26d0c599ece16f3704696811275120a4044
[ "Apache-2.0" ]
2
2015-05-03T04:51:08.000Z
2018-08-24T08:28:53.000Z
# coding: utf-8 """ This module provides a Loader class for locating and reading templates. """ import os import sys from pystache import common from pystache import defaults from pystache.locator import Locator # We make a function so that the current defaults take effect. # TODO: revisit whether this is necessary. def _make_to_unicode(): def to_unicode(s, encoding=None): """ Raises a TypeError exception if the given string is already unicode. """ if encoding is None: encoding = defaults.STRING_ENCODING return unicode(s, encoding, defaults.DECODE_ERRORS) return to_unicode class Loader(object): """ Loads the template associated to a name or user-defined object. """ def __init__(self, file_encoding=None, extension=None, to_unicode=None, search_dirs=None): """ Construct a template loader instance. Arguments: extension: the template file extension. Pass False for no extension (i.e. to use extensionless template files). Defaults to the package default. file_encoding: the name of the encoding to use when converting file contents to unicode. Defaults to the package default. search_dirs: the list of directories in which to search when loading a template by name or file name. Defaults to the package default. to_unicode: the function to use when converting strings of type str to unicode. The function should have the signature: to_unicode(s, encoding=None) It should accept a string of type str and an optional encoding name and return a string of type unicode. Defaults to calling Python's built-in function unicode() using the package string encoding and decode errors defaults. """ if extension is None: extension = defaults.TEMPLATE_EXTENSION if file_encoding is None: file_encoding = defaults.FILE_ENCODING if search_dirs is None: search_dirs = defaults.SEARCH_DIRS if to_unicode is None: to_unicode = _make_to_unicode() self.extension = extension self.file_encoding = file_encoding # TODO: unit test setting this attribute. self.search_dirs = search_dirs self.to_unicode = to_unicode def _make_locator(self): return Locator(extension=self.extension) def unicode(self, s, encoding=None): """ Convert a string to unicode using the given encoding, and return it. This function uses the underlying to_unicode attribute. Arguments: s: a basestring instance to convert to unicode. Unlike Python's built-in unicode() function, it is okay to pass unicode strings to this function. (Passing a unicode string to Python's unicode() with the encoding argument throws the error, "TypeError: decoding Unicode is not supported.") encoding: the encoding to pass to the to_unicode attribute. Defaults to None. """ if isinstance(s, unicode): return unicode(s) return self.to_unicode(s, encoding) def read(self, path, encoding=None): """ Read the template at the given path, and return it as a unicode string. """ b = common.read(path) if encoding is None: encoding = self.file_encoding return self.unicode(b, encoding) # TODO: unit-test this method. def load_name(self, name): """ Find and return the template with the given name. Arguments: name: the name of the template. search_dirs: the list of directories in which to search. """ locator = self._make_locator() path = locator.find_name(name, self.search_dirs) return self.read(path) # TODO: unit-test this method. def load_object(self, obj): """ Find and return the template associated to the given object. Arguments: obj: an instance of a user-defined class. search_dirs: the list of directories in which to search. """ locator = self._make_locator() path = locator.find_object(obj, self.search_dirs) return self.read(path)
28.286624
79
0.635217
958e682d3c5e0e5b185d17731f0bf798d4a38e12
682
py
Python
kyu6/tests/test_autocomplete.py
juanshishido/codewars
d50d4ac07ddcc00fa2f7c367ec39cdb5e274d8da
[ "MIT" ]
null
null
null
kyu6/tests/test_autocomplete.py
juanshishido/codewars
d50d4ac07ddcc00fa2f7c367ec39cdb5e274d8da
[ "MIT" ]
null
null
null
kyu6/tests/test_autocomplete.py
juanshishido/codewars
d50d4ac07ddcc00fa2f7c367ec39cdb5e274d8da
[ "MIT" ]
null
null
null
import unittest from kyu6.autocomplete import autocomplete class TestAutocomplete(unittest.TestCase): dictionary = ['abnormal', 'arm-wrestling', 'absolute', 'airplane', 'airport', 'amazing', 'apple', 'ball' ] def test_ai(self): self.assertEquals(['airplane', 'airport'], autocomplete('ai', self.dictionary)) def test_a(self): self.assertEquals(['abnormal', 'arm-wrestling', 'absolute', 'airplane', 'airport'], autocomplete('a', self.dictionary)) def test_nonalpha(self): self.assertEquals(['ball'], autocomplete('b$%^', self.dictionary))
31
74
0.582111
ad75c375d5ac63e18266769c3c87c3959c776c9b
858
py
Python
Server/Server/Captcha/Util.py
mythsman/CatpchaRecognition
445985cd4df6147657a3b52ae38552016a771c7a
[ "MIT" ]
7
2017-03-02T09:08:37.000Z
2022-02-26T22:14:59.000Z
Server/Server/Captcha/Util.py
mythsman/CatpchaRecognition
445985cd4df6147657a3b52ae38552016a771c7a
[ "MIT" ]
null
null
null
Server/Server/Captcha/Util.py
mythsman/CatpchaRecognition
445985cd4df6147657a3b52ae38552016a771c7a
[ "MIT" ]
null
null
null
''' Created on Jul 16, 2016 @author: myths ''' import matplotlib.pyplot as plt import cv2, numpy as np def showImage(img): plt.imshow(img) plt.show() def otsu(img): _, im = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return im def resize(img, width, height): return cv2.resize(img, (width, height), interpolation=cv2.INTER_CUBIC) def bersen(img, blockSize=11, c=2): return cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, blockSize, c) def opening(img, kernelSize=2): kernel = np.ones((kernelSize, kernelSize), np.uint8) opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel) return opening def closing(img, kernelSize=2): kernel = np.ones((kernelSize, kernelSize), np.uint8) closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel) return closing
26.8125
107
0.710956
026bcf7f72396bfd75c236f0a18927b6f512b537
1,038
py
Python
Dangerous/Golismero/tools/sqlmap/plugins/dbms/sybase/takeover.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
null
null
null
Dangerous/Golismero/tools/sqlmap/plugins/dbms/sybase/takeover.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
null
null
null
Dangerous/Golismero/tools/sqlmap/plugins/dbms/sybase/takeover.py
JeyZeta/Dangerous-
824ea6b571eda98bb855f176361e9b35dfda578e
[ "MIT" ]
1
2018-07-04T18:35:16.000Z
2018-07-04T18:35:16.000Z
#!/usr/bin/env python """ Copyright (c) 2006-2013 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ from lib.core.exception import SqlmapUnsupportedFeatureException from plugins.generic.takeover import Takeover as GenericTakeover class Takeover(GenericTakeover): def __init__(self): GenericTakeover.__init__(self) def osCmd(self): errMsg = "on Sybase it is not possible to execute commands" raise SqlmapUnsupportedFeatureException(errMsg) def osShell(self): errMsg = "on Sybase it is not possible to execute commands" raise SqlmapUnsupportedFeatureException(errMsg) def osPwn(self): errMsg = "on Sybase it is not possible to establish an " errMsg += "out-of-band connection" raise SqlmapUnsupportedFeatureException(errMsg) def osSmb(self): errMsg = "on Sybase it is not possible to establish an " errMsg += "out-of-band connection" raise SqlmapUnsupportedFeatureException(errMsg)
32.4375
67
0.712909
5daca6e3bd1c44a4f22e0d4b5ca5098e546032c5
798
py
Python
backend/app.py
obdura/Connecting-React-Frontend-to-a-Flask-Backend
9287fdf9a82b7238f65e46335b1adf2d05cfcd41
[ "MIT" ]
10
2021-09-03T06:34:10.000Z
2022-03-16T05:30:40.000Z
backend/app.py
obdura/Connecting-React-Frontend-to-a-Flask-Backend
9287fdf9a82b7238f65e46335b1adf2d05cfcd41
[ "MIT" ]
null
null
null
backend/app.py
obdura/Connecting-React-Frontend-to-a-Flask-Backend
9287fdf9a82b7238f65e46335b1adf2d05cfcd41
[ "MIT" ]
10
2021-09-03T06:34:19.000Z
2022-03-31T12:56:20.000Z
# Import the required libraries from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_marshmallow import Marshmallow from flask_cors import CORS # Create various application instances # Order matters: Initialize SQLAlchemy before Marshmallow db = SQLAlchemy() migrate = Migrate() ma = Marshmallow() cors = CORS() def create_app(): """Application-factory pattern""" app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///database.db" app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # Initialize extensions # To use the application instances above, instantiate with an application: db.init_app(app) migrate.init_app(app, db) ma.init_app(app) cors.init_app(app) return app
25.741935
78
0.75188
bbeff265b8d713035b422ad7c5663caaa24e1a95
404
py
Python
sdk/python/pulumi_google_native/storage/__init__.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
44
2021-04-18T23:00:48.000Z
2022-02-14T17:43:15.000Z
sdk/python/pulumi_google_native/storage/__init__.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
354
2021-04-16T16:48:39.000Z
2022-03-31T17:16:39.000Z
sdk/python/pulumi_google_native/storage/__init__.py
AaronFriel/pulumi-google-native
75d1cda425e33d4610348972cd70bddf35f1770d
[ "Apache-2.0" ]
8
2021-04-24T17:46:51.000Z
2022-01-05T10:40:21.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from .. import _utilities import typing # Make subpackages available: if typing.TYPE_CHECKING: import pulumi_google_native.storage.v1 as __v1 v1 = __v1 else: v1 = _utilities.lazy_import('pulumi_google_native.storage.v1')
26.933333
80
0.730198
66606be3dc63805a74d475a2db8d5e4a91c76863
4,360
py
Python
lib/galaxy_test/api/test_groups.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
1
2021-05-18T02:20:43.000Z
2021-05-18T02:20:43.000Z
lib/galaxy_test/api/test_groups.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
null
null
null
lib/galaxy_test/api/test_groups.py
rhpvorderman/galaxy
178015f8eff0b0c7a59c0d6756658f6428222837
[ "CC-BY-3.0" ]
null
null
null
import json from galaxy_test.base.populators import DatasetPopulator from ._framework import ApiTestCase class GroupsApiTestCase(ApiTestCase): def setUp(self): super().setUp() self.dataset_populator = DatasetPopulator(self.galaxy_interactor) def test_create_valid(self, group_name: str = None): payload = self._build_valid_group_payload(group_name) response = self._post("groups", payload, admin=True, json=True) self._assert_status_code_is(response, 200) group = response.json()[0] # POST /api/groups returns a list self._assert_valid_group(group) return group def test_create_only_admin(self): response = self._post("groups", json=True) self._assert_status_code_is(response, 403) def test_create_invalid_params_raises_400(self): payload = self._build_valid_group_payload() payload["name"] = None response = self._post("groups", payload, admin=True, json=True) self._assert_status_code_is(response, 400) def test_create_duplicated_name_raises_409(self): payload = self._build_valid_group_payload() response = self._post("groups", payload, admin=True, json=True) self._assert_status_code_is(response, 200) response = self._post("groups", payload, admin=True, json=True) self._assert_status_code_is(response, 409) def test_index(self): self.test_create_valid() response = self._get("groups", admin=True) self._assert_status_code_is(response, 200) groups = response.json() assert isinstance(groups, list) assert len(groups) > 0 for group in groups: self._assert_valid_group(group) def test_index_only_admin(self): response = self._get("groups") self._assert_status_code_is(response, 403) def test_show(self): group = self.test_create_valid() group_id = group["id"] response = self._get(f"groups/{group_id}", admin=True) self._assert_status_code_is(response, 200) response_group = response.json() self._assert_valid_group(response_group) self._assert_has_keys(response_group, "users_url", "roles_url") def test_show_only_admin(self): group = self.test_create_valid() group_id = group["id"] response = self._get(f"groups/{group_id}") self._assert_status_code_is(response, 403) def test_show_unknown_raises_400(self): group_id = "invalid-group-id" response = self._get(f"groups/{group_id}", admin=True) self._assert_status_code_is(response, 400) def test_update(self): group = self.test_create_valid(group_name="group-test") group_id = group["id"] updated_name = "group-test-updated" update_payload = json.dumps({ "name": updated_name, }) update_response = self._put(f"groups/{group_id}", data=update_payload, admin=True) self._assert_status_code_is_ok(update_response) def test_update_only_admin(self): group = self.test_create_valid() group_id = group["id"] response = self._put(f"groups/{group_id}") self._assert_status_code_is(response, 403) def test_update_duplicating_name_raises_409(self): group_a = self.test_create_valid() group_b = self.test_create_valid() # Update group_b with the same name as group_a group_b_id = group_b["id"] updated_name = group_a["name"] update_payload = json.dumps({ "name": updated_name, }) update_response = self._put(f"groups/{group_b_id}", data=update_payload, admin=True) self._assert_status_code_is(update_response, 409) def _assert_valid_group(self, group, assert_id=None): self._assert_has_keys(group, "id", "name", "model_class", "url") if assert_id is not None: assert group["id"] == assert_id def _build_valid_group_payload(self, name: str = None): name = name or self.dataset_populator.get_random_name() user_id = self.dataset_populator.user_id() role_id = self.dataset_populator.user_private_role_id() payload = { "name": name, "user_ids": [user_id], "role_ids": [role_id], } return payload
36.949153
92
0.662156
4c0a51b9f0547b54fef80a0add8076eec0045f8f
5,061
py
Python
untypy/impl/generator.py
CodeSteak/untypy
b24c7e1a6e41cc86663e2f546508b21f8cbd719a
[ "MIT" ]
1
2021-09-14T15:06:24.000Z
2021-09-14T15:06:24.000Z
untypy/impl/generator.py
CodeSteak/untypy
b24c7e1a6e41cc86663e2f546508b21f8cbd719a
[ "MIT" ]
null
null
null
untypy/impl/generator.py
CodeSteak/untypy
b24c7e1a6e41cc86663e2f546508b21f8cbd719a
[ "MIT" ]
1
2021-09-14T15:06:29.000Z
2021-09-14T15:06:29.000Z
import collections.abc import inspect import sys from collections import Generator from typing import Any, Optional from typing import Generator as OtherGenerator from untypy.error import UntypyTypeError, UntypyAttributeError, Location from untypy.interfaces import TypeChecker, TypeCheckerFactory, CreationContext, ExecutionContext from untypy.util import CompoundTypeExecutionContext, NoResponsabilityWrapper GeneratorTypeA = type(Generator[None, None, None]) GeneratorTypeB = type(OtherGenerator[None, None, None]) class GeneratorFactory(TypeCheckerFactory): def create_from(self, annotation: Any, ctx: CreationContext) -> Optional[TypeChecker]: if type(annotation) in [GeneratorTypeA, GeneratorTypeB] and annotation.__origin__ == collections.abc.Generator: if len(annotation.__args__) != 3: raise ctx.wrap(UntypyAttributeError(f"Expected 3 type arguments for Generator.")) (yield_checker, send_checker, return_checker) = list( map(lambda a: ctx.find_checker(a), annotation.__args__)) if yield_checker is None: raise ctx.wrap(UntypyAttributeError(f"The Yield Annotation of the Generator could not be resolved.")) if send_checker is None: raise ctx.wrap(UntypyAttributeError(f"The Send Annotation of the Generator could not be resolved.")) if return_checker is None: raise ctx.wrap(UntypyAttributeError(f"The Return Annotation of the Generator could not be resolved.")) return GeneratorChecker(yield_checker, send_checker, return_checker) else: return None class GeneratorChecker(TypeChecker): yield_checker: TypeChecker send_checker: TypeChecker return_checker: TypeChecker def __init__(self, yield_checker: TypeChecker, send_checker: TypeChecker, return_checker: TypeChecker): self.yield_checker = yield_checker self.send_checker = send_checker self.return_checker = return_checker def may_be_wrapped(self) -> bool: return True def check_and_wrap(self, arg: Any, ctx: ExecutionContext) -> Any: if not inspect.isgenerator(arg): raise ctx.wrap(UntypyTypeError(arg, self.describe())) me = self yield_ctx = TypedGeneratorYieldReturnContext(arg, self, True, ctx) return_ctx = TypedGeneratorYieldReturnContext(arg, self, False, ctx) def wrapped(): try: sent = None while True: value_yield = arg.send(sent) # check value_yield (arg is responsable) value_yield = me.yield_checker.check_and_wrap(value_yield, yield_ctx) sent = yield value_yield caller = sys._getframe(1) # check sent value (caller is responsable) sent = me.send_checker.check_and_wrap(sent, TypedGeneratorSendContext(caller, me, ctx)) except StopIteration as e: # check value_returned (arg is responsable) ret = me.return_checker.check_and_wrap(e.value, return_ctx) return ret return wrapped() def describe(self) -> str: return f"Generator[{self.yield_checker.describe()}, {self.send_checker.describe()}, {self.return_checker.describe()}]" def base_type(self) -> Any: return [GeneratorType] class TypedGeneratorYieldReturnContext(CompoundTypeExecutionContext): generator: Generator[Any, Any, Any] def __init__(self, generator: Generator[Any, Any, Any], checker: GeneratorChecker, is_yield: bool, upper: ExecutionContext): self.generator = generator # index in checkers list if is_yield: idx = 0 else: idx = 2 super().__init__(upper, [checker.yield_checker, checker.send_checker, checker.return_checker], idx) def name(self) -> str: return "Generator" def responsable(self) -> Optional[Location]: try: if hasattr(self.generator, 'gi_frame'): return Location( file=inspect.getfile(self.generator.gi_frame), line_no=inspect.getsourcelines(self.generator.gi_frame)[1], source_line="\n".join(inspect.getsourcelines(self.generator.gi_frame)[0]), ) except OSError: # this call does not work all the time pass except TypeError: pass return None class TypedGeneratorSendContext(CompoundTypeExecutionContext): def __init__(self, stack: inspect.FrameInfo, checker: GeneratorChecker, upper: ExecutionContext): self.stack = stack super().__init__(NoResponsabilityWrapper(upper), [checker.yield_checker, checker.send_checker, checker.return_checker], 1) def name(self) -> str: return "Generator" def responsable(self) -> Optional[Location]: return Location.from_stack(self.stack)
39.232558
126
0.659751
8077eab42f3064c246e80589bf687e989553355d
28,620
py
Python
app/weixin_utils/client.py
w940853815/weixin-robot
73b7b447241c1a74a14b21c6c11fc652b30f7ebb
[ "Apache-2.0" ]
12
2017-06-24T02:13:22.000Z
2021-03-16T02:43:40.000Z
app/weixin_utils/client.py
w940853815/weixin-robot
73b7b447241c1a74a14b21c6c11fc652b30f7ebb
[ "Apache-2.0" ]
7
2017-04-08T07:45:19.000Z
2020-01-06T05:50:30.000Z
app/weixin_utils/client.py
w940853815/weixin-robot
73b7b447241c1a74a14b21c6c11fc652b30f7ebb
[ "Apache-2.0" ]
1
2017-07-31T01:09:27.000Z
2017-07-31T01:09:27.000Z
# -*- coding: utf-8 -*- # coding=utf-8 __author__ = 'ruidong.wang@tsingdata.com' import time import six import requests from requests.compat import json as _json from config_web import WEI_XIN_APP_ID, WEI_XIN_APP_SECRET import sys reload(sys) sys.setdefaultencoding('utf8') class ClientException(Exception): pass def check_error(json): """ 检测微信公众平台返回值中是否包含错误的返回码。 如果返回码提示有错误,抛出一个 :class:`ClientException` 异常。否则返回 True 。 """ if "errcode" in json and json["errcode"] != 0: raise ClientException("{}: {}".format(json["errcode"], json["errmsg"])) return json def to_text(value, encoding="utf-8"): if isinstance(value, six.text_type): return value if isinstance(value, six.binary_type): return value.decode(encoding) return six.text_type(value) class Client(object): """ 微信 API 操作类 通过这个类可以方便的通过微信 API 进行一系列操作,比如主动发送消息、创建自定义菜单等 """ def __init__(self): self._token = None self.token_expires_at = None @property def appid(self): return WEI_XIN_APP_ID @property def appsecret(self): return WEI_XIN_APP_SECRET def request(self, method, url, **kwargs): if "params" not in kwargs: kwargs["params"] = {"access_token": self.token} if isinstance(kwargs.get("data", ""), dict): body = _json.dumps(kwargs["data"], ensure_ascii=False) body = body.encode('utf8') kwargs["data"] = body r = requests.request( method=method, url=url, **kwargs ) r.raise_for_status() json = r.json() if check_error(json): return json def get(self, url, **kwargs): return self.request( method="get", url=url, **kwargs ) def post(self, url, **kwargs): return self.request( method="post", url=url, **kwargs ) def grant_token(self): """ 获取 Access Token。 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/token", params={ "grant_type": "client_credential", "appid": self.appid, "secret": self.appsecret } ) def get_access_token(self): """ 判断现有的token是否过期。 用户需要多进程或者多机部署可以手动重写这个函数 来自定义token的存储,刷新策略。 :return: 返回token """ if self._token: now = time.time() if self.token_expires_at - now > 60: return self._token json = self.grant_token() self._token = json["access_token"] self.token_expires_at = int(time.time()) + json["expires_in"] return self._token @property def token(self): return self.get_access_token() def get_ip_list(self): """ 获取微信服务器IP地址。 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/getcallbackip" ) def create_menu(self, menu_data): """ 创建自定义菜单:: client.create_menu({ "button":[ { "type":"click", "name":"今日歌曲", "key":"V1001_TODAY_MUSIC" }, { "type":"click", "name":"歌手简介", "key":"V1001_TODAY_SINGER" }, { "name":"菜单", "sub_button":[ { "type":"view", "name":"搜索", "url":"http://www.soso.com/" }, { "type":"view", "name":"视频", "url":"http://v.qq.com/" }, { "type":"click", "name":"赞一下我们", "key":"V1001_GOOD" } ] } ]}) :param menu_data: Python 字典 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/menu/create", data=menu_data ) def get_menu(self): """ 查询自定义菜单。 :return: 返回的 JSON 数据包 """ return self.get("https://api.weixin.qq.com/cgi-bin/menu/get") def delete_menu(self): """ 删除自定义菜单。 :return: 返回的 JSON 数据包 """ return self.get("https://api.weixin.qq.com/cgi-bin/menu/delete") def create_custom_menu(self, menu_data, matchrule): """ 创建个性化菜单:: button = [ { "type":"click", "name":"今日歌曲", "key":"V1001_TODAY_MUSIC" }, { "name":"菜单", "sub_button":[ { "type":"view", "name":"搜索", "url":"http://www.soso.com/" }, { "type":"view", "name":"视频", "url":"http://v.qq.com/" }, { "type":"click", "name":"赞一下我们", "key":"V1001_GOOD" }] }] matchrule = { "group_id":"2", "sex":"1", "country":"中国", "province":"广东", "city":"广州", "client_platform_type":"2", "language":"zh_CN" } client.create_custom_menu(button, matchrule) :param menu_data: 如上所示的 Python 字典 :param matchrule: 如上所示的匹配规则 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/menu/addconditional", data={ "button": menu_data, "matchrule": matchrule } ) def delete_custom_menu(self, menu_id): """ 删除个性化菜单。 :param menu_id: 菜单的 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/menu/delconditional", data={ "menuid": menu_id } ) def match_custom_menu(self, user_id): """ 测试个性化菜单匹配结果。 :param user_id: 要测试匹配的用户 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/menu/trymatch", data={ "user_id": user_id } ) def get_custom_menu_config(self): """ 获取自定义菜单配置接口。 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/get_current_selfmenu_info" ) def add_custom_service_account(self, account, nickname, password): """ 添加客服帐号。 :param account: 客服账号的用户名 :param nickname: 客服账号的昵称 :param password: 客服账号的密码 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/customservice/kfaccount/add", data={ "kf_account": account, "nickname": nickname, "password": password } ) def update_custom_service_account(self, account, nickname, password): """ 修改客服帐号。 :param account: 客服账号的用户名 :param nickname: 客服账号的昵称 :param password: 客服账号的密码 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/customservice/kfaccount/update", data={ "kf_account": account, "nickname": nickname, "password": password } ) def delete_custom_service_account(self, account, nickname, password): """ 删除客服帐号。 :param account: 客服账号的用户名 :param nickname: 客服账号的昵称 :param password: 客服账号的密码 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/customservice/kfaccount/del", data={ "kf_account": account, "nickname": nickname, "password": password } ) def upload_custom_service_account_avatar(self, account, avatar): """ 设置客服帐号的头像。 :param account: 客服账号的用户名 :param avatar: 头像文件,必须是 jpg 格式 :return: 返回的 JSON 数据包 """ return self.post( url="http://api.weixin.qq.com/customservice/kfaccount/uploadheadimg", params={ "access_token": self.token, "kf_account": account }, files={ "media": avatar } ) def get_custom_service_account_list(self): """ 获取所有客服账号。 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/customservice/getkflist" ) def upload_media(self, media_type, media_file): """ 上传临时多媒体文件。 :param media_type: 媒体文件类型,分别有图片(image)、语音(voice)、视频(video)和缩略图(thumb) :param media_file: 要上传的文件,一个 File-object :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/media/upload", params={ "access_token": self.token, "type": media_type }, files={ "media": media_file } ) def download_media(self, media_id): """ 下载临时多媒体文件。 :param media_id: 媒体文件 ID :return: requests 的 Response 实例 """ return requests.get( url="https://api.weixin.qq.com/cgi-bin/media/get", params={ "access_token": self.token, "media_id": media_id } ) def add_news(self, articles): """ 新增永久图文素材:: articles = [{ "title": TITLE, "thumb_media_id": THUMB_MEDIA_ID, "author": AUTHOR, "digest": DIGEST, "show_cover_pic": SHOW_COVER_PIC(0 / 1), "content": CONTENT, "content_source_url": CONTENT_SOURCE_URL } # 若新增的是多图文素材,则此处应有几段articles结构,最多8段 ] client.add_news(articles) :param articles: 如示例中的数组 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/material/add_news", data={ "articles": articles } ) def upload_news_picture(self, file): """ 上传图文消息内的图片。 :param file: 要上传的文件,一个 File-object :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/media/uploadimg", params={ "access_token": self.token }, files={ "media": file } ) def upload_permanent_media(self, media_type, media_file): """ 上传其他类型永久素材。 :param media_type: 媒体文件类型,分别有图片(image)、语音(voice)和缩略图(thumb) :param media_file: 要上传的文件,一个 File-object :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/material/add_material", params={ "access_token": self.token, "type": media_type }, files={ "media": media_file } ) def upload_permanent_video(self, title, introduction, video): """ 上传永久视频。 :param title: 视频素材的标题 :param introduction: 视频素材的描述 :param video: 要上传的视频,一个 File-object :return: requests 的 Response 实例 """ return requests.post( url="https://api.weixin.qq.com/cgi-bin/material/add_material", params={ "access_token": self.token, "type": "video" }, data={ "description": _json.dumps({ "title": title, "introduction": introduction }, ensure_ascii=False).encode("utf-8") }, files={ "media": video } ) def download_permanent_media(self, media_id): """ 获取永久素材。 :param media_id: 媒体文件 ID :return: requests 的 Response 实例 """ return requests.post( url="https://api.weixin.qq.com/cgi-bin/material/get_material", params={ "access_token": self.token }, data=_json.dumps({ "media_id": media_id }, ensure_ascii=False).encode("utf-8") ) def delete_permanent_media(self, media_id): """ 删除永久素材。 :param media_id: 媒体文件 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/material/del_material", data={ "media_id": media_id } ) def update_news(self, update_data): """ 修改永久图文素材:: update_data = { "media_id":MEDIA_ID, "index":INDEX, "articles": { "title": TITLE, "thumb_media_id": THUMB_MEDIA_ID, "author": AUTHOR, "digest": DIGEST, "show_cover_pic": SHOW_COVER_PIC(0 / 1), "content": CONTENT, "content_source_url": CONTENT_SOURCE_URL } } client.update_news(update_data) :param update_data: 更新的数据,要包含 media_id(图文素材的 ID),index(要更新的文章在图文消息中的位置),articles(新的图文素材数据) :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/material/update_news", data=update_data ) def get_media_count(self): """ 获取素材总数。 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/material/get_materialcount" ) def get_media_list(self, media_type, offset, count): """ 获取素材列表。 :param media_type: 素材的类型,图片(image)、视频(video)、语音 (voice)、图文(news) :param offset: 从全部素材的该偏移位置开始返回,0表示从第一个素材返回 :param count: 返回素材的数量,取值在1到20之间 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/material/batchget_material", data={ "type": media_type, "offset": offset, "count": count } ) def create_group(self, name): """ 创建分组。 :param name: 分组名字(30个字符以内) :return: 返回的 JSON 数据包 """ name = to_text(name) return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/create", data={"group": {"name": name}} ) def get_groups(self): """ 查询所有分组。 :return: 返回的 JSON 数据包 """ return self.get("https://api.weixin.qq.com/cgi-bin/groups/get") def get_group_by_id(self, openid): """ 查询用户所在分组。 :param openid: 用户的OpenID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/getid", data={"openid": openid} ) def update_group(self, group_id, name): """ 修改分组名。 :param group_id: 分组 ID,由微信分配 :param name: 分组名字(30个字符以内) :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/update", data={"group": { "id": int(group_id), "name": to_text(name) }} ) def move_user(self, user_id, group_id): """ 移动用户分组。 :param user_id: 用户 ID,即收到的 `Message` 的 source :param group_id: 分组 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/members/update", data={ "openid": user_id, "to_groupid": group_id } ) def move_users(self, user_id_list, group_id): """ 批量移动用户分组。 :param user_id_list: 用户 ID 的列表(长度不能超过50) :param group_id: 分组 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/members/batchupdate", data={ "openid_list": user_id_list, "to_groupid": group_id } ) def delete_group(self, group_id): """ 删除分组。 :param group_id: 要删除的分组的 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/groups/delete", data={ "group": { "id": group_id } } ) def remark_user(self, user_id, remark): """ 设置备注名。 :param user_id: 设置备注名的用户 ID :param remark: 新的备注名,长度必须小于30字符 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/user/info/updateremark", data={ "openid": user_id, "remark": remark } ) def get_user_info(self, user_id, lang="zh_CN"): """ 获取用户基本信息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param lang: 返回国家地区语言版本,zh_CN 简体,zh_TW 繁体,en 英语 :return: 返回的 JSON 数据包 """ return self.get( url="https://api.weixin.qq.com/cgi-bin/user/info", params={ "access_token": self.token, "openid": user_id, "lang": lang } ) def get_users_info(self, user_id_list, lang="zh_CN"): """ 批量获取用户基本信息。 :param user_id_list: 用户 ID 的列表 :param lang: 返回国家地区语言版本,zh_CN 简体,zh_TW 繁体,en 英语 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/user/info/batchget", data={ "user_list": [ {"openid": user_id, "lang": lang} for user_id in user_id_list ] } ) def get_followers(self, first_user_id=None): """ 获取关注者列表 详情请参考 http://mp.weixin.qq.com/wiki/index.php?title=获取关注者列表 :param first_user_id: 可选。第一个拉取的OPENID,不填默认从头开始拉取 :return: 返回的 JSON 数据包 """ params = { "access_token": self.token } if first_user_id: params["next_openid"] = first_user_id return self.get( "https://api.weixin.qq.com/cgi-bin/user/get", params=params ) def send_text_message(self, user_id, content): """ 发送文本消息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param content: 消息正文 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "text", "text": {"content": content} } ) def send_image_message(self, user_id, media_id): """ 发送图片消息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param media_id: 图片的媒体ID。 可以通过 :func:`upload_media` 上传。 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "image", "image": { "media_id": media_id } } ) def send_voice_message(self, user_id, media_id): """ 发送语音消息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param media_id: 发送的语音的媒体ID。 可以通过 :func:`upload_media` 上传。 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "voice", "voice": { "media_id": media_id } } ) def send_video_message(self, user_id, media_id, title=None, description=None): """ 发送视频消息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param media_id: 发送的视频的媒体ID。 可以通过 :func:`upload_media` 上传。 :param title: 视频消息的标题 :param description: 视频消息的描述 :return: 返回的 JSON 数据包 """ video_data = { "media_id": media_id, } if title: video_data["title"] = title if description: video_data["description"] = description return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "video", "video": video_data } ) def send_music_message(self, user_id, url, hq_url, thumb_media_id, title=None, description=None): """ 发送音乐消息。 注意如果你遇到了缩略图不能正常显示的问题, 不要慌张; 目前来看是微信服务器端的问题。 对此我们也无能为力 ( `#197 <https://github.com/whtsky/WeRoBot/issues/197>`_ ) :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param url: 音乐链接 :param hq_url: 高品质音乐链接,wifi环境优先使用该链接播放音乐 :param thumb_media_id: 缩略图的媒体ID。 可以通过 :func:`upload_media` 上传。 :param title: 音乐标题 :param description: 音乐描述 :return: 返回的 JSON 数据包 """ music_data = { "musicurl": url, "hqmusicurl": hq_url, "thumb_media_id": thumb_media_id } if title: music_data["title"] = title if description: music_data["description"] = description return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "music", "music": music_data } ) # def send_article_message(self, user_id, articles): # """ # 发送图文消息:: # # articles = [ # { # "title":"Happy Day", # "description":"Is Really A Happy Day", # "url":"URL", # "picurl":"PIC_URL" # }, # { # "title":"Happy Day", # "description":"Is Really A Happy Day", # "url":"URL", # "picurl":"PIC_URL" # } # ] # client.send_acticle_message("user_id", acticles) # # :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source # :param articles: 一个包含至多8个 article 字典或 Article 对象的数组 # :return: 返回的 JSON 数据包 # """ # if isinstance(articles[0], Article): # formatted_articles = [] # for article in articles: # result = article.args # result["picurl"] = result.pop("img") # formatted_articles.append(result) # else: # formatted_articles = articles # return self.post( # url="https://api.weixin.qq.com/cgi-bin/message/custom/send", # data={ # "touser": user_id, # "msgtype": "news", # "news": { # "articles": formatted_articles # } # } # ) def send_news_message(self, user_id, media_id): """ 发送永久素材中的图文消息。 :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param media_id: 媒体文件 ID :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/message/custom/send", data={ "touser": user_id, "msgtype": "mpnews", "mpnews": { "media_id": media_id } } ) def create_qrcode(self, data): """ 创建二维码。 :param data: 你要发送的参数 dict :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/qrcode/create", data=data ) def show_qrcode(self, ticket): """ 通过ticket换取二维码。 :param ticket: 二维码 ticket 。可以通过 :func:`create_qrcode` 获取到 :return: 返回的 Request 对象 """ return requests.get( url="https://mp.weixin.qq.com/cgi-bin/showqrcode", params={ "ticket": ticket } ) def send_template_message(self, user_id, template_id, data, url=''): """ 发送模板消息 详情请参考 http://mp.weixin.qq.com/wiki/17/304c1885ea66dbedf7dc170d84999a9d.html :param user_id: 用户 ID 。 就是你收到的 `Message` 的 source :param template_id: 模板 ID。 :param data: 用于渲染模板的数据。 :param url: 模板消息的可选链接。 :return: 返回的 JSON 数据包 """ return self.post( url="https://api.weixin.qq.com/cgi-bin/message/template/send", data={ "touser": user_id, "template_id": template_id, "url": url, "data": data } ) if __name__ == '__main__': c = Client() print c.get_access_token() c.create_custom_menu({ "button":[ { "type":"click", "name":"机器人简介", "key":"V1001_TODAY_SUMMARY" }, { "type":"click", "name":"开发人员", "key":"V1001_TODAY_DEVELOPER" }, { "name":"功能", "sub_button":[ { "type":"click", "name":"聊天", "url":"V1001_TODAY_TALK" }, { "type":"view", "name":"教我学习", "url":"http://123.207.139.130" }, { "type":"click", "name":"问问百度百科", "key":"V1001_TODAY_BAIKE" }, { "type": "click", "name": "和图灵机器人聊天", "key" : "V1001_TODAY_TULING" }, { "type": "click", "name": "问问知乎", "key" : "V1001_TODAY_ZHIHU" }, ] } ]}, matchrule={ "group_id" : "2", "sex" : "1", "country" : "中国", "province" : "山西", "city" : "太原", "client_platform_type": "2", "language" : "zh_CN" } )
28.003914
98
0.4471
737e6b4782c9dde363de803b8f50217d86852815
5,111
py
Python
gocd_tools/defaults.py
rasmunk/gocd-tools
2567756d993d1b323bde2b2903457df598f19dc6
[ "MIT" ]
null
null
null
gocd_tools/defaults.py
rasmunk/gocd-tools
2567756d993d1b323bde2b2903457df598f19dc6
[ "MIT" ]
null
null
null
gocd_tools/defaults.py
rasmunk/gocd-tools
2567756d993d1b323bde2b2903457df598f19dc6
[ "MIT" ]
null
null
null
import os from gocd_tools.utils import is_env_set PACKAGE_NAME = "gocd-tools" # API Request Defaults CONTENT_TYPE = "application/json" JSON_HEADER = {"Content-Type": CONTENT_TYPE} API_VERSION_1 = "application/vnd.go.cd.v1+json" API_VERSION_2 = "application/vnd.go.cd.v2+json" API_VERSION_3 = "application/vnd.go.cd.v3+json" API_VERSION_4 = "application/vnd.go.cd.v4+json" API_VERSION_7 = "application/vnd.go.cd.v7+json" ACCEPT_HEADER_1 = {"Accept": API_VERSION_1, **JSON_HEADER} ACCEPT_HEADER_2 = {"Accept": API_VERSION_2, **JSON_HEADER} ACCEPT_HEADER_3 = {"Accept": API_VERSION_3, **JSON_HEADER} ACCEPT_HEADER_4 = {"Accept": API_VERSION_4, **JSON_HEADER} ACCEPT_HEADER_7 = {"Accept": API_VERSION_7, **JSON_HEADER} GITHUB_API_VERSION = "application/vnd.github.v3+json" GITHUB_ACCEPT_HEADER = {"Accept": GITHUB_API_VERSION} # API default endpoints if "GOCD_BASE_URL" in os.environ: GOCD_BASE_URL = os.environ["GOCD_BASE_URL"] if GOCD_BASE_URL == "": print( "The require environment variable GOCD_BASE_URL was empty: {}".format( GOCD_BASE_URL ) ) exit(1) # Github URLs GITHUB_AUTH_URL = "https://api.github.com/user" GITHUB_GOCD_AUTH_URL = "" # Public URLs GO_URL = "{}/go".format(GOCD_BASE_URL) API_URL = "{}/api".format(GO_URL) AUTH_URL = "{}/current_user".format(API_URL) ELASTIC_AGENT_URL = "{}/elastic/profiles".format(API_URL) ADMIN_URL = "{}/admin".format(API_URL) SECURITY_URL = "{}/security".format(ADMIN_URL) ROLE_URL = "{}/roles".format(SECURITY_URL) # Restricted URLs AUTHORIZATION_CONFIG_URL = "{}/auth_configs".format(SECURITY_URL) CLUSTER_PROFILES_URL = "{}/elastic/cluster_profiles".format(ADMIN_URL) PIPELINE_GROUPS_URL = "{}/pipeline_groups".format(ADMIN_URL) CONFIG_REPO_URL = "{}/config_repos".format(ADMIN_URL) TEMPLATE_URL = "{}/templates".format(ADMIN_URL) SECRET_CONFIG_URL = "{}/secret_configs".format(ADMIN_URL) # Server config CONFIG_SERVER = "{}/config/server".format(ADMIN_URL) ARTIFACT_CONFIG = "{}/artifact_config".format(CONFIG_SERVER) if "GOCD_AUTH_TOKEN" in os.environ: GOCD_AUTH_TOKEN = os.environ["GOCD_AUTH_TOKEN"] # The GOCD_AUTH_TOKEN is the one generate within the GOCD server # (Not GitHub) else: GOCD_AUTH_TOKEN = "" if "GITHUB_AUTH_TOKEN" in os.environ: GITHUB_AUTH_TOKEN = os.environ["GITHUB_AUTH_TOKEN"] else: GITHUB_AUTH_TOKEN = "" AUTHORIZATION_HEADER = { "Authorization": "bearer {}".format(GOCD_AUTH_TOKEN), **ACCEPT_HEADER_1, } GITHUB_AUTHORIZATION_HEADER = { "Authorization": "token {}".format(GITHUB_AUTH_TOKEN), **GITHUB_ACCEPT_HEADER, } # Server defaults GO_DATA_DIR = "/godata" GO_SECRET_DIR = "/gosecret" GO_SECRET_DB_FILE = "secrets.yml" GO_CONFIG_DIR = os.path.join(os.path.expanduser("~"), ".{}".format(PACKAGE_NAME)) GO_PLUGIN_DIR = os.path.join(GO_DATA_DIR, "plugins") # Other constants GOCD_SECRET_PLUGIN = "gocd-file-based-secrets-plugin.jar" BUNDLED_PLUGIN = "bundled" EXTERNAL_PLUGIN = "external" # Environment variables ENV_GO_DATA_DIR = "GO_DATA_DIR" ENV_GO_SECRET_DIR = "GO_SECRET_DIR" ENV_GO_SECRET_DB_FILE = "GO_SECRET_DB_FILE" ENV_GO_CONFIG_DIR = "GO_CONFIG_DIR" ENV_GO_PLUGIN_DIR = "GO_PLUGIN_DIR" # Default configuration input paths default_base_path = GO_CONFIG_DIR default_config_path = os.path.join(default_base_path, "config") artifacts_config_path = os.path.join(default_config_path, "artifacts_config.yml") authorization_config_path = os.path.join( default_config_path, "authorization_configuration.yml" ) cluster_profiles_path = os.path.join(default_config_path, "cluster_profiles.yml") config_repositories_path = os.path.join(default_config_path, "config_repositories.yml") elastic_agent_profile_path = os.path.join( default_config_path, "elastic_agent_profiles.yml" ) pipeline_group_configs_path = os.path.join( default_config_path, "pipeline_group_configs.yml" ) roles_path = os.path.join(default_config_path, "roles.yml") secret_configs_path = os.path.join(default_config_path, "secret_configs.yml") templates_path = os.path.join(default_config_path, "templates.yml") # Datadir discover def get_data_dir(): data_path, msg = is_env_set(ENV_GO_DATA_DIR) if not data_path: if GO_DATA_DIR: return GO_DATA_DIR, "" return False, msg return data_path, "" # Secrets discover def get_secrets_dir_path(): env_dir_path, msg = is_env_set(ENV_GO_SECRET_DIR) if not env_dir_path: # Use the default as a backup if GO_SECRET_DIR: return GO_SECRET_DIR, "" return False, msg return env_dir_path, "" def get_secrets_file_name(): secrets_name, msg = is_env_set(ENV_GO_SECRET_DB_FILE) if not secrets_name: # Use the default as a backup if GO_SECRET_DB_FILE: return GO_SECRET_DB_FILE, "" return False, msg return secrets_name, "" def get_secrets_db_path(): dir_path, msg = get_secrets_dir_path() if not dir_path: return False, msg file_name, msg = get_secrets_file_name() if not file_name: return False, msg return os.path.join(dir_path, file_name), ""
30.975758
87
0.741734