hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
4fa517fc4aeda835e2192b711ae77906468916b6
581
py
Python
setup.py
Icebreaker454/MRNet-1
6dca2619d0afcbd97decc3e36609c3baec83411a
[ "MIT" ]
null
null
null
setup.py
Icebreaker454/MRNet-1
6dca2619d0afcbd97decc3e36609c3baec83411a
[ "MIT" ]
null
null
null
setup.py
Icebreaker454/MRNet-1
6dca2619d0afcbd97decc3e36609c3baec83411a
[ "MIT" ]
null
null
null
from setuptools import find_packages from setuptools import setup import setuptools from distutils.command.build import build as _build import subprocess REQUIRED_PACKAGES = [ "click", "joblib", "numpy", "pandas", "Pillow", "scikit-learn", "torch", "torchvision", "tqdm", "google-cloud-storage", ] setup( name="trainer", version='0.1.2', install_requires=REQUIRED_PACKAGES, packages=find_packages(), include_package_data=True, description='Vertex AI | Training | PyTorch | Text Classification | Python Package' )
19.366667
87
0.683305
ed60244e88f157e1874be2616d47b7c73789d6d4
12,466
py
Python
packages/Python/lldbsuite/test/tools/lldb-server/TestGdbRemoteThreadsInStopReply.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
765
2015-12-03T16:44:59.000Z
2022-03-07T12:41:10.000Z
packages/Python/lldbsuite/test/tools/lldb-server/TestGdbRemoteThreadsInStopReply.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
1,815
2015-12-11T23:56:05.000Z
2020-01-10T19:28:43.000Z
packages/Python/lldbsuite/test/tools/lldb-server/TestGdbRemoteThreadsInStopReply.py
xiaobai/swift-lldb
9238527ce430e6837108a16d2a91b147551fb83c
[ "Apache-2.0" ]
284
2015-12-03T16:47:25.000Z
2022-03-12T05:39:48.000Z
from __future__ import print_function import json import re import gdbremote_testcase from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestGdbRemoteThreadsInStopReply( gdbremote_testcase.GdbRemoteTestCaseBase): mydir = TestBase.compute_mydir(__file__) ENABLE_THREADS_IN_STOP_REPLY_ENTRIES = [ "read packet: $QListThreadsInStopReply#21", "send packet: $OK#00", ] def gather_stop_reply_fields(self, post_startup_log_lines, thread_count, field_names): # Set up the inferior args. inferior_args = [] for i in range(thread_count - 1): inferior_args.append("thread:new") inferior_args.append("sleep:10") procs = self.prep_debug_monitor_and_inferior( inferior_args=inferior_args) self.add_register_info_collection_packets() self.add_process_info_collection_packets() # Assumes test_sequence has anything added needed to setup the initial state. # (Like optionally enabling QThreadsInStopReply.) if post_startup_log_lines: self.test_sequence.add_log_lines(post_startup_log_lines, True) self.test_sequence.add_log_lines([ "read packet: $c#63" ], True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) hw_info = self.parse_hw_info(context) # Give threads time to start up, then break. time.sleep(1) self.reset_test_sequence() self.test_sequence.add_log_lines( [ "read packet: {}".format( chr(3)), { "direction": "send", "regex": r"^\$T([0-9a-fA-F]+)([^#]+)#[0-9a-fA-F]{2}$", "capture": { 1: "stop_result", 2: "key_vals_text"}}, ], True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Wait until all threads have started. threads = self.wait_for_thread_count(thread_count, timeout_seconds=3) self.assertIsNotNone(threads) self.assertEqual(len(threads), thread_count) # Run, then stop the process, grab the stop reply content. self.reset_test_sequence() self.test_sequence.add_log_lines(["read packet: $c#63", "read packet: {}".format(chr(3)), {"direction": "send", "regex": r"^\$T([0-9a-fA-F]+)([^#]+)#[0-9a-fA-F]{2}$", "capture": {1: "stop_result", 2: "key_vals_text"}}, ], True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Parse the stop reply contents. key_vals_text = context.get("key_vals_text") self.assertIsNotNone(key_vals_text) kv_dict = self.parse_key_val_dict(key_vals_text) self.assertIsNotNone(kv_dict) result = dict(); result["pc_register"] = hw_info["pc_register"] result["little_endian"] = hw_info["little_endian"] for key_field in field_names: result[key_field] = kv_dict.get(key_field) return result def gather_stop_reply_threads(self, post_startup_log_lines, thread_count): # Pull out threads from stop response. stop_reply_threads_text = self.gather_stop_reply_fields( post_startup_log_lines, thread_count, ["threads"])["threads"] if stop_reply_threads_text: return [int(thread_id, 16) for thread_id in stop_reply_threads_text.split(",")] else: return [] def gather_stop_reply_pcs(self, post_startup_log_lines, thread_count): results = self.gather_stop_reply_fields( post_startup_log_lines, thread_count, ["threads", "thread-pcs"]) if not results: return [] threads_text = results["threads"] pcs_text = results["thread-pcs"] thread_ids = threads_text.split(",") pcs = pcs_text.split(",") self.assertTrue(len(thread_ids) == len(pcs)) thread_pcs = dict() for i in range(0, len(pcs)): thread_pcs[int(thread_ids[i], 16)] = pcs[i] result = dict() result["thread_pcs"] = thread_pcs result["pc_register"] = results["pc_register"] result["little_endian"] = results["little_endian"] return result def switch_endian(self, egg): return "".join(reversed(re.findall("..", egg))) def parse_hw_info(self, context): self.assertIsNotNone(context) process_info = self.parse_process_info_response(context) endian = process_info.get("endian") reg_info = self.parse_register_info_packets(context) (pc_lldb_reg_index, pc_reg_info) = self.find_pc_reg_info(reg_info) hw_info = dict() hw_info["pc_register"] = pc_lldb_reg_index hw_info["little_endian"] = (endian == "little") return hw_info def gather_threads_info_pcs(self, pc_register, little_endian): self.reset_test_sequence() self.test_sequence.add_log_lines( [ "read packet: $jThreadsInfo#c1", { "direction": "send", "regex": r"^\$(.*)#[0-9a-fA-F]{2}$", "capture": { 1: "threads_info"}}, ], True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) threads_info = context.get("threads_info") register = str(pc_register) # The jThreadsInfo response is not valid JSON data, so we have to # clean it up first. jthreads_info = json.loads(re.sub(r"}]", "}", threads_info)) thread_pcs = dict() for thread_info in jthreads_info: tid = thread_info["tid"] pc = thread_info["registers"][register] thread_pcs[tid] = self.switch_endian(pc) if little_endian else pc return thread_pcs def QListThreadsInStopReply_supported(self): procs = self.prep_debug_monitor_and_inferior() self.test_sequence.add_log_lines( self.ENABLE_THREADS_IN_STOP_REPLY_ENTRIES, True) context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet @debugserver_test def test_QListThreadsInStopReply_supported_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.QListThreadsInStopReply_supported() @llgs_test def test_QListThreadsInStopReply_supported_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.QListThreadsInStopReply_supported() def stop_reply_reports_multiple_threads(self, thread_count): # Gather threads from stop notification when QThreadsInStopReply is # enabled. stop_reply_threads = self.gather_stop_reply_threads( self.ENABLE_THREADS_IN_STOP_REPLY_ENTRIES, thread_count) self.assertEqual(len(stop_reply_threads), thread_count) @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet @debugserver_test def test_stop_reply_reports_multiple_threads_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.stop_reply_reports_multiple_threads(5) # In current implementation of llgs on Windows, as a response to '\x03' packet, the debugger # of the native process will trigger a call to DebugBreakProcess that will create a new thread # to handle the exception debug event. So one more stop thread will be notified to the # delegate, e.g. llgs. So tests below to assert the stop threads number will all fail. @expectedFailureAll(oslist=["windows"]) @llgs_test def test_stop_reply_reports_multiple_threads_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.stop_reply_reports_multiple_threads(5) def no_QListThreadsInStopReply_supplies_no_threads(self, thread_count): # Gather threads from stop notification when QThreadsInStopReply is not # enabled. stop_reply_threads = self.gather_stop_reply_threads(None, thread_count) self.assertEqual(len(stop_reply_threads), 0) @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet @debugserver_test def test_no_QListThreadsInStopReply_supplies_no_threads_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.no_QListThreadsInStopReply_supplies_no_threads(5) @expectedFailureAll(oslist=["windows"]) @llgs_test def test_no_QListThreadsInStopReply_supplies_no_threads_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.no_QListThreadsInStopReply_supplies_no_threads(5) def stop_reply_reports_correct_threads(self, thread_count): # Gather threads from stop notification when QThreadsInStopReply is # enabled. stop_reply_threads = self.gather_stop_reply_threads( self.ENABLE_THREADS_IN_STOP_REPLY_ENTRIES, thread_count) self.assertEqual(len(stop_reply_threads), thread_count) # Gather threads from q{f,s}ThreadInfo. self.reset_test_sequence() self.add_threadinfo_collection_packets() context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) threads = self.parse_threadinfo_packets(context) self.assertIsNotNone(threads) self.assertEqual(len(threads), thread_count) # Ensure each thread in q{f,s}ThreadInfo appears in stop reply threads for tid in threads: self.assertTrue(tid in stop_reply_threads) @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet @debugserver_test def test_stop_reply_reports_correct_threads_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.stop_reply_reports_correct_threads(5) @expectedFailureAll(oslist=["windows"]) @llgs_test def test_stop_reply_reports_correct_threads_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.stop_reply_reports_correct_threads(5) def stop_reply_contains_thread_pcs(self, thread_count): results = self.gather_stop_reply_pcs( self.ENABLE_THREADS_IN_STOP_REPLY_ENTRIES, thread_count) stop_reply_pcs = results["thread_pcs"] pc_register = results["pc_register"] little_endian = results["little_endian"] self.assertEqual(len(stop_reply_pcs), thread_count) threads_info_pcs = self.gather_threads_info_pcs(pc_register, little_endian) self.assertEqual(len(threads_info_pcs), thread_count) for thread_id in stop_reply_pcs: self.assertTrue(thread_id in threads_info_pcs) self.assertTrue(int(stop_reply_pcs[thread_id], 16) == int(threads_info_pcs[thread_id], 16)) @expectedFailureAll(oslist=["windows"]) @llgs_test def test_stop_reply_contains_thread_pcs_llgs(self): self.init_llgs_test() self.build() self.set_inferior_startup_launch() self.stop_reply_contains_thread_pcs(5) @skipIfDarwinEmbedded # <rdar://problem/34539270> lldb-server tests not updated to work on ios etc yet @debugserver_test def test_stop_reply_contains_thread_pcs_debugserver(self): self.init_debugserver_test() self.build() self.set_inferior_startup_launch() self.stop_reply_contains_thread_pcs(5)
39.955128
106
0.649045
1eaa5f668d125565989d90d736795e73e104a512
543
py
Python
gammapy/utils/tests/test_array.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/utils/tests/test_array.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/utils/tests/test_array.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from ..array import array_stats_str, shape_2N def test_array_stats_str(): actual = array_stats_str(np.pi, "pi") assert actual == "pi : size = 1, min = 3.142, max = 3.142\n" actual = array_stats_str([np.pi, 42]) assert actual == "size = 2, min = 3.142, max = 42.000\n" def test_shape_2N(): shape = (34, 89, 120, 444) expected_shape = (40, 96, 128, 448) assert expected_shape == shape_2N(shape=shape, N=3)
30.166667
82
0.627993
7a5136c75ecebdfacaddf9b5436a0c77b0d5f028
4,934
py
Python
kmhm-auto/kmhm_singleton.py
alephO/kmhm-auto
5da47c3e44ccc088bed1147c3a078dcfc82d62e6
[ "Apache-2.0" ]
null
null
null
kmhm-auto/kmhm_singleton.py
alephO/kmhm-auto
5da47c3e44ccc088bed1147c3a078dcfc82d62e6
[ "Apache-2.0" ]
null
null
null
kmhm-auto/kmhm_singleton.py
alephO/kmhm-auto
5da47c3e44ccc088bed1147c3a078dcfc82d62e6
[ "Apache-2.0" ]
null
null
null
# This file handles the singleton of the main bot logic from constants import TMP_DICT from chrome_api.pcdta import pcdta from enum import Enum from utils.logger import log_adapter from utils.img_handler import img_handler from db.sqlite_handler import dbHandler from db.image_samples import image_sampler import time import random class KmhmAuto(object): def __init__(self): self._pcdta = pcdta self._sm = Kmhm_Sm() self._pcdta.hook_chrome(port=TMP_DICT['chrome_debug_port']) self._logger = log_adapter.getlogger(__name__) self.continue_loop = True self.simple_continue_loop = True # Screenshot data self.sc_data = None # Simple step list and corresponding templates self.sp_lst = [ 'events', 'e_ssshz/title', 'e_ssshz/stages', 'e_ssshz/e1', ['menu/light','menu/hsxg'], 'menu/hsxg', 'e_ssshz/gotostage', 'e_ssshz/callfor', 'e_ssshz/attack', ['popup/discover', 'popup/ok'], 'menu/nextstep', #['popup/ap1', 'popup/apto3', 'popup/addap'], 'popup/addap', 'menu/redo' ] def start_bot(self): self._pcdta.start_bot() def next_step(self): self.update_sm_if_required() if not self._sm.location_valid(): self._logger.error('Location is Invalid') self.continue_loop = False return def simple_next_step(self): self._logger.debug('Simple step') sc = img_handler.take_screenshot(trim=True) non_changed = 0 # sc is an Image adapter. Can't use if sc if sc is not None: old_sc_pp = img_handler.get_picked_pixels(self.sc_data) sc_pp = img_handler.get_picked_pixels(sc) if not img_handler.pixels_rough_equal(old_sc_pp, sc_pp): self.sc_data = sc # filename = "maint/" +log_adapter.datetime_str(extention='png') filename = "maint/current.png" self._logger.debug("Saving image as %s" % filename) img_handler.save_img(filename, self.sc_data) image_sampler.log_image(sc, sc_pp) else: self._logger.debug("Don't save image. Didn't change a lot") self.sc_data = sc if not img_handler.pixels_rough_equal(old_sc_pp, sc_pp, rate=0.99) or \ non_changed > 5: # Must 100% match to skip match process non_changed = 0 simple_clicked = self.simple_check_and_click() else: non_changed += 1 sleep_time = random.randint(1000, 2000) / 1000 time.sleep(sleep_time) def simple_check_and_click(self): clicked = False def _click_name( name ): m = img_handler.find(self.sc_data, name) if m: self._logger.debug("Found %s. Location is %i-%i, size is %i-%i, sc-offset is %i-%i" % (name, m[0], m[1], m[2], m[3], self.sc_data.x_delta, self.sc_data.y_delta)) loc_x, loc_y, size_x, size_y = m rand_x = random.randrange(2, size_x - 1) rand_y = random.randrange(2, size_y - 1) sum_x = self.sc_data.x_delta + loc_x + rand_x sum_y = self.sc_data.y_delta + loc_y + rand_y self._logger.debug("Try to click %i-%i" % (sum_x, sum_y)) self._pcdta.click(sum_x, sum_y) return True return False for act in self.sp_lst: if isinstance(act, list): if not act: continue m = img_handler.find(self.sc_data, act[0]) if not m: continue self._logger.debug("Entering unit action " + act[0]) for it in act: while not _click_name(it): time.sleep(2) clicked = True break if _click_name( act ): clicked = True break return clicked def update_sm_if_required(self): pass def pcdta(self): return self._pcdta def cleanup(self): self._logger.debug("Running singleton's cleanup function") dbHandler.cleanup() class Location(Enum): UNDEFINED = 0 UNSTARTED = 1 class ButtonType(Enum): START_GAME = 0 class Kmhm_Sm: # State machine of the state def __init__(self): self._location = Location.UNDEFINED self._critical_button = None self._critical_button_loc = None def location(self): return self._location def location_valid(self): return self._location != Location.UNDEFINED
32.675497
99
0.556344
6fbbf647665e36a99084845ce59c35379e4be836
5,348
py
Python
data.py
jiyzhang/bert-ner
ebd9d10c3ad019da030e32cac3f2c504e5f1b957
[ "Apache-2.0" ]
null
null
null
data.py
jiyzhang/bert-ner
ebd9d10c3ad019da030e32cac3f2c504e5f1b957
[ "Apache-2.0" ]
null
null
null
data.py
jiyzhang/bert-ner
ebd9d10c3ad019da030e32cac3f2c504e5f1b957
[ "Apache-2.0" ]
null
null
null
from pathlib import Path import pickle import numpy as np from collections import Counter DATADIR = Path("./data/wind") def words(name): return '{}.words.txt'.format(name) def tags(name): return '{}.tags.txt'.format(name) def fwords(name): return str(Path(DATADIR, '{}.words.txt'.format(name))) def ftags(name): return str(Path(DATADIR, '{}.tags.txt'.format(name))) ## tags, BIO tag2label = {"O": 0, "B-PER": 1, "I-PER": 2, "B-ORG": 3, "I-ORG": 4 } def read_corpus(corpus_path): """ read corpus and return the list of samples :param corpus_path: :return: data """ data = [] with open(corpus_path, encoding='utf-8') as fr: lines = fr.readlines() sent_, tag_ = [], [] for line in lines: if line != '\n': [char, label] = line.strip().split() sent_.append(char) tag_.append(label) else: data.append((sent_, tag_)) sent_, tag_ = [], [] return data def vocab_build(vocab_path, corpus_path, min_count): """ :param vocab_path: :param corpus_path: :param min_count: :return: """ data = read_corpus(corpus_path) word2id = {} for sent_, tag_ in data: for word in sent_: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <='\u005a') or ('\u0061' <= word <='\u007a'): word = '<ENG>' if word not in word2id: word2id[word] = [len(word2id)+1, 1] else: word2id[word][1] += 1 low_freq_words = [] for word, [word_id, word_freq] in word2id.items(): if word_freq < min_count and word != '<NUM>' and word != '<ENG>': low_freq_words.append(word) for word in low_freq_words: del word2id[word] new_id = 1 for word in word2id.keys(): word2id[word] = new_id new_id += 1 word2id['<UNK>'] = new_id word2id['<PAD>'] = 0 print(len(word2id)) with Path(vocab_path).open('wb') as fw: pickle.dump(word2id, fw) def sentence2id(sent, word2id): """ :param sent: :param word2id: :return: """ sentence_id = [] for word in sent: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <= '\u005a') or ('\u0061' <= word <= '\u007a'): word = '<ENG>' if word not in word2id: word = '<UNK>' sentence_id.append(word2id[word]) return sentence_id def read_dictionary(vocab_path): """ :param vocab_path: :return: """ #vocab_path = os.path.join(vocab_path) with Path(vocab_path).open("rb") as fr: word2id = pickle.load(fr) print('vocab_size:', len(word2id)) return word2id def random_embedding(vocab_size, embedding_dim): """ :param vocab_size: :param embedding_dim: :return: """ embedding_mat = np.random.uniform(-0.25, 0.25, (vocab_size, embedding_dim)) embedding_mat = np.float32(embedding_mat) return embedding_mat def build_hanzi_vocab(): # 1. 汉字 # Get Counter of 汉字 on all the data, filter by min count, save MINCOUNT = 1 print('Building vocab for Hanzi ') counter_words = Counter() for n in ['train', 'valid', 'test']: with Path(fwords(n)).open() as f: for line in f: counter_words.update(line.strip().split('|')) vocab_words = {w for w, c in counter_words.items() if c >= MINCOUNT} with Path(DATADIR / 'vocab.words.txt').open('w') as f: for w in sorted(list(vocab_words)): f.write('{}\n'.format(w)) print('- done. Kept {} out of {}'.format(len(vocab_words), len(counter_words))) def build_tag_vocab(): # 2. Tags # Get all tags from the training set print('Build vocab for tags') vocab_tags = set() with Path(ftags('train')).open() as f: for line in f: vocab_tags.update(line.strip().split('|')) with Path(DATADIR / 'vocab.tags.txt').open('w') as f: for t in sorted(list(vocab_tags)): f.write('{}\n'.format(t)) print('- done. Found {} tags.'.format(len(vocab_tags))) def build_hanzi_embedding(): # Load vocab with Path(DATADIR / 'vocab.words.txt').open() as f: word_to_idx = {line.strip(): idx for idx, line in enumerate(f)} size_vocab = len(word_to_idx) # Array of zeros embeddings = np.zeros((size_vocab, 300)) # Get relevant char Chinese vectors found = 0 print('Reading Chinese Char Vectors (may take a while)') with Path(DATADIR / 'sgns.context.word-character.char1-1.dynwin5.thr10.neg5.dim300.iter5').open() as f: for line_idx, line in enumerate(f): if line_idx % 100000 == 0: print('- At line {}'.format(line_idx)) line = line.strip().split('|') if len(line) != 300 + 1: continue word = line[0] embedding = line[1:] if word in word_to_idx: found += 1 word_idx = word_to_idx[word] embeddings[word_idx] = embedding print('- done. Found {} vectors for {} words'.format(found, size_vocab)) # Save np.array to file np.savez_compressed(DATADIR / 'sgns.npz', embeddings=embeddings)
28.147368
107
0.563762
4b06f02f0cc195dbd4641d7c4af873111c812fbe
5,477
py
Python
src/JUNCTION_image.py
kwonbosung02/JuntionXseoul2019
a205e09112f0e0b71b0d844989bb2c047cbec997
[ "MIT" ]
3
2019-07-09T11:28:26.000Z
2020-07-13T04:57:44.000Z
src/JUNCTION_image.py
kwonbosung02/JuntionXseoul2019
a205e09112f0e0b71b0d844989bb2c047cbec997
[ "MIT" ]
null
null
null
src/JUNCTION_image.py
kwonbosung02/JuntionXseoul2019
a205e09112f0e0b71b0d844989bb2c047cbec997
[ "MIT" ]
null
null
null
#모듈 호출------------------------------------------------------------------------------ import cv2 import numpy as np import time import dlib import pybind11 s_img = cv2.imread('test2.png',-1)##############:::: #많이 씀------------------------------------------------------------------------------- prev_contours = 0 #얼굴 그릴때 씀------------------------------------------------------------------------- def drawPolyline(im,im2, landmarks, start, end, isClosed=False): points = [] for i in range(start, end+1): point = [landmarks.part(i).x, landmarks.part(i).y] points.append(point) points = np.array(points, dtype=np.int32) cv2.polylines(im2, [points], isClosed, (255, 200, 0), thickness=2, lineType=cv2.LINE_8) #얼굴 검출 부위------------------------------------------------------------------------- def renderFace(im,im2, landmarks): assert(landmarks.num_parts == 68) drawPolyline(im,im2, landmarks, 0, 16) # Jaw line drawPolyline(im,im2, landmarks, 17, 21) # Left eyebrow drawPolyline(im,im2, landmarks, 22, 26) # Right eyebrow drawPolyline(im,im2, landmarks, 27, 30) # Nose bridge drawPolyline(im,im2, landmarks, 30, 35) # Lower nose drawPolyline(im,im2, landmarks, 36, 41) # Left eye drawPolyline(im,im2, landmarks, 42, 47) # Right Eye drawPolyline(im,im2, landmarks, 48, 59, True) # Outer lip drawPolyline(im,im2, landmarks, 60, 67, True) # Inner lip def renderFace2(im, landmarks, color=(0, 255, 0), radius=3): for p in landmarks.parts(): cv2.circle(im, (p.x, p.y), radius, color, -1) #얼굴 랜드마크 검출, 마스크용으로 쉽게하기위해 따로 호출----------------------------------- faceDetector = dlib.get_frontal_face_detector() landmarkDetector = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") #Prev prev_face = None prev_idx = 0 PREV_MAX = 100 #마스크 이미지-------------------------------------------------------------------------- mask__ = cv2.imread('test2.png') mask_h, mask_w, _ = mask__.shape mask_x, mask_y = mask_w / 2, mask_h / 2 #캠------------------------------------------------------------------------------------ cam = cv2.VideoCapture(0) cam.set(3,960) cam.set(4,480) #얼굴 테두리 뒷 배경 마스크-------------------------------------------------------------- lower_mask = np.array([100,0,0]) #-------------------------------------------------------------------------------------- Rect = 0 cam.read() time.sleep(0.5) while 1: frame, img = cam.read() img2 = cv2.imread('test2.png') img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #-------------------------------------------------------------------------------------- mask_fi = img_gray hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #얼굴 테두리 뒷 배경 마스크-------------------------------------------------------------- mask = cv2.inRange(hsv,lower_mask,lower_mask) #얼굴 테두리---------------------------------------------------------------------------- res = cv2.bitwise_and(img,img, mask= mask) faceRects = faceDetector(img, 0) landmarksAll = [] for i in range(0, len(faceRects)): Rect = dlib.rectangle(int(faceRects[i].left()),int(faceRects[i].top()), int(faceRects[i].right()),int(faceRects[i].bottom())) ######################################### faces = detector(img_gray) for face in faces: landmarks = landmarkDetector(img,Rect) landmarks_points = [] for n in range(0, 68): x = landmarks.part(n).x y= landmarks.part(n).y landmarks_points.append((x, y)) landmarksAll.append(landmarks) points = np.array(landmarks_points, np.int32) convexhull = cv2.convexHull(points) renderFace(img,res, landmarks) #print(convexhull) cv2.fillConvexPoly(mask_fi,convexhull,255) ####################################################### res_gray = cv2.cvtColor(res,cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(res_gray,127,255,0) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours) == 0: cnt = prev_contours continue if len(contours) > 0: cnt = contours[0] prev_contours = cnt hull = cv2.convexHull(cnt) (x,y), radius = cv2.minEnclosingCircle(cnt) center = (int(x), int(y)) x_offset = int(x) y_offset = int(y) y1, y2 = int(y_offset-(s_img.shape[0]/2)), int(y_offset + (s_img.shape[0]/2)) x1, x2 = int(x_offset-(s_img.shape[1]/2)), int(x_offset + (s_img.shape[1]/2)) alpha_s = s_img[:,:,3] / 255.0 alpha_l = 1.0 - alpha_s for c in range(0, 3): img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] + alpha_l * img[y1:y2, x1:x2, c]) cv2.rectangle(res,(x1,y1),(x2,y2),(0,255,255),3) #print(center) radius = int(radius) res = cv2.circle(res, center, radius,(0,0,255),3) # yellow cv2.drawContours(res, [hull], 0,(0,255,0), 3) cv2.imshow("detect", img) cv2.imshow("res",res) cv2.imshow("Mask", mask_fi) cv2.imshow("img2",img2) k= cv2.waitKey(5) & 0xff if k==27: cam.release() cv2.destroyAllWindows() break cam.release() cv2.destroyAllWindows()
31.65896
90
0.503013
0834365c812e88fb92bd91d2315e67bc4a5a72b9
48,265
py
Python
tests/unit/utils/test_thin.py
hvbarker/salt
0b1e299b8983854bd55163439e4ac20d81a9dab7
[ "Apache-2.0" ]
1
2020-05-17T18:00:38.000Z
2020-05-17T18:00:38.000Z
tests/unit/utils/test_thin.py
hvbarker/salt
0b1e299b8983854bd55163439e4ac20d81a9dab7
[ "Apache-2.0" ]
null
null
null
tests/unit/utils/test_thin.py
hvbarker/salt
0b1e299b8983854bd55163439e4ac20d81a9dab7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ :codeauthor: :email:`Bo Maryniuk <bo@suse.de>` """ from __future__ import absolute_import, print_function, unicode_literals import copy import os import shutil import sys import tempfile import jinja2 import salt.exceptions import salt.ext.six import salt.utils.hashutils import salt.utils.json import salt.utils.platform import salt.utils.stringutils from salt.ext.six.moves import range from salt.utils import thin from salt.utils.stringutils import to_bytes as bts from tests.support.helpers import TstSuiteLoggingHandler from tests.support.mock import MagicMock, patch from tests.support.runtests import RUNTIME_VARS from tests.support.unit import TestCase, skipIf try: import pytest except ImportError: pytest = None @skipIf(pytest is None, "PyTest is missing") class SSHThinTestCase(TestCase): """ TestCase for SaltSSH-related parts. """ def setUp(self): self.jinja_fp = os.path.dirname(jinja2.__file__) self.ext_conf = { "test": { "py-version": [2, 7], "path": os.path.join(RUNTIME_VARS.CODE_DIR, "salt"), "dependencies": {"jinja2": self.jinja_fp}, } } self.tops = copy.deepcopy(self.ext_conf) self.tops["test"]["dependencies"] = [self.jinja_fp] self.tar = self._tarfile(None).open() self.digest = salt.utils.hashutils.DigestCollector() self.exp_files = [ os.path.join("salt", "payload.py"), os.path.join("jinja2", "__init__.py"), ] lib_root = os.path.join(RUNTIME_VARS.TMP, "fake-libs") self.fake_libs = { "distro": os.path.join(lib_root, "distro"), "jinja2": os.path.join(lib_root, "jinja2"), "yaml": os.path.join(lib_root, "yaml"), "tornado": os.path.join(lib_root, "tornado"), "msgpack": os.path.join(lib_root, "msgpack"), } self.exp_ret = { "distro": os.path.normpath( os.path.join(RUNTIME_VARS.CODE_DIR, "distro.py") ), "jinja2": os.path.normpath(os.path.join(RUNTIME_VARS.CODE_DIR, "jinja2")), "yaml": os.path.normpath(os.path.join(RUNTIME_VARS.CODE_DIR, "yaml")), "tornado": os.path.normpath(os.path.join(RUNTIME_VARS.CODE_DIR, "tornado")), "msgpack": os.path.normpath(os.path.join(RUNTIME_VARS.CODE_DIR, "msgpack")), "certifi": os.path.normpath(os.path.join(RUNTIME_VARS.CODE_DIR, "certifi")), "singledispatch": os.path.normpath( os.path.join(RUNTIME_VARS.CODE_DIR, "singledispatch.py") ), } self.exc_libs = ["jinja2", "yaml"] def tearDown(self): for lib, fp in self.fake_libs.items(): if os.path.exists(fp): shutil.rmtree(fp) self.exc_libs = None self.jinja_fp = None self.ext_conf = None self.tops = None self.tar = None self.digest = None self.exp_files = None self.fake_libs = None self.exp_ret = None def _popen(self, return_value=None, side_effect=None, returncode=0): """ Fake subprocess.Popen :return: """ proc = MagicMock() proc.communicate = MagicMock(return_value=return_value, side_effect=side_effect) proc.returncode = returncode popen = MagicMock(return_value=proc) return popen def _version_info(self, major=None, minor=None): """ Fake version info. :param major: :param minor: :return: """ class VersionInfo(tuple): pass vi = VersionInfo([major, minor]) vi.major = major or sys.version_info.major vi.minor = minor or sys.version_info.minor return vi def _tarfile(self, getinfo=False): """ Fake tarfile handler. :return: """ spec = ["add", "close"] if getinfo: spec.append("getinfo") tf = MagicMock() tf.open = MagicMock(return_value=MagicMock(spec=spec)) return tf @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=False)) def test_get_ext_tops_cfg_missing_dependencies(self): """ Test thin.get_ext_tops contains all required dependencies. :return: """ cfg = {"namespace": {"py-version": [0, 0], "path": "/foo", "dependencies": []}} with pytest.raises(Exception) as err: thin.get_ext_tops(cfg) self.assertIn("Missing dependencies", str(err.value)) self.assertTrue(thin.log.error.called) self.assertIn("Missing dependencies", thin.log.error.call_args[0][0]) self.assertIn("jinja2, yaml, tornado, msgpack", thin.log.error.call_args[0][0]) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=False)) def test_get_ext_tops_cfg_missing_interpreter(self): """ Test thin.get_ext_tops contains interpreter configuration. :return: """ cfg = {"namespace": {"path": "/foo", "dependencies": []}} with pytest.raises(salt.exceptions.SaltSystemExit) as err: thin.get_ext_tops(cfg) self.assertIn("missing specific locked Python version", str(err.value)) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=False)) def test_get_ext_tops_cfg_wrong_interpreter(self): """ Test thin.get_ext_tops contains correct interpreter configuration. :return: """ cfg = {"namespace": {"path": "/foo", "py-version": 2, "dependencies": []}} with pytest.raises(salt.exceptions.SaltSystemExit) as err: thin.get_ext_tops(cfg) self.assertIn( "specific locked Python version should be a list of " "major/minor version", str(err.value), ) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=False)) def test_get_ext_tops_cfg_interpreter(self): """ Test thin.get_ext_tops interpreter configuration. :return: """ cfg = { "namespace": { "path": "/foo", "py-version": [2, 6], "dependencies": { "jinja2": "", "yaml": "", "tornado": "", "msgpack": "", }, } } with pytest.raises(salt.exceptions.SaltSystemExit): thin.get_ext_tops(cfg) assert len(thin.log.warning.mock_calls) == 4 assert sorted([x[1][1] for x in thin.log.warning.mock_calls]) == [ "jinja2", "msgpack", "tornado", "yaml", ] assert ( "Module test has missing configuration" == thin.log.warning.mock_calls[0][1][0] % "test" ) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=False)) def test_get_ext_tops_dependency_config_check(self): """ Test thin.get_ext_tops dependencies are importable :return: """ cfg = { "namespace": { "path": "/foo", "py-version": [2, 6], "dependencies": { "jinja2": "/jinja/foo.py", "yaml": "/yaml/", "tornado": "/tornado/wrong.rb", "msgpack": "msgpack.sh", }, } } with pytest.raises(salt.exceptions.SaltSystemExit) as err: thin.get_ext_tops(cfg) self.assertIn( "Missing dependencies for the alternative version in the " "external configuration", str(err.value), ) messages = {} for cl in thin.log.warning.mock_calls: messages[cl[1][1]] = cl[1][0] % (cl[1][1], cl[1][2]) for mod in ["tornado", "yaml", "msgpack"]: self.assertIn("not a Python importable module", messages[mod]) self.assertIn( "configured with not a file or does not exist", messages["jinja2"] ) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.path.isfile", MagicMock(return_value=True)) def test_get_ext_tops_config_pass(self): """ Test thin.get_ext_tops configuration :return: """ cfg = { "namespace": { "path": "/foo", "py-version": [2, 6], "dependencies": { "jinja2": "/jinja/foo.py", "yaml": "/yaml/", "tornado": "/tornado/tornado.py", "msgpack": "msgpack.py", "distro": "distro.py", }, } } out = thin.get_ext_tops(cfg) assert out["namespace"]["py-version"] == cfg["namespace"]["py-version"] assert out["namespace"]["path"] == cfg["namespace"]["path"] assert sorted(out["namespace"]["dependencies"]) == sorted( [ "/tornado/tornado.py", "/jinja/foo.py", "/yaml/", "msgpack.py", "distro.py", ] ) @patch("salt.utils.thin.sys.argv", [None, '{"foo": "bar"}']) @patch("salt.utils.thin.get_tops", lambda **kw: kw) def test_gte(self): """ Test thin.gte external call for processing the info about tops per interpreter. :return: """ assert salt.utils.json.loads(thin.gte()).get("foo") == "bar" def test_add_dep_path(self): """ Test thin._add_dependency function to setup dependency paths :return: """ container = [] for pth in ["/foo/bar.py", "/something/else/__init__.py"]: thin._add_dependency(container, type(str("obj"), (), {"__file__": pth})()) assert "__init__" not in container[1] assert container == ["/foo/bar.py", "/something/else"] def test_thin_path(self): """ Test thin.thin_path returns the expected path. :return: """ path = os.sep + os.path.join("path", "to") expected = os.path.join(path, "thin", "thin.tgz") self.assertEqual(thin.thin_path(path), expected) def test_get_salt_call_script(self): """ Test get salt-call script rendered. :return: """ out = thin._get_salt_call("foo", "bar", py26=[2, 6], py27=[2, 7], py34=[3, 4]) for line in salt.utils.stringutils.to_str(out).split(os.linesep): if line.startswith("namespaces = {"): data = salt.utils.json.loads(line.replace("namespaces = ", "").strip()) assert data.get("py26") == [2, 6] assert data.get("py27") == [2, 7] assert data.get("py34") == [3, 4] if line.startswith("syspaths = "): data = salt.utils.json.loads(line.replace("syspaths = ", "")) assert data == ["foo", "bar"] def test_get_ext_namespaces_empty(self): """ Test thin._get_ext_namespaces function returns an empty dictionary on nothing :return: """ for obj in [None, {}, []]: assert thin._get_ext_namespaces(obj) == {} def test_get_ext_namespaces(self): """ Test thin._get_ext_namespaces function returns namespaces properly out of the config. :return: """ cfg = {"ns": {"py-version": [2, 7]}} assert thin._get_ext_namespaces(cfg).get("ns") == (2, 7,) assert isinstance(thin._get_ext_namespaces(cfg).get("ns"), tuple) def test_get_ext_namespaces_failure(self): """ Test thin._get_ext_namespaces function raises an exception if python major/minor version is not configured. :return: """ with pytest.raises(salt.exceptions.SaltSystemExit): thin._get_ext_namespaces({"ns": {}}) @patch( "salt.utils.thin.distro", type("distro", (), {"__file__": "/site-packages/distro"}), ) @patch( "salt.utils.thin.salt", type(str("salt"), (), {"__file__": "/site-packages/salt"}), ) @patch( "salt.utils.thin.jinja2", type(str("jinja2"), (), {"__file__": "/site-packages/jinja2"}), ) @patch( "salt.utils.thin.yaml", type(str("yaml"), (), {"__file__": "/site-packages/yaml"}), ) @patch( "salt.utils.thin.tornado", type(str("tornado"), (), {"__file__": "/site-packages/tornado"}), ) @patch( "salt.utils.thin.msgpack", type(str("msgpack"), (), {"__file__": "/site-packages/msgpack"}), ) @patch( "salt.utils.thin.certifi", type(str("certifi"), (), {"__file__": "/site-packages/certifi"}), ) @patch( "salt.utils.thin.singledispatch", type(str("singledispatch"), (), {"__file__": "/site-packages/sdp"}), ) @patch( "salt.utils.thin.singledispatch_helpers", type(str("singledispatch_helpers"), (), {"__file__": "/site-packages/sdp_hlp"}), ) @patch( "salt.utils.thin.ssl_match_hostname", type(str("ssl_match_hostname"), (), {"__file__": "/site-packages/ssl_mh"}), ) @patch( "salt.utils.thin.markupsafe", type(str("markupsafe"), (), {"__file__": "/site-packages/markupsafe"}), ) @patch( "salt.utils.thin.backports_abc", type(str("backports_abc"), (), {"__file__": "/site-packages/backports_abc"}), ) @patch( "salt.utils.thin.concurrent", type(str("concurrent"), (), {"__file__": "/site-packages/concurrent"}), ) @patch("salt.utils.thin.log", MagicMock()) def test_get_tops(self): """ Test thin.get_tops to get top directories, based on the interpreter. :return: """ base_tops = [ "/site-packages/distro", "/site-packages/salt", "/site-packages/jinja2", "/site-packages/yaml", "/site-packages/tornado", "/site-packages/msgpack", "/site-packages/certifi", "/site-packages/sdp", "/site-packages/sdp_hlp", "/site-packages/ssl_mh", "/site-packages/markupsafe", "/site-packages/backports_abc", "/site-packages/concurrent", ] tops = thin.get_tops() assert len(tops) == len(base_tops) assert sorted(tops) == sorted(base_tops) @patch( "salt.utils.thin.distro", type("distro", (), {"__file__": "/site-packages/distro"}), ) @patch( "salt.utils.thin.salt", type(str("salt"), (), {"__file__": "/site-packages/salt"}), ) @patch( "salt.utils.thin.jinja2", type(str("jinja2"), (), {"__file__": "/site-packages/jinja2"}), ) @patch( "salt.utils.thin.yaml", type(str("yaml"), (), {"__file__": "/site-packages/yaml"}), ) @patch( "salt.utils.thin.tornado", type(str("tornado"), (), {"__file__": "/site-packages/tornado"}), ) @patch( "salt.utils.thin.msgpack", type(str("msgpack"), (), {"__file__": "/site-packages/msgpack"}), ) @patch( "salt.utils.thin.certifi", type(str("certifi"), (), {"__file__": "/site-packages/certifi"}), ) @patch( "salt.utils.thin.singledispatch", type(str("singledispatch"), (), {"__file__": "/site-packages/sdp"}), ) @patch( "salt.utils.thin.singledispatch_helpers", type(str("singledispatch_helpers"), (), {"__file__": "/site-packages/sdp_hlp"}), ) @patch( "salt.utils.thin.ssl_match_hostname", type(str("ssl_match_hostname"), (), {"__file__": "/site-packages/ssl_mh"}), ) @patch( "salt.utils.thin.markupsafe", type(str("markupsafe"), (), {"__file__": "/site-packages/markupsafe"}), ) @patch( "salt.utils.thin.backports_abc", type(str("backports_abc"), (), {"__file__": "/site-packages/backports_abc"}), ) @patch( "salt.utils.thin.concurrent", type(str("concurrent"), (), {"__file__": "/site-packages/concurrent"}), ) @patch("salt.utils.thin.log", MagicMock()) def test_get_tops_extra_mods(self): """ Test thin.get_tops to get extra-modules alongside the top directories, based on the interpreter. :return: """ base_tops = [ "/site-packages/distro", "/site-packages/salt", "/site-packages/jinja2", "/site-packages/yaml", "/site-packages/tornado", "/site-packages/msgpack", "/site-packages/certifi", "/site-packages/sdp", "/site-packages/sdp_hlp", "/site-packages/ssl_mh", "/site-packages/concurrent", "/site-packages/markupsafe", "/site-packages/backports_abc", os.sep + os.path.join("custom", "foo"), os.sep + os.path.join("custom", "bar.py"), ] builtins = sys.version_info.major == 3 and "builtins" or "__builtin__" foo = {"__file__": os.sep + os.path.join("custom", "foo", "__init__.py")} bar = {"__file__": os.sep + os.path.join("custom", "bar")} with patch( "{}.__import__".format(builtins), MagicMock( side_effect=[type(str("foo"), (), foo), type(str("bar"), (), bar)] ), ): tops = thin.get_tops(extra_mods="foo,bar") self.assertEqual(len(tops), len(base_tops)) self.assertListEqual(sorted(tops), sorted(base_tops)) @patch( "salt.utils.thin.distro", type("distro", (), {"__file__": "/site-packages/distro"}), ) @patch( "salt.utils.thin.salt", type(str("salt"), (), {"__file__": "/site-packages/salt"}), ) @patch( "salt.utils.thin.jinja2", type(str("jinja2"), (), {"__file__": "/site-packages/jinja2"}), ) @patch( "salt.utils.thin.yaml", type(str("yaml"), (), {"__file__": "/site-packages/yaml"}), ) @patch( "salt.utils.thin.tornado", type(str("tornado"), (), {"__file__": "/site-packages/tornado"}), ) @patch( "salt.utils.thin.msgpack", type(str("msgpack"), (), {"__file__": "/site-packages/msgpack"}), ) @patch( "salt.utils.thin.certifi", type(str("certifi"), (), {"__file__": "/site-packages/certifi"}), ) @patch( "salt.utils.thin.singledispatch", type(str("singledispatch"), (), {"__file__": "/site-packages/sdp"}), ) @patch( "salt.utils.thin.singledispatch_helpers", type(str("singledispatch_helpers"), (), {"__file__": "/site-packages/sdp_hlp"}), ) @patch( "salt.utils.thin.ssl_match_hostname", type(str("ssl_match_hostname"), (), {"__file__": "/site-packages/ssl_mh"}), ) @patch( "salt.utils.thin.markupsafe", type(str("markupsafe"), (), {"__file__": "/site-packages/markupsafe"}), ) @patch( "salt.utils.thin.backports_abc", type(str("backports_abc"), (), {"__file__": "/site-packages/backports_abc"}), ) @patch( "salt.utils.thin.concurrent", type(str("concurrent"), (), {"__file__": "/site-packages/concurrent"}), ) @patch("salt.utils.thin.log", MagicMock()) def test_get_tops_so_mods(self): """ Test thin.get_tops to get extra-modules alongside the top directories, based on the interpreter. :return: """ base_tops = [ "/site-packages/distro", "/site-packages/salt", "/site-packages/jinja2", "/site-packages/yaml", "/site-packages/tornado", "/site-packages/msgpack", "/site-packages/certifi", "/site-packages/sdp", "/site-packages/sdp_hlp", "/site-packages/ssl_mh", "/site-packages/concurrent", "/site-packages/markupsafe", "/site-packages/backports_abc", "/custom/foo.so", "/custom/bar.so", ] builtins = sys.version_info.major == 3 and "builtins" or "__builtin__" with patch( "{}.__import__".format(builtins), MagicMock( side_effect=[ type(str("salt"), (), {"__file__": "/custom/foo.so"}), type(str("salt"), (), {"__file__": "/custom/bar.so"}), ] ), ): tops = thin.get_tops(so_mods="foo,bar") assert len(tops) == len(base_tops) assert sorted(tops) == sorted(base_tops) @patch("salt.utils.thin.gen_thin", MagicMock(return_value="/path/to/thin/thin.tgz")) @patch("salt.utils.hashutils.get_hash", MagicMock(return_value=12345)) def test_thin_sum(self): """ Test thin.thin_sum function. :return: """ assert thin.thin_sum("/cachedir", form="sha256")[1] == 12345 thin.salt.utils.hashutils.get_hash.assert_called() assert thin.salt.utils.hashutils.get_hash.call_count == 1 path, form = thin.salt.utils.hashutils.get_hash.call_args[0] assert path == "/path/to/thin/thin.tgz" assert form == "sha256" @patch("salt.utils.thin.gen_min", MagicMock(return_value="/path/to/thin/min.tgz")) @patch("salt.utils.hashutils.get_hash", MagicMock(return_value=12345)) def test_min_sum(self): """ Test thin.thin_sum function. :return: """ assert thin.min_sum("/cachedir", form="sha256") == 12345 thin.salt.utils.hashutils.get_hash.assert_called() assert thin.salt.utils.hashutils.get_hash.call_count == 1 path, form = thin.salt.utils.hashutils.get_hash.call_args[0] assert path == "/path/to/thin/min.tgz" assert form == "sha256" @patch("salt.utils.thin.sys.version_info", (2, 5)) @patch("salt.exceptions.SaltSystemExit", Exception) def test_gen_thin_fails_ancient_python_version(self): """ Test thin.gen_thin function raises an exception if Python major/minor version is lower than 2.6 :return: """ with pytest.raises(salt.exceptions.SaltSystemExit) as err: thin.sys.exc_clear = lambda: None thin.gen_thin("") self.assertIn( "The minimum required python version to run salt-ssh is " '"2.6"', str(err.value), ) @skipIf( salt.utils.platform.is_windows() and thin._six.PY2, "Dies on Python2 on Windows" ) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.os.makedirs", MagicMock()) @patch("salt.utils.files.fopen", MagicMock()) @patch("salt.utils.thin._get_salt_call", MagicMock()) @patch("salt.utils.thin._get_ext_namespaces", MagicMock()) @patch("salt.utils.thin.get_tops", MagicMock(return_value=["/foo3", "/bar3"])) @patch("salt.utils.thin.get_ext_tops", MagicMock(return_value={})) @patch("salt.utils.thin.os.path.isfile", MagicMock()) @patch("salt.utils.thin.os.path.isdir", MagicMock(return_value=True)) @patch("salt.utils.thin.os.remove", MagicMock()) @patch("salt.utils.thin.os.path.exists", MagicMock()) @patch("salt.utils.path.os_walk", MagicMock(return_value=[])) @patch( "salt.utils.thin.subprocess.Popen", _popen( None, side_effect=[(bts("2.7"), bts("")), (bts('["/foo27", "/bar27"]'), bts(""))], ), ) @patch("salt.utils.thin.tarfile", MagicMock()) @patch("salt.utils.thin.zipfile", MagicMock()) @patch("salt.utils.thin.os.getcwd", MagicMock()) @patch("salt.utils.thin.os.chdir", MagicMock()) @patch("salt.utils.thin.tempfile.mkdtemp", MagicMock()) @patch( "salt.utils.thin.tempfile.mkstemp", MagicMock(return_value=(3, ".temporary")) ) @patch("salt.utils.thin.shutil", MagicMock()) @patch("salt.utils.path.which", MagicMock(return_value="")) @patch("salt.utils.thin._get_thintar_prefix", MagicMock()) def test_gen_thin_python_exist_or_not(self): """ Test thin.gen_thin function if the opposite python binary does not exist """ with TstSuiteLoggingHandler() as handler: thin.gen_thin("") salt.utils.thin.subprocess.Popen.assert_not_called() if salt.ext.six.PY2: self.assertIn( "DEBUG:python3 binary does not exist. Will not attempt to generate " "tops for Python 3", handler.messages, ) if salt.ext.six.PY3: self.assertIn( "DEBUG:python2 binary does not exist. Will not " "detect Python 2 version", handler.messages, ) self.assertIn( "DEBUG:python2 binary does not exist. Will not attempt to generate " "tops for Python 2", handler.messages, ) @skipIf( salt.utils.platform.is_windows() and thin._six.PY2, "Dies on Python2 on Windows" ) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.makedirs", MagicMock()) @patch("salt.utils.files.fopen", MagicMock()) @patch("salt.utils.thin._get_salt_call", MagicMock()) @patch("salt.utils.thin._get_ext_namespaces", MagicMock()) @patch("salt.utils.thin.get_tops", MagicMock(return_value=["/foo3", "/bar3"])) @patch("salt.utils.thin.get_ext_tops", MagicMock(return_value={})) @patch("salt.utils.thin.os.path.isfile", MagicMock()) @patch("salt.utils.thin.os.path.isdir", MagicMock(return_value=True)) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.remove", MagicMock()) @patch("salt.utils.thin.os.path.exists", MagicMock()) @patch("salt.utils.path.os_walk", MagicMock(return_value=[])) @patch( "salt.utils.thin.subprocess.Popen", _popen( None, side_effect=[(bts("2.7"), bts("")), (bts('["/foo27", "/bar27"]'), bts(""))], ), ) @patch("salt.utils.thin.tarfile", MagicMock()) @patch("salt.utils.thin.zipfile", MagicMock()) @patch("salt.utils.thin.os.getcwd", MagicMock()) @patch("salt.utils.thin.os.chdir", MagicMock()) @patch("salt.utils.thin.os.close", MagicMock()) @patch("salt.utils.thin.tempfile.mkdtemp", MagicMock()) @patch( "salt.utils.thin.tempfile.mkstemp", MagicMock(return_value=(3, ".temporary")) ) @patch("salt.utils.thin.shutil", MagicMock()) @patch("salt.utils.thin._six.PY3", True) @patch("salt.utils.thin._six.PY2", False) @patch("salt.utils.thin.sys.version_info", _version_info(None, 3, 6)) @patch("salt.utils.path.which", MagicMock(return_value="/usr/bin/python")) def test_gen_thin_compression_fallback_py3(self): """ Test thin.gen_thin function if fallbacks to the gzip compression, once setup wrong. NOTE: Py2 version of this test is not required, as code shares the same spot across the versions. :return: """ thin.gen_thin("", compress="arj") thin.log.warning.assert_called() pt, msg = thin.log.warning.mock_calls[0][1] assert ( pt % msg == 'Unknown compression type: "arj". Falling back to "gzip" compression.' ) thin.zipfile.ZipFile.assert_not_called() thin.tarfile.open.assert_called() @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.makedirs", MagicMock()) @patch("salt.utils.files.fopen", MagicMock()) @patch("salt.utils.thin._get_salt_call", MagicMock()) @patch("salt.utils.thin._get_ext_namespaces", MagicMock()) @patch("salt.utils.thin.get_tops", MagicMock(return_value=["/foo3", "/bar3"])) @patch("salt.utils.thin.get_ext_tops", MagicMock(return_value={})) @patch("salt.utils.thin.os.path.isfile", MagicMock()) @patch("salt.utils.thin.os.path.isdir", MagicMock(return_value=False)) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.remove", MagicMock()) @patch("salt.utils.thin.os.path.exists", MagicMock()) @patch("salt.utils.path.os_walk", MagicMock(return_value=[])) @patch( "salt.utils.thin.subprocess.Popen", _popen( None, side_effect=[(bts("2.7"), bts("")), (bts('["/foo27", "/bar27"]'), bts(""))], ), ) @patch("salt.utils.thin.tarfile", MagicMock()) @patch("salt.utils.thin.zipfile", MagicMock()) @patch("salt.utils.thin.os.getcwd", MagicMock()) @patch("salt.utils.thin.os.chdir", MagicMock()) @patch("salt.utils.thin.os.close", MagicMock()) @patch("salt.utils.thin.tempfile.mkdtemp", MagicMock(return_value="")) @patch( "salt.utils.thin.tempfile.mkstemp", MagicMock(return_value=(3, ".temporary")) ) @patch("salt.utils.thin.shutil", MagicMock()) @patch("salt.utils.thin._six.PY3", True) @patch("salt.utils.thin._six.PY2", False) @patch("salt.utils.thin.sys.version_info", _version_info(None, 3, 6)) @patch("salt.utils.path.which", MagicMock(return_value="/usr/bin/python")) def test_gen_thin_control_files_written_py3(self): """ Test thin.gen_thin function if control files are written (version, salt-call etc). NOTE: Py2 version of this test is not required, as code shares the same spot across the versions. :return: """ thin.gen_thin("") arc_name, arc_mode = thin.tarfile.method_calls[0][1] self.assertEqual(arc_name, ".temporary") self.assertEqual(arc_mode, "w:gz") for idx, fname in enumerate( ["version", ".thin-gen-py-version", "salt-call", "supported-versions"] ): name = thin.tarfile.open().method_calls[idx + 4][1][0] self.assertEqual(name, fname) thin.tarfile.open().close.assert_called() @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.makedirs", MagicMock()) @patch("salt.utils.files.fopen", MagicMock()) @patch("salt.utils.thin._get_salt_call", MagicMock()) @patch("salt.utils.thin._get_ext_namespaces", MagicMock()) @patch("salt.utils.thin.get_tops", MagicMock(return_value=["/salt", "/bar3"])) @patch("salt.utils.thin.get_ext_tops", MagicMock(return_value={})) @patch("salt.utils.thin.os.path.isfile", MagicMock()) @patch("salt.utils.thin.os.path.isdir", MagicMock(return_value=True)) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.remove", MagicMock()) @patch("salt.utils.thin.os.path.exists", MagicMock()) @patch( "salt.utils.path.os_walk", MagicMock( return_value=( ("root", [], ["r1", "r2", "r3"]), ("root2", [], ["r4", "r5", "r6"]), ) ), ) @patch( "salt.utils.thin.subprocess.Popen", _popen( None, side_effect=[(bts("2.7"), bts("")), (bts('["/foo27", "/bar27"]'), bts(""))], ), ) @patch("salt.utils.thin.tarfile", _tarfile(None)) @patch("salt.utils.thin.zipfile", MagicMock()) @patch("salt.utils.thin.os.getcwd", MagicMock()) @patch("salt.utils.thin.os.chdir", MagicMock()) @patch("salt.utils.thin.os.close", MagicMock()) @patch("salt.utils.thin.tempfile.mkdtemp", MagicMock(return_value="")) @patch( "salt.utils.thin.tempfile.mkstemp", MagicMock(return_value=(3, ".temporary")) ) @patch("salt.utils.thin.shutil", MagicMock()) @patch("salt.utils.thin._six.PY3", True) @patch("salt.utils.thin._six.PY2", False) @patch("salt.utils.thin.sys.version_info", _version_info(None, 3, 6)) @patch("salt.utils.hashutils.DigestCollector", MagicMock()) @patch("salt.utils.path.which", MagicMock(return_value="/usr/bin/python")) def test_gen_thin_main_content_files_written_py3(self): """ Test thin.gen_thin function if main content files are written. NOTE: Py2 version of this test is not required, as code shares the same spot across the versions. :return: """ thin.gen_thin("") files = [] for py in ("py2", "py2", "py3", "pyall"): for i in range(1, 4): files.append(os.path.join(py, "root", "r{0}".format(i))) for i in range(4, 7): files.append(os.path.join(py, "root2", "r{0}".format(i))) for cl in thin.tarfile.open().method_calls[:-6]: arcname = cl[2].get("arcname") self.assertIn(arcname, files) files.pop(files.index(arcname)) self.assertFalse(files) @patch("salt.exceptions.SaltSystemExit", Exception) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.makedirs", MagicMock()) @patch("salt.utils.files.fopen", MagicMock()) @patch("salt.utils.thin._get_salt_call", MagicMock()) @patch("salt.utils.thin._get_ext_namespaces", MagicMock()) @patch("salt.utils.thin.get_tops", MagicMock(return_value=[])) @patch( "salt.utils.thin.get_ext_tops", MagicMock( return_value={ "namespace": { "py-version": [2, 7], "path": "/opt/2015.8/salt", "dependencies": ["/opt/certifi", "/opt/whatever"], } } ), ) @patch("salt.utils.thin.os.path.isfile", MagicMock()) @patch("salt.utils.thin.os.path.isdir", MagicMock(return_value=True)) @patch("salt.utils.thin.log", MagicMock()) @patch("salt.utils.thin.os.remove", MagicMock()) @patch("salt.utils.thin.os.path.exists", MagicMock()) @patch( "salt.utils.path.os_walk", MagicMock( return_value=( ("root", [], ["r1", "r2", "r3"]), ("root2", [], ["r4", "r5", "r6"]), ) ), ) @patch( "salt.utils.thin.subprocess.Popen", _popen( None, side_effect=[(bts("2.7"), bts("")), (bts('["/foo27", "/bar27"]'), bts(""))], ), ) @patch("salt.utils.thin.tarfile", _tarfile(None)) @patch("salt.utils.thin.zipfile", MagicMock()) @patch("salt.utils.thin.os.getcwd", MagicMock()) @patch("salt.utils.thin.os.chdir", MagicMock()) @patch("salt.utils.thin.os.close", MagicMock()) @patch("salt.utils.thin.tempfile.mkdtemp", MagicMock(return_value="")) @patch( "salt.utils.thin.tempfile.mkstemp", MagicMock(return_value=(3, ".temporary")) ) @patch("salt.utils.thin.shutil", MagicMock()) @patch("salt.utils.thin._six.PY3", True) @patch("salt.utils.thin._six.PY2", False) @patch("salt.utils.thin.sys.version_info", _version_info(None, 3, 6)) @patch("salt.utils.hashutils.DigestCollector", MagicMock()) @patch("salt.utils.path.which", MagicMock(return_value="/usr/bin/python")) def test_gen_thin_ext_alternative_content_files_written_py3(self): """ Test thin.gen_thin function if external alternative content files are written. NOTE: Py2 version of this test is not required, as code shares the same spot across the versions. :return: """ ext_conf = { "namespace": { "py-version": [2, 7], "path": "/opt/2015.8/salt", "dependencies": { "certifi": "/opt/certifi", "whatever": "/opt/whatever", }, } } thin.gen_thin("", extended_cfg=ext_conf) files = [] for py in ("pyall", "pyall", "py2"): for i in range(1, 4): files.append(os.path.join("namespace", py, "root", "r{0}".format(i))) for i in range(4, 7): files.append(os.path.join("namespace", py, "root2", "r{0}".format(i))) for idx, cl in enumerate(thin.tarfile.open().method_calls[12:-6]): arcname = cl[2].get("arcname") self.assertIn(arcname, files) files.pop(files.index(arcname)) self.assertFalse(files) def test_get_supported_py_config_typecheck(self): """ Test collecting proper py-versions. Should return bytes type. :return: """ tops = {} ext_cfg = {} out = thin._get_supported_py_config(tops=tops, extended_cfg=ext_cfg) assert type(salt.utils.stringutils.to_bytes("")) == type(out) def test_get_supported_py_config_base_tops(self): """ Test collecting proper py-versions. Should return proper base tops. :return: """ tops = {"3": ["/groundkeepers", "/stole"], "2": ["/the-root", "/password"]} ext_cfg = {} out = ( salt.utils.stringutils.to_str( thin._get_supported_py_config(tops=tops, extended_cfg=ext_cfg) ) .strip() .split(os.linesep) ) self.assertEqual(len(out), 2) for t_line in ["py3:3:0", "py2:2:7"]: self.assertIn(t_line, out) def test_get_supported_py_config_ext_tops(self): """ Test collecting proper py-versions. Should return proper ext conf tops. :return: """ tops = {} ext_cfg = { "solar-interference": {"py-version": [2, 6]}, "second-system-effect": {"py-version": [2, 7]}, } out = ( salt.utils.stringutils.to_str( thin._get_supported_py_config(tops=tops, extended_cfg=ext_cfg) ) .strip() .split(os.linesep) ) for t_line in ["second-system-effect:2:7", "solar-interference:2:6"]: self.assertIn(t_line, out) def test_get_tops_python(self): """ test get_tops_python """ patch_proc = patch( "salt.utils.thin.subprocess.Popen", self._popen( None, side_effect=[ (bts("distro.py"), bts("")), (bts("jinja2/__init__.py"), bts("")), (bts("yaml/__init__.py"), bts("")), (bts("tornado/__init__.py"), bts("")), (bts("msgpack/__init__.py"), bts("")), (bts("certifi/__init__.py"), bts("")), (bts("singledispatch.py"), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), ], ), ) patch_os = patch("os.path.exists", return_value=True) patch_which = patch("salt.utils.path.which", return_value=True) with patch_proc, patch_os, patch_which: with TstSuiteLoggingHandler() as log_handler: ret = thin.get_tops_python("python2.7") assert ret == self.exp_ret assert ( "ERROR:Could not auto detect file location for module concurrent for python version python2.7" in log_handler.messages ) def test_get_tops_python_exclude(self): """ test get_tops_python when excluding modules """ patch_proc = patch( "salt.utils.thin.subprocess.Popen", self._popen( None, side_effect=[ (bts("distro.py"), bts("")), (bts("tornado/__init__.py"), bts("")), (bts("msgpack/__init__.py"), bts("")), (bts("certifi/__init__.py"), bts("")), (bts("singledispatch.py"), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), ], ), ) exp_ret = copy.deepcopy(self.exp_ret) for lib in self.exc_libs: exp_ret.pop(lib) patch_os = patch("os.path.exists", return_value=True) patch_which = patch("salt.utils.path.which", return_value=True) with patch_proc, patch_os, patch_which: ret = thin.get_tops_python("python2.7", exclude=self.exc_libs) assert ret == exp_ret def test_pack_alternatives_exclude(self): """ test pack_alternatives when mixing manually set dependencies and auto detecting other modules. """ patch_proc = patch( "salt.utils.thin.subprocess.Popen", self._popen( None, side_effect=[ (bts(self.fake_libs["distro"]), bts("")), (bts(self.fake_libs["yaml"]), bts("")), (bts(self.fake_libs["tornado"]), bts("")), (bts(self.fake_libs["msgpack"]), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), (bts(""), bts("")), ], ), ) patch_os = patch("os.path.exists", return_value=True) ext_conf = copy.deepcopy(self.ext_conf) ext_conf["test"]["auto_detect"] = True for lib in self.fake_libs.values(): os.makedirs(lib) with salt.utils.files.fopen(os.path.join(lib, "__init__.py"), "w+") as fp_: fp_.write("test") exp_files = self.exp_files.copy() exp_files.extend( [ os.path.join("yaml", "__init__.py"), os.path.join("tornado", "__init__.py"), os.path.join("msgpack", "__init__.py"), ] ) patch_which = patch("salt.utils.path.which", return_value=True) with patch_os, patch_proc, patch_which: thin._pack_alternative(ext_conf, self.digest, self.tar) calls = self.tar.mock_calls for _file in exp_files: assert [x for x in calls if "{}".format(_file) in x.args] def test_pack_alternatives(self): """ test thin._pack_alternatives """ with patch("salt.utils.thin.get_ext_tops", MagicMock(return_value=self.tops)): thin._pack_alternative(self.ext_conf, self.digest, self.tar) calls = self.tar.mock_calls for _file in self.exp_files: assert [x for x in calls if "{}".format(_file) in x.args] assert [ x for x in calls if os.path.join("test", "pyall", _file) in x.kwargs["arcname"] ] def test_pack_alternatives_not_normalized(self): """ test thin._pack_alternatives when the path is not normalized """ tops = copy.deepcopy(self.tops) tops["test"]["dependencies"] = [self.jinja_fp + "/"] with patch("salt.utils.thin.get_ext_tops", MagicMock(return_value=tops)): thin._pack_alternative(self.ext_conf, self.digest, self.tar) calls = self.tar.mock_calls for _file in self.exp_files: assert [x for x in calls if "{}".format(_file) in x.args] assert [ x for x in calls if os.path.join("test", "pyall", _file) in x.kwargs["arcname"] ] def test_pack_alternatives_path_doesnot_exist(self): """ test thin._pack_alternatives when the path doesnt exist. Check error log message and expect that because the directory does not exist jinja2 does not get added to the tar """ bad_path = os.path.join(tempfile.gettempdir(), "doesnotexisthere") tops = copy.deepcopy(self.tops) tops["test"]["dependencies"] = [bad_path] with patch("salt.utils.thin.get_ext_tops", MagicMock(return_value=tops)): with TstSuiteLoggingHandler() as log_handler: thin._pack_alternative(self.ext_conf, self.digest, self.tar) msg = "ERROR:File path {} does not exist. Unable to add to salt-ssh thin".format( bad_path ) assert msg in log_handler.messages calls = self.tar.mock_calls for _file in self.exp_files: arg = [x for x in calls if "{}".format(_file) in x.args] kwargs = [ x for x in calls if os.path.join("test", "pyall", _file) in x.kwargs["arcname"] ] if "jinja2" in _file: assert not arg assert not kwargs else: assert arg assert kwargs def test_pack_alternatives_auto_detect(self): """ test thin._pack_alternatives when auto_detect is enabled """ ext_conf = copy.deepcopy(self.ext_conf) ext_conf["test"]["auto_detect"] = True for lib in self.fake_libs.values(): os.makedirs(lib) with salt.utils.files.fopen(os.path.join(lib, "__init__.py"), "w+") as fp_: fp_.write("test") patch_tops_py = patch( "salt.utils.thin.get_tops_python", return_value=self.fake_libs ) exp_files = self.exp_files.copy() exp_files.extend( [ os.path.join("yaml", "__init__.py"), os.path.join("tornado", "__init__.py"), os.path.join("msgpack", "__init__.py"), ] ) with patch_tops_py: thin._pack_alternative(ext_conf, self.digest, self.tar) calls = self.tar.mock_calls for _file in exp_files: assert [x for x in calls if "{}".format(_file) in x.args] def test_pack_alternatives_empty_dependencies(self): """ test _pack_alternatives when dependencies is not set in the config. """ ext_conf = copy.deepcopy(self.ext_conf) ext_conf["test"]["auto_detect"] = True ext_conf["test"].pop("dependencies") for lib in self.fake_libs.values(): os.makedirs(lib) with salt.utils.files.fopen(os.path.join(lib, "__init__.py"), "w+") as fp_: fp_.write("test") patch_tops_py = patch( "salt.utils.thin.get_tops_python", return_value=self.fake_libs ) exp_files = self.exp_files.copy() exp_files.extend( [ os.path.join("yaml", "__init__.py"), os.path.join("tornado", "__init__.py"), os.path.join("msgpack", "__init__.py"), ] ) with patch_tops_py: thin._pack_alternative(ext_conf, self.digest, self.tar) calls = self.tar.mock_calls for _file in exp_files: assert [x for x in calls if "{}".format(_file) in x.args]
37.184129
114
0.555102
0a8f9e8905b0c060162277ed3effe15ffd39c0ac
442
py
Python
App/migrations/0006_auto_20180526_1053.py
NeverLeft/DjangoAXF
9bdf731e2b5a607cbcf0d4faebb7e616daa1a0b4
[ "Apache-2.0" ]
null
null
null
App/migrations/0006_auto_20180526_1053.py
NeverLeft/DjangoAXF
9bdf731e2b5a607cbcf0d4faebb7e616daa1a0b4
[ "Apache-2.0" ]
null
null
null
App/migrations/0006_auto_20180526_1053.py
NeverLeft/DjangoAXF
9bdf731e2b5a607cbcf0d4faebb7e616daa1a0b4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-05-26 10:53 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('App', '0005_auto_20180526_1052'), ] operations = [ migrations.RenameField( model_name='foodtype', old_name='childypenames', new_name='childtypenames', ), ]
21.047619
49
0.617647
0d94c54bc997e9d31ff3e9896eddde832abc8cd9
1,336
py
Python
cprint/cPrint.py
havelar/cPrintFormat
4487481559fc78a34168550319ac4a02e7b84618
[ "MIT" ]
null
null
null
cprint/cPrint.py
havelar/cPrintFormat
4487481559fc78a34168550319ac4a02e7b84618
[ "MIT" ]
null
null
null
cprint/cPrint.py
havelar/cPrintFormat
4487481559fc78a34168550319ac4a02e7b84618
[ "MIT" ]
null
null
null
from .src.cFormat import cFormat def cprint(txt, color='black', bg=None, style='normal', end='\n', returning=False): # Font Color process if isinstance(color,str): rgb = cFormat.colors.get(color.lower()) if rgb is None: raise ValueError('Unkown color.') elif isinstance(color,tuple) and len(color)==3: rgb = color else: raise ValueError('Color must be string or (R,G,B). Not: {0}'.format(type(color))) curr_style = cFormat.styles.get(style.lower()) if curr_style is None: raise ValueError("Invalid style value: '{0}' with type '{1}'".format(curr_style, type(curr_style))) prefix = cFormat.font_structure.format(*rgb, curr_style) # BackGround process if bg: if isinstance(bg,str): bg_rgb = cFormat.colors.get(bg.lower()) if bg_rgb is None: raise ValueError('Unkown color.') elif isinstance(bg,tuple) and len(bg)==3: bg_rgb = bg else: raise ValueError('Color must be string or (R,G,B)') if bg: prefix = prefix + cFormat.bg_structure.format(*bg_rgb) string = prefix + str(txt) + cFormat.end if returning: # Return formated string to be used anywhere return string else: # Just print print(string, end=end)
35.157895
107
0.607784
8472e43d1f80829ce45afd353982c548cc09d678
651
py
Python
Aula 37/Controller/linguagem_backend_controller.py
Katakhan/TrabalhosPython2
ab47af0ff3c00922857578e58a1a149d9e65e229
[ "MIT" ]
null
null
null
Aula 37/Controller/linguagem_backend_controller.py
Katakhan/TrabalhosPython2
ab47af0ff3c00922857578e58a1a149d9e65e229
[ "MIT" ]
null
null
null
Aula 37/Controller/linguagem_backend_controller.py
Katakhan/TrabalhosPython2
ab47af0ff3c00922857578e58a1a149d9e65e229
[ "MIT" ]
null
null
null
import sys sys.path.append(r'C:\Users\900132\Desktop\GitHub\TrabalhosPython2\Aula 37') from Dao.linguagem_backend_dao import BackDao from Model.linguagem_backend import LinguagemBackend class LinguagemBackendController: dao = BackDao() def listar_todos(self): return self.dao.listar_todos() def buscar_por_id(self, id): return self.dao.buscar_por_id(id) def salvar(self, linguagemBackend:LinguagemBackend): return self.dao.salvar(linguagemBackend) def alterar(self, linguagemBackend:LinguagemBackend): self.dao.alterar(linguagemBackend) def deletar(self, id): self.dao.deletar(id)
28.304348
75
0.740399
0a31ca38e9ab8af82c929f39c27e42885c8ba17b
476
py
Python
tests/multi_lead_graphene_output/plot_bands.py
kmkolasinski/Bubel
dd0f66475c5d93060e48a6a46a8debf2f2a350d0
[ "MIT" ]
null
null
null
tests/multi_lead_graphene_output/plot_bands.py
kmkolasinski/Bubel
dd0f66475c5d93060e48a6a46a8debf2f2a350d0
[ "MIT" ]
null
null
null
tests/multi_lead_graphene_output/plot_bands.py
kmkolasinski/Bubel
dd0f66475c5d93060e48a6a46a8debf2f2a350d0
[ "MIT" ]
null
null
null
#!/usr/bin/python """ Created on Thu Mar 5 14:16:21 2015 @author: Krzysztof Kolasinski """ import numpy as np import matplotlib.pyplot as plt import csv file = "bands.dat" data = np.loadtxt(file) no_lines = np.size(data[0,:]) x = data[:,0] for i in range(no_lines-1): plt.plot(x,data[:,i+1],c='k',ls='-') #plt.ylim([-0.0003,0.001]) plt.xlabel("k [1/unit size]") plt.ylabel("Energy [in atomic units]") plt.savefig("bands.png") #plt.show()
19.04
45
0.617647
8c9a87a6619c9e4148e67b8b47f7bf949409a767
77,300
py
Python
jina/flow/base.py
sakshamgurbhele/jina
5565b55b233eaac9fc59e8361b3e18d78c4d9b15
[ "Apache-2.0" ]
1
2021-11-14T13:22:29.000Z
2021-11-14T13:22:29.000Z
jina/flow/base.py
sakshamgurbhele/jina
5565b55b233eaac9fc59e8361b3e18d78c4d9b15
[ "Apache-2.0" ]
null
null
null
jina/flow/base.py
sakshamgurbhele/jina
5565b55b233eaac9fc59e8361b3e18d78c4d9b15
[ "Apache-2.0" ]
null
null
null
import argparse import base64 import copy import itertools import json import multiprocessing import os import re import sys import threading import time import uuid from collections import OrderedDict from contextlib import ExitStack from typing import ( Optional, Union, Tuple, List, Set, Dict, overload, Type, TYPE_CHECKING, ) from .builder import allowed_levels, _hanging_pods from .. import __default_host__ from ..clients import Client from ..clients.mixin import AsyncPostMixin, PostMixin from ..enums import ( FlowBuildLevel, PodRoleType, FlowInspectType, GatewayProtocolType, InfrastructureType, PollingType, ) from ..excepts import ( FlowTopologyError, FlowMissingPodError, RoutingTableCyclicError, RuntimeFailToStart, ) from ..helper import ( colored, get_public_ip, get_internal_ip, typename, ArgNamespace, download_mermaid_url, CatchAllCleanupContextManager, ) from ..jaml import JAMLCompatible from ..logging.logger import JinaLogger from ..parsers import set_gateway_parser, set_pod_parser, set_client_cli_parser from ..parsers.flow import set_flow_parser from ..peapods import CompoundPod, Pod from ..peapods.networking import is_remote_local_connection from ..peapods.pods.factory import PodFactory from ..peapods.pods.k8s import K8sPod from ..types.routing.table import RoutingTable __all__ = ['Flow'] class FlowType(type(ExitStack), type(JAMLCompatible)): """Type of Flow, metaclass of :class:`BaseFlow`""" pass _regex_port = r'(.*?):([0-9]{1,4}|[1-5][0-9]{4}|6[0-4][0-9]{3}|65[0-4][0-9]{2}|655[0-2][0-9]|6553[0-5])$' if TYPE_CHECKING: from ..executors import BaseExecutor from ..clients.base import BaseClient from .asyncio import AsyncFlow GATEWAY_NAME = 'gateway' FALLBACK_PARSERS = [ set_gateway_parser(), set_pod_parser(), set_client_cli_parser(), set_flow_parser(), ] class Flow(PostMixin, JAMLCompatible, ExitStack, metaclass=FlowType): """Flow is how Jina streamlines and distributes Executors. """ class _FlowK8sInfraResourcesManager: def __init__(self, k8s_namespace: str, k8s_custom_resource_dir: Optional[str]): self.k8s_namespace = k8s_namespace self.k8s_custom_resource_dir = k8s_custom_resource_dir self.namespace_created = False def __enter__(self): from ..peapods.pods.k8slib import kubernetes_tools, kubernetes_client client = kubernetes_client.K8sClients().core_v1 list_namespaces = [ item.metadata.name for item in client.list_namespace().items ] if self.k8s_namespace not in list_namespaces: with JinaLogger(f'create_{self.k8s_namespace}') as logger: logger.info(f'🏝️\tCreate Namespace "{self.k8s_namespace}"') kubernetes_tools.create( 'namespace', {'name': self.k8s_namespace}, logger=logger, custom_resource_dir=self.k8s_custom_resource_dir, ) self.namespace_created = True def __exit__(self, exc_type, exc_val, exc_tb): from ..peapods.pods.k8slib import kubernetes_client if self.namespace_created: client = kubernetes_client.K8sClients().core_v1 client.delete_namespace(name=self.k8s_namespace) # overload_inject_start_client_flow @overload def __init__( self, *, asyncio: Optional[bool] = False, host: Optional[str] = '0.0.0.0', https: Optional[bool] = False, port: Optional[int] = None, protocol: Optional[str] = 'GRPC', proxy: Optional[bool] = False, **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina client` CLI. :param asyncio: If set, then the input and output of this Client work in an asynchronous manner. :param host: The host address of the runtime, by default it is 0.0.0.0. :param https: If set, connect to gateway using https :param port: The port of the Gateway, which the client should connect to. :param protocol: Communication protocol between server and client. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_client_flow # overload_inject_start_gateway_flow @overload def __init__( self, *, compress: Optional[str] = 'NONE', compress_min_bytes: Optional[int] = 1024, compress_min_ratio: Optional[float] = 1.1, cors: Optional[bool] = False, ctrl_with_ipc: Optional[bool] = True, daemon: Optional[bool] = False, default_swagger_ui: Optional[bool] = False, description: Optional[str] = None, env: Optional[dict] = None, expose_endpoints: Optional[str] = None, expose_public: Optional[bool] = False, host: Optional[str] = '0.0.0.0', host_in: Optional[str] = '0.0.0.0', host_out: Optional[str] = '0.0.0.0', hosts_in_connect: Optional[List[str]] = None, log_config: Optional[str] = None, memory_hwm: Optional[int] = -1, name: Optional[str] = 'gateway', native: Optional[bool] = False, no_crud_endpoints: Optional[bool] = False, no_debug_endpoints: Optional[bool] = False, on_error_strategy: Optional[str] = 'IGNORE', port_ctrl: Optional[int] = None, port_expose: Optional[int] = None, port_in: Optional[int] = None, port_out: Optional[int] = None, prefetch: Optional[int] = 0, protocol: Optional[str] = 'GRPC', proxy: Optional[bool] = False, py_modules: Optional[List[str]] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, replicas: Optional[int] = 1, runs_in_docker: Optional[bool] = False, runtime_backend: Optional[str] = 'PROCESS', runtime_cls: Optional[str] = 'GRPCRuntime', shards: Optional[int] = 1, socket_in: Optional[str] = 'PULL_CONNECT', socket_out: Optional[str] = 'PUSH_CONNECT', ssh_keyfile: Optional[str] = None, ssh_password: Optional[str] = None, ssh_server: Optional[str] = None, static_routing_table: Optional[bool] = False, timeout_ctrl: Optional[int] = 5000, timeout_ready: Optional[int] = 600000, title: Optional[str] = None, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = 'BaseExecutor', uses_metas: Optional[dict] = None, uses_requests: Optional[dict] = None, uses_with: Optional[dict] = None, uvicorn_kwargs: Optional[dict] = None, workspace: Optional[str] = None, zmq_identity: Optional[str] = None, **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina gateway` CLI. :param compress: The compress algorithm used over the entire Flow. Note that this is not necessarily effective, it depends on the settings of `--compress-min-bytes` and `compress-min-ratio` :param compress_min_bytes: The original message size must be larger than this number to trigger the compress algorithm, -1 means disable compression. :param compress_min_ratio: The compression ratio (uncompressed_size/compressed_size) must be higher than this number to trigger the compress algorithm. :param cors: If set, a CORS middleware is added to FastAPI frontend to allow cross-origin access. :param ctrl_with_ipc: If set, use ipc protocol for control socket :param daemon: The Pea attempts to terminate all of its Runtime child processes/threads on existing. setting it to true basically tell the Pea do not wait on the Runtime when closing :param default_swagger_ui: If set, the default swagger ui is used for `/docs` endpoint. :param description: The description of this HTTP server. It will be used in automatics docs such as Swagger UI. :param env: The map of environment variables that are available inside runtime :param expose_endpoints: A JSON string that represents a map from executor endpoints (`@requests(on=...)`) to HTTP endpoints. :param expose_public: If set, expose the public IP address to remote when necessary, by default it exposesprivate IP address, which only allows accessing under the same network/subnet. Important to set this to true when the Pea will receive input connections from remote Peas :param host: The host address of the runtime, by default it is 0.0.0.0. :param host_in: The host address for input, by default it is 0.0.0.0 :param host_out: The host address for output, by default it is 0.0.0.0 :param hosts_in_connect: The host address for input, by default it is 0.0.0.0 :param log_config: The YAML config of the logger used in this object. :param memory_hwm: The memory high watermark of this pod in Gigabytes, pod will restart when this is reached. -1 means no restriction :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param native: If set, only native Executors is allowed, and the Executor is always run inside ZEDRuntime. :param no_crud_endpoints: If set, /index, /search, /update, /delete endpoints are removed from HTTP interface. Any executor that has `@requests(on=...)` bind with those values will receive data requests. :param no_debug_endpoints: If set, /status /post endpoints are removed from HTTP interface. :param on_error_strategy: The skip strategy on exceptions. - IGNORE: Ignore it, keep running all Executors in the sequel flow - SKIP_HANDLE: Skip all Executors in the sequel, only `pre_hook` and `post_hook` are called - THROW_EARLY: Immediately throw the exception, the sequel flow will not be running at all Note, `IGNORE`, `SKIP_EXECUTOR` and `SKIP_HANDLE` do not guarantee the success execution in the sequel flow. If something is wrong in the upstream, it is hard to carry this exception and moving forward without any side-effect. :param port_ctrl: The port for controlling the runtime, default a random port between [49152, 65535] :param port_expose: The port that the gateway exposes for clients for GRPC connections. :param port_in: The port for input data, default a random port between [49152, 65535] :param port_out: The port for output data, default a random port between [49152, 65535] :param prefetch: Number of requests fetched from the client before feeding into the first Executor. Used to control the speed of data input into a Flow. 0 disables prefetch (disabled by default) :param protocol: Communication protocol between server and client. :param proxy: If set, respect the http_proxy and https_proxy environment variables. otherwise, it will unset these proxy variables before start. gRPC seems to prefer no proxy :param py_modules: The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/repository-structure/>`__ :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param replicas: The number of replicas in the pod, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary :param runs_in_docker: Informs a Pea that runs in a container. Important to properly set networking information :param runtime_backend: The parallel backend of the runtime inside the Pea :param runtime_cls: The runtime class to run inside the Pea :param shards: The number of shards in the pod running at the same time, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary. For more details check https://docs.jina.ai/fundamentals/flow/topology/ :param socket_in: The socket type for input port :param socket_out: The socket type for output port :param ssh_keyfile: This specifies a key to be used in ssh login, default None. regular default ssh keys will be used without specifying this argument. :param ssh_password: The ssh password to the ssh server. :param ssh_server: The SSH server through which the tunnel will be created, can actually be a fully specified `user@server:port` ssh url. :param static_routing_table: Defines if the routing table should be pre computed by the Flow. In this case it is statically defined for each Pod and not send on every data request. Can not be used in combination with external pods :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pea waits for the runtime to be ready, -1 for waiting forever :param title: The title of this HTTP server. It will be used in automatics docs such as Swagger UI. :param uses: The config of the executor, it could be one of the followings: * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_metas: Dictionary of keyword arguments that will override the `metas` configuration in `uses` :param uses_requests: Dictionary of keyword arguments that will override the `requests` configuration in `uses` :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param uvicorn_kwargs: Dictionary of kwargs arguments that will be passed to Uvicorn server when starting the server More details can be found in Uvicorn docs: https://www.uvicorn.org/settings/ :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :param zmq_identity: The identity of a ZMQRuntime. It is used for unique socket identification towards other ZMQRuntimes. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_gateway_flow # overload_inject_start_flow @overload def __init__( self, *, env: Optional[dict] = None, inspect: Optional[str] = 'COLLECT', log_config: Optional[str] = None, name: Optional[str] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, static_routing_table: Optional[bool] = False, uses: Optional[str] = None, workspace: Optional[str] = './', **kwargs, ): """Create a Flow. Flow is how Jina streamlines and scales Executors. This overloaded method provides arguments from `jina flow` CLI. :param env: The map of environment variables that are available inside runtime :param inspect: The strategy on those inspect pods in the flow. If `REMOVE` is given then all inspect pods are removed when building the flow. :param log_config: The YAML config of the logger used in this object. :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param static_routing_table: Defines if the routing table should be pre computed by the Flow. In this case it is statically defined for each Pod and not send on every data request. Can not be used in combination with external pods :param uses: The YAML file represents a flow :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_flow def __init__( self, args: Optional['argparse.Namespace'] = None, **kwargs, ): super().__init__() self._version = '1' #: YAML version number, this will be later overridden if YAML config says the other way self._pod_nodes = OrderedDict() # type: Dict[str, Pod] self._inspect_pods = {} # type: Dict[str, str] self._endpoints_mapping = {} # type: Dict[str, Dict] self._build_level = FlowBuildLevel.EMPTY self._last_changed_pod = [ GATEWAY_NAME ] #: default first pod is gateway, will add when build() self._update_args(args, **kwargs) self.k8s_infrastructure_manager = None if self.args.infrastructure == InfrastructureType.K8S: self.k8s_infrastructure_manager = self._FlowK8sInfraResourcesManager( k8s_namespace=self.args.k8s_namespace or self.args.name, k8s_custom_resource_dir=getattr( self.args, 'k8s_custom_resource_dir', None ), ) if isinstance(self.args, argparse.Namespace): self.logger = JinaLogger( self.__class__.__name__, **vars(self.args), **self._common_kwargs ) else: self.logger = JinaLogger(self.__class__.__name__, **self._common_kwargs) def _update_args(self, args, **kwargs): from ..parsers.flow import set_flow_parser from ..helper import ArgNamespace _flow_parser = set_flow_parser() if args is None: args = ArgNamespace.kwargs2namespace( kwargs, _flow_parser, True, fallback_parsers=FALLBACK_PARSERS ) self.args = args # common args should be the ones that can not be parsed by _flow_parser known_keys = vars(args) self._common_kwargs = {k: v for k, v in kwargs.items() if k not in known_keys} self._kwargs = ArgNamespace.get_non_defaults_args( args, _flow_parser ) #: for yaml dump if self._common_kwargs.get('asyncio', False) and not isinstance( self, AsyncPostMixin ): from .asyncio import AsyncFlow self.__class__ = AsyncFlow @staticmethod def _parse_endpoints(op_flow, pod_name, endpoint, connect_to_last_pod=False) -> Set: # parsing needs if isinstance(endpoint, str): endpoint = [endpoint] elif not endpoint: if op_flow._last_changed_pod and connect_to_last_pod: endpoint = [op_flow.last_pod] else: endpoint = [] if isinstance(endpoint, (list, tuple)): for idx, s in enumerate(endpoint): if s == pod_name: raise FlowTopologyError( 'the income/output of a pod can not be itself' ) else: raise ValueError(f'endpoint={endpoint} is not parsable') # if an endpoint is being inspected, then replace it with inspected Pod endpoint = set(op_flow._inspect_pods.get(ep, ep) for ep in endpoint) return endpoint @property def last_pod(self): """Last pod .. # noqa: DAR401 .. # noqa: DAR201 """ return self._last_changed_pod[-1] @last_pod.setter def last_pod(self, name: str): """ Set a Pod as the last Pod in the Flow, useful when modifying the Flow. .. # noqa: DAR401 :param name: the name of the existing Pod """ if name not in self._pod_nodes: raise FlowMissingPodError(f'{name} can not be found in this Flow') if self._last_changed_pod and name == self.last_pod: pass else: self._last_changed_pod.append(name) # graph is now changed so we need to # reset the build level to the lowest self._build_level = FlowBuildLevel.EMPTY @allowed_levels([FlowBuildLevel.EMPTY]) def _add_gateway(self, needs, **kwargs): kwargs.update( dict( name=GATEWAY_NAME, ctrl_with_ipc=True, # otherwise ctrl port would be conflicted host=self.host, protocol=self.protocol, port_expose=self.port_expose, pod_role=PodRoleType.GATEWAY, expose_endpoints=json.dumps(self._endpoints_mapping), k8s_namespace=self.args.k8s_namespace or self.args.name, ) ) kwargs.update(self._common_kwargs) args = ArgNamespace.kwargs2namespace(kwargs, set_gateway_parser()) args.k8s_namespace = self.args.k8s_namespace or self.args.name args.connect_to_predecessor = False args.noblock_on_start = True self._pod_nodes[GATEWAY_NAME] = PodFactory.build_pod( args, needs, self.args.infrastructure ) @allowed_levels([FlowBuildLevel.EMPTY]) def needs( self, needs: Union[Tuple[str], List[str]], name: str = 'joiner', *args, **kwargs ) -> 'Flow': """ Add a blocker to the Flow, wait until all peas defined in **needs** completed. .. # noqa: DAR401 :param needs: list of service names to wait :param name: the name of this joiner, by default is ``joiner`` :param args: additional positional arguments forwarded to the add function :param kwargs: additional key value arguments forwarded to the add function :return: the modified Flow """ if len(needs) <= 1: raise FlowTopologyError( 'no need to wait for a single service, need len(needs) > 1' ) return self.add( name=name, needs=needs, pod_role=PodRoleType.JOIN, *args, **kwargs ) def needs_all(self, name: str = 'joiner', *args, **kwargs) -> 'Flow': """ Collect all hanging Pods so far and add a blocker to the Flow; wait until all handing peas completed. :param name: the name of this joiner (default is ``joiner``) :param args: additional positional arguments which are forwarded to the add and needs function :param kwargs: additional key value arguments which are forwarded to the add and needs function :return: the modified Flow """ needs = _hanging_pods(self) if len(needs) == 1: return self.add(name=name, needs=needs, *args, **kwargs) return self.needs(name=name, needs=needs, *args, **kwargs) # overload_inject_start_pod @overload def add( self, *, connect_to_predecessor: Optional[bool] = False, ctrl_with_ipc: Optional[bool] = False, daemon: Optional[bool] = False, docker_kwargs: Optional[dict] = None, entrypoint: Optional[str] = None, env: Optional[dict] = None, expose_public: Optional[bool] = False, external: Optional[bool] = False, force_update: Optional[bool] = False, gpus: Optional[str] = None, host: Optional[str] = '0.0.0.0', host_in: Optional[str] = '0.0.0.0', host_out: Optional[str] = '0.0.0.0', hosts_in_connect: Optional[List[str]] = None, install_requirements: Optional[bool] = False, log_config: Optional[str] = None, memory_hwm: Optional[int] = -1, name: Optional[str] = None, native: Optional[bool] = False, on_error_strategy: Optional[str] = 'IGNORE', peas_hosts: Optional[List[str]] = None, polling: Optional[str] = 'ANY', port_ctrl: Optional[int] = None, port_in: Optional[int] = None, port_jinad: Optional[int] = 8000, port_out: Optional[int] = None, pull_latest: Optional[bool] = False, py_modules: Optional[List[str]] = None, quiet: Optional[bool] = False, quiet_error: Optional[bool] = False, quiet_remote_logs: Optional[bool] = False, replicas: Optional[int] = 1, runs_in_docker: Optional[bool] = False, runtime_backend: Optional[str] = 'PROCESS', runtime_cls: Optional[str] = 'ZEDRuntime', scheduling: Optional[str] = 'LOAD_BALANCE', shards: Optional[int] = 1, socket_in: Optional[str] = 'PULL_BIND', socket_out: Optional[str] = 'PUSH_BIND', ssh_keyfile: Optional[str] = None, ssh_password: Optional[str] = None, ssh_server: Optional[str] = None, static_routing_table: Optional[bool] = False, timeout_ctrl: Optional[int] = 5000, timeout_ready: Optional[int] = 600000, upload_files: Optional[List[str]] = None, uses: Optional[Union[str, Type['BaseExecutor'], dict]] = 'BaseExecutor', uses_after: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_before: Optional[Union[str, Type['BaseExecutor'], dict]] = None, uses_metas: Optional[dict] = None, uses_requests: Optional[dict] = None, uses_with: Optional[dict] = None, volumes: Optional[List[str]] = None, workspace: Optional[str] = None, zmq_identity: Optional[str] = None, **kwargs, ) -> Union['Flow', 'AsyncFlow']: """Add an Executor to the current Flow object. :param connect_to_predecessor: The head Pea of this Pod will connect to the TailPea of the predecessor Pod. :param ctrl_with_ipc: If set, use ipc protocol for control socket :param daemon: The Pea attempts to terminate all of its Runtime child processes/threads on existing. setting it to true basically tell the Pea do not wait on the Runtime when closing :param docker_kwargs: Dictionary of kwargs arguments that will be passed to Docker SDK when starting the docker ' container. More details can be found in the Docker SDK docs: https://docker-py.readthedocs.io/en/stable/ :param entrypoint: The entrypoint command overrides the ENTRYPOINT in Docker image. when not set then the Docker image ENTRYPOINT takes effective. :param env: The map of environment variables that are available inside runtime :param expose_public: If set, expose the public IP address to remote when necessary, by default it exposesprivate IP address, which only allows accessing under the same network/subnet. Important to set this to true when the Pea will receive input connections from remote Peas :param external: The Pod will be considered an external Pod that has been started independently from the Flow.This Pod will not be context managed by the Flow. :param force_update: If set, always pull the latest Hub Executor bundle even it exists on local :param gpus: This argument allows dockerized Jina executor discover local gpu devices. Note, - To access all gpus, use `--gpus all`. - To access multiple gpus, e.g. make use of 2 gpus, use `--gpus 2`. - To access specified gpus based on device id, use `--gpus device=[YOUR-GPU-DEVICE-ID]` - To access specified gpus based on multiple device id, use `--gpus device=[YOUR-GPU-DEVICE-ID1],device=[YOUR-GPU-DEVICE-ID2]` - To specify more parameters, use `--gpus device=[YOUR-GPU-DEVICE-ID],runtime=nvidia,capabilities=display :param host: The host address of the runtime, by default it is 0.0.0.0. :param host_in: The host address for input, by default it is 0.0.0.0 :param host_out: The host address for output, by default it is 0.0.0.0 :param hosts_in_connect: The host address for input, by default it is 0.0.0.0 :param install_requirements: If set, install `requirements.txt` in the Hub Executor bundle to local :param log_config: The YAML config of the logger used in this object. :param memory_hwm: The memory high watermark of this pod in Gigabytes, pod will restart when this is reached. -1 means no restriction :param name: The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. :param native: If set, only native Executors is allowed, and the Executor is always run inside ZEDRuntime. :param on_error_strategy: The skip strategy on exceptions. - IGNORE: Ignore it, keep running all Executors in the sequel flow - SKIP_HANDLE: Skip all Executors in the sequel, only `pre_hook` and `post_hook` are called - THROW_EARLY: Immediately throw the exception, the sequel flow will not be running at all Note, `IGNORE`, `SKIP_EXECUTOR` and `SKIP_HANDLE` do not guarantee the success execution in the sequel flow. If something is wrong in the upstream, it is hard to carry this exception and moving forward without any side-effect. :param peas_hosts: The hosts of the peas when shards greater than 1. Peas will be evenly distributed among the hosts. By default, peas are running on host provided by the argument ``host`` :param polling: The polling strategy of the Pod (when `shards>1`) - ANY: only one (whoever is idle) Pea polls the message - ALL: all Peas poll the message (like a broadcast) :param port_ctrl: The port for controlling the runtime, default a random port between [49152, 65535] :param port_in: The port for input data, default a random port between [49152, 65535] :param port_jinad: The port of the remote machine for usage with JinaD. :param port_out: The port for output data, default a random port between [49152, 65535] :param pull_latest: Pull the latest image before running :param py_modules: The customized python modules need to be imported before loading the executor Note that the recommended way is to only import a single module - a simple python file, if your executor can be defined in a single file, or an ``__init__.py`` file if you have multiple files, which should be structured as a python package. For more details, please see the `Executor cookbook <https://docs.jina.ai/fundamentals/executor/repository-structure/>`__ :param quiet: If set, then no log will be emitted from this object. :param quiet_error: If set, then exception stack information will not be added to the log :param quiet_remote_logs: Do not display the streaming of remote logs on local console :param replicas: The number of replicas in the pod, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary :param runs_in_docker: Informs a Pea that runs in a container. Important to properly set networking information :param runtime_backend: The parallel backend of the runtime inside the Pea :param runtime_cls: The runtime class to run inside the Pea :param scheduling: The strategy of scheduling workload among Peas :param shards: The number of shards in the pod running at the same time, `port_in` and `port_out` will be set to random, and routers will be added automatically when necessary. For more details check https://docs.jina.ai/fundamentals/flow/topology/ :param socket_in: The socket type for input port :param socket_out: The socket type for output port :param ssh_keyfile: This specifies a key to be used in ssh login, default None. regular default ssh keys will be used without specifying this argument. :param ssh_password: The ssh password to the ssh server. :param ssh_server: The SSH server through which the tunnel will be created, can actually be a fully specified `user@server:port` ssh url. :param static_routing_table: Defines if the routing table should be pre computed by the Flow. In this case it is statically defined for each Pod and not send on every data request. Can not be used in combination with external pods :param timeout_ctrl: The timeout in milliseconds of the control request, -1 for waiting forever :param timeout_ready: The timeout in milliseconds of a Pea waits for the runtime to be ready, -1 for waiting forever :param upload_files: The files on the host to be uploaded to the remote workspace. This can be useful when your Pod has more file dependencies beyond a single YAML file, e.g. Python files, data files. Note, - currently only flatten structure is supported, which means if you upload `[./foo/a.py, ./foo/b.pp, ./bar/c.yml]`, then they will be put under the _same_ workspace on the remote, losing all hierarchies. - by default, `--uses` YAML file is always uploaded. - uploaded files are by default isolated across the runs. To ensure files are submitted to the same workspace across different runs, use `--workspace-id` to specify the workspace. :param uses: The config of the executor, it could be one of the followings: * an Executor YAML file (.yml, .yaml, .jaml) * a Jina Hub Executor (must start with `jinahub://` or `jinahub+docker://`) * a docker image (must start with `docker://`) * the string literal of a YAML config (must start with `!` or `jtype: `) * the string literal of a JSON config When use it under Python, one can use the following values additionally: - a Python dict that represents the config - a text file stream has `.read()` interface :param uses_after: The executor attached after the Peas described by --uses, typically used for receiving from all shards, accepted type follows `--uses` :param uses_before: The executor attached after the Peas described by --uses, typically before sending to all shards, accepted type follows `--uses` :param uses_metas: Dictionary of keyword arguments that will override the `metas` configuration in `uses` :param uses_requests: Dictionary of keyword arguments that will override the `requests` configuration in `uses` :param uses_with: Dictionary of keyword arguments that will override the `with` configuration in `uses` :param volumes: The path on the host to be mounted inside the container. Note, - If separated by `:`, then the first part will be considered as the local host path and the second part is the path in the container system. - If no split provided, then the basename of that directory will be mounted into container's root path, e.g. `--volumes="/user/test/my-workspace"` will be mounted into `/my-workspace` inside the container. - All volumes are mounted with read-write mode. :param workspace: The working directory for any IO operations in this object. If not set, then derive from its parent `workspace`. :param zmq_identity: The identity of a ZMQRuntime. It is used for unique socket identification towards other ZMQRuntimes. :return: a (new) Flow object with modification .. # noqa: DAR202 .. # noqa: DAR101 .. # noqa: DAR003 """ # overload_inject_end_pod @allowed_levels([FlowBuildLevel.EMPTY]) def add( self, *, needs: Optional[Union[str, Tuple[str], List[str]]] = None, copy_flow: bool = True, pod_role: 'PodRoleType' = PodRoleType.POD, **kwargs, ) -> 'Flow': """ Add a Pod to the current Flow object and return the new modified Flow object. The attribute of the Pod can be later changed with :py:meth:`set` or deleted with :py:meth:`remove` .. # noqa: DAR401 :param needs: the name of the Pod(s) that this Pod receives data from. One can also use 'gateway' to indicate the connection with the gateway. :param pod_role: the role of the Pod, used for visualization and route planning :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :param kwargs: other keyword-value arguments that the Pod CLI supports :return: a (new) Flow object with modification """ op_flow = copy.deepcopy(self) if copy_flow else self # pod naming logic pod_name = kwargs.get('name', None) if pod_name in op_flow._pod_nodes: new_name = f'{pod_name}{len(op_flow._pod_nodes)}' self.logger.debug( f'"{pod_name}" is used in this Flow already! renamed it to "{new_name}"' ) pod_name = new_name if not pod_name: pod_name = f'executor{len(op_flow._pod_nodes)}' if not pod_name.isidentifier(): # hyphen - can not be used in the name raise ValueError( f'name: {pod_name} is invalid, please follow the python variable name conventions' ) # needs logic needs = op_flow._parse_endpoints( op_flow, pod_name, needs, connect_to_last_pod=True ) # set the kwargs inherit from `Flow(kwargs1=..., kwargs2=)` for key, value in op_flow._common_kwargs.items(): if key not in kwargs: kwargs[key] = value # check if host is set to remote:port if 'host' in kwargs: m = re.match(_regex_port, kwargs['host']) if ( kwargs.get('host', __default_host__) != __default_host__ and m and 'port_jinad' not in kwargs ): kwargs['port_jinad'] = m.group(2) kwargs['host'] = m.group(1) # update kwargs of this Pod kwargs.update(dict(name=pod_name, pod_role=pod_role, num_part=len(needs))) parser = set_pod_parser() if pod_role == PodRoleType.GATEWAY: parser = set_gateway_parser() args = ArgNamespace.kwargs2namespace( kwargs, parser, True, fallback_parsers=FALLBACK_PARSERS ) # grpc data runtime does not support sharding at the moment if ( args.grpc_data_requests and kwargs.get('shards') is not None and kwargs.get('shards', 1) > 1 and self.args.infrastructure != InfrastructureType.K8S ): raise NotImplementedError("GRPC data runtime does not support sharding") if args.grpc_data_requests and args.runtime_cls == 'ZEDRuntime': args.runtime_cls = 'GRPCDataRuntime' # pod workspace if not set then derive from flow workspace args.workspace = os.path.abspath(args.workspace or self.workspace) args.k8s_namespace = self.args.k8s_namespace or self.args.name args.noblock_on_start = True args.extra_search_paths = self.args.extra_search_paths args.zmq_identity = None # BACKWARDS COMPATIBILITY: # We assume that this is used in a search Flow if replicas and shards are used # Thus the polling type should be all # But dont override any user provided polling if args.replicas > 1 and args.shards > 1 and 'polling' not in kwargs: args.polling = PollingType.ALL op_flow._pod_nodes[pod_name] = PodFactory.build_pod( args, needs, self.args.infrastructure ) op_flow.last_pod = pod_name return op_flow @allowed_levels([FlowBuildLevel.EMPTY]) def inspect(self, name: str = 'inspect', *args, **kwargs) -> 'Flow': """Add an inspection on the last changed Pod in the Flow Internally, it adds two Pods to the Flow. But don't worry, the overhead is minimized and you can remove them by simply using `Flow(inspect=FlowInspectType.REMOVE)` before using the Flow. .. highlight:: bash .. code-block:: bash Flow -- PUB-SUB -- BasePod(_pass) -- Flow | -- PUB-SUB -- InspectPod (Hanging) In this way, :class:`InspectPod` looks like a simple ``_pass`` from outside and does not introduce side-effects (e.g. changing the socket type) to the original Flow. The original incoming and outgoing socket types are preserved. This function is very handy for introducing an Evaluator into the Flow. .. seealso:: :meth:`gather_inspect` :param name: name of the Pod :param args: args for .add() :param kwargs: kwargs for .add() :return: the new instance of the Flow """ _last_pod = self.last_pod op_flow = self.add( name=name, needs=_last_pod, pod_role=PodRoleType.INSPECT, *args, **kwargs ) # now remove uses and add an auxiliary Pod if 'uses' in kwargs: kwargs.pop('uses') op_flow = op_flow.add( name=f'_aux_{name}', needs=_last_pod, pod_role=PodRoleType.INSPECT_AUX_PASS, *args, **kwargs, ) # register any future connection to _last_pod by the auxiliary Pod op_flow._inspect_pods[_last_pod] = op_flow.last_pod return op_flow @allowed_levels([FlowBuildLevel.EMPTY]) def gather_inspect( self, name: str = 'gather_inspect', include_last_pod: bool = True, *args, **kwargs, ) -> 'Flow': """Gather all inspect Pods output into one Pod. When the Flow has no inspect Pod then the Flow itself is returned. .. note:: If ``--no-inspect`` is **not** given, then :meth:`gather_inspect` is auto called before :meth:`build`. So in general you don't need to manually call :meth:`gather_inspect`. :param name: the name of the gather Pod :param include_last_pod: if to include the last modified Pod in the Flow :param args: args for .add() :param kwargs: kwargs for .add() :return: the modified Flow or the copy of it .. seealso:: :meth:`inspect` """ needs = [k for k, v in self._pod_nodes.items() if v.role == PodRoleType.INSPECT] if needs: if include_last_pod: needs.append(self.last_pod) return self.add( name=name, needs=needs, pod_role=PodRoleType.JOIN_INSPECT, *args, **kwargs, ) else: # no inspect node is in the graph, return the current graph return self def _get_gateway_target(self, prefix): gateway_pod = self._pod_nodes[GATEWAY_NAME] return ( f'{prefix}-{GATEWAY_NAME}', { 'host': gateway_pod.head_host, 'port': gateway_pod.head_port_in, 'expected_parts': 0, }, ) # TODO needs to be refactored - deployment should not be a dictionary. Related Ticket: # https://github.com/jina-ai/jina/issues/3280 def _get_routing_table(self) -> RoutingTable: graph = RoutingTable() for pod_id, pod in self._pod_nodes.items(): if pod_id == GATEWAY_NAME: deployment = pod.deployments[0] graph.add_pod( f'start-{GATEWAY_NAME}', deployment['head_host'], deployment['head_port_in'], deployment['tail_port_out'], deployment['head_zmq_identity'], ) graph.add_pod( f'end-{GATEWAY_NAME}', deployment['head_host'], deployment['head_port_in'], deployment['tail_port_out'], deployment['head_zmq_identity'], ) else: for deployment in pod.deployments: graph.add_pod( deployment['name'], deployment['head_host'], deployment['head_port_in'], deployment['tail_port_out'], deployment['head_zmq_identity'], ) for end, pod in self._pod_nodes.items(): if end == GATEWAY_NAME: end = f'end-{GATEWAY_NAME}' if pod.head_args.hosts_in_connect is None: pod.head_args.hosts_in_connect = [] if isinstance(pod, K8sPod): from ..peapods.pods.k8slib import kubernetes_deployment end = kubernetes_deployment.to_dns_name(end) if end not in graph.pods: end = end + '_head' if isinstance(pod, K8sPod): from ..peapods.pods.k8slib import kubernetes_deployment end = kubernetes_deployment.to_dns_name(end) for start in pod.needs: start_pod = self._pod_nodes[start] if start == GATEWAY_NAME: start = f'start-{GATEWAY_NAME}' if isinstance(start_pod, K8sPod): from ..peapods.pods.k8slib import kubernetes_deployment start = kubernetes_deployment.to_dns_name(start) if start not in graph.pods: start = start + '_tail' if isinstance(start_pod, K8sPod): from ..peapods.pods.k8slib import kubernetes_deployment start = kubernetes_deployment.to_dns_name(start) start_pod = graph._get_target_pod(start) if pod.connect_to_predecessor or is_remote_local_connection( start_pod.host, pod.head_host ): pod.head_args.hosts_in_connect.append( graph._get_target_pod(start).full_out_address ) graph.add_edge(start, end, True) else: graph.add_edge(start, end) # In case of sharding, the head and the tail pea have to be connected to the shards for end, pod in self._pod_nodes.items(): if len(pod.deployments) > 0: deployments = pod.deployments for deployment in deployments[1:-1]: graph.add_edge(deployments[0]['name'], deployment['name']) graph.add_edge(deployment['name'], deployments[-1]['name']) graph.active_pod = f'start-{GATEWAY_NAME}' return graph def _set_initial_dynamic_routing_table(self): routing_table = self._get_routing_table() if not routing_table.is_acyclic(): raise RoutingTableCyclicError( 'The routing graph has a cycle. This would result in an infinite loop. Fix your Flow setup.' ) for pod in self._pod_nodes: routing_table_copy = RoutingTable() routing_table_copy.proto.CopyFrom(routing_table.proto) self._pod_nodes[ pod ].args.static_routing_table = self.args.static_routing_table # The gateway always needs the routing table to be set if pod == GATEWAY_NAME: self._pod_nodes[pod].args.routing_table = routing_table_copy.json() # For other pods we only set it if we are told do so elif self.args.static_routing_table: routing_table_copy.active_pod = pod self._pod_nodes[pod].args.routing_table = routing_table_copy.json() # dynamic routing does not apply to shards in a CompoundPod, only its tail if not isinstance(self._pod_nodes[pod], CompoundPod): self._pod_nodes[pod].update_pea_args() else: self._pod_nodes[pod].tail_args.routing_table = self._pod_nodes[ pod ].args.routing_table self._pod_nodes[ pod ].tail_args.static_routing_table = self.args.static_routing_table @allowed_levels([FlowBuildLevel.EMPTY]) def build(self, copy_flow: bool = False) -> 'Flow': """ Build the current Flow and make it ready to use .. note:: No need to manually call it since 0.0.8. When using Flow with the context manager, or using :meth:`start`, :meth:`build` will be invoked. :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :return: the current Flow (by default) .. note:: ``copy_flow=True`` is recommended if you are building the same Flow multiple times in a row. e.g. .. highlight:: python .. code-block:: python f = Flow() with f: f.index() with f.build(copy_flow=True) as fl: fl.search() .. # noqa: DAR401 """ op_flow = copy.deepcopy(self) if copy_flow else self if op_flow.args.inspect == FlowInspectType.COLLECT: op_flow.gather_inspect(copy_flow=False) if GATEWAY_NAME not in op_flow._pod_nodes: op_flow._add_gateway(needs={op_flow.last_pod}) # if set no_inspect then all inspect related nodes are removed if op_flow.args.inspect == FlowInspectType.REMOVE: op_flow._pod_nodes = { k: v for k, v in op_flow._pod_nodes.items() if not v.role.is_inspect } reverse_inspect_map = {v: k for k, v in op_flow._inspect_pods.items()} for end, pod in op_flow._pod_nodes.items(): # if an endpoint is being inspected, then replace it with inspected Pod # but not those inspect related node if op_flow.args.inspect.is_keep: pod.needs = set( ep if pod.role.is_inspect else op_flow._inspect_pods.get(ep, ep) for ep in pod.needs ) else: pod.needs = set(reverse_inspect_map.get(ep, ep) for ep in pod.needs) op_flow._set_initial_dynamic_routing_table() hanging_pods = _hanging_pods(op_flow) if hanging_pods: op_flow.logger.warning( f'{hanging_pods} are hanging in this flow with no pod receiving from them, ' f'you may want to double check if it is intentional or some mistake' ) op_flow._build_level = FlowBuildLevel.GRAPH return op_flow def __call__(self, *args, **kwargs): """Builds the Flow :param args: args for build :param kwargs: kwargs for build :return: the built Flow """ return self.build(*args, **kwargs) def __enter__(self): with CatchAllCleanupContextManager(self): return self.start() def __exit__(self, exc_type, exc_val, exc_tb): if hasattr(self, '_stop_event'): self._stop_event.set() super().__exit__(exc_type, exc_val, exc_tb) # unset all envs to avoid any side-effect if self.args.env: for k in self.args.env.keys(): os.environ.pop(k, None) # do not know why but removing these 2 lines make 2 tests fail if GATEWAY_NAME in self._pod_nodes: self._pod_nodes.pop(GATEWAY_NAME) self._build_level = FlowBuildLevel.EMPTY self.logger.debug('Flow is closed!') self.logger.close() def start(self): """Start to run all Pods in this Flow. Remember to close the Flow with :meth:`close`. Note that this method has a timeout of ``timeout_ready`` set in CLI, which is inherited all the way from :class:`jina.peapods.peas.BasePea` .. # noqa: DAR401 :return: this instance """ if self._build_level.value < FlowBuildLevel.GRAPH.value: self.build(copy_flow=False) if self.k8s_infrastructure_manager is not None: self.enter_context(self.k8s_infrastructure_manager) # set env only before the Pod get started if self.args.env: for k, v in self.args.env.items(): os.environ[k] = str(v) for k, v in self: if not getattr(v.args, 'external', False): self.enter_context(v) self._wait_until_all_ready() self._build_level = FlowBuildLevel.RUNNING return self def _wait_until_all_ready(self): results = {} threads = [] def _wait_ready(_pod_name, _pod): try: if not getattr(_pod.args, 'external', False): results[_pod_name] = 'pending' _pod.wait_start_success() results[_pod_name] = 'done' except Exception as ex: results[_pod_name] = repr(ex) def _polling_status(): spinner = itertools.cycle( ['⠋', '⠙', '⠹', '⠸', '⠼', '⠴', '⠦', '⠧', '⠇', '⠏'] ) while True: num_all = len(results) num_done = 0 pendings = [] for _k, _v in results.items(): sys.stdout.flush() if _v == 'pending': pendings.append(_k) else: num_done += 1 sys.stdout.write('\r{}\r'.format(' ' * 100)) pending_str = colored(' '.join(pendings)[:50], 'yellow') sys.stdout.write( f'{colored(next(spinner), "green")} {num_done}/{num_all} waiting {pending_str} to be ready...' ) sys.stdout.flush() if not pendings: sys.stdout.write('\r{}\r'.format(' ' * 100)) break time.sleep(0.1) # kick off all pods wait-ready threads for k, v in self: t = threading.Thread( target=_wait_ready, args=( k, v, ), daemon=True, ) threads.append(t) t.start() # kick off spinner thread t_m = threading.Thread(target=_polling_status, daemon=True) t_m.start() # kick off ip getter thread addr_table = [] t_ip = None if self.args.infrastructure != InfrastructureType.K8S: t_ip = threading.Thread( target=self._get_address_table, args=(addr_table,), daemon=True ) t_ip.start() for t in threads: t.join() if t_ip is not None: t_ip.join() t_m.join() error_pods = [k for k, v in results.items() if v != 'done'] if error_pods: self.logger.error( f'Flow is aborted due to {error_pods} can not be started.' ) self.close() raise RuntimeFailToStart else: if self.args.infrastructure == InfrastructureType.K8S: success_msg = colored('🎉 Kubernetes Flow is ready to use!', 'green') else: success_msg = colored('🎉 Flow is ready to use!', 'green') if addr_table: self.logger.info(success_msg + '\n' + '\n'.join(addr_table)) self.logger.debug( f'{self.num_pods} Pods (i.e. {self.num_peas} Peas) are running in this Flow' ) @property def num_pods(self) -> int: """Get the number of Pods in this Flow .. # noqa: DAR201""" return len(self._pod_nodes) @property def num_peas(self) -> int: """Get the number of peas (shards count) in this Flow .. # noqa: DAR201""" return sum(v.num_peas for v in self._pod_nodes.values()) def __eq__(self, other: 'Flow') -> bool: """ Compare the topology of a Flow with another Flow. Identification is defined by whether two flows share the same set of edges. :param other: the second Flow object :return: result of equality check """ if self._build_level.value < FlowBuildLevel.GRAPH.value: op_flow = copy.deepcopy(self) a = op_flow.build() else: a = self if other._build_level.value < FlowBuildLevel.GRAPH.value: op_flow_b = copy.deepcopy(other) b = op_flow_b.build() else: b = other return a._pod_nodes == b._pod_nodes @property def client(self) -> 'BaseClient': """Return a :class:`BaseClient` object attach to this Flow. .. # noqa: DAR201""" kwargs = dict( host=self.host, port=self.port_expose, protocol=self.protocol, ) kwargs.update(self._common_kwargs) return Client(**kwargs) @property def _mermaid_str(self): mermaid_graph = [ ''' %%{init:{ "theme": "base", "themeVariables": { "primaryColor": "#fff", "primaryBorderColor": "#fff", "mainBkg": "#32C8CD", "clusterBkg": "#EEEDE78C", "secondaryBorderColor": "none", "tertiaryBorderColor": "none", "lineColor": "#a6d8da" } }}%% '''.replace( '\n', '' ), 'flowchart LR;', ] pod_nodes = [] # plot subgraphs for node, v in self._pod_nodes.items(): pod_nodes.append(v.name) mermaid_graph.extend(v._mermaid_str) for node, v in self._pod_nodes.items(): for need in sorted(v.needs): need_print = need if need == 'gateway': need_print = 'gatewaystart[gateway]' node_print = node if node == 'gateway': node_print = 'gatewayend[gateway]' _s_role = self._pod_nodes[need].role _e_role = self._pod_nodes[node].role if getattr(self._pod_nodes[need].args, 'external', False): _s_role = 'EXTERNAL' if getattr(self._pod_nodes[node].args, 'external', False): _e_role = 'EXTERNAL' line_st = '-->' if _s_role == PodRoleType.INSPECT or _e_role == PodRoleType.INSPECT: line_st = '-.->' mermaid_graph.append( f'{need_print}:::{str(_s_role)} {line_st} {node_print}:::{str(_e_role)};' ) mermaid_graph.append(f'classDef {str(PodRoleType.INSPECT)} stroke:#F29C9F') mermaid_graph.append(f'classDef {str(PodRoleType.JOIN_INSPECT)} stroke:#F29C9F') mermaid_graph.append( f'classDef {str(PodRoleType.GATEWAY)} fill:none,color:#000,stroke:none' ) mermaid_graph.append( f'classDef {str(PodRoleType.INSPECT_AUX_PASS)} stroke-dasharray: 2 2' ) mermaid_graph.append(f'classDef HEADTAIL fill:#32C8CD1D') mermaid_graph.append(f'\nclassDef EXTERNAL fill:#fff,stroke:#32C8CD') return '\n'.join(mermaid_graph) def plot( self, output: Optional[str] = None, vertical_layout: bool = False, inline_display: bool = False, build: bool = True, copy_flow: bool = True, ) -> 'Flow': """ Visualize the Flow up to the current point If a file name is provided it will create a jpg image with that name, otherwise it will display the URL for mermaid. If called within IPython notebook, it will be rendered inline, otherwise an image will be created. Example, .. highlight:: python .. code-block:: python flow = Flow().add(name='pod_a').plot('flow.svg') :param output: a filename specifying the name of the image to be created, the suffix svg/jpg determines the file type of the output image :param vertical_layout: top-down or left-right layout :param inline_display: show image directly inside the Jupyter Notebook :param build: build the Flow first before plotting, gateway connection can be better showed :param copy_flow: when set to true, then always copy the current Flow and do the modification on top of it then return, otherwise, do in-line modification :return: the Flow """ # deepcopy causes the below error while reusing a Flow in Jupyter # 'Pickling an AuthenticationString object is disallowed for security reasons' op_flow = copy.deepcopy(self) if copy_flow else self if build: op_flow.build(False) mermaid_str = op_flow._mermaid_str if vertical_layout: mermaid_str = mermaid_str.replace('flowchart LR', 'flowchart TD') image_type = 'svg' if output and not output.endswith('svg'): image_type = 'img' url = op_flow._mermaid_to_url(mermaid_str, image_type) showed = False if inline_display: try: from IPython.display import display, Image display(Image(url=url)) showed = True except: # no need to panic users pass if output: download_mermaid_url(url, output) elif not showed: op_flow.logger.info(f'flow visualization: {url}') return self def _ipython_display_(self): """Displays the object in IPython as a side effect""" self.plot( inline_display=True, build=(self._build_level != FlowBuildLevel.GRAPH) ) def _mermaid_to_url(self, mermaid_str: str, img_type: str) -> str: """ Render the current Flow as URL points to a SVG. It needs internet connection :param mermaid_str: the mermaid representation :param img_type: image type (svg/jpg) :return: the url points to a SVG """ encoded_str = base64.b64encode(bytes(mermaid_str, 'utf-8')).decode('utf-8') return f'https://mermaid.ink/{img_type}/{encoded_str}' @property def port_expose(self) -> int: """Return the exposed port of the gateway .. # noqa: DAR201 """ if GATEWAY_NAME in self._pod_nodes: return self._pod_nodes[GATEWAY_NAME].args.port_expose else: return self._common_kwargs.get('port_expose', None) @port_expose.setter def port_expose(self, value: int): """Set the new exposed port of the Flow (affects Gateway and Client) :param value: the new port to expose """ self._common_kwargs['port_expose'] = value # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.port_expose = self._common_kwargs['port_expose'] # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self[GATEWAY_NAME].close() self.enter_context(self[GATEWAY_NAME]) self[GATEWAY_NAME].wait_start_success() @property def host(self) -> str: """Return the local address of the gateway .. # noqa: DAR201 """ if GATEWAY_NAME in self._pod_nodes: return self._pod_nodes[GATEWAY_NAME].host else: return self._common_kwargs.get('host', __default_host__) @host.setter def host(self, value: str): """Set the new host of the Flow (affects Gateway and Client) :param value: the new port to expose """ self._common_kwargs['host'] = value # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.host = self._common_kwargs['host'] # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self[GATEWAY_NAME].close() self.enter_context(self[GATEWAY_NAME]) self[GATEWAY_NAME].wait_start_success() @property def address_private(self) -> str: """Return the private IP address of the gateway for connecting from other machine in the same network .. # noqa: DAR201""" return get_internal_ip() @property def address_public(self) -> str: """Return the public IP address of the gateway for connecting from other machine in the public network .. # noqa: DAR201""" return get_public_ip() def __iter__(self): return self._pod_nodes.items().__iter__() def _get_address_table(self, address_table): address_table.extend( [ f'\t🔗 Protocol: \t\t{colored(self.protocol, attrs="bold")}', f'\t🏠 Local access:\t' + colored(f'{self.host}:{self.port_expose}', 'cyan', attrs='underline'), f'\t🔒 Private network:\t' + colored( f'{self.address_private}:{self.port_expose}', 'cyan', attrs='underline', ), ] ) if self.address_public: address_table.append( f'\t🌐 Public address:\t' + colored( f'{self.address_public}:{self.port_expose}', 'cyan', attrs='underline', ) ) if self.protocol == GatewayProtocolType.HTTP: address_table.append( f'\t💬 Swagger UI:\t\t' + colored( f'http://localhost:{self.port_expose}/docs', 'cyan', attrs='underline', ) ) address_table.append( f'\t📚 Redoc:\t\t' + colored( f'http://localhost:{self.port_expose}/redoc', 'cyan', attrs='underline', ) ) return address_table def block( self, stop_event: Optional[Union[threading.Event, multiprocessing.Event]] = None ): """Block the Flow until `stop_event` is set or user hits KeyboardInterrupt :param stop_event: a threading event or a multiprocessing event that onces set will resume the control Flow to main thread. """ try: if stop_event is None: self._stop_event = ( threading.Event() ) #: this allows `.close` to close the Flow from another thread/proc self._stop_event.wait() else: stop_event.wait() except KeyboardInterrupt: pass @property def protocol(self) -> GatewayProtocolType: """Return the protocol of this Flow :return: the protocol of this Flow """ v = self._common_kwargs.get('protocol', GatewayProtocolType.GRPC) if isinstance(v, str): v = GatewayProtocolType.from_string(v) return v @protocol.setter def protocol(self, value: Union[str, GatewayProtocolType]): """Set the protocol of this Flow :param value: the protocol to set """ if isinstance(value, str): self._common_kwargs['protocol'] = GatewayProtocolType.from_string(value) elif isinstance(value, GatewayProtocolType): self._common_kwargs['protocol'] = value else: raise TypeError(f'{value} must be either `str` or `GatewayProtocolType`') # Flow is build to graph already if self._build_level >= FlowBuildLevel.GRAPH: self[GATEWAY_NAME].args.protocol = self._common_kwargs['protocol'] # Flow is running already, then close the existing gateway if self._build_level >= FlowBuildLevel.RUNNING: self[GATEWAY_NAME].close() self.enter_context(self[GATEWAY_NAME]) self[GATEWAY_NAME].wait_start_success() def __getitem__(self, item): if isinstance(item, str): return self._pod_nodes[item] elif isinstance(item, int): return list(self._pod_nodes.values())[item] else: raise TypeError(f'{typename(item)} is not supported') @property def workspace(self) -> str: """Return the workspace path of the flow. .. # noqa: DAR201""" return os.path.abspath(self.args.workspace or './') @workspace.setter def workspace(self, value: str): """set workspace dir for flow & all pods :param value: workspace to be set """ self.args.workspace = value for k, p in self: p.args.workspace = value @property def workspace_id(self) -> Dict[str, str]: """Get all Pods' ``workspace_id`` values in a dict .. # noqa: DAR201""" return { k: p.args.workspace_id for k, p in self if hasattr(p.args, 'workspace_id') } @workspace_id.setter def workspace_id(self, value: str): """Set all Pods' ``workspace_id`` to ``value`` :param value: a hexadecimal UUID string """ uuid.UUID(value) for k, p in self: if hasattr(p.args, 'workspace_id'): p.args.workspace_id = value args = getattr(p, 'peas_args', getattr(p, 'shards_args', None)) if args is None: raise ValueError( f'could not find "peas_args" or "shards_args" on {p}' ) values = None if isinstance(args, dict): values = args.values() elif isinstance(args, list): values = args for v in values: if v and isinstance(v, argparse.Namespace): v.workspace_id = value if v and isinstance(v, List): for i in v: i.workspace_id = value @property def env(self) -> Optional[Dict]: """Get all envs to be set in the Flow :return: envs as dict """ return self.args.env @env.setter def env(self, value: Dict[str, str]): """set env vars for flow & all pods. This can be used by jinad to set envs for Flow and all child objects :param value: value to be set """ self.args.env = value for k, v in self: v.args.env = value @property def identity(self) -> Dict[str, str]: """Get all Pods' ``identity`` values in a dict .. # noqa: DAR201 """ return {k: p.args.identity for k, p in self} @identity.setter def identity(self, value: str): """Set all Pods' ``identity`` to ``value`` :param value: a hexadecimal UUID string """ uuid.UUID(value) # Re-initiating logger with new identity self.logger = JinaLogger(self.__class__.__name__, **vars(self.args)) for _, p in self: p.args.identity = value @overload def expose_endpoint(self, exec_endpoint: str, path: Optional[str] = None): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. :param exec_endpoint: the endpoint string, by convention starts with `/` :param path: the HTTP endpoint string, when not given, it is `exec_endpoint` """ ... @overload def expose_endpoint( self, exec_endpoint: str, *, path: Optional[str] = None, status_code: int = 200, tags: Optional[List[str]] = None, summary: Optional[str] = None, description: Optional[str] = None, response_description: str = 'Successful Response', deprecated: Optional[bool] = None, methods: Optional[List[str]] = None, operation_id: Optional[str] = None, response_model_by_alias: bool = True, response_model_exclude_unset: bool = False, response_model_exclude_defaults: bool = False, response_model_exclude_none: bool = False, include_in_schema: bool = True, name: Optional[str] = None, ): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. Use this method to specify your HTTP endpoint with richer semantic and schema. :param exec_endpoint: the endpoint string, by convention starts with `/` # noqa: DAR101 """ ... def expose_endpoint(self, exec_endpoint: str, **kwargs): """Expose an Executor's endpoint (defined by `@requests(on=...)`) to HTTP endpoint for easier access. After expose, you can send data request directly to `http://hostname:port/endpoint`. :param exec_endpoint: the endpoint string, by convention starts with `/` # noqa: DAR101 # noqa: DAR102 """ self._endpoints_mapping[exec_endpoint] = kwargs # for backward support join = needs def rolling_update( self, pod_name: str, dump_path: Optional[str] = None, *, uses_with: Optional[Dict] = None, ): """ Reload all replicas of a pod sequentially :param pod_name: pod to update :param dump_path: **backwards compatibility** This function was only accepting dump_path as the only potential arg to override :param uses_with: a Dictionary of arguments to restart the executor with """ from ..helper import run_async run_async( self._pod_nodes[pod_name].rolling_update, dump_path=dump_path, uses_with=uses_with, any_event_loop=True, ) @property def client_args(self) -> argparse.Namespace: """Get Client settings. # noqa: DAR201 """ if 'port_expose' in self._common_kwargs: kwargs = copy.deepcopy(self._common_kwargs) kwargs['port'] = self._common_kwargs['port_expose'] return ArgNamespace.kwargs2namespace(kwargs, set_client_cli_parser()) @property def gateway_args(self) -> argparse.Namespace: """Get Gateway settings. # noqa: DAR201 """ return ArgNamespace.kwargs2namespace(self._common_kwargs, set_gateway_parser()) def update_network_interface(self, **kwargs): """Update the network interface of this Flow (affects Gateway & Client) :param kwargs: new network settings """ self._common_kwargs.update(kwargs)
41.648707
283
0.612393
2366d3b29e85a30dbf84e0b96269af504eb4c167
1,494
py
Python
copper_sdk/activities.py
Agilicus/copper-sdk
dfdecd4aa76bdd47661fdd4bfada7781f8eae835
[ "MIT" ]
4
2021-01-03T07:40:01.000Z
2021-09-03T09:21:02.000Z
copper_sdk/activities.py
Agilicus/copper-sdk
dfdecd4aa76bdd47661fdd4bfada7781f8eae835
[ "MIT" ]
5
2020-09-03T17:28:13.000Z
2021-10-04T22:47:23.000Z
copper_sdk/activities.py
Agilicus/copper-sdk
dfdecd4aa76bdd47661fdd4bfada7781f8eae835
[ "MIT" ]
3
2020-09-02T14:54:46.000Z
2021-09-02T18:12:45.000Z
from copper_sdk.base import BaseResource class Activities(BaseResource): def __init__(self, copper): self.copper = copper def get(self, id): return self.copper.get(f'/activities/{id}') def create(self, body=None): if body is None: body = {} return self.copper.post('/activities', body) def delete(self, id): return self.copper.delete(f'/activities/{id}') def list(self, body=None): if body is None: body = {} default_body = { # 'parent': {}, # hash A hash describing the resource to which activities must belong (footnote 1). # 'activity_types': {}, # activity_type[] The activity types to filter results on (footnote 1). none 'page_number': 1, # number The page number (starting with 1) that you would like to view. 1 'page_size': 20, # number The number of entries included in a page of results 20 # 'minimum_activity_date': "", # number The Unix timestamp of the earliest activity date. none # 'maximum_activity_date': "", # number The Unix timestamp of the latest activity date. none 'full_result': False, # boolean (Optional) If set to true, search performance improves but duplicate activity logs may be returned (footnote 3). false } return self.copper.post('/activities/search', { **default_body, **body}) def types(self): return self.copper.get('/activity_types')
40.378378
162
0.630522
bc952f01badf96b7ea39053431fb4cfd9b7508ba
7,553
py
Python
OntoMapper.py
shadi-tabasi/IOPE
330572bad72d2af92eb55388c65ae01b4a16b3fb
[ "CC0-1.0" ]
null
null
null
OntoMapper.py
shadi-tabasi/IOPE
330572bad72d2af92eb55388c65ae01b4a16b3fb
[ "CC0-1.0" ]
null
null
null
OntoMapper.py
shadi-tabasi/IOPE
330572bad72d2af92eb55388c65ae01b4a16b3fb
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- from rdflib.graph import Graph from rdflib import URIRef import Queries, OntoConcepts, UtilityFunctions import unicodedata, os, time, sys import random def OntoMapper(AtelierURI, AtelierLabel): StartTime = time.time() # input parameters OntoFileName = "onto.nt" # QueryParameter = "samsei:PriseEnChargeUnArretCardioRespiratoire" QueryParameter = AtelierURI QueryParameterLabel = AtelierLabel # QueryParameterLabel = "Prise en charge d'un arret cardio respiratoire" print("Mapping ontlogy for "+QueryParameter+" ...") QueryParameterWithoutDots = QueryParameter.replace(":","") DirName = "static/HTMLPages/Atelier_"+QueryParameterWithoutDots try: os.mkdir(DirName) except: pass MyGraph = Graph() MyGraph.parse(OntoFileName, format="nt") Namespace = dict(owl="http://www.w3.org/2002/07/owl#",samsei="http://my.ontology.fr/sgm#") HasValueConstraints = OntoConcepts.OntoQuery(Queries.HasValueParamQuery, QueryParameter, MyGraph, Namespace) HasValueConstraintsResults = HasValueConstraints.RunQuery() CardinalityMaxConstraints = OntoConcepts.OntoQuery(Queries.CardinalityMaxParamQuery, QueryParameter, MyGraph, Namespace) CardinalityMaxResults = CardinalityMaxConstraints.RunQuery() CardinalityConstraints = OntoConcepts.OntoQuery(Queries.CardinalityMinParamQuery, QueryParameter, MyGraph, Namespace) CardinalityMinResults = CardinalityConstraints.RunQuery() AlternativeValueConstraints = OntoConcepts.OntoQuery(Queries.AlternativeParamQuery, QueryParameter, MyGraph, Namespace) AlternativeValueConstraintsResults = AlternativeValueConstraints.RunQuery() OntoGlobal = OntoConcepts.OntoGlobalClass() for ResultRow in HasValueConstraintsResults: HasValueConstraint = OntoConcepts.HasValueConstraintClass() HasValueConstraint.Fill(ResultRow) OntoGlobal.Update(HasValueConstraint, "HasValue") for ResultRow in CardinalityMaxResults: CardinalityMaxConstraint = OntoConcepts.CardinalityConstraintClass("Max") CardinalityMaxConstraint.Fill(ResultRow) OntoGlobal.Update(CardinalityMaxConstraint, "Max") OntoGlobal.UpdateMinMax(CardinalityMaxConstraint, MyGraph, Namespace) for ResultRow in CardinalityMinResults: CardinalityMinConstraint = OntoConcepts.CardinalityConstraintClass("Min") CardinalityMinConstraint.Fill(ResultRow) OntoGlobal.Update(CardinalityMinConstraint, "Min") OntoGlobal.UpdateMinMax(CardinalityMinConstraint, MyGraph, Namespace) for ResultRow in AlternativeValueConstraintsResults: AlternativeConstraint = OntoConcepts.AlternativeConstraintClass() AlternativeConstraint.Fill(ResultRow) OntoGlobal.Update(AlternativeConstraint, "Alter") OntoGlobal.UpdateAlter(AlternativeConstraint, "Alter") # AtelierIndexPage = open(DirName+"/AtelierIndex.html","w") # AtelierIndexPage.write("<html><head><meta charset='UTF-8'><meta name='viewport' content='width=device-width, initial-scale=1'><link rel='stylesheet' href='https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css'><script src='https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js'></script><style>body {padding: 20px;} a {cursor: pointer;}</style></head><body><div class='container'><div class='jumbotron'><h2>Pages du formulaire décrivant l'atelier \""+ AtelierLabel + "\":</h2></div><div class='card'><h4 class='card-header'>Accéder à chaque page pour compléter et valider les différentes sections</h4><div class='card-body'><p><b>Pages vues jusqu'à présent: </b>{{ cookie_content }}</p>") # AtelierIndexPage.write("{{ session_name }} <br>\n") # HTML generation count_pages = 0 for Parent in OntoGlobal.Parents: count_pages += 1 print("page",count_pages) SeenProperties = [] HTMLFile = OntoConcepts.HTMLFileClass(Parent,DirName,AtelierURI) HTMLFile.Initialize(AtelierLabel) ChildrenOfParent = OntoGlobal.GetParentAssociation(Parent) for Child in ChildrenOfParent: if UtilityFunctions.Is_Child_Valid(Child, SeenProperties) == False: continue SeenProperties.append(Child) HTMLElement = OntoConcepts.HTMLElementClass(Child, Parent, MyGraph, Namespace) SubChildFlatRelations = HTMLElement.GetSubChildFlatRelations(Child, MyGraph, Namespace) HTMLTreeID = random.randint(1,1000) PropertyTree = UtilityFunctions.GetTreeStructure("Property",SubChildFlatRelations,Child,HTMLTreeID) ChildMinNumber = OntoGlobal.GetMinNumber(Child) HTMLElement.Initialize(PropertyTree,SubChildFlatRelations,ChildMinNumber) if OntoGlobal.PropMarker[Child].find("HasValue") != -1: ChildValueClassLabel = OntoGlobal.GetValueClassLabel(Child) ChildValueLabel = OntoGlobal.GetValueLabel(Child) HTMLElement.AddHasValue(ChildValueClassLabel,ChildValueLabel) if OntoGlobal.PropMarker[Child].find("Max") != -1: ChildValueLabelMax = OntoGlobal.GetValueLabelMax(Child) ChildMaxNumber = OntoGlobal.GetMaxNumber(Child) HTMLElement.MaxVisited(ChildValueLabelMax) HTMLElement.AddMax(ChildValueLabelMax,ChildMaxNumber) if OntoGlobal.PropMarker[Child].find("Min") != -1: ChildValueLabelMin = OntoGlobal.GetValueLabelMin(Child) if OntoGlobal.PropMarker[Child].find("Alter") != -1: ChildValueAlterLabel = OntoGlobal.GetValueAlternative(Child) if ChildValueAlterLabel != -1: HTMLElement.AddAlternativeValue(ChildValueAlterLabel, Child, MyGraph, Namespace) # ChildMinNumber = OntoGlobal.GetMinNumber(Child) # HTMLElement.PropertyAsterisk(Child, ChildMinNumber) HTMLElement.AddMin(ChildValueLabelMin,ChildMinNumber,HTMLFile.ConstraintCount,Child,MyGraph,Namespace) HTMLElement.AddOrphanMax(Child,HTMLFile.ConstraintCount,MyGraph, Namespace) HTMLElement.OtherTextBox(Child, MyGraph, Namespace) HTMLFile.AddJS(HTMLElement.GetJSScript()) HTMLFile.AddHTMLTreeJS(HTMLElement.GetHTMLTreeJS()) HTMLFile.IncreaseConstraintCount() if HTMLElement.HasContent(): HTMLFile.AddHTMLElement(HTMLElement) # attach HTMLElement to HTMLPage ParentFileName = Parent.replace(" ","_") ParentFileName = ParentFileName.decode("utf-8") FileName = "Page_"+ParentFileName+".php" # AtelierIndexPage.write("<a href=\"static/"+FileName.encode('ascii', 'xmlcharrefreplace')+"?session_name={{ session_name }}\">"+Parent+"</a><br>\n") # AtelierIndexPage.write("<span style='color:green'>$$</span><a href=\"/SelectPage?page="+FileName.encode('ascii', 'xmlcharrefreplace')+"&session_name={{ session_name }}&atelier_URI={{ atelier_URI }}\">"+Parent+"</a><br>\n") # AtelierIndexPage.write("<a href=\"/SelectPage?page="+FileName.encode('ascii', 'xmlcharrefreplace')+"&session_name={{ session_name }}&atelier_URI={{ atelier_URI }}\">"+Parent+"</a><br>\n") HTMLFile.Finalize() HTMLFile.WriteToFile() # AtelierIndexPage.write("</div></div>") # AtelierIndexPage.close() EndTime = time.time() Duration = round(EndTime - StartTime, 2) print "Generated HTML pages in "+str(Duration)+" seconds." print(count_pages)
56.789474
721
0.712962
721a3c28c6d44ac82f8a0131a17146a019a1f561
627
py
Python
utility/hash_util.py
andradediego/blockchainpython
f1b08c93c226458b09dab2b4c5d76a8b4cd83bcf
[ "MIT" ]
null
null
null
utility/hash_util.py
andradediego/blockchainpython
f1b08c93c226458b09dab2b4c5d76a8b4cd83bcf
[ "MIT" ]
null
null
null
utility/hash_util.py
andradediego/blockchainpython
f1b08c93c226458b09dab2b4c5d76a8b4cd83bcf
[ "MIT" ]
null
null
null
import hashlib as hl import json # __all__ = ['hash_string_256', 'hash_block'] def hash_string_256(string): """Create a SHA256 hash for a given input string. Arguments: :string: The string which should be hashed. """ return hl.sha256(string).hexdigest() def hash_block(block): """Hashes a block and returns a string representation of it. Arguments: :block: The block that should be hashed. """ hashable_block = block.__dict__.copy() hashable_block['transactions'] = [tx.to_ordered_dict() for tx in hashable_block['transactions']] return hash_string_256(json.dumps(hashable_block, sort_keys=True).encode())
27.26087
97
0.744817
6b792a85e194e54a157977988edcfc6e4bb7a3ba
2,119
py
Python
examples/py/asciichart.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
24,910
2017-10-27T21:41:59.000Z
2022-03-31T23:08:57.000Z
examples/py/asciichart.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
8,201
2017-10-28T10:19:28.000Z
2022-03-31T23:49:37.000Z
examples/py/asciichart.py
diwenshi61/ccxt
ebdda10e7c4ed8841d572f3bfe198b5f0e949cf6
[ "MIT" ]
6,632
2017-10-28T02:53:24.000Z
2022-03-31T23:20:14.000Z
# -*- coding: utf-8 -*- # This file is a copied implementation from my asciichart repository on GitHub # https://github.com/kroitor/asciichart from math import cos # from math import sin from math import pi from math import floor from math import ceil def plot(series, cfg={}): minimum = min(series) maximum = max(series) interval = abs(float(maximum) - float(minimum)) offset = cfg['offset'] if 'offset' in cfg else 3 # padding = cfg['padding'] if 'padding' in cfg else ' ' height = cfg['height'] if 'height' in cfg else interval ratio = height / interval # print(minimum,ratio,type(minimum)) min2 = floor(float(minimum) * ratio) max2 = ceil(float(maximum) * ratio) intmin2 = int(min2) intmax2 = int(max2) rows = abs(intmax2 - intmin2) width = len(series) + offset # format = cfg['format'] if 'format' in cfg else lambda x: (padding + '{:.2f}'.format(x))[:-len(padding)] result = [[' '] * width for i in range(rows + 1)] # axis and labels for y in range(intmin2, intmax2 + 1): label = '{:8.2f}'.format(float(maximum) - ((y - intmin2) * interval / rows)) result[y - intmin2][max(offset - len(label), 0)] = label result[y - intmin2][offset - 1] = '┼' if y == 0 else '┤' y0 = int(series[0] * ratio - min2) result[rows - y0][offset - 1] = '┼' # first value for x in range(0, len(series) - 1): # plot the line y0 = int(round(series[x + 0] * ratio) - intmin2) y1 = int(round(series[x + 1] * ratio) - intmin2) if y0 == y1: result[rows - y0][x + offset] = '─' else: result[rows - y1][x + offset] = '╰' if y0 > y1 else '╭' result[rows - y0][x + offset] = '╮' if y0 > y1 else '╯' start = min(y0, y1) + 1 end = max(y0, y1) for y in range(start, end): result[rows - y][x + offset] = '│' return '\n'.join([''.join(row) for row in result]) if __name__ == '__main__': width = 180 series = [15 * cos(i * ((pi * 4) / width)) for i in range(width)] print(plot(series))
32.6
109
0.563001
952b7c7c2a1d7e8d80506304efbdc9860d74e770
1,075
py
Python
Day01-15/code/Day13/test2.py
EngrSaad2/Python-100-Days
ab0b26714b1df50d02a1433dc82f2a3fb025be5c
[ "Apache-2.0" ]
6
2020-04-22T14:07:51.000Z
2021-09-07T12:55:23.000Z
Day01-15/code/Day13/test2.py
2462612540/Python-Language
a676d1274a04ff03f1aea0de9c58019d6ef8f5fe
[ "Apache-2.0" ]
88
2019-10-31T12:30:02.000Z
2020-08-14T12:17:12.000Z
Day01-15/code/Day13/test2.py
2462612540/Python-Language
a676d1274a04ff03f1aea0de9c58019d6ef8f5fe
[ "Apache-2.0" ]
4
2019-08-25T05:51:00.000Z
2021-04-16T08:14:16.000Z
import time from threading import Thread, Lock class Account(object): def __init__(self, balance=0): self._balance = balance self._lock = Lock() @property def balance(self): return self._balance def deposit(self, money): # 当多个线程同时访问一个资源的时候 就有可能因为竞争资源导致资源的状态错误 # 被多个线程访问的资源我们通常称之为临界资源 对临界资源的访问需要加上保护 if money > 0: self._lock.acquire() try: new_balance = self._balance + money time.sleep(0.01) self._balance = new_balance finally: self._lock.release() class AddMoneyThread(Thread): def __init__(self, account): super().__init__() self._account = account def run(self): self._account.deposit(1) def main(): account = Account(1000) tlist = [] for _ in range(100): t = AddMoneyThread(account) tlist.append(t) t.start() for t in tlist: t.join() print('账户余额: %d元' % account.balance) if __name__ == '__main__': main()
20.673077
51
0.567442
dffba646dfd75b93f251e8e785b419c52cef6312
11,522
py
Python
homeassistant/components/homematicip_cloud/climate.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
4
2021-07-11T09:11:00.000Z
2022-02-27T14:43:50.000Z
homeassistant/components/homematicip_cloud/climate.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
277
2021-10-04T06:39:33.000Z
2021-12-28T22:04:17.000Z
homeassistant/components/homematicip_cloud/climate.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
3
2022-01-02T18:49:54.000Z
2022-01-25T02:03:54.000Z
"""Support for HomematicIP Cloud climate devices.""" from __future__ import annotations from typing import Any from homematicip.aio.device import AsyncHeatingThermostat, AsyncHeatingThermostatCompact from homematicip.aio.group import AsyncHeatingGroup from homematicip.base.enums import AbsenceType from homematicip.device import Switch from homematicip.functionalHomes import IndoorClimateHome from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import ( CURRENT_HVAC_HEAT, CURRENT_HVAC_IDLE, HVAC_MODE_AUTO, HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_OFF, PRESET_AWAY, PRESET_BOOST, PRESET_ECO, PRESET_NONE, SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_TEMPERATURE, TEMP_CELSIUS from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from . import DOMAIN as HMIPC_DOMAIN, HomematicipGenericEntity from .hap import HomematicipHAP HEATING_PROFILES = {"PROFILE_1": 0, "PROFILE_2": 1, "PROFILE_3": 2} COOLING_PROFILES = {"PROFILE_4": 3, "PROFILE_5": 4, "PROFILE_6": 5} ATTR_PRESET_END_TIME = "preset_end_time" PERMANENT_END_TIME = "permanent" HMIP_AUTOMATIC_CM = "AUTOMATIC" HMIP_MANUAL_CM = "MANUAL" HMIP_ECO_CM = "ECO" async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the HomematicIP climate from a config entry.""" hap = hass.data[HMIPC_DOMAIN][config_entry.unique_id] entities = [] for device in hap.home.groups: if isinstance(device, AsyncHeatingGroup): entities.append(HomematicipHeatingGroup(hap, device)) if entities: async_add_entities(entities) class HomematicipHeatingGroup(HomematicipGenericEntity, ClimateEntity): """Representation of the HomematicIP heating group. Heat mode is supported for all heating devices incl. their defined profiles. Boost is available for radiator thermostats only. Cool mode is only available for floor heating systems, if basically enabled in the hmip app. """ def __init__(self, hap: HomematicipHAP, device: AsyncHeatingGroup) -> None: """Initialize heating group.""" device.modelType = "HmIP-Heating-Group" super().__init__(hap, device) self._simple_heating = None if device.actualTemperature is None: self._simple_heating = self._first_radiator_thermostat @property def device_info(self) -> DeviceInfo: """Return device specific attributes.""" return DeviceInfo( identifiers={(HMIPC_DOMAIN, self._device.id)}, manufacturer="eQ-3", model=self._device.modelType, name=self._device.label, via_device=(HMIPC_DOMAIN, self._device.homeId), ) @property def temperature_unit(self) -> str: """Return the unit of measurement.""" return TEMP_CELSIUS @property def supported_features(self) -> int: """Return the list of supported features.""" return SUPPORT_PRESET_MODE | SUPPORT_TARGET_TEMPERATURE @property def target_temperature(self) -> float: """Return the temperature we try to reach.""" return self._device.setPointTemperature @property def current_temperature(self) -> float: """Return the current temperature.""" if self._simple_heating: return self._simple_heating.valveActualTemperature return self._device.actualTemperature @property def current_humidity(self) -> int: """Return the current humidity.""" return self._device.humidity @property def hvac_mode(self) -> str: """Return hvac operation ie.""" if self._disabled_by_cooling_mode and not self._has_switch: return HVAC_MODE_OFF if self._device.boostMode: return HVAC_MODE_HEAT if self._device.controlMode == HMIP_MANUAL_CM: return HVAC_MODE_HEAT if self._heat_mode_enabled else HVAC_MODE_COOL return HVAC_MODE_AUTO @property def hvac_modes(self) -> list[str]: """Return the list of available hvac operation modes.""" if self._disabled_by_cooling_mode and not self._has_switch: return [HVAC_MODE_OFF] return ( [HVAC_MODE_AUTO, HVAC_MODE_HEAT] if self._heat_mode_enabled else [HVAC_MODE_AUTO, HVAC_MODE_COOL] ) @property def hvac_action(self) -> str | None: """ Return the current hvac_action. This is only relevant for radiator thermostats. """ if ( self._device.floorHeatingMode == "RADIATOR" and self._has_radiator_thermostat and self._heat_mode_enabled ): return ( CURRENT_HVAC_HEAT if self._device.valvePosition else CURRENT_HVAC_IDLE ) return None @property def preset_mode(self) -> str | None: """Return the current preset mode.""" if self._device.boostMode: return PRESET_BOOST if self.hvac_mode in (HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_OFF): return PRESET_NONE if self._device.controlMode == HMIP_ECO_CM: if self._indoor_climate.absenceType == AbsenceType.VACATION: return PRESET_AWAY if self._indoor_climate.absenceType in [ AbsenceType.PARTY, AbsenceType.PERIOD, AbsenceType.PERMANENT, ]: return PRESET_ECO return ( self._device.activeProfile.name if self._device.activeProfile.name in self._device_profile_names else None ) @property def preset_modes(self) -> list[str]: """Return a list of available preset modes incl. hmip profiles.""" # Boost is only available if a radiator thermostat is in the room, # and heat mode is enabled. profile_names = self._device_profile_names presets = [] if ( self._heat_mode_enabled and self._has_radiator_thermostat ) or self._has_switch: if not profile_names: presets.append(PRESET_NONE) presets.append(PRESET_BOOST) presets.extend(profile_names) return presets @property def min_temp(self) -> float: """Return the minimum temperature.""" return self._device.minTemperature @property def max_temp(self) -> float: """Return the maximum temperature.""" return self._device.maxTemperature async def async_set_temperature(self, **kwargs) -> None: """Set new target temperature.""" if (temperature := kwargs.get(ATTR_TEMPERATURE)) is None: return if self.min_temp <= temperature <= self.max_temp: await self._device.set_point_temperature(temperature) async def async_set_hvac_mode(self, hvac_mode: str) -> None: """Set new target hvac mode.""" if hvac_mode not in self.hvac_modes: return if hvac_mode == HVAC_MODE_AUTO: await self._device.set_control_mode(HMIP_AUTOMATIC_CM) else: await self._device.set_control_mode(HMIP_MANUAL_CM) async def async_set_preset_mode(self, preset_mode: str) -> None: """Set new preset mode.""" if preset_mode not in self.preset_modes: return if self._device.boostMode and preset_mode != PRESET_BOOST: await self._device.set_boost(False) if preset_mode == PRESET_BOOST: await self._device.set_boost() if preset_mode in self._device_profile_names: profile_idx = self._get_profile_idx_by_name(preset_mode) if self._device.controlMode != HMIP_AUTOMATIC_CM: await self.async_set_hvac_mode(HVAC_MODE_AUTO) await self._device.set_active_profile(profile_idx) @property def extra_state_attributes(self) -> dict[str, Any]: """Return the state attributes of the access point.""" state_attr = super().extra_state_attributes if self._device.controlMode == HMIP_ECO_CM: if self._indoor_climate.absenceType in [ AbsenceType.PARTY, AbsenceType.PERIOD, AbsenceType.VACATION, ]: state_attr[ATTR_PRESET_END_TIME] = self._indoor_climate.absenceEndTime elif self._indoor_climate.absenceType == AbsenceType.PERMANENT: state_attr[ATTR_PRESET_END_TIME] = PERMANENT_END_TIME return state_attr @property def _indoor_climate(self) -> IndoorClimateHome: """Return the hmip indoor climate functional home of this group.""" return self._home.get_functionalHome(IndoorClimateHome) @property def _device_profiles(self) -> list[Any]: """Return the relevant profiles.""" return [ profile for profile in self._device.profiles if profile.visible and profile.name != "" and profile.index in self._relevant_profile_group ] @property def _device_profile_names(self) -> list[str]: """Return a collection of profile names.""" return [profile.name for profile in self._device_profiles] def _get_profile_idx_by_name(self, profile_name: str) -> int: """Return a profile index by name.""" relevant_index = self._relevant_profile_group index_name = [ profile.index for profile in self._device_profiles if profile.name == profile_name ] return relevant_index[index_name[0]] @property def _heat_mode_enabled(self) -> bool: """Return, if heating mode is enabled.""" return not self._device.cooling @property def _disabled_by_cooling_mode(self) -> bool: """Return, if group is disabled by the cooling mode.""" return self._device.cooling and ( self._device.coolingIgnored or not self._device.coolingAllowed ) @property def _relevant_profile_group(self) -> dict[str, int]: """Return the relevant profile groups.""" if self._disabled_by_cooling_mode: return {} return HEATING_PROFILES if self._heat_mode_enabled else COOLING_PROFILES @property def _has_switch(self) -> bool: """Return, if a switch is in the hmip heating group.""" for device in self._device.devices: if isinstance(device, Switch): return True return False @property def _has_radiator_thermostat(self) -> bool: """Return, if a radiator thermostat is in the hmip heating group.""" return bool(self._first_radiator_thermostat) @property def _first_radiator_thermostat( self, ) -> AsyncHeatingThermostat | AsyncHeatingThermostatCompact | None: """Return the first radiator thermostat from the hmip heating group.""" for device in self._device.devices: if isinstance( device, (AsyncHeatingThermostat, AsyncHeatingThermostatCompact) ): return device return None
33.988201
96
0.658827
c949ca6b847923abbfa491c94050bab2e2263710
2,665
py
Python
project_euler/001-050/08.py
floppp/programming_challenges
42df1b72faf5ddf907296f90e9b14e014d2ea13b
[ "MIT" ]
null
null
null
project_euler/001-050/08.py
floppp/programming_challenges
42df1b72faf5ddf907296f90e9b14e014d2ea13b
[ "MIT" ]
null
null
null
project_euler/001-050/08.py
floppp/programming_challenges
42df1b72faf5ddf907296f90e9b14e014d2ea13b
[ "MIT" ]
null
null
null
''' The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product? ''' from numpy import * a = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450 list_a = [int(x) for x in str(a)] def product_adjacent(num: "iterable<int>", adjacent: "int") -> "int": res = 1 for i in range(len(num) - adjacent): aux = 1 for j in range(i, i + adjacent): aux *= list_a[j] if aux > res: res = aux return res print(product_adjacent(list_a, 13)) # Solución: 23514624000
55.520833
1,004
0.899812
7d4d02b7c7f85aebb5a24805f3e96d2c2247d0e6
1,843
py
Python
stt.py
Goneiross/Yumiakui
594f4445847112c5bb8e76ac63fb1b7c9b798902
[ "MIT" ]
null
null
null
stt.py
Goneiross/Yumiakui
594f4445847112c5bb8e76ac63fb1b7c9b798902
[ "MIT" ]
null
null
null
stt.py
Goneiross/Yumiakui
594f4445847112c5bb8e76ac63fb1b7c9b798902
[ "MIT" ]
null
null
null
import json from os.path import join, dirname from ibm_watson import SpeechToTextV1 from ibm_watson.websocket import RecognizeCallback, AudioSource from ibm_cloud_sdk_core.authenticators import IAMAuthenticator STT_NAME = "GOOGLE" def stt_init(): """ Initialize choosen STT. Supports IBM Watson and Google Cloud. Returns: stt (SpeechToText) """ if (STT_NAME == "IBM"): f = open(join(dirname(__file__), "data/", "credentials/", "IBM_STT_key"), "r") IMB_KEY = f.readline() f.close() f = open(join(dirname(__file__), "data/", "credentials/", "IBM_STT_url"), "r") IMB_URL = f.readline() f.close() authenticator = IAMAuthenticator(IMB_KEY) speech_to_text = SpeechToTextV1(authenticator=authenticator) speech_to_text.set_service_url(IMB_URL) return speech_to_text elif (STT_NAME == "GOOGLE_CLOUD"): os.environ["GOOGLE_APPLICATION_CREDENTIALS"]=join(dirname(__file__), "data/", "credentials/", "GOOGLE_STT_key.JSON") elif (STT_NAME == "GOOGLE"): pass else: print("ERROR - WRONG STT NAME") def stt_transcript(stt, audioSource): """ Recognizes the voice to return a text. Parameters: audioSource(Audio) Returns: text (string) """ if (STT_NAME == "IBM"): results = stt.recognize(audio=audioSource.get_wav_data(), content_type='audio/wav').get_result() print(results) r = "" try: r = results.get('results').pop().get('alternatives').pop().get('transcript') pass except: print("ERROR") pass print(r) return (r) elif (STT_NAME == "GOOGLE_CLOUD"): return stt.recognize_google_cloud(audioSource, language = 'en-US') else: print("ERROR - WRONG STT NAME")
32.333333
124
0.627238
5da3b6368220dffa8429831e9000ad7b94a2faf2
756
py
Python
src/modules/encoder.py
andompesta/omnitext
da6467b6cd9086b2278f7a1560596261f125800e
[ "MIT" ]
null
null
null
src/modules/encoder.py
andompesta/omnitext
da6467b6cd9086b2278f7a1560596261f125800e
[ "MIT" ]
null
null
null
src/modules/encoder.py
andompesta/omnitext
da6467b6cd9086b2278f7a1560596261f125800e
[ "MIT" ]
null
null
null
from torch import nn, Tensor from typing import Optional from src.config import BaseConf from src.modules import ( EncoderLayer ) class Encoder(nn.Module): def __init__(self, conf: BaseConf): super(Encoder, self).__init__() self.layer = nn.ModuleList([EncoderLayer(conf) for _ in range(conf.num_hidden_layers)]) def forward( self, hidden_states: Tensor, attention_mask: Optional[Tensor] = None, **kwargs ) -> Tensor: for i, layer_module in enumerate(self.layer): hidden_states = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, **kwargs ) return hidden_states
28
95
0.612434
3f780cc185e57aaf36a1d1174e5ac2c39d8e642d
10,996
py
Python
DjangoUeditor/views.py
niuwenju/minicms
745f34304abbe30c88eba9f3878f70332b8deba3
[ "MIT" ]
null
null
null
DjangoUeditor/views.py
niuwenju/minicms
745f34304abbe30c88eba9f3878f70332b8deba3
[ "MIT" ]
null
null
null
DjangoUeditor/views.py
niuwenju/minicms
745f34304abbe30c88eba9f3878f70332b8deba3
[ "MIT" ]
null
null
null
#coding:utf-8 from importlib import import_module from django.http import HttpResponse import settings as USettings import os import json from django.views.decorators.csrf import csrf_exempt import datetime,random import urllib def get_path_format_vars(): return { "year":datetime.datetime.now().strftime("%Y"), "month":datetime.datetime.now().strftime("%m"), "day":datetime.datetime.now().strftime("%d"), "date": datetime.datetime.now().strftime("%Y%m%d"), "time":datetime.datetime.now().strftime("%H%M%S"), "datetime":datetime.datetime.now().strftime("%Y%m%d%H%M%S"), "rnd":random.randrange(100,999) } #保存上传的文件 def save_upload_file(PostFile,FilePath): try: f = open(FilePath, 'wb') for chunk in PostFile.chunks(): f.write(chunk) except Exception,E: f.close() return u"写入文件错误:"+ E.message f.close() return u"SUCCESS" @csrf_exempt def get_ueditor_settings(request): return HttpResponse(json.dumps(USettings.UEditorUploadSettings,ensure_ascii=False), content_type="application/javascript") @csrf_exempt def get_ueditor_controller(request): """获取ueditor的后端URL地址 """ action=request.GET.get("action","") reponseAction={ "config":get_ueditor_settings, "uploadimage":UploadFile, "uploadscrawl":UploadFile, "uploadvideo":UploadFile, "uploadfile":UploadFile, "catchimage":catcher_remote_image, "listimage":list_files, "listfile":list_files } return reponseAction[action](request) @csrf_exempt def list_files(request): """列出文件""" if request.method!="GET": return HttpResponse(json.dumps(u"{'state:'ERROR'}") ,content_type="application/javascript") #取得动作 action=request.GET.get("action","listimage") allowFiles={ "listfile":USettings.UEditorUploadSettings.get("fileManagerAllowFiles",[]), "listimage":USettings.UEditorUploadSettings.get("imageManagerAllowFiles",[]) } listSize={ "listfile":USettings.UEditorUploadSettings.get("fileManagerListSize",""), "listimage":USettings.UEditorUploadSettings.get("imageManagerListSize","") } listpath={ "listfile":USettings.UEditorUploadSettings.get("fileManagerListPath",""), "listimage":USettings.UEditorUploadSettings.get("imageManagerListPath","") } #取得参数 list_size=long(request.GET.get("size",listSize[action])) list_start=long(request.GET.get("start",0)) files=[] root_path=os.path.join(USettings.gSettings.MEDIA_ROOT,listpath[action]).replace("\\","/") files=get_files(root_path,root_path,allowFiles[action]) if (len(files)==0): return_info={ "state":u"未找到匹配文件!", "list":[], "start":list_start, "total":0 } else: return_info={ "state":"SUCCESS", "list":files[list_start:list_start+list_size], "start":list_start, "total":len(files) } return HttpResponse(json.dumps(return_info),content_type="application/javascript") def get_files(root_path,cur_path, allow_types=[]): files = [] items = os.listdir(cur_path) for item in items: item=unicode(item) item_fullname = os.path.join(root_path,cur_path, item).replace("\\", "/") if os.path.isdir(item_fullname): files.extend(get_files(root_path,item_fullname, allow_types)) else: ext = os.path.splitext(item_fullname)[1] is_allow_list= (len(allow_types)==0) or (ext in allow_types) if is_allow_list: files.append({ "url":urllib.basejoin(USettings.gSettings.MEDIA_URL ,os.path.join(os.path.relpath(cur_path,root_path),item).replace("\\","/" )), "mtime":os.path.getmtime(item_fullname) }) return files @csrf_exempt def UploadFile(request): """上传文件""" if not request.method=="POST": return HttpResponse(json.dumps(u"{'state:'ERROR'}"),content_type="application/javascript") state="SUCCESS" action=request.GET.get("action") #上传文件 upload_field_name={ "uploadfile":"fileFieldName","uploadimage":"imageFieldName", "uploadscrawl":"scrawlFieldName","catchimage":"catcherFieldName", "uploadvideo":"videoFieldName", } UploadFieldName=request.GET.get(upload_field_name[action],USettings.UEditorUploadSettings.get(action,"upfile")) #上传涂鸦,涂鸦是采用base64编码上传的,需要单独处理 if action=="uploadscrawl": upload_file_name="scrawl.png" upload_file_size=0 else: #取得上传的文件 file=request.FILES.get(UploadFieldName,None) if file is None:return HttpResponse(json.dumps(u"{'state:'ERROR'}") ,content_type="application/javascript") upload_file_name=file.name upload_file_size=file.size #取得上传的文件的原始名称 upload_original_name,upload_original_ext=os.path.splitext(upload_file_name) #文件类型检验 upload_allow_type={ "uploadfile":"fileAllowFiles", "uploadimage":"imageAllowFiles", "uploadvideo":"videoAllowFiles" } if upload_allow_type.has_key(action): allow_type= list(request.GET.get(upload_allow_type[action],USettings.UEditorUploadSettings.get(upload_allow_type[action],""))) if not upload_original_ext in allow_type: state=u"服务器不允许上传%s类型的文件。" % upload_original_ext #大小检验 upload_max_size={ "uploadfile":"filwMaxSize", "uploadimage":"imageMaxSize", "uploadscrawl":"scrawlMaxSize", "uploadvideo":"videoMaxSize" } max_size=long(request.GET.get(upload_max_size[action],USettings.UEditorUploadSettings.get(upload_max_size[action],0))) if max_size!=0: from utils import FileSize MF=FileSize(max_size) if upload_file_size>MF.size: state=u"上传文件大小不允许超过%s。" % MF.FriendValue #检测保存路径是否存在,如果不存在则需要创建 upload_path_format={ "uploadfile":"filePathFormat", "uploadimage":"imagePathFormat", "uploadscrawl":"scrawlPathFormat", "uploadvideo":"videoPathFormat" } path_format_var=get_path_format_vars() path_format_var.update({ "basename":upload_original_name, "extname":upload_original_ext[1:], "filename":upload_file_name, }) #取得输出文件的路径 OutputPathFormat,OutputPath,OutputFile=get_output_path(request,upload_path_format[action],path_format_var) #所有检测完成后写入文件 if state=="SUCCESS": if action=="uploadscrawl": state=save_scrawl_file(request, os.path.join(OutputPath,OutputFile)) else: #保存到文件中,如果保存错误,需要返回ERROR upload_module_name = USettings.UEditorUploadSettings.get("upload_module", None) if upload_module_name: mod = import_module(upload_module_name) state = mod.upload(file, OutputPathFormat) else: state = save_upload_file(file, os.path.join(OutputPath, OutputFile)) #返回数据 return_info = { 'url': urllib.basejoin(USettings.gSettings.MEDIA_URL , OutputPathFormat) , # 保存后的文件名称 'original': upload_file_name, #原始文件名 'type': upload_original_ext, 'state': state, #上传状态,成功时返回SUCCESS,其他任何值将原样返回至图片上传框中 'size': upload_file_size } return HttpResponse(json.dumps(return_info,ensure_ascii=False),content_type="application/javascript") @csrf_exempt def catcher_remote_image(request): """远程抓图,当catchRemoteImageEnable:true时, 如果前端插入图片地址与当前web不在同一个域,则由本函数从远程下载图片到本地 """ if not request.method=="POST": return HttpResponse(json.dumps( u"{'state:'ERROR'}"),content_type="application/javascript") state="SUCCESS" allow_type= list(request.GET.get("catcherAllowFiles",USettings.UEditorUploadSettings.get("catcherAllowFiles",""))) max_size=long(request.GET.get("catcherMaxSize",USettings.UEditorUploadSettings.get("catcherMaxSize",0))) remote_urls=request.POST.getlist("source[]",[]) catcher_infos=[] path_format_var=get_path_format_vars() for remote_url in remote_urls: #取得上传的文件的原始名称 remote_file_name=os.path.basename(remote_url) remote_original_name,remote_original_ext=os.path.splitext(remote_file_name) #文件类型检验 if remote_original_ext in allow_type: path_format_var.update({ "basename":remote_original_name, "extname":remote_original_ext[1:], "filename":remote_original_name }) #计算保存的文件名 o_path_format,o_path,o_file=get_output_path(request,"catcherPathFormat",path_format_var) o_filename=os.path.join(o_path,o_file).replace("\\","/") #读取远程图片文件 try: remote_image=urllib.urlopen(remote_url) #将抓取到的文件写入文件 try: f = open(o_filename, 'wb') f.write(remote_image.read()) f.close() state="SUCCESS" except Exception,E: state=u"写入抓取图片文件错误:%s" % E.message except Exception,E: state=u"抓取图片错误:%s" % E.message catcher_infos.append({ "state":state, "url":urllib.basejoin(USettings.gSettings.MEDIA_URL , o_path_format), "size":os.path.getsize(o_filename), "title":os.path.basename(o_file), "original":remote_file_name, "source":remote_url }) return_info={ "state":"SUCCESS" if len(catcher_infos) >0 else "ERROR", "list":catcher_infos } return HttpResponse(json.dumps(return_info,ensure_ascii=False),content_type="application/javascript") def get_output_path(request,path_format,path_format_var): #取得输出文件的路径 OutputPathFormat=(request.GET.get(path_format,USettings.UEditorSettings["defaultPathFormat"]) % path_format_var).replace("\\","/") #分解OutputPathFormat OutputPath,OutputFile=os.path.split(OutputPathFormat) OutputPath=os.path.join(USettings.gSettings.MEDIA_ROOT,OutputPath) if not OutputFile:#如果OutputFile为空说明传入的OutputPathFormat没有包含文件名,因此需要用默认的文件名 OutputFile=USettings.UEditorSettings["defaultPathFormat"] % path_format_var OutputPathFormat=os.path.join(OutputPathFormat,OutputFile) if not os.path.exists(OutputPath): os.makedirs(OutputPath) return ( OutputPathFormat,OutputPath,OutputFile) #涂鸦功能上传处理 @csrf_exempt def save_scrawl_file(request,filename): import base64 try: content=request.POST.get(USettings.UEditorUploadSettings.get("scrawlFieldName","upfile")) f = open(filename, 'wb') f.write(base64.decodestring(content)) f.close() state="SUCCESS" except Exception,E: state="写入图片文件错误:%s" % E.message return state
35.81759
148
0.651328
95d939e07728975669a564ebdc8daa88df65363e
4,795
py
Python
tests/test_api_interface.py
CSugarPrince/Historical-Forex-Predictor
f50eb317852e540c3dfb3199769ce0ba250bf741
[ "MIT" ]
null
null
null
tests/test_api_interface.py
CSugarPrince/Historical-Forex-Predictor
f50eb317852e540c3dfb3199769ce0ba250bf741
[ "MIT" ]
null
null
null
tests/test_api_interface.py
CSugarPrince/Historical-Forex-Predictor
f50eb317852e540c3dfb3199769ce0ba250bf741
[ "MIT" ]
null
null
null
import unittest from unittest.mock import patch, Mock # appending to sys.path enables scripts in test folder to import code from # parent directory where src files are located import sys, os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import api_interface """ unittest design notes: The two functions tested do two things: 1. they make an http request to a server 2. they download and parse the repsonse (which is a json file) I am using a mock object to impersonate the 'requests.get' function so that the unittest code doesn't actually make a http request. The return value of the mocked 'requests.get' changes based on what I am testing for The things I have tested for include: 1. The function makes the request and gets a response containging the desired info 2. The function makes the request but it doesn't get a response from the server (requests.get returns None) 3. The function makes the request and gets a response, but it is an error message. When the function receives an error message it should print out the error message (will be changed to a log) and it will return a None object """ class TestApiInterface(unittest.TestCase): def setUp(self): print('setUp') self.sample_date_1 = '2002-04-14' def tearDown(self): pass def test_get_fixer_historical_rates(self): print('test_get_fixer_historical_rates') with patch('api_interface.requests.get') as mocked_get: # test that a successful call yields a successful response mocked_get.return_value = Mock() mocked_get.return_value.json.return_value = {'success': True, 'info': 'foo'} function_output = api_interface.get_fixer_historical_rates(self.sample_date_1) self.assertEqual(function_output['success'], True) self.assertEqual(function_output['source'], 'http://data.fixer.io/api/') # test that an unsuccessful call causes the function to return None # case 1: something wrong on server side (internet is down, etc...) mocked_get.return_value = None function_output = api_interface.get_fixer_historical_rates(self.sample_date_1) self.assertEqual(function_output, None) # case 2: get a response, but the response is an error message mocked_get.return_value = Mock() parsed_error_message = {'success': False, 'error': { 'code': 999, 'type': 'mock error' } } mocked_get.return_value.json.return_value = parsed_error_message function_output = api_interface.get_fixer_historical_rates(self.sample_date_1) self.assertEqual(function_output, None) def test_get_openex_historical_rates(self): print('test_get_openex_historical_rates') with patch('api_interface.requests.get') as mocked_get: # test that a successful call yields a successful response mocked_get.return_value = Mock() mocked_get.return_value.json.return_value = {'success': True, 'info': 'foo'} function_output = api_interface.get_openex_historical_rates(self.sample_date_1) self.assertEqual(function_output['success'], True) self.assertEqual(function_output['date'], self.sample_date_1) self.assertEqual(function_output['source'], 'https://openexchangerates.org/api/') # test that an unsuccessful call causes the function to return None # case 1: something wrong on server side (internet is down, etc...) mocked_get.return_value = None function_output = api_interface.get_openex_historical_rates(self.sample_date_1) self.assertEqual(function_output, None) # case 2: get a response, but the response is an error message mocked_get.return_value = Mock() parsed_error_message = {'success' : False, 'error' : True, 'status' : 999, 'message' : 'not_available', 'description': 'mock error description' } mocked_get.return_value.json.return_value = parsed_error_message function_output = api_interface.get_openex_historical_rates(self.sample_date_1) self.assertEqual(function_output, None) if __name__ == "__main__": unittest.main()
43.198198
126
0.63024
0b6e6a15e784a4fecbaacd2d7686ab8e1b4a8ffc
1,801
py
Python
1_Crawler/1_newscrawler/newscrawler/spiders/konya.py
bap-project/SMM
e65e27b985a4aa108fdb5236bc63e70f423661bf
[ "MIT" ]
null
null
null
1_Crawler/1_newscrawler/newscrawler/spiders/konya.py
bap-project/SMM
e65e27b985a4aa108fdb5236bc63e70f423661bf
[ "MIT" ]
null
null
null
1_Crawler/1_newscrawler/newscrawler/spiders/konya.py
bap-project/SMM
e65e27b985a4aa108fdb5236bc63e70f423661bf
[ "MIT" ]
null
null
null
from scrapy.spiders import CrawlSpider, Rule from scrapy.linkextractors import LinkExtractor from scrapy.selector import HtmlXPathSelector from datetime import datetime from ..items import NewsItem import pandas as pd import re class KonyaSpider(CrawlSpider): name = "konya" allowed_domains = ["https://www.bulurum.com"] def __init__(self,end='', *args, **kwargs): #super(CumhuriyetSpider, self).__init__(*args, **kwargs) self.start_urls = ["https://www.bulurum.com/dir/eczaneler/konya/?page=%s" % d for d in range(0,9)] rules = ( Rule(LinkExtractor(allow=(),deny=('.*/video/.*',), restrict_xpaths=('//*[@id="divMap"]',)), callback="parse_items", follow= True), ) def parse_items(self, response): hxs = HtmlXPathSelector(response) item = NewsItem() item["link"] = response.request.url item["lang"] = "tr" item["source"] = "konya" category = hxs.xpath("/html/body/div[6]/div[2]/div[1]/div[4]/div/div[2]/div[2]/div/div[1]/div[1]/div/h2").extract() date_time = hxs.xpath("").extract() item["author"] = "" title = hxs.xpath("/html/body/div[6]/div[2]/div[1]/div[4]/div/div[2]/div[2]/div/div[1]/div[2]/div[1]/div[2]").extract() intro = hxs.xpath("//*[@id='phoneDetails_0']").extract() new_content = "" # # Processing outputs item["intro"] = ' '.join(intro) item["title"] = ' '.join(title) new_content = ' '.join(new_content) new_content = re.sub('\n',' ',new_content) item["content"] = re.sub('\s{2,}',' ',new_content) item["category"] = '|'.join(category) item["date_time"] = " ".join(date_time) return(item)
39.152174
138
0.57357
abb82ec2cbeafd64de91decca87cd91a9365520f
42,033
py
Python
irc/client.py
larsks/irc
187e6b4dc4cce60c7bf972d53f54723189751711
[ "MIT" ]
null
null
null
irc/client.py
larsks/irc
187e6b4dc4cce60c7bf972d53f54723189751711
[ "MIT" ]
null
null
null
irc/client.py
larsks/irc
187e6b4dc4cce60c7bf972d53f54723189751711
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Internet Relay Chat (IRC) protocol client library. This library is intended to encapsulate the IRC protocol in Python. It provides an event-driven IRC client framework. It has a fairly thorough support for the basic IRC protocol, CTCP, and DCC chat. To best understand how to make an IRC client, the reader more or less must understand the IRC specifications. They are available here: [IRC specifications]. The main features of the IRC client framework are: * Abstraction of the IRC protocol. * Handles multiple simultaneous IRC server connections. * Handles server PONGing transparently. * Messages to the IRC server are done by calling methods on an IRC connection object. * Messages from an IRC server triggers events, which can be caught by event handlers. * Reading from and writing to IRC server sockets are normally done by an internal select() loop, but the select()ing may be done by an external main loop. * Functions can be registered to execute at specified times by the event-loop. * Decodes CTCP tagging correctly (hopefully); I haven't seen any other IRC client implementation that handles the CTCP specification subtleties. * A kind of simple, single-server, object-oriented IRC client class that dispatches events to instance methods is included. Current limitations: * Data is not written asynchronously to the server, i.e. the write() may block if the TCP buffers are stuffed. * DCC file transfers are not supported. * RFCs 2810, 2811, 2812, and 2813 have not been considered. Notes: * connection.quit() only sends QUIT to the server. * ERROR from the server triggers the error event and the disconnect event. * dropping of the connection triggers the disconnect event. .. [IRC specifications] http://www.irchelp.org/irchelp/rfc/ """ import bisect import re import select import socket import time import struct import logging import threading import abc import collections import functools import itertools import contextlib import warnings import jaraco.functools from jaraco.functools import Throttler from jaraco.stream import buffer from more_itertools import consume, always_iterable, repeatfunc from . import connection from . import events from . import features from . import ctcp from . import message from . import schedule log = logging.getLogger(__name__) class IRCError(Exception): "An IRC exception" class InvalidCharacters(ValueError): "Invalid characters were encountered in the message" class MessageTooLong(ValueError): "Message is too long" class Connection(metaclass=abc.ABCMeta): """ Base class for IRC connections. """ transmit_encoding = 'utf-8' "encoding used for transmission" @abc.abstractproperty def socket(self): "The socket for this connection" def __init__(self, reactor): self.reactor = reactor def encode(self, msg): """Encode a message for transmission.""" return msg.encode(self.transmit_encoding) class ServerConnectionError(IRCError): pass class ServerNotConnectedError(ServerConnectionError): pass class ServerConnection(Connection): """ An IRC server connection. ServerConnection objects are instantiated by calling the server method on a Reactor object. """ buffer_class = buffer.DecodingLineBuffer socket = None connected = False def __init__(self, reactor): super(ServerConnection, self).__init__(reactor) self.features = features.FeatureSet() # save the method args to allow for easier reconnection. @jaraco.functools.save_method_args def connect( self, server, port, nickname, password=None, username=None, ircname=None, connect_factory=connection.Factory(), ): """Connect/reconnect to a server. Arguments: * server - Server name * port - Port number * nickname - The nickname * password - Password (if any) * username - The username * ircname - The IRC name ("realname") * server_address - The remote host/port of the server * connect_factory - A callable that takes the server address and returns a connection (with a socket interface) This function can be called to reconnect a closed connection. Returns the ServerConnection object. """ log.debug( "connect(server=%r, port=%r, nickname=%r, ...)", server, port, nickname ) if self.connected: self.disconnect("Changing servers") self.buffer = self.buffer_class() self.handlers = {} self.real_server_name = "" self.real_nickname = nickname self.server = server self.port = port self.server_address = (server, port) self.nickname = nickname self.username = username or nickname self.ircname = ircname or nickname self.password = password self.connect_factory = connect_factory try: self.socket = self.connect_factory(self.server_address) except socket.error as ex: raise ServerConnectionError("Couldn't connect to socket: %s" % ex) self.connected = True self.reactor._on_connect(self.socket) # Log on... if self.password: self.pass_(self.password) self.nick(self.nickname) self.user(self.username, self.ircname) return self def reconnect(self): """ Reconnect with the last arguments passed to self.connect() """ self.connect(*self._saved_connect.args, **self._saved_connect.kwargs) def close(self): """Close the connection. This method closes the connection permanently; after it has been called, the object is unusable. """ # Without this thread lock, there is a window during which # select() can find a closed socket, leading to an EBADF error. with self.reactor.mutex: self.disconnect("Closing object") self.reactor._remove_connection(self) def get_server_name(self): """Get the (real) server name. This method returns the (real) server name, or, more specifically, what the server calls itself. """ return self.real_server_name or "" def get_nickname(self): """Get the (real) nick name. This method returns the (real) nickname. The library keeps track of nick changes, so it might not be the nick name that was passed to the connect() method. """ return self.real_nickname @contextlib.contextmanager def as_nick(self, name): """ Set the nick for the duration of the context. """ orig = self.get_nickname() self.nick(name) try: yield orig finally: self.nick(orig) def process_data(self): "read and process input from self.socket" try: reader = getattr(self.socket, 'read', self.socket.recv) new_data = reader(2 ** 14) except socket.error: # The server hung up. self.disconnect("Connection reset by peer") return if not new_data: # Read nothing: connection must be down. self.disconnect("Connection reset by peer") return self.buffer.feed(new_data) # process each non-empty line after logging all lines for line in self.buffer: log.debug("FROM SERVER: %s", line) if not line: continue self._process_line(line) def _process_line(self, line): event = Event("all_raw_messages", self.get_server_name(), None, [line]) self._handle_event(event) grp = _rfc_1459_command_regexp.match(line).group source = NickMask.from_group(grp("prefix")) command = self._command_from_group(grp("command")) arguments = message.Arguments.from_group(grp('argument')) tags = message.Tag.from_group(grp('tags')) if source and not self.real_server_name: self.real_server_name = source if command == "nick": if source.nick == self.real_nickname: self.real_nickname = arguments[0] elif command == "welcome": # Record the nickname in case the client changed nick # in a nicknameinuse callback. self.real_nickname = arguments[0] elif command == "featurelist": self.features.load(arguments) handler = ( self._handle_message if command in ["privmsg", "notice"] else self._handle_other ) handler(arguments, command, source, tags) def _handle_message(self, arguments, command, source, tags): target, msg = arguments[:2] messages = ctcp.dequote(msg) if command == "privmsg": if is_channel(target): command = "pubmsg" else: if is_channel(target): command = "pubnotice" else: command = "privnotice" for m in messages: if isinstance(m, tuple): if command in ["privmsg", "pubmsg"]: command = "ctcp" else: command = "ctcpreply" m = list(m) log.debug( "command: %s, source: %s, target: %s, " "arguments: %s, tags: %s", command, source, target, m, tags, ) event = Event(command, source, target, m, tags) self._handle_event(event) if command == "ctcp" and m[0] == "ACTION": event = Event("action", source, target, m[1:], tags) self._handle_event(event) else: log.debug( "command: %s, source: %s, target: %s, " "arguments: %s, tags: %s", command, source, target, [m], tags, ) event = Event(command, source, target, [m], tags) self._handle_event(event) def _handle_other(self, arguments, command, source, tags): target = None if command == "quit": arguments = [arguments[0]] elif command == "ping": target = arguments[0] else: target = arguments[0] if arguments else None arguments = arguments[1:] if command == "mode": if not is_channel(target): command = "umode" log.debug( "command: %s, source: %s, target: %s, " "arguments: %s, tags: %s", command, source, target, arguments, tags, ) event = Event(command, source, target, arguments, tags) self._handle_event(event) @staticmethod def _command_from_group(group): command = group.lower() # Translate numerics into more readable strings. return events.numeric.get(command, command) def _handle_event(self, event): """[Internal]""" self.reactor._handle_event(self, event) if event.type in self.handlers: for fn in self.handlers[event.type]: fn(self, event) def is_connected(self): """Return connection status. Returns true if connected, otherwise false. """ return self.connected def add_global_handler(self, *args): """Add global handler. See documentation for IRC.add_global_handler. """ self.reactor.add_global_handler(*args) def remove_global_handler(self, *args): """Remove global handler. See documentation for IRC.remove_global_handler. """ self.reactor.remove_global_handler(*args) def action(self, target, action): """Send a CTCP ACTION command.""" self.ctcp("ACTION", target, action) def admin(self, server=""): """Send an ADMIN command.""" self.send_items('ADMIN', server) def cap(self, subcommand, *args): """ Send a CAP command according to `the spec <http://ircv3.atheme.org/specification/capability-negotiation-3.1>`_. Arguments: subcommand -- LS, LIST, REQ, ACK, CLEAR, END args -- capabilities, if required for given subcommand Example: .cap('LS') .cap('REQ', 'multi-prefix', 'sasl') .cap('END') """ cap_subcommands = set('LS LIST REQ ACK NAK CLEAR END'.split()) client_subcommands = set(cap_subcommands) - {'NAK'} assert subcommand in client_subcommands, "invalid subcommand" def _multi_parameter(args): """ According to the spec:: If more than one capability is named, the RFC1459 designated sentinel (:) for a multi-parameter argument must be present. It's not obvious where the sentinel should be present or if it must be omitted for a single parameter, so follow convention and only include the sentinel prefixed to the first parameter if more than one parameter is present. """ if len(args) > 1: return (':' + args[0],) + args[1:] return args self.send_items('CAP', subcommand, *_multi_parameter(args)) def ctcp(self, ctcptype, target, parameter=""): """Send a CTCP command.""" ctcptype = ctcptype.upper() tmpl = "\001{ctcptype} {parameter}\001" if parameter else "\001{ctcptype}\001" self.privmsg(target, tmpl.format(**vars())) def ctcp_reply(self, target, parameter): """Send a CTCP REPLY command.""" self.notice(target, "\001%s\001" % parameter) def disconnect(self, message=""): """Hang up the connection. Arguments: message -- Quit message. """ try: del self.connected except AttributeError: return self.quit(message) try: self.socket.shutdown(socket.SHUT_WR) self.socket.close() except socket.error: pass del self.socket self._handle_event(Event("disconnect", self.server, "", [message])) def globops(self, text): """Send a GLOBOPS command.""" self.send_items('GLOBOPS', ':' + text) def info(self, server=""): """Send an INFO command.""" self.send_items('INFO', server) def invite(self, nick, channel): """Send an INVITE command.""" self.send_items('INVITE', nick, channel) def ison(self, nicks): """Send an ISON command. Arguments: nicks -- List of nicks. """ self.send_items('ISON', *tuple(nicks)) def join(self, channel, key=""): """Send a JOIN command.""" self.send_items('JOIN', channel, key) def kick(self, channel, nick, comment=""): """Send a KICK command.""" self.send_items('KICK', channel, nick, comment and ':' + comment) def links(self, remote_server="", server_mask=""): """Send a LINKS command.""" self.send_items('LINKS', remote_server, server_mask) def list(self, channels=None, server=""): """Send a LIST command.""" self.send_items('LIST', ','.join(always_iterable(channels)), server) def lusers(self, server=""): """Send a LUSERS command.""" self.send_items('LUSERS', server) def mode(self, target, command): """Send a MODE command.""" self.send_items('MODE', target, command) def motd(self, server=""): """Send an MOTD command.""" self.send_items('MOTD', server) def names(self, channels=None): """Send a NAMES command.""" self.send_items('NAMES', ','.join(always_iterable(channels))) def nick(self, newnick): """Send a NICK command.""" self.send_items('NICK', newnick) def notice(self, target, text): """Send a NOTICE command.""" # Should limit len(text) here! self.send_items('NOTICE', target, ':' + text) def oper(self, nick, password): """Send an OPER command.""" self.send_items('OPER', nick, password) def part(self, channels, message=""): """Send a PART command.""" self.send_items('PART', ','.join(always_iterable(channels)), message) def pass_(self, password): """Send a PASS command.""" self.send_items('PASS', password) def ping(self, target, target2=""): """Send a PING command.""" self.send_items('PING', target, target2) def pong(self, target, target2=""): """Send a PONG command.""" self.send_items('PONG', target, target2) def privmsg(self, target, text): """Send a PRIVMSG command.""" self.send_items('PRIVMSG', target, ':' + text) def privmsg_many(self, targets, text): """Send a PRIVMSG command to multiple targets.""" target = ','.join(targets) return self.privmsg(target, text) def quit(self, message=""): """Send a QUIT command.""" # Note that many IRC servers don't use your QUIT message # unless you've been connected for at least 5 minutes! self.send_items('QUIT', message and ':' + message) def _prep_message(self, string): # The string should not contain any carriage return other than the # one added here. if '\n' in string: msg = "Carriage returns not allowed in privmsg(text)" raise InvalidCharacters(msg) bytes = self.encode(string) + b'\r\n' # According to the RFC http://tools.ietf.org/html/rfc2812#page-6, # clients should not transmit more than 512 bytes. if len(bytes) > 512: msg = "Messages limited to 512 bytes including CR/LF" raise MessageTooLong(msg) return bytes def send_items(self, *items): """ Send all non-empty items, separated by spaces. """ self.send_raw(' '.join(filter(None, items))) def send_raw(self, string): """Send raw string to the server. The string will be padded with appropriate CR LF. """ if self.socket is None: raise ServerNotConnectedError("Not connected.") sender = getattr(self.socket, 'write', self.socket.send) try: sender(self._prep_message(string)) log.debug("TO SERVER: %s", string) except socket.error: # Ouch! self.disconnect("Connection reset by peer.") def squit(self, server, comment=""): """Send an SQUIT command.""" self.send_items('SQUIT', server, comment and ':' + comment) def stats(self, statstype, server=""): """Send a STATS command.""" self.send_items('STATS', statstype, server) def time(self, server=""): """Send a TIME command.""" self.send_items('TIME', server) def topic(self, channel, new_topic=None): """Send a TOPIC command.""" self.send_items('TOPIC', channel, new_topic and ':' + new_topic) def trace(self, target=""): """Send a TRACE command.""" self.send_items('TRACE', target) def user(self, username, realname): """Send a USER command.""" cmd = 'USER {username} 0 * :{realname}'.format(**locals()) self.send_raw(cmd) def userhost(self, nicks): """Send a USERHOST command.""" self.send_items('USERHOST', ",".join(nicks)) def users(self, server=""): """Send a USERS command.""" self.send_items('USERS', server) def version(self, server=""): """Send a VERSION command.""" self.send_items('VERSION', server) def wallops(self, text): """Send a WALLOPS command.""" self.send_items('WALLOPS', ':' + text) def who(self, target="", op=""): """Send a WHO command.""" self.send_items('WHO', target, op and 'o') def whois(self, targets): """Send a WHOIS command.""" self.send_items('WHOIS', ",".join(always_iterable(targets))) def whowas(self, nick, max="", server=""): """Send a WHOWAS command.""" self.send_items('WHOWAS', nick, max, server) def set_rate_limit(self, frequency): """ Set a `frequency` limit (messages per second) for this connection. Any attempts to send faster than this rate will block. """ self.send_raw = Throttler(self.send_raw, frequency) def set_keepalive(self, interval): """ Set a keepalive to occur every `interval` on this `ServerConnection`. :param interval: `int` in seconds, or `datetime.timedelta` """ pinger = functools.partial(self.ping, 'keep-alive') self.reactor.scheduler.execute_every(period=interval, func=pinger) class PrioritizedHandler(collections.namedtuple('Base', ('priority', 'callback'))): def __lt__(self, other): "when sorting prioritized handlers, only use the priority" return self.priority < other.priority class Reactor: """ Processes events from one or more IRC server connections. This class implements a reactor in the style of the `reactor pattern <http://en.wikipedia.org/wiki/Reactor_pattern>`_. When a Reactor object has been instantiated, it can be used to create Connection objects that represent the IRC connections. The responsibility of the reactor object is to provide an event-driven framework for the connections and to keep the connections alive. It runs a select loop to poll each connection's TCP socket and hands over the sockets with incoming data for processing by the corresponding connection. The methods of most interest for an IRC client writer are server, add_global_handler, remove_global_handler, process_once, and process_forever. This is functionally an event-loop which can either use it's own internal polling loop, or tie into an external event-loop, by having the external event-system periodically call `process_once` on the instantiated reactor class. This will allow the reactor to process any queued data and/or events. Calling `process_forever` will hand off execution to the reactor's internal event-loop, which will not return for the life of the reactor. Here is an example: client = irc.client.Reactor() server = client.server() server.connect("irc.some.where", 6667, "my_nickname") server.privmsg("a_nickname", "Hi there!") client.process_forever() This will connect to the IRC server irc.some.where on port 6667 using the nickname my_nickname and send the message "Hi there!" to the nickname a_nickname. The methods of this class are thread-safe; accesses to and modifications of its internal lists of connections, handlers, and delayed commands are guarded by a mutex. """ scheduler_class = schedule.DefaultScheduler connection_class = ServerConnection def __do_nothing(*args, **kwargs): pass def __init__(self, on_connect=__do_nothing, on_disconnect=__do_nothing): """Constructor for Reactor objects. on_connect: optional callback invoked when a new connection is made. on_disconnect: optional callback invoked when a socket is disconnected. The arguments mainly exist to be able to use an external main loop (for example Tkinter's or PyGTK's main app loop) instead of calling the process_forever method. An alternative is to just call ServerConnection.process_once() once in a while. """ self._on_connect = on_connect self._on_disconnect = on_disconnect scheduler = self.scheduler_class() assert isinstance(scheduler, schedule.IScheduler) self.scheduler = scheduler self.connections = [] self.handlers = {} # Modifications to these shared lists and dict need to be thread-safe self.mutex = threading.RLock() self.add_global_handler("ping", _ping_ponger, -42) def server(self): """Creates and returns a ServerConnection object.""" conn = self.connection_class(self) with self.mutex: self.connections.append(conn) return conn def process_data(self, sockets): """Called when there is more data to read on connection sockets. Arguments: sockets -- A list of socket objects. See documentation for Reactor.__init__. """ with self.mutex: log.log(logging.DEBUG - 2, "process_data()") for sock, conn in itertools.product(sockets, self.connections): if sock == conn.socket: conn.process_data() def process_timeout(self): """Called when a timeout notification is due. See documentation for Reactor.__init__. """ with self.mutex: self.scheduler.run_pending() @property def sockets(self): with self.mutex: return [ conn.socket for conn in self.connections if conn is not None and conn.socket is not None ] def process_once(self, timeout=0): """Process data from connections once. Arguments: timeout -- How long the select() call should wait if no data is available. This method should be called periodically to check and process incoming data, if there are any. If that seems boring, look at the process_forever method. """ log.log(logging.DEBUG - 2, "process_once()") sockets = self.sockets if sockets: in_, out, err = select.select(sockets, [], [], timeout) self.process_data(in_) else: time.sleep(timeout) self.process_timeout() def process_forever(self, timeout=0.2): """Run an infinite loop, processing data from connections. This method repeatedly calls process_once. Arguments: timeout -- Parameter to pass to process_once. """ # This loop should specifically *not* be mutex-locked. # Otherwise no other thread would ever be able to change # the shared state of a Reactor object running this function. log.debug("process_forever(timeout=%s)", timeout) one = functools.partial(self.process_once, timeout=timeout) consume(repeatfunc(one)) def disconnect_all(self, message=""): """Disconnects all connections.""" with self.mutex: for conn in self.connections: conn.disconnect(message) def add_global_handler(self, event, handler, priority=0): """Adds a global handler function for a specific event type. Arguments: event -- Event type (a string). Check the values of numeric_events for possible event types. handler -- Callback function taking 'connection' and 'event' parameters. priority -- A number (the lower number, the higher priority). The handler function is called whenever the specified event is triggered in any of the connections. See documentation for the Event class. The handler functions are called in priority order (lowest number is highest priority). If a handler function returns "NO MORE", no more handlers will be called. """ handler = PrioritizedHandler(priority, handler) with self.mutex: event_handlers = self.handlers.setdefault(event, []) bisect.insort(event_handlers, handler) def remove_global_handler(self, event, handler): """Removes a global handler function. Arguments: event -- Event type (a string). handler -- Callback function. Returns 1 on success, otherwise 0. """ with self.mutex: if event not in self.handlers: return 0 for h in self.handlers[event]: if handler == h.callback: self.handlers[event].remove(h) return 1 def dcc(self, dcctype="chat"): """Creates and returns a DCCConnection object. Arguments: dcctype -- "chat" for DCC CHAT connections or "raw" for DCC SEND (or other DCC types). If "chat", incoming data will be split in newline-separated chunks. If "raw", incoming data is not touched. """ with self.mutex: conn = DCCConnection(self, dcctype) self.connections.append(conn) return conn def _handle_event(self, connection, event): """ Handle an Event event incoming on ServerConnection connection. """ with self.mutex: matching_handlers = sorted( self.handlers.get("all_events", []) + self.handlers.get(event.type, []) ) for handler in matching_handlers: result = handler.callback(connection, event) if result == "NO MORE": return def _remove_connection(self, connection): """[Internal]""" with self.mutex: self.connections.remove(connection) self._on_disconnect(connection.socket) _cmd_pat = ( "^(@(?P<tags>[^ ]*) )?(:(?P<prefix>[^ ]+) +)?" "(?P<command>[^ ]+)( *(?P<argument> .+))?" ) _rfc_1459_command_regexp = re.compile(_cmd_pat) class DCCConnectionError(IRCError): pass class DCCConnection(Connection): """ A DCC (Direct Client Connection). DCCConnection objects are instantiated by calling the dcc method on a Reactor object. """ socket = None connected = False passive = False peeraddress = None peerport = None def __init__(self, reactor, dcctype): super(DCCConnection, self).__init__(reactor) self.dcctype = dcctype def connect(self, address, port): """Connect/reconnect to a DCC peer. Arguments: address -- Host/IP address of the peer. port -- The port number to connect to. Returns the DCCConnection object. """ self.peeraddress = socket.gethostbyname(address) self.peerport = port self.buffer = buffer.LineBuffer() self.handlers = {} self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.socket.connect((self.peeraddress, self.peerport)) except socket.error as x: raise DCCConnectionError("Couldn't connect to socket: %s" % x) self.connected = True self.reactor._on_connect(self.socket) return self def listen(self, addr=None): """Wait for a connection/reconnection from a DCC peer. Returns the DCCConnection object. The local IP address and port are available as self.localaddress and self.localport. After connection from a peer, the peer address and port are available as self.peeraddress and self.peerport. """ self.buffer = buffer.LineBuffer() self.handlers = {} self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.passive = True default_addr = socket.gethostbyname(socket.gethostname()), 0 try: self.socket.bind(addr or default_addr) self.localaddress, self.localport = self.socket.getsockname() self.socket.listen(10) except socket.error as x: raise DCCConnectionError("Couldn't bind socket: %s" % x) return self def disconnect(self, message=""): """Hang up the connection and close the object. Arguments: message -- Quit message. """ try: del self.connected except AttributeError: return try: self.socket.shutdown(socket.SHUT_WR) self.socket.close() except socket.error: pass del self.socket self.reactor._handle_event( self, Event("dcc_disconnect", self.peeraddress, "", [message]) ) self.reactor._remove_connection(self) def process_data(self): """[Internal]""" if self.passive and not self.connected: conn, (self.peeraddress, self.peerport) = self.socket.accept() self.socket.close() self.socket = conn self.connected = True log.debug("DCC connection from %s:%d", self.peeraddress, self.peerport) self.reactor._handle_event( self, Event("dcc_connect", self.peeraddress, None, None) ) return try: new_data = self.socket.recv(2 ** 14) except socket.error: # The server hung up. self.disconnect("Connection reset by peer") return if not new_data: # Read nothing: connection must be down. self.disconnect("Connection reset by peer") return if self.dcctype == "chat": self.buffer.feed(new_data) chunks = list(self.buffer) if len(self.buffer) > 2 ** 14: # Bad peer! Naughty peer! log.info( "Received >16k from a peer without a newline; " "disconnecting." ) self.disconnect() return else: chunks = [new_data] command = "dccmsg" prefix = self.peeraddress target = None for chunk in chunks: log.debug("FROM PEER: %s", chunk) arguments = [chunk] log.debug( "command: %s, source: %s, target: %s, arguments: %s", command, prefix, target, arguments, ) event = Event(command, prefix, target, arguments) self.reactor._handle_event(self, event) def privmsg(self, text): """ Send text to DCC peer. The text will be padded with a newline if it's a DCC CHAT session. """ if self.dcctype == 'chat': text += '\n' return self.send_bytes(self.encode(text)) def send_bytes(self, bytes): """ Send data to DCC peer. """ try: self.socket.send(bytes) log.debug("TO PEER: %r\n", bytes) except socket.error: self.disconnect("Connection reset by peer.") class SimpleIRCClient: """A simple single-server IRC client class. This is an example of an object-oriented wrapper of the IRC framework. A real IRC client can be made by subclassing this class and adding appropriate methods. The method on_join will be called when a "join" event is created (which is done when the server sends a JOIN messsage/command), on_privmsg will be called for "privmsg" events, and so on. The handler methods get two arguments: the connection object (same as self.connection) and the event object. Functionally, any of the event names in `events.py` may be subscribed to by prefixing them with `on_`, and creating a function of that name in the child-class of `SimpleIRCClient`. When the event of `event_name` is received, the appropriately named method will be called (if it exists) by runtime class introspection. See `_dispatcher()`, which takes the event name, postpends it to `on_`, and then attemps to look up the class member function by name and call it. Instance attributes that can be used by sub classes: reactor -- The Reactor instance. connection -- The ServerConnection instance. dcc_connections -- A list of DCCConnection instances. """ reactor_class = Reactor def __init__(self): self.reactor = self.reactor_class() self.connection = self.reactor.server() self.dcc_connections = [] self.reactor.add_global_handler("all_events", self._dispatcher, -10) self.reactor.add_global_handler("dcc_disconnect", self._dcc_disconnect, -10) def _dispatcher(self, connection, event): """ Dispatch events to on_<event.type> method, if present. """ log.debug("_dispatcher: %s", event.type) def do_nothing(connection, event): return None method = getattr(self, "on_" + event.type, do_nothing) method(connection, event) def _dcc_disconnect(self, connection, event): self.dcc_connections.remove(connection) def connect(self, *args, **kwargs): """Connect using the underlying connection""" self.connection.connect(*args, **kwargs) def dcc(self, *args, **kwargs): """Create and associate a new DCCConnection object. Use the returned object to listen for or connect to a DCC peer. """ dcc = self.reactor.dcc(*args, **kwargs) self.dcc_connections.append(dcc) return dcc def dcc_connect(self, address, port, dcctype="chat"): """Connect to a DCC peer. Arguments: address -- IP address of the peer. port -- Port to connect to. Returns a DCCConnection instance. """ warnings.warn("Use self.dcc(type).connect()", DeprecationWarning) return self.dcc(dcctype).connect(address, port) def dcc_listen(self, dcctype="chat"): """Listen for connections from a DCC peer. Returns a DCCConnection instance. """ warnings.warn("Use self.dcc(type).listen()", DeprecationWarning) return self.dcc(dcctype).listen() def start(self): """Start the IRC client.""" self.reactor.process_forever() class Event: """ An IRC event. >>> print(Event('privmsg', '@somebody', '#channel')) type: privmsg, source: @somebody, target: #channel, arguments: [], tags: [] """ def __init__(self, type, source, target, arguments=None, tags=None): """ Initialize an Event. Arguments: type -- A string describing the event. source -- The originator of the event (a nick mask or a server). target -- The target of the event (a nick or a channel). arguments -- Any event-specific arguments. """ self.type = type self.source = source self.target = target if arguments is None: arguments = [] self.arguments = arguments if tags is None: tags = [] self.tags = tags def __str__(self): tmpl = ( "type: {type}, " "source: {source}, " "target: {target}, " "arguments: {arguments}, " "tags: {tags}" ) return tmpl.format(**vars(self)) def is_channel(string): """Check if a string is a channel name. Returns true if the argument is a channel name, otherwise false. """ return string and string[0] in "#&+!" def ip_numstr_to_quad(num): """ Convert an IP number as an integer given in ASCII representation to an IP address string. >>> ip_numstr_to_quad('3232235521') '192.168.0.1' >>> ip_numstr_to_quad(3232235521) '192.168.0.1' """ packed = struct.pack('>L', int(num)) bytes = struct.unpack('BBBB', packed) return ".".join(map(str, bytes)) def ip_quad_to_numstr(quad): """ Convert an IP address string (e.g. '192.168.0.1') to an IP number as a base-10 integer given in ASCII representation. >>> ip_quad_to_numstr('192.168.0.1') '3232235521' """ bytes = map(int, quad.split(".")) packed = struct.pack('BBBB', *bytes) return str(struct.unpack('>L', packed)[0]) class NickMask(str): """ A nickmask (the source of an Event) >>> nm = NickMask('pinky!username@example.com') >>> nm.nick 'pinky' >>> nm.host 'example.com' >>> nm.user 'username' >>> isinstance(nm, str) True >>> nm = NickMask('красный!red@yahoo.ru') >>> isinstance(nm.nick, str) True Some messages omit the userhost. In that case, None is returned. >>> nm = NickMask('irc.server.net') >>> nm.nick 'irc.server.net' >>> nm.userhost >>> nm.host >>> nm.user """ @classmethod def from_params(cls, nick, user, host): return cls('{nick}!{user}@{host}'.format(**vars())) @property def nick(self): nick, sep, userhost = self.partition("!") return nick @property def userhost(self): nick, sep, userhost = self.partition("!") return userhost or None @property def host(self): nick, sep, userhost = self.partition("!") user, sep, host = userhost.partition('@') return host or None @property def user(self): nick, sep, userhost = self.partition("!") user, sep, host = userhost.partition('@') return user or None @classmethod def from_group(cls, group): return cls(group) if group else None def _ping_ponger(connection, event): "A global handler for the 'ping' event" connection.pong(event.target)
31.135556
87
0.59872
e509f364e68d3eb4ba81036644ea86291d966415
338
py
Python
aws_mock/requests/describe_key_pairs.py
enaydanov/aws_mock
4ad3dca270ad164693e85741d5e92f845c34aa01
[ "Apache-2.0" ]
null
null
null
aws_mock/requests/describe_key_pairs.py
enaydanov/aws_mock
4ad3dca270ad164693e85741d5e92f845c34aa01
[ "Apache-2.0" ]
1
2021-10-21T21:06:29.000Z
2021-10-21T21:06:29.000Z
aws_mock/requests/describe_key_pairs.py
bentsi/aws_mock
d6c1b963e02b4cd3602722e7135f4d65f6a71d3e
[ "Apache-2.0" ]
1
2021-11-08T14:20:36.000Z
2021-11-08T14:20:36.000Z
from aws_mock.lib import get_aws_mock_db, aws_response @aws_response def describe_key_pairs(key_name: str) -> dict | tuple[str, dict, int]: if key_pair := get_aws_mock_db()["key"].find_one({"name": key_name}): return {"items": [key_pair]} return "responses/describe_key_pairs_not_found.xml", {"key_name": key_name}, 400
37.555556
84
0.718935
cbabcf3465df8f07bcc5fb6b9af57058b78523cc
15,398
py
Python
bloop.py
bondscripting/bloop
7ee0bc16458670c7689dbc8aeed012c1fb9f307a
[ "MIT" ]
null
null
null
bloop.py
bondscripting/bloop
7ee0bc16458670c7689dbc8aeed012c1fb9f307a
[ "MIT" ]
null
null
null
bloop.py
bondscripting/bloop
7ee0bc16458670c7689dbc8aeed012c1fb9f307a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import math; from PIL import Image, ImageDraw; import sys; import xml.etree.ElementTree as ET; class BloopException(Exception): pass; def main(): try: inputFileName = None; outputFileName = "bloop.png"; args = {}; geometry = None; numSamples = 1; i = 1; numArgs = len(sys.argv); while (i < numArgs): arg = sys.argv[i]; i += 1; if (arg == "-i"): if (i < numArgs): inputFileName = sys.argv[i]; i += 1; else: raise BloopException("Missing argument to '-i'."); elif (arg == "-g"): if (i < numArgs): geometry = tuple(int(v) for v in sys.argv[i].split(",")); i += 1; if ((len(geometry) != 2) and (len(geometry) != 4)): raise BloopException("Geometry passed to -g must have 2 or 4 arguments."); else: raise BloopException("Missing argument to '-g'."); elif (arg == "-o"): if (i < numArgs): outputFileName = sys.argv[i]; i += 1; else: raise BloopException("Missing argument to '-o'."); elif (arg == "-s"): if (i < numArgs): numSamples = int(sys.argv[i]); if (numSamples <= 0): raise BloopException("Argument passed to -s must be 1 or greater."); i += 1; else: raise BloopException("Missing argument to '-s'."); else: if (i < numArgs): args[arg] = sys.argv[i]; i += 1; else: raise BloopException("Missing argument to '{0}'.".format(arg)); if (not inputFileName): raise BloopException("Missing input file."); if (not geometry): raise BloopException("Missing geometry."); ProcessInputFile(inputFileName, outputFileName, args, geometry, numSamples); except BloopException as e: print(str(e)); exit(1); def ProcessInputFile(inputFileName, outputFileName, args, geometry, numSamples): tree = ET.parse(inputFileName); rootElement = tree.getroot(); resolvedArgs, sceneFactory = ParseScene(rootElement, args); scene = sceneFactory.CreateObject(resolvedArgs); backColor = ColorFromRGBA(resolvedArgs["color"]); DrawImage(outputFileName, scene, backColor, geometry, numSamples); def ParseScene(element, args): parsedDefinitions = False; parsers = {**CORE_PARSERS}; parsedParams = False; params = {**SCENE_PARAMS}; objectFactory = None; for child in element: if (child.tag == "params"): if (parsedParams or objectFactory): raise BloopException("Unexpected element <params>.".format(child.tag)); ParseParameters(child, params); parsedParams = True; elif (child.tag == "define"): if (parsedDefinitions or objectFactory): raise BloopException("Unexpected element <define>.".format(child.tag)); ParseDefinitions(child, parsers); parsedDefinitions = True; else: if (objectFactory): raise BloopException("Unexpected element <{0}>.".format(child.tag)); objectFactory = ParseObject(child, parsers); if (not objectFactory): raise BloopException("No object in scene."); ValidateArguments(args, params, element.tag); resolvedArgs = ResolveArgs(args, {}); return resolvedArgs, objectFactory; def ParseDefinitions(element, parsers): for child in element: ParseDefinition(child, parsers); def ParseDefinition(element, parsers): parsedParams = False; params = {**CORE_OBJECT_PARAMS}; childFactory = None; if (element.tag in parsers): raise BloopException("Duplicate definition of object type '{0}'.".format(element.tag)); for child in element: if (child.tag == "params"): if (parsedParams or childFactory): raise BloopException("Unexpected element <params>.".format(child.tag)); ParseParameters(child, params); parsedParams = True; else: if (childFactory): raise BloopException("Object of type '{0}' can have at most one child.".format(element.tag)); childFactory = ParseObject(child, parsers); if (not childFactory): raise BloopException("No child in user defined object type '{0}'.".format(element.tag)); parsers[element.tag] = ObjectParser(BaseObject, params, PreparsedChildParser(childFactory)); def ParseParameters(element, params): for child in element: ParseParameter(child, params); def ParseParameter(element, params): name = None; defaultValue = None; for k, v in element.attrib.items(): if (k == "name"): name = v; elif (k == "default"): defaultValue = v; else: raise BloopException("Unexpected attribute '{0}'.".format(k)); if (not name): raise BloopException("Parameter name is not defined."); if name in params: raise BloopException("Duplicate parameter name '{0}'.".format(name)); params[name] = defaultValue; def ParseObjects(element, parsers): objectFactories = [ParseObject(child, parsers) for child in element]; return objectFactories; def ParseObject(element, parsers): parser = parsers.get(element.tag); if (not parser): raise BloopException("Unknown object type '{0}'".format(element.tag)); factory = parser.Parse(element, parsers); return factory; def ValidateArguments(args, params, T): for k in args: if (not k in params): raise BloopException("Object type '{0}' does not have a parameter named '{1}'.".format(T, k)); for k, v in params.items(): if (not k in args): if (not v): raise BloopException("Object of type '{0}' is missing argument for parameter '{1}' with no default value.".format(T, k)); args[k] = v; def ResolveArgs(args, parentArgs): return {k: eval(v, {}, parentArgs) for k, v in args.items()}; class ObjectParser: def __init__(self, T, params, childParser): self.T = T; self.params = params; self.childParser = childParser; def Parse(self, element, parsers): args = {}; childFactories = None; for k, v in element.attrib.items(): args[k] = v; ValidateArguments(args, self.params, element.tag); childFactories = self.childParser.Parse(element, parsers); factory = ObjectFactory(self.T, args, childFactories); return factory; class NullChildParser: def Parse(self, element, parsers): if (len(element) > 0): raise BloopException("Object of type '{0}' cannot have children.".format(element.tag)); return []; class SingleChildParser: def Parse(self, element, parsers): if (len(element) > 1): raise BloopException("Object of type '{0}' can have at most one child.".format(element.tag)); childFactories = ParseObjects(element, parsers); return childFactories; class ListChildParser: def Parse(self, element, parsers): childFactories = ParseObjects(element, parsers); return childFactories; class PreparsedChildParser: def __init__(self, childFactory): self.childFactory = childFactory; def Parse(self, element, parsers): if (len(element) > 0): raise BloopException("Object of type '{0}' cannot have children.".format(element.tag)); return [self.childFactory]; class ObjectFactory: def __init__(self, T, args, childFactories): self.T = T; self.args = args; self.childFactories = childFactories; def CreateObject(self, parentArgs): resolvedArgs = ResolveArgs(self.args, parentArgs); unifiedArgs = {**parentArgs, **resolvedArgs}; children = [factory.CreateObject(unifiedArgs) for factory in self.childFactories]; return self.T(resolvedArgs, children); class BaseObject: def __init__(self, args, children): self.x = args["x"]; self.y = args["y"]; self.rgba = args["color"]; self.color = ColorFromRGBA(self.rgba); self.children = children; pass; def ToLocalCoordinates(self, x, y): return x - self.x, y - self.y; def ProbeHiResWithDefault(self, x, y, defaultColor, numSamples): offset = 1 / (numSamples * 2); colorHistogram = {}; for j in range(numSamples): yj = j / numSamples; for i in range(numSamples): xi = i / numSamples; color = self.ProbeWithDefault(x + offset + xi, y + offset + yj, defaultColor); if (color in colorHistogram): colorHistogram[color] += 1; else: colorHistogram[color] = 1; sortedColors = sorted(colorHistogram.items(), key=lambda x: x[1], reverse=True); color = BlendColors(sortedColors); return color; def ProbeWithDefault(self, x, y, defaultColor): color = self.Probe(x, y); if (not color): color = defaultColor; return color; def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); for child in self.children: return child.Probe(x, y); return None; class Circle(BaseObject): def __init__(self, args, children): super().__init__(args, children); self.radius = args["radius"]; def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); if (((x * x) + (y * y)) < (self.radius * self.radius)): return self.color; return None; class Ellipse(BaseObject): def __init__(self, args, children): super().__init__(args, children); width = args["width"]; height = args["height"]; if ((width <= 0) or (height <= 0)): self.radius = 0; self.scx = 1; self.scy = 1; elif (width >= height): self.radius = width / 2; self.scx = 1; self.scy = height / width; else: self.radius = height / 2; self.scx = width / height; self.scy = 1; def ToLocalCoordinates(self, x, y): x, y = super().ToLocalCoordinates(x, y); return (x - self.radius) / self.scx, (y - self.radius) / self.scy; def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); if (((x * x) + (y * y)) < (self.radius * self.radius)): return self.color; return None; class Rectangle(BaseObject): def __init__(self, args, children): super().__init__(args, children); self.width = args["width"]; self.height = args["height"]; def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); if ((x >= 0) and (x < self.width) and (y >= 0) and (y < self.height)): return self.color; return None; class Union(BaseObject): def __init__(self, args, children): super().__init__(args, children); def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); for child in reversed(self.children): result = child.Probe(x, y); if (result): return result; return None; class Intersect(BaseObject): def __init__(self, args, children): super().__init__(args, children); def Probe(self, x, y): x, y = self.ToLocalCoordinates(x, y); result = None; for child in self.children: result = child.Probe(x, y); if (result == None): return None; return result; class Subtract(BaseObject): def __init__(self, args, children): super().__init__(args, children); def Probe(self, x, y): result = None; if (len(self.children) > 0): x, y = self.ToLocalCoordinates(x, y); result = self.children[0].Probe(x, y); for i in range(1, len(self.children)): if (self.children[i].Probe(x, y) != None): return None; return result; class Rotate(BaseObject): def __init__(self, args, children): super().__init__(args, children); self.angle = math.radians(args["angle"]); def ToLocalCoordinates(self, x, y): x, y = super().ToLocalCoordinates(x, y); cs = math.cos(-self.angle); sn = math.sin(-self.angle); return (x * cs) - (y * sn), (x * sn) + (y * cs); class Scale(BaseObject): def __init__(self, args, children): super().__init__(args, children); self.scx = args["scx"]; self.scy = args["scy"]; def ToLocalCoordinates(self, x, y): x, y = super().ToLocalCoordinates(x, y); return x / self.scx, y / self.scy; class Shear(BaseObject): def __init__(self, args, children): super().__init__(args, children); self.scx = args["shx"]; self.scy = args["shy"]; def ToLocalCoordinates(self, x, y): x, y = super().ToLocalCoordinates(x, y); return x - (self.scx * y), y - (self.scy * x); def DrawImage(outputFileName, scene, backColor, geometry, numSamples): width = geometry[0]; height = geometry[1]; xOffset = 0; yOffset = 0; if (len(geometry) == 4): xOffset = geometry[2]; yOffset = geometry[3]; image = Image.new("RGBA", (width, height), backColor); draw = ImageDraw.Draw(image); class CacheElement: def init(self): self.color = None; self.processed = False; prevRow = tuple(CacheElement() for x in range(width)); currentRow = tuple(CacheElement() for x in range(width)); for y in range(height): for x in range(width): color = scene.ProbeWithDefault(x + xOffset + 0.5, y + yOffset + 0.5, backColor); current = currentRow[x]; current.color = color; current.processed = False; process = False; if ((y > 0) and (numSamples > 1)): j = y - 1; for i in range(max(x - 1, 0), min(x + 2, width)): prev = prevRow[i]; if (prev.color != color): process = True; if (not prev.processed): c = scene.ProbeHiResWithDefault(i + xOffset, j + yOffset, backColor, numSamples); draw.point((i, j), c); prev.processed = True; if ((x > 0) and (numSamples > 1)): i = x - 1; prev = currentRow[i]; if (prev.color != color): process = True; if (not prev.processed): c = scene.ProbeHiResWithDefault(i + xOffset, y + yOffset, backColor, numSamples); draw.point((i, y), c); prev.processed = True; if (process): color = scene.ProbeHiResWithDefault(x + xOffset, y + yOffset, backColor, numSamples); current.processed = True; draw.point((x, y), color); prevRow, currentRow = currentRow, prevRow; image.save(outputFileName, "PNG"); def ColorFromRGBA(rgba): if (type(rgba) is tuple): return rgba; r = (rgba >> 24) & 0xff; g = (rgba >> 16) & 0xff; b = (rgba >> 8) & 0xff; a = rgba & 0xff; return (r, g, b, a); def BlendColors(colorsAndWeights): result = (0, 0, 0, 0); totalRGBWeight = 0; totalAlphaWeight = 0; for color, weight in colorsAndWeights: rgbWeight = weight * color[3]; totalRGBWeight += rgbWeight; totalAlphaWeight += weight; rgbT = rgbWeight / max(totalRGBWeight, SMALL_FLOAT); alphaT = weight / max(totalAlphaWeight, SMALL_FLOAT); result = InterpolateColors(result, color, rgbT, alphaT); return result; def InterpolateColors(colorA, colorB, rgbT, alphaT): return ( round(math.sqrt(Lerp(colorA[0]**2, colorB[0]**2, rgbT))), round(math.sqrt(Lerp(colorA[1]**2, colorB[1]**2, rgbT))), round(math.sqrt(Lerp(colorA[2]**2, colorB[2]**2, rgbT))), round(Lerp(colorA[3], colorB[3], alphaT)) ); def Lerp(a, b, t): return ((1 - t) * a) + (t * b); SCENE_PARAMS = { "color": "0xffffffff" }; CORE_OBJECT_PARAMS = { "x": "0", "y": "0", "color": "color" }; CIRCLE_PARAMS = { **CORE_OBJECT_PARAMS, "radius": None }; ELLIPSE_PARAMS = { **CORE_OBJECT_PARAMS, "width": None, "height": None }; RECTANGLE_PARAMS = { **CORE_OBJECT_PARAMS, "width": None, "height": None }; ROTATE_PARAMS = { **CORE_OBJECT_PARAMS, "angle": "0" }; SCALE_PARAMS = { **CORE_OBJECT_PARAMS, "scx": "1", "scy": "1" }; SHEAR_PARAMS = { **CORE_OBJECT_PARAMS, "shx": "0", "shy": "0" }; CORE_PARSERS = { "circle": ObjectParser(Circle, CIRCLE_PARAMS, NullChildParser()), "ellipse": ObjectParser(Ellipse, ELLIPSE_PARAMS, NullChildParser()), "rectangle": ObjectParser(Rectangle, RECTANGLE_PARAMS, NullChildParser()), "union": ObjectParser(Union, CORE_OBJECT_PARAMS, ListChildParser()), "intersect": ObjectParser(Intersect, CORE_OBJECT_PARAMS, ListChildParser()), "subtract": ObjectParser(Subtract, CORE_OBJECT_PARAMS, ListChildParser()), "rotate": ObjectParser(Rotate, ROTATE_PARAMS, SingleChildParser()), "scale": ObjectParser(Scale, SCALE_PARAMS, SingleChildParser()), "shear": ObjectParser(Shear, SHEAR_PARAMS, SingleChildParser()) }; SMALL_FLOAT = 1.0 / 2**16; if __name__ == "__main__": main();
25.706177
125
0.663723
fd680d3e7cd14b5027be1c9d05b9350a6bc76107
30,078
py
Python
flax/wallet/trade_manager.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
174
2021-06-16T17:49:22.000Z
2022-03-17T03:03:17.000Z
flax/wallet/trade_manager.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
49
2021-06-17T14:10:53.000Z
2022-01-31T11:04:21.000Z
flax/wallet/trade_manager.py
ReadyNeutron/shitcoin-blockchain
80add4e545ad22a317244f7fd958d118a5a75c5d
[ "Apache-2.0" ]
80
2021-06-17T14:23:31.000Z
2022-02-24T05:52:47.000Z
import logging import time import traceback from pathlib import Path from secrets import token_bytes from typing import Any, Dict, List, Optional, Tuple from blspy import AugSchemeMPL from flax.types.blockchain_format.coin import Coin from flax.types.blockchain_format.program import Program from flax.types.blockchain_format.sized_bytes import bytes32 from flax.types.spend_bundle import SpendBundle from flax.types.coin_spend import CoinSpend from flax.util.byte_types import hexstr_to_bytes from flax.util.db_wrapper import DBWrapper from flax.util.hash import std_hash from flax.util.ints import uint32, uint64 from flax.wallet.cc_wallet import cc_utils from flax.wallet.cc_wallet.cc_utils import CC_MOD, SpendableCC, spend_bundle_for_spendable_ccs, uncurry_cc from flax.wallet.cc_wallet.cc_wallet import CCWallet from flax.wallet.puzzles.genesis_by_coin_id_with_0 import genesis_coin_id_for_genesis_coin_checker from flax.wallet.trade_record import TradeRecord from flax.wallet.trading.trade_status import TradeStatus from flax.wallet.trading.trade_store import TradeStore from flax.wallet.transaction_record import TransactionRecord from flax.wallet.util.trade_utils import ( get_discrepancies_for_spend_bundle, get_output_amount_for_puzzle_and_solution, get_output_discrepancy_for_puzzle_and_solution, ) from flax.wallet.util.transaction_type import TransactionType from flax.wallet.util.wallet_types import WalletType from flax.wallet.wallet import Wallet from flax.wallet.wallet_coin_record import WalletCoinRecord class TradeManager: wallet_state_manager: Any log: logging.Logger trade_store: TradeStore @staticmethod async def create( wallet_state_manager: Any, db_wrapper: DBWrapper, name: str = None, ): self = TradeManager() if name: self.log = logging.getLogger(name) else: self.log = logging.getLogger(__name__) self.wallet_state_manager = wallet_state_manager self.trade_store = await TradeStore.create(db_wrapper) return self async def get_offers_with_status(self, status: TradeStatus) -> List[TradeRecord]: records = await self.trade_store.get_trade_record_with_status(status) return records async def get_coins_of_interest( self, ) -> Tuple[Dict[bytes32, Coin], Dict[bytes32, Coin]]: """ Returns list of coins we want to check if they are included in filter, These will include coins that belong to us and coins that that on other side of treade """ all_pending = [] pending_accept = await self.get_offers_with_status(TradeStatus.PENDING_ACCEPT) pending_confirm = await self.get_offers_with_status(TradeStatus.PENDING_CONFIRM) pending_cancel = await self.get_offers_with_status(TradeStatus.PENDING_CANCEL) all_pending.extend(pending_accept) all_pending.extend(pending_confirm) all_pending.extend(pending_cancel) removals = {} additions = {} for trade in all_pending: for coin in trade.removals: removals[coin.name()] = coin for coin in trade.additions: additions[coin.name()] = coin return removals, additions async def get_trade_by_coin(self, coin: Coin) -> Optional[TradeRecord]: all_trades = await self.get_all_trades() for trade in all_trades: if trade.status == TradeStatus.CANCELED.value: continue if coin in trade.removals: return trade if coin in trade.additions: return trade return None async def coins_of_interest_farmed(self, removals: List[Coin], additions: List[Coin], height: uint32): """ If both our coins and other coins in trade got removed that means that trade was successfully executed If coins from other side of trade got farmed without ours, that means that trade failed because either someone else completed trade or other side of trade canceled the trade by doing a spend. If our coins got farmed but coins from other side didn't, we successfully canceled trade by spending inputs. """ removal_dict = {} addition_dict = {} checked: Dict[bytes32, Coin] = {} for coin in removals: removal_dict[coin.name()] = coin for coin in additions: addition_dict[coin.name()] = coin all_coins = [] all_coins.extend(removals) all_coins.extend(additions) for coin in all_coins: if coin.name() in checked: continue trade = await self.get_trade_by_coin(coin) if trade is None: self.log.error(f"Coin: {Coin}, not in any trade") continue # Check if all coins that are part of the trade got farmed # If coin is missing, trade failed failed = False for removed_coin in trade.removals: if removed_coin.name() not in removal_dict: self.log.error(f"{removed_coin} from trade not removed") failed = True checked[removed_coin.name()] = removed_coin for added_coin in trade.additions: if added_coin.name() not in addition_dict: self.log.error(f"{added_coin} from trade not added") failed = True checked[coin.name()] = coin if failed is False: # Mark this trade as successful await self.trade_store.set_status(trade.trade_id, TradeStatus.CONFIRMED, True, height) self.log.info(f"Trade with id: {trade.trade_id} confirmed at height: {height}") else: # Either we canceled this trade or this trade failed if trade.status == TradeStatus.PENDING_CANCEL.value: await self.trade_store.set_status(trade.trade_id, TradeStatus.CANCELED, True) self.log.info(f"Trade with id: {trade.trade_id} canceled at height: {height}") elif trade.status == TradeStatus.PENDING_CONFIRM.value: await self.trade_store.set_status(trade.trade_id, TradeStatus.FAILED, True) self.log.warning(f"Trade with id: {trade.trade_id} failed at height: {height}") async def get_locked_coins(self, wallet_id: int = None) -> Dict[bytes32, WalletCoinRecord]: """Returns a dictionary of confirmed coins that are locked by a trade.""" all_pending = [] pending_accept = await self.get_offers_with_status(TradeStatus.PENDING_ACCEPT) pending_confirm = await self.get_offers_with_status(TradeStatus.PENDING_CONFIRM) pending_cancel = await self.get_offers_with_status(TradeStatus.PENDING_CANCEL) all_pending.extend(pending_accept) all_pending.extend(pending_confirm) all_pending.extend(pending_cancel) if len(all_pending) == 0: return {} result = {} for trade_offer in all_pending: if trade_offer.tx_spend_bundle is None: locked = await self.get_locked_coins_in_spend_bundle(trade_offer.spend_bundle) else: locked = await self.get_locked_coins_in_spend_bundle(trade_offer.tx_spend_bundle) for name, record in locked.items(): if wallet_id is None or record.wallet_id == wallet_id: result[name] = record return result async def get_all_trades(self): all: List[TradeRecord] = await self.trade_store.get_all_trades() return all async def get_trade_by_id(self, trade_id: bytes) -> Optional[TradeRecord]: record = await self.trade_store.get_trade_record(trade_id) return record async def get_locked_coins_in_spend_bundle(self, bundle: SpendBundle) -> Dict[bytes32, WalletCoinRecord]: """Returns a list of coin records that are used in this SpendBundle""" result = {} removals = bundle.removals() for coin in removals: coin_record = await self.wallet_state_manager.coin_store.get_coin_record(coin.name()) if coin_record is None: continue result[coin_record.name()] = coin_record return result async def cancel_pending_offer(self, trade_id: bytes32): await self.trade_store.set_status(trade_id, TradeStatus.CANCELED, False) async def cancel_pending_offer_safely(self, trade_id: bytes32): """This will create a transaction that includes coins that were offered""" self.log.info(f"Secure-Cancel pending offer with id trade_id {trade_id.hex()}") trade = await self.trade_store.get_trade_record(trade_id) if trade is None: return None all_coins = trade.removals for coin in all_coins: wallet = await self.wallet_state_manager.get_wallet_for_coin(coin.name()) if wallet is None: continue new_ph = await wallet.get_new_puzzlehash() if wallet.type() == WalletType.COLOURED_COIN.value: tx = await wallet.generate_signed_transaction( [coin.amount], [new_ph], 0, coins={coin}, ignore_max_send_amount=True ) else: tx = await wallet.generate_signed_transaction( coin.amount, new_ph, 0, coins={coin}, ignore_max_send_amount=True ) await self.wallet_state_manager.add_pending_transaction(tx_record=tx) await self.trade_store.set_status(trade_id, TradeStatus.PENDING_CANCEL, False) return None async def save_trade(self, trade: TradeRecord): await self.trade_store.add_trade_record(trade, False) async def create_offer_for_ids( self, offer: Dict[int, int], file_name: str ) -> Tuple[bool, Optional[TradeRecord], Optional[str]]: success, trade_offer, error = await self._create_offer_for_ids(offer) if success is True and trade_offer is not None: self.write_offer_to_disk(Path(file_name), trade_offer) await self.save_trade(trade_offer) return success, trade_offer, error async def _create_offer_for_ids(self, offer: Dict[int, int]) -> Tuple[bool, Optional[TradeRecord], Optional[str]]: """ Offer is dictionary of wallet ids and amount """ spend_bundle = None try: for id in offer.keys(): amount = offer[id] wallet_id = uint32(int(id)) wallet = self.wallet_state_manager.wallets[wallet_id] if isinstance(wallet, CCWallet): balance = await wallet.get_confirmed_balance() if balance < abs(amount) and amount < 0: raise Exception(f"insufficient funds in wallet {wallet_id}") if amount > 0: if spend_bundle is None: to_exclude: List[Coin] = [] else: to_exclude = spend_bundle.removals() zero_spend_bundle: SpendBundle = await wallet.generate_zero_val_coin(False, to_exclude) if spend_bundle is None: spend_bundle = zero_spend_bundle else: spend_bundle = SpendBundle.aggregate([spend_bundle, zero_spend_bundle]) additions = zero_spend_bundle.additions() removals = zero_spend_bundle.removals() zero_val_coin: Optional[Coin] = None for add in additions: if add not in removals and add.amount == 0: zero_val_coin = add new_spend_bundle = await wallet.create_spend_bundle_relative_amount(amount, zero_val_coin) else: new_spend_bundle = await wallet.create_spend_bundle_relative_amount(amount) elif isinstance(wallet, Wallet): if spend_bundle is None: to_exclude = [] else: to_exclude = spend_bundle.removals() new_spend_bundle = await wallet.create_spend_bundle_relative_flax(amount, to_exclude) else: return False, None, "unsupported wallet type" if new_spend_bundle is None or new_spend_bundle.removals() == []: raise Exception(f"Wallet {id} was unable to create offer.") if spend_bundle is None: spend_bundle = new_spend_bundle else: spend_bundle = SpendBundle.aggregate([spend_bundle, new_spend_bundle]) if spend_bundle is None: return False, None, None now = uint64(int(time.time())) trade_offer: TradeRecord = TradeRecord( confirmed_at_index=uint32(0), accepted_at_time=None, created_at_time=now, my_offer=True, sent=uint32(0), spend_bundle=spend_bundle, tx_spend_bundle=None, additions=spend_bundle.additions(), removals=spend_bundle.removals(), trade_id=std_hash(spend_bundle.name() + bytes(now)), status=uint32(TradeStatus.PENDING_ACCEPT.value), sent_to=[], ) return True, trade_offer, None except Exception as e: tb = traceback.format_exc() self.log.error(f"Error with creating trade offer: {type(e)}{tb}") return False, None, str(e) def write_offer_to_disk(self, file_path: Path, offer: TradeRecord): if offer is not None: file_path.write_text(bytes(offer).hex()) async def get_discrepancies_for_offer(self, file_path: Path) -> Tuple[bool, Optional[Dict], Optional[Exception]]: self.log.info(f"trade offer: {file_path}") trade_offer_hex = file_path.read_text() trade_offer = TradeRecord.from_bytes(bytes.fromhex(trade_offer_hex)) return get_discrepancies_for_spend_bundle(trade_offer.spend_bundle) async def get_inner_puzzle_for_puzzle_hash(self, puzzle_hash) -> Program: info = await self.wallet_state_manager.puzzle_store.get_derivation_record_for_puzzle_hash(puzzle_hash) assert info is not None puzzle = self.wallet_state_manager.main_wallet.puzzle_for_pk(bytes(info.pubkey)) return puzzle async def maybe_create_wallets_for_offer(self, file_path: Path) -> bool: success, result, error = await self.get_discrepancies_for_offer(file_path) if not success or result is None: return False for key, value in result.items(): wsm = self.wallet_state_manager wallet: Wallet = wsm.main_wallet if key == "flax": continue self.log.info(f"value is {key}") exists = await wsm.get_wallet_for_colour(key) if exists is not None: continue await CCWallet.create_wallet_for_cc(wsm, wallet, key) return True async def respond_to_offer(self, file_path: Path) -> Tuple[bool, Optional[TradeRecord], Optional[str]]: has_wallets = await self.maybe_create_wallets_for_offer(file_path) if not has_wallets: return False, None, "Unknown Error" trade_offer = None try: trade_offer_hex = file_path.read_text() trade_offer = TradeRecord.from_bytes(hexstr_to_bytes(trade_offer_hex)) except Exception as e: return False, None, f"Error: {e}" if trade_offer is not None: offer_spend_bundle: SpendBundle = trade_offer.spend_bundle coinsols: List[CoinSpend] = [] # [] of CoinSpends cc_coinsol_outamounts: Dict[bytes32, List[Tuple[CoinSpend, int]]] = dict() aggsig = offer_spend_bundle.aggregated_signature cc_discrepancies: Dict[bytes32, int] = dict() flax_discrepancy = None wallets: Dict[bytes32, Any] = dict() # colour to wallet dict for coinsol in offer_spend_bundle.coin_spends: puzzle: Program = Program.from_bytes(bytes(coinsol.puzzle_reveal)) solution: Program = Program.from_bytes(bytes(coinsol.solution)) # work out the deficits between coin amount and expected output for each r = cc_utils.uncurry_cc(puzzle) if r: # Calculate output amounts mod_hash, genesis_checker, inner_puzzle = r colour = bytes(genesis_checker).hex() if colour not in wallets: wallets[colour] = await self.wallet_state_manager.get_wallet_for_colour(colour) unspent = await self.wallet_state_manager.get_spendable_coins_for_wallet(wallets[colour].id()) if coinsol.coin in [record.coin for record in unspent]: return False, None, "can't respond to own offer" innersol = solution.first() total = get_output_amount_for_puzzle_and_solution(inner_puzzle, innersol) if colour in cc_discrepancies: cc_discrepancies[colour] += coinsol.coin.amount - total else: cc_discrepancies[colour] = coinsol.coin.amount - total # Store coinsol and output amount for later if colour in cc_coinsol_outamounts: cc_coinsol_outamounts[colour].append((coinsol, total)) else: cc_coinsol_outamounts[colour] = [(coinsol, total)] else: # standard flax coin unspent = await self.wallet_state_manager.get_spendable_coins_for_wallet(1) if coinsol.coin in [record.coin for record in unspent]: return False, None, "can't respond to own offer" if flax_discrepancy is None: flax_discrepancy = get_output_discrepancy_for_puzzle_and_solution(coinsol.coin, puzzle, solution) else: flax_discrepancy += get_output_discrepancy_for_puzzle_and_solution(coinsol.coin, puzzle, solution) coinsols.append(coinsol) flax_spend_bundle: Optional[SpendBundle] = None if flax_discrepancy is not None: flax_spend_bundle = await self.wallet_state_manager.main_wallet.create_spend_bundle_relative_flax( flax_discrepancy, [] ) if flax_spend_bundle is not None: for coinsol in coinsols: flax_spend_bundle.coin_spends.append(coinsol) zero_spend_list: List[SpendBundle] = [] spend_bundle = None # create coloured coin self.log.info(cc_discrepancies) for colour in cc_discrepancies.keys(): if cc_discrepancies[colour] < 0: my_cc_spends = await wallets[colour].select_coins(abs(cc_discrepancies[colour])) else: if flax_spend_bundle is None: to_exclude: List = [] else: to_exclude = flax_spend_bundle.removals() my_cc_spends = await wallets[colour].select_coins(0) if my_cc_spends is None or my_cc_spends == set(): zero_spend_bundle: SpendBundle = await wallets[colour].generate_zero_val_coin(False, to_exclude) if zero_spend_bundle is None: return ( False, None, "Unable to generate zero value coin. Confirm that you have flax available", ) zero_spend_list.append(zero_spend_bundle) additions = zero_spend_bundle.additions() removals = zero_spend_bundle.removals() my_cc_spends = set() for add in additions: if add not in removals and add.amount == 0: my_cc_spends.add(add) if my_cc_spends == set() or my_cc_spends is None: return False, None, "insufficient funds" # Create SpendableCC list and innersol_list with both my coins and the offered coins # Firstly get the output coin my_output_coin = my_cc_spends.pop() spendable_cc_list = [] innersol_list = [] genesis_id = genesis_coin_id_for_genesis_coin_checker(Program.from_bytes(bytes.fromhex(colour))) # Make the rest of the coins assert the output coin is consumed for coloured_coin in my_cc_spends: inner_solution = self.wallet_state_manager.main_wallet.make_solution(consumed=[my_output_coin.name()]) inner_puzzle = await self.get_inner_puzzle_for_puzzle_hash(coloured_coin.puzzle_hash) assert inner_puzzle is not None sigs = await wallets[colour].get_sigs(inner_puzzle, inner_solution, coloured_coin.name()) sigs.append(aggsig) aggsig = AugSchemeMPL.aggregate(sigs) lineage_proof = await wallets[colour].get_lineage_proof_for_coin(coloured_coin) spendable_cc_list.append(SpendableCC(coloured_coin, genesis_id, inner_puzzle, lineage_proof)) innersol_list.append(inner_solution) # Create SpendableCC for each of the coloured coins received for cc_coinsol_out in cc_coinsol_outamounts[colour]: cc_coinsol = cc_coinsol_out[0] puzzle = Program.from_bytes(bytes(cc_coinsol.puzzle_reveal)) solution = Program.from_bytes(bytes(cc_coinsol.solution)) r = uncurry_cc(puzzle) if r: mod_hash, genesis_coin_checker, inner_puzzle = r inner_solution = solution.first() lineage_proof = solution.rest().rest().first() spendable_cc_list.append(SpendableCC(cc_coinsol.coin, genesis_id, inner_puzzle, lineage_proof)) innersol_list.append(inner_solution) # Finish the output coin SpendableCC with new information newinnerpuzhash = await wallets[colour].get_new_inner_hash() outputamount = sum([c.amount for c in my_cc_spends]) + cc_discrepancies[colour] + my_output_coin.amount inner_solution = self.wallet_state_manager.main_wallet.make_solution( primaries=[{"puzzlehash": newinnerpuzhash, "amount": outputamount}] ) inner_puzzle = await self.get_inner_puzzle_for_puzzle_hash(my_output_coin.puzzle_hash) assert inner_puzzle is not None lineage_proof = await wallets[colour].get_lineage_proof_for_coin(my_output_coin) spendable_cc_list.append(SpendableCC(my_output_coin, genesis_id, inner_puzzle, lineage_proof)) innersol_list.append(inner_solution) sigs = await wallets[colour].get_sigs(inner_puzzle, inner_solution, my_output_coin.name()) sigs.append(aggsig) aggsig = AugSchemeMPL.aggregate(sigs) if spend_bundle is None: spend_bundle = spend_bundle_for_spendable_ccs( CC_MOD, Program.from_bytes(bytes.fromhex(colour)), spendable_cc_list, innersol_list, [aggsig], ) else: new_spend_bundle = spend_bundle_for_spendable_ccs( CC_MOD, Program.from_bytes(bytes.fromhex(colour)), spendable_cc_list, innersol_list, [aggsig], ) spend_bundle = SpendBundle.aggregate([spend_bundle, new_spend_bundle]) # reset sigs and aggsig so that they aren't included next time around sigs = [] aggsig = AugSchemeMPL.aggregate(sigs) my_tx_records = [] if zero_spend_list is not None and spend_bundle is not None: zero_spend_list.append(spend_bundle) spend_bundle = SpendBundle.aggregate(zero_spend_list) if spend_bundle is None: return False, None, "spend_bundle missing" # Add transaction history for this trade now = uint64(int(time.time())) if flax_spend_bundle is not None: spend_bundle = SpendBundle.aggregate([spend_bundle, flax_spend_bundle]) if flax_discrepancy < 0: tx_record = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=now, to_puzzle_hash=token_bytes(), amount=uint64(abs(flax_discrepancy)), fee_amount=uint64(0), confirmed=False, sent=uint32(10), spend_bundle=flax_spend_bundle, additions=flax_spend_bundle.additions(), removals=flax_spend_bundle.removals(), wallet_id=uint32(1), sent_to=[], trade_id=std_hash(spend_bundle.name() + bytes(now)), type=uint32(TransactionType.OUTGOING_TRADE.value), name=flax_spend_bundle.name(), ) else: tx_record = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=uint64(int(time.time())), to_puzzle_hash=token_bytes(), amount=uint64(abs(flax_discrepancy)), fee_amount=uint64(0), confirmed=False, sent=uint32(10), spend_bundle=flax_spend_bundle, additions=flax_spend_bundle.additions(), removals=flax_spend_bundle.removals(), wallet_id=uint32(1), sent_to=[], trade_id=std_hash(spend_bundle.name() + bytes(now)), type=uint32(TransactionType.INCOMING_TRADE.value), name=flax_spend_bundle.name(), ) my_tx_records.append(tx_record) for colour, amount in cc_discrepancies.items(): wallet = wallets[colour] if flax_discrepancy > 0: tx_record = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=uint64(int(time.time())), to_puzzle_hash=token_bytes(), amount=uint64(abs(amount)), fee_amount=uint64(0), confirmed=False, sent=uint32(10), spend_bundle=spend_bundle, additions=spend_bundle.additions(), removals=spend_bundle.removals(), wallet_id=wallet.id(), sent_to=[], trade_id=std_hash(spend_bundle.name() + bytes(now)), type=uint32(TransactionType.OUTGOING_TRADE.value), name=spend_bundle.name(), ) else: tx_record = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=uint64(int(time.time())), to_puzzle_hash=token_bytes(), amount=uint64(abs(amount)), fee_amount=uint64(0), confirmed=False, sent=uint32(10), spend_bundle=spend_bundle, additions=spend_bundle.additions(), removals=spend_bundle.removals(), wallet_id=wallet.id(), sent_to=[], trade_id=std_hash(spend_bundle.name() + bytes(now)), type=uint32(TransactionType.INCOMING_TRADE.value), name=token_bytes(), ) my_tx_records.append(tx_record) tx_record = TransactionRecord( confirmed_at_height=uint32(0), created_at_time=uint64(int(time.time())), to_puzzle_hash=token_bytes(), amount=uint64(0), fee_amount=uint64(0), confirmed=False, sent=uint32(0), spend_bundle=spend_bundle, additions=spend_bundle.additions(), removals=spend_bundle.removals(), wallet_id=uint32(0), sent_to=[], trade_id=std_hash(spend_bundle.name() + bytes(now)), type=uint32(TransactionType.OUTGOING_TRADE.value), name=spend_bundle.name(), ) now = uint64(int(time.time())) trade_record: TradeRecord = TradeRecord( confirmed_at_index=uint32(0), accepted_at_time=now, created_at_time=now, my_offer=False, sent=uint32(0), spend_bundle=offer_spend_bundle, tx_spend_bundle=spend_bundle, additions=spend_bundle.additions(), removals=spend_bundle.removals(), trade_id=std_hash(spend_bundle.name() + bytes(now)), status=uint32(TradeStatus.PENDING_CONFIRM.value), sent_to=[], ) await self.save_trade(trade_record) await self.wallet_state_manager.add_pending_transaction(tx_record) for tx in my_tx_records: await self.wallet_state_manager.add_transaction(tx) return True, trade_record, None
46.131902
118
0.60649
e764df28cf084a1afbbdb01417d393ab1012da3a
8,256
py
Python
ahds/tests/test_ahds.py
paulkorir/ahds
813dd745f76165893d1dd43477a7653b5c02cdc0
[ "Apache-2.0" ]
6
2018-12-15T20:42:09.000Z
2021-06-15T16:43:05.000Z
ahds/tests/test_ahds.py
paulkorir/ahds
813dd745f76165893d1dd43477a7653b5c02cdc0
[ "Apache-2.0" ]
6
2019-04-08T09:59:53.000Z
2021-09-21T20:18:13.000Z
ahds/tests/test_ahds.py
paulkorir/ahds
813dd745f76165893d1dd43477a7653b5c02cdc0
[ "Apache-2.0" ]
1
2019-11-20T07:45:04.000Z
2019-11-20T07:45:04.000Z
# -*- coding: utf-8 -*- from __future__ import print_function import os import re import sys import ahds from . import Py23FixTestCase, TEST_DATA_PATH from ..ahds import parse_args, get_debug, get_literal, get_paths, set_file_and_paths, get_amira_file from ..core import _str, _print import numpy def _parse_with_shlex(cmd): import shlex import sys sys.argv = shlex.split(cmd) args = parse_args() return args class TestArgs(Py23FixTestCase): """Tests for the main ahds entry point options""" def test_file_only(self): """Test command with file only""" args = _parse_with_shlex("ahds file.am") self.assertFalse(args.debug) self.assertEqual(args.file, ['file.am']) self.assertFalse(args.literal) self.assertFalse(args.load_streams) def test_file_with_path(self): """Test command with file and path""" args = _parse_with_shlex("ahds file.am header.Parameters") self.assertFalse(args.debug) self.assertEqual(args.file, ['file.am', 'header.Parameters']) self.assertFalse(args.literal) self.assertFalse(args.load_streams) def test_debug(self): """Test debug option""" args = _parse_with_shlex("ahds -d file.am") self.assertTrue(args.debug) def test_literal(self): """Test literal option""" args = _parse_with_shlex("ahds -l file.am") self.assertTrue(args.literal) def test_load_streams(self): """Test load_streams option""" args = _parse_with_shlex("ahds -s file.am") self.assertTrue(args.load_streams) class TestMain(Py23FixTestCase): """Tests for the main ahds entry point main()""" @classmethod def setUpClass(cls): cls.af_fn = os.path.join(TEST_DATA_PATH, 'test12.am') def test_set_file_and_paths(self): """Test that we correctly extract file and one or more path""" # no paths args = _parse_with_shlex("ahds {}".format(self.af_fn)) f, p = set_file_and_paths(args) self.assertEqual(f, self.af_fn) self.assertEqual(p, None) # one path args = _parse_with_shlex("ahds {} path1".format(self.af_fn)) f, p = set_file_and_paths(args) self.assertEqual(f, self.af_fn) self.assertEqual(p, ['path1']) # two paths args = _parse_with_shlex("ahds {} path1 path2".format(self.af_fn)) f, p = set_file_and_paths(args) self.assertEqual(f, self.af_fn) self.assertEqual(p, ['path1', 'path2']) # three paths args = _parse_with_shlex("ahds {} path1 path2 path3".format(self.af_fn)) f, p = set_file_and_paths(args) self.assertEqual(f, self.af_fn) self.assertEqual(p, ['path1', 'path2', 'path3']) def test_get_amira_file(self): """Test that we can get the Amira (R) file""" args = _parse_with_shlex("ahds -d {}".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) self.assertIsInstance(af, ahds.AmiraFile) def test_get_debug(self): """Test that we can get debug info""" args = _parse_with_shlex("ahds -d {}".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_debug(af, args) self.assertIsInstance(string, _str) des = re.compile(r".*\'designation\'.*", re.S) com = re.compile(r".*\'comment\'.*", re.S) par = re.compile(r".*\'parameters\'.*", re.S) dat = re.compile(r".*\'data_definitions\'.*", re.S) des_m = des.match(string) self.assertIsNotNone(des_m) com_m = com.match(string) self.assertIsNotNone(com_m) par_m = par.match(string) self.assertIsNotNone(par_m) dat_m = dat.match(string) self.assertIsNotNone(dat_m) def test_get_literal(self): """Test that we can get literal header info""" args = _parse_with_shlex("ahds -l {}".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_literal(af, args) self.assertIsInstance(string, _str) am = re.compile(r".*AmiraMesh 3D BINARY.*", re.S) cd = re.compile(r".*CreationDate.*", re.S) de = re.compile(r".*define Lattice.*", re.S) par = re.compile(r".*Parameters.*", re.S) mat = re.compile(r".*Materials.*", re.S) am_m = am.match(string) self.assertIsNotNone(am_m) cd_m = cd.match(string) self.assertIsNotNone(cd_m) de_m = de.match(string) self.assertIsNotNone(de_m) par_m = par.match(string) self.assertIsNotNone(par_m) mat_m = mat.match(string) self.assertIsNotNone(mat_m) def test_get_paths_full(self): """Test that we can view the paths full""" args = _parse_with_shlex("ahds {}".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_paths(p, af) print(string, file=sys.stderr) self.assertIsInstance(string, _str) am = re.compile(r".*AmiraFile.*", re.S) m = re.compile(r".*meta.*", re.S) h = re.compile(r".*header.*", re.S) ds = re.compile(r".*data_streams.*", re.S) am_m = am.match(string) self.assertIsNotNone(am_m) m_m = m.match(string) self.assertIsNotNone(m_m) h_m = h.match(string) self.assertIsNotNone(h_m) ds_m = ds.match(string) self.assertIsNotNone(ds_m) def test_get_paths_meta(self): """Test that we can fiew partial paths""" args = _parse_with_shlex("ahds {} meta.streams_loaded".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_paths(p, af) print(string, file=sys.stderr) self.assertIsInstance(string, _str) am = re.compile(r".*AmiraFile.*", re.S) m = re.compile(r".*streams_loaded.*", re.S) am_m = am.match(string) self.assertIsNone(am_m) m_m = m.match(string) self.assertIsNotNone(m_m) def test_get_paths_header(self): """Test that we can fiew partial paths""" args = _parse_with_shlex("ahds {} header.Parameters.Materials".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_paths(p, af) self.assertIsInstance(string, _str) am = re.compile(r".*AmiraFile.*", re.S) m = re.compile(r".*Inside.*", re.S) am_m = am.match(string) self.assertIsNone(am_m) m_m = m.match(string) self.assertIsNotNone(m_m) def test_get_paths_data_streams(self): """Test that we can fiew partial paths""" args = _parse_with_shlex("ahds {} data_streams".format(self.af_fn)) f, p = set_file_and_paths(args) af = get_amira_file(f, args) string = get_paths(p, af) self.assertIsInstance(string, _str) am = re.compile(r".*AmiraFile.*", re.S) m = re.compile(r".*data_streams.*", re.S) am_m = am.match(string) self.assertIsNone(am_m) m_m = m.match(string) self.assertIsNotNone(m_m) # def test_data(self): # """Test that the data is correctly oriented""" # af = ahds.AmiraFile(os.path.join(TEST_DATA_PATH, 'EM04226_2_U19_Cropped_YZ_binned.labels.am')) # af = ahds.AmiraFile(os.path.join(TEST_DATA_PATH, 'testscalar.am')) # _print(af) # _print(af.data_streams.Labels.data.shape) # _print(af.header.Lattice.length) # import h5py # with h5py.File('EM04226_2_U19_Cropped_YZ_binned.labels.h5', 'w') as h: # h['/data'] = af.data_streams.Labels.data # import mrcfile # _print(af.data_streams.Labels.data.dtype) # _print('unique values: ', numpy.unique(af.data_streams.Labels.data.astype(numpy.float32))) # with mrcfile.new('EM04226_2_U19_Cropped_YZ_binned.labels.mrc', overwrite=True) as m: # m.set_data(af.data_streams.Labels.data.astype(numpy.float32)) # m.voxel_size = (9.0, 9.0, 15.0) # m.update_header_from_data()
37.527273
104
0.616037
4d1b39d2802f9be6877c954692d8a32b5ba76060
7,463
py
Python
src/spodernet/spodernet/preprocessing/vocab.py
JD-AI-Research-Silicon-Valley/SACN
dba00fec88dd20b68a08f85c129ea878d56d0375
[ "MIT" ]
96
2018-11-13T02:40:07.000Z
2022-03-10T02:05:20.000Z
SACN/src/spodernet/spodernet/preprocessing/vocab.py
zouguojian/KGEF
ffde1085339c0f304cf269cf7b57ae593ecbf8bf
[ "MIT" ]
22
2018-11-16T12:35:41.000Z
2022-01-09T10:35:45.000Z
SACN/src/spodernet/spodernet/preprocessing/vocab.py
zouguojian/KGEF
ffde1085339c0f304cf269cf7b57ae593ecbf8bf
[ "MIT" ]
31
2019-01-21T17:52:04.000Z
2022-02-25T07:10:39.000Z
from collections import Counter import numpy as np import os import time import datetime import pickle import urllib import src.bashmagic.bashmagic import time import json from src.spodernet.spodernet.utils.util import get_data_path, save_data, xavier_uniform_weight from os.path import join from src.spodernet.spodernet.utils.util import Logger log = Logger('vocab.py.txt') '''This models the vocabulary and token embeddings''' class Vocab(object): '''Class that manages work/char embeddings''' def __init__(self, path, vocab = Counter(), labels = {}): '''Constructor. Args: vocab: Counter object with vocabulary. ''' self.index = None token2idx = {} idx2token = {} self.label2idx = {} self.idx2label = {} self.glove_cache = {} for i, item in enumerate(vocab.items()): token2idx[item[0]] = i+1 idx2token[i+1] = item[0] for idx in labels: self.label2idx[labels[idx]] = idx self.idx2label[idx] = labels[idx] # out of vocabulary token token2idx['OOV'] = int(0) idx2token[int(0)] = 'OOV' # empty = 0 token2idx[''] = int(1) idx2token[int(1)] = '' self.token2idx = token2idx self.idx2token = idx2token self.path = path if len(idx2token.keys()) > 0: self.next_idx = int(np.max(list(idx2token.keys())) + 1) else: self.next_idx = int(2) if len(self.idx2label.keys()) > 0: self.next_label_2dx = int(int(np.max(self.idx2label.keys())) + 1) else: self.next_label_idx = int(0) @property def num_token(self): return len(self.token2idx) @property def num_labels(self): return len(self.label2idx) def add_token(self, token): if token not in self.token2idx: self.token2idx[token] = self.next_idx self.idx2token[self.next_idx] = token self.next_idx += 1 def add_label(self, label): if label not in self.label2idx: self.label2idx[label] = self.next_label_idx self.idx2label[self.next_label_idx] = label self.next_label_idx += 1 def get_idx(self, word): '''Gets the idx if it exists, otherwise returns -1.''' if word in self.token2idx: return self.token2idx[word] else: return self.token2idx['OOV'] def get_idx_label(self, label): '''Gets the idx of the label''' return self.label2idx[label] def get_word(self, idx): '''Gets the word if it exists, otherwise returns OOV.''' if idx in self.idx2token: return self.idx2token[idx] else: return self.idx2token[0] def save_to_disk(self, name=''): log.info('Saving vocab to: {0}'.format(self.path)) pickle.dump([self.token2idx, self.idx2token, self.label2idx, self.idx2label], open(self.path + name, 'wb')) def load_from_disk(self, name=''): if not os.path.exists(self.path + name): return False timestamp = time.ctime(os.path.getmtime(self.path + name)) timestamp = datetime.datetime.strptime(timestamp, '%a %b %d %H:%M:%S %Y') age_in_hours = (datetime.datetime.now() - timestamp).seconds/60./60. log.info('Loading vocab from: {0}'.format(self.path + name)) self.token2idx, self.idx2token, self.label2idx, self.idx2label = pickle.load(open(self.path, 'rb')) if age_in_hours > 12: log.info('Vocabulary outdated: {0}'.format(self.path + name)) return False else: return True def download_glove(self): if not os.path.exists(join(get_data_path(), 'glove')): log.info('Glove data is missing, dowloading data now...') os.mkdir(join(get_data_path(), 'glove')) bashmagic.wget("http://nlp.stanford.edu/data/glove.6B.zip", join(get_data_path(),'glove')) bashmagic.unzip(join(get_data_path(), 'glove', 'glove.6B.zip'), join(get_data_path(), 'glove')) def prepare_glove(self, dimension): if self.index is not None: return if not os.path.exists(join(get_data_path(), 'glove', 'index_50.p')): dims = [50, 100, 200, 300] base_filename = 'glove.6B.{0}d.txt' paths = [join(get_data_path(), 'glove', base_filename.format(dim)) for dim in dims] for path, dim in zip(paths, dims): index = {} index = {'PATH' : path} with open(path, 'rb') as f: log.info('Building index for {0}', path) while True: prev_pos = f.tell() line = f.readline().decode('utf-8') if line == '': break next_pos = f.tell() data = line.strip().split(' ') token = data[0] index[token] = (prev_pos, next_pos) log.info('Saving glove index...') json.dump(index, open(join(get_data_path(), 'glove', 'index_{0}.p'.format(dim)), 'w')) log.info('Loading glove index...') self.index = json.load(open(join(get_data_path(), 'glove', 'index_{0}.p'.format(dimension)), 'r')) def load_matrix(self, dim): log.info('Initializing glove matrix...') X = xavier_uniform_weight(len(self.token2idx), dim) log.info('Loading vectors into glove matrix with dimension: {0}', X.shape) pretrained_count = 0 n = len(self.token2idx)-2 for i, (token, idx) in enumerate(self.token2idx.items()): if i % 10000 == 0: print(i) vec = self.get_glove_list(token, dim) if vec is not None: X[idx] = vec pretrained_count += 1 log.info('Filled matrix with {0} pretrained embeddings and {1} xavier uniform initialized embeddings.', pretrained_count, n-pretrained_count) return X def get_glove_vector(self, token, dimension=300): if token in self.glove_cache: return self.glove_cache[token] vec = self.get_glove_list(token, dimension) if vec is not None: arr = np.array(vec, dtype=np.float32) self.glove_cache[token] = arr return arr else: return None def get_glove_list(self, token, dimension=300): assert dimension in [50, 100, 200, 300], 'Dimension not supported! Only dimension 50, 100, 200, and 300 are supported!' self.download_glove() self.prepare_glove(dimension) vec = None if token in self.index: p = self.index['PATH'] with open(p, 'rb') as f: start, end = self.index[token] f.seek(start) line = f.read(end-start).decode('utf-8') data = line.strip().split(' ') vec = data[1:] return vec def exists_in_glove(self, token, dimension=300): self.download_glove() self.prepare_glove(dimension) return token in self.index def get_glove_matrix(self, dimension): assert dimension in [50, 100, 200, 300], 'Dimension not supported! Only dimension 50, 100, 200, and 300 are supported!' self.download_glove() return self.load_matrix(dimension)
36.583333
149
0.575774
b1202101132aec237923723e17cb60daf096707b
16,235
py
Python
plots/psd_analysis.py
SAKEverse/sake-plot
a08973222109981b36d204a754d0bf34d95be192
[ "Apache-2.0" ]
null
null
null
plots/psd_analysis.py
SAKEverse/sake-plot
a08973222109981b36d204a754d0bf34d95be192
[ "Apache-2.0" ]
1
2021-11-30T16:21:18.000Z
2021-11-30T16:21:18.000Z
plots/psd_analysis.py
SAKEverse/sake-plot
a08973222109981b36d204a754d0bf34d95be192
[ "Apache-2.0" ]
null
null
null
########## ------------------------------- IMPORTS ------------------------ ########## import numpy as np import pandas as pd from scipy.stats import gaussian_kde from beartype import beartype from typing import TypeVar PandasDf = TypeVar('pandas.core.frame.DataFrame') from processing.stft import get_freq_index ########## ---------------------------------------------------------------- ########## @beartype def get_power_area(pmat:np.ndarray, freq_vec:np.ndarray, freqs:np.ndarray) -> np.ndarray: """ Get power area across frequencies. Parameters ---------- pmat : np.ndarray, 2D array containing power values rows = frequency bins and cols = time bins freq_vec : np.ndarray, vector with real frequency values freqs : np.ndarray, 2D array with frequencies, rows = different frequency ranges, colums = [start, stop] Returns ------- powers : 1D np.array, len = frequency ranges """ # get frequency index freqs = freqs.reshape([-1, 2]) # reshape to 2D freq_idx = get_freq_index(freq_vec, freqs) # init empty array to store powers powers = np.zeros(freq_idx.shape[0]) for i in range(freq_idx.shape[0]): powers[i] = np.mean(pmat[freq_idx[i,0]:freq_idx[i,1],:]) return powers @beartype def get_power_ratio(pmat:np.ndarray, freq_vec:np.ndarray, freqs:np.ndarray) -> np.ndarray: """ Get power ratio across frequencies. Parameters ---------- pmat : np.ndarray, 2D array containing power values rows = frequency bins and cols = time bins freq_vec : np.ndarray, vector with real frequency values freqs : np.ndarray, 3D array with frequencies, 1d = frequency ratios, 2d [lower to upper freq range], 3d = [start, stop] Returns ------- powers : 1D np.array, len = frequency ranges """ # get frequency index freqs = freqs.reshape([-1,2,2]) # reshape to 3D freq_idx = get_freq_index(freq_vec, freqs) # init empty array to store powers powers = np.zeros(freq_idx.shape[0]) for i in range(freq_idx.shape[0]): powers[i] = np.divide(np.mean(pmat[freq_idx[i,0,0]:freq_idx[i,0,1],:]), np.mean(pmat[freq_idx[i,1,0]:freq_idx[i,1,1],:])) return powers def melted_power_area(index_df:PandasDf, power_df:PandasDf, freqs:list, selected_categories:list): """ Get power area and melt dataframe for seaborn plotting. Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df freqs : list, 2D list with frequency ranges for extraction of power area selected_categories : list, columns that will be included in the melted Returns ------- df : PandasDf, melted df with power area and categories """ # convert to numpy array freqs = np.array(freqs) # create frequency column names freq_columns = [] for i in range(freqs.shape[0]): freq_columns.append(str(freqs[i,0]) + ' - ' + str(freqs[i,1]) + ' Hz') # create array for storage power_array = np.empty((len(index_df), freqs.shape[0])) for i in range(len(index_df)): # iterate over dataframe # get power across frequencies power_array[i,:] = get_power_area(power_df['pmat'][i], power_df['freq'][i], freqs) # concatenate to array index_df = pd.concat([index_df, pd.DataFrame(data = power_array, columns = freq_columns)], axis=1) # set file id as index index_df['id'] = index_df['animal_id'].astype(str) + index_df['file_id'].astype(str) index_df.set_index('id', inplace = True) # melt dataframe for seaborn plotting df = pd.melt(index_df, id_vars = selected_categories, value_vars = freq_columns, var_name = 'freq', value_name = 'power_area', ignore_index = False) return df def melted_power_ratio(index_df:PandasDf, power_df:PandasDf, freqs:list, selected_categories:list): """ Get power ratio and melt dataframe for seaborn plotting. Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df freqs : list, 2D list with frequency ranges for extraction of power area selected_categories : list, columns that will be included in the melted Returns ------- df : PandasDf, melted df with power area and categories """ # convert to numpy array freqs = np.array(freqs) # create frequency column names freq_columns = [] for i in range(freqs.shape[0]): freq_columns.append(str(freqs[i,0]) + ' - ' + str(freqs[i,1]) + ' Hz') # create array for storage power_array = np.empty((len(index_df), freqs.shape[0])) for i in range(len(index_df)): # iterate over dataframe # get power across frequencies power_array[i,:] = get_power_ratio(power_df['pmat'][i], power_df['freq'][i], freqs) # concatenate to array index_df = pd.concat([index_df, pd.DataFrame(data = power_array, columns = freq_columns)], axis=1) # set file id as index index_df['id'] = index_df['animal_id'].astype(str) + index_df['file_id'].astype(str) index_df.set_index('id', inplace = True) # melt dataframe for seaborn plotting df = pd.melt(index_df, id_vars = selected_categories, value_vars = freq_columns, var_name = 'freq', value_name = 'power_ratio', ignore_index=False) return df def melted_psds(index_df:PandasDf, power_df:PandasDf, freq_range:list, selected_categories:list): ## don't drop file index """ Get PSD and melt dataframe for seaborn plotting. Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df freqs : list, 2D list with frequency ranges for extraction of power area selected_categories : list, columns that will be included in the melted Returns ------- df : PandasDf, melted df with psd and categories """ # create arrays for storage power_array = np.array([]) freq_array = np.array([]) repeat_array = np.zeros(len(index_df)) # get selected columns index_df['id'] = index_df['animal_id'].astype(str) + index_df['file_id'].astype(str) df = index_df[['id'] + selected_categories] for i in range(len(index_df)): # iterate over dataframe # unpack frequency and power freq = power_df['freq'][i] power = power_df['pmat'][i] # get desired frequency index f_idx = get_freq_index(freq, freq_range) freq = freq[f_idx[0]:f_idx[1]+1] power = np.mean(power[f_idx[0]:f_idx[1]+1,:], axis =1) # append to array power_array = np.concatenate((power_array, power)) freq_array = np.concatenate((freq_array, freq )) # get length repeat_array[i] = freq.shape[0] # repeat array df = df.reindex(df.index.repeat(repeat_array)) # set file id as index df.set_index('id', inplace = True) # append to dataframe df['freq'] = freq_array df['power'] = power_array return df def melted_power_dist(index_df:PandasDf, power_df:PandasDf, freq_range:list, selected_categories:list): ## don't drop file index """ Get Power distribution and melt dataframe for seaborn plotting. Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df freqs : list, 2D list with frequency ranges for extraction of power area selected_categories : list, columns that will be included in the melted Returns ------- df : PandasDf, melted df with pdf and categories """ # create arrays for storage power_array = np.array([]) density_array = np.array([]) threshold_array = np.array([]) repeat_array = np.zeros(len(index_df)) # get selected columns index_df['id'] = index_df['animal_id'].astype(str) + index_df['file_id'].astype(str) df = index_df[['id'] + selected_categories] # get all power areas for i in range(len(index_df)): # iterate over dataframe # unpack frequency and power freq = power_df['freq'][i] power = power_df['pmat'][i] # get desired frequency index f_idx = get_freq_index(freq, freq_range) freq = freq[f_idx[0]:f_idx[1]+1] power = np.mean(power[f_idx[0]:f_idx[1]+1,:], axis = 0) power_df.at[i, 'pmat'] = power # append to array power_array = np.concatenate((power_array, power)) # get mean and sdev for normalization avg = np.mean(power_array) sdev = np.std(power_array) # define edges for z normalized data and preallocate power_array power_array = np.array([]) edges = np.linspace(-5, 5, 100) for i in range(len(index_df)): # normalize power = (power_df['pmat'][i] - avg )/ sdev # select power above threshold threshold = np.mean(power) + np.std(power) # get kde pdf = gaussian_kde(power, bw_method = 1).evaluate(edges) # append to array power_array = np.concatenate((power_array, edges)) density_array = np.concatenate((density_array, pdf)) threshold_array = np.concatenate((threshold_array, np.repeat(threshold, edges.shape[0]))) # get length repeat_array[i] = edges.shape[0] # repeat array df = df.reindex(df.index.repeat(repeat_array)) # set file id as index df.set_index('id', inplace = True) # append to dataframe df['threshold'] = threshold_array df['power'] = power_array df['density'] = density_array return df def norm_power(index_df, power_df, selection): """ Normalize power by PSDs of selected condition, drop non matching conditions Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df selection : List/Tuple, (column name, baseline group) Returns ------- index_df : PandasDf, with dropped indices where conditions are missing power_df : PandasDf, with dropped indices where conditions are missing """ unique_id = 'animal_id' category, group = selection # get number unique entries unique_groups = index_df[category].unique() unique_regions = index_df['brain_region'].unique() unique_ids = index_df[unique_id].unique() # iterate over brain regions for region in unique_regions: # iterate over unique ids for uid in unique_ids: # get matching idx matching_entries = index_df[(index_df[unique_id] == uid) & (index_df['brain_region'] == region)] # drop groups that are not complete if len(matching_entries) < len(unique_groups): power_df = power_df.drop(matching_entries.index, axis=0) index_df = index_df.drop(matching_entries.index, axis=0) else: # get baseline psd base_idx = matching_entries[matching_entries[category] == group].index[0] base_psd = np.mean(power_df.pmat[base_idx], axis=1) # divide matching groups by baseline psd for i in matching_entries.index: power_df.at[i, 'pmat'] = power_df['pmat'][i] / base_psd[:,None] return index_df.reset_index().drop(['index'], axis=1), power_df.reset_index().drop(['index'], axis=1) def norm_power_unpaired(index_df, power_df, selection): """ Normalize power by PSDs of selected condition, drop non matching conditions Parameters ---------- index_df : PandasDf, experiment index power_df : PandasDf, contains pmat and frequency vectors for every row of index_df selection : List/Tuple, (column name, baseline group) Returns ------- index_df : PandasDf, with dropped indices where conditions are missing power_df : PandasDf, with dropped indices where conditions are missing """ unique_id = 'animal_id' category, group = selection # get number unique entries unique_groups = index_df[category].unique() unique_regions = index_df['brain_region'].unique() unique_ids = index_df[unique_id].unique() # iterate over brain regions for region in unique_regions: # iterate over unique ids for uid in unique_ids: # get matching idx matching_entries = index_df[(index_df[unique_id] == uid) & (index_df['brain_region'] == region)] # drop groups that are not complete if (matching_entries[category] == group).sum() == 0: power_df = power_df.drop(matching_entries.index, axis=0) index_df = index_df.drop(matching_entries.index, axis=0) else: # get baseline psd base_idx = matching_entries[matching_entries[category] == group].index[0] base_psd = np.mean(power_df.pmat[base_idx], axis=1) # divide matching groups by baseline psd for i in matching_entries.index: power_df.at[i, 'pmat'] = power_df['pmat'][i] / base_psd[:,None] return index_df.reset_index().drop(['index'], axis=1), power_df.reset_index().drop(['index'], axis=1) def norm_mean_power(power_df): """ Normalize based on mean power. Parameters ---------- power_df : PandasDf, contains pmat and frequency vectors for every row of index_df Returns ------- power_df : PandasDf, contains pmat and frequency vectors for every row of index_df """ power_df['pmat'] = power_df['pmat'].apply(lambda pmat: pmat/np.mean(pmat)) return power_df if __name__ == '__main__': import os, yaml from load_index import load_index # from facet_plot_gui import GridGraph ### ---------------------- USER INPUT -------------------------------- ### ## define path and conditions for filtering parent_folder = r'\\SUPERCOMPUTER2\Shared\acute_allo' ## define frequencies of interest with open('settings.yaml', 'r') as file: settings = yaml.load(file, Loader=yaml.FullLoader) ### ---------------------------------------------------------------- #### ## load data frame index_df = load_index(os.path.join(parent_folder, 'index.csv')) # get power # _, power_df = get_pmat(index_df, settings) # power_df.to_pickle(os.path.join(parent_folder, 'power_mat.pickle')) # power_df = pd.read_pickle(os.path.join(parent_folder, 'power_mat_verified.pickle')) # normalize to baseline # index_df, power_df = norm_power(index_df, power_df, ['treatment', 'baseline1']) # df = melted_power_dist(index_df, power_df, [30,70], ['sex', 'treatment', 'brain_region']) # df = melted_power_ratio(index_df, power_df, settings['freq_ratios'], ['sex', 'treatment', 'brain_region']) # # import seaborn as sns # get melted power area # data = melted_power_area(index_df, power_df, settings['freq_ranges'], ['sex', 'treatment', 'brain_region']) # GridGraph(parent_folder, 'test.csv', data).draw_graph('box') # sns.catplot(data = df, x = 'freq', y = 'power_area', hue = 'treatment', col = 'sex', row = 'brain_region', kind = 'box') # # get melted psd # data = melted_psds(index_df, power_df, [1, 120], ['sex', 'treatment', 'brain_region']) # GridGraph(parent_folder, 'test.csv', data).draw_psd() # df.to_csv('melted_psd.csv',index=True) # path = r'C:\Users\panton01\Desktop\pydsp_analysis' # filename = 'power_area_df.csv' # df.to_csv(os.path.join(path, filename), index = False) # graph = GridGraph(path, filename) # graph.draw_graph('violin')
33.964435
131
0.623899
edc2dd8eb3b8ed3ce10e7a168444951ca62e1b14
13,431
py
Python
tools/fidl/difl/comparator.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
210
2019-02-05T12:45:09.000Z
2022-03-28T07:59:06.000Z
tools/fidl/difl/comparator.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
56
2021-06-03T03:16:25.000Z
2022-03-20T01:07:44.000Z
tools/fidl/difl/comparator.py
wwjiang007/fuchsia-1
0db66b52b5bcd3e27c8b8c2163925309e8522f94
[ "BSD-2-Clause" ]
73
2019-03-06T18:55:23.000Z
2022-03-26T12:04:51.000Z
# Copyright 2019 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from difl.ir import * import typing __all__ = ['Comparator'] class Comparator: def __init__(self): self.identifier_shapes_match: typing.Dict[str, bool] = {} self.identifier_constraints_match: typing.Dict[str, bool] = {} # notice cycles when comparing shapes & contraints self.shape_match_stack: typing.List[str] = [] self.constraint_match_stack: typing.List[str] = [] def shapes_match(self, before: Type, after: Type) -> bool: ''' Compares two types for shape ''' if isinstance(before, IdentifierType) and \ isinstance(after, IdentifierType) and \ before.identifier == after.identifier and \ not before.is_nullable and not before.is_nullable: if before.identifier not in self.identifier_shapes_match: assert before.identifier not in self.shape_match_stack self.shape_match_stack.append(before.identifier) self.identifier_shapes_match[ before.identifier] = self._shapes_match(before, after) assert before.identifier == self.shape_match_stack.pop() return self.identifier_shapes_match[before.identifier] return self._shapes_match(before, after) def _shapes_match(self, before: Type, after: Type) -> bool: # identical types are identical if before == after and not isinstance(before, IdentifierType): return True # different sized types are incompatible if before.inline_size != after.inline_size: return False ########## Handles, Protocols and Requests # handles are compatible with handles if isinstance(before, (ProtocolIdentifierType, RequestType, HandleType)) and \ isinstance(after, (ProtocolIdentifierType, RequestType, HandleType)): return True ########## Primitives # compare primitives if isinstance(before, PrimitiveType) and \ isinstance(after, PrimitiveType): return before.inline_size == after.inline_size and before.is_float == after.is_float ########## Enums and Bits # compare enums, bits and integer primitives if isinstance(before, (PrimitiveType, EnumIdentifierType, BitsIdentifierType)) and \ isinstance(after, (PrimitiveType, EnumIdentifierType, BitsIdentifierType)): # get the primitive or underlying type b_prim = before if isinstance(before, PrimitiveType) else before.primitive a_prim = after if isinstance(after, PrimitiveType) else after.primitive assert b_prim.inline_size == a_prim.inline_size return b_prim.is_float == a_prim.is_float ########## Arrays if isinstance(before, ArrayType) != isinstance(after, ArrayType): # arrays and not-arrays are incompatible return False if isinstance(before, ArrayType) and isinstance(after, ArrayType): if before.count != after.count: # changing the size is incompatible return False # compatibility is based on the member types return self.shapes_match(before.element_type, after.element_type) ########## Vectors and Strings if isinstance(before, (VectorType, StringType)) and \ isinstance(after, (VectorType, StringType)): return self.shapes_match(before.element_type, after.element_type) ########## Identifiers if isinstance(before, IdentifierType) and \ isinstance(after, IdentifierType): if type(before) != type(after): # identifier types changing is a different shape return False if before.identifier != after.identifier: # TODO: deal with renames? return False if isinstance(before, (XUnionIdentifierType, TableIdentifierType)): # never a shape change return True if before.is_nullable or after.is_nullable: if before.is_nullable != after.is_nullable: if isinstance(before, XUnionIdentifierType): # Nullability is soft change for xunions return True else: # No other types should have nullability assert isinstance( before, (StructIdentifierType, UnionIdentifierType)) # Nullability changes layout for structs and unions return False else: # both nullable, no layout change return True # both not-nullable if isinstance(before, StructIdentifierType) and \ isinstance(after, StructIdentifierType): # TODO: support shape-compatible struct member changes here? like joins & splits? b_members = before.declaration.members a_members = after.declaration.members if len(b_members) != len(a_members): return False if len(b_members) == 0: # all empty structs are the same return True return all( self.shapes_match(b.type, a.type) for b, a in zip(b_members, a_members)) if isinstance(before, UnionIdentifierType) and \ isinstance(after, UnionIdentifierType): b_union_members = before.declaration.members a_union_members = after.declaration.members if len(b_union_members) != len(a_union_members): return False return all( self.shapes_match(b.type, a.type) for b, a in zip(b_union_members, a_union_members)) raise NotImplementedError( "Don't know how to compare shape for %r (%r) and %r (%r)" % (type(before), before, type(after), after)) def constraints_match(self, before: Type, after: Type) -> bool: ''' Compares two types for constraints ''' if isinstance(before, IdentifierType) and \ isinstance(after, IdentifierType) and \ before.identifier == after.identifier: if before.identifier not in self.identifier_constraints_match: if before.identifier in self.constraint_match_stack: # hit a cycle return True self.constraint_match_stack.append(before.identifier) self.identifier_constraints_match[before.identifier] = \ self._constraints_match(before, after) assert before.identifier == self.constraint_match_stack.pop() return self.identifier_constraints_match[before.identifier] return self._constraints_match(before, after) def _constraints_match(self, before: Type, after: Type) -> bool: if not self.shapes_match(before, after): # shape is the ultimate constraint return False if type(before) != type(after): # changing the type of the type breaks constraints return False ########## Primitives if isinstance(before, PrimitiveType) and \ isinstance(after, PrimitiveType): return before.subtype == after.subtype ########## Strings if isinstance(before, StringType) and isinstance(after, StringType): return before.limit == after.limit and \ before.is_nullable == after.is_nullable ########## Vectors if isinstance(before, VectorType) and isinstance(after, VectorType): return before.limit == after.limit and \ before.is_nullable == after.is_nullable and \ self.constraints_match(before.element_type, after.element_type) ########## Arrays if isinstance(before, ArrayType) and isinstance(after, ArrayType): assert before.count == after.count return self.constraints_match(before.element_type, after.element_type) ########## Handles if isinstance(before, HandleType) and isinstance(after, HandleType): return before.handle_type == after.handle_type and \ before.is_nullable == after.is_nullable if isinstance(before, NullableType) and \ isinstance(after, NullableType): # nullability changes are constraints changes if before.is_nullable != after.is_nullable: return False if isinstance(before, RequestType) and isinstance(after, RequestType): return before.protocol == after.protocol if isinstance(before, ProtocolIdentifierType) and \ isinstance(after, ProtocolIdentifierType): return before.identifier == after.identifier if isinstance(before, StructIdentifierType) and \ isinstance(after, StructIdentifierType): b_struct_members = before.declaration.members a_struct_members = after.declaration.members assert len(b_struct_members) == len(a_struct_members) if len(b_struct_members) == 0: # all empty structs are the same return True return all( self.constraints_match(b.type, a.type) for b, a in zip(b_struct_members, a_struct_members)) if isinstance(before, TableIdentifierType) and \ isinstance(after, TableIdentifierType): b_table_members: typing.Dict[int, TableMember] = { m.ordinal: m for m in before.declaration.members } a_table_members: typing.Dict[int, TableMember] = { m.ordinal: m for m in after.declaration.members } for ordinal, b_member in b_table_members.items(): a_member = a_table_members.get(ordinal) if a_member is None: # leaving out an ordinal breaks constraints return False if b_member.reserved or a_member.reserved: # changing to/from reserved is fine continue if not self.constraints_match(b_member.type, a_member.type): return False # it's fine if more members were added to after return True if isinstance(before, UnionIdentifierType) and \ isinstance(after, UnionIdentifierType): b_union_members = before.declaration.members a_union_members = after.declaration.members if len(b_union_members) != len(a_union_members): return False # empty unions are illegal assert len(b_union_members) != 0 return all( self.constraints_match(b.type, a.type) for b, a in zip(b_union_members, a_union_members)) if isinstance(before, XUnionIdentifierType) and \ isinstance(after, XUnionIdentifierType): # Note: this is applying a strict-mode interpretation b_xunion_members = before.declaration.members a_xunion_members = after.declaration.members if len(b_xunion_members) != len(a_xunion_members): return False # empty xunions are illegal assert len(b_xunion_members) > 0 # members by ordinal b_members = {m.ordinal: m for m in b_xunion_members} a_members = {m.ordinal: m for m in a_xunion_members} # they both have the same set of ordinals if frozenset(b_members.keys()) != frozenset(a_members.keys()): return False return all( self.constraints_match(b_members[o].type, a_members[o].type) for o in b_members.keys()) if isinstance(before, EnumIdentifierType) and \ isinstance(after, EnumIdentifierType): # this is the strict-mode interpretation of enums assert len(before.declaration.members) == \ len(after.declaration.members) before_member_values = set( m.value for m in before.declaration.members) after_member_values = set( m.value for m in after.declaration.members) return before_member_values == after_member_values if isinstance(before, BitsIdentifierType) and \ isinstance(after, BitsIdentifierType): # this is the strict-mode interpretation of bits return before.declaration.mask == after.declaration.mask raise NotImplementedError( "Don't know how to compare constraints for %r (%r) and %r (%r)" % (type(before), before, type(after), after))
44.77
97
0.589755
9223b4eb6e7bcc67d48886b46d7f3df0cd8c7ad6
44,952
py
Python
openmdao/jacobians/tests/test_jacobian.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
null
null
null
openmdao/jacobians/tests/test_jacobian.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
2
2021-06-10T15:29:27.000Z
2021-08-18T20:07:56.000Z
openmdao/jacobians/tests/test_jacobian.py
friedenhe/OpenMDAO
db1d7e22a8bf9f66afa82ec3544b7244d5545f6d
[ "Apache-2.0" ]
null
null
null
""" Test the Jacobian objects.""" import itertools import sys import unittest import numpy as np from scipy.sparse import coo_matrix, csr_matrix from openmdao.api import IndepVarComp, Group, Problem, \ ExplicitComponent, ImplicitComponent, ExecComp, \ NewtonSolver, ScipyKrylov, \ LinearBlockGS, DirectSolver from openmdao.utils.assert_utils import assert_near_equal, assert_check_partials from openmdao.utils.array_utils import rand_sparsity from openmdao.test_suite.components.paraboloid import Paraboloid from openmdao.api import ScipyOptimizeDriver try: from parameterized import parameterized except ImportError: from openmdao.utils.assert_utils import SkipParameterized as parameterized class MyExplicitComp(ExplicitComponent): def __init__(self, jac_type): super().__init__() self._jac_type = jac_type def setup(self): self.add_input('x', val=np.zeros(2)) self.add_input('y', val=np.zeros(2)) self.add_output('f', val=np.zeros(2)) val = self._jac_type(np.array([[1., 1.], [1., 1.]])) if isinstance(val, list): self.declare_partials('f', ['x','y'], rows=val[1], cols=val[2], val=val[0]) else: self.declare_partials('f', ['x','y'], val=val) def compute(self, inputs, outputs): x = inputs['x'] y = inputs['y'] outputs['f'][0] = (x[0]-3.0)**2 + x[0]*x[1] + (x[1]+4.0)**2 - 3.0 + \ y[0]*17. - y[0]*y[1] + 2.*y[1] outputs['f'][1] = outputs['f'][0]*3.0 def compute_partials(self, inputs, partials): x = inputs['x'] y = inputs['y'] jac1 = self._jac_type(np.array([ [2.0*x[0] - 6.0 + x[1], 2.0*x[1] + 8.0 + x[0]], [(2.0*x[0] - 6.0 + x[1])*3., (2.0*x[1] + 8.0 + x[0])*3.] ])) if isinstance(jac1, list): jac1 = jac1[0] partials['f', 'x'] = jac1 jac2 = self._jac_type(np.array([ [17.-y[1], 2.-y[0]], [(17.-y[1])*3., (2.-y[0])*3.] ])) if isinstance(jac2, list): jac2 = jac2[0] partials['f', 'y'] = jac2 class MyExplicitComp2(ExplicitComponent): def __init__(self, jac_type): super().__init__() self._jac_type = jac_type def setup(self): self.add_input('w', val=np.zeros(3)) self.add_input('z', val=0.0) self.add_output('f', val=0.0) val = self._jac_type(np.array([[7.]])) if isinstance(val, list): self.declare_partials('f', 'z', rows=val[1], cols=val[2], val=val[0]) else: self.declare_partials('f', 'z', val=val) val = self._jac_type(np.array([[1., 1., 1.]])) if isinstance(val, list): self.declare_partials('f', 'w', rows=val[1], cols=val[2], val=val[0]) else: self.declare_partials('f', 'w', val=val) def compute(self, inputs, outputs): w = inputs['w'] z = inputs['z'] outputs['f'] = (w[0]-5.0)**2 + (w[1]+1.0)**2 + w[2]*6. + z*7. def compute_partials(self, inputs, partials): w = inputs['w'] z = inputs['z'] jac = self._jac_type(np.array([[ 2.0*w[0] - 10.0, 2.0*w[1] + 2.0, 6. ]])) if isinstance(jac, list): jac = jac[0] partials['f', 'w'] = jac class ExplicitSetItemComp(ExplicitComponent): def __init__(self, dtype, value, shape, constructor): self._dtype = dtype self._shape = shape self._value = value self._constructor = constructor super().__init__() def setup(self): if self._shape == 'scalar': in_val = 1 out_val = 1 elif self._shape == '1D_array': in_val = np.array([1]) out_val = np.array([1, 2, 3, 4, 5]) elif self._shape == '2D_array': in_val = np.array([1, 2, 3]) out_val = np.array([1, 2, 3]) if self._dtype == 'int': scale = 1 elif self._dtype == 'float': scale = 1. elif self._dtype == 'complex': scale = 1j self.add_input('in', val=in_val*scale) self.add_output('out', val=out_val*scale) self.declare_partials(of='*', wrt='*') def compute_partials(self, inputs, partials): partials['out', 'in'] = self._constructor(self._value) class SimpleCompWithPrintPartials(ExplicitComponent): def setup(self): self.add_input('x', val=0.0) self.add_input('y', val=0.0) self.add_output('f_xy', val=0.0, upper=1.0) self.declare_partials(of='*', wrt='*') self.count = 0 self.partials_name_pairs = [] self.partials_values = [] def compute(self, inputs, outputs): x = inputs['x'] y = inputs['y'] outputs['f_xy'] = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0 def compute_partials(self, inputs, partials): x = inputs['x'] y = inputs['y'] partials['f_xy', 'x'] = 2.0*x - 6.0 + y partials['f_xy', 'y'] = 2.0*y + 8.0 + x if self.count < 1: # Only want to save these this once for the test for k in partials: self.partials_name_pairs.append(k) for k, v in partials.items(): self.partials_values.append((k,v)) self.count += 1 def arr2list(arr): """Convert a numpy array to a 'sparse' list.""" data = [] rows = [] cols = [] for row in range(arr.shape[0]): for col in range(arr.shape[1]): rows.append(row) cols.append(col) data.append(arr[row, col]) return [np.array(data), np.array(rows), np.array(cols)] def arr2revlist(arr): """Convert a numpy array to a 'sparse' list in reverse order.""" lst = arr2list(arr) return [lst[0][::-1], lst[1][::-1], lst[2][::-1]] def inverted_coo(arr): """Convert an ordered coo matrix into one with columns in reverse order so we can test unsorted coo matrices. """ shape = arr.shape arr = coo_matrix(arr) return coo_matrix((arr.data[::-1], (arr.row[::-1], arr.col[::-1])), shape=shape) def inverted_csr(arr): """Convert an ordered coo matrix into a csr with columns in reverse order so we can test unsorted csr matrices. """ return inverted_coo(arr).tocsr() def _test_func_name(func, num, param): args = [] for p in param.args: try: arg = p.__name__ except: arg = str(p) args.append(arg) return 'test_jacobian_src_indices_' + '_'.join(args) class TestJacobian(unittest.TestCase): @parameterized.expand(itertools.product( ['dense', 'csc'], [np.array, coo_matrix, csr_matrix, inverted_coo, inverted_csr, arr2list, arr2revlist], [False, True], # not nested, nested [0, 1], # extra calls to linearize ), name_func=_test_func_name ) def test_src_indices(self, assembled_jac, comp_jac_class, nested, lincalls): self._setup_model(assembled_jac, comp_jac_class, nested, lincalls) # if we multiply our jacobian (at x,y = ones) by our work vec of 1's, # we get fwd_check fwd_check = np.array([-1.0, -1.0, -1.0, -1.0, -1.0, 24., 74., 8.]) # if we multiply our jacobian's transpose by our work vec of 1's, # we get rev_check rev_check = np.array([35., 5., -9., 63., 3., -1., 6., -1.]) self._check_fwd(self.prob, fwd_check) # to catch issues with constant subjacobians, repeatedly call linearize for i in range(lincalls): self.prob.model.run_linearize() self._check_fwd(self.prob, fwd_check) self._check_rev(self.prob, rev_check) # Make sure that checking jacobian works for sparse subjacs. if comp_jac_class in [coo_matrix, csr_matrix, inverted_coo, inverted_csr]: partials = self.prob.check_partials(out_stream=None) assert_check_partials(partials, atol=1e-5, rtol=1e-5) def _setup_model(self, assembled_jac, comp_jac_class, nested, lincalls): self.prob = prob = Problem() if nested: top = prob.model.add_subsystem('G1', Group()) else: top = prob.model indep = top.add_subsystem('indep', IndepVarComp()) indep.add_output('a', val=np.ones(3)) indep.add_output('b', val=np.ones(2)) top.add_subsystem('C1', MyExplicitComp(comp_jac_class)) top.add_subsystem('C2', MyExplicitComp2(comp_jac_class)) top.connect('indep.a', 'C1.x', src_indices=[2,0]) top.connect('indep.b', 'C1.y') top.connect('indep.a', 'C2.w', src_indices=[0,2,1]) top.connect('C1.f', 'C2.z', src_indices=[1]) top.nonlinear_solver = NewtonSolver(solve_subsystems=False) top.nonlinear_solver.linear_solver = ScipyKrylov(maxiter=100) top.linear_solver = ScipyKrylov( maxiter=200, atol=1e-10, rtol=1e-10, assemble_jac=True) top.options['assembled_jac_type'] = assembled_jac prob.set_solver_print(level=0) prob.setup() prob.run_model() def _check_fwd(self, prob, check_vec): d_inputs, d_outputs, d_residuals = prob.model.get_linear_vectors() work = np.ones(d_outputs._data.size) # fwd apply_linear test d_outputs.set_val(1.0) prob.model.run_apply_linear('fwd') d_residuals.set_val(d_residuals.asarray() - check_vec) self.assertAlmostEqual(d_residuals.get_norm(), 0) # fwd solve_linear test d_outputs.set_val(0.0) d_residuals.set_val(check_vec) prob.model.run_solve_linear('fwd') d_outputs -= work self.assertAlmostEqual(d_outputs.get_norm(), 0, delta=1e-6) def _check_rev(self, prob, check_vec): d_inputs, d_outputs, d_residuals = prob.model.get_linear_vectors() work = np.ones(d_outputs._data.size) # rev apply_linear test d_residuals.set_val(1.0) prob.model.run_apply_linear('rev') d_outputs.set_val(d_outputs.asarray() - check_vec) self.assertAlmostEqual(d_outputs.get_norm(), 0) # rev solve_linear test d_residuals.set_val(0.0) d_outputs.set_val(check_vec) prob.model.run_solve_linear('rev') d_residuals -= work self.assertAlmostEqual(d_residuals.get_norm(), 0, delta=1e-6) dtypes = [ ('int', 1), ('float', 2.1), # ('complex', 3.2 + 1.1j), # TODO: enable when Vectors support complex entries. ] shapes = [ ('scalar', lambda x: x, (1, 1)), ('1D_array', lambda x: np.array([x + i for i in range(5)]), (5, 1)), ('2D_array', lambda x: np.array([[x + i + 2 * j for i in range(3)] for j in range(3)]), (3, 3)) ] @parameterized.expand(itertools.product(dtypes, shapes), name_func= lambda f, n, p: '_'.join(['test_jacobian_set_item', p.args[0][0], p.args[1][0]])) def test_jacobian_set_item(self, dtypes, shapes): shape, constructor, expected_shape = shapes dtype, value = dtypes prob = Problem() comp = ExplicitSetItemComp(dtype, value, shape, constructor) comp = prob.model.add_subsystem('C1', comp) prob.setup() prob.set_solver_print(level=0) prob.run_model() prob.model.run_apply_nonlinear() prob.model.run_linearize() expected = constructor(value) J = comp._jacobian jac_out = J['out', 'in'] self.assertEqual(len(jac_out.shape), 2) expected_dtype = np.promote_types(dtype, float) self.assertEqual(jac_out.dtype, expected_dtype) assert_near_equal(jac_out, np.atleast_2d(expected).reshape(expected_shape), 1e-15) def test_group_assembled_jac_with_ext_mat(self): class TwoSellarDis1(ExplicitComponent): """ Component containing Discipline 1 -- no derivatives version. """ def setup(self): self.add_input('z', val=np.zeros(2)) self.add_input('x', val=np.zeros(2)) self.add_input('y2', val=np.ones(2)) self.add_output('y1', val=np.ones(2)) self.declare_partials(of='*', wrt='*') def compute(self, inputs, outputs): z1 = inputs['z'][0] z2 = inputs['z'][1] x1 = inputs['x'] y2 = inputs['y2'] outputs['y1'][0] = z1**2 + z2 + x1[0] - 0.2*y2[0] outputs['y1'][1] = z1**2 + z2 + x1[0] - 0.2*y2[0] def compute_partials(self, inputs, partials): """ Jacobian for Sellar discipline 1. """ partials['y1', 'y2'] =np.array([[-0.2, 0.], [0., -0.2]]) partials['y1', 'z'] = np.array([[2.0 * inputs['z'][0], 1.0], [2.0 * inputs['z'][0], 1.0]]) partials['y1', 'x'] = np.eye(2) class TwoSellarDis2(ExplicitComponent): def setup(self): self.add_input('z', val=np.zeros(2)) self.add_input('y1', val=np.ones(2)) self.add_output('y2', val=np.ones(2)) self.declare_partials('*', '*', method='fd') def compute(self, inputs, outputs): z1 = inputs['z'][0] z2 = inputs['z'][1] y1 = inputs['y1'] # Note: this may cause some issues. However, y1 is constrained to be # above 3.16, so lets just let it converge, and the optimizer will # throw it out if y1[0].real < 0.0: y1[0] *= -1 if y1[1].real < 0.0: y1[1] *= -1 outputs['y2'][0] = y1[0]**.5 + z1 + z2 outputs['y2'][1] = y1[1]**.5 + z1 + z2 def compute_partials(self, inputs, J): y1 = inputs['y1'] if y1[0].real < 0.0: y1[0] *= -1 if y1[1].real < 0.0: y1[1] *= -1 J['y2', 'y1'] = np.array([[.5*y1[0]**-.5, 0.], [0., .5*y1[1]**-.5]]) J['y2', 'z'] = np.array([[1.0, 1.0], [1.0, 1.0]]) prob = Problem() model = prob.model model.add_subsystem('px', IndepVarComp('x', np.array([1.0, 1.0])), promotes=['x']) model.add_subsystem('pz', IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z']) sup = model.add_subsystem('sup', Group(), promotes=['*']) sub1 = sup.add_subsystem('sub1', Group(), promotes=['*']) sub2 = sup.add_subsystem('sub2', Group(), promotes=['*']) d1 = sub1.add_subsystem('d1', TwoSellarDis1(), promotes=['x', 'z', 'y1', 'y2']) sub2.add_subsystem('d2', TwoSellarDis2(), promotes=['z', 'y1', 'y2']) model.add_subsystem('con_cmp1', ExecComp('con1 = 3.16 - y1[0] - y1[1]', y1=np.array([0.0, 0.0])), promotes=['con1', 'y1']) model.add_subsystem('con_cmp2', ExecComp('con2 = y2[0] + y2[1] - 24.0', y2=np.array([0.0, 0.0])), promotes=['con2', 'y2']) model.linear_solver = LinearBlockGS() sup.linear_solver = LinearBlockGS() sub1.linear_solver = DirectSolver(assemble_jac=True) sub2.linear_solver = DirectSolver(assemble_jac=True) prob.set_solver_print(level=0) prob.setup(check=False, mode='rev') prob.run_model() of = ['con1', 'con2'] wrt = ['x', 'z'] # Make sure we don't get a size mismatch. derivs = prob.compute_totals(of=of, wrt=wrt) def test_assembled_jac_bad_key(self): # this test fails if AssembledJacobian._update sets in_start with 'output' instead of 'input' prob = Problem() prob.model = Group(assembled_jac_type='dense') prob.model.add_subsystem('indep', IndepVarComp('x', 1.0)) prob.model.add_subsystem('C1', ExecComp('c=a*2.0+b', a=0., b=0., c=0.)) c2 = prob.model.add_subsystem('C2', ExecComp('d=a*2.0+b+c', a=0., b=0., c=0., d=0.)) c3 = prob.model.add_subsystem('C3', ExecComp('ee=a*2.0', a=0., ee=0.)) prob.model.nonlinear_solver = NewtonSolver(solve_subsystems=False) prob.model.linear_solver = DirectSolver(assemble_jac=True) prob.model.connect('indep.x', 'C1.a') prob.model.connect('indep.x', 'C2.a') prob.model.connect('C1.c', 'C2.b') prob.model.connect('C2.d', 'C3.a') prob.set_solver_print(level=0) prob.setup() prob.run_model() assert_near_equal(prob['C3.ee'], 8.0, 0000.1) def test_assembled_jacobian_submat_indexing_dense(self): prob = Problem(model=Group(assembled_jac_type='dense')) indeps = prob.model.add_subsystem('indeps', IndepVarComp()) indeps.add_output('x', 1.0) indeps.add_output('y', 5.0) indeps.add_output('z', 9.0) G1 = prob.model.add_subsystem('G1', Group()) G1.add_subsystem('C1', ExecComp('y=2.0*x*x')) G1.add_subsystem('C2', ExecComp('y=3.0*x*x')) prob.model.nonlinear_solver = NewtonSolver(solve_subsystems=False) G1.linear_solver = DirectSolver(assemble_jac=True) # before the fix, we got bad offsets into the _ext_mtx matrix. # to get entries in _ext_mtx, there must be at least one connection # to an input in the system that owns the AssembledJacobian, from # a source that is outside of that system. In this case, the 'indeps' # system is outside of the 'G1' group which owns the AssembledJacobian. prob.model.connect('indeps.y', 'G1.C1.x') prob.model.connect('indeps.z', 'G1.C2.x') prob.setup() prob.run_model() assert_near_equal(prob['G1.C1.y'], 50.0) assert_near_equal(prob['G1.C2.y'], 243.0) def test_assembled_jacobian_submat_indexing_csc(self): prob = Problem(model=Group(assembled_jac_type='dense')) indeps = prob.model.add_subsystem('indeps', IndepVarComp()) indeps.add_output('x', 1.0) indeps.add_output('y', 5.0) indeps.add_output('z', 9.0) G1 = prob.model.add_subsystem('G1', Group()) G1.add_subsystem('C1', ExecComp('y=2.0*x*x')) G1.add_subsystem('C2', ExecComp('y=3.0*x*x')) # prob.model.nonlinear_solver = NewtonSolver(solve_subsystems=False) prob.model.linear_solver = DirectSolver(assemble_jac=True) G1.linear_solver = DirectSolver(assemble_jac=True) G1.nonlinear_solver = NewtonSolver(solve_subsystems=False) # before the fix, we got bad offsets into the _ext_mtx matrix. # to get entries in _ext_mtx, there must be at least one connection # to an input in the system that owns the AssembledJacobian, from # a source that is outside of that system. In this case, the 'indeps' # system is outside of the 'G1' group which owns the AssembledJacobian. prob.model.connect('indeps.y', 'G1.C1.x') prob.model.connect('indeps.z', 'G1.C2.x') prob.setup() prob.run_model() assert_near_equal(prob['G1.C1.y'], 50.0) assert_near_equal(prob['G1.C2.y'], 243.0) def test_declare_partial_reference(self): # Test for a bug where declare_partials is given an array reference # that compute also uses and could get corrupted class Comp(ExplicitComponent): def setup(self): self.add_input('x', val=1.0, shape=2) self.add_output('y', val=1.0, shape=2) self.val = 2 * np.ones(2) self.rows = np.arange(2) self.cols = np.arange(2) self.declare_partials( 'y', 'x', val=self.val, rows=self.rows, cols=self.cols) def compute(self, inputs, outputs): outputs['y'][:] = 0. np.add.at( outputs['y'], self.rows, self.val * inputs['x'][self.cols]) prob = Problem(model=Comp()) prob.setup() prob.run_model() assert_near_equal(prob['y'], 2 * np.ones(2)) def test_declare_partials_row_col_size_mismatch(self): # Make sure we have clear error messages. class Comp1(ExplicitComponent): def setup(self): self.add_input('x', val=np.array((2, 2))) self.add_output('y', val=np.array((2, 2))) self.declare_partials('y', 'x', rows=np.array([0, 1]), cols=np.array([0])) def compute(self, inputs, outputs): pass class Comp2(ExplicitComponent): def setup(self): self.add_input('x', val=np.array((2, 2))) self.add_output('y', val=np.array((2, 2))) self.declare_partials('y', 'x', rows=np.array([0]), cols=np.array([0, 1])) def compute(self, inputs, outputs): pass prob = Problem() model = prob.model model.add_subsystem('comp', Comp1()) msg = "'comp' <class Comp1>: d\(y\)/d\(x\): declare_partials has been called with rows and cols, which" + \ " should be arrays of equal length, but rows is length 2 while " + \ "cols is length 1." with self.assertRaisesRegex(RuntimeError, msg): prob.setup() prob = Problem() model = prob.model model.add_subsystem('comp', Comp2()) msg = "'comp' <class Comp2>: d\(y\)/d\(x\): declare_partials has been called with rows and cols, which" + \ " should be arrays of equal length, but rows is length 1 while " + \ "cols is length 2." with self.assertRaisesRegex(RuntimeError, msg): prob.setup() def test_assembled_jacobian_unsupported_cases(self): class ParaboloidApply(ImplicitComponent): def setup(self): self.add_input('x', val=0.0) self.add_input('y', val=0.0) self.add_output('f_xy', val=0.0) def linearize(self, inputs, outputs, jacobian): return def apply_linear(self, inputs, outputs, d_inputs, d_outputs, d_residuals, mode): d_residuals['x'] += (np.exp(outputs['x']) - 2*inputs['a']**2 * outputs['x'])*d_outputs['x'] d_residuals['x'] += (-2 * inputs['a'] * outputs['x']**2)*d_inputs['a'] # One level deep prob = Problem() model = prob.model = Group(assembled_jac_type='dense') model.linear_solver = DirectSolver(assemble_jac=True) model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('p2', IndepVarComp('y', val=1.0)) model.add_subsystem('comp', ParaboloidApply()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() msg = "AssembledJacobian not supported for matrix-free subcomponent." with self.assertRaisesRegex(Exception, msg): prob.run_model() # Nested prob = Problem() model = prob.model = Group(assembled_jac_type='dense') model.linear_solver = DirectSolver(assemble_jac=True) sub = model.add_subsystem('sub', Group()) model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('p2', IndepVarComp('y', val=1.0)) sub.add_subsystem('comp', ParaboloidApply()) model.connect('p1.x', 'sub.comp.x') model.connect('p2.y', 'sub.comp.y') prob.setup() msg = "AssembledJacobian not supported for matrix-free subcomponent." with self.assertRaisesRegex(Exception, msg): prob.run_model() # Try a component that is derived from a matrix-free one class FurtherDerived(ParaboloidApply): def do_nothing(self): pass prob = Problem() model = prob.model = Group(assembled_jac_type='dense') model.linear_solver = DirectSolver(assemble_jac=True) model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('p2', IndepVarComp('y', val=1.0)) model.add_subsystem('comp', FurtherDerived()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() msg = "AssembledJacobian not supported for matrix-free subcomponent." with self.assertRaisesRegex(Exception, msg): prob.run_model() # Make sure regular comps don't give an error. prob = Problem() model = prob.model = Group(assembled_jac_type='dense') model.linear_solver = DirectSolver(assemble_jac=True) model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('p2', IndepVarComp('y', val=1.0)) model.add_subsystem('comp', Paraboloid()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() prob.final_setup() class JacVecComp(Paraboloid): def setup_partials(self): pass def linearize(self, inputs, outputs, jacobian): return def compute_jacvec_product(self, inputs, d_inputs, d_outputs, mode): pass # One level deep prob = Problem() model = prob.model = Group(assembled_jac_type='dense') model.linear_solver = DirectSolver(assemble_jac=True) model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('p2', IndepVarComp('y', val=1.0)) model.add_subsystem('comp', JacVecComp()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() msg = "AssembledJacobian not supported for matrix-free subcomponent." with self.assertRaisesRegex(Exception, msg): prob.run_model() def test_access_undeclared_subjac(self): class Undeclared(ExplicitComponent): def setup(self): self.add_input('x', val=0.0) self.add_output('y', val=0.0) def compute(self, inputs, outputs): pass def compute_partials(self, inputs, partials): partials['y', 'x'] = 1.0 prob = Problem() model = prob.model model.add_subsystem('p1', IndepVarComp('x', val=1.0)) model.add_subsystem('comp', Undeclared()) model.connect('p1.x', 'comp.x') prob.setup() prob.run_model() msg = 'Variable name pair \("{}", "{}"\) must first be declared.' with self.assertRaisesRegex(KeyError, msg.format('y', 'x')): J = prob.compute_totals(of=['comp.y'], wrt=['p1.x']) def test_one_src_2_tgts_with_src_indices_densejac(self): size = 4 prob = Problem(model=Group(assembled_jac_type='dense')) indeps = prob.model.add_subsystem('indeps', IndepVarComp('x', np.ones(size))) G1 = prob.model.add_subsystem('G1', Group()) G1.add_subsystem('C1', ExecComp('z=2.0*y+3.0*x', x=np.zeros(size//2), y=np.zeros(size//2), z=np.zeros(size//2))) prob.model.linear_solver = DirectSolver(assemble_jac=True) prob.model.add_objective('G1.C1.z') prob.model.add_design_var('indeps.x') prob.model.connect('indeps.x', 'G1.C1.x', src_indices=[0,1]) prob.model.connect('indeps.x', 'G1.C1.y', src_indices=[2,3]) prob.setup() prob.run_model() J = prob.compute_totals(of=['G1.C1.z'], wrt=['indeps.x']) assert_near_equal(J['G1.C1.z', 'indeps.x'], np.array([[ 3., 0., 2., 0.], [-0., 3., 0., 2.]]), .0001) def test_one_src_2_tgts_csc_error(self): size = 10 prob = Problem() indeps = prob.model.add_subsystem('indeps', IndepVarComp('x', np.ones(size))) G1 = prob.model.add_subsystem('G1', Group()) G1.add_subsystem('C1', ExecComp('z=2.0*y+3.0*x', x=np.zeros(size), y=np.zeros(size), z=np.zeros(size))) prob.model.linear_solver = DirectSolver(assemble_jac=True) prob.model.add_objective('G1.C1.z') prob.model.add_design_var('indeps.x') prob.model.connect('indeps.x', 'G1.C1.x') prob.model.connect('indeps.x', 'G1.C1.y') prob.setup(mode='fwd') prob.run_model() J = prob.compute_totals(of=['G1.C1.z'], wrt=['indeps.x']) assert_near_equal(J['G1.C1.z', 'indeps.x'], np.eye(10)*5.0, .0001) def test_dict_properties(self): # Make sure you can use the partials variable passed to compute_partials as a dict prob = Problem() indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*']) indeps.add_output('x', .5) indeps.add_output('y', 10.0) comp = SimpleCompWithPrintPartials() prob.model.add_subsystem('paraboloid', comp, promotes_inputs=['x', 'y']) prob.driver = ScipyOptimizeDriver() prob.driver.options['optimizer'] = 'SLSQP' prob.model.add_design_var('x', lower=-50, upper=50) prob.model.add_design_var('y', lower=-50, upper=50) prob.model.add_objective('paraboloid.f_xy') prob.setup() prob.run_driver() expected = [ (('paraboloid.f_xy', 'paraboloid.f_xy'),[-1.]), (('paraboloid.f_xy', 'paraboloid.x'),[[0.]]), (('paraboloid.f_xy', 'paraboloid.y'),[[0.]]), ] self.assertEqual(sorted(comp.partials_name_pairs), sorted(e[0] for e in sorted(expected))) self.assertEqual(sorted(comp.partials_name_pairs), sorted(e[0] for e in sorted(expected))) for act, exp in zip( [e[1] for e in sorted(comp.partials_values)], [e[1] for e in sorted(expected)], ): assert_near_equal(act,exp, 1e-5) def test_compute_totals_relevancy(self): # When a model has desvars and responses defined, components that don't lie in the relevancy # graph between them do not take part in the linear solve. This led to some derivatives # being returned as zero in certain instances when it was called with wrt or of not in the # set. class DParaboloid(ExplicitComponent): def setup(self): ndvs = 3 self.add_input('w', val=1.) self.add_input('x', shape=ndvs) self.add_output('y', shape=1) self.add_output('z', shape=ndvs) self.declare_partials('y', 'x') self.declare_partials('y', 'w') self.declare_partials('z', 'x') def compute(self, inputs, outputs): x = inputs['x'] y_g = np.sum((x-5)**2) outputs['y'] = np.sum(y_g) + (inputs['w']-10)**2 outputs['z'] = x**2 def compute_partials(self, inputs, J): x = inputs['x'] J['y', 'x'] = 2*(x-5) J['y', 'w'] = 2*(inputs['w']-10) J['z', 'x'] = np.diag(2*x) p = Problem() d_ivc = p.model.add_subsystem('distrib_ivc', IndepVarComp(), promotes=['*']) ndvs = 3 d_ivc.add_output('x', 2*np.ones(ndvs)) ivc = p.model.add_subsystem('ivc', IndepVarComp(), promotes=['*']) ivc.add_output('w', 2.0) p.model.add_subsystem('dp', DParaboloid(), promotes=['*']) p.model.add_design_var('x', lower=-100, upper=100) p.model.add_objective('y') p.setup(mode='rev') p.run_model() J = p.compute_totals(of=['y', 'z'], wrt=['w', 'x']) assert(J['y','w'][0,0] == -16) def test_wildcard_partials_bug(self): # Test for a bug where using wildcards when declaring partials resulted in extra # derivatives of an output wrt other outputs. class ODE(ExplicitComponent): def setup(self): self.add_input('a', 1.0) self.add_output('x', 1.0) self.add_output('y', 1.0) self.declare_partials(of='*', wrt='*', method='cs') def compute(self, inputs, outputs): a = inputs['a'] outputs['x'] = 3.0 * a outputs['y'] = 7.0 * a p = Problem() p.model.add_subsystem('ode', ODE()) p.model.linear_solver = DirectSolver() p.model.add_design_var('ode.a') p.model.add_constraint('ode.x', lower=0.0) p.model.add_constraint('ode.y', lower=0.0) p.setup() p.run_model() p.compute_totals() keys = p.model.ode._jacobian._subjacs_info self.assertTrue(('ode.x', 'ode.y') not in keys) self.assertTrue(('ode.y', 'ode.x') not in keys) def test_set_col(self): class MyComp(ExplicitComponent): def setup(self): self.ofsizes = [3, 5, 2] self.wrtsizes = [4, 1, 3] for i, sz in enumerate(self.wrtsizes): self.add_input(f"x{i}", val=np.ones(sz)) for i, sz in enumerate(self.ofsizes): self.add_output(f"y{i}", val=np.ones(sz)) boolarr = rand_sparsity((sum(self.ofsizes), sum(self.wrtsizes)), .3, dtype=bool) self.sparsity = np.asarray(boolarr.toarray(), dtype=float) ofstart = ofend = 0 for i, ofsz in enumerate(self.ofsizes): wrtstart = wrtend = 0 ofend += ofsz for j, wrtsz in enumerate(self.wrtsizes): wrtend += wrtsz sub = self.sparsity[ofstart:ofend, wrtstart:wrtend] rows, cols = np.nonzero(sub) self.declare_partials([f"y{i}"], [f"x{j}"], rows=rows, cols=cols) wrtstart = wrtend ofstart = ofend def compute(self, inputs, outputs): outputs.set_val(self.sparsity.dot(inputs.asarray()) * 2.) def compute_partials(self, inputs, partials): # these partials are actually constant, but... ofstart = ofend = 0 for i, ofsz in enumerate(self.ofsizes): wrtstart = wrtend = 0 ofend += ofsz for j, wrtsz in enumerate(self.wrtsizes): wrtend += wrtsz sub = self.sparsity[ofstart:ofend, wrtstart:wrtend] subinfo = self._subjacs_info[(f'comp.y{i}', f'comp.x{j}')] partials[f'y{i}', f'x{j}'] = sub[subinfo['rows'], subinfo['cols']] * 2. wrtstart = wrtend ofstart = ofend p = Problem() comp = p.model.add_subsystem('comp', MyComp()) p.setup() for i, sz in enumerate(comp.wrtsizes): p[f'comp.x{i}'] = np.random.random(sz) p.run_model() ofs = [f'comp.y{i}' for i in range(len(comp.ofsizes))] wrts = [f'comp.x{i}' for i in range(len(comp.wrtsizes))] p.check_partials(out_stream=None, show_only_incorrect=True) p.model.comp._jacobian.set_col(p.model.comp, 5, comp.sparsity[:, 5] * 99) # check dy0/dx2 (3x3) subinfo = comp._subjacs_info['comp.y0', 'comp.x2'] arr = np.zeros(subinfo['shape']) arr[subinfo['rows'], subinfo['cols']] = subinfo['val'] assert_near_equal(arr[:, 0], comp.sparsity[0:3, 5] * 99) # check dy1/dx2 (5x3) subinfo = comp._subjacs_info['comp.y1', 'comp.x2'] arr = np.zeros(subinfo['shape']) arr[subinfo['rows'], subinfo['cols']] = subinfo['val'] assert_near_equal(arr[:, 0], comp.sparsity[3:8, 5] * 99) # check dy2/dx2 (2x3) subinfo = comp._subjacs_info['comp.y2', 'comp.x2'] arr = np.zeros(subinfo['shape']) arr[subinfo['rows'], subinfo['cols']] = subinfo['val'] assert_near_equal(arr[:, 0], comp.sparsity[8:, 5] * 99) def test_jacsize_error_message(self): class MyComp(ExplicitComponent): def setup(self): self.add_input('x', np.ones(2)) self.add_output('y', np.ones(3)) self.declare_partials('y', 'x', rows=np.array([0, 1]), cols=np.array([1, 0])) def compute_partials(self, inputs, partials): partials['y', 'x'] = np.ones((3, )) prob = Problem() model = prob.model model.add_subsystem('comp', MyComp()) prob.setup() prob.run_model() msg = "'comp' \<class MyComp\>: Error calling compute_partials\(\), DictionaryJacobian in 'comp' \<class MyComp\>: Sub-jacobian for key \('comp.y', 'comp.x'\) has the wrong shape \(\(3,\)\), expected \(\(2,\)\)." with self.assertRaisesRegex(ValueError, msg): prob.compute_totals(of=['comp.y'], wrt=['comp.x']) class MySparseComp(ExplicitComponent): def setup(self): self.add_input('y', np.zeros(2)) self.add_input('x', np.zeros(2)) self.add_output('z', np.zeros(2)) # partials use sparse list format self.declare_partials('z', 'x', rows=[0, 1], cols=[0, 1]) self.declare_partials('z', 'y', rows=[0, 1], cols=[1, 0]) def compute(self, inputs, outputs): outputs['z'] = np.array([3.0*inputs['x'][0]**3 + 4.0*inputs['y'][1]**2, 5.0*inputs['x'][1]**2 * inputs['y'][0]]) def compute_partials(self, inputs, partials): partials['z', 'x'] = np.array([9.0*inputs['x'][0]**2, 10.0*inputs['x'][1]*inputs['y'][0]]) partials['z', 'y'] = np.array([8.0*inputs['y'][1], 5.0*inputs['x'][1]**2]) class MyDenseComp(ExplicitComponent): def setup(self): self.add_input('y', np.zeros(2)) self.add_input('x', np.zeros(2)) self.add_output('z', np.zeros(2)) # partials are dense self.declare_partials('z', 'x') self.declare_partials('z', 'y') def compute(self, inputs, outputs): outputs['z'] = np.array([3.0*inputs['x'][0]**3 + 4.0*inputs['y'][1]**2, 5.0*inputs['x'][1]**2 * inputs['y'][0]]) def compute_partials(self, inputs, partials): partials['z', 'x'] = np.array([[9.0*inputs['x'][0]**2, 0.0], [0.0, 10.0*inputs['x'][1]*inputs['y'][0]]]) partials['z', 'y'] = np.array([[0.0, 8.0*inputs['y'][1]], [5.0*inputs['x'][1]**2, 0.0]]) class OverlappingPartialsTestCase(unittest.TestCase): def test_repeated_src_indices_csc(self): size = 2 p = Problem() indeps = p.model.add_subsystem('indeps', IndepVarComp('x', np.ones(size))) p.model.add_subsystem('C1', ExecComp('z=3.0*x[0]**3 + 2.0*x[1]**2', x=np.zeros(size))) p.model.options['assembled_jac_type'] = 'csc' p.model.linear_solver = DirectSolver(assemble_jac=True) p.model.connect('indeps.x', 'C1.x', src_indices=[1,1]) p.setup() p.run_model() J = p.compute_totals(of=['C1.z'], wrt=['indeps.x'], return_format='array') np.testing.assert_almost_equal(p.model._assembled_jac._int_mtx._matrix.toarray(), np.array([[-1., 0., 0.], [ 0., -1., 0.], [ 0., 13., -1.]])) def test_repeated_src_indices_dense(self): size = 2 p = Problem() indeps = p.model.add_subsystem('indeps', IndepVarComp('x', np.ones(size))) p.model.add_subsystem('C1', ExecComp('z=3.0*x[0]**3 + 2.0*x[1]**2', x=np.zeros(size))) p.model.options['assembled_jac_type'] = 'dense' p.model.linear_solver = DirectSolver(assemble_jac=True) p.model.connect('indeps.x', 'C1.x', src_indices=[1,1]) p.setup() p.run_model() J = p.compute_totals(of=['C1.z'], wrt=['indeps.x'], return_format='array') np.testing.assert_almost_equal(p.model._assembled_jac._int_mtx._matrix, np.array([[-1., 0., 0.], [ 0., -1., 0.], [ 0., 13., -1.]])) def test_multi_inputs_same_src_dense_comp(self): p = Problem() indeps = p.model.add_subsystem('indeps', IndepVarComp('x', np.ones(2))) p.model.add_subsystem('C1', MyDenseComp()) p.model.options['assembled_jac_type'] = 'csc' p.model.linear_solver = DirectSolver(assemble_jac=True) p.model.connect('indeps.x', ('C1.x', 'C1.y')) p.setup() p.run_model() J = p.compute_totals(of=['C1.z'], wrt=['indeps.x'], return_format='array') np.testing.assert_almost_equal(p.model._assembled_jac._int_mtx._matrix.toarray(), np.array([[-1., 0., 0., 0.], [ 0., -1., 0., 0.], [ 9., 8., -1., 0.], [ 5., 10., 0., -1.]])) def test_multi_inputs_same_src_sparse_comp(self): p = Problem() indeps = p.model.add_subsystem('indeps', IndepVarComp('x', np.ones(2))) p.model.add_subsystem('C1', MySparseComp()) p.model.options['assembled_jac_type'] = 'csc' p.model.linear_solver = DirectSolver(assemble_jac=True) p.model.connect('indeps.x', ('C1.x', 'C1.y')) p.setup() p.run_model() J = p.compute_totals(of=['C1.z'], wrt=['indeps.x'], return_format='array') np.testing.assert_almost_equal(p.model._assembled_jac._int_mtx._matrix.toarray(), np.array([[-1., 0., 0., 0.], [ 0., -1., 0., 0.], [ 9., 8., -1., 0.], [ 5., 10., 0., -1.]])) class MaskingTestCase(unittest.TestCase): def test_csc_masking(self): class CCBladeResidualComp(ImplicitComponent): def initialize(self): self.options.declare('num_nodes', types=int) self.options.declare('num_radial', types=int) def setup(self): num_nodes = self.options['num_nodes'] num_radial = self.options['num_radial'] self.add_input('chord', shape=(1, num_radial)) self.add_input('theta', shape=(1, num_radial)) self.add_output('phi', lower=-0.5*np.pi, upper=0.0, shape=(num_nodes, num_radial)) self.add_output('Tp', shape=(num_nodes, num_radial)) of_names = ('phi', 'Tp') row_col = np.arange(num_radial) for name in of_names: self.declare_partials(name, 'chord', rows=row_col, cols=row_col) self.declare_partials(name, 'theta', rows=row_col, cols=row_col, val=0.0) self.declare_partials(name, 'phi', rows=row_col, cols=row_col) self.declare_partials('Tp', 'Tp', rows=row_col, cols=row_col, val=1.) def linearize(self, inputs, outputs, partials): partials['phi', 'chord'] = np.array([1., 2, 3, 4]) partials['phi', 'phi'] = np.array([5., 6, 7, 8]) partials['Tp', 'chord'] = np.array([9., 10, 11, 12]) partials['Tp', 'phi'] = np.array([13., 14, 15, 16]) prob = Problem() model = prob.model comp = IndepVarComp() comp.add_output('chord', val=np.ones((4, ))) model.add_subsystem('indep_var_comp', comp, promotes=['*']) comp = CCBladeResidualComp(num_nodes=1, num_radial=4, assembled_jac_type='csc') comp.linear_solver = DirectSolver(assemble_jac=True) model.add_subsystem('ccblade_comp', comp, promotes_inputs=['chord'], promotes_outputs=['Tp']) prob.setup(mode='fwd') prob.run_model() totals = prob.compute_totals(of=['Tp'], wrt=['chord'], return_format='array') expected = np.array([ [-6.4,0.,0.,0.], [ 0.,-5.33333333,0.,0.], [ 0.,0.,-4.57142857,0.], [ 0.,0.,0.,-4.]] ) np.testing.assert_allclose(totals, expected) if __name__ == '__main__': unittest.main()
36.576078
220
0.546427
351cfa60f3c37d069c6baf48cadf28efd1bd6e2c
3,518
py
Python
demo/webcam.py
Zhangyongtao123/maskrcnn_benchmark
059f04c26df2c1bd19dd7360ee2487ce3461da37
[ "MIT" ]
null
null
null
demo/webcam.py
Zhangyongtao123/maskrcnn_benchmark
059f04c26df2c1bd19dd7360ee2487ce3461da37
[ "MIT" ]
null
null
null
demo/webcam.py
Zhangyongtao123/maskrcnn_benchmark
059f04c26df2c1bd19dd7360ee2487ce3461da37
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 import os from maskrcnn_benchmark.config import cfg from predictor import COCODemo import time def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo") parser.add_argument( "--config-file", default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--confidence-threshold", type=float, default=0.7, help="Minimum score for the prediction to be shown", ) parser.add_argument( "--min-image-size", type=int, default=224, help="Smallest size of the image to feed to the model. " "Model was trained with 800, which gives best results", ) parser.add_argument( "--show-mask-heatmaps", dest="show_mask_heatmaps", help="Show a heatmap probability for the top masks-per-dim masks", action="store_true", ) parser.add_argument( "--masks-per-dim", type=int, default=2, help="Number of heatmaps per dimension to show", ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() # load config from file and command-line arguments cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=args.show_mask_heatmaps, masks_per_dim=args.masks_per_dim, min_image_size=args.min_image_size, ) # added for video video_path = './1.MP4' cam = cv2.VideoCapture(video_path) fps = 30 fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') # video_writer = cv2.VideoWriter(filename='./result.avi', fourcc=fourcc, fps=fps, frameSize=(640,480)) video_writer = cv2.VideoWriter(filename='./result2.avi', fourcc=cv2.VideoWriter_fourcc(*'MJPG'), fps=fps, frameSize=(853, 480)) while True: start_time = time.time() ret_val, img = cam.read() if img is None: break composite = coco_demo.run_on_opencv_image(img) # cv2.imwrite('a.jpg', composite) print("Time: {:.2f} s / img".format(time.time() - start_time)) # cv2.imshow("COCO detections", composite) # if cv2.waitKey(1) == 27: # break # esc to quit # added by zhangyongtao composite = cv2.resize(composite, (853, 480)) video_writer.write(composite) # # ./result1.avi 这个相对路径是对于py程序而言,所以avi视频文件被保存在py程序所在的文件夹 # for i in range(1, 1841): # p = i # # print(str(p)+'.png'+'233333') # if os.path.exists('E:/data/Caltech_jpg/set07/set07_V000_' + str(p) + '.jpg'): # 判断图片是否存在 # img = cv2.imread(filename='E:/data/Caltech_jpg/set07/set07_V000_' + str(p) + '.jpg') # # cv2.waitKey(10) # img = cv2.resize(img, (640, 480)) # video_writer.write(img) # print(str(p) + '.jpg' + ' done!') # cv2.destroyAllWindows() if __name__ == "__main__": main()
31.981818
109
0.604321
d98ea976b4088f9cb5e791ed99f66d6b156bd56e
7,901
py
Python
code/face-detection/tools/wider_test.py
FRH-Code-Data/Appendix
106a7c65c178d2b446e3bd8fb192ac2f4b7e323f
[ "CC-BY-4.0" ]
5
2020-02-28T09:28:55.000Z
2021-06-03T02:15:42.000Z
code/face-detection/tools/wider_test.py
FRH-Code-Data/Appendix
106a7c65c178d2b446e3bd8fb192ac2f4b7e323f
[ "CC-BY-4.0" ]
6
2020-03-08T22:58:13.000Z
2022-03-12T00:15:14.000Z
code/face-detection/tools/wider_test.py
FRH-Code-Data/Appendix
106a7c65c178d2b446e3bd8fb192ac2f4b7e323f
[ "CC-BY-4.0" ]
3
2020-02-28T09:29:03.000Z
2020-03-09T05:08:07.000Z
#-*- coding:utf-8 -*- from __future__ import division from __future__ import absolute_import from __future__ import print_function import os import torch import argparse import torch.nn as nn import torch.utils.data as data import torch.backends.cudnn as cudnn import torchvision.transforms as transforms import os.path as osp import cv2 import time import numpy as np from PIL import Image import scipy.io as sio from data.config import cfg from s3fd import build_s3fd from torch.autograd import Variable from utils.augmentations import to_chw_bgr parser = argparse.ArgumentParser(description='s3fd evaluatuon wider') parser.add_argument('--model', type=str, default='weights/s3fd.pth', help='trained model') parser.add_argument('--thresh', default=0.05, type=float, help='Final confidence threshold') args = parser.parse_args() use_cuda = torch.cuda.is_available() if use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') def detect_face(net, img, shrink): if shrink != 1: img = cv2.resize(img, None, None, fx=shrink, fy=shrink, interpolation=cv2.INTER_LINEAR) x = to_chw_bgr(img) x = x.astype('float32') x -= cfg.img_mean x = x[[2, 1, 0], :, :] x = Variable(torch.from_numpy(x).unsqueeze(0)) if use_cuda: x = x.cuda() # print(x.size()) y = net(x) detections = y.data detections = detections.cpu().numpy() det_conf = detections[0, 1, :, 0] det_xmin = img.shape[1] * detections[0, 1, :, 1] / shrink det_ymin = img.shape[0] * detections[0, 1, :, 2] / shrink det_xmax = img.shape[1] * detections[0, 1, :, 3] / shrink det_ymax = img.shape[0] * detections[0, 1, :, 4] / shrink det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf)) keep_index = np.where(det[:, 4] >= args.thresh)[0] det = det[keep_index, :] return det def flip_test(net, image, shrink): image_f = cv2.flip(image, 1) det_f = detect_face(net, image_f, shrink) det_t = np.zeros(det_f.shape) det_t[:, 0] = image.shape[1] - det_f[:, 2] det_t[:, 1] = det_f[:, 1] det_t[:, 2] = image.shape[1] - det_f[:, 0] det_t[:, 3] = det_f[:, 3] det_t[:, 4] = det_f[:, 4] return det_t def multi_scale_test(net, image, max_im_shrink): # shrink detecting and shrink only detect big face st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink det_s = detect_face(net, image, st) index = np.where(np.maximum( det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0] det_s = det_s[index, :] # enlarge one times bt = min(2, max_im_shrink) if max_im_shrink > 1 else ( st + max_im_shrink) / 2 det_b = detect_face(net, image, bt) # enlarge small image x times for small face if max_im_shrink > 2: bt *= 2 while bt < max_im_shrink: det_b = np.row_stack((det_b, detect_face(net, image, bt))) bt *= 2 det_b = np.row_stack((det_b, detect_face(net, image, max_im_shrink))) # enlarge only detect small face if bt > 1: index = np.where(np.minimum( det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0] det_b = det_b[index, :] else: index = np.where(np.maximum( det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0] det_b = det_b[index, :] return det_s, det_b def bbox_vote(det): order = det[:, 4].ravel().argsort()[::-1] det = det[order, :] while det.shape[0] > 0: # IOU area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1) xx1 = np.maximum(det[0, 0], det[:, 0]) yy1 = np.maximum(det[0, 1], det[:, 1]) xx2 = np.minimum(det[0, 2], det[:, 2]) yy2 = np.minimum(det[0, 3], det[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h o = inter / (area[0] + area[:] - inter) # get needed merge det and delete these det merge_index = np.where(o >= 0.3)[0] det_accu = det[merge_index, :] det = np.delete(det, merge_index, 0) if merge_index.shape[0] <= 1: continue det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4)) max_score = np.max(det_accu[:, 4]) det_accu_sum = np.zeros((1, 5)) det_accu_sum[:, 0:4] = np.sum( det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:]) det_accu_sum[:, 4] = max_score try: dets = np.row_stack((dets, det_accu_sum)) except: dets = det_accu_sum dets = dets[0:750, :] return dets def get_data(): subset = 'val' if subset is 'val': wider_face = sio.loadmat( './eval_tools/wider_face_val.mat') else: wider_face = sio.loadmat( './eval_tools/wider_face_test.mat') event_list = wider_face['event_list'] file_list = wider_face['file_list'] del wider_face imgs_path = os.path.join( cfg.FACE.WIDER_DIR, 'WIDER_{}'.format(subset), 'images') save_path = 'eval_tools/s3fd_{}'.format(subset) return event_list, file_list, imgs_path, save_path if __name__ == '__main__': event_list, file_list, imgs_path, save_path = get_data() cfg.USE_NMS = False net = build_s3fd('test', cfg.NUM_CLASSES) net.load_state_dict(torch.load(args.model)) net.eval() if use_cuda: net.cuda() cudnn.benckmark = True #transform = S3FDBasicTransform(cfg.INPUT_SIZE, cfg.MEANS) counter = 0 for index, event in enumerate(event_list): filelist = file_list[index][0] path = os.path.join(save_path, event[0][0].encode('utf-8')) if not os.path.exists(path): os.makedirs(path) for num, file in enumerate(filelist): im_name = file[0][0].encode('utf-8') in_file = os.path.join(imgs_path, event[0][0], im_name[:] + '.jpg') #img = cv2.imread(in_file) img = Image.open(in_file) if img.mode == 'L': img = img.convert('RGB') img = np.array(img) # max_im_shrink = (0x7fffffff / 577.0 / # (img.shape[0] * img.shape[1])) ** 0.5 max_im_shrink = np.sqrt( 1700 * 1200 / (img.shape[0] * img.shape[1])) shrink = max_im_shrink if max_im_shrink < 1 else 1 counter += 1 t1 = time.time() det0 = detect_face(net, img, shrink) det1 = flip_test(net, img, shrink) # flip test [det2, det3] = multi_scale_test(net, img, max_im_shrink) det = np.row_stack((det0, det1, det2, det3)) dets = bbox_vote(det) t2 = time.time() print('Detect %04d th image costs %.4f' % (counter, t2 - t1)) fout = open(osp.join(save_path, event[0][ 0].encode('utf-8'), im_name + '.txt'), 'w') fout.write('{:s}\n'.format(event[0][0].encode( 'utf-8') + '/' + im_name + '.jpg')) fout.write('{:d}\n'.format(dets.shape[0])) for i in xrange(dets.shape[0]): xmin = dets[i][0] ymin = dets[i][1] xmax = dets[i][2] ymax = dets[i][3] score = dets[i][4] fout.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'. format(xmin, ymin, (xmax - xmin + 1), (ymax - ymin + 1), score))
32.64876
92
0.542463
2b5860397ec2c58d9f45fee3e3eebdc0358fad80
2,484
py
Python
wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_argument_names.py
borisgrafx/client
c079f7816947a3092b500751eb920fda3866985f
[ "MIT" ]
3,968
2017-08-23T21:27:19.000Z
2022-03-31T22:00:19.000Z
wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_argument_names.py
borisgrafx/client
c079f7816947a3092b500751eb920fda3866985f
[ "MIT" ]
2,725
2017-04-17T00:29:15.000Z
2022-03-31T21:01:53.000Z
wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_argument_names.py
borisgrafx/client
c079f7816947a3092b500751eb920fda3866985f
[ "MIT" ]
351
2018-04-08T19:39:34.000Z
2022-03-30T19:38:08.000Z
from ...error import GraphQLError from ...language import ast from ...utils.quoted_or_list import quoted_or_list from ...utils.suggestion_list import suggestion_list from .base import ValidationRule def _unknown_arg_message(arg_name, field_name, type, suggested_args): message = 'Unknown argument "{}" on field "{}" of type "{}".'.format(arg_name, field_name, type) if suggested_args: message += ' Did you mean {}?'.format(quoted_or_list(suggested_args)) return message def _unknown_directive_arg_message(arg_name, directive_name, suggested_args): message = 'Unknown argument "{}" on directive "@{}".'.format(arg_name, directive_name) if suggested_args: message += ' Did you mean {}?'.format(quoted_or_list(suggested_args)) return message class KnownArgumentNames(ValidationRule): def enter_Argument(self, node, key, parent, path, ancestors): argument_of = ancestors[-1] if isinstance(argument_of, ast.Field): field_def = self.context.get_field_def() if not field_def: return field_arg_def = field_def.args.get(node.name.value) if not field_arg_def: parent_type = self.context.get_parent_type() assert parent_type self.context.report_error(GraphQLError( _unknown_arg_message( node.name.value, argument_of.name.value, parent_type.name, suggestion_list( node.name.value, (arg_name for arg_name in field_def.args.keys()) ) ), [node] )) elif isinstance(argument_of, ast.Directive): directive = self.context.get_directive() if not directive: return directive_arg_def = directive.args.get(node.name.value) if not directive_arg_def: self.context.report_error(GraphQLError( _unknown_directive_arg_message( node.name.value, directive.name, suggestion_list( node.name.value, (arg_name for arg_name in directive.args.keys()) ) ), [node] ))
34.985915
100
0.551932
4cae1ed4ffee609363ee0126af570870c7592f44
12,536
py
Python
src/lamplib/src/genny/tasks/run_tests.py
samanca/genny
0e45d89f998f28e6227bedcce4e8d7d1b1d13d79
[ "Apache-2.0" ]
null
null
null
src/lamplib/src/genny/tasks/run_tests.py
samanca/genny
0e45d89f998f28e6227bedcce4e8d7d1b1d13d79
[ "Apache-2.0" ]
1
2021-09-06T20:06:24.000Z
2021-09-06T20:06:24.000Z
src/lamplib/src/genny/tasks/run_tests.py
samanca/genny
0e45d89f998f28e6227bedcce4e8d7d1b1d13d79
[ "Apache-2.0" ]
null
null
null
import structlog import os import shutil from typing import Callable, TypeVar, Tuple, Optional from genny import curator, cmd_runner, toolchain SLOG = structlog.get_logger(__name__) # We rely on catch2 to report test failures, but it doesn't always do so. # See https://github.com/catchorg/Catch2/issues/1210 # As a workaround, we generate a dummy report with a failed test that is # deleted if the test succeeds. _sentinel_report = """ <?xml version="1.0" encoding="UTF-8"?> <testsuites> <testsuite name="test_failure_sentinel" errors="0" failures="1" tests="1" hostname="tbd" time="1.0" timestamp="2019-01-01T00:00:00Z"> <testcase classname="test_failure_sentinel" name="A test failed early and a report was not generated" time="1.0"> <failure message="test did not exit cleanly, see task log for detail" type=""> </failure> </testcase> <system-out/> <system-err/> </testsuite> </testsuites> """.strip() T = TypeVar("T") def _outcome_was_true(outcome: bool) -> bool: return outcome def _run_command_with_sentinel_report( genny_repo_root: str, workspace_root: str, cmd_func: Callable[..., T], checker_func: Callable[[T], bool] = None, ) -> Tuple[T, bool]: if checker_func is None: checker_func = _outcome_was_true sentinel_file = os.path.join(workspace_root, "build", "XUnitXML", "sentinel.junit.xml") os.makedirs(name=os.path.dirname(sentinel_file), exist_ok=True) success = False try: with open(sentinel_file, "w") as f: f.write(_sentinel_report) SLOG.debug("Created sentinel file", sentinel_file=sentinel_file) with curator.poplar_grpc( cleanup_metrics=True, workspace_root=workspace_root, genny_repo_root=genny_repo_root ): cmd_output = cmd_func() success = checker_func(cmd_output) return cmd_output, success finally: if success and os.path.exists(sentinel_file): os.remove(sentinel_file) SLOG.debug( "Command finished. Left sentinel_file in place unless success.", success=success, sentinel_file=sentinel_file, ) def cmake_test(genny_repo_root: str, workspace_root: str): info = toolchain.toolchain_info(genny_repo_root=genny_repo_root, workspace_root=workspace_root) workdir = os.path.join(genny_repo_root, "build") xunit_dir = os.path.join(workspace_root, "build", "XUnitXML") os.makedirs(xunit_dir, exist_ok=True) ctest_cmd = [ "ctest", "--verbose", "--label-exclude", "(standalone|sharded|single_node_replset|three_node_replset|benchmark)", ] def cmd_func() -> bool: output: cmd_runner.RunCommandOutput = cmd_runner.run_command( cmd=ctest_cmd, cwd=workdir, env=info.toolchain_env, capture=False, check=True ) return output.returncode == 0 _run_command_with_sentinel_report( cmd_func=cmd_func, workspace_root=workspace_root, genny_repo_root=genny_repo_root ) def benchmark_test(genny_repo_root: str, workspace_root: str): info = toolchain.toolchain_info(genny_repo_root=genny_repo_root, workspace_root=workspace_root) workdir = os.path.join(genny_repo_root, "build") ctest_cmd = ["ctest", "--label-regex", "(benchmark)"] def cmd_func(): output: cmd_runner.RunCommandOutput = cmd_runner.run_command( cmd=ctest_cmd, cwd=workdir, env=info.toolchain_env, capture=False, check=True ) return output.returncode == 0 _run_command_with_sentinel_report( cmd_func=cmd_func, workspace_root=workspace_root, genny_repo_root=genny_repo_root ) def _check_create_new_actor_test_report(workspace_root: str) -> Callable[[str], bool]: def out(cmd_output: str) -> bool: passed = False report_file = os.path.join( workspace_root, "build", "XUnitXML", "create_new_actor_test.junit.xml" ) if not os.path.isfile(report_file): SLOG.error("Failed to find report file", report_file=report_file) return passed expected_to_find = {"100 == 101", 'failures="1"'} with open(report_file) as f: report = f.read() passed = all(ex in report for ex in expected_to_find) if passed: SLOG.debug("Test passed. Removing report file.", report_file=report_file) os.remove(report_file) # Remove the report file for the expected failure. else: SLOG.error( "test for create-new-actor script did not succeed. Failed to find expected " "messages in report file", expected_to_find=expected_to_find, ) return passed return out # See the logic in _setup_resmoke. # These are the "Binaries" evergreen artifact URLs for mongodb-mongo compile tasks. # The binaries must be compatible with the version of the mongo repo checked out in use for resmoke, # which is the sha "298d4d6bbb9980b74bded06241067fe6771bef68" mentioned below. _canned_artifacts = { "osx": "https://mciuploads.s3.amazonaws.com/mongodb-mongo-master/macos/298d4d6bbb9980b74bded06241067fe6771bef68/binaries/mongo-mongodb_mongo_master_macos_298d4d6bbb9980b74bded06241067fe6771bef68_20_10_22_00_55_19.tgz", "amazon2": "https://mciuploads.s3.amazonaws.com/mongodb-mongo-master/amazon2/298d4d6bbb9980b74bded06241067fe6771bef68/binaries/mongo-mongodb_mongo_master_amazon2_298d4d6bbb9980b74bded06241067fe6771bef68_20_10_22_00_55_19.tgz", } def _setup_resmoke( workspace_root: str, genny_repo_root: str, mongo_dir: Optional[str], mongodb_archive_url: Optional[str], ): if mongo_dir is not None: mongo_repo_path = mongo_dir else: evergreen_mongo_repo = os.path.join(workspace_root, "src", "mongo") if os.path.exists(evergreen_mongo_repo): mongo_repo_path = evergreen_mongo_repo else: mongo_repo_path = os.path.join(genny_repo_root, "build", "resmoke-mongo") xunit_xml_path = os.path.join(workspace_root, "build", "XUnitXML") os.makedirs(xunit_xml_path, exist_ok=True) SLOG.info("Created xunit result dir", path=xunit_xml_path) resmoke_venv: str = os.path.join(mongo_repo_path, "resmoke_venv") resmoke_python: str = os.path.join(resmoke_venv, "bin", "python3") # Clone repo unless exists if not os.path.exists(mongo_repo_path): SLOG.info("Mongo repo doesn't exist. Checking it out.", mongo_repo_path=mongo_repo_path) cmd_runner.run_command( cmd=["git", "clone", "git@github.com:mongodb/mongo.git", mongo_repo_path], cwd=workspace_root, check=True, capture=False, ) cmd_runner.run_command( # If changing this sha, you may need to use later binaries # in the _canned_artifacts dict. cmd=["git", "checkout", "298d4d6bbb9980b74bded06241067fe6771bef68"], cwd=mongo_repo_path, check=True, capture=False, ) else: SLOG.info("Using existing mongo repo checkout", mongo_repo_path=mongo_repo_path) cmd_runner.run_command( cmd=["git", "rev-parse", "HEAD"], check=False, cwd=mongo_repo_path, capture=False, ) # Look for mongod in # build/opt/mongo/db/mongod # build/install/bin/mongod # bin/ opt = os.path.join(mongo_repo_path, "build", "opt", "mongo", "db", "mongod") install = os.path.join(mongo_repo_path, "build", "install", "bin", "mongod") from_tarball = os.path.join(mongo_repo_path, "bin", "mongod") if os.path.exists(opt): mongod = opt elif os.path.exists(install): mongod = install elif os.path.exists(from_tarball): mongod = from_tarball else: mongod = None if mongod is not None and mongodb_archive_url is not None: SLOG.info( "Found existing mongod so will not download artifacts.", existing_mongod=mongod, wont_download_artifacts_from=mongodb_archive_url, ) if mongod is None: SLOG.info( "Couldn't find pre-build monogod. Fetching and installing.", looked_at=(opt, install, from_tarball), fetching=mongodb_archive_url, ) if mongodb_archive_url is None: info = toolchain.toolchain_info( genny_repo_root=genny_repo_root, workspace_root=workspace_root ) if info.is_darwin: artifact_key = "osx" elif info.linux_distro == "amazon2": artifact_key = "amazon2" else: raise Exception( f"No pre-built artifacts for distro {info.linux_distro}. You can either:" f"1. compile/install a local mongo checkout in ./src/mongo." f"2. Modify the _canned_artifacts dict in the genny python to include an artifact from a waterfall build." f"3. Pass in the --mongodb-archive-url parameter to force a canned artifact." ) mongodb_archive_url = _canned_artifacts[artifact_key] cmd_runner.run_command( cmd=["curl", "-LSs", mongodb_archive_url, "-o", "mongodb.tgz"], cwd=mongo_repo_path, capture=False, check=True, ) cmd_runner.run_command( cmd=["tar", "--strip-components=1", "-zxf", "mongodb.tgz"], cwd=mongo_repo_path, capture=False, check=True, ) mongod = from_tarball bin_dir = os.path.dirname(mongod) # Setup resmoke venv unless exists resmoke_setup_sentinel = os.path.join(resmoke_venv, "setup-done") if not os.path.exists(resmoke_setup_sentinel): SLOG.info("Resmoke venv doesn't exist. Creating.", resmoke_venv=resmoke_venv) shutil.rmtree(resmoke_venv, ignore_errors=True) import venv venv.create(env_dir=resmoke_venv, with_pip=True, symlinks=True) reqs_file = os.path.join(mongo_repo_path, "etc", "pip", "evgtest-requirements.txt") cmd = [resmoke_python, "-mpip", "install", "-r", reqs_file] cmd_runner.run_command( cmd=cmd, cwd=workspace_root, capture=False, check=True, ) open(resmoke_setup_sentinel, "w") return resmoke_python, mongo_repo_path, bin_dir def _nop_true(cmd_output: str) -> bool: return True def resmoke_test( genny_repo_root: str, workspace_root: str, suites: str, is_cnats: bool, mongo_dir: Optional[str], env: dict, mongodb_archive_url: Optional[str], ): if (not suites) and (not is_cnats): raise ValueError('Must specify either "--suites" or "--create-new-actor-test-suite"') if is_cnats: suites = os.path.join(genny_repo_root, "src", "resmokeconfig", "genny_create_new_actor.yml") checker_func = _check_create_new_actor_test_report(workspace_root=workspace_root) else: checker_func = _nop_true resmoke_python, mongo_repo_path, bin_dir = _setup_resmoke( workspace_root=workspace_root, genny_repo_root=genny_repo_root, mongo_dir=mongo_dir, mongodb_archive_url=mongodb_archive_url, ) mongod = os.path.join(bin_dir, "mongod") mongo = os.path.join(bin_dir, "mongo") mongos = os.path.join(bin_dir, "mongos") cmd = [ resmoke_python, os.path.join(mongo_repo_path, "buildscripts", "resmoke.py"), "run", "--suite", suites, "--configDir", os.path.join(mongo_repo_path, "buildscripts", "resmokeconfig"), "--mongod", mongod, "--mongo", mongo, "--mongos", mongos, ] def run_resmoke() -> None: # See if we can put this in the resmoke suite def or something? env["CTEST_OUTPUT_ON_FAILURE"] = "1" cmd_runner.run_command( cmd=cmd, cwd=workspace_root, env=env, capture=False, # If we're create_new_actor_test we don't want # to barf when resmoke fails. We expect it to fail. check=False if is_cnats else True, # `not is_cnats` was hard to read. ) _run_command_with_sentinel_report( workspace_root=workspace_root, genny_repo_root=genny_repo_root, cmd_func=run_resmoke, checker_func=checker_func, )
35.613636
230
0.650606
e27c1e9a5280b4f0dcf59f81e3a3092375e4ccf2
36,946
py
Python
airflow/executors/kubernetes_executor.py
growbots/incubator-airflow
a8a4d322ee960ef51a03a87db44fe352abb910e6
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2020-09-30T01:06:15.000Z
2021-08-07T09:16:21.000Z
airflow/executors/kubernetes_executor.py
growbots/incubator-airflow
a8a4d322ee960ef51a03a87db44fe352abb910e6
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-07-01T18:16:43.000Z
2020-07-01T18:16:43.000Z
airflow/executors/kubernetes_executor.py
growbots/incubator-airflow
a8a4d322ee960ef51a03a87db44fe352abb910e6
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2019-07-04T02:46:30.000Z
2019-07-15T00:56:09.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import base64 import hashlib from queue import Empty import re import json import multiprocessing from dateutil import parser from uuid import uuid4 import kubernetes from kubernetes import watch, client from kubernetes.client.rest import ApiException from airflow.configuration import conf from airflow.kubernetes.pod_launcher import PodLauncher from airflow.kubernetes.kube_client import get_kube_client from airflow.kubernetes.worker_configuration import WorkerConfiguration from airflow.executors.base_executor import BaseExecutor from airflow.executors import Executors from airflow.models import KubeResourceVersion, KubeWorkerIdentifier, TaskInstance from airflow.utils.state import State from airflow.utils.db import provide_session, create_session from airflow import configuration, settings from airflow.exceptions import AirflowConfigException, AirflowException from airflow.utils.log.logging_mixin import LoggingMixin class KubernetesExecutorConfig: def __init__(self, image=None, image_pull_policy=None, request_memory=None, request_cpu=None, limit_memory=None, limit_cpu=None, gcp_service_account_key=None, node_selectors=None, affinity=None, annotations=None, volumes=None, volume_mounts=None, tolerations=None): self.image = image self.image_pull_policy = image_pull_policy self.request_memory = request_memory self.request_cpu = request_cpu self.limit_memory = limit_memory self.limit_cpu = limit_cpu self.gcp_service_account_key = gcp_service_account_key self.node_selectors = node_selectors self.affinity = affinity self.annotations = annotations self.volumes = volumes self.volume_mounts = volume_mounts self.tolerations = tolerations def __repr__(self): return "{}(image={}, image_pull_policy={}, request_memory={}, request_cpu={}, " \ "limit_memory={}, limit_cpu={}, gcp_service_account_key={}, " \ "node_selectors={}, affinity={}, annotations={}, volumes={}, " \ "volume_mounts={}, tolerations={})" \ .format(KubernetesExecutorConfig.__name__, self.image, self.image_pull_policy, self.request_memory, self.request_cpu, self.limit_memory, self.limit_cpu, self.gcp_service_account_key, self.node_selectors, self.affinity, self.annotations, self.volumes, self.volume_mounts, self.tolerations) @staticmethod def from_dict(obj): if obj is None: return KubernetesExecutorConfig() if not isinstance(obj, dict): raise TypeError( 'Cannot convert a non-dictionary object into a KubernetesExecutorConfig') namespaced = obj.get(Executors.KubernetesExecutor, {}) return KubernetesExecutorConfig( image=namespaced.get('image', None), image_pull_policy=namespaced.get('image_pull_policy', None), request_memory=namespaced.get('request_memory', None), request_cpu=namespaced.get('request_cpu', None), limit_memory=namespaced.get('limit_memory', None), limit_cpu=namespaced.get('limit_cpu', None), gcp_service_account_key=namespaced.get('gcp_service_account_key', None), node_selectors=namespaced.get('node_selectors', None), affinity=namespaced.get('affinity', None), annotations=namespaced.get('annotations', {}), volumes=namespaced.get('volumes', []), volume_mounts=namespaced.get('volume_mounts', []), tolerations=namespaced.get('tolerations', None), ) def as_dict(self): return { 'image': self.image, 'image_pull_policy': self.image_pull_policy, 'request_memory': self.request_memory, 'request_cpu': self.request_cpu, 'limit_memory': self.limit_memory, 'limit_cpu': self.limit_cpu, 'gcp_service_account_key': self.gcp_service_account_key, 'node_selectors': self.node_selectors, 'affinity': self.affinity, 'annotations': self.annotations, 'volumes': self.volumes, 'volume_mounts': self.volume_mounts, 'tolerations': self.tolerations, } class KubeConfig: core_section = 'core' kubernetes_section = 'kubernetes' def __init__(self): configuration_dict = configuration.as_dict(display_sensitive=True) self.core_configuration = configuration_dict['core'] self.kube_secrets = configuration_dict.get('kubernetes_secrets', {}) self.kube_env_vars = configuration_dict.get('kubernetes_environment_variables', {}) self.env_from_configmap_ref = configuration.get(self.kubernetes_section, 'env_from_configmap_ref') self.env_from_secret_ref = configuration.get(self.kubernetes_section, 'env_from_secret_ref') self.airflow_home = settings.AIRFLOW_HOME self.dags_folder = configuration.get(self.core_section, 'dags_folder') self.parallelism = configuration.getint(self.core_section, 'PARALLELISM') self.worker_container_repository = configuration.get( self.kubernetes_section, 'worker_container_repository') self.worker_container_tag = configuration.get( self.kubernetes_section, 'worker_container_tag') self.kube_image = '{}:{}'.format( self.worker_container_repository, self.worker_container_tag) self.kube_image_pull_policy = configuration.get( self.kubernetes_section, "worker_container_image_pull_policy" ) self.kube_node_selectors = configuration_dict.get('kubernetes_node_selectors', {}) self.kube_annotations = configuration_dict.get('kubernetes_annotations', {}) self.kube_labels = configuration_dict.get('kubernetes_labels', {}) self.delete_worker_pods = conf.getboolean( self.kubernetes_section, 'delete_worker_pods') self.worker_pods_creation_batch_size = conf.getint( self.kubernetes_section, 'worker_pods_creation_batch_size') self.worker_service_account_name = conf.get( self.kubernetes_section, 'worker_service_account_name') self.image_pull_secrets = conf.get(self.kubernetes_section, 'image_pull_secrets') # NOTE: user can build the dags into the docker image directly, # this will set to True if so self.dags_in_image = conf.getboolean(self.kubernetes_section, 'dags_in_image') # Run as user for pod security context self.worker_run_as_user = conf.get(self.kubernetes_section, 'run_as_user') self.worker_fs_group = conf.get(self.kubernetes_section, 'fs_group') # NOTE: `git_repo` and `git_branch` must be specified together as a pair # The http URL of the git repository to clone from self.git_repo = conf.get(self.kubernetes_section, 'git_repo') # The branch of the repository to be checked out self.git_branch = conf.get(self.kubernetes_section, 'git_branch') # Optionally, the directory in the git repository containing the dags self.git_subpath = conf.get(self.kubernetes_section, 'git_subpath') # Optionally, the root directory for git operations self.git_sync_root = conf.get(self.kubernetes_section, 'git_sync_root') # Optionally, the name at which to publish the checked-out files under --root self.git_sync_dest = conf.get(self.kubernetes_section, 'git_sync_dest') # Optionally, if git_dags_folder_mount_point is set the worker will use # {git_dags_folder_mount_point}/{git_sync_dest}/{git_subpath} as dags_folder self.git_dags_folder_mount_point = conf.get(self.kubernetes_section, 'git_dags_folder_mount_point') # Optionally a user may supply a (`git_user` AND `git_password`) OR # (`git_ssh_key_secret_name` AND `git_ssh_key_secret_key`) for private repositories self.git_user = conf.get(self.kubernetes_section, 'git_user') self.git_password = conf.get(self.kubernetes_section, 'git_password') self.git_ssh_key_secret_name = conf.get(self.kubernetes_section, 'git_ssh_key_secret_name') self.git_ssh_known_hosts_configmap_name = conf.get(self.kubernetes_section, 'git_ssh_known_hosts_configmap_name') # NOTE: The user may optionally use a volume claim to mount a PV containing # DAGs directly self.dags_volume_claim = conf.get(self.kubernetes_section, 'dags_volume_claim') # This prop may optionally be set for PV Claims and is used to write logs self.logs_volume_claim = conf.get(self.kubernetes_section, 'logs_volume_claim') # This prop may optionally be set for PV Claims and is used to locate DAGs # on a SubPath self.dags_volume_subpath = conf.get( self.kubernetes_section, 'dags_volume_subpath') # This prop may optionally be set for PV Claims and is used to locate logs # on a SubPath self.logs_volume_subpath = conf.get( self.kubernetes_section, 'logs_volume_subpath') # Optionally, hostPath volume containing DAGs self.dags_volume_host = conf.get(self.kubernetes_section, 'dags_volume_host') # Optionally, write logs to a hostPath Volume self.logs_volume_host = conf.get(self.kubernetes_section, 'logs_volume_host') # This prop may optionally be set for PV Claims and is used to write logs self.base_log_folder = configuration.get(self.core_section, 'base_log_folder') # The Kubernetes Namespace in which the Scheduler and Webserver reside. Note # that if your # cluster has RBAC enabled, your scheduler may need service account permissions to # create, watch, get, and delete pods in this namespace. self.kube_namespace = conf.get(self.kubernetes_section, 'namespace') # The Kubernetes Namespace in which pods will be created by the executor. Note # that if your # cluster has RBAC enabled, your workers may need service account permissions to # interact with cluster components. self.executor_namespace = conf.get(self.kubernetes_section, 'namespace') # Task secrets managed by KubernetesExecutor. self.gcp_service_account_keys = conf.get(self.kubernetes_section, 'gcp_service_account_keys') # If the user is using the git-sync container to clone their repository via git, # allow them to specify repository, tag, and pod name for the init container. self.git_sync_container_repository = conf.get( self.kubernetes_section, 'git_sync_container_repository') self.git_sync_container_tag = conf.get( self.kubernetes_section, 'git_sync_container_tag') self.git_sync_container = '{}:{}'.format( self.git_sync_container_repository, self.git_sync_container_tag) self.git_sync_init_container_name = conf.get( self.kubernetes_section, 'git_sync_init_container_name') # The worker pod may optionally have a valid Airflow config loaded via a # configmap self.airflow_configmap = conf.get(self.kubernetes_section, 'airflow_configmap') affinity_json = conf.get(self.kubernetes_section, 'affinity') if affinity_json: self.kube_affinity = json.loads(affinity_json) else: self.kube_affinity = None tolerations_json = conf.get(self.kubernetes_section, 'tolerations') if tolerations_json: self.kube_tolerations = json.loads(tolerations_json) else: self.kube_tolerations = None kube_client_request_args = conf.get(self.kubernetes_section, 'kube_client_request_args') if kube_client_request_args: self.kube_client_request_args = json.loads(kube_client_request_args) if self.kube_client_request_args['_request_timeout'] and \ isinstance(self.kube_client_request_args['_request_timeout'], list): self.kube_client_request_args['_request_timeout'] = \ tuple(self.kube_client_request_args['_request_timeout']) else: self.kube_client_request_args = {} self._validate() def _validate(self): # TODO: use XOR for dags_volume_claim and git_dags_folder_mount_point if not self.dags_volume_claim \ and not self.dags_volume_host \ and not self.dags_in_image \ and (not self.git_repo or not self.git_branch or not self.git_dags_folder_mount_point): raise AirflowConfigException( 'In kubernetes mode the following must be set in the `kubernetes` ' 'config section: `dags_volume_claim` ' 'or `dags_volume_host` ' 'or `dags_in_image` ' 'or `git_repo and git_branch and git_dags_folder_mount_point`') if self.git_repo \ and (self.git_user or self.git_password) \ and self.git_ssh_key_secret_name: raise AirflowConfigException( 'In kubernetes mode, using `git_repo` to pull the DAGs: ' 'for private repositories, either `git_user` and `git_password` ' 'must be set for authentication through user credentials; ' 'or `git_ssh_key_secret_name` must be set for authentication ' 'through ssh key, but not both') class KubernetesJobWatcher(multiprocessing.Process, LoggingMixin, object): def __init__(self, namespace, watcher_queue, resource_version, worker_uuid, kube_config): multiprocessing.Process.__init__(self) self.namespace = namespace self.worker_uuid = worker_uuid self.watcher_queue = watcher_queue self.resource_version = resource_version self.kube_config = kube_config def run(self): kube_client = get_kube_client() while True: try: self.resource_version = self._run(kube_client, self.resource_version, self.worker_uuid, self.kube_config) except Exception: self.log.exception('Unknown error in KubernetesJobWatcher. Failing') raise else: self.log.warn('Watch died gracefully, starting back up with: ' 'last resource_version: %s', self.resource_version) def _run(self, kube_client, resource_version, worker_uuid, kube_config): self.log.info( 'Event: and now my watch begins starting at resource_version: %s', resource_version ) watcher = watch.Watch() kwargs = {'label_selector': 'airflow-worker={}'.format(worker_uuid)} if resource_version: kwargs['resource_version'] = resource_version if kube_config.kube_client_request_args: for key, value in kube_config.kube_client_request_args.iteritems(): kwargs[key] = value last_resource_version = None for event in watcher.stream(kube_client.list_namespaced_pod, self.namespace, **kwargs): task = event['object'] self.log.info( 'Event: %s had an event of type %s', task.metadata.name, event['type'] ) if event['type'] == 'ERROR': return self.process_error(event) self.process_status( task.metadata.name, task.status.phase, task.metadata.labels, task.metadata.resource_version ) last_resource_version = task.metadata.resource_version return last_resource_version def process_error(self, event): self.log.error( 'Encountered Error response from k8s list namespaced pod stream => %s', event ) raw_object = event['raw_object'] if raw_object['code'] == 410: self.log.info( 'Kubernetes resource version is too old, must reset to 0 => %s', raw_object['message'] ) # Return resource version 0 return '0' raise AirflowException( 'Kubernetes failure for %s with code %s and message: %s', raw_object['reason'], raw_object['code'], raw_object['message'] ) def process_status(self, pod_id, status, labels, resource_version): if status == 'Pending': self.log.info('Event: %s Pending', pod_id) elif status == 'Failed': self.log.info('Event: %s Failed', pod_id) self.watcher_queue.put((pod_id, State.FAILED, labels, resource_version)) elif status == 'Succeeded': self.log.info('Event: %s Succeeded', pod_id) self.watcher_queue.put((pod_id, None, labels, resource_version)) elif status == 'Running': self.log.info('Event: %s is Running', pod_id) else: self.log.warn( 'Event: Invalid state: %s on pod: %s with labels: %s with ' 'resource_version: %s', status, pod_id, labels, resource_version ) class AirflowKubernetesScheduler(LoggingMixin): def __init__(self, kube_config, task_queue, result_queue, kube_client, worker_uuid): self.log.debug("Creating Kubernetes executor") self.kube_config = kube_config self.task_queue = task_queue self.result_queue = result_queue self.namespace = self.kube_config.kube_namespace self.log.debug("Kubernetes using namespace %s", self.namespace) self.kube_client = kube_client self.launcher = PodLauncher(kube_client=self.kube_client) self.worker_configuration = WorkerConfiguration(kube_config=self.kube_config) self._manager = multiprocessing.Manager() self.watcher_queue = self._manager.Queue() self.worker_uuid = worker_uuid self.kube_watcher = self._make_kube_watcher() def _make_kube_watcher(self): resource_version = KubeResourceVersion.get_current_resource_version() watcher = KubernetesJobWatcher(self.namespace, self.watcher_queue, resource_version, self.worker_uuid, self.kube_config) watcher.start() return watcher def _health_check_kube_watcher(self): if self.kube_watcher.is_alive(): pass else: self.log.error( 'Error while health checking kube watcher process. ' 'Process died for unknown reasons') self.kube_watcher = self._make_kube_watcher() def run_next(self, next_job): """ The run_next command will check the task_queue for any un-run jobs. It will then create a unique job-id, launch that job in the cluster, and store relevant info in the current_jobs map so we can track the job's status """ self.log.info('Kubernetes job is %s', str(next_job)) key, command, kube_executor_config = next_job dag_id, task_id, execution_date, try_number = key self.log.debug("Kubernetes running for command %s", command) self.log.debug("Kubernetes launching image %s", self.kube_config.kube_image) pod = self.worker_configuration.make_pod( namespace=self.namespace, worker_uuid=self.worker_uuid, pod_id=self._create_pod_id(dag_id, task_id), dag_id=self._make_safe_label_value(dag_id), task_id=self._make_safe_label_value(task_id), try_number=try_number, execution_date=self._datetime_to_label_safe_datestring(execution_date), airflow_command=command, kube_executor_config=kube_executor_config ) # the watcher will monitor pods, so we do not block. self.launcher.run_pod_async(pod, **self.kube_config.kube_client_request_args) self.log.debug("Kubernetes Job created!") def delete_pod(self, pod_id): if self.kube_config.delete_worker_pods: try: self.kube_client.delete_namespaced_pod( pod_id, self.namespace, body=client.V1DeleteOptions(), **self.kube_config.kube_client_request_args) except ApiException as e: # If the pod is already deleted if e.status != 404: raise def sync(self): """ The sync function checks the status of all currently running kubernetes jobs. If a job is completed, it's status is placed in the result queue to be sent back to the scheduler. :return: """ self._health_check_kube_watcher() while True: try: task = self.watcher_queue.get_nowait() try: self.process_watcher_task(task) finally: self.watcher_queue.task_done() except Empty: break def process_watcher_task(self, task): pod_id, state, labels, resource_version = task self.log.info( 'Attempting to finish pod; pod_id: %s; state: %s; labels: %s', pod_id, state, labels ) key = self._labels_to_key(labels=labels) if key: self.log.debug('finishing job %s - %s (%s)', key, state, pod_id) self.result_queue.put((key, state, pod_id, resource_version)) @staticmethod def _strip_unsafe_kubernetes_special_chars(string): """ Kubernetes only supports lowercase alphanumeric characters and "-" and "." in the pod name However, there are special rules about how "-" and "." can be used so let's only keep alphanumeric chars see here for detail: https://kubernetes.io/docs/concepts/overview/working-with-objects/names/ :param string: The requested Pod name :return: ``str`` Pod name stripped of any unsafe characters """ return ''.join(ch.lower() for ind, ch in enumerate(string) if ch.isalnum()) @staticmethod def _make_safe_pod_id(safe_dag_id, safe_task_id, safe_uuid): """ Kubernetes pod names must be <= 253 chars and must pass the following regex for validation "^[a-z0-9]([-a-z0-9]*[a-z0-9])?(\\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*$" :param safe_dag_id: a dag_id with only alphanumeric characters :param safe_task_id: a task_id with only alphanumeric characters :param random_uuid: a uuid :return: ``str`` valid Pod name of appropriate length """ MAX_POD_ID_LEN = 253 safe_key = safe_dag_id + safe_task_id safe_pod_id = safe_key[:MAX_POD_ID_LEN - len(safe_uuid) - 1] + "-" + safe_uuid return safe_pod_id @staticmethod def _make_safe_label_value(string): """ Valid label values must be 63 characters or less and must be empty or begin and end with an alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between. If the label value is then greater than 63 chars once made safe, or differs in any way from the original value sent to this function, then we need to truncate to 53chars, and append it with a unique hash. """ MAX_LABEL_LEN = 63 safe_label = re.sub(r'^[^a-z0-9A-Z]*|[^a-zA-Z0-9_\-\.]|[^a-z0-9A-Z]*$', '', string) if len(safe_label) > MAX_LABEL_LEN or string != safe_label: safe_hash = hashlib.md5(string.encode()).hexdigest()[:9] safe_label = safe_label[:MAX_LABEL_LEN - len(safe_hash) - 1] + "-" + safe_hash return safe_label @staticmethod def _create_pod_id(dag_id, task_id): safe_dag_id = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( dag_id) safe_task_id = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( task_id) safe_uuid = AirflowKubernetesScheduler._strip_unsafe_kubernetes_special_chars( uuid4().hex) return AirflowKubernetesScheduler._make_safe_pod_id(safe_dag_id, safe_task_id, safe_uuid) @staticmethod def _label_safe_datestring_to_datetime(string): """ Kubernetes doesn't permit ":" in labels. ISO datetime format uses ":" but not "_", let's replace ":" with "_" :param string: str :return: datetime.datetime object """ return parser.parse(string.replace('_plus_', '+').replace("_", ":")) @staticmethod def _datetime_to_label_safe_datestring(datetime_obj): """ Kubernetes doesn't like ":" in labels, since ISO datetime format uses ":" but not "_" let's replace ":" with "_" :param datetime_obj: datetime.datetime object :return: ISO-like string representing the datetime """ return datetime_obj.isoformat().replace(":", "_").replace('+', '_plus_') def _labels_to_key(self, labels): try_num = 1 try: try_num = int(labels.get('try_number', '1')) except ValueError: self.log.warn("could not get try_number as an int: %s", labels.get('try_number', '1')) try: dag_id = labels['dag_id'] task_id = labels['task_id'] ex_time = self._label_safe_datestring_to_datetime(labels['execution_date']) except Exception as e: self.log.warn( 'Error while retrieving labels; labels: %s; exception: %s', labels, e ) return None with create_session() as session: tasks = ( session .query(TaskInstance) .filter_by(execution_date=ex_time).all() ) self.log.info( 'Checking %s task instances.', len(tasks) ) for task in tasks: if ( self._make_safe_label_value(task.dag_id) == dag_id and self._make_safe_label_value(task.task_id) == task_id and task.execution_date == ex_time ): self.log.info( 'Found matching task %s-%s (%s) with current state of %s', task.dag_id, task.task_id, task.execution_date, task.state ) dag_id = task.dag_id task_id = task.task_id return (dag_id, task_id, ex_time, try_num) self.log.warn( 'Failed to find and match task details to a pod; labels: %s', labels ) return None def terminate(self): self.watcher_queue.join() self._manager.shutdown() class KubernetesExecutor(BaseExecutor, LoggingMixin): def __init__(self): self.kube_config = KubeConfig() self.task_queue = None self.result_queue = None self.kube_scheduler = None self.kube_client = None self.worker_uuid = None self._manager = multiprocessing.Manager() super().__init__(parallelism=self.kube_config.parallelism) @provide_session def clear_not_launched_queued_tasks(self, session=None): """ If the airflow scheduler restarts with pending "Queued" tasks, the tasks may or may not have been launched Thus, on starting up the scheduler let's check every "Queued" task to see if it has been launched (ie: if there is a corresponding pod on kubernetes) If it has been launched then do nothing, otherwise reset the state to "None" so the task will be rescheduled This will not be necessary in a future version of airflow in which there is proper support for State.LAUNCHED """ queued_tasks = session\ .query(TaskInstance)\ .filter(TaskInstance.state == State.QUEUED).all() self.log.info( 'When executor started up, found %s queued task instances', len(queued_tasks) ) for task in queued_tasks: dict_string = ( "dag_id={},task_id={},execution_date={},airflow-worker={}".format( AirflowKubernetesScheduler._make_safe_label_value(task.dag_id), AirflowKubernetesScheduler._make_safe_label_value(task.task_id), AirflowKubernetesScheduler._datetime_to_label_safe_datestring( task.execution_date ), self.worker_uuid ) ) kwargs = dict(label_selector=dict_string) if self.kube_config.kube_client_request_args: for key, value in self.kube_config.kube_client_request_args.iteritems(): kwargs[key] = value pod_list = self.kube_client.list_namespaced_pod( self.kube_config.kube_namespace, **kwargs) if len(pod_list.items) == 0: self.log.info( 'TaskInstance: %s found in queued state but was not launched, ' 'rescheduling', task ) session.query(TaskInstance).filter( TaskInstance.dag_id == task.dag_id, TaskInstance.task_id == task.task_id, TaskInstance.execution_date == task.execution_date ).update({TaskInstance.state: State.NONE}) def _inject_secrets(self): def _create_or_update_secret(secret_name, secret_path): try: return self.kube_client.create_namespaced_secret( self.kube_config.executor_namespace, kubernetes.client.V1Secret( data={ 'key.json': base64.b64encode(open(secret_path, 'r').read())}, metadata=kubernetes.client.V1ObjectMeta(name=secret_name)), **self.kube_config.kube_client_request_args) except ApiException as e: if e.status == 409: return self.kube_client.replace_namespaced_secret( secret_name, self.kube_config.executor_namespace, kubernetes.client.V1Secret( data={'key.json': base64.b64encode( open(secret_path, 'r').read())}, metadata=kubernetes.client.V1ObjectMeta(name=secret_name)), **self.kube_config.kube_client_request_args) self.log.exception( 'Exception while trying to inject secret. ' 'Secret name: %s, error details: %s', secret_name, e ) raise # For each GCP service account key, inject it as a secret in executor # namespace with the specific secret name configured in the airflow.cfg. # We let exceptions to pass through to users. if self.kube_config.gcp_service_account_keys: name_path_pair_list = [ {'name': account_spec.strip().split('=')[0], 'path': account_spec.strip().split('=')[1]} for account_spec in self.kube_config.gcp_service_account_keys.split(',')] for service_account in name_path_pair_list: _create_or_update_secret(service_account['name'], service_account['path']) def start(self): self.log.info('Start Kubernetes executor') self.worker_uuid = KubeWorkerIdentifier.get_or_create_current_kube_worker_uuid() self.log.debug('Start with worker_uuid: %s', self.worker_uuid) # always need to reset resource version since we don't know # when we last started, note for behavior below # https://github.com/kubernetes-client/python/blob/master/kubernetes/docs # /CoreV1Api.md#list_namespaced_pod KubeResourceVersion.reset_resource_version() self.task_queue = self._manager.Queue() self.result_queue = self._manager.Queue() self.kube_client = get_kube_client() self.kube_scheduler = AirflowKubernetesScheduler( self.kube_config, self.task_queue, self.result_queue, self.kube_client, self.worker_uuid ) self._inject_secrets() self.clear_not_launched_queued_tasks() def execute_async(self, key, command, queue=None, executor_config=None): self.log.info( 'Add task %s with command %s with executor_config %s', key, command, executor_config ) kube_executor_config = KubernetesExecutorConfig.from_dict(executor_config) self.task_queue.put((key, command, kube_executor_config)) def sync(self): if self.running: self.log.debug('self.running: %s', self.running) if self.queued_tasks: self.log.debug('self.queued: %s', self.queued_tasks) self.kube_scheduler.sync() last_resource_version = None while True: try: results = self.result_queue.get_nowait() try: key, state, pod_id, resource_version = results last_resource_version = resource_version self.log.info('Changing state of %s to %s', results, state) try: self._change_state(key, state, pod_id) except Exception as e: self.log.exception('Exception: %s when attempting ' + 'to change state of %s to %s, re-queueing.', e, results, state) self.result_queue.put(results) finally: self.result_queue.task_done() except Empty: break KubeResourceVersion.checkpoint_resource_version(last_resource_version) for _ in range(self.kube_config.worker_pods_creation_batch_size): try: task = self.task_queue.get_nowait() try: self.kube_scheduler.run_next(task) except ApiException: self.log.exception('ApiException when attempting to run task, re-queueing.') self.task_queue.put(task) finally: self.task_queue.task_done() except Empty: break def _change_state(self, key, state, pod_id): if state != State.RUNNING: self.kube_scheduler.delete_pod(pod_id) try: self.log.info('Deleted pod: %s', str(key)) self.running.pop(key) except KeyError: self.log.debug('Could not find key: %s', str(key)) pass self.event_buffer[key] = state (dag_id, task_id, ex_time, try_number) = key with create_session() as session: item = session.query(TaskInstance).filter_by( dag_id=dag_id, task_id=task_id, execution_date=ex_time ).one() if state: item.state = state session.add(item) def end(self): self.log.info('Shutting down Kubernetes executor') self.task_queue.join() self.result_queue.join() if self.kube_scheduler: self.kube_scheduler.terminate() self._manager.shutdown()
45.166259
106
0.62724
be3256e2c236eeac4eed56c05fea9b64646894a7
2,485
py
Python
docs/conf.py
dottinf/dimcli
708e83675afa6279424487c5b7417f5393c480bb
[ "MIT" ]
1
2020-04-15T06:16:33.000Z
2020-04-15T06:16:33.000Z
docs/conf.py
dottinf/dimcli
708e83675afa6279424487c5b7417f5393c480bb
[ "MIT" ]
null
null
null
docs/conf.py
dottinf/dimcli
708e83675afa6279424487c5b7417f5393c480bb
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, '/Users/michele.pasin/Dropbox/code/python/dimcli/dimcli_project/dimcli') # -- Project information ----------------------------------------------------- project = 'dimcli' copyright = '2020, Author' author = 'Author' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.todo', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'en' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'nature' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False
35
93
0.652716
2857269d5f5356ac7c3829dea684674fac327bad
10,427
py
Python
animations/lm95p1.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
9
2018-02-19T14:17:12.000Z
2021-03-27T14:46:28.000Z
animations/lm95p1.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
null
null
null
animations/lm95p1.py
TristanCacqueray/demo-render
4c8403e684165e5e75c046ee023c1f794a6650a8
[ "Apache-2.0" ]
null
null
null
#!/bin/env python3 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ SIZE=6 # lm95 anim: # 0 - 1125 intro ./lm95p1.py --record /tmp/anim --wav ../render_data/lm95p1.wav --steps 1125 --anim zoom --size $SIZE # 1125 - 1575 transition ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 420 --anim zoom2 --frame_start 1125 --size $SIZE ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 30 --anim tr1 --frame_start 1545 --size $SIZE # 1575 - 2500 part1 ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 925 --anim traveling --frame_start 1575 --size $SIZE # 2500 - 2950 part2 ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 18 --anim tr2 --frame_start 2500 --size $SIZE ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 875 --anim trippy --frame_start 2518 --size $SIZE # 3293 - 4018 zoomout ./lm95p1.py --record /tmp/anim/ --wav ../render_data/lm95p1.wav --steps 625 --anim zoomout --frame_start 3393 --size $SIZE """ import random import pygame import numpy as np from utils_v1.common import usage_cli_complex, run_main from utils_v1.pygame_utils import Screen from utils_v1.julia_set import JuliaSet from utils_v1.scipy_utils import AudioMod def jiggle(args, audio_mod=None): modulations = { "zoom": { "begin": { # "c": (-1.9672144721067721+3.72412944951802e-12j), "c": (-1.8822299686241232+0.001j), # +3.72412944951802e-12j), "radius": 0.300338745117, }, "end": { "c": (-1.7822299686241232+0.001j), # 3.72412944951802e-12j), "radius": 3.01697554849e-02, }, "radius_space": "log", "audio_mod": { "c_imag": -0.0015, }, # "space": "log", "max_iter": 2048, }, "zoom2": { "begin": { "c": (-1.7822299686241232+0.0005166571710672173j), "radius": 0.0301697554849, "audio_mod": 1, }, "end": { "c": (-1.7810844610161822+2.729043964254327e-07j), # "radius": 0.00088688411246, # 0.00330763749309, # 1.70280390934e-05, "radius": 0.002, "audio_mod": 0.02, }, "radius_space": "-log", "audio_mod": { "c_real": 0.002, }, "skip_real": True, "max_iter": 2048, }, "tr1": { "begin": { "c": -1.7822231418976315+2.729043964254327e-07j, "radius": 0.002, }, "end": { "c": -1.7822206200202013+2.729043964254327e-07j, "radius": 0.00088688411246, }, "radius_space": "log", "max_iter": 2048, }, "traveling": { "begin": { "c": -1.7822206200202013+2.729043964254327e-07j, "radius": 0.000888688411246, }, "end": { "c": -1.782191182216574-0j, "radius": 0.000888688411246, }, "c_space_image": "log", "audio_mod": { "color": 2, "c_real": 0.000002, }, "max_iter": 2048, }, "tr2": { "begin": { "c": -1.7821907956568581+0j, "radius": 0.000888688411246, }, "end": { "radius": 0.000281186567621, "c": -1.7821911201074472-1e-12j, }, "max_iter": 2048, }, "trippy": { "begin": { "c": -1.7821911173201472-1e-12j, "radius": 0.000281186567621, }, "end": { "c": -1.7821911201074472-8e-10j, }, "audio_mod": { "c_real": -0.00000005 }, "max_iter": 4096, }, "zoomout": { "begin": { "c": -1.78219112855035-8e-10j, "radius": 0.000281186567621, "audio_mod": 0.1, }, "end": { "c": -1.7821911201074472-8e-08j, "radius": 0.3, "audio_mod": 3000000, }, "audio_mod": { "c_real": 0.0000005, "c_imag": 0.0000005, }, "audio_mod_space": "log", "radius_space": "log", }, "spiral": { "begin": { "c": (-0.788+0.052j), "radius": 0.2, # "c": (-0.758+0.052j), # thighter }, "end": { "c": (-0.7535+0.056j), }, "audio_mod": { "c_real": 0.065, "c_imag": 0.04, }, "skip_imag": True, "center": complex(-0.41, -0.0554), "max_iter": 600, "loop": True }, "new": { "begin": { "c": (-1.789228770017097+9.647348357832448e-13j), }, "end": { "c": (-1.789228770017097+9.647348357832448e-13j), # "c": None, }, "seed": (0.4699999999999999-0.23j), # "only_imag": True, "range": 0.04, "center": 0, "max_iter": 1000, "radius": 9.5458991964e-06, } } if args.anim is None: mod = random.choice(modulations.values()) else: mod = modulations[args.anim] path_steps = args.steps if mod.get("loop"): path_steps = path_steps // 2 def get_path(begin, end, space="lin"): if space == "log": if space == "-log": begin, end = end, begin path = np.geomspace(begin, end, path_steps) if space == "-log": path = path[::-1] else: path = np.linspace(begin, end, path_steps) return path def loop_path(path): return np.append(np.append(path, path[:-1][::-1]), path[:1]) mod_rad, mod_real, mod_imag, mod_pow = None, None, None, None if mod.get("begin") and mod.get("end"): if mod["begin"].get("c"): mod["seed"] = mod["begin"]["c"] if mod["begin"].get("c") and mod["end"].get("c"): mod_real = get_path(mod["begin"]["c"].real, mod["end"]["c"].real, mod.get("c_space_real", "lin")) mod_imag = get_path(mod["begin"]["c"].imag, mod["end"]["c"].imag, mod.get("c_space_imag", "lin")) if mod["begin"].get("radius") and mod["end"].get("radius"): mod_rad = get_path(mod["begin"]["radius"], mod["end"]["radius"], mod.get("radius_space", "lin")) if mod["begin"].get("audio_mod"): mod_pow = get_path(mod["begin"]["audio_mod"], mod["end"]["audio_mod"], mod.get("audio_mod_space", "-log")) if mod.get("loop"): mod_real = loop_path(mod_real) mod_imag = loop_path(mod_imag) if mod_rad: mod_rad = loop_path(mod_rad) def update_view(scene, frame): radius = mod["begin"].get("radius", 1) if mod_rad is not None: radius = mod_rad[frame] center = mod.get("center") scene.set_view(center=center, radius=radius) scene.max_iter = mod.get("max_iter", args.max_iter) if mod.get("skip_imag"): seed_imag = mod["begin"]["c"].imag else: seed_imag = mod_imag[frame] if mod.get("skip_real"): seed_real = mod["begin"]["c"].real else: seed_real = mod_real[frame] if audio_mod and mod.get("audio_mod"): amod = audio_mod.get(frame + args.frame_start) if mod_pow is not None: p = mod_pow[frame] else: p = 1 if mod["audio_mod"].get("c_imag"): seed_imag += amod * mod["audio_mod"]["c_imag"] * p if mod["audio_mod"].get("c_real"): seed_real += amod * mod["audio_mod"]["c_real"] * p if mod["audio_mod"].get("color"): cmod = mod["audio_mod"]["color"] * amod scene.color_vector = np.vectorize(args.color(args.max_iter, cmod)) scene.c = complex(seed_real, seed_imag) return update_view def main(): args = usage_cli_complex(worker=1) if not args.steps: print("Set --steps for the number of frame") exit(1) audio_mod = AudioMod("lm95p1.wav", 4019, 1) screen = Screen(args.winsize) scene = JuliaSet(args) screen.add(scene) clock = pygame.time.Clock() if not args.anim: args.anim = "spiral" audio_mod = None animation = jiggle(args, audio_mod) for frame in range(args.skip, args.steps): animation(scene, frame) scene.render(frame) screen.update() pygame.display.update() if args.record: screen.capture(args.record, frame + args.frame_start) clock.tick(args.fps) if args.video and args.record: import subprocess subprocess.Popen([ "ffmpeg", "-y", "-framerate", str(args.fps), "-start_number", str(args.skip), "-i", "%s/%%04d.png" % args.record, "-i", args.wav, "-c:a", "libvorbis", "-c:v", "libvpx", "-threads", "4", "-b:v", "5M", "%s/%04d-%s.webm" % (args.record, args.skip, args.anim) ]).wait() if __name__ == "__main__": run_main(main)
33.744337
127
0.48432
1e88a007449cf2b1d937e4a706a17048fc065695
1,114
py
Python
data_management/toolboxes/scripts/BlankScript.py
conklinbd/solutions-geoprocessing-toolbox
7afab793ea34b7e7cb7e32757e8a150b6637ffd2
[ "Apache-2.0" ]
null
null
null
data_management/toolboxes/scripts/BlankScript.py
conklinbd/solutions-geoprocessing-toolbox
7afab793ea34b7e7cb7e32757e8a150b6637ffd2
[ "Apache-2.0" ]
null
null
null
data_management/toolboxes/scripts/BlankScript.py
conklinbd/solutions-geoprocessing-toolbox
7afab793ea34b7e7cb7e32757e8a150b6637ffd2
[ "Apache-2.0" ]
1
2018-10-25T15:52:41.000Z
2018-10-25T15:52:41.000Z
#------------------------------------------------------------------------------- # Copyright 2010-2013 Esri # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------- #--------ESRI 2010------------------------------------- # Blank Script # This script is intentionally empty. # It is intended to provide the basis for a script tool, the # sole job of which is to provide the opportunity to add # parameter validation to models # INPUTS: # none # OUTPUTS: # none # # Date: June 10, 2010 #------------------------------------------------------
39.785714
80
0.572711
b02a07090c51eff010d63aad505dd4d20f16e3eb
22,191
py
Python
emotion_recognition.py
junction-kabantchiki/emotion-recognition-using-speech
d7e51c96cbb7f93bfa07f501dfe2eaf799acfc9a
[ "MIT" ]
null
null
null
emotion_recognition.py
junction-kabantchiki/emotion-recognition-using-speech
d7e51c96cbb7f93bfa07f501dfe2eaf799acfc9a
[ "MIT" ]
null
null
null
emotion_recognition.py
junction-kabantchiki/emotion-recognition-using-speech
d7e51c96cbb7f93bfa07f501dfe2eaf799acfc9a
[ "MIT" ]
null
null
null
from data_extractor import load_data from utils import extract_feature, AVAILABLE_EMOTIONS from create_csv import write_emodb_csv, write_tess_ravdess_csv, write_custom_csv from sklearn.metrics import accuracy_score, make_scorer, fbeta_score, mean_squared_error, mean_absolute_error from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as pl from time import time from utils import get_best_estimators, get_audio_config import numpy as np import tqdm import os import random import pandas as pd class EmotionRecognizer: """A class for training, testing and predicting emotions based on speech's features that are extracted and fed into `sklearn` or `keras` model""" def __init__(self, model, **kwargs): """ Params: model (sklearn model): the model used to detect emotions. emotions (list): list of emotions to be used. Note that these emotions must be available in RAVDESS_TESS & EMODB Datasets, available nine emotions are the following: 'neutral', 'calm', 'happy', 'sad', 'angry', 'fear', 'disgust', 'ps' ( pleasant surprised ), 'boredom'. Default is ["sad", "neutral", "happy"]. tess_ravdess (bool): whether to use TESS & RAVDESS Speech datasets, default is True emodb (bool): whether to use EMO-DB Speech dataset, default is True, custom_db (bool): whether to use custom Speech dataset that is located in `data/train-custom` and `data/test-custom`, default is True tess_ravdess_name (str): the name of the output CSV file for TESS&RAVDESS dataset, default is "tess_ravdess.csv" emodb_name (str): the name of the output CSV file for EMO-DB dataset, default is "emodb.csv" custom_db_name (str): the name of the output CSV file for the custom dataset, default is "custom.csv" features (list): list of speech features to use, default is ["mfcc", "chroma", "mel"] (i.e MFCC, Chroma and MEL spectrogram ) classification (bool): whether to use classification or regression, default is True balance (bool): whether to balance the dataset ( both training and testing ), default is True verbose (bool/int): whether to print messages on certain tasks, default is 1 Note that when `tess_ravdess`, `emodb` and `custom_db` are set to `False`, `tess_ravdess` will be set to True automatically. """ # model self.model = model # emotions self.emotions = kwargs.get("emotions", ["sad", "neutral", "happy"]) # make sure that there are only available emotions self._verify_emotions() # audio config self.features = kwargs.get("features", ["mfcc", "chroma", "mel"]) self.audio_config = get_audio_config(self.features) # datasets self.tess_ravdess = kwargs.get("tess_ravdess", True) self.emodb = kwargs.get("emodb", True) self.custom_db = kwargs.get("custom_db", True) if not self.tess_ravdess and not self.emodb and not self.custom_db: self.tess_ravdess = True self.classification = kwargs.get("classification", True) self.balance = kwargs.get("balance", True) self.override_csv = kwargs.get("override_csv", True) self.verbose = kwargs.get("verbose", 1) self.tess_ravdess_name = kwargs.get("tess_ravdess_name", "tess_ravdess.csv") self.emodb_name = kwargs.get("emodb_name", "emodb.csv") self.custom_db_name = kwargs.get("custom_db_name", "custom.csv") self.verbose = kwargs.get("verbose", 1) # set metadata path file names self._set_metadata_filenames() # boolean attributes self.data_loaded = False self.model_trained = False def _set_metadata_filenames(self): """ Protected method to get all CSV (metadata) filenames into two instance attributes: - `self.train_desc_files` for training CSVs - `self.test_desc_files` for testing CSVs """ train_desc_files, test_desc_files = [], [] if self.tess_ravdess: train_desc_files.append(f"train_{self.tess_ravdess_name}") test_desc_files.append(f"test_{self.tess_ravdess_name}") if self.emodb: train_desc_files.append(f"train_{self.emodb_name}") test_desc_files.append(f"test_{self.emodb_name}") if self.custom_db: train_desc_files.append(f"train_{self.custom_db_name}") test_desc_files.append(f"test_{self.custom_db_name}") # set them to be object attributes self.train_desc_files = train_desc_files self.test_desc_files = test_desc_files def _verify_emotions(self): """ This method makes sure that emotions passed in parameters are valid. """ for emotion in self.emotions: assert emotion in AVAILABLE_EMOTIONS, "Emotion not recognized." def get_best_estimators(self): """Loads estimators from grid files and returns them""" return get_best_estimators(self.classification) def write_csv(self): """ Write available CSV files in `self.train_desc_files` and `self.test_desc_files` determined by `self._set_metadata_filenames()` method. """ for train_csv_file, test_csv_file in zip(self.train_desc_files, self.test_desc_files): # not safe approach if os.path.isfile(train_csv_file) and os.path.isfile(test_csv_file): # file already exists, just skip writing csv files if not self.override_csv: continue if self.emodb_name in train_csv_file: write_emodb_csv(self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose) if self.verbose: print("[+] Writed EMO-DB CSV File") elif self.tess_ravdess_name in train_csv_file: write_tess_ravdess_csv(self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose) if self.verbose: print("[+] Writed TESS & RAVDESS DB CSV File") elif self.custom_db_name in train_csv_file: write_custom_csv(emotions=self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose) if self.verbose: print("[+] Writed Custom DB CSV File") def load_data(self): """ Loads and extracts features from the audio files for the db's specified """ if not self.data_loaded: result = load_data(self.train_desc_files, self.test_desc_files, self.audio_config, self.classification, emotions=self.emotions, balance=self.balance) self.X_train = result['X_train'] self.X_test = result['X_test'] self.y_train = result['y_train'] self.y_test = result['y_test'] self.train_audio_paths = result['train_audio_paths'] self.test_audio_paths = result['test_audio_paths'] if self.verbose: print("[+] Data loaded") self.data_loaded = True def train(self, verbose=1): """ Train the model, if data isn't loaded, it 'll be loaded automatically """ if not self.data_loaded: # if data isn't loaded yet, load it then self.load_data() if not self.model_trained: self.model.fit(X=self.X_train, y=self.y_train) self.model_trained = True if verbose: print("[+] Model trained") def predict(self, audio_path): """ given an `audio_path`, this method extracts the features and predicts the emotion """ feature = extract_feature(audio_path, **self.audio_config).reshape(1, -1) return self.model.predict(feature)[0] def predict_proba(self, audio_path): """ Predicts the probability of each emotion. """ if self.classification: feature = extract_feature(audio_path, **self.audio_config).reshape(1, -1) proba = self.model.predict_proba(feature)[0] result = {} for emotion, prob in zip(self.emotions, proba): result[emotion] = prob return result else: raise NotImplementedError("Probability prediction doesn't make sense for regression") def grid_search(self, params, n_jobs=2): """ Performs GridSearchCV on `params` passed on the `self.model` And returns the tuple: (best_estimator, best_params, best_score). """ score = accuracy_score if self.classification else mean_absolute_error grid = GridSearchCV(estimator=self.model, param_grid=params, scoring=make_scorer(score), n_jobs=n_jobs, verbose=1, cv=3) grid_result = grid.fit(self.X_train, self.y_train) return grid_result.best_estimator_, grid_result.best_params_, grid_result.best_score_ def determine_best_model(self, train=True): """ Loads best estimators and determine which is best for test data, and then set it to `self.model`. if `train` is True, then train that model on train data, so the model will be ready for inference. In case of regression, the metric used is MSE and accuracy for classification. Note that the execution of this method may take several minutes due to training all estimators (stored in `grid` folder) for determining the best possible one. """ if not self.data_loaded: self.load_data() # loads estimators estimators = self.get_best_estimators() result = [] if self.verbose: estimators = tqdm.tqdm(estimators) for estimator, params, cv_score in estimators: if self.verbose: estimators.set_description(f"Evaluating {estimator.__class__.__name__}") detector = EmotionRecognizer(estimator, emotions=self.emotions, tess_ravdess=self.tess_ravdess, emodb=self.emodb, custom_db=self.custom_db, classification=self.classification, features=self.features, balance=self.balance, override_csv=False) # data already loaded detector.X_train = self.X_train detector.X_test = self.X_test detector.y_train = self.y_train detector.y_test = self.y_test detector.data_loaded = True # train the model detector.train(verbose=0) # get test accuracy accuracy = detector.test_score() # append to result result.append((detector.model, accuracy)) # sort the result if self.classification: result = sorted(result, key=lambda item: item[1], reverse=True) else: # regression, best is the lower, not the higher result = sorted(result, key=lambda item: item[1], reverse=False) best_estimator = result[0][0] accuracy = result[0][1] self.model = best_estimator self.model_trained = True if self.verbose: if self.classification: print(f"[+] Best model determined: {self.model.__class__.__name__} with {accuracy*100:.3f}% test accuracy") else: print(f"[+] Best model determined: {self.model.__class__.__name__} with {accuracy:.5f} mean absolute error") def test_score(self): """ Calculates score on testing data if `self.classification` is True, the metric used is accuracy, Mean-Squared-Error is used otherwise (regression) """ y_pred = self.model.predict(self.X_test) if self.classification: return accuracy_score(y_true=self.y_test, y_pred=y_pred) else: return mean_squared_error(y_true=self.y_test, y_pred=y_pred) def train_score(self): """ Calculates accuracy score on training data if `self.classification` is True, the metric used is accuracy, Mean-Squared-Error is used otherwise (regression) """ y_pred = self.model.predict(self.X_train) if self.classification: return accuracy_score(y_true=self.y_train, y_pred=y_pred) else: return mean_squared_error(y_true=self.y_train, y_pred=y_pred) def train_fbeta_score(self, beta): y_pred = self.model.predict(self.X_train) return fbeta_score(self.y_train, y_pred, beta, average='micro') def test_fbeta_score(self, beta): y_pred = self.model.predict(self.X_test) return fbeta_score(self.y_test, y_pred, beta, average='micro') def confusion_matrix(self, percentage=True, labeled=True): """ Computes confusion matrix to evaluate the test accuracy of the classification and returns it as numpy matrix or pandas dataframe (depends on params). params: percentage (bool): whether to use percentage instead of number of samples, default is True. labeled (bool): whether to label the columns and indexes in the dataframe. """ if not self.classification: raise NotImplementedError("Confusion matrix works only when it is a classification problem") y_pred = self.model.predict(self.X_test) matrix = confusion_matrix(self.y_test, y_pred, labels=self.emotions).astype(np.float32) if percentage: for i in range(len(matrix)): matrix[i] = matrix[i] / np.sum(matrix[i]) # make it percentage matrix *= 100 if labeled: matrix = pd.DataFrame(matrix, index=[ f"true_{e}" for e in self.emotions ], columns=[ f"predicted_{e}" for e in self.emotions ]) return matrix def draw_confusion_matrix(self): """Calculates the confusion matrix and shows it""" matrix = self.confusion_matrix(percentage=False, labeled=False) #TODO: add labels, title, legends, etc. pl.imshow(matrix, cmap="binary") pl.show() def n_emotions(self, emotion, partition): """Returns number of `emotion` data samples in a particular `partition` ('test' or 'train') """ if partition == "test": return len([y for y in self.y_test if y == emotion]) elif partition == "train": return len([y for y in self.y_train if y == emotion]) def get_samples_by_class(self): """ Returns a dataframe that contains the number of training and testing samples for all emotions. Note that if data isn't loaded yet, it'll be loaded """ if not self.data_loaded: self.load_data() train_samples = [] test_samples = [] total = [] for emotion in self.emotions: n_train = self.n_emotions(emotion, "train") n_test = self.n_emotions(emotion, "test") train_samples.append(n_train) test_samples.append(n_test) total.append(n_train + n_test) # get total total.append(sum(train_samples) + sum(test_samples)) train_samples.append(sum(train_samples)) test_samples.append(sum(test_samples)) return pd.DataFrame(data={"train": train_samples, "test": test_samples, "total": total}, index=self.emotions + ["total"]) def get_random_emotion(self, emotion, partition="train"): """ Returns random `emotion` data sample index on `partition`. """ if partition == "train": index = random.choice(list(range(len(self.y_train)))) while self.y_train[index] != emotion: index = random.choice(list(range(len(self.y_train)))) elif partition == "test": index = random.choice(list(range(len(self.y_test)))) while self.y_train[index] != emotion: index = random.choice(list(range(len(self.y_test)))) else: raise TypeError("Unknown partition, only 'train' or 'test' is accepted") return index def plot_histograms(classifiers=True, beta=0.5, n_classes=3, verbose=1): """ Loads different estimators from `grid` folder and calculate some statistics to plot histograms. Params: classifiers (bool): if `True`, this will plot classifiers, regressors otherwise. beta (float): beta value for calculating fbeta score for various estimators. n_classes (int): number of classes """ # get the estimators from the performed grid search result estimators = get_best_estimators(classifiers) final_result = {} for estimator, params, cv_score in estimators: final_result[estimator.__class__.__name__] = [] for i in range(3): result = {} # initialize the class detector = EmotionRecognizer(estimator, verbose=0) # load the data detector.load_data() if i == 0: # first get 1% of sample data sample_size = 0.01 elif i == 1: # second get 10% of sample data sample_size = 0.1 elif i == 2: # last get all the data sample_size = 1 # calculate number of training and testing samples n_train_samples = int(len(detector.X_train) * sample_size) n_test_samples = int(len(detector.X_test) * sample_size) # set the data detector.X_train = detector.X_train[:n_train_samples] detector.X_test = detector.X_test[:n_test_samples] detector.y_train = detector.y_train[:n_train_samples] detector.y_test = detector.y_test[:n_test_samples] # calculate train time t_train = time() detector.train() t_train = time() - t_train # calculate test time t_test = time() test_accuracy = detector.test_score() t_test = time() - t_test # set the result to the dictionary result['train_time'] = t_train result['pred_time'] = t_test result['acc_train'] = cv_score result['acc_test'] = test_accuracy result['f_train'] = detector.train_fbeta_score(beta) result['f_test'] = detector.test_fbeta_score(beta) if verbose: print(f"[+] {estimator.__class__.__name__} with {sample_size*100}% ({n_train_samples}) data samples achieved {cv_score*100:.3f}% Validation Score in {t_train:.3f}s & {test_accuracy*100:.3f}% Test Score in {t_test:.3f}s") # append the dictionary to the list of results final_result[estimator.__class__.__name__].append(result) if verbose: print() visualize(final_result, n_classes=n_classes) def visualize(results, n_classes): """ Visualization code to display results of various learners. inputs: - results: a dictionary of lists of dictionaries that contain various results on the corresponding estimator - n_classes: number of classes """ n_estimators = len(results) # naive predictor accuracy = 1 / n_classes f1 = 1 / n_classes # Create figure fig, ax = pl.subplots(2, 4, figsize = (11,7)) # Constants bar_width = 0.4 colors = [ (random.random(), random.random(), random.random()) for _ in range(n_estimators) ] # Super loop to plot four panels of data for k, learner in enumerate(results.keys()): for j, metric in enumerate(['train_time', 'acc_train', 'f_train', 'pred_time', 'acc_test', 'f_test']): for i in np.arange(3): x = bar_width * n_estimators # Creative plot code ax[j//3, j%3].bar(i*x+k*(bar_width), results[learner][i][metric], width = bar_width, color = colors[k]) ax[j//3, j%3].set_xticks([x-0.2, x*2-0.2, x*3-0.2]) ax[j//3, j%3].set_xticklabels(["1%", "10%", "100%"]) ax[j//3, j%3].set_xlabel("Training Set Size") ax[j//3, j%3].set_xlim((-0.2, x*3)) # Add unique y-labels ax[0, 0].set_ylabel("Time (in seconds)") ax[0, 1].set_ylabel("Accuracy Score") ax[0, 2].set_ylabel("F-score") ax[1, 0].set_ylabel("Time (in seconds)") ax[1, 1].set_ylabel("Accuracy Score") ax[1, 2].set_ylabel("F-score") # Add titles ax[0, 0].set_title("Model Training") ax[0, 1].set_title("Accuracy Score on Training Subset") ax[0, 2].set_title("F-score on Training Subset") ax[1, 0].set_title("Model Predicting") ax[1, 1].set_title("Accuracy Score on Testing Set") ax[1, 2].set_title("F-score on Testing Set") # Add horizontal lines for naive predictors ax[0, 1].axhline(y = accuracy, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed') ax[1, 1].axhline(y = accuracy, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed') ax[0, 2].axhline(y = f1, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed') ax[1, 2].axhline(y = f1, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed') # Set y-limits for score panels ax[0, 1].set_ylim((0, 1)) ax[0, 2].set_ylim((0, 1)) ax[1, 1].set_ylim((0, 1)) ax[1, 2].set_ylim((0, 1)) # Set additional plots invisibles ax[0, 3].set_visible(False) ax[1, 3].axis('off') # Create legend for i, learner in enumerate(results.keys()): pl.bar(0, 0, color=colors[i], label=learner) pl.legend() # Aesthetics pl.suptitle("Performance Metrics for Three Supervised Learning Models", fontsize = 16, y = 1.10) pl.tight_layout() pl.show()
45.01217
236
0.619981
e3db7c6be470d4f05ae6f1a7b131a6f2459dd860
9,754
py
Python
src/collect/fraudulous.py
ymentha14/emojis_dataset
8c5565a39c2862c14dfe41c3b441e9d3e5896a27
[ "MIT" ]
null
null
null
src/collect/fraudulous.py
ymentha14/emojis_dataset
8c5565a39c2862c14dfe41c3b441e9d3e5896a27
[ "MIT" ]
null
null
null
src/collect/fraudulous.py
ymentha14/emojis_dataset
8c5565a39c2862c14dfe41c3b441e9d3e5896a27
[ "MIT" ]
null
null
null
""" Fraudulous users detection As many ways exist for a user input to be invalid (garbage repeated input, random words answering etc) One need to either (1): perform a workers selection on-the-fly (possible with mt2gf) (2): accept all data in a first time and filter it afterwards The second option was chosen for the emojis dataset: this file contains the functions to filter out such fraudulous inputs """ import pickle as pk from src.constants import ( emotions_faces, REF_PATH, MAPPING_PATH, E2V_PATH, W2V_PATH, DATA_PATH, ) import sys sys.path.append("../../emoji2vec_working/") from src.exploration.form10_eda import * import seaborn as sns import numpy as np from src.constants import COLOR_FRAUD, COLOR_TRUE import Levenshtein from pdb import set_trace from src.utils import extract_emojis ###################### SINGLE WORD ###################### def detect_repeat_frauders(form_df, threshold=0.8): """ Detect the fraudulous workers i.e. the one who repeated the same word too many times """ form_df = form_df.copy() columns = [col for col in form_df.columns if col not in [ "Timestamp", "WorkerID"]] form_df["vocsize"] = form_df[columns].apply(lambda x: len(set(x)), axis=1) fraud_workers = form_df[form_df["vocsize"] < threshold * len(columns)][ "WorkerID" ].values.tolist() return set(fraud_workers) def detect_honey_frauders(form_df, honeypots, dist_lshtein=2): """ Returns the worker_ids of the workers who did not manage to find the honeypots Args: form_df (pd.df): as saved by download_multi_emoji_csv dist_lshteing (int): distance tolerated to accept a honeypot """ assert form_df["WorkerID"].is_unique form_df = form_df.set_index("WorkerID").copy() honey_columns = [em for em in form_df.columns if em in honeypots.keys()] form_df = form_df[honey_columns] assert form_df.shape[1] > 0 for em in honey_columns: corr_words = honeypots[em] form_df[em] = form_df[em].apply( lambda word: min( [Levenshtein.distance(word, corr_word) for corr_word in corr_words] ) > dist_lshtein ) frauder_list = form_df[form_df.any(axis=1)].index.tolist() return set(frauder_list) def get_wrong_honey_entries(form_df, honeypots, dist_lshtein=2): """ Returns the row of form_df which did not pass the honeypots test Args: form_df (pd.df): dataframe from a gform Return: [pd.df]: same df with honey frauders entries exclusively """ form_df = form_df.set_index("WorkerID").copy() honey_columns = [em for em in form_df.columns if em in honeypots.keys()] form_df = form_df[honey_columns] assert form_df.shape[1] > 0 for em in honey_columns: corr_words = honeypots[em] form_df[em] = form_df[em].apply( lambda word: min( [Levenshtein.distance(word, corr_word) for corr_word in corr_words] ) > dist_lshtein ) return form_df ######################################################### def plot_double_hist(user_serie, fraud): user_serie = user_serie.astype(int) user_serie_true = user_serie[~user_serie.index.isin(fraud)] user_serie_fraud = user_serie[user_serie.index.isin(fraud)] fig, ax = plt.subplots(1) ax.set_title("Rates of constant-answering users") user_serie = user_serie.value_counts() # user_serie_true.plot(kind='bar',color=COLOR_TRUE,label=,rot=0,ax=ax,alpha=0.5) # user_serie_fraud.plot(kind='bar',color=COLOR_FRAUD,label="fraud",rot=0,ax=ax,alpha=0.5) ax.hist( [user_serie_true, user_serie_fraud], color=[COLOR_TRUE, COLOR_FRAUD], label=["non-fraud", "fraud"], ) ax.set_xlabel("Fraudulent") ax.set_ylabel("Users count") ax.legend() # CONSTANTS def get_users_cstt(form_df): if type(form_df) is list: return pd.concat([get_users_cstt(df) for df in form_df]) formset_df = form_df.applymap(lambda x: frozenset(x.split(","))) # detect users giving constant answers cstt_mask = (formset_df.applymap(len) == 1).any(axis=1) return cstt_mask def dtct_cstt_answer(form_df): """ detect users giving at least one cstt answer (3 times the same word)""" cstt_mask = get_users_cstt(form_df) cstt_users = cstt_mask.index[cstt_mask].tolist() return cstt_users # DUPLICATES def get_users_duplicate(form_df, ratio=0.9): if type(form_df) is list: return pd.concat([get_users_duplicate(df) for df in form_df]) n_cols = form_df.shape[1] # transform the strings in frozen sets form_df = form_df.applymap(lambda x: frozenset(x.split(","))) duplicate_mask = form_df.apply(lambda x: len( set(x)) < int(n_cols * ratio), axis=1) return duplicate_mask def dtct_duplicate_answer(form_df, ratio=0.95): """detect users giving many times the same answer (up to ratio * the number of answers)""" duplicate_mask = get_users_duplicate(form_df, ratio) duplicate_users = set(duplicate_mask.index[duplicate_mask].tolist()) return duplicate_users # VOCABULARY def compute_voc_size(form_df): """ Compute the vocabulary size for each user Args: form_df(pd.DataFrame): formular df Return: [pd.Series]: series associating the voc size to each user """ if type(form_df) is list: return pd.concat([compute_voc_size(df) for df in form_df]) return form_df.apply(lambda x: len(set("".join(x).split(","))), axis=1) def plot_voc(tot_voc, fraud): """ Plot overlapping histograms of vocabulary size for fraudulent and non fraudulent users Args: tot_voc (pd.Series): serie associating a voc size to each user fraud (set): set of fraudulent users """ fig, ax = plt.subplots(1) ax.set_title("Vocabulary size for non/fraudulent users") bins = 10 tot_voc_true = tot_voc[~tot_voc.index.isin(fraud)] tot_voc_fraud = tot_voc[tot_voc.index.isin(fraud)] ax.hist([tot_voc_true, tot_voc_fraud], color=[ COLOR_TRUE, COLOR_FRAUD], bins=bins) ax.set_xlabel("Voc size") ax.set_ylabel("Users count") ax.legend() def dtct_poor_voc(form_df, ratio=0.55): voc = compute_voc_size(form_df) N = form_df.shape[1] N_lim = int(ratio * N * 3) poor_users = voc[voc <= N_lim].index.tolist() return poor_users # SEMANTIC def get_vec_error(form_df, w2v, e2v, ref="mean", loss="l1"): """ return the mean MSE over each emoji for each user """ cols = [col for col in form_df.columns if col in e2v.vocab] form_df = form_df[cols] vec_error = form_df.applymap( lambda x: np.mean( [w2v.get_vector(word) for word in x.split(",") if word in w2v.vocab], axis=0 ) ) if ref == "mean": # using average of batch as reference mean_vecs = np.mean(vec_error.values, axis=0).tolist() else: assert ref == "em" # using emojis vec as reference mean_vecs = [e2v.get_vector(em) for em in form_df.columns] # normalize if loss == "l2": vec_error = ( vec_error - mean_vecs).applymap(lambda x: x ** 2).applymap(sum) else: assert loss == "l1" vec_error = abs(vec_error - mean_vecs).applymap(sum) vec_error = vec_error.sum(axis=1).sort_values() return vec_error def dtct_vec_error(form_df): vec_error = get_vec_error(form1_df) return vec_error.head(3).index.tolist() def plot_vec_error(vec_error, fraud, ax=None): """ Plot the error for each user as a barplot Args: vec_error(pd.Series): vector associating the L1orL2 error to each user (index) fraud (set): set of fraudulous users """ if ax is None: fig, ax = plt.subplots(1) vec_error = vec_error.to_frame("error") vec_error["color"] = [ COLOR_FRAUD if ind in fraud else COLOR_TRUE for ind in vec_error.index ] vec_error["error"].plot.bar(color=vec_error.color, ax=ax) ax.set_title("mean L2orL1 error between user and emoji representations") ax.set_xlabel("user id") ax.set_ylabel("L2orL1") # FRAUDULOUS DETECTION def gather_users(*args): """ gather the users of every formdf passed in parameter into a single set""" return set.union(*[set(form_df.index.tolist()) for form_df in args]) def find_fraudulous(form_df, filter_funcs): """ Find the fraudulous users in form_df using each of the filter_functions Args: form_df (pd.Df): formular to filter filter_funcs(func): function returning a list of fraudulous user from a df Return: [list of str]: list of fraudulent users """ fraudulous_users = {} for filter_func in filter_funcs: func_name = str(filter_func).split()[1] new_fraud_users = filter_func(form_df) fraudulous_users[func_name] = new_fraud_users return fraudulous_users def fraud_metrics(users, fraud, fraud_hat): """ Plot the fraudulous analysis metrics """ TP = len(fraud.intersection(fraud_hat)) FP = len(fraud_hat - fraud) FN = len(fraud - fraud_hat) TN = len((users - fraud.union(fraud_hat))) accuracy = (TN + TP) / (TP + TN + FP + FN) precision = TP / (TP + FP) recall = TP / (TP + FN) confusion_matrix = np.array([[TP, FP], [FN, TN]]) print(f"Accuracy:{accuracy}\nPrecision:{precision}\nRecall:{recall}") fig, ax = plt.subplots(1) sns.heatmap( confusion_matrix, annot=True, ax=ax, xticklabels=["P", "N"], yticklabels=["P", "N"], ) ax.set_xlabel("True") ax.set_ylabel("Predicted")
31.566343
104
0.655526
e97517a4f084076d5a18c085ea6f1487fed1b18b
3,459
py
Python
mint/timelord/timelord_launcher.py
sai-genesis/rc1-test
56e565952b283450c8589296f87c31b1c67b8502
[ "Apache-2.0" ]
null
null
null
mint/timelord/timelord_launcher.py
sai-genesis/rc1-test
56e565952b283450c8589296f87c31b1c67b8502
[ "Apache-2.0" ]
null
null
null
mint/timelord/timelord_launcher.py
sai-genesis/rc1-test
56e565952b283450c8589296f87c31b1c67b8502
[ "Apache-2.0" ]
null
null
null
import asyncio import logging import pathlib import signal import socket import time from typing import Dict, List import pkg_resources from mint.util.mint_logging import initialize_logging from mint.util.config import load_config from mint.util.default_root import DEFAULT_ROOT_PATH from mint.util.setproctitle import setproctitle active_processes: List = [] stopped = False lock = asyncio.Lock() log = logging.getLogger(__name__) async def kill_processes(): global stopped global active_processes async with lock: stopped = True for process in active_processes: try: process.kill() except ProcessLookupError: pass def find_vdf_client() -> pathlib.Path: p = pathlib.Path(pkg_resources.get_distribution("chiavdf").location) / "vdf_client" if p.is_file(): return p raise FileNotFoundError("can't find vdf_client binary") async def spawn_process(host: str, port: int, counter: int): global stopped global active_processes path_to_vdf_client = find_vdf_client() first_10_seconds = True start_time = time.time() while not stopped: try: dirname = path_to_vdf_client.parent basename = path_to_vdf_client.name resolved = socket.gethostbyname(host) proc = await asyncio.create_subprocess_shell( f"{basename} {resolved} {port} {counter}", stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env={"PATH": dirname}, ) except Exception as e: log.warning(f"Exception while spawning process {counter}: {(e)}") continue async with lock: active_processes.append(proc) stdout, stderr = await proc.communicate() if stdout: log.info(f"VDF client {counter}: {stdout.decode().rstrip()}") if stderr: if first_10_seconds: if time.time() - start_time > 10: first_10_seconds = False else: log.error(f"VDF client {counter}: {stderr.decode().rstrip()}") log.info(f"Process number {counter} ended.") async with lock: if proc in active_processes: active_processes.remove(proc) await asyncio.sleep(0.1) async def spawn_all_processes(config: Dict, net_config: Dict): await asyncio.sleep(5) port = config["port"] process_count = config["process_count"] awaitables = [spawn_process(net_config["self_hostname"], port, i) for i in range(process_count)] await asyncio.gather(*awaitables) def main(): root_path = DEFAULT_ROOT_PATH setproctitle("mint_timelord_launcher") net_config = load_config(root_path, "config.yaml") config = net_config["timelord_launcher"] initialize_logging("TLauncher", config["logging"], root_path) def signal_received(): asyncio.create_task(kill_processes()) loop = asyncio.get_event_loop() try: loop.add_signal_handler(signal.SIGINT, signal_received) loop.add_signal_handler(signal.SIGTERM, signal_received) except NotImplementedError: log.info("signal handlers unsupported") try: loop.run_until_complete(spawn_all_processes(config, net_config)) finally: log.info("Launcher fully closed.") loop.close() if __name__ == "__main__": main()
30.078261
100
0.65279
a4acc85c78bd01cfc10bfd7593f07e7260df76e0
1,753
py
Python
test/test_deferred.py
tcdude/py-klondike-solver
1eb45cd556f0c934c0a079eeb43e8a99d943c094
[ "MIT" ]
1
2020-02-26T18:20:46.000Z
2020-02-26T18:20:46.000Z
test/test_deferred.py
tcdude/py-klondike-solver
1eb45cd556f0c934c0a079eeb43e8a99d943c094
[ "MIT" ]
2
2020-03-17T11:11:32.000Z
2021-03-20T19:18:23.000Z
test/test_deferred.py
tcdude/py-klondike-solver
1eb45cd556f0c934c0a079eeb43e8a99d943c094
[ "MIT" ]
null
null
null
""" Unit tests for the deferred module. """ from pyksolve import deferred __author__ = 'Tiziano Bettio' __license__ = 'MIT' __version__ = '0.0.10' __copyright__ = """ Copyright (c) 2020 Tiziano Bettio Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def test_deferred_solver(): """ Test the functionality of the deferred_solver. """ d = deferred.DeferredSolver(draw_counts=(1, 2, 3), cache_num=1, threads=3) seed, diagram, moves = d.get_solved(1) assert seed > 0 assert diagram != '' assert moves != '' seed, diagram, moves = d.get_solved(2) assert seed > 0 assert diagram != '' assert moves != '' seed, diagram, moves = d.get_solved(3) assert seed > 0 assert diagram != '' assert moves != '' d.stop()
34.372549
78
0.733029
72db4c269839bf9fe2c9fc07bd3e57db4139356a
2,568
py
Python
blocc/forms.py
kelvin-daniel/neighborhood
ea4123ef5b42a9046f10a1d55827bd0b82dd4cd1
[ "MIT" ]
null
null
null
blocc/forms.py
kelvin-daniel/neighborhood
ea4123ef5b42a9046f10a1d55827bd0b82dd4cd1
[ "MIT" ]
null
null
null
blocc/forms.py
kelvin-daniel/neighborhood
ea4123ef5b42a9046f10a1d55827bd0b82dd4cd1
[ "MIT" ]
null
null
null
from django import forms from django.contrib.auth.models import User from .models import * from django.core.exceptions import ValidationError def ForbiddenUsers(value): forbidden_users = ['admin', 'css', 'js', 'authenticate', 'login', 'logout', 'administrator', 'root', 'email', 'user', 'join', 'sql', 'static', 'python', 'delete'] if value.lower() in forbidden_users: raise ValidationError('Invalid name for user, this is a reserverd word.') def InvalidUser(value): if '@' in value or '+' in value or '-' in value: raise ValidationError('This is an Invalid user, Do not user these chars: @ , - , + ') def UniqueEmail(value): if User.objects.filter(email__iexact=value).exists(): raise ValidationError('User with this email already exists.') def UniqueUser(value): if User.objects.filter(username__iexact=value).exists(): raise ValidationError('User with this username already exists.') class SignupForm(forms.ModelForm): username = forms.CharField(widget=forms.TextInput(), max_length=30, required=True,) email = forms.CharField(widget=forms.EmailInput(), max_length=100, required=True,) password = forms.CharField(widget=forms.PasswordInput()) confirm_password = forms.CharField(widget=forms.PasswordInput(), required=True, label="Confirm your password.") class Meta: model = User fields = ('username', 'email', 'password') def __init__(self, *args, **kwargs): super(SignupForm, self).__init__(*args, **kwargs) self.fields['username'].validators.append(ForbiddenUsers) self.fields['username'].validators.append(InvalidUser) self.fields['username'].validators.append(UniqueUser) self.fields['email'].validators.append(UniqueEmail) def clean(self): super(SignupForm, self).clean() password = self.cleaned_data.get('password') confirm_password = self.cleaned_data.get('confirm_password') if password != confirm_password: self._errors['password'] = self.error_class(['Passwords do not match. Try again']) return self.cleaned_data class NotificationsForm(forms.ModelForm): class Meta: model=Notification exclude=['author','block','post_date'] class ProfileForm(forms.ModelForm): class Meta: model=Profile exclude=['username'] class PostForm(forms.ModelForm): class Meta: model=Post exclude=['username','block','avatar'] class BusinessForm(forms.ModelForm): class Meta: model=Business exclude=['owner','block'] class CommentForm(forms.ModelForm): class Meta: model=Comment exclude=['username','post']
34.702703
112
0.716121
6089cb43cccc1563b954608ad7836fd9acf3c272
4,323
py
Python
tests/platform/test_service_cart.py
labd/commercetools-python-sdk
d8ec285f08d56ede2e4cad45c74833f5b609ab5c
[ "MIT" ]
15
2018-11-02T14:35:52.000Z
2022-03-16T07:51:44.000Z
tests/platform/test_service_cart.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
84
2018-11-02T12:50:32.000Z
2022-03-22T01:25:54.000Z
tests/platform/test_service_cart.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
13
2019-01-03T09:16:50.000Z
2022-02-15T18:37:19.000Z
import uuid import pytest from commercetools.platform import models from commercetools.platform.client import Client def test_cart_get_by_id(ct_platform_client: Client, cart_draft): cart = ct_platform_client.with_project_key("test").carts().post(cart_draft) assert cart.id @pytest.fixture def cart_draft(ct_platform_client: Client): client = ct_platform_client.with_project_key("test") product_1 = client.products().post( models.ProductDraft( key="product-1", product_type=models.ProductTypeResourceIdentifier(key="dummy"), name=models.LocalizedString(en=f"my-product-1"), slug=models.LocalizedString(en=f"my-product-1"), publish=True, ) ) product_2 = client.products().post( models.ProductDraft( key="product-2", product_type=models.ProductTypeResourceIdentifier(key="dummy"), name=models.LocalizedString(en=f"my-product-2"), slug=models.LocalizedString(en=f"my-product-2"), publish=True, ) ) return models.CartDraft( customer_id=str(uuid.uuid4()), customer_email="foo@example.com", currency="GBP", anonymous_id=str(uuid.uuid4()), country="GB", inventory_mode=models.InventoryMode.NONE, tax_mode=models.TaxMode.PLATFORM, tax_rounding_mode=models.RoundingMode.HALF_EVEN, tax_calculation_mode=models.TaxCalculationMode.LINE_ITEM_LEVEL, line_items=[ models.LineItemDraft(product_id=product_1.id, quantity=1), models.LineItemDraft(product_id=product_2.id, quantity=2), ], locale="en", origin=models.CartOrigin.CUSTOMER, ) def test_update_actions(commercetools_api, ct_platform_client, cart_draft): client = ct_platform_client.with_project_key("test") cart = client.carts().post(cart_draft) payment_reference = models.PaymentReference(id=str(uuid.uuid4())) cart = ( client.carts() .with_id(cart.id) .post( models.CartUpdate( version=cart.version, actions=[models.CartAddPaymentAction(payment=payment_reference)], ) ) ) type_draft = models.TypeDraft( key="foobar", resource_type_ids=[models.ResourceTypeId.ORDER], name={"en-US": "test"}, field_definitions=[ models.FieldDefinition( type=models.CustomFieldStringType(), name="foo1", label={"en-US": "foo-1"}, required=False, ), models.FieldDefinition( type=models.CustomFieldSetType(element_type=None), name="foo2", label={"en-US": "foo-2"}, required=False, ), models.FieldDefinition( type=models.CustomFieldBooleanType(), name="foo3", label={"en-US": "foo-3"}, required=False, ), ], ) custom_type = client.types().post(type_draft) assert custom_type.id assert cart.payment_info.payments[0] == payment_reference cart = ( client.carts() .with_id(cart.id) .post( models.CartUpdate( version=cart.version, actions=[ models.CartSetCustomTypeAction( type=models.TypeResourceIdentifier(id=custom_type.id) ) ], ) ) ) cart = ( client.carts() .with_id(cart.id) .post( models.CartUpdate( version=cart.version, actions=[ models.CartSetCustomFieldAction(name="foo1", value="bar"), models.CartSetCustomFieldAction(name="foo2", value=["bar"]), models.CartSetCustomFieldAction(name="foo3", value=False), ], ) ) ) cart = client.carts().with_id(cart.id).get() assert all(key in cart.custom.fields for key in ["foo1", "foo2", "foo3"]) assert cart.custom.fields["foo1"] == "bar" assert cart.custom.fields["foo2"] == ["bar"] assert cart.custom.fields["foo3"] is False
31.554745
81
0.573907
1464d17e9cc0138c0d1aa361ecd223461d7127e5
135
py
Python
iterpop/__init__.py
mmore500/iterpop
7f93edd7405fa7363a1c7f80a5a0b22cfe5675ea
[ "MIT" ]
null
null
null
iterpop/__init__.py
mmore500/iterpop
7f93edd7405fa7363a1c7f80a5a0b22cfe5675ea
[ "MIT" ]
null
null
null
iterpop/__init__.py
mmore500/iterpop
7f93edd7405fa7363a1c7f80a5a0b22cfe5675ea
[ "MIT" ]
null
null
null
"""Top-level package for iterpop.""" __author__ = """Matthew Andres Moreno""" __email__ = 'm.more500@gmail.com' __version__ = '0.4.0'
22.5
40
0.688889
f8edf2445364db26e513433ef3d656dd157ea6b2
714
py
Python
api/migrations/0001_initial.py
Shelestov7/mi_trainee_task
2db65806b1b1f491bf10a8d72738aaa57d84f8f5
[ "MIT" ]
null
null
null
api/migrations/0001_initial.py
Shelestov7/mi_trainee_task
2db65806b1b1f491bf10a8d72738aaa57d84f8f5
[ "MIT" ]
5
2021-03-19T03:07:37.000Z
2021-09-22T18:59:51.000Z
api/migrations/0001_initial.py
Shelestov7/mi_trainee_task
2db65806b1b1f491bf10a8d72738aaa57d84f8f5
[ "MIT" ]
null
null
null
# Generated by Django 2.2.12 on 2020-05-10 12:09 import datetime from django.db import migrations, models import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Secret', fields=[ ('secret_key', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('pass_phrase', models.CharField(max_length=90, verbose_name='Code Phrase')), ('text', models.TextField(verbose_name='Secter Text')), ('life_time', models.DateTimeField(default=datetime.datetime.utcnow)), ], ), ]
27.461538
120
0.612045
ec1c692894dff4568184f00256d8d4af6deb10e3
3,768
py
Python
tests/test_others.py
surajpotnuru/sqllineage
fe66eb6dda781eb57dfe3d928432268657c1af4f
[ "MIT" ]
null
null
null
tests/test_others.py
surajpotnuru/sqllineage
fe66eb6dda781eb57dfe3d928432268657c1af4f
[ "MIT" ]
null
null
null
tests/test_others.py
surajpotnuru/sqllineage
fe66eb6dda781eb57dfe3d928432268657c1af4f
[ "MIT" ]
null
null
null
from sqllineage.runner import LineageRunner from .helpers import helper def test_use(): helper("USE db1") def test_table_name_case(): helper( """insert overwrite table tab_a select * from tab_b union all select * from TAB_B""", {"tab_b"}, {"tab_a"}, ) def test_create(): helper("CREATE TABLE tab1 (col1 STRING)", None, {"tab1"}) def test_create_if_not_exist(): helper("CREATE TABLE IF NOT EXISTS tab1 (col1 STRING)", None, {"tab1"}) def test_create_bucket_table(): helper( "CREATE TABLE tab1 USING parquet CLUSTERED BY (col1) INTO 500 BUCKETS", None, {"tab1"}, ) def test_create_as(): helper("CREATE TABLE tab1 AS SELECT * FROM tab2", {"tab2"}, {"tab1"}) def test_create_like(): helper("CREATE TABLE tab1 LIKE tab2", {"tab2"}, {"tab1"}) def test_create_select(): helper("CREATE TABLE tab1 SELECT * FROM tab2", {"tab2"}, {"tab1"}) def test_create_after_drop(): helper( "DROP TABLE IF EXISTS tab1; CREATE TABLE IF NOT EXISTS tab1 (col1 STRING)", None, {"tab1"}, ) def test_update(): helper("UPDATE tab1 SET col1='val1' WHERE col2='val2'", None, {"tab1"}) def test_update_with_join(): helper( "UPDATE tab1 a INNER JOIN tab2 b ON a.col1=b.col1 SET a.col2=b.col2", {"tab2"}, {"tab1"}, ) def test_drop(): helper("DROP TABLE IF EXISTS tab1", None, None) def test_drop_with_comment(): helper( """--comment DROP TABLE IF EXISTS tab1""", None, None, ) def test_drop_after_create(): helper( "CREATE TABLE IF NOT EXISTS tab1 (col1 STRING);DROP TABLE IF EXISTS tab1", None, None, ) def test_drop_tmp_tab_after_create(): sql = """create table tab_a as select * from tab_b; insert overwrite table tab_c select * from tab_a; drop table tab_a;""" helper(sql, {"tab_b"}, {"tab_c"}) def test_new_create_tab_as_tmp_table(): sql = """create table tab_a as select * from tab_b; create table tab_c as select * from tab_a;""" helper(sql, {"tab_b"}, {"tab_c"}) def test_alter_table_rename(): helper("alter table tab1 rename to tab2;", None, None) def test_alter_target_table_name(): helper( "insert overwrite tab1 select * from tab2; alter table tab1 rename to tab3;", {"tab2"}, {"tab3"}, ) def test_refresh_table(): helper("refresh table tab1", None, None) def test_cache_table(): helper("cache table tab1", None, None) def test_uncache_table(): helper("uncache table tab1", None, None) def test_uncache_table_if_exists(): helper("uncache table if exists tab1", None, None) def test_truncate_table(): helper("truncate table tab1", None, None) def test_delete_from_table(): helper("delete from table tab1", None, None) def test_split_statements(): sql = "SELECT * FROM tab1; SELECT * FROM tab2;" assert len(LineageRunner(sql).statements()) == 2 def test_split_statements_with_heading_and_ending_new_line(): sql = "\nSELECT * FROM tab1;\nSELECT * FROM tab2;\n" assert len(LineageRunner(sql).statements()) == 2 def test_split_statements_with_comment(): sql = """SELECT 1; -- SELECT 2;""" assert len(LineageRunner(sql).statements()) == 1 def test_statements_trim_comment(): comment = "------------------\n" sql = "select * from dual;" assert LineageRunner(comment + sql).statements(strip_comments=True)[0] == sql def test_split_statements_with_show_create_table(): sql = """SELECT 1; SHOW CREATE TABLE tab1;""" assert len(LineageRunner(sql).statements()) == 2 def test_split_statements_with_desc(): sql = """SELECT 1; DESC tab1;""" assert len(LineageRunner(sql).statements()) == 2
21.780347
85
0.647824
a29841920a226ecd4ffd903cc4e04a7966cad19c
1,163
py
Python
iot/synth.py
theacodes/google-cloud-python
57dafcb78540e12c82f7ca0fc77d75edeb269390
[ "Apache-2.0" ]
1
2020-10-25T04:39:41.000Z
2020-10-25T04:39:41.000Z
iot/synth.py
di/google-cloud-python
a0bd8d0565e2a682760a113c59ce12b872bce9ab
[ "Apache-2.0" ]
4
2018-11-13T22:15:36.000Z
2018-12-07T18:31:38.000Z
iot/synth.py
di/google-cloud-python
a0bd8d0565e2a682760a113c59ce12b872bce9ab
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import synthtool as s from synthtool import gcp gapic = gcp.GAPICGenerator() #---------------------------------------------------------------------------- # Generate iot client #---------------------------------------------------------------------------- library = gapic.py_library( 'iot', 'v1', config_path='/google/cloud/iot/artman_cloudiot.yaml', artman_output_name='iot-v1') s.move(library / 'google/cloud/iot_v1') s.move(library / 'tests/unit/gapic') s.move(library / 'tests/system/gapic')
34.205882
77
0.644024
469340d66ac5f1c53f9af95d519d5680b869631f
66
py
Python
ndgpy/data/__init__.py
asrvsn/ndgpy
4302ec6767feec16286394361fd84d2fc4fe0cdf
[ "MIT" ]
null
null
null
ndgpy/data/__init__.py
asrvsn/ndgpy
4302ec6767feec16286394361fd84d2fc4fe0cdf
[ "MIT" ]
null
null
null
ndgpy/data/__init__.py
asrvsn/ndgpy
4302ec6767feec16286394361fd84d2fc4fe0cdf
[ "MIT" ]
null
null
null
from .base import * from .streaming import * from .shared import *
22
24
0.742424
64a953ff2ed981cfbb3e9228631f465ec46e8273
1,431
py
Python
pcdet/models/backbones_3d/vfe/mean_vfe.py
dleam/Associate-3Ddet-V2
85f19a6a9b128a8f91c831a27fdae4ffdeb2dc8c
[ "Apache-2.0" ]
5
2021-08-13T16:20:49.000Z
2021-12-30T10:40:02.000Z
pcdet/models/backbones_3d/vfe/mean_vfe.py
dleam/Associate-3Ddet-V2
85f19a6a9b128a8f91c831a27fdae4ffdeb2dc8c
[ "Apache-2.0" ]
3
2021-09-27T14:10:57.000Z
2021-12-25T05:37:47.000Z
pcdet/models/backbones_3d/vfe/mean_vfe.py
dleam/Associate-3Ddet-V2
85f19a6a9b128a8f91c831a27fdae4ffdeb2dc8c
[ "Apache-2.0" ]
null
null
null
import torch from .vfe_template import VFETemplate class MeanVFE(VFETemplate): def __init__(self, model_cfg, num_point_features, **kwargs): super().__init__(model_cfg=model_cfg) self.num_point_features = num_point_features def get_output_feature_dim(self): return self.num_point_features def forward(self, batch_dict, **kwargs): """ Args: batch_dict: voxels: (num_voxels, max_points_per_voxel, C) voxel_num_points: optional (num_voxels) **kwargs: Returns: vfe_features: (num_voxels, C) """ voxel_features, voxel_num_points = batch_dict['voxels'], batch_dict['voxel_num_points'] points_mean = voxel_features[:, :, :].sum(dim=1, keepdim=False) normalizer = torch.clamp_min(voxel_num_points.view(-1, 1), min=1.0).type_as(voxel_features) points_mean = points_mean / normalizer batch_dict['voxel_features'] = points_mean.contiguous() pvoxel_features, pvoxel_num_points = batch_dict['pvoxels'], batch_dict['pvoxel_num_points'] ppoints_mean = pvoxel_features[:, :, :].sum(dim=1, keepdim=False) pnormalizer = torch.clamp_min(pvoxel_num_points.view(-1, 1), min=1.0).type_as(pvoxel_features) ppoints_mean = ppoints_mean / pnormalizer batch_dict['pvoxel_features'] = ppoints_mean.contiguous() return batch_dict
38.675676
102
0.666667
6d84d129a41edba49f4ad67cee5a49b09038f6c4
2,523
py
Python
nboost/database.py
kaykanloo/nboost
8412ae449345180612eeb3d0d34f79e517fd2dca
[ "Apache-2.0" ]
646
2019-11-12T19:57:12.000Z
2022-03-30T01:54:58.000Z
nboost/database.py
kaykanloo/nboost
8412ae449345180612eeb3d0d34f79e517fd2dca
[ "Apache-2.0" ]
85
2019-11-10T18:17:36.000Z
2021-10-15T11:20:21.000Z
nboost/database.py
kaykanloo/nboost
8412ae449345180612eeb3d0d34f79e517fd2dca
[ "Apache-2.0" ]
75
2019-11-23T19:30:32.000Z
2022-03-27T18:15:08.000Z
import os import time from typing import Optional from sqlite3 import Cursor import sqlite3 from nboost import defaults class Database: def __init__(self, db_file: type(defaults.db_file) = defaults.db_file, **_): os.makedirs(db_file.parent, exist_ok=True) self.db_file = db_file def new_row(self): return DatabaseRow() def get_cursor(self) -> Cursor: conn = sqlite3.connect(str(self.db_file), isolation_level=None) return conn.cursor() def insert(self, db_row: 'DatabaseRow'): cursor = self.get_cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS searches ( time REAL, topk INTEGER, choices INTEGER, qa_time REAL, model_mrr REAL, server_mrr REAL, rerank_time REAL, response_time REAL ); ''') cursor.execute(''' INSERT INTO searches ( time, topk, choices, qa_time, model_mrr, server_mrr, rerank_time, response_time ) VALUES(?,?,?,?,?,?,?,?); ''', ( time.time(), db_row.topk, db_row.choices, db_row.qa_time, db_row.model_mrr, db_row.server_mrr, db_row.rerank_time, db_row.response_time )) def get_stats(self) -> dict: cursor = self.get_cursor() stats = cursor.execute(''' SELECT AVG(topk) AS avg_topk, AVG(choices) AS avg_num_choices, AVG(rerank_time) AS avg_rerank_time, AVG(response_time) AS avg_response_time, AVG(model_mrr) AS avg_model_mrr, AVG(server_mrr) AS avg_server_mrr FROM searches ''').fetchone() columns = [column[0] for column in cursor.description] return dict(zip(columns, stats)) class DatabaseRow: def __init__(self): self.topk = None # type: Optional[int] self.choices = None # type: Optional[int] self.qa_time = None # type: Optional[float] self.model_mrr = None # type: Optional[float] self.server_mrr = None # type: Optional[float] self.rerank_time = None # type: Optional[float] self.response_time = None # type: Optional[float]
29.682353
80
0.529132
5692dc922a0e2c74e645d7562d397d13b4ab812d
872
py
Python
goratings/interfaces/Storage.py
flovo/goratings
50b5443b73daae64306e256205eabee8f4815c65
[ "MIT" ]
13
2020-07-02T16:43:12.000Z
2021-12-12T00:12:48.000Z
goratings/interfaces/Storage.py
flovo/goratings
50b5443b73daae64306e256205eabee8f4815c65
[ "MIT" ]
13
2020-07-05T10:06:42.000Z
2022-02-27T10:03:24.000Z
goratings/interfaces/Storage.py
flovo/goratings
50b5443b73daae64306e256205eabee8f4815c65
[ "MIT" ]
2
2020-07-04T11:19:37.000Z
2021-01-15T16:46:32.000Z
import abc from typing import Any, Dict __all__ = ["Storage"] class Storage(abc.ABC): @abc.abstractmethod def get(self, player_id: int) -> Any: raise NotImplementedError @abc.abstractmethod def set(self, player_id: int, entry: Any) -> None: raise NotImplementedError @abc.abstractmethod def get_set_count(self, player_id: int) -> int: raise NotImplementedError @abc.abstractmethod def clear_set_count(self, player_id: int) -> None: raise NotImplementedError @abc.abstractmethod def all_players(self) -> Dict[int, Any]: raise NotImplementedError @abc.abstractmethod def get_timeout_flag(self, player_id: int) -> bool: raise NotImplementedError @abc.abstractmethod def set_timeout_flag(self, player_id: int, tf: bool) -> None: raise NotImplementedError
24.914286
65
0.682339
946c02234cfe66e218fe30a66dda5c7f421a6e95
1,507
py
Python
tests/test_rows.py
dimagi/djtables
dfe5b9e2ea51fd42e528cbe4a7f23cdcfda59fad
[ "MIT" ]
1
2020-09-15T22:17:11.000Z
2020-09-15T22:17:11.000Z
tests/test_rows.py
adammck/djtables
8fa279e7088123f00cca9c838fe028ebf327325e
[ "MIT" ]
null
null
null
tests/test_rows.py
adammck/djtables
8fa279e7088123f00cca9c838fe028ebf327325e
[ "MIT" ]
1
2019-09-29T04:19:21.000Z
2019-09-29T04:19:21.000Z
#!/usr/bin/env python # vim: et ts=4 sw=4 from nose.tools import raises from djtables.table import Table from djtables.column import Column from djtables.row import Row class TestTable(Table): name = Column() weapon = Column() def test_accepts_dicts(): obj = { 'name': "Leonardo", 'weapon': "Katana" } row = Row(TestTable(), obj) assert row.name == obj['name'] assert row.weapon == obj['weapon'] def test_accepts_objects(): class MockObject(object): def __init__(self, name, weapon): self.name = name self.weapon = weapon def __unicode__(self): return self.name obj = MockObject("Michelangelo", "Nunchaku") row = Row(TestTable(), obj) assert row.name == obj.name assert row.weapon == obj.weapon assert unicode(row) == unicode(obj) def test_calls_callables(): obj = { 'name': lambda: "Donatello", 'weapon': lambda: "Bo Staff", } row = Row(TestTable(), obj) assert row.name == "Donatello" assert row.weapon == "Bo Staff" def test_returns_none_on_invalid_column(): row = Row(TestTable(), {}) assert row.whatever == None def test_is_iterable(): data = { 'name': "Raphael", 'weapon': "Sai" } row = Row(TestTable(), data) for cell in row: assert cell.row == row assert cell.value in data.values() def test_has_length(): row = Row(TestTable(), {}) assert len(row) == 2
19.828947
48
0.595222
299f5707ecff43da848a89b11466043368ed3e68
12,573
py
Python
tests/test_participant_model.py
bountysource/www.gittip.com
84cd36dd1da2eec54ebf0fe8c7c31d10ae5b933c
[ "CC0-1.0" ]
4
2015-03-11T02:04:27.000Z
2021-04-28T01:33:40.000Z
tests/test_participant_model.py
sigmavirus24/www.gittip.com
112ea4e62aefad11c36954f0f979679ce057cf02
[ "CC0-1.0" ]
null
null
null
tests/test_participant_model.py
sigmavirus24/www.gittip.com
112ea4e62aefad11c36954f0f979679ce057cf02
[ "CC0-1.0" ]
3
2015-08-27T09:47:17.000Z
2018-08-02T14:05:59.000Z
from __future__ import unicode_literals import random import datetime from decimal import Decimal import psycopg2 import pytz from nose.tools import assert_raises from gittip.testing import Harness from gittip.models import Participant, Tip from gittip.participant import Participant as OldParticipant class Tests(Harness): def random_restricted_username(self): """helper method to chooses a restricted username for testing """ from gittip import RESTRICTED_USERNAMES random_item = random.choice(RESTRICTED_USERNAMES) while random_item.startswith('%'): random_item = random.choice(RESTRICTED_USERNAMES) return random_item def setUp(self): super(Harness, self).setUp() self.participant = self.make_participant('user1') # Our protagonist def test_claiming_participant(self): expected = now = datetime.datetime.now(pytz.utc) self.participant.set_as_claimed(claimed_at=now) actual = self.participant.claimed_time assert actual == expected, actual def test_changing_username_successfully(self): self.participant.change_username('user2') actual = Participant.query.get('user2') assert self.participant == actual, actual def test_changing_username_to_too_long(self): with assert_raises(Participant.UsernameTooLong): self.participant.change_username('123456789012345678901234567890123') def test_changing_username_to_already_taken(self): self.make_participant('user2') with assert_raises(Participant.UsernameAlreadyTaken): self.participant.change_username('user2') def test_changing_username_to_already_taken_is_case_insensitive(self): self.make_participant('UsEr2') with assert_raises(Participant.UsernameAlreadyTaken): self.participant.change_username('uSeR2') def test_changing_username_to_invalid_characters(self): with assert_raises(Participant.UsernameContainsInvalidCharacters): self.participant.change_username(u"\u2603") # Snowman def test_changing_username_to_restricted_name(self): with assert_raises(Participant.UsernameIsRestricted): self.participant.change_username(self.random_restricted_username()) def test_getting_tips_actually_made(self): expected = Decimal('1.00') self.make_participant('user2') self.session.add(Tip(tipper='user1', tippee='user2', amount=expected, ctime=datetime.datetime.now(pytz.utc))) self.session.commit() actual = self.participant.get_tip_to('user2') assert actual == expected, actual def test_getting_tips_not_made(self): expected = Decimal('0.00') self.make_participant('user2') actual = self.participant.get_tip_to('user2') assert actual == expected, actual # id def test_participant_gets_a_long_id(self): actual = type(self.make_participant('alice').id) assert actual == long, actual # set_tip_to - stt def test_stt_sets_tip_to(self): alice = self.make_participant('alice', last_bill_result='') self.make_participant('bob') alice.set_tip_to('bob', '1.00') actual = alice.get_tip_to('bob') assert actual == Decimal('1.00'), actual def test_stt_returns_a_Decimal_and_a_boolean(self): alice = self.make_participant('alice', last_bill_result='') self.make_participant('bob') actual = alice.set_tip_to('bob', '1.00') assert actual == (Decimal('1.00'), True), actual def test_stt_returns_False_for_second_time_tipper(self): alice = self.make_participant('alice', last_bill_result='') self.make_participant('bob') alice.set_tip_to('bob', '1.00') actual = alice.set_tip_to('bob', '2.00') assert actual == (Decimal('2.00'), False), actual def test_stt_doesnt_allow_self_tipping(self): alice = self.make_participant('alice', last_bill_result='') assert_raises( OldParticipant.NoSelfTipping , alice.set_tip_to , 'alice' , '1000000.00' ) def test_stt_doesnt_allow_just_any_ole_amount(self): alice = self.make_participant('alice', last_bill_result='') self.make_participant('bob') assert_raises( OldParticipant.BadAmount , alice.set_tip_to , 'bob' , '1000000.00' ) def test_stt_fails_to_tip_unknown_people(self): alice = self.make_participant('alice', last_bill_result='') assert_raises( psycopg2.IntegrityError , alice.set_tip_to , 'bob' , '1.00' ) # get_dollars_receiving - gdr def test_gdr_only_sees_latest_tip(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob') alice.set_tip_to('bob', '12.00') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('3.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_includes_tips_from_accounts_with_a_working_card(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('3.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_ignores_tips_from_accounts_with_no_card_on_file(self): alice = self.make_participant('alice', last_bill_result=None) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('0.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_ignores_tips_from_accounts_with_a_failing_card_on_file(self): alice = self.make_participant('alice', last_bill_result="Fail!") bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('0.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_includes_tips_from_whitelisted_accounts(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=False ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('3.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_includes_tips_from_unreviewed_accounts(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=None ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('3.00') actual = bob.get_dollars_receiving() assert actual == expected, actual def test_gdr_ignores_tips_from_blacklisted_accounts(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=True ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() expected = Decimal('0.00') actual = bob.get_dollars_receiving() assert actual == expected, actual # get_number_of_backers - gnob def test_gnob_gets_number_of_backers(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob', last_bill_result='') clancy = self.make_participant('clancy') alice.set_tip_to('clancy', '3.00') bob.set_tip_to('clancy', '1.00') self.session.commit() actual = clancy.get_number_of_backers() assert actual == 2, actual def test_gnob_includes_backers_with_a_working_card_on_file(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 1, actual def test_gnob_ignores_backers_with_no_card_on_file(self): alice = self.make_participant('alice', last_bill_result=None) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 0, actual def test_gnob_ignores_backers_with_a_failing_card_on_file(self): alice = self.make_participant('alice', last_bill_result="Fail!") bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 0, actual def test_gnob_includes_whitelisted_backers(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=False ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 1, actual def test_gnob_includes_unreviewed_backers(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=None ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 1, actual def test_gnob_ignores_blacklisted_backers(self): alice = self.make_participant( 'alice' , last_bill_result='' , is_suspicious=True ) bob = self.make_participant('bob') alice.set_tip_to('bob', '3.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 0, actual def test_gnob_ignores_backers_where_tip_is_zero(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob') alice.set_tip_to('bob', '0.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 0, actual def test_gnob_looks_at_latest_tip_only(self): alice = self.make_participant('alice', last_bill_result='') bob = self.make_participant('bob') alice.set_tip_to('bob', '1.00') alice.set_tip_to('bob', '12.00') alice.set_tip_to('bob', '3.00') alice.set_tip_to('bob', '6.00') alice.set_tip_to('bob', '0.00') self.session.commit() actual = bob.get_number_of_backers() assert actual == 0, actual # get_age_in_seconds - gais def test_gais_gets_age_in_seconds(self): now = datetime.datetime.now(pytz.utc) alice = self.make_participant('alice', claimed_time=now) actual = alice.get_age_in_seconds() assert 0 < actual < 1, actual def test_gais_returns_negative_one_if_None(self): alice = self.make_participant('alice', claimed_time=None) actual = alice.get_age_in_seconds() assert actual == -1, actual # def get_details(self): # def resolve_unclaimed(self): # def set_as_claimed(self): # def change_username(self, suggested): # def get_accounts_elsewhere(self): # def get_tip_to(self, tippee): # def get_dollars_receiving(self): # def get_dollars_giving(self): # def get_chart_of_receiving(self): # def get_giving_for_profile(self, db=None): # def get_tips_and_total(self, for_payday=False, db=None): # def take_over(self, account_elsewhere, have_confirmation=False):
35.820513
81
0.621809
524aab9c6660f8bfa2544c8ea56eb1354666036e
2,047
py
Python
openbook_common/management/commands/worker_health_check.py
TamaraAbells/okuna-api
f87d8e80d2f182c01dbce68155ded0078ee707e4
[ "MIT" ]
164
2019-07-29T17:59:06.000Z
2022-03-19T21:36:01.000Z
openbook_common/management/commands/worker_health_check.py
TamaraAbells/okuna-api
f87d8e80d2f182c01dbce68155ded0078ee707e4
[ "MIT" ]
188
2019-03-16T09:53:25.000Z
2019-07-25T14:57:24.000Z
openbook_common/management/commands/worker_health_check.py
TamaraAbells/okuna-api
f87d8e80d2f182c01dbce68155ded0078ee707e4
[ "MIT" ]
80
2019-08-03T17:49:08.000Z
2022-02-28T16:56:33.000Z
from sys import exit from logging import getLogger from django.conf import settings from django.core.management.base import BaseCommand from openbook_common.utils.rq_helpers import RQStats from openbook_common.helpers import send_alert_to_channel from openbook.settings import RQ_QUEUES, FAILED_JOB_THRESHOLD from openbook.settings import ACTIVE_JOB_THRESHOLD, ACTIVE_WORKER_THRESHOLD logger = getLogger(__name__) class Command(BaseCommand): help = 'Check worker health' def verify_worker_health(self): # iterate through all configured queues env = settings.ENVIRONMENT for queue in RQ_QUEUES.keys(): rq_stats = RQStats(queue) active_job_count = rq_stats.get_active_job_count() if active_job_count >= ACTIVE_JOB_THRESHOLD: send_alert_to_channel( f"*UH-OH: we have way too many active jobs " f"in {env}:{queue} right now: {active_job_count}!!*" ) print(f"{queue} has too many jobs {active_job_count}") self.retval += 1 active_worker_count = rq_stats.get_active_worker_count() if active_worker_count >= ACTIVE_WORKER_THRESHOLD: send_alert_to_channel(f"*Hmm, we are not supposed to have " f"{active_worker_count} workers in " f"{env}:{queue}*") print(f"{queue} has too many workers {active_worker_count}") self.retval += 1 def handle(self, *args, **options): self.retval = 1 try: self.verify_worker_health() except Exception as e: exception = str(e) send_alert_to_channel( f"worker_health_check failed with {exception}" ) raise e # the return code will be equal to the amount of threshold # violation exit(self.retval)
30.552239
77
0.595017
1dccadddf33e58ed304be2ee6361b3566d323dd2
31,577
py
Python
cc_gen.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
29
2019-10-10T22:51:55.000Z
2022-03-09T05:57:59.000Z
cc_gen.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
1
2020-12-07T06:51:50.000Z
2020-12-08T16:59:20.000Z
cc_gen.py
skolchin/gbr
3ec4b72e0352d36f38f5cd5815b69fac0b7a3e9c
[ "MIT" ]
11
2020-12-09T01:44:38.000Z
2022-03-20T17:40:02.000Z
#------------------------------------------------------------------------------- # Name: Go board recognition project # Purpose: OpenCV board extraction script # # Author: kol # # Created: 18.12.2019 # Copyright: (c) kol 2019 # Licence: MIT #------------------------------------------------------------------------------- import os import sys import glob import numpy as np import cv2 import json from pathlib import Path from random import randint, randrange, shuffle from argparse import ArgumentParser from copy import deepcopy from collections import OrderedDict #sys.path.append("../") from gr.grdef import * from gr.board import GrBoard from gr.utils import get_image_area, resize, rotate TF_AVAIL=True try: import tensorflow as tf from object_detection.utils import dataset_util from tfrecord_lite import tf_record_iterator except: TF_AVAIL=False class DatasetWriter: """Basic dataset writer""" def __init__(self, root_dir, file_count, split, reg_name): self.root_dir, self.file_count = root_dir, file_count self.reg_name, self.split = reg_name, split self.file_index, self.file_name, self.file_image = None, None, None self.area_index, self.area_count = None, None def get_next_fname(self, label=None, ext='.png'): """Derive image file from source file name""" prefix = Path(self.file_name).stem + "_" + Path(self.file_name).suffix[1:] fn = str(prefix) + "_" + str(self.area_index).zfill(3) + ext path = [] if label is not None: path.append(label) if self.split is not None and self.split > 0: if self.area_count is None: raise ValueError('Area count must be set') if self.area_index < self.area_count * (1.0 - self.split): path.append('train') else: path.append('val') path.append(fn) fn = Path(self.root_dir).joinpath(*path) self.area_index += 1 return fn def get_reg_fname(self, label=None): """Get registration file name""" path = [] if label is not None: path.append(label) if self.split is not None and self.split > 0: if self.area_count is None: raise ValueError('Area count must be set') if self.area_index < self.area_count * (1.0 - self.split): path.append('train') else: path.append('val') path.append(self.reg_name) fn = Path(self.root_dir).joinpath(*path) fn.parent.mkdir(exist_ok=True, parents=True) return fn def set_image(self, file_index, file_name, file_image, area_count): self.file_index, self.file_name, self.file_image = file_index, file_name, file_image self.area_index, self.area_count = 0, area_count self.write_image_info() def write_image_info(self): pass def write_area(self, area, label=None): area_img = get_image_area(self.file_image, area) if area_img is not None: self.write_area_image(area, area_img, label) def write_area_image(self, area, area_image, label=None): pass def finish_image(self): pass def close(self): pass class TxtDatasetWriter(DatasetWriter): def __init__(self, root_dir, file_count, split=None, reg_name='description.txt'): super(TxtDatasetWriter, self).__init__(root_dir, file_count, split, reg_name) def write_area_image(self, area, area_image, label=None): # Define file names mode = 'w' if self.file_index == 0 else 'a' fn_area = self.get_next_fname(label) fn_reg = self.get_reg_fname(label) # Save file cv2.imwrite(str(fn_area), area_image) # Save file info with open(str(fn_reg), mode) as f_reg: f_reg.write('{} 1 {} {} {} {}\n'.format( fn_area, 0, 0, area_image.shape[1]-1, area_image.shape[0]-1)) f_reg.close() class TfDatasetWriter(DatasetWriter): def __init__(self, root_dir, file_count, split=None, reg_name='description.txt', base_name='go_board.tfrecord'): super(TfDatasetWriter, self).__init__(root_dir, file_count, split, reg_name) self.tf_writers = {'all': None, 'train': None, 'val': None} self.txts, self.lbls, self.xmins, self.xmaxs, self.ymins, self.ymaxs = [], [], [], [], [], [] # Writer mode, either `single` (whole board image file) or `multi` (multiple image parts) self.mode = 'single' # Get TF writers if self.split is None: self.tf_writers['all'] = tf.io.TFRecordWriter(str(Path(self.root_dir).joinpath(base_name))) else: for k in ['train', 'val']: fn = Path(base_name).stem + '_' + k + Path(base_name).suffix self.tf_writers[k] = tf.io.TFRecordWriter(str(Path(self.root_dir).joinpath(fn))) def write_image_info(self): self.txts, self.lbls, self.xmins, self.xmaxs, self.ymins, self.ymaxs = [], [], [], [], [], [] def write_area(self, area, label): self.mode = 'single' height, width = self.file_image.shape[:2] self.txts.append(str.encode(label, 'utf-8')) self.lbls.append(1 if label == 'black' else 2) self.xmins.append(area[0] / width) self.ymins.append(area[1] / height) self.xmaxs.append(area[2] / width) self.ymaxs.append(area[3] / height) def write_area_image(self, area, area_image, label): self.mode = 'multi' height, width = area_image.shape[:2] txts = [str.encode(label, 'utf-8')] lbls = [1 if label == 'black' else 2] xmins = [area[0] / width] ymins = [area[1] / height] xmaxs = [area[2] / width] ymaxs = [area[3] / height] fn_area = self.get_next_fname(label) self.save_image( self.area_index, fn_area, area_image, self.area_count, [txts, lbls, xmins, xmaxs, ymins, ymaxs] ) def finish_image(self): if self.mode == 'single': self.save_image( self.file_index, self.file_name, self.file_image, self.file_count, [self.txts, self.lbls, self.xmins, self.xmaxs, self.ymins, self.ymaxs] ) def encode_image(self, image): # Encode image as JPEG via temp file fn_tmp = Path(self.root_dir).joinpath('_tmp_' + str(randint(1,100)) + '.jpeg') cv2.imwrite(str(fn_tmp), image) with open(str(fn_tmp), 'rb') as f_tmp: img_raw = f_tmp.read() f_tmp.close() fn_tmp.unlink() return img_raw def save_image(self, image_index, image_file, image, image_count, feature_comps): # Get encoded image img_raw = self.encode_image(image) # Make up features height, width = image.shape[:2] fname = str(Path(image_file).parts[-1]) txts, lbls, xmins, xmaxs, ymins, ymaxs = feature_comps features = tf.train.Example(features=tf.train.Features(feature={ 'image/width': dataset_util.int64_feature(width), 'image/height': dataset_util.int64_feature(height), 'image/filename': dataset_util.bytes_feature(str.encode(fname, 'utf-8')), 'image/source_id': dataset_util.bytes_feature(str.encode(fname, 'utf-8')), 'image/format': dataset_util.bytes_feature(b'jpg'), 'image/encoded': dataset_util.bytes_feature(img_raw), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(txts), 'image/object/class/label': dataset_util.int64_list_feature(lbls) })) # Save to appropriate TF writer tf_writer = self.tf_writers['all'] if tf_writer is None: tf_writer = self.tf_writers['train'] \ if image_index < image_count * (1.0 - self.split) \ else self.tf_writers['val'] tf_writer.write(features.SerializeToString()) # Register file mode = 'w' if image_index == 0 else 'a' fn_reg = str(Path(self.root_dir).joinpath(self.reg_name)) with open(str(fn_reg), mode) as f_reg: f_reg.write('{}\n'.format(image_file)) f_reg.close() def close(self): for w in self.tf_writers.values(): if w is not None: w.close() class DatasetGenerator: """ Main dataset generator class""" def __init__(self): # Datasets to generate self.datasets = ["positive", "negative", "stones", "crossings", 'bboxes'] # Directories where to place datasets self.dirs = OrderedDict({"positive": None, "stones": None, "negative": None, "crossings": None, "bboxes": None}) # Selection pattern self.pattern = None # Stone extraction method: single, enclosed, both self.method = "single" # Spacing of area to be extracted with particular method self.spacing = {"single": 10, "enclosed": 1, "crossing": 5, "bboxes": 1} # Number of negative areas to be extracted per image self.neg_per_image = 0 # Resize maximum size self.n_resize = 0 # Flag to exclude grid line crossings self.no_grid = False # Rotation vector (0: how many images to generate, 1: rotation angle) self.n_rotate = [0, 0] # Dataset output format (txt, json, xml, tf) self.format = 'txt' # Dataset split and shuffle flags self.split = None self.shuffle = False # GrBoard currently processed self.board = None # Background color self.bg_c = None # Areas extracted during current run self.stone_areas = None # Dataset writers self.ds_writers = None # Statistic self.file_count = 0 self.counts = {'positives': 0} self.totals = {'positives': 0} def overlap(self, a, b): """Check two rectangles overlap""" # from: https://stackoverflow.com/questions/25068538/intersection-and-difference-of-two-rectangles x1 = max(min(a[0], a[2]), min(b[0], b[2])) y1 = max(min(a[1], a[3]), min(b[1], b[3])) x2 = min(max(a[0], a[2]), max(b[0], b[2])) y2 = min(max(a[1], a[3]), max(b[1], b[3])) return x1 < x2 and y1 < y2 def get_bg_color(self, img): """Find background color of a board as most often occuring color except shades of black and white""" u, c = np.unique(img.reshape(-1, img.shape[-1]), axis=0, return_counts=True) bg_c = u[c.argmax()] # Check black or white color selected if sum(bg_c) < 40 or sum(bg_c) >= 750: cc = c.argsort() n = -2 while sum(bg_c) < 40 or sum(bg_c) >= 750: bg_c = u[cc[n]] n -= 1 return bg_c def remove_areas(self, img, areas, bg_c): """Remove areas from image and pad it with background color""" for c in areas: patch = np.full((c[3]-c[1], c[2]-c[0], img.shape[2]), bg_c, dtype = img.dtype) img[c[1]:c[3], c[0]:c[2]] = patch[:] return img def get_space(self, space, append_str): """Derive space to add to specfied integer space""" n = str(append_str).find('%') if n == -1: return int(append_str) else: append = int(str(append_str)[0:n]) return int(space * append / 100.0) def save_area(self, ds_key, file_name, area_img, start_index, f_reg, no_rotation=False): """Save given area of image file. If rotation is requested, generates it""" stop_index = start_index + 1 if self.n_rotate[0] == 0 or no_rotation \ else start_index + self.n_rotate[0] + 1 if min(self.n_resize) > 0: area_img = resize(area_img, self.n_resize, f_upsize=True, pad_color=self.bg_c) bg_c = [int(x) for x in self.bg_c] for index in range(start_index, stop_index): fn = self.get_image_file_name(file_name, index) f_reg.register_image(fn, area_img) area_img = rotate(area_img, self.n_rotate[1], bg_c, keep_image=False) return stop_index - start_index def add_count(self, key): if key in self.counts: self.counts[key] += 1 else: self.counts[key] = 1 def extract_stone_area(self, stone): x, y, a, b, r, bw = stone fs = self.get_space(r, self.spacing['single']) cs = self.get_space(r, self.spacing['enclosed']) area = None if self.method == "single" or self.method == 's': # Save single staying stones only nearby_stones = self.board.stones.find_nearby((stone[GR_A], stone[GR_B]), 1) area = [max(x-r-fs,0), max(y-r-fs,0), min(x+r+fs, self.board.image.shape[CV_WIDTH]), min(y+r+fs, self.board.image.shape[CV_HEIGTH])] self.stone_areas.extend([area]) if len(nearby_stones) > 0: area = None if self.method == "enclosed" or self.method == 'e': # Save enclosed staying stones only nearby_stones = self.board.stones.find_nearby((stone[GR_A], stone[GR_B]), 1) area = [max(x-r-cs,0), max(y-r-cs,0), min(x+r+cs, self.board.image.shape[CV_WIDTH]), min(y+r+cs, self.board.image.shape[CV_HEIGTH])] self.stone_areas.extend([area]) if len(nearby_stones) == 0: area = None elif self.method == "both" or self.method == 'b': # Saving all stones with different area square depending on # whether it has other stones nearby nearby_stones = self.board.stones.find_nearby((stone[GR_A], stone[GR_B]), 1) if len(nearby_stones) == 0: area = [max(x-r-fs,0), max(y-r-fs,0), min(x+r+fs, self.board.image.shape[CV_WIDTH]), min(y+r+fs, self.board.image.shape[CV_HEIGTH])] else: area = [max(x-r-cs,0), max(y-r-cs,0), min(x+r+cs, self.board.image.shape[CV_WIDTH]), min(y+r+cs, self.board.image.shape[CV_HEIGTH])] self.stone_areas.extend([area]) return area def extract_crossing_range(self, file_index, file_name, label, ranges): # Get all crossings in a list cs = self.get_space(4, self.spacing['crossing']) crossings = [] for r in ranges: for y in r[0]: for x in r[1]: stone = self.board.find_stone(c=(x,y)) if stone is None: area = [max(x-cs-2,0), max(y-cs-2,0), min(x+cs+2, self.board.image.shape[CV_WIDTH]), min(y+cs+2, self.board.image.shape[CV_HEIGTH])] crossings.append(area) # Prepare the writer self.ds_writers['crossings'].set_image(file_index, file_name, self.board.image, len(crossings)) # Proceed for area in crossings: area_img = get_image_area(self.board.image, area) self.ds_writers['crossings'].write_area_image(area, area_img, label) self.add_count('crossings\\' + label) # Finalize self.ds_writers['crossings'].finish_image() def extract_border_crossings(self, file_index, file_name): """External grid crossings dataset extractor. Called from within crossings extractor""" edges = self.board.results[GR_EDGES] space = self.board.results[GR_SPACING] ranges = [ # left border ( range(int(edges[0][1]+space[1]), int(edges[1][1]-space[1]), int(space[1])), range(int(edges[0][0]), int(edges[0][0])+1, int(space[0])) ), # right border ( range(int(edges[0][1]+space[1]), int(edges[1][1]-space[1]), int(space[1])), range(int(edges[1][0]), int(edges[1][0])+1, int(space[0])) ), # top border ( range(int(edges[0][1]), int(edges[0][1])+1, int(space[1])), range(int(edges[0][0]+space[0]), int(edges[1][0]-space[0]), int(space[0])) ), # bottom border ( range(int(edges[1][1]), int(edges[1][1])+1, int(space[1])), range(int(edges[0][0]+space[0]), int(edges[1][0]-space[0]), int(space[0])) ) ] self.extract_crossing_range(file_index, file_name, 'border', ranges) def extract_inboard_crossings(self, file_index, file_name): """Internal grid crossing dataset extractor. Called from within crossings extractor""" edges = self.board.results[GR_EDGES] space = self.board.results[GR_SPACING] ranges = [ ( range(int(edges[0][1]+space[1]), int(edges[1][1]-space[1]), int(space[1])), range(int(edges[0][0]+space[0]), int(edges[1][0]-space[0]), int(space[0])) ) ] self.extract_crossing_range(file_index, file_name, "cross", ranges) def extract_edges(self, file_index, file_name): """Edges dataset extractor. Called from within crossings extractor""" edges = self.board.results[GR_EDGES] ranges = [ ( [edges[0][1]], [edges[0][0]] ), ( [edges[1][1]], [edges[0][0]] ), ( [edges[0][1]], [edges[1][0]] ), ( [edges[1][1]], [edges[1][0]] ), ] self.extract_crossing_range(file_index, file_name, 'edge', ranges) def extract_positive(self, file_index, file_name): """Positives (stones) dataset extractor""" f_reg = self.get_registrator('positive', 'positives.txt') index = 0 for stone in self.board.all_stones: area = self.extract_stone_area(stone) if area is not None: area_img = get_image_area(self.board.image, area) n = self.save_area('positive', file_name, area_img, index, f_reg) index += n self.counts['positive'] += n f_reg.close() def extract_negative(self, file_index, file_name): """Negatives (empty boards) dataset extractor""" # Prepare image with all found stones removed neg_img = self.remove_areas(self.board.image.copy(), self.stone_areas, self.bg_c) fn = self.get_image_file_name(file_name, 999).replace('999', 'neg') self.save_image('negative', fn, neg_img) # Slice prepared image by random pieces generating number of # images not less than specified number w = int(round(neg_img.shape[CV_WIDTH] / 4,0)) h = int(round(neg_img.shape[CV_HEIGTH] / 4,0)) nn_max = self.neg_per_image if self.neg_per_image > 0 else self.counts['positive'] f_reg = self.get_registrator('negative', 'negatives.txt') for index in range(nn_max): x = randrange(0, neg_img.shape[CV_WIDTH] - w) y = randrange(0, neg_img.shape[CV_HEIGTH] - h) area = [x, y, x + w, y + h] if area[0] < area[2] and area[1] < area[3]: area_img = get_image_area(neg_img, area) n = self.save_area('negative', file_name, area_img, index, f_reg) self.counts['negative'] += n f_reg.close() def extract_stones(self, file_index, file_name): """Stones dataset extractor""" # Prepare the writer self.ds_writers['stones'].set_image(file_index, file_name, self.board.image, len(self.board.all_stones)) # Shuffle stones list if split is requested stones = deepcopy(self.board.all_stones) if self.shuffle and self.split > 0: shuffle(stones) # Process stones for stone in stones: label = 'black' if stone[GR_BW] == 'B' else 'white' area = self.extract_stone_area(stone) if area is not None: area_img = get_image_area(self.board.image, area) self.ds_writers['stones'].write_area_image(area, area_img, label) self.add_count('stones\\' + label) # Finalize self.ds_writers['stones'].finish_image() def extract_crossings(self, file_index, file_name): """Crossings dataset extractor""" self.extract_edges(file_index, file_name) self.extract_border_crossings(file_index, file_name) if not self.no_grid: self.extract_inboard_crossings(file_index, file_name) def extract_bboxes(self, file_index, file_name): """Extractor which creates whole board description in TF-record format""" # Prepare the writer self.ds_writers['bboxes'].set_image(file_index, file_name, self.board.image, len(self.board.all_stones)) # Generate .names and label map files fn_map = Path(self.dirs['bboxes']).joinpath('go_board.names') if not fn_map.exists(): with open(str(fn_map), 'w') as f_map: f_map.write('black\nwhite\n') f_map.close() fn_map = Path(self.dirs['bboxes']).joinpath('go_board.pbtxt') if not fn_map.exists(): with open(str(fn_map), 'w') as f_map: f_map.write('item {\n\tid: 1\n\tname: \'black\'\n}\n' + \ 'item {\n\tid: 2\n\tname: \'white\'\n}\n') f_map.close() # Resize board if min(self.n_resize) > 0: self.board.resize_board(self.n_resize) # Save stones for stone in self.board.all_stones: area = self.extract_stone_area(stone) if area is not None: label = 'black' if stone[GR_BW] == STONE_BLACK else 'white' self.ds_writers['bboxes'].write_area(area, label) # Finalize self.ds_writers['bboxes'].finish_image() self.add_count('bboxes') def one_file(self, file_index, file_name): # Open board print("Processing file " + str(file_name)) try: self.board = GrBoard(str(file_name)) except: print(sys.exc_info()[1]) return self.bg_c = self.get_bg_color(self.board.image) self.stone_areas = [] for k in self.counts: self.counts[k] = 0 for k in self.datasets: extractor_fn = getattr(self, 'extract_' + k, None) if extractor_fn is None: raise ValueError('Cannot find a handler to generate dataset ', k) extractor_fn(file_index, file_name) for k in self.counts: if k in self.totals: self.totals[k] += self.counts[k] else: self.totals[k] = self.counts[k] def get_args(self): parser = ArgumentParser() parser.add_argument('pattern', help = 'Selection pattern') parser.add_argument('-p', '--positive', help = 'Directory to store positives (images with stones) dataset') parser.add_argument('-n', '--negative', help = 'Directory to store negatives (images without stones) dataset') parser.add_argument('-s', '--stones', help = "Directory to store stones dataset (stone images, separately for black and white)") parser.add_argument('-c', '--crossings', help = "Directory to store line crossings and edges dataset (images of board grid lines crossings, " + \ "separately for edges, borders crossings and grid lines crossings)") parser.add_argument('-b', '--bboxes', help = "Directory to store bboxes dataset (one file describing all boards)") parser.add_argument('-f', '--format', choices=['txt', 'json', 'tf'], default = 'txt', help="Output dataset format") parser.add_argument('-m', '--method', choices = ["single", "enclosed", "both"], default = "both", help = "Stone image extration method (for all datasets except bboxes), one of: " + \ "single - extract areas of single-staying stones, " + \ "enclosed - extract areas of stones enclosed by other stones, " + \ "both - extract all stones") parser.add_argument('--space', nargs = '*', default = [10, 3, 5], help = "Space to add when extracting area for: single stones, " + \ "enclosed stones, edges/crossings " + \ "(numbers or perecentage of stone size followed by %)") parser.add_argument('--neg-img', type=int, default = 0, help = 'Number of negative images to generate from one image (0 - the same number as positives)') parser.add_argument('--resize', type=int, nargs='*', default=[0, 0], help='Resize images to specified size (0 - no resizing)') parser.add_argument('--no-grid', action="store_true", default = False, help = 'Do not generate grid line crossing images') parser.add_argument('--rotate', type=int, nargs=2, default=[0, 0], help='Two numbers specifying how many rotation images shall be created and an angle for each rotation') parser.add_argument('--split', type=float, help="A float value setting dataset split to train/test datasets") parser.add_argument('--shuffle', action='store_true', help="If True, file list is shuffled before splitting (by default True if split is specified)") args = parser.parse_args() self.dirs['positive'] = args.positive self.dirs['stones'] = args.stones self.dirs['negative'] = args.negative self.dirs['crossings'] = args.crossings self.dirs['bboxes'] = args.bboxes self.datasets = [x for x in self.dirs if self.dirs[x] is not None] if len(self.datasets) == 0: raise ValueError('No datasets to generate') self.pattern = args.pattern self.method = args.method.lower() self.spacing['single'] = args.space[0] self.spacing['enclosed'] = args.space[1] if len(args.space) > 1 else 1 self.spacing['crossing'] = args.space[2] if len(args.space) > 2 else 5 self.neg_per_image = args.neg_img self.n_resize = args.resize self.no_grid = args.no_grid self.n_rotate = args.rotate self.split = args.split self.shuffle = args.shuffle if self.shuffle is None: self.shuffle = self.split is not None and self.split > 0 self.format = args.format if self.format == 'tf' and not TF_AVAIL: print('TF-record output requested, but Tensorflow is not available. Switching to text output') self.format = 'json' if self.format == 'txt' and args.bboxes is not None: raise ValueError('Cannot generate bboxes dataset in text output format') def main(self): try: self.get_args() except: print('ERROR:', sys.exc_info()[1]) return # Clean up target directories dir_list = [x for x in self.dirs.values() if x is not None] def recursive_delete(f): if f.is_file(): f.unlink() else: for x in f.glob('*'): recursive_delete(x) for d in dir_list: pd = Path(d) pd.mkdir(exist_ok=True, parents=True) recursive_delete(pd) # Make pattern ready for glob: # Check it is a directory and if yes, add wildcards # If not, check for file wildcards, if none - add them if os.path.isdir(self.pattern): self.pattern = os.path.join(self.pattern, "*.*") else: head, tail = os.path.split(self.pattern) if tail == '': pattern = os.path.join(self.pattern, "*.*") # Load all files file_list = [] print('Counting files...') for x in glob.iglob(self.pattern): if os.path.isfile(x): if Path(x).suffix != '.gpar': # Image files processed as is file_list.append(str(x)) else: # For .gpar files, try to find an image found = False for sx in ['.png', '.jpg', '.jpeg']: f = Path(x).with_suffix(sx) found = f.exists() if found: file_list.append(str(f)) break if not found: print("==> Cannot find an image which corresponds to {} param file".format(x)) # Shuffle, if requested if self.shuffle: print('Shuffling file list') shuffle(file_list) # Prepare stats self.file_count = len(file_list) self.totals, self.counts = {}, {} # Get dataset writers if self.format == 'txt': writer_class = TxtDatasetWriter print('Using text output format') elif self.format == 'tf': writer_class = TfDatasetWriter print('Using TF-record output format') else: raise ValueError('Dont''t know how to handle dataset format ' + self.format) self.ds_writers = {k: writer_class(v, self.file_count, self.split) for k, v in self.dirs.items() if v is not None} # Process files for n, x in enumerate(file_list): self.one_file(n, x) # Finalize for w in self.ds_writers.values(): w.close() # Show statistics print("Dataset items created:") for k, v in self.totals.items(): print("\t{}: {}".format(k, v)) if __name__ == '__main__': app = DatasetGenerator() app.main() cv2.destroyAllWindows() #"C:\Users\kol\Documents\kol\gbr\img\go_board_*.gpar" -b cc/bboxes --bbox-fmt tf --bbox-split 0.2 --resize 416 416 ## it = tf_record_iterator("C:\\Users\\kol\\Documents\\kol\\gbr\\cc\\stones\\go_board.tfrecord") ## for n, r in enumerate(it): ## print('==> ' + str(n)) ## print(r) ## print('')
38.275152
122
0.557463
d546c133c5a4debefae43963128d7b51405be44b
1,368
py
Python
fiasko_bro/validators/code_inclusion.py
SerejkaSJ/fiasko_bro
dfb8c30109f317c1e5b6d211e002fd148695809e
[ "MIT" ]
25
2018-01-24T10:45:35.000Z
2020-12-05T21:47:20.000Z
fiasko_bro/validators/code_inclusion.py
SerejkaSJ/fiasko_bro
dfb8c30109f317c1e5b6d211e002fd148695809e
[ "MIT" ]
110
2018-01-21T12:25:13.000Z
2021-06-10T19:27:22.000Z
fiasko_bro/validators/code_inclusion.py
SerejkaSJ/fiasko_bro
dfb8c30109f317c1e5b6d211e002fd148695809e
[ "MIT" ]
13
2017-12-12T22:19:01.000Z
2019-01-29T18:08:05.000Z
from ..utils import code_helpers def too_difficult_by_mccabe(project_folder, max_complexity, *args, **kwargs): violations = [] for parsed_file in project_folder.get_parsed_py_files(): violations += code_helpers.get_mccabe_violations_for_file(parsed_file.path, max_complexity) if violations: return ','.join(violations) def code_too_nested(project_folder, tab_size, max_indentation_level, deep_nesting_paths_to_ignore, *args, **kwargs): """ Looks at the number of spaces in the beginning and decides if the code is too nested. As a precondition, the code has to pass indent_not_multiple_of_tab_size. """ for parsed_file in project_folder.get_parsed_py_files(whitelist=deep_nesting_paths_to_ignore): lines = parsed_file.content.split('\n') previous_line_indent = 0 for line_number, line in enumerate(lines): indentation_spaces_amount = code_helpers.count_indentation_spaces(line, tab_size) if ( indentation_spaces_amount > tab_size * max_indentation_level # make sure it's not a line continuation and indentation_spaces_amount - previous_line_indent == tab_size ): return parsed_file.get_name_with_line(line_number) previous_line_indent = indentation_spaces_amount
44.129032
116
0.708333
9d8c0c3bcef1cd9b3649ab8035459ffca7f6176f
1,121
py
Python
tests/conftest.py
ChrisPanopoulos/conda
fc81d4217f6c1804e983d1698f8b7cc5bc01874c
[ "BSD-3-Clause" ]
null
null
null
tests/conftest.py
ChrisPanopoulos/conda
fc81d4217f6c1804e983d1698f8b7cc5bc01874c
[ "BSD-3-Clause" ]
null
null
null
tests/conftest.py
ChrisPanopoulos/conda
fc81d4217f6c1804e983d1698f8b7cc5bc01874c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from pathlib import Path import subprocess import sys import pytest from conda.testing.fixtures import ( suppress_resource_warning, tmpdir, clear_subdir_cache, ) win_default_shells = ["cmd.exe", "powershell", "git_bash", "cygwin"] shells = ["bash", "zsh"] if sys.platform == "win32": shells = win_default_shells def pytest_addoption(parser): parser.addoption("--shell", action="append", default=[], help="list of shells to run shell tests on") def pytest_generate_tests(metafunc): if 'shell' in metafunc.fixturenames: metafunc.parametrize("shell", metafunc.config.option.shell) @pytest.fixture(scope="session", autouse=True) def conda_build_recipes(): test_recipes = Path(__file__).resolve().parent / "test-recipes" recipes_to_build = ["activate_deactivate_package", "pre_link_messages_package"] packages = [str(test_recipes / pkg) for pkg in recipes_to_build] cmd = ["conda-build"] cmd.extend(packages) subprocess.run(cmd, check=True)
28.025
83
0.706512
3a5486b3be23ff4d13ec989d1159e5211d192684
2,081
py
Python
juriscraper/opinions/united_states/state/vt_u.py
johnhawkinson/juriscraper
7c0407849ce5b960b2412df7939db545c356a899
[ "BSD-2-Clause" ]
null
null
null
juriscraper/opinions/united_states/state/vt_u.py
johnhawkinson/juriscraper
7c0407849ce5b960b2412df7939db545c356a899
[ "BSD-2-Clause" ]
null
null
null
juriscraper/opinions/united_states/state/vt_u.py
johnhawkinson/juriscraper
7c0407849ce5b960b2412df7939db545c356a899
[ "BSD-2-Clause" ]
1
2021-03-03T00:03:16.000Z
2021-03-03T00:03:16.000Z
"""Scraper for the Supreme Court of Vermont CourtID: vt Court Short Name: VT Author: Brian W. Carver Date created: 18 Aug 2013 Reviewer: Mike Lissner """ from datetime import datetime from six.moves.urllib.parse import urlsplit from juriscraper.OpinionSite import OpinionSite from lxml import html class Site(OpinionSite): def __init__(self, *args, **kwargs): super(Site, self).__init__(*args, **kwargs) self.court_id = self.__module__ self.url = 'https://www.vermontjudiciary.org/lc/masterpages/unpublishedeo2011-present.aspx' def _get_download_urls(self): path = "//div[@id='WebPartWPQ2']//td[../td[2]/text()]/a[contains(@href, 'pdf')]/@href" return list(self.html.xpath(path)) def _get_case_names(self): path = "//div[@id='WebPartWPQ2']//td[1][../td[2]/text()]//text()" return list(self.html.xpath(path)) def _get_case_dates(self): path = "//div[@id='WebPartWPQ2']//td[2]//text()" return [datetime.strptime(s, '%m/%d/%Y') for s in self.html.xpath(path)] def _get_precedential_statuses(self): return ['Unpublished'] * len(self.case_names) def _get_docket_numbers(self): path = "//div[@id='WebPartWPQ2']//td[../td[2]/text()]/a[contains(@href, 'pdf')]/@href" docket_numbers = [] for s in self.html.xpath(path): # Get the docket number from the URL. parts = urlsplit(s) # https://www.vt.org/LC/blah/eo15-092.pdf --> '2015-092' docket_numbers.append( parts.path.split('/')[-1].split('.')[0].replace('eo', '20') ) return docket_numbers def _get_dispositions(self): path = "//div[@id='WebPartWPQ2']//td[5][../td[2]/text()]//text()" return list(self.html.xpath(path)) def _get_lower_court_judges(self): path = "//div[@id='WebPartWPQ2']//td[4][../td[2]/text()]" lc_judges = [] for e in self.html.xpath(path): lc_judges.append(html.tostring(e, method='text', encoding='unicode')) return lc_judges
35.271186
99
0.611725
bcff88225903d8eae8a866d6e5b8f880e19b4fd4
907
py
Python
cogs/greetings.py
aomayo77/psychic-octo-chainsaw
e516dadf656f52f813b7674a228a79c7353445fa
[ "MIT" ]
2
2022-01-21T02:08:38.000Z
2022-02-09T04:46:48.000Z
cogs/greetings.py
aomayo77/psychic-octo-chainsaw
e516dadf656f52f813b7674a228a79c7353445fa
[ "MIT" ]
3
2022-01-08T00:18:19.000Z
2022-02-17T03:17:54.000Z
cogs/greetings.py
aomayo77/psychic-octo-chainsaw
e516dadf656f52f813b7674a228a79c7353445fa
[ "MIT" ]
2
2022-01-21T22:40:28.000Z
2022-01-25T20:27:13.000Z
from discord.ext import commands import discord import sys sys.dont_write_bytecode = True class greetings(commands.Cog): def __init__(self, bot): self.bot = bot self._last_member = None @commands.Cog.listener() async def on_member_join(self, member): channel = member.guild.system_channel if channel is not None: await channel.send('Welcome {0.mention}.'.format(member)) @commands.command() async def hello(self, ctx, *, member: discord.Member = None): """Says hello""" member = member or ctx.author if self._last_member is None or self._last_member.id != member.id: await ctx.send('Hello {0.name}~'.format(member)) else: await ctx.send('Hello {0.name}... This feels familiar.'.format(member)) self._last_member = member def setup(bot): bot.add_cog(greetings(bot))
29.258065
83
0.638368
2af99c115fb8ec4b999754d43fc348c43d44e0b1
3,700
py
Python
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/crm/models/crm_team.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
1
2019-12-19T01:53:13.000Z
2019-12-19T01:53:13.000Z
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/crm/models/crm_team.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
apps/odoo/lib/odoo-10.0.post20170615-py2.7.egg/odoo/addons/crm/models/crm_team.py
gtfarng/Odoo_migrade
9cc28fae4c379e407645248a29d22139925eafe7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models from odoo.tools.safe_eval import safe_eval class Team(models.Model): _name = 'crm.team' _inherit = ['mail.alias.mixin', 'crm.team'] resource_calendar_id = fields.Many2one('resource.calendar', string="Working Time", help="Used to compute open days") use_leads = fields.Boolean('Leads', help="The first contact you get with a potential customer is a lead you qualify before converting it into a real business opportunity. Check this box to manage leads in this sales team.") use_opportunities = fields.Boolean('Opportunities', default=True, help="Check this box to manage opportunities in this sales team.") alias_id = fields.Many2one('mail.alias', string='Alias', ondelete="restrict", required=True, help="The email address associated with this team. New emails received will automatically create new leads assigned to the team.") def get_alias_model_name(self, vals): return 'crm.lead' def get_alias_values(self): has_group_use_lead = self.env.user.has_group('crm.group_use_lead') values = super(Team, self).get_alias_values() values['alias_defaults'] = defaults = safe_eval(self.alias_defaults or "{}") defaults['type'] = 'lead' if has_group_use_lead and self.use_leads else 'opportunity' defaults['team_id'] = self.id return values @api.onchange('use_leads', 'use_opportunities') def _onchange_use_leads_opportunities(self): if not self.use_leads and not self.use_opportunities: self.alias_name = False @api.model def create(self, vals): generate_alias_name = self.env['ir.values'].get_default('sales.config.settings', 'generate_sales_team_alias') if generate_alias_name and not vals.get('alias_name'): vals['alias_name'] = vals.get('name') return super(Team, self).create(vals) @api.multi def write(self, vals): result = super(Team, self).write(vals) if 'use_leads' in vals or 'alias_defaults' in vals: for team in self: team.alias_id.write(team.get_alias_values()) return result #TODO JEM : refactor this stuff with xml action, proper customization, @api.model def action_your_pipeline(self): action = self.env.ref('crm.crm_lead_opportunities_tree_view').read()[0] user_team_id = self.env.user.sale_team_id.id if not user_team_id: user_team_id = self.search([], limit=1).id action['help'] = """<p class='oe_view_nocontent_create'>Click here to add new opportunities</p><p> Looks like you are not a member of a sales team. You should add yourself as a member of one of the sales team. </p>""" if user_team_id: action['help'] += "<p>As you don't belong to any sales team, Odoo opens the first one by default.</p>" action_context = safe_eval(action['context'], {'uid': self.env.uid}) if user_team_id: action_context['default_team_id'] = user_team_id tree_view_id = self.env.ref('crm.crm_case_tree_view_oppor').id form_view_id = self.env.ref('crm.crm_case_form_view_oppor').id kanb_view_id = self.env.ref('crm.crm_case_kanban_view_leads').id action['views'] = [ [kanb_view_id, 'kanban'], [tree_view_id, 'tree'], [form_view_id, 'form'], [False, 'graph'], [False, 'calendar'], [False, 'pivot'] ] action['context'] = action_context return action
45.679012
227
0.657297
523e744d753bf075090775f6c04c1663f024b90e
2,691
py
Python
tests/cholupdates/rank_1/downdate/test_downdate_seeger.py
marvinpfoertner/cholupdates
b102504cc096ba7f298bc5a881c35472d9111b83
[ "MIT" ]
6
2020-12-15T15:17:09.000Z
2021-04-22T16:48:17.000Z
tests/cholupdates/rank_1/downdate/test_downdate_seeger.py
marvinpfoertner/cholupdates
b102504cc096ba7f298bc5a881c35472d9111b83
[ "MIT" ]
22
2020-12-15T17:08:32.000Z
2022-03-20T10:15:04.000Z
tests/cholupdates/rank_1/downdate/test_downdate_seeger.py
marvinpfoertner/cholupdates
b102504cc096ba7f298bc5a881c35472d9111b83
[ "MIT" ]
null
null
null
"""Specific tests for the function :func:`cholupdates.rank_1.downdate_seeger`.""" import numpy as np import pytest import cholupdates @pytest.mark.parametrize( "impl", [None] + cholupdates.rank_1.downdate_seeger.available_impls ) def test_memory_order(L: np.ndarray, v: np.ndarray, impl: str): """Assert that the resulting array has the same memory order as the input array""" L_dd = cholupdates.rank_1.downdate_seeger(L, v, impl=impl) if L.flags.c_contiguous: assert L_dd.flags.c_contiguous else: assert L.flags.f_contiguous assert L_dd.flags.f_contiguous @pytest.mark.parametrize( "impl", [None] + cholupdates.rank_1.downdate_seeger.available_impls ) def test_non_contiguous(N: int, L: np.ndarray, v: np.ndarray, impl: str): """Assert that a non-contiguous array leads to a `ValueError`""" if N > 1: L_noncontig = np.stack([np.eye(N, dtype=L.dtype) for _ in range(8)], axis=1) with pytest.raises(ValueError): cholupdates.rank_1.downdate_seeger(L_noncontig[:, 3, :], v, impl=impl) v_noncontig = np.zeros((N, 3), dtype=v.dtype, order="C") with pytest.raises(ValueError): cholupdates.rank_1.downdate_seeger(L, v_noncontig[:, 1], impl=impl) @pytest.mark.parametrize( "L_dtype,v_dtype,impl", [ (L_dtype, v_dtype, impl) for L_dtype in [np.double, np.single, np.half, np.cdouble, np.intc] for v_dtype in [np.double, np.single, np.half, np.cdouble, np.intc] for impl in [None] + cholupdates.rank_1.downdate_seeger.available_impls ], ) def test_raise_on_wrong_dtype(L_dtype: np.dtype, v_dtype: np.dtype, impl: str): """Tests whether a :class:`TypeError` is raised if the Cholesky factor or the vector :code:`v` have an unsupported dtype.""" if not (L_dtype == v_dtype and L_dtype in (np.single, np.double)): with pytest.raises(TypeError): cholupdates.rank_1.downdate_seeger( L=np.eye(5, dtype=L_dtype), v=np.zeros(5, dtype=v_dtype), impl=impl ) def test_unknown_impl(L: np.ndarray, v: np.ndarray): """Tests whether requesting an unknown implementation results in an exception.""" with pytest.raises(NotImplementedError): cholupdates.rank_1.downdate_seeger(L, v, impl="doesnotexist") def test_cython_unavailable(L: np.ndarray, v: np.ndarray): """Tests whether requesting the Cython implementation results in an exception if it is not available.""" if "cython" not in cholupdates.rank_1.downdate_seeger.available_impls: with pytest.raises(NotImplementedError): cholupdates.rank_1.downdate_seeger(L, v, impl="cython")
36.364865
88
0.686734
2f6a0e7afb59166efab6b78e66c8caf501ad04b5
5,861
py
Python
api/app/utils/mongo_utils.py
crtarsorg/glasomer.rs
3b486241ea3d127dbe95c2c90210da51a38b0f29
[ "CC0-1.0" ]
null
null
null
api/app/utils/mongo_utils.py
crtarsorg/glasomer.rs
3b486241ea3d127dbe95c2c90210da51a38b0f29
[ "CC0-1.0" ]
null
null
null
api/app/utils/mongo_utils.py
crtarsorg/glasomer.rs
3b486241ea3d127dbe95c2c90210da51a38b0f29
[ "CC0-1.0" ]
null
null
null
# coding=utf-8 import datetime from bson import SON import string class MongoUtils: def __init__(self, mongo): self.mongo = mongo self.collection_name = 'answers' def save_to_database(self, data): self._insert(data) def _insert(self, data): json_doc = { 'answers': data['answers'], 'topMatches': data['matched_parties'], 'budget': data['budget'], 'timestamp': datetime.datetime.utcnow() } self.mongo.db[self.collection_name].insert(json_doc) def get_total_count(self): total = self.mongo.db[self.collection_name].count() return total def get_top_matches(self, place): query = '$topMatches.' + place + '.name' top_docs = self.mongo.db[self.collection_name].aggregate( [ {'$group': {'_id': query, 'count': {'$sum': 1}}}, {"$sort": SON([("count", -1), ("_id", -1)])} ] ) return top_docs['result'] def get_counts_on_budget_increase_decrease(self): increase_budget = self.mongo.db[self.collection_name].aggregate( [ {'$unwind': '$budget.increase'}, {'$group': {'_id': '$budget.increase', 'count': {'$sum': 1}}}, {"$sort": SON([("count", -1), ("_id", -1)])} ] ) decrease_budget = self.mongo.db[self.collection_name].aggregate( [ {'$unwind': '$budget.decrease'}, {'$group': {'_id': '$budget.decrease', 'count': {'$sum': 1}}}, {"$sort": SON([("count", -1), ("_id", -1)])} ] ) main_json = { 'increase': self.structure_sub_json(increase_budget['result']), 'decrease': self.structure_sub_json(decrease_budget['result']) } return main_json def structure_sub_json(self, item_array): json_doc = {} for item in item_array: json_doc[self.convert_case(item['_id'])] = item['count'] return json_doc def get_insights(self): vaz = [] vaz = self.pipeline_build(["Važno"]) nije_vaz = self.pipeline_build(["Nije važno"]) manje_vaz = self.pipeline_build(["Manje važno"]) veoma = self.pipeline_build(["Veoma važno"]) all_tp = self.pipeline_build(["", "Važno", "Nije važno", "Manje važno", "Veoma važno"]) # Query all_pipe = self.mongo.db[self.collection_name].aggregate(pipeline = [ { "$unwind": "$answers" }, { "$group": { "_id": {"qst":"$answers.question"}, "counter": {"$sum": 1} } }, { "$sort": SON([("counter", 1), ("_id.qst", 1)]) }, { "$project": { "_id": 0, "question": "$_id.qst", "importance": "$_id.importance", "totalAnswers": "$counter" } } ]) vazno = self.mongo.db[self.collection_name].aggregate(vaz) nije_vazno = self.mongo.db[self.collection_name].aggregate(nije_vaz) manje_vazno = self.mongo.db[self.collection_name].aggregate(manje_vaz) veoma_vazno = self.mongo.db[self.collection_name].aggregate(veoma) for ind, itm in enumerate(all_pipe['result']): counter = 0 # Vazno for elem in vazno['result']: if itm['question'] == elem['question']: itm["vazno"] = elem['totalAnswers'] counter += elem['totalAnswers'] all_pipe['result'][ind] = itm # nije_vazno for elem in nije_vazno['result']: if itm['question'] == elem['question']: itm["NijeVazno"] = elem['totalAnswers'] counter += elem['totalAnswers'] all_pipe['result'][ind] = itm # manje_vazno for elem in manje_vazno['result']: if itm['question'] == elem['question']: itm["manjeVazno"] = elem['totalAnswers'] counter += elem['totalAnswers'] all_pipe['result'][ind] = itm # veoma_vazno for elem in veoma_vazno['result']: if itm['question'] == elem['question']: itm["veomaVazno"] = elem['totalAnswers'] counter += elem['totalAnswers'] all_pipe['result'][ind] = itm itm['noAnswer'] = itm['totalAnswers'] - counter all_pipe['result'][ind] = itm return all_pipe['result'] @staticmethod def convert_case(name): string_key = string.capwords(name).replace(' ', '') return string_key[:1].lower() + string_key[1:] def pipeline_build(self, value): pipeline = [ { "$unwind": "$answers" }, { "$match": { "answers.parties.Vaš odgovor.importance": {"$in":value} } }, { "$group": { "_id": {"qst":"$answers.question", "importance": "$answers.parties.Vaš odgovor.importance"}, "counter": {"$sum": 1} } }, { "$sort": SON([("counter", 1), ("_id.qst", 1)]) }, { "$project": { "_id": 0, "question": "$_id.qst", "importance": "$_id.importance", "totalAnswers": "$counter" } } ] return pipeline
31.510753
112
0.465791
6cce6198d1f8e9ebd964cd66441782c456047f52
286
py
Python
Contributions/Roll_the_dice.py
OluSure/Hacktoberfest2021-1
ad1bafb0db2f0cdeaae8f87abbaa716638c5d2ea
[ "MIT" ]
215
2021-10-01T08:18:16.000Z
2022-03-29T04:12:03.000Z
Contributions/Roll_the_dice.py
OluSure/Hacktoberfest2021-1
ad1bafb0db2f0cdeaae8f87abbaa716638c5d2ea
[ "MIT" ]
51
2021-10-01T08:16:42.000Z
2021-10-31T13:51:51.000Z
Contributions/Roll_the_dice.py
OluSure/Hacktoberfest2021-1
ad1bafb0db2f0cdeaae8f87abbaa716638c5d2ea
[ "MIT" ]
807
2021-10-01T08:11:45.000Z
2021-11-21T18:57:09.000Z
import random min = 1 max = 6 roll_again = "yes" while roll_again == "yes" or roll_again == "y": print("Rolling the dices...") print("The values are....") print(random.randint(min, max)) print(random.randint(min, max)) roll_again = input("Roll the dices again?")
20.428571
47
0.632867
46b4870e5130ab5fdc5295bc7e5ff7ba2c11ccd9
108
py
Python
responsibleai/responsibleai/_tools/causal/__init__.py
ezherdeva/responsible-ai-toolbox
70895df616ca6f78ec83740e7705f641ef32c127
[ "MIT" ]
119
2021-12-02T21:00:47.000Z
2022-03-31T06:44:31.000Z
responsibleai/responsibleai/_tools/causal/__init__.py
ezherdeva/responsible-ai-toolbox
70895df616ca6f78ec83740e7705f641ef32c127
[ "MIT" ]
293
2021-11-30T16:45:49.000Z
2022-03-31T23:57:13.000Z
responsibleai/responsibleai/_tools/causal/__init__.py
ezherdeva/responsible-ai-toolbox
70895df616ca6f78ec83740e7705f641ef32c127
[ "MIT" ]
28
2021-12-07T17:28:04.000Z
2022-03-31T07:47:11.000Z
# Copyright (c) Microsoft Corporation # Licensed under the MIT License. """Utilities for causal module."""
21.6
37
0.740741
1bf4e63c02f7d6bc0f1666e156b43a3f038671bf
391
py
Python
everest/ptolemaic/datalike/primary/_primary.py
rsbyrne/everest
1ec06301cdeb7c2b7d85daf6075d996c5529247e
[ "MIT" ]
2
2020-12-17T02:27:28.000Z
2020-12-17T23:50:13.000Z
everest/ptolemaic/datalike/primary/_primary.py
rsbyrne/everest
1ec06301cdeb7c2b7d85daf6075d996c5529247e
[ "MIT" ]
1
2020-12-07T10:14:45.000Z
2020-12-07T10:14:45.000Z
everest/ptolemaic/datalike/primary/_primary.py
rsbyrne/everest
1ec06301cdeb7c2b7d85daf6075d996c5529247e
[ "MIT" ]
1
2020-10-22T11:16:50.000Z
2020-10-22T11:16:50.000Z
############################################################################### '''''' ############################################################################### from . import _Datalike class Primary(_Datalike): ... ############################################################################### ###############################################################################
26.066667
79
0.102302
f546adf3bdbb430348abf209bf7808a16f76677b
573
py
Python
plotly/validators/histogram2dcontour/_autocolorscale.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/histogram2dcontour/_autocolorscale.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/histogram2dcontour/_autocolorscale.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class AutocolorscaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name='autocolorscale', parent_name='histogram2dcontour', **kwargs ): super(AutocolorscaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), implied_edits=kwargs.pop('implied_edits', {}), role=kwargs.pop('role', 'style'), **kwargs )
28.65
77
0.623037
d33020e252808d4eac94796f998e409754a9354f
6,530
py
Python
tests/test_tags.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
tests/test_tags.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
tests/test_tags.py
zmdismai/tcf
3903e0a2f444c3aa14647a5147a0df76a49e4195
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # import re import os import sys import unittest import commonl.testing import tcfl import tcfl.tc _src = os.path.abspath(__file__) _srcdir = os.path.dirname(_src) class _test(unittest.TestCase, commonl.testing.test_ttbd_mixin): longMessage = True @classmethod def setUpClass(cls): cls.src = _src commonl.testing.test_ttbd_mixin.setUpClass( ttbd_config_files = [ os.path.join(_srcdir, "conf_00_lib.py"), os.path.join(_srcdir, "conf_07_zephyr.py"), os.path.join(_srcdir, "conf_zephyr_tests.py"), ]) @classmethod def tearDownClass(cls): commonl.testing.test_ttbd_mixin.tearDownClass() pass def test_00(self): with self.assertRaises(tcfl.tc.blocked_e): @tcfl.tc.tags() # pylint: disable = unused-variable class _test_00(tcfl.tc.tc_c): # Request no tags, it shall fail pass @tcfl.tc.tags("tag1", tag2 = "value2") class _test_01(tcfl.tc.tc_c): """ Request boolean and keyword tags """ def eval(self): assert 'tag1' in self._tags assert self.tag_get('tag1', None)[0] == True assert 'tag2' in self._tags assert self.tag_get('tag2', None)[0] == "value2" def test_01(self): r = self._tcf_run_cut() self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags("tag1") class _test_02(tcfl.tc.tc_c): """ Request a boolean tag """ def eval(self): assert 'tag1' in self._tags assert self.tag_get('tag1', None)[0] == True def test_02(self): r = self._tcf_run_cut() self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags(tag2 = "value2") class _test_03(tcfl.tc.tc_c): """ Request a keyword tag """ def eval(self): assert 'tag2' in self._tags assert self.tag_get('tag2', None)[0] == "value2" def test_03(self): r = self._tcf_run_cut() self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags("tag1") class _test_04(tcfl.tc.tc_c): """ Request boolean tag, filter on it being there """ def eval(self): assert 'tag1' in self._tags assert self.tag_get('tag1', None)[0] == True def test_04(self): def say_tags(args): args.tags_spec.append("tag1") r = self._tcf_run_cut(args_fn = say_tags) self.assert_in_tcf_log("_test_04 @local: selected by tag specification") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags("tag1") class _test_05(tcfl.tc.tc_c): """ Request boolean tag, filter on it not being there """ def eval(self): assert 'tag1' in self._tags assert self.tag_get('tag1', None)[0] == True def test_05(self): def say_tags(args): args.tags_spec.append("not tag1") r = self._tcf_run_cut(args_fn = say_tags) self.assert_in_tcf_log( "_test_05 @local: skipped: because of tag specification") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags("tag1") class _test_06(tcfl.tc.tc_c): """ Request boolean tag, filter on it not being there """ def eval(self): assert 'tag2' not in self._tags def test_06(self): def say_tags(args): args.tags_spec.append("not tag2") r = self._tcf_run_cut(args_fn = say_tags) self.assert_in_tcf_log( "_test_06 @local: selected by tag specification") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags(tag2 = "value2") class _test_06b(tcfl.tc.tc_c): """ Request keyword tag, filter on the value being there """ def eval(self): assert 'tag2' in self._tags assert self.tag_get('tag2', None)[0] == "value2" def test_06b(self): def say_tags(args): args.tags_spec.append("tag2 == 'value2'") r = self._tcf_run_cut(args_fn = say_tags) self.assert_in_tcf_log( "_test_06b @local: selected by tag specification") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags(tag2 = "value2") class _test_07(tcfl.tc.tc_c): """ Request keyword tag, filter on the value not being something """ def eval(self): assert 'tag2' in self._tags assert self.tag_get('tag2', None)[0] == "value2" def test_07(self): def say_tags(args): args.tags_spec.append("tag2 == 'value3'") r = self._tcf_run_cut(args_fn = say_tags) self.assert_in_tcf_log( "_test_07 @local: skipped: because of tag specification") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags("skip") class _test_08(tcfl.tc.tc_c): """ Request 'skip' tag, the TC is skipped """ def eval(self): assert 'skip' in self._tags assert self.tag_get('skip', None)[0] == True def test_08(self): r = self._tcf_run_cut() self.assert_in_tcf_log( "_test_08 @local: skipped: because of 'skip' tag @") self.assert_in_tcf_log("1 skipped") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) @tcfl.tc.tags(skip = "because I want") class _test_09(tcfl.tc.tc_c): """ Request 'skip' tag, the TC is skipped """ def eval(self): assert 'skip' in self._tags assert self.tag_get('skip', None)[0] == True def test_09(self): r = self._tcf_run_cut() self.assert_in_tcf_log(re.compile( "_test_09 @local: skipped: " "because of 'skip' tag @.*because I want")) self.assert_in_tcf_log("1 skipped") self.assert_not_in_tcf_log("AssertionError") self.assertEqual(r, 0) if __name__ == "__main__": commonl.testing.logging_init(sys.argv) unittest.main()
28.893805
80
0.580858
121e02fff52791903c4202119461a1772c5cd5ab
52
py
Python
cruft/__main__.py
tdhopper/cruft
37e46693ecdd3467bd01b022447e100163f4733a
[ "MIT" ]
293
2020-08-18T05:52:45.000Z
2022-03-31T20:39:43.000Z
cruft/__main__.py
tdhopper/cruft
37e46693ecdd3467bd01b022447e100163f4733a
[ "MIT" ]
102
2020-08-28T16:38:34.000Z
2022-03-31T11:01:41.000Z
cruft/__main__.py
tdhopper/cruft
37e46693ecdd3467bd01b022447e100163f4733a
[ "MIT" ]
36
2020-08-28T16:34:10.000Z
2022-03-31T21:55:53.000Z
from cruft import _cli _cli.app(prog_name="cruft")
13
27
0.769231
2cdf3fd58f94a9ae1dc485458b8ea8f2134b99d8
6,953
py
Python
python_code/client.py
nivertech/ethersecret
1cae5bd62ff4dbbdcc572857fc2aeb19fab698fb
[ "Apache-2.0" ]
1
2018-04-09T07:08:46.000Z
2018-04-09T07:08:46.000Z
python_code/client.py
nivertech/ethersecret
1cae5bd62ff4dbbdcc572857fc2aeb19fab698fb
[ "Apache-2.0" ]
2
2017-03-29T11:58:02.000Z
2017-03-29T20:42:17.000Z
python_code/client.py
nivertech/ethersecret
1cae5bd62ff4dbbdcc572857fc2aeb19fab698fb
[ "Apache-2.0" ]
4
2017-03-31T06:02:51.000Z
2018-10-31T03:57:49.000Z
from pycoin.serialize import b2h, h2b from pycoin import encoding import rlp from ethereum import tester, utils, abi, blocks, transactions import requests import json import jsonrpc import time from ethereum.abi import ContractTranslator from ethereum.utils import mk_contract_address from eth_warpper import * #import node import xmlrpclib is_localhost = False if(is_localhost): sever1 = xmlrpclib.ServerProxy('http://localhost:8001') sever2 = xmlrpclib.ServerProxy('http://localhost:8002') sever3 = xmlrpclib.ServerProxy('http://localhost:8003') else: sever1 = xmlrpclib.ServerProxy('http://10.101.154.71:8001') sever2 = xmlrpclib.ServerProxy('http://10.79.151.81:8001') sever3 = xmlrpclib.ServerProxy('http://10.65.213.19:8001') def xor( x, y ): a = bytearray(x) b = bytearray(y) z = bytearray(32) result = h2b("") for i in range(32): z[i] = a[i] ^ b[i] result = result + h2b("%02X" % z[i]) return result def encrypt( text, key ): if( len(text) != 32 or len(key) != 32 ): return None return xor(text,key) def decrypt( chiper, key ): if( len(chiper) != 32 or len(key) != 32 ): return None return xor(chiper,key) def CreateNodeKeys( key, rand1, rand2, rand3, node_ind ): if( node_ind == 1 ): clientKey1 = xor(key,rand1) clientKey2 = xor(xor(key,rand1),rand2) clientKey3 = xor(xor(key,rand1),rand3) elif( node_ind == 2 ): clientKey1 = xor(key,rand2) clientKey2 = xor(xor(key,rand2),rand1) clientKey3 = xor(xor(key,rand2),rand3) elif( node_ind == 3 ): clientKey1 = xor(key,rand3) clientKey2 = xor(xor(key,rand3),rand1) clientKey3 = xor(xor(key,rand3),rand2) return [clientKey1, clientKey2, clientKey3] def upload_enc_secret_to_blockchain_and_send_keys_to_nodes( secret, secret_index, ethereum_key ): key = utils.sha3("password") rand1 = utils.sha3("rand1") rand2 = utils.sha3("rand2") rand3 = utils.sha3("rand3") enc_secret = encrypt(secret, key) keys1 = CreateNodeKeys( key, rand1, rand2, rand3, 1 ) keys2 = CreateNodeKeys( key, rand1, rand2, rand3, 2 ) keys3 = CreateNodeKeys( key, rand1, rand2, rand3, 3 ) print "uploading encrypted secret to blockchain" newSecret( ethereum_key, enc_secret ) # TODO - send to nodes keys1 = [b2h(keys1[0]), b2h(keys1[1]), b2h(keys1[2])] keys2 = [b2h(keys2[0]), b2h(keys2[1]), b2h(keys2[2])] keys3 = [b2h(keys3[0]), b2h(keys3[1]), b2h(keys3[2])] #print str(keys1) print "send key share 1 to server 1" sever1.submit_keys( secret_index, keys1, 1 ) print "send key share 2 to server 2" sever2.submit_keys( secret_index, keys2, 2 ) print "send key share 3 to server 3" sever3.submit_keys( secret_index, keys3, 3 ) def key12( xor_key_rand1, xor_key_rand2, xor_key_rand1_rand2 ): key = xor( xor( xor_key_rand1, xor_key_rand2 ), xor_key_rand1_rand2 ) return key def key13( xor_key_rand1, xor_key_rand3, xor_key_rand1_rand3 ): key = xor( xor( xor_key_rand1, xor_key_rand3 ), xor_key_rand1_rand3 ) return key def key23( xor_key_rand2, xor_key_rand3, xor_key_rand2_rand3 ): key = xor( xor( xor_key_rand2, xor_key_rand3 ), xor_key_rand2_rand3 ) return key def read_and_decrypt_secret( secret_index, ethereum_key ): # 1) read encrypted secret print "read raw encrypted data from blockchain" data = getEncData( ethereum_key, secret_index) # 2) ask for keys and get at least two - TODO print "requesting key share 1 from server 1" keys1 = sever1.get_keys(b2h(ethereum_key), secret_index, 1) print "requesting key share 2 from server 2" keys2 = sever2.get_keys(b2h(ethereum_key), secret_index, 2) print "requesting key share 3 from server 3" keys3 = sever3.get_keys(b2h(ethereum_key), secret_index, 3) if( len(keys1) == 3 ): print "received receive key share 1 from server 1" keys1 = [ h2b(keys1[0]),h2b(keys1[1]),h2b(keys1[2])] else: print "didn't received receive key share 1 from server 1" keys1 = None if( len(keys2) == 3 ): print "received receive key share 2 from server 2" keys2 = [ h2b(keys2[0]),h2b(keys2[1]),h2b(keys2[2])] else: print "didn't received receive key share 2 from server 2" keys2 = None if( len(keys3) == 3 ): print "received receive key share 3 from server 3" keys3 = [ h2b(keys3[0]),h2b(keys3[1]),h2b(keys3[2])] else: print "didn't received receive key share 3 from server 3" keys3 = None key = None if( not (keys1 is None) and not (keys2 is None) ): key = key12( keys1[0], keys2[0], keys1[1]) elif( not (keys1 is None) and not (keys3 is None) ): key = key13( keys1[0], keys3[0], keys1[2]) elif( not (keys2 is None) and not (keys3 is None) ): key = key23( keys2[0], keys3[0], keys2[2]) else: print "cannot decrypt, less than 2 servers sent keys" return h2b("00") * 32 return decrypt(data,key) ''' secret = h2b("c0dec0defacefeed") * 4 secret_index = 3 ethereum_key = utils.sha3("Smart Pool2") ################################################################################ upload_enc_secret_to_blockchain_and_send_keys_to_nodes( secret, secret_index, ethereum_key ) print "upload done" data = read_and_decrypt_secret(secret_index, ethereum_key) print b2h(data) set_prem( ethereum_key, secret_index, "0x6d87462cB31C1217cf1eD61B4FCC37F823c61624", 0, 2490817702 ) print "set prem" data = read_and_decrypt_secret(secret_index, ethereum_key) print b2h(data) ''' ''' import socket TCP_IP = '127.0.0.1' TCP_PORT = 5005 BUFFER_SIZE = 1024 MESSAGE = "Hello, World!" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((TCP_IP, TCP_PORT)) s.send(MESSAGE) data = s.recv(BUFFER_SIZE) s.close() print "received data:", data ''' ethereum_key = utils.sha3("Smart Pool2") secret = h2b("45746865722050726976616379205465616d") + h2b("00") * 14 #secret = h2b("476176696e206973207361746f736869") + h2b("00") * 16 #secret = h2b("c0dec0defacefeed") * 4 secret_index = 0 print "secret index " + str(secret_index) ################################################################################ upload_enc_secret_to_blockchain_and_send_keys_to_nodes( secret, secret_index, ethereum_key ) data = read_and_decrypt_secret(secret_index, ethereum_key) print "decrytion returned: " + b2h(data) print "giving read access to 0x6d87462cB31C1217cf1eD61B4FCC37F823c61624 for 3 hours" set_prem( ethereum_key, secret_index, "0x6d87462cB31C1217cf1eD61B4FCC37F823c61624", 0, 2490817702 ) data = read_and_decrypt_secret(secret_index, ethereum_key) print "decrytion returned: " + data #print b2h(data)
29.969828
99
0.649504
c1932e3ae23229bbca9058085709abed0caea4b9
245
py
Python
openjij/utils/__init__.py
zeta1999/OpenJij
0fe03f07af947f519a32ad58fe20423919651634
[ "Apache-2.0" ]
61
2019-01-05T13:37:10.000Z
2022-03-11T02:11:08.000Z
openjij/utils/__init__.py
zeta1999/OpenJij
0fe03f07af947f519a32ad58fe20423919651634
[ "Apache-2.0" ]
79
2019-01-29T09:55:20.000Z
2022-02-19T04:06:20.000Z
openjij/utils/__init__.py
29rou/OpenJij
c2579fba8710cf82b9e6761304f0042b365b595c
[ "Apache-2.0" ]
21
2019-01-07T07:55:10.000Z
2022-03-08T14:27:23.000Z
from .benchmark import solver_benchmark, residual_energy, time_to_solution, success_probability, se_residual_energy, se_success_probability, se_upper_tts, se_lower_tts from .res_convertor import convert_response import openjij.utils.graph_utils
61.25
167
0.885714
54db07d659377e33f356092f523863a15192bdab
3,262
py
Python
tbd/preprocessing.py
jiaweih/TBD
f9c2532b26f063ba72733ea5d18c1499a92376d5
[ "MIT" ]
null
null
null
tbd/preprocessing.py
jiaweih/TBD
f9c2532b26f063ba72733ea5d18c1499a92376d5
[ "MIT" ]
null
null
null
tbd/preprocessing.py
jiaweih/TBD
f9c2532b26f063ba72733ea5d18c1499a92376d5
[ "MIT" ]
null
null
null
"""Process the protein sequence into specified data format for modeling. """ import pickle import pandas as pd def set_length_limit(df, length_limit=40, verbose=True): """Return sequences of length above specified length_limit. Args: df (dataframe): dataframe of protein sequence length_limit (int, optional): specified protein length limit. Defaults to 40. Returns: dataframe: sequences with length above specified length_limit """ df.loc[:, 'length'] = df.loc[:, 'sequence'].map(lambda x: len(x)) if verbose: print(f'Before setting length limit of {length_limit}: ') print(df.describe()) print() else: pass df = df.loc[df.length >= length_limit] if verbose: print(f'After setting length limit of {length_limit}: ') print(df.describe()) print() else: pass return df def clean_disordered_sequence(infile_disordered): """Clean the disordered protein sequence. Args: infile_disordered ([str]): filename or path to the disordered protein sequence in csv format. Returns: dataframe: cleaned dataframe of disordered protein sequence. """ df_disordered = pd.read_csv(infile_disordered) df_disordered = df_disordered[~df_disordered.sequence.isnull()] df_disordered = df_disordered.drop_duplicates() df_disordered = set_length_limit(df_disordered) return df_disordered def clean_ordered_sequence(infile_ordered_1, infile_ordered_2): """Clean ordered protein sequence. Args: infile_ordered_1 (str): filename of ordered protein in csv format infile_ordered_2 (str): filename of ordered protein in csv format Returns: dataframe: cleaned sequence with lengh above specified length limit. """ df1 = pd.read_csv(infile_ordered_1) df2 = pd.read_csv(infile_ordered_2) df_ordered = df1.append(df2) df_ordered = df_ordered.loc[:, ['Sequence']] df_ordered = df_ordered.rename(columns={'Sequence': 'sequence'}) df_ordered = df_ordered[~df_ordered.sequence.isnull()] df_ordered = df_ordered.drop_duplicates() df_ordered = set_length_limit(df_ordered) return df_ordered def save_processed_data(array_ordered, labels_ordered, array_disordered, labels_disordered, processed_data_file="data/protein_processed_data.pkl"): """Save the processed data in a pickle format. Args: array_ordered (np.ndarray): three-dimensional array of features for ordered protein sequence labels_ordered (np.ndarray): one-dimensional array of labels for ordered protein sequence array_disordered (np.ndarray): three-dimensional array of features for disordered protein sequence labels_disordered (np.ndarray): one-dimensional array of labels for disordered protein sequence """ dict_data = { "array_ordered": array_ordered, "labels_ordered": labels_ordered, "array_disordered": array_disordered, "labels_disordered": labels_disordered } with open(processed_data_file, "wb") as f_write: pickle.dump(dict_data, f_write)
33.979167
79
0.681484
c8703af1afe6bb4c6a6cb54211bbe29122092514
20,073
py
Python
torch/onnx/__init__.py
mcx/pytorch
b02b3f25dbffeead4f06d32e75dd4a282e8b0b5f
[ "Intel" ]
1
2022-03-11T22:08:48.000Z
2022-03-11T22:08:48.000Z
torch/onnx/__init__.py
sascristian/pytorch
f09c696ecda155c42006f85d2687445dfb24774f
[ "Intel" ]
null
null
null
torch/onnx/__init__.py
sascristian/pytorch
f09c696ecda155c42006f85d2687445dfb24774f
[ "Intel" ]
null
null
null
import torch._C as _C from typing import Dict, Optional TensorProtoDataType = _C._onnx.TensorProtoDataType OperatorExportTypes = _C._onnx.OperatorExportTypes TrainingMode = _C._onnx.TrainingMode _CAFFE2_ATEN_FALLBACK = _C._onnx._CAFFE2_ATEN_FALLBACK ONNX_ARCHIVE_MODEL_PROTO_NAME = "__MODEL_PROTO" producer_name = "pytorch" producer_version = _C._onnx.PRODUCER_VERSION class ExportTypes: r""""Specifies how the ONNX model is stored.""" PROTOBUF_FILE = "Saves model in the specified protobuf file." ZIP_ARCHIVE = "Saves model in the specified ZIP file (uncompressed)." COMPRESSED_ZIP_ARCHIVE = "Saves model in the specified ZIP file (compressed)." DIRECTORY = "Saves model in the specified folder." class CheckerError(Exception): r"""Raised when ONNX checker detects an invalid model.""" pass class SymbolicContext: r"""Provides extra context for symbolic functions. Args: params_dict (Dict[str, _C.IValue]): Mapping from graph initializer name to IValue. env (Dict[_C.Value, _C.Value]): Mapping from Torch domain graph Value to ONNX domain graph Value. cur_node (_C.Node): Current node being converted to ONNX domain. onnx_block (_C.Block): Current ONNX block that converted nodes are being appended to. """ def __init__(self, params_dict, env, cur_node, onnx_block): self.params_dict: Dict[str, _C.IValue] = params_dict self.env: Dict[_C.Value, _C.Value] = env # Current node that is being converted. self.cur_node: _C.Node = cur_node # Current onnx block that converted nodes are being appended to. self.onnx_block: _C.Block = onnx_block def _export(*args, **kwargs): from torch.onnx import utils result = utils._export(*args, **kwargs) return result def export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL, input_names=None, output_names=None, operator_export_type=OperatorExportTypes.ONNX, opset_version=None, do_constant_folding=True, dynamic_axes=None, keep_initializers_as_inputs=None, custom_opsets=None, export_modules_as_functions=False): r""" Exports a model into ONNX format. If ``model`` is not a :class:`torch.jit.ScriptModule` nor a :class:`torch.jit.ScriptFunction`, this runs ``model`` once in order to convert it to a TorchScript graph to be exported (the equivalent of :func:`torch.jit.trace`). Thus this has the same limited support for dynamic control flow as :func:`torch.jit.trace`. Args: model (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction): the model to be exported. args (tuple or torch.Tensor): args can be structured either as: 1. ONLY A TUPLE OF ARGUMENTS:: args = (x, y, z) The tuple should contain model inputs such that ``model(*args)`` is a valid invocation of the model. Any non-Tensor arguments will be hard-coded into the exported model; any Tensor arguments will become inputs of the exported model, in the order they occur in the tuple. 2. A TENSOR:: args = torch.Tensor([1]) This is equivalent to a 1-ary tuple of that Tensor. 3. A TUPLE OF ARGUMENTS ENDING WITH A DICTIONARY OF NAMED ARGUMENTS:: args = (x, {'y': input_y, 'z': input_z}) All but the last element of the tuple will be passed as non-keyword arguments, and named arguments will be set from the last element. If a named argument is not present in the dictionary, it is assigned the default value, or None if a default value is not provided. .. note:: If a dictionary is the last element of the args tuple, it will be interpreted as containing named arguments. In order to pass a dict as the last non-keyword arg, provide an empty dict as the last element of the args tuple. For example, instead of:: torch.onnx.export( model, (x, # WRONG: will be interpreted as named arguments {y: z}), "test.onnx.pb") Write:: torch.onnx.export( model, (x, {y: z}, {}), "test.onnx.pb") f: a file-like object (such that ``f.fileno()`` returns a file descriptor) or a string containing a file name. A binary protocol buffer will be written to this file. export_params (bool, default True): if True, all parameters will be exported. Set this to False if you want to export an untrained model. In this case, the exported model will first take all of its parameters as arguments, with the ordering as specified by ``model.state_dict().values()`` verbose (bool, default False): if True, prints a description of the model being exported to stdout. In addition, the final ONNX graph will include the field ``doc_string``` from the exported model which mentions the source code locations for ``model``. If True, ONNX exporter logging will be turned on. training (enum, default TrainingMode.EVAL): * ``TrainingMode.EVAL``: export the model in inference mode. * ``TrainingMode.PRESERVE``: export the model in inference mode if model.training is False and in training mode if model.training is True. * ``TrainingMode.TRAINING``: export the model in training mode. Disables optimizations which might interfere with training. input_names (list of str, default empty list): names to assign to the input nodes of the graph, in order. output_names (list of str, default empty list): names to assign to the output nodes of the graph, in order. operator_export_type (enum, default OperatorExportTypes.ONNX): * ``OperatorExportTypes.ONNX``: Export all ops as regular ONNX ops (in the default opset domain). * ``OperatorExportTypes.ONNX_FALLTHROUGH``: Try to convert all ops to standard ONNX ops in the default opset domain. If unable to do so (e.g. because support has not been added to convert a particular torch op to ONNX), fall back to exporting the op into a custom opset domain without conversion. Applies to `custom ops <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_ as well as ATen ops. For the exported model to be usable, the runtime must support these non-standard ops. * ``OperatorExportTypes.ONNX_ATEN``: All ATen ops (in the TorchScript namespace "aten") are exported as ATen ops (in opset domain "org.pytorch.aten"). `ATen <https://pytorch.org/cppdocs/#aten>`_ is PyTorch's built-in tensor library, so this instructs the runtime to use PyTorch's implementation of these ops. .. warning:: Models exported this way are probably runnable only by Caffe2. This may be useful if the numeric differences in implementations of operators are causing large differences in behavior between PyTorch and Caffe2 (which is more common on untrained models). * ``OperatorExportTypes.ONNX_ATEN_FALLBACK``: Try to export each ATen op (in the TorchScript namespace "aten") as a regular ONNX op. If we are unable to do so (e.g. because support has not been added to convert a particular torch op to ONNX), fall back to exporting an ATen op. See documentation on OperatorExportTypes.ONNX_ATEN for context. For example:: graph(%0 : Float): %3 : int = prim::Constant[value=0]() # conversion unsupported %4 : Float = aten::triu(%0, %3) # conversion supported %5 : Float = aten::mul(%4, %0) return (%5) Assuming ``aten::triu`` is not supported in ONNX, this will be exported as:: graph(%0 : Float): %1 : Long() = onnx::Constant[value={0}]() # not converted %2 : Float = aten::ATen[operator="triu"](%0, %1) # converted %3 : Float = onnx::Mul(%2, %0) return (%3) If PyTorch was built with Caffe2 (i.e. with ``BUILD_CAFFE2=1``), then Caffe2-specific behavior will be enabled, including special support for ops are produced by the modules described in `Quantization <https://pytorch.org/docs/stable/quantization.html>`_. .. warning:: Models exported this way are probably runnable only by Caffe2. opset_version (int, default 13): The version of the `default (ai.onnx) opset <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_ to target. Must be >= 7 and <= 16. do_constant_folding (bool, default True): Apply the constant-folding optimization. Constant-folding will replace some of the ops that have all constant inputs with pre-computed constant nodes. dynamic_axes (dict<string, dict<int, string>> or dict<string, list(int)>, default empty dict): By default the exported model will have the shapes of all input and output tensors set to exactly match those given in ``args``. To specify axes of tensors as dynamic (i.e. known only at run-time), set ``dynamic_axes`` to a dict with schema: * KEY (str): an input or output name. Each name must also be provided in ``input_names`` or ``output_names``. * VALUE (dict or list): If a dict, keys are axis indices and values are axis names. If a list, each element is an axis index. For example:: class SumModule(torch.nn.Module): def forward(self, x): return torch.sum(x, dim=1) torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb", input_names=["x"], output_names=["sum"]) Produces:: input { name: "x" ... shape { dim { dim_value: 2 # axis 0 } dim { dim_value: 2 # axis 1 ... output { name: "sum" ... shape { dim { dim_value: 2 # axis 0 ... While:: torch.onnx.export(SumModule(), (torch.ones(2, 2),), "onnx.pb", input_names=["x"], output_names=["sum"], dynamic_axes={ # dict value: manually named axes "x": {0: "my_custom_axis_name"}, # list value: automatic names "sum": [0], }) Produces:: input { name: "x" ... shape { dim { dim_param: "my_custom_axis_name" # axis 0 } dim { dim_value: 2 # axis 1 ... output { name: "sum" ... shape { dim { dim_param: "sum_dynamic_axes_1" # axis 0 ... keep_initializers_as_inputs (bool, default None): If True, all the initializers (typically corresponding to parameters) in the exported graph will also be added as inputs to the graph. If False, then initializers are not added as inputs to the graph, and only the non-parameter inputs are added as inputs. This may allow for better optimizations (e.g. constant folding) by backends/runtimes. If ``opset_version < 9``, initializers MUST be part of graph inputs and this argument will be ignored and the behavior will be equivalent to setting this argument to True. If None, then the behavior is chosen automatically as follows: * If ``operator_export_type=OperatorExportTypes.ONNX``, the behavior is equivalent to setting this argument to False. * Else, the behavior is equivalent to setting this argument to True. custom_opsets (dict<str, int>, default empty dict): A dict with schema: * KEY (str): opset domain name * VALUE (int): opset version If a custom opset is referenced by ``model`` but not mentioned in this dictionary, the opset version is set to 1. Only custom opset domain name and version should be indicated through this argument. export_modules_as_functions (bool or set of type of nn.Module, default False): Flag to enable exporting all ``nn.Module`` forward calls as local functions in ONNX. Or a set to indicate the particular types of modules to export as local functions in ONNX. This feature requires ``opset_version`` >= 15, otherwise the export will fail. This is because ``opset_version`` < 15 implies IR version < 8, which means no local function support. Module variables will be exported as function attributes. There are two categories of function attributes. 1. Annotated attributes: class variables that have type annotations via `PEP 526-style <https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations>`_ will be exported as attributes. Annotated attributes are not used inside the subgraph of ONNX local function because they are not created by PyTorch JIT tracing, but they may be used by consumers to determine whether or not to replace the function with a particular fused kernel. 2. Inferred attributes: variables that are used by operators inside the module. Attribute names will have prefix "inferred::". This is to differentiate from predefined attributes retrieved from python module annotations. Inferred attributes are used inside the subgraph of ONNX local function. * ``False``(default): export ``nn.Module`` forward calls as fine grained nodes. * ``True``: export all ``nn.Module`` forward calls as local function nodes. * Set of type of nn.Module: export ``nn.Module`` forward calls as local function nodes, only if the type of the ``nn.Module`` is found in the set. Raises: CheckerError: If the ONNX checker detects an invalid ONNX graph. Will still export the model to the file ``f`` even if this is raised. """ from torch.onnx import utils return utils.export(model, args, f, export_params, verbose, training, input_names, output_names, operator_export_type, opset_version, do_constant_folding, dynamic_axes, keep_initializers_as_inputs, custom_opsets, export_modules_as_functions) def export_to_pretty_string(*args, **kwargs) -> str: r""" Similar to :func:`export`, but returns a text representation of the ONNX model. Only differences in args listed below. All other args are the same as :func:`export`. Args: add_node_names (bool, default True): Whether or not to set NodeProto.name. This makes no difference unless ``google_printer=True``. google_printer (bool, default False): If False, will return a custom, compact representation of the model. If True will return the protobuf's `Message::DebugString()`, which is more verbose. Returns: A UTF-8 str containing a human-readable representation of the ONNX model. """ from torch.onnx import utils return utils.export_to_pretty_string(*args, **kwargs) def _optimize_trace(graph, operator_export_type): from torch.onnx import utils return utils._optimize_graph(graph, operator_export_type) def select_model_mode_for_export(model, mode): r""" A context manager to temporarily set the training mode of ``model`` to ``mode``, resetting it when we exit the with-block. A no-op if mode is None. Args: model: Same type and meaning as ``model`` arg to :func:`export`. mode: Same type and meaning as ``training`` arg to :func:`export`. """ from torch.onnx import utils return utils.select_model_mode_for_export(model, mode) def _run_symbolic_function(*args, **kwargs): from torch.onnx import utils return utils._run_symbolic_function(*args, **kwargs) def _run_symbolic_method(*args, **kwargs): from torch.onnx import utils return utils._run_symbolic_method(*args, **kwargs) def is_in_onnx_export(): r""" Returns True iff :func:`export` is running in the current thread """ from torch.onnx import utils return utils.is_in_onnx_export() def register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version): r""" Registers ``symbolic_fn`` to handle ``symbolic_name``. See "Custom Operators" in the module documentation for an example usage. Args: symbolic_name (str): The name of the custom operator in "<domain>::<op>" format. symbolic_fn (Callable): A function that takes in the ONNX graph and the input arguments to the current operator, and returns new operator nodes to add to the graph. opset_version (int): The ONNX opset version in which to register. """ from torch.onnx import utils utils.register_custom_op_symbolic(symbolic_name, symbolic_fn, opset_version) def unregister_custom_op_symbolic(symbolic_name, opset_version): r""" Unregisters ``symbolic_name``. See "Custom Operators" in the module documentation for an example usage. Args: symbolic_name (str): The name of the custom operator in "<domain>::<op>" format. opset_version (int): The ONNX opset version in which to unregister. """ from torch.onnx import utils utils.unregister_custom_op_symbolic(symbolic_name, opset_version) def is_onnx_log_enabled(): r""" Returns True iff ONNX logging is turned on. """ return _C._jit_is_onnx_log_enabled() def enable_log(): r""" Enables ONNX logging. """ _C._jit_set_onnx_log_enabled(True) def disable_log(): r""" Disables ONNX logging. """ _C._jit_set_onnx_log_enabled(False) def set_log_stream(stream_name="stdout"): r""" Set output stream for ONNX logging. Args: stream_name (str, default "stdout"): Only ``stdout`` and ``stderr`` are supported as `stream_name`. """ _C._jit_set_onnx_log_output_stream(stream_name) def log(*args): r""" A simple logging facility for ONNX exporter. Args: args: Arguments are converted to string, concatenated together with a newline character appended to the end, and flushed to output stream. """ _C._jit_onnx_log(*args)
42.617834
112
0.608678
ead5b5bf57954074d7d6e8bb835c66e28446ee45
911
py
Python
example/example_04.py
owlbarn/owl_onnx
956f45dd80cc28d85f9b4c061e21c878f969eefd
[ "MIT" ]
6
2019-09-16T20:42:42.000Z
2019-10-30T11:51:14.000Z
example/example_04.py
owlbarn/owl_onnx
956f45dd80cc28d85f9b4c061e21c878f969eefd
[ "MIT" ]
null
null
null
example/example_04.py
owlbarn/owl_onnx
956f45dd80cc28d85f9b4c061e21c878f969eefd
[ "MIT" ]
1
2019-10-26T15:46:26.000Z
2019-10-26T15:46:26.000Z
#!/usr/bin/env python3 ### Eval option 1: onnxruntime import numpy as np import onnxruntime as rt sess = rt.InferenceSession("test.onnx") # Note how the initializer works without usr providing input pred_onx = sess.run(None, input_feed={}) print(pred_onx[0]) # The user can also provide her own input input_x = sess.get_inputs() # NOTE: This gives an empty set this time. input_x = sess.get_overridable_initializers()[0] input_name_x = input_x.name input_shape_x = input_x.shape # Check input_x.type, we find the type is tensor(float) x = np.ones(input_shape_x, dtype="float32") # NOTE: x = np.ones(input_shape_x, dtype="float") will leads to an error pred_onx = sess.run(None, {input_name_x: x}) print(pred_onx[0]) ### Expected output """ [[ 0.84147096 0.9092974 0.14112 ] [-0.7568025 -0.9589243 -0.2794155 ]] [[0.84147096 0.84147096 0.84147096] [0.84147096 0.84147096 0.84147096]] """
26.028571
72
0.720088
ab197fbb530657e4f67b983c81a38d3d7ee3aa8e
1,696
py
Python
src/lib/zircon/rust/tools/gen_status.py
EnderNightLord-ChromeBook/zircon-rpi
b09b1eb3aa7a127c65568229fe10edd251869283
[ "BSD-2-Clause" ]
14
2020-10-25T05:48:36.000Z
2021-09-20T02:46:20.000Z
src/lib/zircon/rust/tools/gen_status.py
DamieFC/fuchsia
f78a4a1326f4a4bb5834500918756173c01bab4f
[ "BSD-2-Clause" ]
null
null
null
src/lib/zircon/rust/tools/gen_status.py
DamieFC/fuchsia
f78a4a1326f4a4bb5834500918756173c01bab4f
[ "BSD-2-Clause" ]
2
2020-10-25T01:13:49.000Z
2020-10-26T02:32:13.000Z
#!/usr/bin/env python3.8 # Copyright 2016 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # A tool for autogenerating the mapping between Status and zx_status_t # Usage: python gen_status.py zircon/system/public/zircon/errors.h {sys,enum,match} import re import sys status_re = re.compile('#define\s+(ZX_\w+)\s+\((\-?\d+)\)$') def parse(in_filename): result = [] for line in file(in_filename): m = status_re.match(line) if m: result.append((m.group(1), int(m.group(2)))) return result def to_snake_case(name): result = [] for element in name.split('_'): result.append(element[0] + element[1:].lower()) return ''.join(result) def out(style, l): print('// Auto-generated using tools/gen_status.py') longest = max(len(name) for (name, num) in l) if style == 'sys': for (name, num) in l: print( 'pub const %s : zx_status_t = %d;' % (name.ljust(longest), num)) if style == 'enum': print('pub enum Status {') for (name, num) in l: print(' %s = %d,' % (to_snake_case(name[3:]), num)) print('') print( ' /// Any zx_status_t not in the set above will map to the following:' ) print(' UnknownOther = -32768,') print('}') if style == 'match': for (name, num) in l: print( ' sys::%s => Status::%s,' % (name, to_snake_case(name[3:]))) print(' _ => Status::UnknownOther,') l = parse(sys.argv[1]) out(sys.argv[2], l)
29.241379
85
0.556604
b9216d4ada8df1351413aa3d61c6b4799a9d279d
9,410
py
Python
jobless/jobhandlers/slurm_backend.py
sjdv1982/cloudless
05d7decaed6751cab43a468ea9bfc5961e89d259
[ "MIT" ]
null
null
null
jobless/jobhandlers/slurm_backend.py
sjdv1982/cloudless
05d7decaed6751cab43a468ea9bfc5961e89d259
[ "MIT" ]
1
2021-05-07T17:08:18.000Z
2021-05-07T17:08:18.000Z
jobless/jobhandlers/slurm_backend.py
sjdv1982/cloudless
05d7decaed6751cab43a468ea9bfc5961e89d259
[ "MIT" ]
null
null
null
from . import Backend, SeamlessTransformationError, JoblessRemoteError import asyncio import sys, os, tempfile, shutil import psutil import json import subprocess, tarfile from functools import partial import numpy as np from io import BytesIO import traceback class SlurmBackend(Backend): support_symlinks = True STATUS_POLLING_INTERVAL = 2.0 # TODO: conf file SLURM_EXTRA_HEADER = None # TODO: conf file JOB_TEMPDIR = None def __init__(self, *args, executor, **kwargs): self.executor = executor self.coros = {} self.jobs = set() super().__init__(*args, **kwargs) def get_job_status(self, checksum, identifier): # TODO: invoke squeue in real time (will be a few sec more up-to-date) return 2, None, None def get_code(self, transformation, prepared_transformation): """To be implemented by subclass""" raise NotImplementedError def launch_transformation(self, checksum, transformation, prepared_transformation): from .file_transformer_plugin import write_files prepared_transformation = prepared_transformation.copy() for key in prepared_transformation: if key in ("__checksum__", "__env__"): continue filename, value, env_value = prepared_transformation[key] if filename is None: continue prepared_transformation[key] = os.path.abspath(os.path.expanduser(filename)), value, env_value jobname = "seamless-" + checksum.hex() code = self.get_code(transformation, prepared_transformation) old_cwd = os.getcwd() tempdir = tempfile.mkdtemp(prefix="jobless-",dir=self.JOB_TEMPDIR) print("Running slurm job in {}".format(tempdir), file=sys.stderr) try: os.chdir(tempdir) env = {} write_files(prepared_transformation, env, self.support_symlinks) jobid = self.submit_job(jobname, self.SLURM_EXTRA_HEADER, env, code, prepared_transformation) except subprocess.CalledProcessError as exc: error_message = str(exc) if len(exc.stderr.strip()): error_message += "\nError message: {}".format(exc.stderr.strip().decode()) async def get_error(): raise SeamlessTransformationError(error_message) coro = get_error() jobid = None os.chdir(old_cwd) shutil.rmtree(tempdir, ignore_errors=True) finally: os.chdir(old_cwd) if jobid is not None: coro = await_job(jobname, jobid, code, self.TF_TYPE, tempdir, self.STATUS_POLLING_INTERVAL, "RESULT") self.jobs.add(jobid) coro = asyncio.ensure_future(coro) self.coros[checksum] = coro return coro, jobid def submit_job(self, jobname, slurm_extra_header, env, code, prepared_transformation): """To be implemented by subclass""" raise NotImplementedError def cancel_job(self, checksum, identifier): jobid = identifier if jobid not in self.jobs: return cmd = "scancel {}".format(jobid) try: subprocess.run(cmd, shell=True, check=True) except subprocess.CalledProcessError: traceback.print_exc() if checksum in self.coros: coro = self.coros.pop(checksum) task = asyncio.ensure_future(coro) task.cancel() from .shell_backend import parse_resultfile def submit_job(jobname, slurm_extra_header, env, code, *, use_host_environment): export = "ALL" if use_host_environment else "NONE" env_names = ",".join(sorted(env.keys())) slurmheader = """#!/bin/bash #SBATCH -o {}.out #SBATCH -e {}.err #SBATCH --export={},{} """.format(jobname, jobname, export, env_names) code2 = slurmheader if slurm_extra_header is not None: code2 += slurm_extra_header + "\n" code2 += code + "\n" with open("SLURMFILE", "w") as f: f.write(code2) os.chmod("SLURMFILE", 0o755) cmd = "sbatch -J {} SLURMFILE".format(jobname) env2 = os.environ.copy() env2.update(env) # This is ridiculous... Even with an error message such as "sbatch: error: No PATH environment variable", the error code is 0!! ### result = subprocess.check_output(cmd, env=env2, shell=True) # Let's try to fix that... process = subprocess.run(cmd, shell=True, env=env2, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = process.stdout if len(process.stderr.strip()): if len(result): identifier = result.decode().split()[-1] subprocess.run("scancel {}".format(identifier), shell=True) raise subprocess.CalledProcessError(cmd=cmd, returncode=1, stderr=process.stderr) identifier = result.decode().split()[-1] return identifier async def await_job(jobname, identifier, code, tftype, tempdir, polling_interval, resultfile): status_command = "squeue -j {} | awk 'NR > 1'".format(identifier) while 1: result = subprocess.check_output(status_command, shell=True) result = result.decode().strip("\n").strip() if not len(result): break await asyncio.sleep(polling_interval) # Let's try to retrieve an exit code exit_code = 0 try: cmd = "scontrol show job {}".format(identifier) result = subprocess.check_output(cmd, shell=True) marker = " ExitCode=" for l in result.decode().splitlines(): pos = l.find(marker) if pos > -1: ll = l[pos+len(marker)] pos2 = ll.find(":") if pos2 > -1: ll = ll[:pos2] exit_code = int(ll) except Exception: pass #print("EXIT CODE", exit_code) stdout = "" stderr = "" result = None old_cwd = os.getcwd() try: os.chdir(tempdir) try: stdout = open("{}.out".format(jobname), "rb").read() stdout = stdout.decode() except Exception: pass try: stderr = open("{}.err".format(jobname), "rb").read() stderr = stderr.decode() except Exception: pass if exit_code == 0 and os.path.exists(resultfile): result = parse_resultfile(resultfile) finally: os.chdir(old_cwd) shutil.rmtree(tempdir, ignore_errors=True) ### error_msg = None if exit_code > 0: error_msg = "Error: Non-zero exit code {}".format(exit_code) elif result is None: error_msg = "Error: Result file {} does not exist".format(resultfile) if error_msg is None: return result else: msg = """ {tftype} transformer exception ========================== ************************************************* * Command ************************************************* {} ************************************************* {} """.format(code, error_msg, tftype=tftype) if len(stdout): msg += """************************************************* * Standard output ************************************************* {} ************************************************* """.format(stdout) if len(stderr): msg += """************************************************* * Standard error ************************************************* {} ************************************************* """.format(stderr) raise SeamlessTransformationError(msg) #################################################################################### class SlurmBashBackend(SlurmBackend): support_symlinks = True TF_TYPE = "Bash" USE_HOST_ENVIRONMENT = True def get_code(self, transformation, prepared_transformation): return prepared_transformation["bashcode"][1] def submit_job(self, jobname, slurm_extra_header, env, code, prepared_transformation): msg = "Submit slurm bash job {}" print(msg.format(jobname), file=sys.stderr) return submit_job( jobname, slurm_extra_header, env, code, use_host_environment=self.USE_HOST_ENVIRONMENT ) class SlurmSingularityBackend(SlurmBackend): support_symlinks = False TF_TYPE = "Docker" USE_HOST_ENVIRONMENT = False def get_code(self, transformation, prepared_transformation): docker_command, _ = get_docker_command_and_image( prepared_transformation ) return docker_command def submit_job(self, jobname, slurm_extra_header, env, code, prepared_transformation): _, docker_image = get_docker_command_and_image( prepared_transformation ) with open("CODE.bash", "w") as f: f.write(code + "\n") os.chmod("CODE.bash", 0o755) simg = "{}/{}.simg".format( self.SINGULARITY_IMAGE_DIR, docker_image ) singularity_command = "{} {} ./CODE.bash".format( self.SINGULARITY_EXEC, simg ) msg = "Submit slurm singularity job {}, image {}" print(msg.format(jobname, simg), file=sys.stderr) return submit_job( jobname, slurm_extra_header, env, singularity_command, use_host_environment=self.USE_HOST_ENVIRONMENT ) from .shell_backend import get_docker_command_and_image
34.723247
131
0.586504
244dff6d0e554b85e25065c821609a3749c0c192
4,495
py
Python
mkdocs/tests/search_tests.py
MahdiMajidzadeh/mkdocs
8c668d972b92f49c6a6b0ffdcefcf10fd6dc5a4c
[ "BSD-2-Clause" ]
4
2019-09-05T07:46:32.000Z
2021-02-24T21:19:51.000Z
mkdocs/tests/search_tests.py
MahdiMajidzadeh/mkdocs
8c668d972b92f49c6a6b0ffdcefcf10fd6dc5a4c
[ "BSD-2-Clause" ]
10
2017-05-10T08:10:23.000Z
2020-03-23T10:23:37.000Z
mkdocs/tests/search_tests.py
MahdiMajidzadeh/mkdocs
8c668d972b92f49c6a6b0ffdcefcf10fd6dc5a4c
[ "BSD-2-Clause" ]
38
2017-04-26T14:13:37.000Z
2021-06-24T11:36:38.000Z
#!/usr/bin/env python # coding: utf-8 from __future__ import unicode_literals import unittest from mkdocs import nav from mkdocs.contrib.legacy_search import search_index as search from mkdocs.tests.base import dedent, markdown_to_toc, load_config def strip_whitespace(string): return string.replace("\n", "").replace(" ", "") class SearchTests(unittest.TestCase): def test_html_stripper(self): stripper = search.HTMLStripper() stripper.feed("<h1>Testing</h1><p>Content</p>") self.assertEquals(stripper.data, ["Testing", "Content"]) def test_content_parser(self): parser = search.ContentParser() parser.feed('<h1 id="title">Title</h1>TEST') parser.close() self.assertEquals(parser.data, [search.ContentSection( text=["TEST"], id_="title", title="Title" )]) def test_content_parser_no_id(self): parser = search.ContentParser() parser.feed("<h1>Title</h1>TEST") parser.close() self.assertEquals(parser.data, [search.ContentSection( text=["TEST"], id_=None, title="Title" )]) def test_content_parser_content_before_header(self): parser = search.ContentParser() parser.feed("Content Before H1 <h1>Title</h1>TEST") parser.close() self.assertEquals(parser.data, [search.ContentSection( text=["TEST"], id_=None, title="Title" )]) def test_content_parser_no_sections(self): parser = search.ContentParser() parser.feed("No H1 or H2<span>Title</span>TEST") self.assertEquals(parser.data, []) def test_find_toc_by_id(self): """ Test finding the relevant TOC item by the tag ID. """ index = search.SearchIndex() md = dedent(""" # Heading 1 ## Heading 2 ### Heading 3 """) toc = markdown_to_toc(md) toc_item = index._find_toc_by_id(toc, "heading-1") self.assertEqual(toc_item.url, "#heading-1") self.assertEqual(toc_item.title, "Heading 1") toc_item2 = index._find_toc_by_id(toc, "heading-2") self.assertEqual(toc_item2.url, "#heading-2") self.assertEqual(toc_item2.title, "Heading 2") toc_item3 = index._find_toc_by_id(toc, "heading-3") self.assertEqual(toc_item3.url, "#heading-3") self.assertEqual(toc_item3.title, "Heading 3") def test_create_search_index(self): html_content = """ <h1 id="heading-1">Heading 1</h1> <p>Content 1</p> <h2 id="heading-2">Heading 2</h1> <p>Content 2</p> <h3 id="heading-3">Heading 3</h1> <p>Content 3</p> """ pages = [ {'Home': 'index.md'}, {'About': 'about.md'}, ] site_navigation = nav.SiteNavigation(load_config(pages=pages)) md = dedent(""" # Heading 1 ## Heading 2 ### Heading 3 """) toc = markdown_to_toc(md) full_content = ''.join("""Heading{0}Content{0}""".format(i) for i in range(1, 4)) for page in site_navigation: # Fake page.read_source() and page.render() page.markdown = md page.toc = toc page.content = html_content index = search.SearchIndex() index.add_entry_from_context(page) self.assertEqual(len(index._entries), 4) loc = page.abs_url self.assertEqual(index._entries[0]['title'], page.title) self.assertEqual(strip_whitespace(index._entries[0]['text']), full_content) self.assertEqual(index._entries[0]['location'], loc) self.assertEqual(index._entries[1]['title'], "Heading 1") self.assertEqual(index._entries[1]['text'], "Content 1") self.assertEqual(index._entries[1]['location'], "{0}#heading-1".format(loc)) self.assertEqual(index._entries[2]['title'], "Heading 2") self.assertEqual(strip_whitespace(index._entries[2]['text']), "Content2") self.assertEqual(index._entries[2]['location'], "{0}#heading-2".format(loc)) self.assertEqual(index._entries[3]['title'], "Heading 3") self.assertEqual(strip_whitespace(index._entries[3]['text']), "Content3") self.assertEqual(index._entries[3]['location'], "{0}#heading-3".format(loc))
29.188312
89
0.588877
6c3c897a1b47a24210e3fce062f6c556c8ffaca5
85,402
py
Python
src/sage/combinat/rigged_configurations/rigged_configuration_element.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/rigged_configurations/rigged_configuration_element.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
null
null
null
src/sage/combinat/rigged_configurations/rigged_configuration_element.py
UCD4IDS/sage
43474c96d533fd396fe29fe0782d44dc7f5164f7
[ "BSL-1.0" ]
null
null
null
r""" Rigged Configuration Elements A rigged configuration element is a sequence of :class:`~sage.combinat.rigged_configurations.rigged_partition.RiggedPartition` objects. AUTHORS: - Travis Scrimshaw (2010-09-26): Initial version - Travis Scrimshaw (2012-10-25): Added virtual rigged configurations """ # **************************************************************************** # Copyright (C) 2010-2012 Travis Scrimshaw <tscrim@ucdavis.edu> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # https://www.gnu.org/licenses/ # **************************************************************************** from sage.misc.cachefunc import cached_method from sage.structure.list_clone import ClonableArray from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.combinat.rigged_configurations.rigged_partition import RiggedPartition, RiggedPartitionTypeB #################################################### # Base classes for rigged configuration elements # #################################################### class RiggedConfigurationElement(ClonableArray): """ A rigged configuration for simply-laced types. For more information on rigged configurations, see :class:`RiggedConfigurations`. For rigged configurations for non-simply-laced types, use :class:`RCNonSimplyLacedElement`. Typically to create a specific rigged configuration, the user will pass in the optional argument ``partition_list`` and if the user wants to specify the rigging values, give the optional argument ``rigging_list`` as well. If ``rigging_list`` is not passed, the rigging values are set to the corresponding vacancy numbers. INPUT: - ``parent`` -- the parent of this element - ``rigged_partitions`` -- a list of rigged partitions There are two optional arguments to explicitly construct a rigged configuration. The first is ``partition_list`` which gives a list of partitions, and the second is ``rigging_list`` which is a list of corresponding lists of riggings. If only partition_list is specified, then it sets the rigging equal to the calculated vacancy numbers. If we are constructing a rigged configuration from a rigged configuration (say of another type) and we don't want to recompute the vacancy numbers, we can use the ``use_vacancy_numbers`` to avoid the recomputation. EXAMPLES: Type `A_n^{(1)}` examples:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]]) sage: RC(partition_list=[[2], [2, 2], [2], [2]]) <BLANKLINE> 0[ ][ ]0 <BLANKLINE> -2[ ][ ]-2 -2[ ][ ]-2 <BLANKLINE> 2[ ][ ]2 <BLANKLINE> -2[ ][ ]-2 <BLANKLINE> sage: RC = RiggedConfigurations(['A', 4, 1], [[1, 1], [1, 1]]) sage: RC(partition_list=[[], [], [], []]) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> Type `D_n^{(1)}` examples:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: RC(partition_list=[[3], [3,2], [4], [3]]) <BLANKLINE> -1[ ][ ][ ]-1 <BLANKLINE> 1[ ][ ][ ]1 0[ ][ ]0 <BLANKLINE> -3[ ][ ][ ][ ]-3 <BLANKLINE> -1[ ][ ][ ]-1 <BLANKLINE> sage: RC = RiggedConfigurations(['D', 4, 1], [[1, 1], [2, 1]]) sage: RC(partition_list=[[1], [1,1], [1], [1]]) <BLANKLINE> 1[ ]1 <BLANKLINE> 0[ ]0 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> sage: elt = RC(partition_list=[[1], [1,1], [1], [1]], rigging_list=[[0], [0,0], [0], [0]]); elt <BLANKLINE> 1[ ]0 <BLANKLINE> 0[ ]0 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> sage: from sage.combinat.rigged_configurations.rigged_partition import RiggedPartition sage: RC2 = RiggedConfigurations(['D', 5, 1], [[2, 1], [3, 1]]) sage: l = [RiggedPartition()] + list(elt) sage: ascii_art(RC2(*l)) (/) 1[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 sage: ascii_art(RC2(*l, use_vacancy_numbers=True)) (/) 1[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 """ def __init__(self, parent, rigged_partitions=[], **options): r""" Construct a rigged configuration element. .. WARNING:: This changes the vacancy numbers of the rigged partitions, so if the rigged partitions comes from another rigged configuration, a deep copy should be made before being passed here. We do not make a deep copy here because the crystal operators generate their own rigged partitions. See :trac:`17054`. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]]) sage: RC(partition_list=[[], [], [], []]) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: RC(partition_list=[[1], [1], [], []]) <BLANKLINE> -1[ ]-1 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: elt = RC(partition_list=[[1], [1], [], []], rigging_list=[[-1], [0], [], []]); elt <BLANKLINE> -1[ ]-1 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: TestSuite(elt).run() """ n = options.get('n', parent._cartan_type.rank()) if "partition_list" in options: data = options["partition_list"] if len(data) == 0: # Create a size n array of empty rigged tableau since no tableau # were given nu = [] for i in range(n): nu.append(RiggedPartition()) else: if len(data) != n: # otherwise n should be equal to the number of tableaux raise ValueError("incorrect number of partitions") nu = [] if "rigging_list" in options: rigging_data = options["rigging_list"] if len(rigging_data) != n: raise ValueError("incorrect number of riggings") for i in range(n): nu.append(RiggedPartition(tuple(data[i]), list(rigging_data[i]))) else: for partition_data in data: nu.append(RiggedPartition(tuple(partition_data))) elif n == len(rigged_partitions) and isinstance(rigged_partitions[0], RiggedPartition): # The isinstance check is to make sure we are not in the n == 1 special case because # Parent's __call__ always passes at least 1 argument to the element constructor if options.get('use_vacancy_numbers', False): ClonableArray.__init__(self, parent, rigged_partitions) return nu = rigged_partitions else: # Otherwise we did not receive any info, create a size n array of # empty rigged partitions nu = [] for i in range(n): nu.append(RiggedPartition()) #raise ValueError("Invalid input") #raise ValueError("Incorrect number of rigged partitions") # Set the vacancy numbers for a, partition in enumerate(nu): # If the partition is empty, there's nothing to do if len(partition) <= 0: continue # Setup the first block block_len = partition[0] vac_num = parent._calc_vacancy_number(nu, a, block_len) for i, row_len in enumerate(partition): # If we've gone to a different sized block, then update the # values which change when moving to a new block size if block_len != row_len: vac_num = parent._calc_vacancy_number(nu, a, row_len) block_len = row_len partition.vacancy_numbers[i] = vac_num if partition.rigging[i] is None: partition.rigging[i] = partition.vacancy_numbers[i] ClonableArray.__init__(self, parent, nu) def check(self): """ Check the rigged configuration is properly defined. There is nothing to check here. EXAMPLES:: sage: RC = crystals.infinity.RiggedConfigurations(['A', 4]) sage: b = RC.module_generators[0].f_string([1,2,1,1,2,4,2,3,3,2]) sage: b.check() """ pass def _repr_(self): """ Return a string representation of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: elt = RC(partition_list=[[2], [3,1], [3], [3]]); elt <BLANKLINE> -1[ ][ ]-1 <BLANKLINE> 2[ ][ ][ ]2 0[ ]0 <BLANKLINE> -2[ ][ ][ ]-2 <BLANKLINE> -2[ ][ ][ ]-2 <BLANKLINE> sage: RC.options(display='horizontal') sage: elt -1[ ][ ]-1 2[ ][ ][ ]2 -2[ ][ ][ ]-2 -2[ ][ ][ ]-2 0[ ]0 sage: RC.options._reset() """ return self.parent().options._dispatch(self, '_repr_', 'display') def _repr_vertical(self): """ Return the string representation of ``self`` vertically. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: print(RC(partition_list=[[2], [3,1], [3], [3]])._repr_vertical()) <BLANKLINE> -1[ ][ ]-1 <BLANKLINE> 2[ ][ ][ ]2 0[ ]0 <BLANKLINE> -2[ ][ ][ ]-2 <BLANKLINE> -2[ ][ ][ ]-2 <BLANKLINE> sage: print(RC(partition_list=[[],[],[],[]])._repr_vertical()) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> """ ret_str = "" for tableau in self: ret_str += "\n" + repr(tableau) return(ret_str) def _repr_horizontal(self): """ Return the string representation of ``self`` horizontally. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: print(RC(partition_list=[[2], [3,1], [3], [3]])._repr_horizontal()) -1[ ][ ]-1 2[ ][ ][ ]2 -2[ ][ ][ ]-2 -2[ ][ ][ ]-2 0[ ]0 sage: print(RC(partition_list=[[],[],[],[]])._repr_horizontal()) (/) (/) (/) (/) """ tab_str = [repr(x).splitlines() for x in self] height = max(len(t) for t in tab_str) widths = [max(len(x) for x in t) for t in tab_str] ret_str = '' for i in range(height): if i != 0: ret_str += '\n' for j,t in enumerate(tab_str): if j != 0: ret_str += ' ' if i < len(t): ret_str += t[i] + ' ' * (widths[j]-len(t[i])) else: ret_str += ' ' * widths[j] return ret_str def _latex_(self): r""" Return the LaTeX representation of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: latex(RC(partition_list=[[2], [3,1], [3], [3]])) { \begin{array}[t]{r|c|c|l} \cline{2-3} -1 &\phantom{|}&\phantom{|}& -1 \\ \cline{2-3} \end{array} } \quad { \begin{array}[t]{r|c|c|c|l} \cline{2-4} 2 &\phantom{|}&\phantom{|}&\phantom{|}& 2 \\ \cline{2-4} 0 &\phantom{|}& \multicolumn{3 }{l}{ 0 } \\ \cline{2-2} \end{array} } \quad { \begin{array}[t]{r|c|c|c|l} \cline{2-4} -2 &\phantom{|}&\phantom{|}&\phantom{|}& -2 \\ \cline{2-4} \end{array} } \quad { \begin{array}[t]{r|c|c|c|l} \cline{2-4} -2 &\phantom{|}&\phantom{|}&\phantom{|}& -2 \\ \cline{2-4} \end{array} } sage: latex(RC(partition_list=[[],[],[],[]])) {\emptyset} \quad {\emptyset} \quad {\emptyset} \quad {\emptyset} """ ret_string = self[0]._latex_() for partition in self[1:]: ret_string += "\n\\quad\n" + partition._latex_() return ret_string def _ascii_art_(self): """ Return an ASCII art representation of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: ascii_art(RC(partition_list=[[2], [3,1], [3], [3]])) -1[ ][ ]-1 2[ ][ ][ ]2 -2[ ][ ][ ]-2 -2[ ][ ][ ]-2 0[ ]0 sage: ascii_art(RC(partition_list=[[],[],[],[]])) (/) (/) (/) (/) sage: RC = RiggedConfigurations(['D', 7, 1], [[3,3],[5,2],[4,3],[2,3],[4,4],[3,1],[1,4],[2,2]]) sage: elt = RC(partition_list=[[2],[3,2,1],[2,2,1,1],[2,2,1,1,1,1],[3,2,1,1,1,1],[2,1,1],[2,2]], ....: rigging_list=[[2],[1,0,0],[4,1,2,1],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0],[0,0]]) sage: ascii_art(elt) 3[ ][ ]2 1[ ][ ][ ]1 4[ ][ ]4 2[ ][ ]1 0[ ][ ][ ]0 0[ ][ ]0 0[ ][ ]0 2[ ][ ]0 4[ ][ ]1 2[ ][ ]0 2[ ][ ]1 0[ ]0 0[ ][ ]0 1[ ]0 3[ ]2 0[ ]0 0[ ]0 0[ ]0 3[ ]1 0[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 sage: Partitions.options(convention='French') sage: ascii_art(elt) 0[ ]0 0[ ]0 0[ ]0 0[ ]0 3[ ]1 0[ ]0 0[ ]0 1[ ]0 3[ ]2 0[ ]0 0[ ]0 0[ ]0 2[ ][ ]0 4[ ][ ]1 2[ ][ ]0 2[ ][ ]1 0[ ]0 0[ ][ ]0 3[ ][ ]2 1[ ][ ][ ]1 4[ ][ ]4 2[ ][ ]1 0[ ][ ][ ]0 0[ ][ ]0 0[ ][ ]0 sage: Partitions.options._reset() """ from sage.combinat.partition import Partitions if Partitions.options.convention == "French": baseline = lambda s: 0 else: baseline = len from sage.typeset.ascii_art import AsciiArt s = repr(self[0]).splitlines() ret = AsciiArt(s, baseline=baseline(s)) for tableau in self[1:]: s = repr(tableau).splitlines() ret += AsciiArt([" "], baseline=baseline(s)) + AsciiArt(s, baseline=baseline(s)) return ret def nu(self): r""" Return the list `\nu` of rigged partitions of this rigged configuration element. OUTPUT: The `\nu` array as a list. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]]) sage: RC(partition_list=[[2], [2,2], [2], [2]]).nu() [0[ ][ ]0 , -2[ ][ ]-2 -2[ ][ ]-2 , 2[ ][ ]2 , -2[ ][ ]-2 ] """ return list(self) # TODO: Change e/f to work for all types def e(self, a): r""" Return the action of the crystal operator `e_a` on ``self``. This implements the method defined in [CrysStructSchilling06]_ which finds the value `k` which is the length of the string with the smallest negative rigging of smallest length. Then it removes a box from a string of length `k` in the `a`-th rigged partition, keeping all colabels fixed and increasing the new label by one. If no such string exists, then `e_a` is undefined. This method can also be used when the underlying Cartan matrix is a Borcherds-Cartan matrix. In this case, then method of [SS2018]_ is used, where the new label is increased by half of the `a`-th diagonal entry of the underlying Borcherds-Cartan matrix. This method will also return ``None`` if `a` is imaginary and the smallest rigging in the `a`-th rigged partition is not exactly half of the `a`-th diagonal entry of the Borcherds-Cartan matrix. INPUT: - ``a`` -- the index of the partition to remove a box OUTPUT: The resulting rigged configuration element. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]]) sage: elt = RC(partition_list=[[1], [1], [1], [1]]) sage: elt.e(3) sage: elt.e(1) <BLANKLINE> (/) <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> -1[ ]-1 <BLANKLINE> sage: A = CartanMatrix([[-2,-1],[-1,-2]], borcherds=True) sage: RC = crystals.infinity.RiggedConfigurations(A) sage: nu0 = RC(partition_list=[[],[]]) sage: nu = nu0.f_string([1,0,0,0]) sage: ascii_art(nu.e(0)) 5[ ]3 4[ ]3 5[ ]1 """ if a not in self.parent()._rc_index_inverse: raise ValueError("{} is not in the index set".format(a)) a = self.parent()._rc_index_inverse[a] M = self.parent()._cartan_matrix new_list = self[a][:] new_vac_nums = self[a].vacancy_numbers[:] new_rigging = self[a].rigging[:] # Separate out one of the Borcherds cases if M[a,a] != 2: k = None set_vac_num = True if new_rigging[-1] != -M[a,a] // 2: return None new_list.pop() new_vac_nums.pop() new_rigging.pop() else: # Find k and perform e_a k = None num_rows = len(new_list) cur_rigging = -1 rigging_index = None for i in range(num_rows): if new_rigging[i] <= cur_rigging: cur_rigging = new_rigging[i] rigging_index = i # If we've not found a valid k if rigging_index is None: return None # Note that because the riggings are weakly decreasing, we will always # remove the last box on of a block k = new_list[rigging_index] set_vac_num = False if k == 1: new_list.pop() new_vac_nums.pop() new_rigging.pop() else: new_list[rigging_index] -= 1 cur_rigging += M[a,a] // 2 # Properly sort the riggings j = rigging_index + 1 # Update the vacancy number if the row lengths are the same if j < num_rows and new_list[j] == new_list[rigging_index]: new_vac_nums[rigging_index] = new_vac_nums[j] set_vac_num = True while j < num_rows and new_list[j] == new_list[rigging_index] \ and new_rigging[j] > cur_rigging: new_rigging[j-1] = new_rigging[j] # Shuffle it along j += 1 new_rigging[j-1] = cur_rigging new_partitions = [] for b in range(len(self)): if b != a: new_partitions.append(self._generate_partition_e(a, b, k)) else: # Update the vacancy numbers and the rigging for i in range(len(new_vac_nums)): if k is not None and new_list[i] < k: break new_vac_nums[i] += M[a,b] new_rigging[i] += M[a,b] if k != 1 and not set_vac_num: # If we did not remove a row nor found another row of length k-1 new_vac_nums[rigging_index] += 2 new_partitions.append(RiggedPartition(new_list, new_rigging, new_vac_nums)) ret_RC = self.__class__(self.parent(), new_partitions, use_vacancy_numbers=True) nu = ret_RC.nu() if k != 1 and not set_vac_num: # If we did not remove a row nor found another row of length k-1 # Update that row's vacancy number ret_RC[a].vacancy_numbers[rigging_index] = \ self.parent()._calc_vacancy_number(nu, a, nu[a][rigging_index]) return ret_RC def _generate_partition_e(self, a, b, k): r""" Generate a new partition for a given value of `a` by updating the vacancy numbers and preserving co-labels for the map `e_a`. INPUT: - ``a`` -- the index of the partition we operated on - ``b`` -- the index of the partition to generate - ``k`` -- the length of the string with the smallest negative rigging of smallest length OUTPUT: The constructed rigged partition. TESTS:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]]) sage: RC(partition_list=[[1], [1], [1], [1]])._generate_partition_e(1, 2, 1) -1[ ]-1 <BLANKLINE> """ # Check to make sure we will do something if not self.parent()._cartan_matrix[a,b]: return self[b] new_list = self[b]._list new_vac_nums = self[b].vacancy_numbers[:] new_rigging = self[b].rigging[:] # Update the vacancy numbers and the rigging value = self.parent()._cartan_matrix[b,a] for i in range(len(new_vac_nums)): if k is not None and new_list[i] < k: break new_vac_nums[i] += value new_rigging[i] += value return RiggedPartition(new_list, new_rigging, new_vac_nums) def f(self, a): r""" Return the action of the crystal operator `f_a` on ``self``. This implements the method defined in [CrysStructSchilling06]_ which finds the value `k` which is the length of the string with the smallest nonpositive rigging of largest length. Then it adds a box from a string of length `k` in the `a`-th rigged partition, keeping all colabels fixed and decreasing the new label by one. If no such string exists, then it adds a new string of length 1 with label `-1`. However we need to modify the definition to work for `B(\infty)` by removing the condition that the resulting rigged configuration is valid. This method can also be used when the underlying Cartan matrix is a Borcherds-Cartan matrix. In this case, then method of [SS2018]_ is used, where the new label is decreased by half of the `a`-th diagonal entry of the underlying Borcherds-Cartan matrix. INPUT: - ``a`` -- the index of the partition to add a box OUTPUT: The resulting rigged configuration element. EXAMPLES:: sage: RC = crystals.infinity.RiggedConfigurations(['A', 3]) sage: nu0 = RC.module_generators[0] sage: nu0.f(2) <BLANKLINE> (/) <BLANKLINE> -2[ ]-1 <BLANKLINE> (/) <BLANKLINE> sage: A = CartanMatrix([[-2,-1],[-1,-2]], borcherds=True) sage: RC = crystals.infinity.RiggedConfigurations(A) sage: nu0 = RC(partition_list=[[],[]]) sage: nu = nu0.f_string([1,0,0,0]) sage: ascii_art(nu.f(0)) 9[ ]7 6[ ]5 9[ ]5 9[ ]3 9[ ]1 """ if a not in self.parent()._rc_index_inverse: raise ValueError("{} is not in the index set".format(a)) a = self.parent()._rc_index_inverse[a] M = self.parent()._cartan_matrix new_list = self[a][:] new_vac_nums = self[a].vacancy_numbers[:] new_rigging = self[a].rigging[:] # Find k and perform f_a k = None add_index = -1 # Index where we will add our row too rigging_index = None # Index which we will pull the rigging from cur_rigging = ZZ.zero() num_rows = len(new_list) for i in reversed(range(num_rows)): # If we need to increment a row, look for when we change rows for # the correct index. if add_index is None and new_list[i] != new_list[rigging_index]: add_index = i+1 if new_rigging[i] <= cur_rigging: cur_rigging = new_rigging[i] k = new_list[i] rigging_index = i add_index = None # If we've not found a valid k if k is None: new_list.append(1) new_rigging.append(-M[a,a] // 2) new_vac_nums.append(None) k = 0 add_index = num_rows num_rows += 1 # We've added a row else: if add_index is None: # We are adding to the first row in the list add_index = 0 new_list[add_index] += 1 new_rigging.insert(add_index, new_rigging[rigging_index] - M[a,a] // 2) new_vac_nums.insert(add_index, None) new_rigging.pop(rigging_index + 1) # add 1 for the insertion new_vac_nums.pop(rigging_index + 1) new_partitions = [] for b in range(len(self)): if b != a: new_partitions.append(self._generate_partition_f(a, b, k)) else: # Update the vacancy numbers and the rigging for i in range(num_rows): if new_list[i] <= k: break if i != add_index: new_vac_nums[i] -= M[a,b] new_rigging[i] -= M[a,b] new_partitions.append(RiggedPartition(new_list, new_rigging, new_vac_nums)) new_partitions[a].vacancy_numbers[add_index] = \ self.parent()._calc_vacancy_number(new_partitions, a, new_partitions[a][add_index]) # Note that we do not need to sort the rigging since if there was a # smaller rigging in a larger row, then `k` would be larger. return self.__class__(self.parent(), new_partitions, use_vacancy_numbers=True) def _generate_partition_f(self, a, b, k): r""" Generate a new partition for a given value of `a` by updating the vacancy numbers and preserving co-labels for the map `f_a`. INPUT: - ``a`` -- the index of the partition we operated on - ``b`` -- the index of the partition to generate - ``k`` -- the length of the string with smallest nonpositive rigging of largest length OUTPUT: The constructed rigged partition. TESTS:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]]) sage: RC(partition_list=[[1], [1], [1], [1]])._generate_partition_f(1, 2, 1) 0[ ]0 <BLANKLINE> """ # Check to make sure we will do something if not self.parent()._cartan_matrix[a,b]: return self[b] new_list = self[b]._list new_vac_nums = self[b].vacancy_numbers[:] new_rigging = self[b].rigging[:] # Update the vacancy numbers and the rigging value = self.parent()._cartan_matrix[b,a] for i in range(len(new_vac_nums)): if new_list[i] <= k: break new_vac_nums[i] -= value new_rigging[i] -= value return RiggedPartition(new_list, new_rigging, new_vac_nums) def epsilon(self, a): r""" Return `\varepsilon_a` of ``self``. Let `x_{\ell}` be the smallest string of `\nu^{(a)}` or `0` if `\nu^{(a)} = \emptyset`, then we have `\varepsilon_a = -\min(0, x_{\ell})`. EXAMPLES:: sage: La = RootSystem(['B',2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1]+La[2]) sage: I = RC.index_set() sage: matrix([[rc.epsilon(i) for i in I] for rc in RC[:4]]) [0 0] [1 0] [0 1] [0 2] """ a = self.parent()._rc_index_inverse[a] if not self[a]: return ZZ.zero() return Integer(-min(0, min(self[a].rigging))) def phi(self, a): r""" Return `\varphi_a` of ``self``. Let `x_{\ell}` be the smallest string of `\nu^{(a)}` or `0` if `\nu^{(a)} = \emptyset`, then we have `\varepsilon_a = p_{\infty}^{(a)} - \min(0, x_{\ell})`. EXAMPLES:: sage: La = RootSystem(['B',2]).weight_lattice().fundamental_weights() sage: RC = crystals.RiggedConfigurations(La[1]+La[2]) sage: I = RC.index_set() sage: matrix([[rc.phi(i) for i in I] for rc in RC[:4]]) [1 1] [0 3] [0 2] [1 1] """ a = self.parent()._rc_index_inverse[a] p_inf = self.parent()._calc_vacancy_number(self, a, float("inf")) if not self[a]: return Integer(p_inf) return Integer(p_inf - min(0, min(self[a].rigging))) def vacancy_number(self, a, i): r""" Return the vacancy number `p_i^{(a)}`. INPUT: - ``a`` -- the index of the rigged partition - ``i`` -- the row of the rigged partition EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]]) sage: elt = RC(partition_list=[[1], [2,1], [1], []]) sage: elt.vacancy_number(2, 3) -2 sage: elt.vacancy_number(2, 2) -2 sage: elt.vacancy_number(2, 1) -1 sage: RC = RiggedConfigurations(['D',4,1], [[2,1], [2,1]]) sage: x = RC(partition_list=[[3], [3,1,1], [2], [3,1]]); ascii_art(x) -1[ ][ ][ ]-1 1[ ][ ][ ]1 0[ ][ ]0 -3[ ][ ][ ]-3 0[ ]0 -1[ ]-1 0[ ]0 sage: x.vacancy_number(2,2) 1 """ a = self.parent()._rc_index_inverse[a] return self.parent()._calc_vacancy_number(self, a, i) def partition_rigging_lists(self): """ Return the list of partitions and the associated list of riggings of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['A',3,1], [[1,2],[2,2]]) sage: rc = RC(partition_list=[[2],[1],[1]], rigging_list=[[-1],[0],[-1]]); rc <BLANKLINE> -1[ ][ ]-1 <BLANKLINE> 1[ ]0 <BLANKLINE> -1[ ]-1 <BLANKLINE> sage: rc.partition_rigging_lists() [[[2], [1], [1]], [[-1], [0], [-1]]] """ partitions = [] riggings = [] for p in self: partitions.append(list(p)) riggings.append(list(p.rigging)) return [partitions, riggings] class RCNonSimplyLacedElement(RiggedConfigurationElement): """ Rigged configuration elements for non-simply-laced types. TESTS:: sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: elt = RC.module_generators[0].f_string([1,0,2,2,0,1]); elt <BLANKLINE> -2[ ][ ]-1 <BLANKLINE> -2[ ]-1 -2[ ]-1 <BLANKLINE> -2[ ][ ]-1 <BLANKLINE> sage: TestSuite(elt).run() """ def to_virtual_configuration(self): """ Return the corresponding rigged configuration in the virtual crystal. EXAMPLES:: sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]]) sage: elt = RC(partition_list=[[3],[2]]); elt <BLANKLINE> 0[ ][ ][ ]0 <BLANKLINE> 0[ ][ ]0 sage: elt.to_virtual_configuration() <BLANKLINE> 0[ ][ ][ ]0 <BLANKLINE> 0[ ][ ][ ][ ]0 <BLANKLINE> 0[ ][ ][ ]0 """ return self.parent().to_virtual(self) def e(self, a): r""" Return the action of `e_a` on ``self``. This works by lifting into the virtual configuration, then applying .. MATH:: e^v_a = \prod_{j \in \iota(a)} \hat{e}_j^{\gamma_j} and pulling back. EXAMPLES:: sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: elt = RC(partition_list=[[2],[1,1],[2]], rigging_list=[[-1],[-1,-1],[-1]]) sage: ascii_art(elt.e(0)) 0[ ]0 -2[ ]-1 -2[ ][ ]-1 -2[ ]-1 sage: ascii_art(elt.e(1)) -3[ ][ ]-2 0[ ]1 -3[ ][ ]-2 sage: ascii_art(elt.e(2)) -2[ ][ ]-1 -2[ ]-1 0[ ]0 -2[ ]-1 """ vct = self.parent()._folded_ct L = [] gamma = vct.scaling_factors() for i in vct.folding_orbit()[a]: L.extend([i]*gamma[a]) virtual_rc = self.parent().to_virtual(self).e_string(L) if virtual_rc is None: return None return self.parent().from_virtual(virtual_rc) def f(self, a): r""" Return the action of `f_a` on ``self``. This works by lifting into the virtual configuration, then applying .. MATH:: f^v_a = \prod_{j \in \iota(a)} \hat{f}_j^{\gamma_j} and pulling back. EXAMPLES:: sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: elt = RC(partition_list=[[2],[1,1],[2]], rigging_list=[[-1],[-1,-1],[-1]]) sage: ascii_art(elt.f(0)) -4[ ][ ][ ]-2 -2[ ]-1 -2[ ][ ]-1 -2[ ]-1 sage: ascii_art(elt.f(1)) -1[ ][ ]0 -2[ ][ ]-2 -1[ ][ ]0 -2[ ]-1 sage: ascii_art(elt.f(2)) -2[ ][ ]-1 -2[ ]-1 -4[ ][ ][ ]-2 -2[ ]-1 """ vct = self.parent()._folded_ct L = [] gamma = vct.scaling_factors() for i in vct.folding_orbit()[a]: L.extend([i]*gamma[a]) virtual_rc = self.parent().to_virtual(self).f_string(L) if virtual_rc is None: return None return self.parent().from_virtual(virtual_rc) ########################################################## ## Highest weight crystal rigged configuration elements ## ########################################################## class RCHighestWeightElement(RiggedConfigurationElement): """ Rigged configurations in highest weight crystals. TESTS:: sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights() sage: RC = crystals.RiggedConfigurations(['A',2,1], La[0]) sage: elt = RC(partition_list=[[1,1],[1],[2]]); elt <BLANKLINE> -1[ ]-1 -1[ ]-1 <BLANKLINE> 1[ ]1 <BLANKLINE> -1[ ][ ]-1 <BLANKLINE> sage: TestSuite(elt).run() """ def check(self): """ Make sure all of the riggings are less than or equal to the vacancy number. TESTS:: sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights() sage: RC = crystals.RiggedConfigurations(['A',2,1], La[0]) sage: elt = RC(partition_list=[[1,1],[1],[2]]) sage: elt.check() """ for a, partition in enumerate(self): for i, vac_num in enumerate(partition.vacancy_numbers): if vac_num < partition.rigging[i]: raise ValueError("rigging can be at most the vacancy number") def f(self, a): r""" Return the action of the crystal operator `f_a` on ``self``. This implements the method defined in [CrysStructSchilling06]_ which finds the value `k` which is the length of the string with the smallest nonpositive rigging of largest length. Then it adds a box from a string of length `k` in the `a`-th rigged partition, keeping all colabels fixed and decreasing the new label by one. If no such string exists, then it adds a new string of length 1 with label `-1`. If any of the resulting vacancy numbers are larger than the labels (i.e. it is an invalid rigged configuration), then `f_a` is undefined. INPUT: - ``a`` -- the index of the partition to add a box OUTPUT: The resulting rigged configuration element. EXAMPLES:: sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights() sage: RC = crystals.RiggedConfigurations(['A',2,1], La[0]) sage: elt = RC(partition_list=[[1,1],[1],[2]]) sage: elt.f(0) <BLANKLINE> -2[ ][ ]-2 -1[ ]-1 <BLANKLINE> 1[ ]1 <BLANKLINE> 0[ ][ ]0 <BLANKLINE> sage: elt.f(1) <BLANKLINE> 0[ ]0 0[ ]0 <BLANKLINE> -1[ ]-1 -1[ ]-1 <BLANKLINE> 0[ ][ ]0 <BLANKLINE> sage: elt.f(2) """ if not self.phi(a): return None return RiggedConfigurationElement.f(self, a) def weight(self): """ Return the weight of ``self``. EXAMPLES:: sage: La = RootSystem(['A',2,1]).weight_lattice(extended=True).fundamental_weights() sage: B = crystals.RiggedConfigurations(['A',2,1], La[0]) sage: mg = B.module_generators[0] sage: mg.f_string([0,1,2,0]).weight() -Lambda[0] + Lambda[1] + Lambda[2] - 2*delta """ P = self.parent().weight_lattice_realization() alpha = list(P.simple_roots()) return self.parent()._wt - sum(sum(x) * alpha[i] for i,x in enumerate(self)) class RCHWNonSimplyLacedElement(RCNonSimplyLacedElement): """ Rigged configurations in highest weight crystals. TESTS:: sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_weights() sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[0]) sage: elt = RC(partition_list=[[1,1],[2],[2]]); ascii_art(elt) -1[ ]-1 2[ ][ ]2 -2[ ][ ]-2 -1[ ]-1 sage: TestSuite(elt).run() """ def check(self): """ Make sure all of the riggings are less than or equal to the vacancy number. TESTS:: sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_weights() sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[0]) sage: elt = RC(partition_list=[[1,1],[2],[2]]) sage: elt.check() """ for partition in self: for i, vac_num in enumerate(partition.vacancy_numbers): if vac_num < partition.rigging[i]: raise ValueError("rigging can be at most the vacancy number") def f(self, a): r""" Return the action of `f_a` on ``self``. This works by lifting into the virtual configuration, then applying .. MATH:: f^v_a = \prod_{j \in \iota(a)} \hat{f}_j^{\gamma_j} and pulling back. EXAMPLES:: sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_weights() sage: vct = CartanType(['C',2,1]).as_folding() sage: RC = crystals.RiggedConfigurations(vct, La[0]) sage: elt = RC(partition_list=[[1,1],[2],[2]]) sage: elt.f(0) sage: ascii_art(elt.f(1)) 0[ ]0 0[ ][ ]0 -1[ ][ ]-1 0[ ]0 -1[ ]-1 sage: elt.f(2) """ if not self.phi(a): return None return RCNonSimplyLacedElement.f(self, a) # FIXME: Do not duplicate with the simply-laced HW RC element class def weight(self): """ Return the weight of ``self``. EXAMPLES:: sage: La = RootSystem(['C',2,1]).weight_lattice(extended=True).fundamental_weights() sage: vct = CartanType(['C',2,1]).as_folding() sage: B = crystals.RiggedConfigurations(vct, La[0]) sage: mg = B.module_generators[0] sage: mg.f_string([0,1,2]).weight() 2*Lambda[1] - Lambda[2] - delta """ P = self.parent().weight_lattice_realization() alpha = list(P.simple_roots()) return self.parent()._wt - sum(sum(x) * alpha[i] for i,x in enumerate(self)) ############################################## ## KR crystal rigged configuration elements ## ############################################## class KRRiggedConfigurationElement(RiggedConfigurationElement): r""" `U_q^{\prime}(\mathfrak{g})` rigged configurations. EXAMPLES: We can go between :class:`rigged configurations <RiggedConfigurations>` and tensor products of :class:`tensor products of KR tableaux <sage.combinat.rigged_configurations.tensor_product_kr_tableaux.TensorProductOfKirillovReshetikhinTableaux>`:: sage: RC = RiggedConfigurations(['D', 4, 1], [[1,1], [2,1]]) sage: rc_elt = RC(partition_list=[[1], [1,1], [1], [1]]) sage: tp_krtab = rc_elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); tp_krtab [[-2]] (X) [[1], [2]] sage: tp_krcrys = rc_elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); tp_krcrys [[[-2]], [[1], [2]]] sage: tp_krcrys == tp_krtab.to_tensor_product_of_kirillov_reshetikhin_crystals() True sage: RC(tp_krcrys) == rc_elt True sage: RC(tp_krtab) == rc_elt True sage: tp_krtab.to_rigged_configuration() == rc_elt True """ def __init__(self, parent, rigged_partitions=[], **options): r""" Construct a rigged configuration element. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]]) sage: RC(partition_list=[[], [], [], []]) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: RC(partition_list=[[1], [1], [], []]) <BLANKLINE> -1[ ]-1 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: elt = RC(partition_list=[[1], [1], [], []], rigging_list=[[-1], [0], [], []]); elt <BLANKLINE> -1[ ]-1 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> (/) <BLANKLINE> sage: TestSuite(elt).run() """ n = len(parent._rc_index) if "KT_constructor" in options: # Used only by the Kleber tree # Not recommended to be called by the user since it avoids safety # checks for speed data = options["KT_constructor"] shape_data = data[0] rigging_data = data[1] vac_data = data[2] nu = [] for i in range(n): nu.append(RiggedPartition(shape_data[i], rigging_data[i], vac_data[i])) # Special display case if parent.cartan_type().type() == 'B': nu[-1] = RiggedPartitionTypeB(nu[-1]) ClonableArray.__init__(self, parent, nu) return RiggedConfigurationElement.__init__(self, parent, rigged_partitions, n=n, **options) # Special display case if parent.cartan_type().type() == 'B': self._set_mutable() self[-1] = RiggedPartitionTypeB(self[-1]) self.set_immutable() def check(self): """ Make sure all of the riggings are less than or equal to the vacancy number. TESTS:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]]) sage: elt = RC(partition_list=[[1], [1], [], []]) sage: elt.check() """ for partition in self: for i, vac_num in enumerate(partition.vacancy_numbers): if vac_num < partition.rigging[i]: raise ValueError("rigging can be at most the vacancy number") def e(self, a): r""" Return the action of the crystal operator `e_a` on ``self``. For the classical operators, this implements the method defined in [CrysStructSchilling06]_. For `e_0`, this converts the class to a tensor product of KR tableaux and does the corresponding `e_0` and pulls back. .. TODO:: Implement `e_0` without appealing to tensor product of KR tableaux. INPUT: - ``a`` -- the index of the partition to remove a box OUTPUT: The resulting rigged configuration element. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]]) sage: elt = RC(partition_list=[[1], [1], [1], [1]]) sage: elt.e(3) sage: elt.e(1) <BLANKLINE> (/) <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> -1[ ]-1 <BLANKLINE> """ if a not in self.parent()._cartan_type.index_set(): raise ValueError("{} is not in the index set".format(a)) if a == self.parent()._cartan_type.special_node(): try: ret = self.to_tensor_product_of_kirillov_reshetikhin_tableaux().e(a) if ret is None: return None return ret.to_rigged_configuration() except NotImplementedError: # We haven't implemented the bijection yet, so return None # This is to make sure we can at least view it as a classical # crystal if there is no bijection. return None return RiggedConfigurationElement.e(self, a) def f(self, a): r""" Return the action of the crystal operator `f_a` on ``self``. For the classical operators, this implements the method defined in [CrysStructSchilling06]_. For `f_0`, this converts the class to a tensor product of KR tableaux and does the corresponding `f_0` and pulls back. .. TODO:: Implement `f_0` without appealing to tensor product of KR tableaux. INPUT: - ``a`` -- the index of the partition to add a box OUTPUT: The resulting rigged configuration element. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2,1]]) sage: elt = RC(partition_list=[[1], [1], [1], [1]]) sage: elt.f(1) sage: elt.f(2) <BLANKLINE> 0[ ]0 <BLANKLINE> -1[ ]-1 -1[ ]-1 <BLANKLINE> 1[ ]1 <BLANKLINE> -1[ ]-1 <BLANKLINE> """ ct = self.parent()._cartan_type if a not in ct.index_set(): raise ValueError("{} is not in the index set".format(a)) if a == ct.special_node(): try: ret = self.to_tensor_product_of_kirillov_reshetikhin_tableaux().f(a) if ret is None: return None return ret.to_rigged_configuration() except NotImplementedError: # We haven't implemented the bijection yet, so return None # This is to make sure we can at least view it as a classical # crystal if there is no bijection. return None if not self.phi(a): return None return RiggedConfigurationElement.f(self, a) def epsilon(self, a): r""" Return `\varepsilon_a` of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: I = RC.index_set() sage: matrix([[mg.epsilon(i) for i in I] for mg in RC.module_generators]) [4 0 0 0 0] [3 0 0 0 0] [2 0 0 0 0] """ if a == self.parent()._cartan_type.special_node(): return self.to_tensor_product_of_kirillov_reshetikhin_tableaux().epsilon(a) return RiggedConfigurationElement.epsilon(self, a) def phi(self, a): r""" Return `\varphi_a` of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: I = RC.index_set() sage: matrix([[mg.phi(i) for i in I] for mg in RC.module_generators]) [0 0 2 0 0] [1 0 1 0 0] [2 0 0 0 0] """ if a == self.parent()._cartan_type.special_node(): return self.to_tensor_product_of_kirillov_reshetikhin_tableaux().phi(a) return RiggedConfigurationElement.phi(self, a) def weight(self): """ Return the weight of ``self``. EXAMPLES:: sage: RC = RiggedConfigurations(['E', 6, 1], [[2,2]]) sage: [x.weight() for x in RC.module_generators] [-4*Lambda[0] + 2*Lambda[2], -2*Lambda[0] + Lambda[2], 0] sage: KR = crystals.KirillovReshetikhin(['E',6,1], 2,2) sage: [x.weight() for x in KR.module_generators] # long time [0, -2*Lambda[0] + Lambda[2], -4*Lambda[0] + 2*Lambda[2]] sage: RC = RiggedConfigurations(['D', 6, 1], [[4,2]]) sage: [x.weight() for x in RC.module_generators] [-4*Lambda[0] + 2*Lambda[4], -4*Lambda[0] + Lambda[2] + Lambda[4], -2*Lambda[0] + Lambda[4], -4*Lambda[0] + 2*Lambda[2], -2*Lambda[0] + Lambda[2], 0] """ WLR = self.parent().weight_lattice_realization() La = WLR.fundamental_weights() cl_index = self.parent()._rc_index wt = WLR.sum((self.phi(i) - self.epsilon(i)) * La[i] for i in cl_index) return -wt.level() * La[0] + wt @cached_method def classical_weight(self): r""" Return the classical weight of ``self``. The classical weight `\Lambda` of a rigged configuration is .. MATH:: \Lambda = \sum_{a \in \overline{I}} \sum_{i > 0} i L_i^{(a)} \Lambda_a - \sum_{a \in \overline{I}} \sum_{i > 0} i m_i^{(a)} \alpha_a. EXAMPLES:: sage: RC = RiggedConfigurations(['D',4,1], [[2,2]]) sage: elt = RC(partition_list=[[2],[2,1],[1],[1]]) sage: elt.classical_weight() (0, 1, 1, 0) This agrees with the corresponding classical weight as KR tableaux:: sage: krt = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); krt [[2, 1], [3, -1]] sage: krt.classical_weight() == elt.classical_weight() True TESTS: We check the classical weights agree in an entire crystal:: sage: RC = RiggedConfigurations(['A',2,1], [[2,1], [1,1]]) sage: for x in RC: ....: y = x.to_tensor_product_of_kirillov_reshetikhin_tableaux() ....: assert x.classical_weight() == y.classical_weight() """ F = self.cartan_type().classical().root_system() if F.ambient_space() is None: WLR = F.weight_lattice() else: WLR = F.ambient_space() La = WLR.fundamental_weights() wt = WLR.sum(La[r] * s for r,s in self.parent().dims) alpha = WLR.simple_roots() rc_index = self.parent()._rc_index for a, nu in enumerate(self): wt -= sum(nu) * alpha[rc_index[a]] return wt def to_tensor_product_of_kirillov_reshetikhin_tableaux(self, display_steps=False, build_graph=False): r""" Perform the bijection from this rigged configuration to a tensor product of Kirillov-Reshetikhin tableaux given in [RigConBijection]_ for single boxes and with [BijectionLRT]_ and [BijectionDn]_ for multiple columns and rows. .. NOTE:: This is only proven to be a bijection in types `A_n^{(1)}` and `D_n^{(1)}`, as well as `\bigotimes_i B^{r_i,1}` and `\bigotimes_i B^{1,s_i}` for general affine types. INPUT: - ``display_steps`` -- (default: ``False``) boolean which indicates if we want to print each step in the algorithm - ``build_graph`` -- (default: ``False``) boolean which indicates if we want to construct and return a graph of the bijection whose vertices are rigged configurations obtained at each step and edges are labeled by either the return value of `\delta` or the doubling/halving map OUTPUT: - The tensor product of KR tableaux element corresponding to this rigged configuration. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 2]]) sage: RC(partition_list=[[2], [2,2], [2], [2]]).to_tensor_product_of_kirillov_reshetikhin_tableaux() [[3, 3], [5, 5]] sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: elt = RC(partition_list=[[2], [2,2], [1], [1]]) sage: tp_krt = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(); tp_krt [[2, 3], [3, -2]] This is invertible by calling :meth:`~sage.combinat.rigged_configurations.tensor_product_kr_tableaux_element.TensorProductOfKirillovReshetikhinTableauxElement.to_rigged_configuration()`:: sage: ret = tp_krt.to_rigged_configuration(); ret <BLANKLINE> 0[ ][ ]0 <BLANKLINE> -2[ ][ ]-2 -2[ ][ ]-2 <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> sage: elt == ret True To view the steps of the bijection in the output, run with the ``display_steps=True`` option:: sage: elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(True) ==================== ... ==================== <BLANKLINE> 0[ ]0 <BLANKLINE> -2[ ][ ]-2 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> -------------------- [[3, 2]] -------------------- ... [[2, 3], [3, -2]] We can also construct and display a graph of the bijection as follows:: sage: ret, G = elt.to_tensor_product_of_kirillov_reshetikhin_tableaux(build_graph=True) sage: view(G) # not tested """ from sage.combinat.rigged_configurations.bijection import RCToKRTBijection bij = RCToKRTBijection(self) ret = bij.run(display_steps, build_graph) if build_graph: return (ret, bij._graph) return ret def to_tensor_product_of_kirillov_reshetikhin_crystals(self, display_steps=False, build_graph=False): r""" Return the corresponding tensor product of Kirillov-Reshetikhin crystals. This is a composition of the map to a tensor product of KR tableaux, and then to a tensor product of KR crystals. INPUT: - ``display_steps`` -- (default: ``False``) boolean which indicates if we want to print each step in the algorithm - ``build_graph`` -- (default: ``False``) boolean which indicates if we want to construct and return a graph of the bijection whose vertices are rigged configurations obtained at each step and edges are labeled by either the return value of `\delta` or the doubling/halving map EXAMPLES:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2]]) sage: elt = RC(partition_list=[[2], [2,2], [1], [1]]) sage: krc = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(); krc [[[2, 3], [3, -2]]] We can recover the rigged configuration:: sage: ret = RC(krc); ret <BLANKLINE> 0[ ][ ]0 <BLANKLINE> -2[ ][ ]-2 -2[ ][ ]-2 <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> sage: elt == ret True We can also construct and display a graph of the bijection as follows:: sage: ret, G = elt.to_tensor_product_of_kirillov_reshetikhin_crystals(build_graph=True) sage: view(G) # not tested """ if build_graph: kr_tab, G = self.to_tensor_product_of_kirillov_reshetikhin_tableaux(display_steps, build_graph) return (kr_tab.to_tensor_product_of_kirillov_reshetikhin_crystals(), G) kr_tab = self.to_tensor_product_of_kirillov_reshetikhin_tableaux(display_steps) return kr_tab.to_tensor_product_of_kirillov_reshetikhin_crystals() # TODO: Move the morphisms to a lazy attribute of RiggedConfigurations # once #15463 is done def left_split(self): r""" Return the image of ``self`` under the left column splitting map `\beta`. Consider the map `\beta : RC(B^{r,s} \otimes B) \to RC(B^{r,1} \otimes B^{r,s-1} \otimes B)` for `s > 1` which is a natural classical crystal injection. On rigged configurations, the map `\beta` does nothing (except possibly changing the vacancy numbers). EXAMPLES:: sage: RC = RiggedConfigurations(['C',4,1], [[3,3]]) sage: mg = RC.module_generators[-1] sage: ascii_art(mg) 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ]0 sage: ascii_art(mg.left_split()) 0[ ][ ]0 0[ ][ ]0 1[ ][ ]0 0[ ]0 0[ ][ ]0 1[ ][ ]0 0[ ]0 1[ ][ ]0 0[ ]0 """ P = self.parent() if P.dims[0][1] == 1: raise ValueError("cannot split a single column") r,s = P.dims[0] B = [[r,1], [r,s-1]] B.extend(P.dims[1:]) from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations RC = RiggedConfigurations(P._cartan_type, B) return RC(*[x._clone() for x in self]) # Make a deep copy def right_split(self): r""" Return the image of ``self`` under the right column splitting map `\beta^*`. Let `\theta` denote the :meth:`complement rigging map<complement_rigging>` which reverses the tensor factors and `\beta` denote the :meth:`left splitting map<left_split>`, we define the right splitting map by `\beta^* := \theta \circ \beta \circ \theta`. EXAMPLES:: sage: RC = RiggedConfigurations(['C',4,1], [[3,3]]) sage: mg = RC.module_generators[-1] sage: ascii_art(mg) 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ]0 sage: ascii_art(mg.right_split()) 0[ ][ ]0 0[ ][ ]0 1[ ][ ]1 0[ ]0 0[ ][ ]0 1[ ][ ]1 0[ ]0 1[ ][ ]1 0[ ]0 sage: RC = RiggedConfigurations(['D',4,1], [[2,2],[1,2]]) sage: elt = RC(partition_list=[[3,1], [2,2,1], [2,1], [2]]) sage: ascii_art(elt) -1[ ][ ][ ]-1 0[ ][ ]0 -1[ ][ ]-1 1[ ][ ]1 0[ ]0 0[ ][ ]0 -1[ ]-1 0[ ]0 sage: ascii_art(elt.right_split()) -1[ ][ ][ ]-1 0[ ][ ]0 -1[ ][ ]-1 1[ ][ ]1 1[ ]0 0[ ][ ]0 -1[ ]-1 0[ ]0 We check that the bijection commutes with the right splitting map:: sage: RC = RiggedConfigurations(['A', 3, 1], [[1,1], [2,2]]) sage: all(rc.right_split().to_tensor_product_of_kirillov_reshetikhin_tableaux() ....: == rc.to_tensor_product_of_kirillov_reshetikhin_tableaux().right_split() for rc in RC) True """ return self.complement_rigging(True).left_split().complement_rigging(True) def left_box(self, return_b=False): r""" Return the image of ``self`` under the left box removal map `\delta`. The map `\delta : RC(B^{r,1} \otimes B) \to RC(B^{r-1,1} \otimes B)` (if `r = 1`, then we remove the left-most factor) is the basic map in the bijection `\Phi` between rigged configurations and tensor products of Kirillov-Reshetikhin tableaux. For more information, see :meth:`to_tensor_product_of_kirillov_reshetikhin_tableaux()`. We can extend `\delta` when the left-most factor is not a single column by precomposing with a :meth:`left_split()`. .. NOTE:: Due to the special nature of the bijection for the spinor cases in types `D_n^{(1)}`, `B_n^{(1)}`, and `A_{2n-1}^{(2)}`, this map is not defined in these cases. INPUT: - ``return_b`` -- (default: ``False``) whether to return the resulting letter from `\delta` OUTPUT: The resulting rigged configuration or if ``return_b`` is ``True``, then a tuple of the resulting rigged configuration and the letter. EXAMPLES:: sage: RC = RiggedConfigurations(['C',4,1], [[3,2]]) sage: mg = RC.module_generators[-1] sage: ascii_art(mg) 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ][ ]0 0[ ]0 sage: ascii_art(mg.left_box()) 0[ ]0 0[ ][ ]0 0[ ][ ]0 0[ ]0 0[ ]0 0[ ][ ]0 0[ ]0 sage: x,b = mg.left_box(True) sage: b -1 sage: b.parent() The crystal of letters for type ['C', 4] """ # Don't do spinor cases P = self.parent() ct = P.cartan_type() if ct.type() == 'D': if P.dims[0][0] >= ct.rank() - 2: raise ValueError("only for non-spinor cases") elif ct.type() == 'B' or ct.dual().type() == 'B': if P.dims[0][0] == ct.rank() - 1: raise ValueError("only for non-spinor cases") from sage.combinat.rigged_configurations.bijection import RCToKRTBijection rc = self if P.dims[0][1] != 1: rc = self.left_split() bij = RCToKRTBijection(rc) ht = bij.cur_dims[0][0] bij.cur_dims[0][0] = bij._next_index(ht) b = bij.next_state(ht) if bij.cur_dims[0][0] == 0: bij.cur_dims.pop(0) from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations RC = RiggedConfigurations(ct, bij.cur_dims) rc = RC(*bij.cur_partitions) if return_b: from sage.combinat.crystals.letters import CrystalOfLetters L = CrystalOfLetters(self.parent()._cartan_type.classical()) return (rc, L(b)) return rc delta = left_box def left_column_box(self): r""" Return the image of ``self`` under the left column box splitting map `\gamma`. Consider the map `\gamma : RC(B^{r,1} \otimes B) \to RC(B^{1,1} \otimes B^{r-1,1} \otimes B)` for `r > 1`, which is a natural strict classical crystal injection. On rigged configurations, the map `\gamma` adds a singular string of length `1` to `\nu^{(a)}`. We can extend `\gamma` when the left-most factor is not a single column by precomposing with a :meth:`left_split()`. EXAMPLES:: sage: RC = RiggedConfigurations(['C',3,1], [[3,1], [2,1]]) sage: mg = RC.module_generators[-1] sage: ascii_art(mg) 0[ ]0 0[ ][ ]0 0[ ]0 0[ ]0 0[ ]0 sage: ascii_art(mg.left_column_box()) 0[ ]0 0[ ][ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 sage: RC = RiggedConfigurations(['C',3,1], [[2,1], [1,1], [3,1]]) sage: mg = RC.module_generators[7] sage: ascii_art(mg) 1[ ]0 0[ ][ ]0 0[ ]0 0[ ]0 0[ ]0 sage: ascii_art(mg.left_column_box()) 1[ ]1 0[ ][ ]0 0[ ]0 1[ ]0 0[ ]0 0[ ]0 """ P = self.parent() r = P.dims[0][0] if r == 1: raise ValueError("cannot split a single box") ct = P.cartan_type() if ct.type() == 'D': if P.dims[0][0] >= ct.rank() - 2: raise ValueError("only for non-spinor cases") elif ct.type() == 'B' or ct.dual().type() == 'B': if P.dims[0][0] == ct.rank() - 1: raise ValueError("only for non-spinor cases") if P.dims[0][1] > 1: return self.left_split().left_column_box() B = [[1,1], [r-1,1]] B.extend(P.dims[1:]) from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations RC = RiggedConfigurations(P._cartan_type, B) parts = [x._clone() for x in self] # Make a deep copy for nu in parts[:r-1]: nu._list.append(1) for a, nu in enumerate(parts[:r-1]): vac_num = RC._calc_vacancy_number(parts, a, 1) i = nu._list.index(1) nu.vacancy_numbers.insert(i, vac_num) nu.rigging.insert(i, vac_num) return RC(*parts) def right_column_box(self): r""" Return the image of ``self`` under the right column box splitting map `\gamma^*`. Consider the map `\gamma^* : RC(B \otimes B^{r,1}) \to RC(B \otimes B^{r-1,1} \otimes B^{1,1})` for `r > 1`, which is a natural strict classical crystal injection. On rigged configurations, the map `\gamma` adds a string of length `1` with rigging 0 to `\nu^{(a)}` for all `a < r` to a classically highest weight element and extended as a classical crystal morphism. We can extend `\gamma^*` when the right-most factor is not a single column by precomposing with a :meth:`right_split()`. EXAMPLES:: sage: RC = RiggedConfigurations(['C',3,1], [[2,1], [1,1], [3,1]]) sage: mg = RC.module_generators[7] sage: ascii_art(mg) 1[ ]0 0[ ][ ]0 0[ ]0 0[ ]0 0[ ]0 sage: ascii_art(mg.right_column_box()) 1[ ]0 0[ ][ ]0 0[ ]0 1[ ]0 0[ ]0 0[ ]0 0[ ]0 """ P = self.parent() r = P.dims[-1][0] if r == 1: raise ValueError("cannot split a single box") ct = P.cartan_type() if ct.type() == 'D': if P.dims[-1][0] >= ct.rank() - 2: raise ValueError("only for non-spinor cases") elif ct.type() == 'B' or ct.dual().type() == 'B': if P.dims[-1][0] == ct.rank() - 1: raise ValueError("only for non-spinor cases") if P.dims[-1][1] > 1: return self.right_split().right_column_box() rc, e_string = self.to_highest_weight(P._rc_index) B = P.dims[:-1] + ([r-1,1], [1,1]) from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations RC = RiggedConfigurations(P._cartan_type, B) parts = [x._clone() for x in rc] # Make a deep copy for nu in parts[:r-1]: nu._list.append(1) for a, nu in enumerate(parts[:r-1]): vac_num = RC._calc_vacancy_number(parts, a, -1) nu.vacancy_numbers.append(vac_num) nu.rigging.append(0) return RC(*parts).f_string(reversed(e_string)) def complement_rigging(self, reverse_factors=False): r""" Apply the complement rigging morphism `\theta` to ``self``. Consider a highest weight rigged configuration `(\nu, J)`, the complement rigging morphism `\theta : RC(L) \to RC(L)` is given by sending `(\nu, J) \mapsto (\nu, J')`, where `J'` is obtained by taking the coriggings `x' = p_i^{(a)} - x`, and then extending as a crystal morphism. (The name comes from taking the complement partition for the riggings in a `m_i^{(a)} \times p_i^{(a)}` box.) INPUT: - ``reverse_factors`` -- (default: ``False``) if ``True``, then this returns an element in `RC(B')` where `B'` is the tensor factors of ``self`` in reverse order EXAMPLES:: sage: RC = RiggedConfigurations(['D',4,1], [[1,1],[2,2]]) sage: mg = RC.module_generators[-1] sage: ascii_art(mg) 1[ ][ ]1 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 sage: ascii_art(mg.complement_rigging()) 1[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 sage: lw = mg.to_lowest_weight([1,2,3,4])[0] sage: ascii_art(lw) -1[ ][ ]-1 0[ ][ ]0 0[ ][ ]0 0[ ][ ]0 -1[ ]-1 0[ ][ ]0 0[ ]0 0[ ]0 -1[ ]-1 0[ ]0 0[ ]0 sage: ascii_art(lw.complement_rigging()) -1[ ][ ][ ]-1 0[ ][ ][ ]0 0[ ][ ][ ]0 0[ ][ ][ ]0 -1[ ]-1 0[ ][ ][ ]0 sage: lw.complement_rigging() == mg.complement_rigging().to_lowest_weight([1,2,3,4])[0] True sage: mg.complement_rigging(True).parent() Rigged configurations of type ['D', 4, 1] and factor(s) ((2, 2), (1, 1)) We check that the Lusztig involution (under the modification of also mapping to the highest weight element) intertwines with the complement map `\theta` (that reverses the tensor factors) under the bijection `\Phi`:: sage: RC = RiggedConfigurations(['D', 4, 1], [[2, 2], [2, 1], [1, 2]]) sage: for mg in RC.module_generators: # long time ....: y = mg.to_tensor_product_of_kirillov_reshetikhin_tableaux() ....: hw = y.lusztig_involution().to_highest_weight([1,2,3,4])[0] ....: c = mg.complement_rigging(True) ....: hwc = c.to_tensor_product_of_kirillov_reshetikhin_tableaux() ....: assert hw == hwc TESTS: We check that :trac:`18898` is fixed:: sage: RC = RiggedConfigurations(['D',4,1], [[2,1], [2,1], [2,3]]) sage: x = RC(partition_list=[[1], [1,1], [1], [1]], rigging_list=[[0], [2,1], [0], [0]]) sage: ascii_art(x) 0[ ]0 2[ ]2 0[ ]0 0[ ]0 2[ ]1 sage: ascii_art(x.complement_rigging()) 0[ ]0 2[ ]1 0[ ]0 0[ ]0 2[ ]0 """ P = self.parent() if reverse_factors: from sage.combinat.rigged_configurations.rigged_configurations import RiggedConfigurations P = RiggedConfigurations(P._cartan_type, reversed(P.dims)) mg, e_str = self.to_highest_weight(P._rc_index) nu = [] rig = [] for a,p in enumerate(mg): nu.append(list(p)) vac_nums = p.vacancy_numbers riggings = [vac - p.rigging[i] for i,vac in enumerate(vac_nums)] block = 0 for j,i in enumerate(p): if p[block] != i: riggings[block:j] = sorted(riggings[block:j], reverse=True) block = j riggings[block:] = sorted(riggings[block:], reverse=True) rig.append(riggings) rc = P(partition_list=nu, rigging_list=rig) return rc.f_string(reversed(e_str)) class KRRCSimplyLacedElement(KRRiggedConfigurationElement): r""" `U_q^{\prime}(\mathfrak{g})` rigged configurations in simply-laced types. TESTS:: sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]]) sage: elt = RC(partition_list=[[1], [1], []]); elt <BLANKLINE> 0[ ]0 <BLANKLINE> 0[ ]0 <BLANKLINE> (/) <BLANKLINE> sage: TestSuite(elt).run() """ @cached_method def cocharge(self): r""" Compute the cocharge statistic of ``self``. Computes the cocharge statistic [CrysStructSchilling06]_ on this rigged configuration `(\nu, J)`. The cocharge statistic is defined as: .. MATH:: cc(\nu, J) = \frac{1}{2} \sum_{a, b \in I_0} \sum_{j,k > 0} \left( \alpha_a \mid \alpha_b \right) \min(j, k) m_j^{(a)} m_k^{(b)} + \sum_{a \in I} \sum_{i > 0} \left\lvert J^{(a, i)} \right\rvert. EXAMPLES:: sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]]) sage: RC(partition_list=[[1], [1], []]).cocharge() 1 """ cc = 0 rigging_sum = 0 for a, p in enumerate(self): for pos, i in enumerate(p._list): # Add the rigging rigging_sum += p.rigging[pos] # Add the L matrix contribution for dim in self.parent().dims: if dim[0] == a + 1: cc += min(dim[1], i) # Subtract the vacancy number cc -= p.vacancy_numbers[pos] return cc // 2 + rigging_sum cc = cocharge @cached_method def charge(self): r""" Compute the charge statistic of ``self``. Let `B` denote a set of rigged configurations. The *charge* `c` of a rigged configuration `b` is computed as .. MATH:: c(b) = \max(cc(b) \mid b \in B) - cc(b). EXAMPLES:: sage: RC = RiggedConfigurations(['A', 3, 1], [[3, 2], [2,1], [1,1]]) sage: RC(partition_list=[[],[],[]]).charge() 2 sage: RC(partition_list=[[1], [1], []]).charge() 1 """ B = self.parent() if not hasattr(B, "_max_charge"): B._max_charge = max(b.cocharge() for b in B.module_generators) return B._max_charge - self.cocharge() class KRRCNonSimplyLacedElement(KRRiggedConfigurationElement, RCNonSimplyLacedElement): r""" `U_q^{\prime}(\mathfrak{g})` rigged configurations in non-simply-laced types. TESTS:: sage: RC = RiggedConfigurations(['C',2,1], [[1,2],[1,1],[2,1]]) sage: elt = RC(partition_list=[[3],[2]]); elt <BLANKLINE> 0[ ][ ][ ]0 <BLANKLINE> 0[ ][ ]0 sage: TestSuite(elt).run() """ def e(self, a): r""" Return the action of `e_a` on ``self``. This works by lifting into the virtual configuration, then applying .. MATH:: e^v_a = \prod_{j \in \iota(a)} \hat{e}_j^{\gamma_j} and pulling back. EXAMPLES:: sage: RC = RiggedConfigurations(['A',6,2], [[1,1]]*7) sage: elt = RC(partition_list=[[1]*5,[2,1,1],[3,2]]) sage: elt.e(3) <BLANKLINE> 0[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 <BLANKLINE> 0[ ][ ]0 1[ ]1 1[ ]1 <BLANKLINE> 1[ ][ ]1 1[ ]0 <BLANKLINE> """ if a == self.parent()._cartan_type.special_node(): try: ret = self.to_tensor_product_of_kirillov_reshetikhin_tableaux().e(a) if ret is None: return None return ret.to_rigged_configuration() except (NotImplementedError, TypeError): # We haven't implemented the bijection yet, so try by lifting # to the simply-laced case return RCNonSimplyLacedElement.e(self, a) if not self.epsilon(a): return None return RCNonSimplyLacedElement.e(self, a) def f(self, a): r""" Return the action of `f_a` on ``self``. This works by lifting into the virtual configuration, then applying .. MATH:: f^v_a = \prod_{j \in \iota(a)} \hat{f}_j^{\gamma_j} and pulling back. EXAMPLES:: sage: RC = RiggedConfigurations(['A',6,2], [[1,1]]*7) sage: elt = RC(partition_list=[[1]*5,[2,1,1],[2,1]], rigging_list=[[0]*5,[0,1,1],[1,0]]) sage: elt.f(3) <BLANKLINE> 0[ ]0 0[ ]0 0[ ]0 0[ ]0 0[ ]0 <BLANKLINE> 1[ ][ ]1 1[ ]1 1[ ]1 <BLANKLINE> -1[ ][ ][ ]-1 0[ ][ ]0 <BLANKLINE> """ if a == self.parent()._cartan_type.special_node(): try: ret = self.to_tensor_product_of_kirillov_reshetikhin_tableaux().f(a) if ret is None: return None return ret.to_rigged_configuration() except (NotImplementedError, TypeError): # We haven't implemented the bijection yet, so try by lifting # to the simply-laced case return RCNonSimplyLacedElement.f(self, a) if not self.phi(a): return None return RCNonSimplyLacedElement.f(self, a) @cached_method def cocharge(self): r""" Compute the cocharge statistic. Computes the cocharge statistic [OSS03]_ on this rigged configuration `(\nu, J)` by computing the cocharge as a virtual rigged configuration `(\hat{\nu}, \hat{J})` and then using the identity `cc(\hat{\nu}, \hat{J}) = \gamma_0 cc(\nu, J)`. EXAMPLES:: sage: RC = RiggedConfigurations(['C', 3, 1], [[2,1], [1,1]]) sage: RC(partition_list=[[1,1],[2,1],[1,1]]).cocharge() 1 """ #return self.to_virtual_configuration().cocharge() / self.parent()._folded_ct.gamma[0] vct = self.parent()._folded_ct cc = ZZ.zero() rigging_sum = ZZ.zero() sigma = vct.folding_orbit() gamma = vct.scaling_factors() for a, p in enumerate(self): t_check = len(sigma[a + 1]) * gamma[a+1] // gamma[0] for pos, i in enumerate(p._list): # Add the rigging rigging_sum += t_check * p.rigging[pos] # Add the L matrix contribution for dim in self.parent().dims: if dim[0] == a + 1: cc += t_check * min(dim[1], i) # Subtract the vacancy number cc -= t_check * p.vacancy_numbers[pos] return cc // 2 + rigging_sum cc = cocharge class KRRCTypeA2DualElement(KRRCNonSimplyLacedElement): r""" `U_q^{\prime}(\mathfrak{g})` rigged configurations in type `A_{2n}^{(2)\dagger}`. """ def epsilon(self, a): r""" Return the value of `\varepsilon_a` of ``self``. Here we need to modify the usual definition by `\varepsilon_n^{\prime} := 2 \varepsilon_n`. EXAMPLES:: sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1], [2,2]]) sage: def epsilon(x, i): ....: x = x.e(i) ....: eps = 0 ....: while x is not None: ....: x = x.e(i) ....: eps = eps + 1 ....: return eps sage: all(epsilon(rc, 2) == rc.epsilon(2) for rc in RC) True """ if a == self.parent()._cartan_type.special_node(): return self.to_tensor_product_of_kirillov_reshetikhin_tableaux().epsilon(a) a = self.parent()._rc_index_inverse[a] if not self[a]: epsilon = 0 else: epsilon = -min(0, min(self[a].rigging)) n = len(self.parent()._rc_index) if a == n-1: # -1 for indexing epsilon *= 2 return Integer(epsilon) def phi(self, a): r""" Return the value of `\varphi_a` of ``self``. Here we need to modify the usual definition by `\varphi_n^{\prime} := 2 \varphi_n`. EXAMPLES:: sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1], [2,2]]) sage: def phi(x, i): ....: x = x.f(i) ....: ph = 0 ....: while x is not None: ....: x = x.f(i) ....: ph = ph + 1 ....: return ph sage: all(phi(rc, 2) == rc.phi(2) for rc in RC) True """ if a == self.parent()._cartan_type.special_node(): return self.to_tensor_product_of_kirillov_reshetikhin_tableaux().phi(a) a = self.parent()._rc_index_inverse[a] p_inf = self.parent()._calc_vacancy_number(self, a, float("inf")) if not self[a]: phi = p_inf else: phi = p_inf - min(0, min(self[a].rigging)) n = len(self.parent()._rc_index) if a == n-1: # -1 for indexing phi *= 2 return Integer(phi) @cached_method def cocharge(self): r""" Compute the cocharge statistic. Computes the cocharge statistic [RigConBijection]_ on this rigged configuration `(\nu, J)`. The cocharge statistic is computed as: .. MATH:: cc(\nu, J) = \frac{1}{2} \sum_{a \in I_0} \sum_{i > 0} t_a^{\vee} m_i^{(a)} \left( \sum_{j > 0} \min(i, j) L_j^{(a)} - p_i^{(a)} \right) + \sum_{a \in I} t_a^{\vee} \sum_{i > 0} \left\lvert J^{(a, i)} \right\rvert. EXAMPLES:: sage: RC = RiggedConfigurations(CartanType(['A',4,2]).dual(), [[1,1],[2,2]]) sage: sc = RC.cartan_type().as_folding().scaling_factors() sage: all(mg.cocharge() * sc[0] == mg.to_virtual_configuration().cocharge() ....: for mg in RC.module_generators) True """ # return self.to_virtual_configuration().cocharge() / self.parent()._folded_ct.gamma[0] cc = ZZ.zero() rigging_sum = ZZ.zero() # vct = self.parent()._folded_ct # sigma = vct.folding_orbit() # gammatilde = list(vct.scaling_factors()) # gammatilde[-1] = 2 for a, p in enumerate(self): t_check = 1 # == len(sigma[a+1]) * gammatilde[a+1] / gammatilde[0] for pos, i in enumerate(p._list): # Add the rigging rigging_sum += t_check * p.rigging[pos] # Add the L matrix contribution for dim in self.parent().dims: if dim[0] == a + 1: cc += t_check * min(dim[1], i) # Subtract the vacancy number cc -= t_check * p.vacancy_numbers[pos] return cc / ZZ(2) + rigging_sum cc = cocharge
35.436515
165
0.503829
af638ebcf2be5669d3542a6629636f93e961f797
3,143
py
Python
transformer.py
fangyihao/teamnet
4f906b80f17626b0b2aedf9b6f495dbd0eb47dd6
[ "Apache-2.0" ]
1
2022-03-25T03:07:28.000Z
2022-03-25T03:07:28.000Z
transformer.py
fangyihao/teamnet
4f906b80f17626b0b2aedf9b6f495dbd0eb47dd6
[ "Apache-2.0" ]
1
2022-01-05T06:08:00.000Z
2022-01-05T06:08:29.000Z
transformer.py
fangyihao/teamnet
4f906b80f17626b0b2aedf9b6f495dbd0eb47dd6
[ "Apache-2.0" ]
1
2021-07-15T07:25:08.000Z
2021-07-15T07:25:08.000Z
''' Created on Jun 21, 2018 @author: fangy5 ''' # Imports we need. import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import os import collections from tensor2tensor import models from tensor2tensor import problems from tensor2tensor.layers import common_layers from tensor2tensor.utils import trainer_lib from tensor2tensor.utils import t2t_model from tensor2tensor.utils import registry from tensor2tensor.utils import metrics # Enable TF Eager execution tfe = tf.contrib.eager tfe.enable_eager_execution() # Other setup Modes = tf.estimator.ModeKeys # Setup some directories data_dir = os.path.expanduser("~/t2t/data") tmp_dir = os.path.expanduser("~/t2t/tmp") train_dir = os.path.expanduser("~/t2t/train") checkpoint_dir = os.path.expanduser("~/t2t/checkpoints") tf.gfile.MakeDirs(data_dir) tf.gfile.MakeDirs(tmp_dir) tf.gfile.MakeDirs(train_dir) tf.gfile.MakeDirs(checkpoint_dir) gs_data_dir = "gs://tensor2tensor-data" gs_ckpt_dir = "gs://tensor2tensor-checkpoints/" print(problems.available()) # Fetch the problem ende_problem = problems.problem("translate_ende_wmt32k") # Copy the vocab file locally so we can encode inputs and decode model outputs # All vocabs are stored on GCS vocab_name = "vocab.ende.32768" vocab_file = os.path.join(gs_data_dir, vocab_name) #!gsutil cp {vocab_file} {data_dir} # Get the encoders from the problem encoders = ende_problem.feature_encoders(data_dir) # Setup helper functions for encoding and decoding def encode(input_str, output_str=None): """Input str to features dict, ready for inference""" inputs = encoders["inputs"].encode(input_str) + [1] # add EOS id batch_inputs = tf.reshape(inputs, [1, -1, 1]) # Make it 3D. return {"inputs": batch_inputs} def decode(integers): """List of ints to str""" integers = list(np.squeeze(integers)) if 1 in integers: integers = integers[:integers.index(1)] return encoders["inputs"].decode(np.squeeze(integers)) # There are many models available in Tensor2Tensor print(registry.list_models()) # Create hparams and the model model_name = "transformer" hparams_set = "transformer_base" hparams = trainer_lib.create_hparams(hparams_set, data_dir=data_dir, problem_name="translate_ende_wmt32k") # NOTE: Only create the model once when restoring from a checkpoint; it's a # Layer and so subsequent instantiations will have different variable scopes # that will not match the checkpoint. translate_model = registry.model(model_name)(hparams, Modes.EVAL) # Copy the pretrained checkpoint locally ckpt_name = "transformer_ende_test" gs_ckpt = os.path.join(gs_ckpt_dir, ckpt_name) #!gsutil -q cp -R {gs_ckpt} {checkpoint_dir} ckpt_path = tf.train.latest_checkpoint(os.path.join(checkpoint_dir, ckpt_name)) # Restore and translate! def translate(inputs): encoded_inputs = encode(inputs) with tfe.restore_variables_on_create(ckpt_path): model_output = translate_model.infer(encoded_inputs)["outputs"] return decode(model_output) inputs = "The animal didn't cross the street because it was too tired" outputs = translate(inputs) print("Inputs: %s" % inputs) print("Outputs: %s" % outputs)
30.221154
106
0.773147
614f11e58d17ac1f2198ebd1a2050bc7905de66e
741
py
Python
setup.py
atbradley/eaccpf-indexer
da50970a0ffbc9b0eb892814ef07071ed5e843b2
[ "Apache-2.0" ]
null
null
null
setup.py
atbradley/eaccpf-indexer
da50970a0ffbc9b0eb892814ef07071ed5e843b2
[ "Apache-2.0" ]
null
null
null
setup.py
atbradley/eaccpf-indexer
da50970a0ffbc9b0eb892814ef07071ed5e843b2
[ "Apache-2.0" ]
null
null
null
""" This file is subject to the terms and conditions defined in the LICENSE file, which is part of this source code package. """ from pip.req import parse_requirements from setuptools import setup, find_packages # read metadata with open('README.md', 'r') as f: description = f.read() version = '1.5.1' # package requirements install_reqs = parse_requirements('requirements.txt') requirements = [str(ir.req) for ir in install_reqs] setup(name='Indexer', description=description, author='Davis Marques <dmarques@unimelb.edu.au> eScholarship Research Center, University of Melbourne', url='http://www.esrc.unimelb.edu.au', version=version, packages=find_packages(), install_requires=requirements, )
28.5
109
0.731444
70793451c614c39edf0baa82c9faac06537e5b68
10,062
py
Python
global_helpers/panther_oss_helpers.py
BatteryCandy/panther-analysis
a67ca63581fe328d3f2c7493f0cdb889acb3181f
[ "Apache-2.0" ]
1
2020-10-21T08:14:49.000Z
2020-10-21T08:14:49.000Z
global_helpers/panther_oss_helpers.py
georgeSkoumas/panther-analysis
30b21c270504bf7c84f99207c9c6c2f6110843ae
[ "Apache-2.0" ]
null
null
null
global_helpers/panther_oss_helpers.py
georgeSkoumas/panther-analysis
30b21c270504bf7c84f99207c9c6c2f6110843ae
[ "Apache-2.0" ]
null
null
null
"""Utility functions provided to policies and rules during execution.""" from ipaddress import ip_network import time from typing import Any, Dict, Union, Sequence, Set import boto3 _RESOURCE_TABLE = None # boto3.Table resource, lazily constructed class BadLookup(Exception): """Error returned when a resource lookup fails.""" class PantherBadInput(Exception): """Error returned when a Panther helper function is provided bad input.""" def get_s3_arn_by_name(name: str) -> str: """This function is used to construct an s3 bucket ARN from its name.""" if name == '': raise PantherBadInput('s3 name cannot be blank') return 'arn:aws:s3:::' + name def s3_lookup_by_name(name: str) -> Dict[str, Any]: """This function is used to get an S3 bucket resource from just its name.""" return resource_lookup(get_s3_arn_by_name(name)) def resource_table() -> boto3.resource: """Lazily build resource table""" # pylint: disable=global-statement global _RESOURCE_TABLE if not _RESOURCE_TABLE: # pylint: disable=no-member _RESOURCE_TABLE = boto3.resource('dynamodb').Table('panther-resources') return _RESOURCE_TABLE def resource_lookup(resource_id: str) -> Dict[str, Any]: """This function is used to get a resource from the resources-api based on its resourceID.""" # Validate input so we can provide meaningful error messages to users if resource_id == '': raise PantherBadInput('resourceId cannot be blank') # Get the item from dynamo response = resource_table().get_item(Key={'id': resource_id}) # Check if dynamo failed status_code = response['ResponseMetadata']['HTTPStatusCode'] if status_code != 200: raise BadLookup('dynamodb - ' + str(status_code) + ' HTTPStatusCode') # Check if the item was found if 'Item' not in response: raise BadLookup(resource_id + ' not found') # Return just the attributes of the item return response['Item']['attributes'] # Expects a string in cidr notation (e.g. '10.0.0.0/24') indicating the ip range being checked # Returns True if any ip in the range is marked as DMZ space. DMZ_NETWORKS = [ ip_network('10.1.0.0/24'), ip_network('100.1.0.0/24'), ] def is_dmz_cidr(ip_range): """This function determines whether a given IP range is within the defined DMZ IP range.""" return any( ip_network(ip_range).overlaps(dmz_network) for dmz_network in DMZ_NETWORKS) DMZ_TAG_KEY = 'environment' DMZ_TAG_VALUE = 'dmz' # Defaults to False to assume something is not a DMZ if it is not tagged def is_dmz_tags(resource): """This function determines whether a given resource is tagged as exisitng in a DMZ.""" if resource['Tags'] is None: return False return resource['Tags'].get(DMZ_TAG_KEY) == DMZ_TAG_VALUE # Helper functions for accessing Dynamo key-value store. # # Keys can be any string specified by rules and policies, # values are integer counters and/or string sets. # # Use kv_table() if you want to interact with the table directly. _KV_TABLE = None _COUNT_COL = 'intCount' _STRING_SET_COL = 'stringSet' def kv_table() -> boto3.resource: """Lazily build key-value table resource""" # pylint: disable=global-statement global _KV_TABLE if not _KV_TABLE: # pylint: disable=no-member _KV_TABLE = boto3.resource('dynamodb').Table('panther-kv-store') return _KV_TABLE def get_counter(key: str) -> int: """Get a counter's current value (defaulting to 0 if key does not exist).""" response = kv_table().get_item( Key={'key': key}, ProjectionExpression=_COUNT_COL, ) return response.get('Item', {}).get(_COUNT_COL, 0) def increment_counter(key: str, val: int = 1) -> int: """Increment a counter in the table. Args: key: The name of the counter (need not exist yet) val: How much to add to the counter Returns: The new value of the count """ response = kv_table().update_item( Key={'key': key}, ReturnValues='UPDATED_NEW', UpdateExpression='ADD #col :incr', ExpressionAttributeNames={'#col': _COUNT_COL}, ExpressionAttributeValues={':incr': val}, ) # Numeric values are returned as decimal.Decimal return response['Attributes'][_COUNT_COL].to_integral_value() def reset_counter(key: str) -> None: """Reset a counter to 0.""" kv_table().put_item(Item={'key': key, _COUNT_COL: 0}) def set_key_expiration(key: str, epoch_seconds: int) -> None: """Configure the key to automatically expire at the given time. DynamoDB typically deletes expired items within 48 hours of expiration. Args: key: The name of the counter epoch_seconds: When you want the counter to expire (set to 0 to disable) """ kv_table().update_item(Key={'key': key}, UpdateExpression='SET expiresAt = :time', ExpressionAttributeValues={':time': epoch_seconds}) def get_string_set(key: str) -> Set[str]: """Get a string set's current value (defaulting to empty set if key does not exit).""" response = kv_table().get_item( Key={'key': key}, ProjectionExpression=_STRING_SET_COL, ) return response.get('Item', {}).get(_STRING_SET_COL, set()) def put_string_set(key: str, val: Sequence[str]) -> None: """Overwrite a string set under the given key. This is faster than (reset_string_set + add_string_set) if you know exactly what the contents of the set should be. Args: key: The name of the string set val: A list/set/tuple of strings to store """ if len(val) == 0: # Can't put an empty string set - remove it instead reset_string_set(key) else: kv_table().put_item(Item={'key': key, _STRING_SET_COL: set(val)}) def add_to_string_set(key: str, val: Union[str, Sequence[str]]) -> Set[str]: """Add one or more strings to a set. Args: key: The name of the string set val: Either a single string or a list/tuple/set of strings to add Returns: The new value of the string set """ if isinstance(val, str): item_value = {val} else: item_value = set(val) if len(item_value) == 0: # We can't add empty sets, just return the existing value instead return get_string_set(key) response = kv_table().update_item( Key={'key': key}, ReturnValues='UPDATED_NEW', UpdateExpression='ADD #col :ss', ExpressionAttributeNames={'#col': _STRING_SET_COL}, ExpressionAttributeValues={':ss': item_value}, ) return response['Attributes'][_STRING_SET_COL] def remove_from_string_set(key: str, val: Union[str, Sequence[str]]) -> Set[str]: """Remove one or more strings from a set. Args: key: The name of the string set val: Either a single string or a list/tuple/set of strings to remove Returns: The new value of the string set """ if isinstance(val, str): item_value = {val} else: item_value = set(val) if len(item_value) == 0: # We can't remove empty sets, just return the existing value instead return get_string_set(key) response = kv_table().update_item( Key={'key': key}, ReturnValues='UPDATED_NEW', UpdateExpression='DELETE #col :ss', ExpressionAttributeNames={'#col': _STRING_SET_COL}, ExpressionAttributeValues={':ss': item_value}, ) return response['Attributes'][_STRING_SET_COL] def reset_string_set(key: str) -> None: """Reset a string set to empty.""" kv_table().update_item( Key={'key': key}, UpdateExpression='REMOVE #col', ExpressionAttributeNames={'#col': _STRING_SET_COL}, ) def _test_kv_store(): """Integration tests which validate the functions which interact with the key-value store. Deploy Panther and then simply run "python3 panther.py" to test. """ assert increment_counter('panther', 1) == 1 assert increment_counter('labs', 3) == 3 assert increment_counter('panther', -2) == -1 assert increment_counter('panther', 0) == -1 assert increment_counter('panther', 11) == 10 assert get_counter('panther') == 10 assert get_counter('labs') == 3 assert get_counter('nonexistent') == 0 reset_counter('panther') reset_counter('labs') assert get_counter('panther') == 0 assert get_counter('labs') == 0 set_key_expiration('panther', int(time.time())) # Add elements in a list, tuple, set, or as singleton strings # The same key can be used to store int counts and string sets assert add_to_string_set('panther', ['a', 'b']) == {'a', 'b'} assert add_to_string_set('panther', ['b', 'a']) == {'a', 'b'} assert add_to_string_set('panther', 'c') == {'a', 'b', 'c'} assert add_to_string_set('panther', set()) == {'a', 'b', 'c'} assert add_to_string_set('panther', {'b', 'c', 'd'}) == {'a', 'b', 'c', 'd'} assert add_to_string_set('panther', ('d', 'e')) == {'a', 'b', 'c', 'd', 'e'} # Empty strings are allowed assert add_to_string_set('panther', '') == {'a', 'b', 'c', 'd', 'e', ''} assert get_string_set('labs') == set() assert get_string_set('panther') == {'a', 'b', 'c', 'd', 'e', ''} assert remove_from_string_set('panther', ['b', 'c', 'd']) == {'a', 'e', ''} assert remove_from_string_set('panther', '') == {'a', 'e'} assert remove_from_string_set('panther', '') == {'a', 'e'} # Overwrite contents completely put_string_set('panther', ['go', 'python']) assert get_string_set('panther') == {'go', 'python'} put_string_set('labs', []) assert get_string_set('labs') == set() reset_string_set('panther') reset_string_set('nonexistent') # no error assert get_string_set('panther') == set() if __name__ == '__main__': _test_kv_store()
32.775244
97
0.645697
0e97d88bdf5dcebf95dd51db44ee373b1bb34cf0
4,016
gyp
Python
third_party/domain_registry_provider/src/testing/gtest.gyp
x0rzkov/incubator-pagespeed-mod
d192f0e92bc6201474a9295f50aad625cde68889
[ "Apache-2.0" ]
null
null
null
third_party/domain_registry_provider/src/testing/gtest.gyp
x0rzkov/incubator-pagespeed-mod
d192f0e92bc6201474a9295f50aad625cde68889
[ "Apache-2.0" ]
null
null
null
third_party/domain_registry_provider/src/testing/gtest.gyp
x0rzkov/incubator-pagespeed-mod
d192f0e92bc6201474a9295f50aad625cde68889
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'gtest', 'type': 'static_library', 'sources': [ 'gtest/include/gtest/gtest-death-test.h', 'gtest/include/gtest/gtest-message.h', 'gtest/include/gtest/gtest-param-test.h', 'gtest/include/gtest/gtest-printers.h', 'gtest/include/gtest/gtest-spi.h', 'gtest/include/gtest/gtest-test-part.h', 'gtest/include/gtest/gtest-typed-test.h', 'gtest/include/gtest/gtest.h', 'gtest/include/gtest/gtest_pred_impl.h', 'gtest/include/gtest/gtest_prod.h', 'gtest/include/gtest/internal/gtest-death-test-internal.h', 'gtest/include/gtest/internal/gtest-filepath.h', 'gtest/include/gtest/internal/gtest-internal.h', 'gtest/include/gtest/internal/gtest-linked_ptr.h', 'gtest/include/gtest/internal/gtest-param-util-generated.h', 'gtest/include/gtest/internal/gtest-param-util.h', 'gtest/include/gtest/internal/gtest-port.h', 'gtest/include/gtest/internal/gtest-string.h', 'gtest/include/gtest/internal/gtest-tuple.h', 'gtest/include/gtest/internal/gtest-type-util.h', 'gtest/src/gtest-all.cc', 'gtest/src/gtest-death-test.cc', 'gtest/src/gtest-filepath.cc', 'gtest/src/gtest-internal-inl.h', 'gtest/src/gtest-port.cc', 'gtest/src/gtest-printers.cc', 'gtest/src/gtest-test-part.cc', 'gtest/src/gtest-typed-test.cc', 'gtest/src/gtest.cc', ], 'sources!': [ 'gtest/src/gtest-all.cc', # Not needed by our build. ], 'include_dirs': [ 'gtest', 'gtest/include', ], 'conditions': [ ['OS == "mac"', { 'sources': [ 'gtest_mac.h', 'gtest_mac.mm', 'platform_test_mac.mm' ], 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/Foundation.framework', ], }, }], ['OS != "win"', { 'defines': [ # gtest isn't able to figure out when RTTI is disabled for gcc # versions older than 4.3.2, and assumes it's enabled. Our Mac # and Linux builds disable RTTI, and cannot guarantee that the # compiler will be 4.3.2. or newer. The Mac, for example, uses # 4.2.1 as that is the latest available on that platform. gtest # must be instructed that RTTI is disabled here, and for any # direct dependents that might include gtest headers. 'GTEST_HAS_RTTI=0', ], 'direct_dependent_settings': { 'defines': [ 'GTEST_HAS_RTTI=0', ], }, }], ], 'direct_dependent_settings': { 'defines': [ 'UNIT_TEST', ], 'include_dirs': [ 'gtest/include', # So that gtest headers can find themselves. ], 'target_conditions': [ ['_type=="executable"', { 'test': 1, 'conditions': [ ['OS=="mac"', { 'run_as': { 'action????': ['${BUILT_PRODUCTS_DIR}/${PRODUCT_NAME}'], }, }], ['OS=="win"', { 'run_as': { 'action????': ['$(TargetPath)', '--gtest_print_time'], }, }], ], }], ], 'msvs_disabled_warnings': [4800], }, }, { 'target_name': 'gtest_main', 'type': 'static_library', 'dependencies': [ 'gtest', ], 'sources': [ 'gtest/src/gtest_main.cc', ], }, ], } # Local Variables: # tab-width:2 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=2 shiftwidth=2:
32.387097
76
0.522659
0fc515d8c2f1f66fb8b3599949e56caf4a009bd9
2,368
py
Python
egs/librispeech/ASR/local/compute_fbank_musan.py
danpovey/icefall
8469f9ae0a2d7686f04e558fba8ddfb5505109fc
[ "Apache-2.0" ]
2
2021-09-02T02:32:11.000Z
2021-11-01T07:14:15.000Z
egs/librispeech/ASR/local/compute_fbank_musan.py
danpovey/icefall
8469f9ae0a2d7686f04e558fba8ddfb5505109fc
[ "Apache-2.0" ]
null
null
null
egs/librispeech/ASR/local/compute_fbank_musan.py
danpovey/icefall
8469f9ae0a2d7686f04e558fba8ddfb5505109fc
[ "Apache-2.0" ]
2
2021-09-02T14:17:20.000Z
2022-02-28T07:18:34.000Z
#!/usr/bin/env python3 """ This file computes fbank features of the musan dataset. Its looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import logging import os from pathlib import Path import torch from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor # Torch's multithreaded behavior needs to be disabled or it wastes a lot of CPU and # slow things down. Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def compute_fbank_musan(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) num_mel_bins = 80 dataset_parts = ( "music", "speech", "noise", ) manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir ) assert manifests is not None musan_cuts_path = output_dir / "cuts_musan.json.gz" if musan_cuts_path.is_file(): logging.info(f"{musan_cuts_path} already exists - skipping") return logging.info("Extracting features for Musan") extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. # create chunks of Musan with duration 5 - 10 seconds musan_cuts = ( CutSet.from_manifests( recordings=combine( part["recordings"] for part in manifests.values() ) ) .cut_into_windows(10.0) .filter(lambda c: c.duration > 5) .compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/feats_musan", num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomHdf5Writer, ) ) musan_cuts.to_json(musan_cuts_path) if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_musan()
29.234568
83
0.658361
e8e6f285ecb9a6a9c506755f1330d843829f1354
23,590
py
Python
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
Lufeifeina/models
d7d260d4c690e5163070e21d75df372ab559ea23
[ "Apache-2.0" ]
1
2020-09-14T10:46:07.000Z
2020-09-14T10:46:07.000Z
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
Lufeifeina/models
d7d260d4c690e5163070e21d75df372ab559ea23
[ "Apache-2.0" ]
null
null
null
official/vision/beta/projects/panoptic_maskrcnn/modeling/layers/panoptic_deeplab_merge.py
Lufeifeina/models
d7d260d4c690e5163070e21d75df372ab559ea23
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains functions to post-process Panoptic-DeepLab results. Note that the postprocessing class and the supporting functions are branched from: https://github.com/google-research/deeplab2/blob/main/model/post_processor/panoptic_deeplab.py with minor changes. """ import functools from typing import List, Tuple, Dict, Text import tensorflow as tf from official.vision.beta.projects.panoptic_maskrcnn.ops import mask_ops def _add_zero_padding(input_tensor: tf.Tensor, kernel_size: int, rank: int) -> tf.Tensor: """Adds zero-padding to the input_tensor.""" pad_total = kernel_size - 1 pad_begin = pad_total // 2 pad_end = pad_total - pad_begin if rank == 3: return tf.pad( input_tensor, paddings=[[pad_begin, pad_end], [pad_begin, pad_end], [0, 0]]) else: return tf.pad( input_tensor, paddings=[[0, 0], [pad_begin, pad_end], [pad_begin, pad_end], [0, 0]]) def _get_semantic_predictions(semantic_logits: tf.Tensor) -> tf.Tensor: """Computes the semantic classes from the predictions. Args: semantic_logits: A tf.tensor of shape [batch, height, width, classes]. Returns: A tf.Tensor containing the semantic class prediction of shape [batch, height, width]. """ return tf.argmax(semantic_logits, axis=-1, output_type=tf.int32) def _get_instance_centers_from_heatmap( center_heatmap: tf.Tensor, center_threshold: float, nms_kernel_size: int, keep_k_centers: int) -> Tuple[tf.Tensor, tf.Tensor]: """Computes a list of instance centers. Args: center_heatmap: A tf.Tensor of shape [height, width, 1]. center_threshold: A float setting the threshold for the center heatmap. nms_kernel_size: An integer specifying the nms kernel size. keep_k_centers: An integer specifying the number of centers to keep (K). Non-positive values will keep all centers. Returns: A tuple of - tf.Tensor of shape [N, 2] containing N center coordinates (after non-maximum suppression) in (y, x) order. - tf.Tensor of shape [height, width] containing the center heatmap after non-maximum suppression. """ # Threshold center map. center_heatmap = tf.where( tf.greater(center_heatmap, center_threshold), center_heatmap, 0.0) # Non-maximum suppression. padded_map = _add_zero_padding(center_heatmap, nms_kernel_size, rank=3) pooled_center_heatmap = tf.keras.backend.pool2d( tf.expand_dims(padded_map, 0), pool_size=(nms_kernel_size, nms_kernel_size), strides=(1, 1), padding='valid', pool_mode='max') center_heatmap = tf.where( tf.equal(pooled_center_heatmap, center_heatmap), center_heatmap, 0.0) center_heatmap = tf.squeeze(center_heatmap, axis=[0, 3]) # `centers` is of shape (N, 2) with (y, x) order of the second dimension. centers = tf.where(tf.greater(center_heatmap, 0.0)) if keep_k_centers > 0 and tf.shape(centers)[0] > keep_k_centers: topk_scores, _ = tf.math.top_k( tf.reshape(center_heatmap, [-1]), keep_k_centers, sorted=False) centers = tf.where(tf.greater(center_heatmap, topk_scores[-1])) return centers, center_heatmap def _find_closest_center_per_pixel(centers: tf.Tensor, center_offsets: tf.Tensor) -> tf.Tensor: """Assigns all pixels to their closest center. Args: centers: A tf.Tensor of shape [N, 2] containing N centers with coordinate order (y, x). center_offsets: A tf.Tensor of shape [height, width, 2]. Returns: A tf.Tensor of shape [height, width] containing the index of the closest center, per pixel. """ height = tf.shape(center_offsets)[0] width = tf.shape(center_offsets)[1] x_coord, y_coord = tf.meshgrid(tf.range(width), tf.range(height)) coord = tf.stack([y_coord, x_coord], axis=-1) center_per_pixel = tf.cast(coord, tf.float32) + center_offsets # centers: [N, 2] -> [N, 1, 2]. # center_per_pixel: [H, W, 2] -> [1, H*W, 2]. centers = tf.cast(tf.expand_dims(centers, 1), tf.float32) center_per_pixel = tf.reshape(center_per_pixel, [height*width, 2]) center_per_pixel = tf.expand_dims(center_per_pixel, 0) # distances: [N, H*W]. distances = tf.norm(centers - center_per_pixel, axis=-1) return tf.reshape(tf.argmin(distances, axis=0), [height, width]) def _get_instances_from_heatmap_and_offset( semantic_segmentation: tf.Tensor, center_heatmap: tf.Tensor, center_offsets: tf.Tensor, center_threshold: float, thing_class_ids: tf.Tensor, nms_kernel_size: int, keep_k_centers: int) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: """Computes the instance assignment per pixel. Args: semantic_segmentation: A tf.Tensor containing the semantic labels of shape [height, width]. center_heatmap: A tf.Tensor of shape [height, width, 1]. center_offsets: A tf.Tensor of shape [height, width, 2]. center_threshold: A float setting the threshold for the center heatmap. thing_class_ids: A tf.Tensor of shape [N] containing N thing indices. nms_kernel_size: An integer specifying the nms kernel size. keep_k_centers: An integer specifying the number of centers to keep. Negative values will keep all centers. Returns: A tuple of: - tf.Tensor containing the instance segmentation (filtered with the `thing` segmentation from the semantic segmentation output) with shape [height, width]. - tf.Tensor containing the processed centermap with shape [height, width]. - tf.Tensor containing instance scores (where higher "score" is a reasonable signal of a higher confidence detection.) Will be of shape [height, width] with the score for a pixel being the score of the instance it belongs to. The scores will be zero for pixels in background/"stuff" regions. """ thing_segmentation = tf.zeros_like(semantic_segmentation) for thing_id in thing_class_ids: thing_segmentation = tf.where(tf.equal(semantic_segmentation, thing_id), 1, thing_segmentation) centers, processed_center_heatmap = _get_instance_centers_from_heatmap( center_heatmap, center_threshold, nms_kernel_size, keep_k_centers) if tf.shape(centers)[0] == 0: return (tf.zeros_like(semantic_segmentation), processed_center_heatmap, tf.zeros_like(processed_center_heatmap)) instance_center_index = _find_closest_center_per_pixel( centers, center_offsets) # Instance IDs should start with 1. So we use the index into the centers, but # shifted by 1. instance_segmentation = tf.cast(instance_center_index, tf.int32) + 1 # The value of the heatmap at an instance's center is used as the score # for that instance. instance_scores = tf.gather_nd(processed_center_heatmap, centers) # This will map the instance scores back to the image space: where each pixel # has a value equal to the score of its instance. flat_center_index = tf.reshape(instance_center_index, [-1]) instance_score_map = tf.gather(instance_scores, flat_center_index) instance_score_map = tf.reshape(instance_score_map, tf.shape(instance_segmentation)) instance_score_map *= tf.cast(thing_segmentation, tf.float32) return (thing_segmentation * instance_segmentation, processed_center_heatmap, instance_score_map) @tf.function def _get_panoptic_predictions( semantic_logits: tf.Tensor, center_heatmap: tf.Tensor, center_offsets: tf.Tensor, center_threshold: float, thing_class_ids: tf.Tensor, label_divisor: int, stuff_area_limit: int, void_label: int, nms_kernel_size: int, keep_k_centers: int ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]: """Computes the semantic class and instance ID per pixel. Args: semantic_logits: A tf.Tensor of shape [batch, height, width, classes]. center_heatmap: A tf.Tensor of shape [batch, height, width, 1]. center_offsets: A tf.Tensor of shape [batch, height, width, 2]. center_threshold: A float setting the threshold for the center heatmap. thing_class_ids: A tf.Tensor of shape [N] containing N thing indices. label_divisor: An integer specifying the label divisor of the dataset. stuff_area_limit: An integer specifying the number of pixels that stuff regions need to have at least. The stuff region will be included in the panoptic prediction, only if its area is larger than the limit; otherwise, it will be re-assigned as void_label. void_label: An integer specifying the void label. nms_kernel_size: An integer specifying the nms kernel size. keep_k_centers: An integer specifying the number of centers to keep. Negative values will keep all centers. Returns: A tuple of: - the panoptic prediction as tf.Tensor with shape [batch, height, width]. - the centermap prediction as tf.Tensor with shape [batch, height, width]. - the instance score maps as tf.Tensor with shape [batch, height, width]. - the instance prediction as tf.Tensor with shape [batch, height, width]. """ semantic_prediction = _get_semantic_predictions(semantic_logits) batch_size = tf.shape(semantic_logits)[0] instance_map_lists = tf.TensorArray( tf.int32, size=batch_size, dynamic_size=False) center_map_lists = tf.TensorArray( tf.float32, size=batch_size, dynamic_size=False) instance_score_map_lists = tf.TensorArray( tf.float32, size=batch_size, dynamic_size=False) for i in tf.range(batch_size): (instance_map, center_map, instance_score_map) = _get_instances_from_heatmap_and_offset( semantic_prediction[i, ...], center_heatmap[i, ...], center_offsets[i, ...], center_threshold, thing_class_ids, nms_kernel_size, keep_k_centers) instance_map_lists = instance_map_lists.write(i, instance_map) center_map_lists = center_map_lists.write(i, center_map) instance_score_map_lists = instance_score_map_lists.write( i, instance_score_map) # This does not work with unknown shapes. instance_maps = instance_map_lists.stack() center_maps = center_map_lists.stack() instance_score_maps = instance_score_map_lists.stack() panoptic_prediction = _merge_semantic_and_instance_maps( semantic_prediction, instance_maps, thing_class_ids, label_divisor, stuff_area_limit, void_label) return (panoptic_prediction, center_maps, instance_score_maps, instance_maps) @tf.function def _merge_semantic_and_instance_maps( semantic_prediction: tf.Tensor, instance_maps: tf.Tensor, thing_class_ids: tf.Tensor, label_divisor: int, stuff_area_limit: int, void_label: int) -> tf.Tensor: """Merges semantic and instance maps to obtain panoptic segmentation. This function merges the semantic segmentation and class-agnostic instance segmentation to form the panoptic segmentation. In particular, the class label of each instance mask is inferred from the majority votes from the corresponding pixels in the semantic segmentation. This operation is first proposed in the DeeperLab paper and adopted by the Panoptic-DeepLab. - DeeperLab: Single-Shot Image Parser, T-J Yang, et al. arXiv:1902.05093. - Panoptic-DeepLab, B. Cheng, et al. In CVPR, 2020. Note that this function only supports batch = 1 for simplicity. Additionally, this function has a slightly different implementation from the provided TensorFlow implementation `merge_ops` but with a similar performance. This function is mainly used as a backup solution when you could not successfully compile the provided TensorFlow implementation. To reproduce our results, please use the provided TensorFlow implementation (i.e., not use this function, but the `merge_ops.merge_semantic_and_instance_maps`). Args: semantic_prediction: A tf.Tensor of shape [batch, height, width]. instance_maps: A tf.Tensor of shape [batch, height, width]. thing_class_ids: A tf.Tensor of shape [N] containing N thing indices. label_divisor: An integer specifying the label divisor of the dataset. stuff_area_limit: An integer specifying the number of pixels that stuff regions need to have at least. The stuff region will be included in the panoptic prediction, only if its area is larger than the limit; otherwise, it will be re-assigned as void_label. void_label: An integer specifying the void label. Returns: panoptic_prediction: A tf.Tensor with shape [batch, height, width]. """ prediction_shape = semantic_prediction.get_shape().as_list() # This implementation only supports batch size of 1. Since model construction # might lose batch size information (and leave it to None), override it here. prediction_shape[0] = 1 semantic_prediction = tf.ensure_shape(semantic_prediction, prediction_shape) instance_maps = tf.ensure_shape(instance_maps, prediction_shape) # Default panoptic_prediction to have semantic label = void_label. panoptic_prediction = tf.ones_like( semantic_prediction) * void_label * label_divisor # Start to paste predicted `thing` regions to panoptic_prediction. # Infer `thing` segmentation regions from semantic prediction. semantic_thing_segmentation = tf.zeros_like(semantic_prediction, dtype=tf.bool) for thing_class in thing_class_ids: semantic_thing_segmentation = tf.math.logical_or( semantic_thing_segmentation, semantic_prediction == thing_class) # Keep track of how many instances for each semantic label. num_instance_per_semantic_label = tf.TensorArray( tf.int32, size=0, dynamic_size=True, clear_after_read=False) instance_ids, _ = tf.unique(tf.reshape(instance_maps, [-1])) for instance_id in instance_ids: # Instance ID 0 is reserved for crowd region. if instance_id == 0: continue thing_mask = tf.math.logical_and(instance_maps == instance_id, semantic_thing_segmentation) if tf.reduce_sum(tf.cast(thing_mask, tf.int32)) == 0: continue semantic_bin_counts = tf.math.bincount( tf.boolean_mask(semantic_prediction, thing_mask)) semantic_majority = tf.cast( tf.math.argmax(semantic_bin_counts), tf.int32) while num_instance_per_semantic_label.size() <= semantic_majority: num_instance_per_semantic_label = num_instance_per_semantic_label.write( num_instance_per_semantic_label.size(), 0) new_instance_id = ( num_instance_per_semantic_label.read(semantic_majority) + 1) num_instance_per_semantic_label = num_instance_per_semantic_label.write( semantic_majority, new_instance_id) panoptic_prediction = tf.where( thing_mask, tf.ones_like(panoptic_prediction) * semantic_majority * label_divisor + new_instance_id, panoptic_prediction) # Done with `num_instance_per_semantic_label` tensor array. num_instance_per_semantic_label.close() # Start to paste predicted `stuff` regions to panoptic prediction. instance_stuff_regions = instance_maps == 0 semantic_ids, _ = tf.unique(tf.reshape(semantic_prediction, [-1])) for semantic_id in semantic_ids: if tf.reduce_sum(tf.cast(thing_class_ids == semantic_id, tf.int32)) > 0: continue # Check stuff area. stuff_mask = tf.math.logical_and(semantic_prediction == semantic_id, instance_stuff_regions) stuff_area = tf.reduce_sum(tf.cast(stuff_mask, tf.int32)) if stuff_area >= stuff_area_limit: panoptic_prediction = tf.where( stuff_mask, tf.ones_like(panoptic_prediction) * semantic_id * label_divisor, panoptic_prediction) return panoptic_prediction class PostProcessor(tf.keras.layers.Layer): """This class contains code of a Panoptic-Deeplab post-processor.""" def __init__( self, output_size: List[int], center_score_threshold: float, thing_class_ids: List[int], label_divisor: int, stuff_area_limit: int, ignore_label: int, nms_kernel: int, keep_k_centers: int, rescale_predictions: bool, **kwargs): """Initializes a Panoptic-Deeplab post-processor. Args: output_size: A `List` of integers that represent the height and width of the output mask. center_score_threshold: A float setting the threshold for the center heatmap. thing_class_ids: An integer list shape [N] containing N thing indices. label_divisor: An integer specifying the label divisor of the dataset. stuff_area_limit: An integer specifying the number of pixels that stuff regions need to have at least. The stuff region will be included in the panoptic prediction, only if its area is larger than the limit; otherwise, it will be re-assigned as void_label. ignore_label: An integer specifying the void label. nms_kernel: An integer specifying the nms kernel size. keep_k_centers: An integer specifying the number of centers to keep. Negative values will keep all centers. rescale_predictions: `bool`, whether to scale back prediction to original image sizes. If True, image_info is used to rescale predictions. **kwargs: additional kwargs arguments. """ super(PostProcessor, self).__init__(**kwargs) self._config_dict = { 'output_size': output_size, 'center_score_threshold': center_score_threshold, 'thing_class_ids': thing_class_ids, 'label_divisor': label_divisor, 'stuff_area_limit': stuff_area_limit, 'ignore_label': ignore_label, 'nms_kernel': nms_kernel, 'keep_k_centers': keep_k_centers, 'rescale_predictions': rescale_predictions } self._post_processor = functools.partial( _get_panoptic_predictions, center_threshold=center_score_threshold, thing_class_ids=tf.convert_to_tensor(thing_class_ids), label_divisor=label_divisor, stuff_area_limit=stuff_area_limit, void_label=ignore_label, nms_kernel_size=nms_kernel, keep_k_centers=keep_k_centers) def _resize_and_pad_masks(self, mask, image_info): """Resizes masks to match the original image shape and pads to`output_size`. Args: mask: a padded mask tensor. image_info: a tensor that holds information about original and preprocessed images. Returns: resized and padded masks: tf.Tensor. """ rescale_size = tf.cast( tf.math.ceil(image_info[1, :] / image_info[2, :]), tf.int32) image_shape = tf.cast(image_info[0, :], tf.int32) offsets = tf.cast(image_info[3, :], tf.int32) mask = tf.image.resize( mask, rescale_size, method='bilinear') mask = tf.image.crop_to_bounding_box( mask, offsets[0], offsets[1], image_shape[0], image_shape[1]) mask = tf.image.pad_to_bounding_box( mask, 0, 0, self._config_dict['output_size'][0], self._config_dict['output_size'][1]) return mask def _resize_and_pad_offset_mask(self, mask, image_info): """Rescales and resizes offset masks and pads to`output_size`. Args: mask: a padded offset mask tensor. image_info: a tensor that holds information about original and preprocessed images. Returns: rescaled, resized and padded masks: tf.Tensor. """ rescale_size = tf.cast( tf.math.ceil(image_info[1, :] / image_info[2, :]), tf.int32) image_shape = tf.cast(image_info[0, :], tf.int32) offsets = tf.cast(image_info[3, :], tf.int32) mask = mask_ops.resize_and_rescale_offsets( tf.expand_dims(mask, axis=0), rescale_size)[0] mask = tf.image.crop_to_bounding_box( mask, offsets[0], offsets[1], image_shape[0], image_shape[1]) mask = tf.image.pad_to_bounding_box( mask, 0, 0, self._config_dict['output_size'][0], self._config_dict['output_size'][1]) return mask def call( self, result_dict: Dict[Text, tf.Tensor], image_info: tf.Tensor) -> Dict[Text, tf.Tensor]: """Performs the post-processing given model predicted results. Args: result_dict: A dictionary of tf.Tensor containing model results. The dict has to contain - segmentation_outputs - instance_centers_heatmap - instance_centers_offset image_info: A tf.Tensor of image infos. Returns: The post-processed dict of tf.Tensor, containing the following keys: - panoptic_outputs - category_mask - instance_mask - instance_centers - instance_score """ if self._config_dict['rescale_predictions']: segmentation_outputs = tf.map_fn( fn=lambda x: self._resize_and_pad_masks(x[0], x[1]), elems=(result_dict['segmentation_outputs'], image_info), fn_output_signature=tf.float32, parallel_iterations=32) instance_centers_heatmap = tf.map_fn( fn=lambda x: self._resize_and_pad_masks(x[0], x[1]), elems=(result_dict['instance_centers_heatmap'], image_info), fn_output_signature=tf.float32, parallel_iterations=32) instance_centers_offset = tf.map_fn( fn=lambda x: self._resize_and_pad_offset_mask(x[0], x[1]), elems=(result_dict['instance_centers_offset'], image_info), fn_output_signature=tf.float32, parallel_iterations=32) else: segmentation_outputs = tf.image.resize( result_dict['segmentation_outputs'], size=self._config_dict['output_size'], method='bilinear') instance_centers_heatmap = tf.image.resize( result_dict['instance_centers_heatmap'], size=self._config_dict['output_size'], method='bilinear') instance_centers_offset = mask_ops.resize_and_rescale_offsets( result_dict['instance_centers_offset'], target_size=self._config_dict['output_size']) processed_dict = {} (processed_dict['panoptic_outputs'], processed_dict['instance_centers'], processed_dict['instance_scores'], _) = self._post_processor( tf.nn.softmax(segmentation_outputs, axis=-1), instance_centers_heatmap, instance_centers_offset) label_divisor = self._config_dict['label_divisor'] processed_dict['category_mask'] = ( processed_dict['panoptic_outputs'] // label_divisor) processed_dict['instance_mask'] = ( processed_dict['panoptic_outputs'] % label_divisor) processed_dict.update({ 'segmentation_outputs': result_dict['segmentation_outputs']}) return processed_dict def get_config(self): return self._config_dict @classmethod def from_config(cls, config): return cls(**config)
41.458699
94
0.711149
bcd4cfba8e6ecf1dcbef319a2110a1a3639dee20
4,518
py
Python
terminal.py
shivanshcoder/PyPromptCLI
854ba97043638d84eb85eb88e8a3c3d0920346d0
[ "MIT" ]
null
null
null
terminal.py
shivanshcoder/PyPromptCLI
854ba97043638d84eb85eb88e8a3c3d0920346d0
[ "MIT" ]
null
null
null
terminal.py
shivanshcoder/PyPromptCLI
854ba97043638d84eb85eb88e8a3c3d0920346d0
[ "MIT" ]
null
null
null
from prompt_toolkit.shortcuts import prompt from prompt_toolkit.completion import WordCompleter, NestedCompleter class BaseTerminal: command_list = [ ] def __init__(self): completer_dict = {} #for commands in self.command_list: # if not isinstance(commands, BaseCommand): # print("ERROR") # else: # completer_dict.update(commands.command_choices()) def parse_input(self,string): """ parses the input string into required dictionary for further processing Args: string (String): the string containing the command Raises: Exception: Raised when empty string is provided Returns: dict: dictionary containing parsed string with corresponding keys """ import shlex if len(string) == 0: raise Exception("No string provided") split_str = shlex.split(string) string_dict = { 'command': split_str.pop(0), 'flags':[], 'options': {}, 'arg':[] } index = 1 while len(split_str): if split_str[0].startswith('-'): keyword = split_str.pop(0) if len(split_str): if split_str[0].startswith('-'): # next keyword is also option or flag # thn the last was a flag string_dict['flags'].append(keyword) else: string_dict['options'][keyword] = split_str.pop(0) else: string_dict['arg'] = split_str break index+=1 return string_dict def loop(self): mycompleter = WordCompleter(["Hello", "exit"], ignore_case=True) while True: data = prompt(">", completer=mycompleter) if data == "exit": break print(self.parse_input(data)) class BaseCommand: name = "" """ options = { # The option name '-option_name':{ #whether the option is compulsory 'required':True/False, #can the value of the option be just from the list 'strict':True/False #default value for the option if no value is assigned to the option 'default':'value1', #list of the suggested or persmissible values 'values':['value1', 'value2'] } } """ options = {} def __init__(self, command, options, arg): """Creates and holds a basic command Args: command (String): name of the command options_list (dict): dictionary of the options arguements (list): list of the arguements for the command """ self.command = command self.options_list = options if self.name == '': self.name = self.__name__ for key in options: if options[key] != None: setattr(self, key, options[key]) else: self.flags.append(options[key]) self.arguements = arg #TODO make such method later on @classmethod def command_from_string(string): pass def validity(self): """ Checks the validity of the command arguements we give to the class Instance """ if self.name == "": # TODO raise some appropriate error raise ValueError("No name given to the command class") for opt_keys in self.options: required = self.options[opt_keys][required] default = self.options[opt_keys][required] required = self.options[opt_keys][required] # check whether a option is compulsory or not if required == True: if not opt_keys in self.options_list: #no such option was provided raise Exception("{} this option was not provided".format) else: #option was provided def command(self): """ Execute the command in this function """ pass def execute(self, *args, **kwargs): """ Function called when the command is called for its function """ pass
24.031915
83
0.517043
dfb7db97afd9d79fd8de8bf4cefa3ddf48a9dff3
1,815
py
Python
tests/test_boilerplate.py
kronecker08/qxf2-page-object-model
03383afffec73f4d3038c0e909462e7886227ecb
[ "MIT" ]
207
2017-01-05T17:16:49.000Z
2022-03-24T13:50:41.000Z
tests/test_boilerplate.py
kronecker08/qxf2-page-object-model
03383afffec73f4d3038c0e909462e7886227ecb
[ "MIT" ]
178
2018-01-08T22:12:47.000Z
2022-03-03T14:32:43.000Z
tests/test_boilerplate.py
kronecker08/qxf2-page-object-model
03383afffec73f4d3038c0e909462e7886227ecb
[ "MIT" ]
162
2017-02-15T09:28:31.000Z
2022-02-19T14:50:17.000Z
""" This test file will help you get started in writing a new test using our framework """ import os,sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from page_objects.PageFactory import PageFactory from utils.Option_Parser import Option_Parser import pytest @pytest.mark.GUI def test_boilerplate(test_obj): "Run the test" try: #Initalize flags for tests summary expected_pass = 0 actual_pass = -1 #This is the test object, you can change it to the desired page with relevance to the page factory test_obj = PageFactory.get_page_object("main page") #Print out the result test_obj.write_test_summary() expected_pass = test_obj.result_counter actual_pass = test_obj.pass_counter except Exception as e: print("Exception when trying to run test: %s"%__file__) print("Python says:%s"%str(e)) assert expected_pass == actual_pass, "Test failed: %s"%__file__ #---START OF SCRIPT if __name__=='__main__': print("Start of %s"%__file__) #Creating an instance of the class options_obj = Option_Parser() options = options_obj.get_options() #Run the test only if the options provided are valid if options_obj.check_options(options): test_obj = PageFactory.get_page_object("Zero",base_url=options.url) #Setup and register a driver test_obj.register_driver(options.remote_flag,options.os_name,options.os_version,options.browser,options.browser_version,options.remote_project_name,options.remote_build_name) test_boilerplate(test_obj) #teardowm test_obj.wait(3) test_obj.teardown() else: print('ERROR: Received incorrect comand line input arguments') print(option_obj.print_usage())
31.842105
182
0.709642
7a329d0c5fdf5ab05052681aa310e15b9e8d6d1b
155
py
Python
1064.py
gabzin/uri
177bdf3f87bacfd924bd031a973b8db877379fe5
[ "MIT" ]
3
2021-09-21T18:50:20.000Z
2021-12-14T13:07:31.000Z
1064.py
gabzin/uri
177bdf3f87bacfd924bd031a973b8db877379fe5
[ "MIT" ]
null
null
null
1064.py
gabzin/uri
177bdf3f87bacfd924bd031a973b8db877379fe5
[ "MIT" ]
null
null
null
pos=0 med=0.00 for i in range(6): x=float(input()) if x>0: pos+=1 med+=x print(f"{pos} valores positivos") print("%.1f"%(med/pos))
15.5
33
0.535484
43b83da2f5dfbe0e34ed220e1482735b8bae7b4d
52,850
py
Python
netbox/netbox/views/generic.py
royreznik/netbox
7ec6b4ebb7478c7f1e52d3653b3f6f44a19a3fee
[ "Apache-2.0" ]
null
null
null
netbox/netbox/views/generic.py
royreznik/netbox
7ec6b4ebb7478c7f1e52d3653b3f6f44a19a3fee
[ "Apache-2.0" ]
null
null
null
netbox/netbox/views/generic.py
royreznik/netbox
7ec6b4ebb7478c7f1e52d3653b3f6f44a19a3fee
[ "Apache-2.0" ]
null
null
null
import logging import re from copy import deepcopy from django.contrib import messages from django.contrib.contenttypes.models import ContentType from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist, ValidationError from django.db import transaction, IntegrityError from django.db.models import ManyToManyField, ProtectedError from django.forms import Form, ModelMultipleChoiceField, MultipleHiddenInput, Textarea from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.utils.html import escape from django.utils.http import is_safe_url from django.utils.safestring import mark_safe from django.views.generic import View from django_tables2.export import TableExport from extras.models import ExportTemplate from extras.signals import clear_webhooks from utilities.error_handlers import handle_protectederror from utilities.exceptions import AbortTransaction, PermissionsViolation from utilities.forms import ( BootstrapMixin, BulkRenameForm, ConfirmationForm, CSVDataField, CSVFileField, ImportForm, restrict_form_fields, ) from utilities.permissions import get_permission_for_model from utilities.tables import paginate_table from utilities.utils import normalize_querydict, prepare_cloned_fields from utilities.views import GetReturnURLMixin, ObjectPermissionRequiredMixin class ObjectView(ObjectPermissionRequiredMixin, View): """ Retrieve a single object for display. queryset: The base queryset for retrieving the object template_name: Name of the template to use """ queryset = None template_name = None def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'view') def get_template_name(self): """ Return self.template_name if set. Otherwise, resolve the template path by model app_label and name. """ if self.template_name is not None: return self.template_name model_opts = self.queryset.model._meta return f'{model_opts.app_label}/{model_opts.model_name}.html' def get_extra_context(self, request, instance): """ Return any additional context data for the template. request: The current request instance: The object being viewed """ return {} def get(self, request, *args, **kwargs): """ Generic GET handler for accessing an object by PK or slug """ instance = get_object_or_404(self.queryset, **kwargs) return render(request, self.get_template_name(), { 'object': instance, **self.get_extra_context(request, instance), }) class ObjectListView(ObjectPermissionRequiredMixin, View): """ List a series of objects. queryset: The queryset of objects to display. Note: Prefetching related objects is not necessary, as the table will prefetch objects as needed depending on the columns being displayed. filter: A django-filter FilterSet that is applied to the queryset filter_form: The form used to render filter options table: The django-tables2 Table used to render the objects list template_name: The name of the template """ queryset = None filterset = None filterset_form = None table = None template_name = 'generic/object_list.html' action_buttons = ('add', 'import', 'export') def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'view') def export_yaml(self): """ Export the queryset of objects as concatenated YAML documents. """ yaml_data = [obj.to_yaml() for obj in self.queryset] return '---\n'.join(yaml_data) def export_table(self, table, columns=None): """ Export all table data in CSV format. :param table: The Table instance to export :param columns: A list of specific columns to include. If not specified, all columns will be exported. """ exclude_columns = {'pk'} if columns: all_columns = [col_name for col_name, _ in table.selected_columns + table.available_columns] exclude_columns.update({ col for col in all_columns if col not in columns }) exporter = TableExport( export_format=TableExport.CSV, table=table, exclude_columns=exclude_columns ) return exporter.response( filename=f'netbox_{self.queryset.model._meta.verbose_name_plural}.csv' ) def get(self, request): model = self.queryset.model content_type = ContentType.objects.get_for_model(model) if self.filterset: self.queryset = self.filterset(request.GET, self.queryset).qs # Compile a dictionary indicating which permissions are available to the current user for this model permissions = {} for action in ('add', 'change', 'delete', 'view'): perm_name = get_permission_for_model(model, action) permissions[action] = request.user.has_perm(perm_name) # Export template/YAML rendering if 'export' in request.GET and request.GET['export'] != 'table': # An export template has been specified if request.GET['export']: et = get_object_or_404(ExportTemplate, content_type=content_type, name=request.GET['export']) try: return et.render_to_response(self.queryset) except Exception as e: messages.error( request, "There was an error rendering the selected export template ({}): {}".format( et.name, e ) ) # Check for YAML export support elif hasattr(model, 'to_yaml'): response = HttpResponse(self.export_yaml(), content_type='text/yaml') filename = 'netbox_{}.yaml'.format(self.queryset.model._meta.verbose_name_plural) response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename) return response # Construct the objects table table = self.table(self.queryset, user=request.user) if 'pk' in table.base_columns and (permissions['change'] or permissions['delete']): table.columns.show('pk') # Handle table-based exports (current view or static CSV-based) if request.GET.get('export') == 'table': columns = [name for name, _ in table.selected_columns] return self.export_table(table, columns) elif 'export' in request.GET: return self.export_table(table) # Paginate the objects table paginate_table(table, request) context = { 'content_type': content_type, 'table': table, 'permissions': permissions, 'action_buttons': self.action_buttons, 'filter_form': self.filterset_form(request.GET, label_suffix='') if self.filterset_form else None, } context.update(self.extra_context()) return render(request, self.template_name, context) def extra_context(self): return {} class ObjectEditView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Create or edit a single object. queryset: The base queryset for the object being modified model_form: The form used to create or edit the object template_name: The name of the template """ queryset = None model_form = None template_name = 'generic/object_edit.html' def get_required_permission(self): # self._permission_action is set by dispatch() to either "add" or "change" depending on whether # we are modifying an existing object or creating a new one. return get_permission_for_model(self.queryset.model, self._permission_action) def get_object(self, kwargs): # Look up an existing object by slug or PK, if provided. if 'slug' in kwargs: obj = get_object_or_404(self.queryset, slug=kwargs['slug']) elif 'pk' in kwargs: obj = get_object_or_404(self.queryset, pk=kwargs['pk']) # Otherwise, return a new instance. else: return self.queryset.model() # Take a snapshot of change-logged models if hasattr(obj, 'snapshot'): obj.snapshot() return obj def alter_obj(self, obj, request, url_args, url_kwargs): # Allow views to add extra info to an object before it is processed. For example, a parent object can be defined # given some parameter from the request URL. return obj def dispatch(self, request, *args, **kwargs): # Determine required permission based on whether we are editing an existing object self._permission_action = 'change' if kwargs else 'add' return super().dispatch(request, *args, **kwargs) def get(self, request, *args, **kwargs): obj = self.alter_obj(self.get_object(kwargs), request, args, kwargs) initial_data = normalize_querydict(request.GET) form = self.model_form(instance=obj, initial=initial_data) restrict_form_fields(form, request.user) return render(request, self.template_name, { 'obj': obj, 'obj_type': self.queryset.model._meta.verbose_name, 'form': form, 'return_url': self.get_return_url(request, obj), }) def post(self, request, *args, **kwargs): logger = logging.getLogger('netbox.views.ObjectEditView') obj = self.alter_obj(self.get_object(kwargs), request, args, kwargs) form = self.model_form( data=request.POST, files=request.FILES, instance=obj ) restrict_form_fields(form, request.user) if form.is_valid(): logger.debug("Form validation was successful") try: with transaction.atomic(): object_created = form.instance.pk is None obj = form.save() # Check that the new object conforms with any assigned object-level permissions if not self.queryset.filter(pk=obj.pk).first(): raise PermissionsViolation() msg = '{} {}'.format( 'Created' if object_created else 'Modified', self.queryset.model._meta.verbose_name ) logger.info(f"{msg} {obj} (PK: {obj.pk})") if hasattr(obj, 'get_absolute_url'): msg = '{} <a href="{}">{}</a>'.format(msg, obj.get_absolute_url(), escape(obj)) else: msg = '{} {}'.format(msg, escape(obj)) messages.success(request, mark_safe(msg)) if '_addanother' in request.POST: redirect_url = request.path return_url = request.GET.get('return_url') if return_url is not None and is_safe_url(url=return_url, allowed_hosts=request.get_host()): redirect_url = f'{redirect_url}?return_url={return_url}' # If the object has clone_fields, pre-populate a new instance of the form if hasattr(obj, 'clone_fields'): redirect_url += f"{'&' if return_url else '?'}{prepare_cloned_fields(obj)}" return redirect(redirect_url) return_url = self.get_return_url(request, obj) return redirect(return_url) except PermissionsViolation: msg = "Object save failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) else: logger.debug("Form validation failed") return render(request, self.template_name, { 'obj': obj, 'obj_type': self.queryset.model._meta.verbose_name, 'form': form, 'return_url': self.get_return_url(request, obj), }) class ObjectDeleteView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Delete a single object. queryset: The base queryset for the object being deleted template_name: The name of the template """ queryset = None template_name = 'generic/object_delete.html' def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'delete') def get_object(self, kwargs): # Look up object by slug if one has been provided. Otherwise, use PK. if 'slug' in kwargs: obj = get_object_or_404(self.queryset, slug=kwargs['slug']) else: obj = get_object_or_404(self.queryset, pk=kwargs['pk']) # Take a snapshot of change-logged models if hasattr(obj, 'snapshot'): obj.snapshot() return obj def get(self, request, **kwargs): obj = self.get_object(kwargs) form = ConfirmationForm(initial=request.GET) return render(request, self.template_name, { 'obj': obj, 'form': form, 'obj_type': self.queryset.model._meta.verbose_name, 'return_url': self.get_return_url(request, obj), }) def post(self, request, **kwargs): logger = logging.getLogger('netbox.views.ObjectDeleteView') obj = self.get_object(kwargs) form = ConfirmationForm(request.POST) if form.is_valid(): logger.debug("Form validation was successful") try: obj.delete() except ProtectedError as e: logger.info("Caught ProtectedError while attempting to delete object") handle_protectederror([obj], request, e) return redirect(obj.get_absolute_url()) msg = 'Deleted {} {}'.format(self.queryset.model._meta.verbose_name, obj) logger.info(msg) messages.success(request, msg) return_url = form.cleaned_data.get('return_url') if return_url is not None and is_safe_url(url=return_url, allowed_hosts=request.get_host()): return redirect(return_url) else: return redirect(self.get_return_url(request, obj)) else: logger.debug("Form validation failed") return render(request, self.template_name, { 'obj': obj, 'form': form, 'obj_type': self.queryset.model._meta.verbose_name, 'return_url': self.get_return_url(request, obj), }) class BulkCreateView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Create new objects in bulk. queryset: Base queryset for the objects being created form: Form class which provides the `pattern` field model_form: The ModelForm used to create individual objects pattern_target: Name of the field to be evaluated as a pattern (if any) template_name: The name of the template """ queryset = None form = None model_form = None pattern_target = '' template_name = None def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'add') def get(self, request): # Set initial values for visible form fields from query args initial = {} for field in getattr(self.model_form._meta, 'fields', []): if request.GET.get(field): initial[field] = request.GET[field] form = self.form() model_form = self.model_form(initial=initial) return render(request, self.template_name, { 'obj_type': self.model_form._meta.model._meta.verbose_name, 'form': form, 'model_form': model_form, 'return_url': self.get_return_url(request), }) def post(self, request): logger = logging.getLogger('netbox.views.BulkCreateView') model = self.queryset.model form = self.form(request.POST) model_form = self.model_form(request.POST) if form.is_valid(): logger.debug("Form validation was successful") pattern = form.cleaned_data['pattern'] new_objs = [] try: with transaction.atomic(): # Create objects from the expanded. Abort the transaction on the first validation error. for value in pattern: # Reinstantiate the model form each time to avoid overwriting the same instance. Use a mutable # copy of the POST QueryDict so that we can update the target field value. model_form = self.model_form(request.POST.copy()) model_form.data[self.pattern_target] = value # Validate each new object independently. if model_form.is_valid(): obj = model_form.save() logger.debug(f"Created {obj} (PK: {obj.pk})") new_objs.append(obj) else: # Copy any errors on the pattern target field to the pattern form. errors = model_form.errors.as_data() if errors.get(self.pattern_target): form.add_error('pattern', errors[self.pattern_target]) # Raise an IntegrityError to break the for loop and abort the transaction. raise IntegrityError() # Enforce object-level permissions if self.queryset.filter(pk__in=[obj.pk for obj in new_objs]).count() != len(new_objs): raise PermissionsViolation # If we make it to this point, validation has succeeded on all new objects. msg = "Added {} {}".format(len(new_objs), model._meta.verbose_name_plural) logger.info(msg) messages.success(request, msg) if '_addanother' in request.POST: return redirect(request.path) return redirect(self.get_return_url(request)) except IntegrityError: pass except PermissionsViolation: msg = "Object creation failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) else: logger.debug("Form validation failed") return render(request, self.template_name, { 'form': form, 'model_form': model_form, 'obj_type': model._meta.verbose_name, 'return_url': self.get_return_url(request), }) class ObjectImportView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Import a single object (YAML or JSON format). queryset: Base queryset for the objects being created model_form: The ModelForm used to create individual objects related_object_forms: A dictionary mapping of forms to be used for the creation of related (child) objects template_name: The name of the template """ queryset = None model_form = None related_object_forms = dict() template_name = 'generic/object_import.html' def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'add') def get(self, request): form = ImportForm() return render(request, self.template_name, { 'form': form, 'obj_type': self.queryset.model._meta.verbose_name, 'return_url': self.get_return_url(request), }) def post(self, request): logger = logging.getLogger('netbox.views.ObjectImportView') form = ImportForm(request.POST) if form.is_valid(): logger.debug("Import form validation was successful") # Initialize model form data = form.cleaned_data['data'] model_form = self.model_form(data) restrict_form_fields(model_form, request.user) # Assign default values for any fields which were not specified. We have to do this manually because passing # 'initial=' to the form on initialization merely sets default values for the widgets. Since widgets are not # used for YAML/JSON import, we first bind the imported data normally, then update the form's data with the # applicable field defaults as needed prior to form validation. for field_name, field in model_form.fields.items(): if field_name not in data and hasattr(field, 'initial'): model_form.data[field_name] = field.initial if model_form.is_valid(): try: with transaction.atomic(): # Save the primary object obj = model_form.save() # Enforce object-level permissions if not self.queryset.filter(pk=obj.pk).first(): raise PermissionsViolation() logger.debug(f"Created {obj} (PK: {obj.pk})") # Iterate through the related object forms (if any), validating and saving each instance. for field_name, related_object_form in self.related_object_forms.items(): logger.debug("Processing form for related objects: {related_object_form}") related_obj_pks = [] for i, rel_obj_data in enumerate(data.get(field_name, list())): f = related_object_form(obj, rel_obj_data) for subfield_name, field in f.fields.items(): if subfield_name not in rel_obj_data and hasattr(field, 'initial'): f.data[subfield_name] = field.initial if f.is_valid(): related_obj = f.save() related_obj_pks.append(related_obj.pk) else: # Replicate errors on the related object form to the primary form for display for subfield_name, errors in f.errors.items(): for err in errors: err_msg = "{}[{}] {}: {}".format(field_name, i, subfield_name, err) model_form.add_error(None, err_msg) raise AbortTransaction() # Enforce object-level permissions on related objects model = related_object_form.Meta.model if model.objects.filter(pk__in=related_obj_pks).count() != len(related_obj_pks): raise ObjectDoesNotExist except AbortTransaction: clear_webhooks.send(sender=self) except PermissionsViolation: msg = "Object creation failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) if not model_form.errors: logger.info(f"Import object {obj} (PK: {obj.pk})") messages.success(request, mark_safe('Imported object: <a href="{}">{}</a>'.format( obj.get_absolute_url(), obj ))) if '_addanother' in request.POST: return redirect(request.get_full_path()) return_url = form.cleaned_data.get('return_url') if return_url is not None and is_safe_url(url=return_url, allowed_hosts=request.get_host()): return redirect(return_url) else: return redirect(self.get_return_url(request, obj)) else: logger.debug("Model form validation failed") # Replicate model form errors for display for field, errors in model_form.errors.items(): for err in errors: if field == '__all__': form.add_error(None, err) else: form.add_error(None, "{}: {}".format(field, err)) else: logger.debug("Import form validation failed") return render(request, self.template_name, { 'form': form, 'obj_type': self.queryset.model._meta.verbose_name, 'return_url': self.get_return_url(request), }) class BulkImportView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Import objects in bulk (CSV format). queryset: Base queryset for the model model_form: The form used to create each imported object table: The django-tables2 Table used to render the list of imported objects template_name: The name of the template widget_attrs: A dict of attributes to apply to the import widget (e.g. to require a session key) """ queryset = None model_form = None table = None template_name = 'generic/object_bulk_import.html' widget_attrs = {} def _import_form(self, *args, **kwargs): class ImportForm(BootstrapMixin, Form): csv = CSVDataField( from_form=self.model_form, widget=Textarea(attrs=self.widget_attrs) ) csv_file = CSVFileField( label="CSV file", from_form=self.model_form, required=False ) def clean(self): csv_rows = self.cleaned_data['csv'][1] if 'csv' in self.cleaned_data else None csv_file = self.files.get('csv_file') # Check that the user has not submitted both text data and a file if csv_rows and csv_file: raise ValidationError( "Cannot process CSV text and file attachment simultaneously. Please choose only one import " "method." ) return ImportForm(*args, **kwargs) def _save_obj(self, obj_form, request): """ Provide a hook to modify the object immediately before saving it (e.g. to encrypt secret data). """ return obj_form.save() def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'add') def get(self, request): return render(request, self.template_name, { 'form': self._import_form(), 'fields': self.model_form().fields, 'obj_type': self.model_form._meta.model._meta.verbose_name, 'return_url': self.get_return_url(request), }) def post(self, request): logger = logging.getLogger('netbox.views.BulkImportView') new_objs = [] form = self._import_form(request.POST, request.FILES) if form.is_valid(): logger.debug("Form validation was successful") try: # Iterate through CSV data and bind each row to a new model form instance. with transaction.atomic(): if request.FILES: headers, records = form.cleaned_data['csv_file'] else: headers, records = form.cleaned_data['csv'] for row, data in enumerate(records, start=1): obj_form = self.model_form(data, headers=headers) restrict_form_fields(obj_form, request.user) if obj_form.is_valid(): obj = self._save_obj(obj_form, request) new_objs.append(obj) else: for field, err in obj_form.errors.items(): form.add_error('csv', "Row {} {}: {}".format(row, field, err[0])) raise ValidationError("") # Enforce object-level permissions if self.queryset.filter(pk__in=[obj.pk for obj in new_objs]).count() != len(new_objs): raise PermissionsViolation # Compile a table containing the imported objects obj_table = self.table(new_objs) if new_objs: msg = 'Imported {} {}'.format(len(new_objs), new_objs[0]._meta.verbose_name_plural) logger.info(msg) messages.success(request, msg) return render(request, "import_success.html", { 'table': obj_table, 'return_url': self.get_return_url(request), }) except ValidationError: clear_webhooks.send(sender=self) except PermissionsViolation: msg = "Object import failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) else: logger.debug("Form validation failed") return render(request, self.template_name, { 'form': form, 'fields': self.model_form().fields, 'obj_type': self.model_form._meta.model._meta.verbose_name, 'return_url': self.get_return_url(request), }) class BulkEditView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Edit objects in bulk. queryset: Custom queryset to use when retrieving objects (e.g. to select related objects) filter: FilterSet to apply when deleting by QuerySet table: The table used to display devices being edited form: The form class used to edit objects in bulk template_name: The name of the template """ queryset = None filterset = None table = None form = None template_name = 'generic/object_bulk_edit.html' def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'change') def get(self, request): return redirect(self.get_return_url(request)) def post(self, request, **kwargs): logger = logging.getLogger('netbox.views.BulkEditView') model = self.queryset.model # If we are editing *all* objects in the queryset, replace the PK list with all matched objects. if request.POST.get('_all') and self.filterset is not None: pk_list = self.filterset(request.GET, self.queryset.values_list('pk', flat=True)).qs else: pk_list = request.POST.getlist('pk') if '_apply' in request.POST: form = self.form(model, request.POST) restrict_form_fields(form, request.user) if form.is_valid(): logger.debug("Form validation was successful") custom_fields = form.custom_fields if hasattr(form, 'custom_fields') else [] standard_fields = [ field for field in form.fields if field not in custom_fields + ['pk'] ] nullified_fields = request.POST.getlist('_nullify') try: with transaction.atomic(): updated_objects = [] for obj in self.queryset.filter(pk__in=form.cleaned_data['pk']): # Take a snapshot of change-logged models if hasattr(obj, 'snapshot'): obj.snapshot() # Update standard fields. If a field is listed in _nullify, delete its value. for name in standard_fields: try: model_field = model._meta.get_field(name) except FieldDoesNotExist: # This form field is used to modify a field rather than set its value directly model_field = None # Handle nullification if name in form.nullable_fields and name in nullified_fields: if isinstance(model_field, ManyToManyField): getattr(obj, name).set([]) else: setattr(obj, name, None if model_field.null else '') # ManyToManyFields elif isinstance(model_field, ManyToManyField): if form.cleaned_data[name]: getattr(obj, name).set(form.cleaned_data[name]) # Normal fields elif name in form.changed_data: setattr(obj, name, form.cleaned_data[name]) # Update custom fields for name in custom_fields: if name in form.nullable_fields and name in nullified_fields: obj.custom_field_data[name] = None elif name in form.changed_data: obj.custom_field_data[name] = form.cleaned_data[name] obj.full_clean() obj.save() updated_objects.append(obj) logger.debug(f"Saved {obj} (PK: {obj.pk})") # Add/remove tags if form.cleaned_data.get('add_tags', None): obj.tags.add(*form.cleaned_data['add_tags']) if form.cleaned_data.get('remove_tags', None): obj.tags.remove(*form.cleaned_data['remove_tags']) # Enforce object-level permissions if self.queryset.filter(pk__in=[obj.pk for obj in updated_objects]).count() != len(updated_objects): raise PermissionsViolation if updated_objects: msg = 'Updated {} {}'.format(len(updated_objects), model._meta.verbose_name_plural) logger.info(msg) messages.success(self.request, msg) return redirect(self.get_return_url(request)) except ValidationError as e: messages.error(self.request, "{} failed validation: {}".format(obj, ", ".join(e.messages))) clear_webhooks.send(sender=self) except PermissionsViolation: msg = "Object update failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) else: logger.debug("Form validation failed") else: # Include the PK list as initial data for the form initial_data = {'pk': pk_list} # Check for other contextual data needed for the form. We avoid passing all of request.GET because the # filter values will conflict with the bulk edit form fields. # TODO: Find a better way to accomplish this if 'device' in request.GET: initial_data['device'] = request.GET.get('device') elif 'device_type' in request.GET: initial_data['device_type'] = request.GET.get('device_type') form = self.form(model, initial=initial_data) restrict_form_fields(form, request.user) # Retrieve objects being edited table = self.table(self.queryset.filter(pk__in=pk_list), orderable=False) if not table.rows: messages.warning(request, "No {} were selected.".format(model._meta.verbose_name_plural)) return redirect(self.get_return_url(request)) return render(request, self.template_name, { 'form': form, 'table': table, 'obj_type_plural': model._meta.verbose_name_plural, 'return_url': self.get_return_url(request), }) class BulkRenameView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ An extendable view for renaming objects in bulk. """ queryset = None template_name = 'generic/object_bulk_rename.html' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Create a new Form class from BulkRenameForm class _Form(BulkRenameForm): pk = ModelMultipleChoiceField( queryset=self.queryset, widget=MultipleHiddenInput() ) self.form = _Form def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'change') def post(self, request): logger = logging.getLogger('netbox.views.BulkRenameView') if '_preview' in request.POST or '_apply' in request.POST: form = self.form(request.POST, initial={'pk': request.POST.getlist('pk')}) selected_objects = self.queryset.filter(pk__in=form.initial['pk']) if form.is_valid(): try: with transaction.atomic(): renamed_pks = [] for obj in selected_objects: # Take a snapshot of change-logged models if hasattr(obj, 'snapshot'): obj.snapshot() find = form.cleaned_data['find'] replace = form.cleaned_data['replace'] if form.cleaned_data['use_regex']: try: obj.new_name = re.sub(find, replace, obj.name) # Catch regex group reference errors except re.error: obj.new_name = obj.name else: obj.new_name = obj.name.replace(find, replace) renamed_pks.append(obj.pk) if '_apply' in request.POST: for obj in selected_objects: obj.name = obj.new_name obj.save() # Enforce constrained permissions if self.queryset.filter(pk__in=renamed_pks).count() != len(selected_objects): raise PermissionsViolation messages.success(request, "Renamed {} {}".format( len(selected_objects), self.queryset.model._meta.verbose_name_plural )) return redirect(self.get_return_url(request)) except PermissionsViolation: msg = "Object update failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) else: form = self.form(initial={'pk': request.POST.getlist('pk')}) selected_objects = self.queryset.filter(pk__in=form.initial['pk']) return render(request, self.template_name, { 'form': form, 'obj_type_plural': self.queryset.model._meta.verbose_name_plural, 'selected_objects': selected_objects, 'return_url': self.get_return_url(request), }) class BulkDeleteView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Delete objects in bulk. queryset: Custom queryset to use when retrieving objects (e.g. to select related objects) filter: FilterSet to apply when deleting by QuerySet table: The table used to display devices being deleted form: The form class used to delete objects in bulk template_name: The name of the template """ queryset = None filterset = None table = None form = None template_name = 'generic/object_bulk_delete.html' def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'delete') def get(self, request): return redirect(self.get_return_url(request)) def post(self, request, **kwargs): logger = logging.getLogger('netbox.views.BulkDeleteView') model = self.queryset.model # Are we deleting *all* objects in the queryset or just a selected subset? if request.POST.get('_all'): qs = model.objects.all() if self.filterset is not None: qs = self.filterset(request.GET, qs).qs pk_list = qs.only('pk').values_list('pk', flat=True) else: pk_list = [int(pk) for pk in request.POST.getlist('pk')] form_cls = self.get_form() if '_confirm' in request.POST: form = form_cls(request.POST) if form.is_valid(): logger.debug("Form validation was successful") # Delete objects queryset = self.queryset.filter(pk__in=pk_list) deleted_count = queryset.count() try: for obj in queryset: # Take a snapshot of change-logged models if hasattr(obj, 'snapshot'): obj.snapshot() obj.delete() except ProtectedError as e: logger.info("Caught ProtectedError while attempting to delete objects") handle_protectederror(queryset, request, e) return redirect(self.get_return_url(request)) msg = f"Deleted {deleted_count} {model._meta.verbose_name_plural}" logger.info(msg) messages.success(request, msg) return redirect(self.get_return_url(request)) else: logger.debug("Form validation failed") else: form = form_cls(initial={ 'pk': pk_list, 'return_url': self.get_return_url(request), }) # Retrieve objects being deleted table = self.table(self.queryset.filter(pk__in=pk_list), orderable=False) if not table.rows: messages.warning(request, "No {} were selected for deletion.".format(model._meta.verbose_name_plural)) return redirect(self.get_return_url(request)) return render(request, self.template_name, { 'form': form, 'obj_type_plural': model._meta.verbose_name_plural, 'table': table, 'return_url': self.get_return_url(request), }) def get_form(self): """ Provide a standard bulk delete form if none has been specified for the view """ class BulkDeleteForm(ConfirmationForm): pk = ModelMultipleChoiceField(queryset=self.queryset, widget=MultipleHiddenInput) if self.form: return self.form return BulkDeleteForm # # Device/VirtualMachine components # # TODO: Replace with BulkCreateView class ComponentCreateView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Add one or more components (e.g. interfaces, console ports, etc.) to a Device or VirtualMachine. """ queryset = None form = None model_form = None template_name = 'generic/object_edit.html' def get_required_permission(self): return get_permission_for_model(self.queryset.model, 'add') def get(self, request): form = self.form(initial=request.GET) return render(request, self.template_name, { 'obj_type': self.queryset.model._meta.verbose_name, 'form': form, 'return_url': self.get_return_url(request), }) def post(self, request): logger = logging.getLogger('netbox.views.ComponentCreateView') form = self.form(request.POST, initial=request.GET) self.validate_form(request, form) if form.is_valid() and not form.errors: if '_addanother' in request.POST: return redirect(request.get_full_path()) else: return redirect(self.get_return_url(request)) return render(request, self.template_name, { 'obj_type': self.queryset.model._meta.verbose_name, 'form': form, 'return_url': self.get_return_url(request), }) def validate_form(self, request, form): """ Validate form values and set errors on the form object as they are detected. If no errors are found, signal success messages. """ logger = logging.getLogger('netbox.views.ComponentCreateView') if form.is_valid(): new_components = [] data = deepcopy(request.POST) names = form.cleaned_data['name_pattern'] labels = form.cleaned_data.get('label_pattern') for i, name in enumerate(names): label = labels[i] if labels else None # Initialize the individual component form data['name'] = name data['label'] = label if hasattr(form, 'get_iterative_data'): data.update(form.get_iterative_data(i)) component_form = self.model_form(data) if component_form.is_valid(): new_components.append(component_form) else: for field, errors in component_form.errors.as_data().items(): # Assign errors on the child form's name/label field to name_pattern/label_pattern on the parent form if field == 'name': field = 'name_pattern' elif field == 'label': field = 'label_pattern' for e in errors: form.add_error(field, '{}: {}'.format(name, ', '.join(e))) if not form.errors: try: with transaction.atomic(): # Create the new components new_objs = [] for component_form in new_components: obj = component_form.save() new_objs.append(obj) # Enforce object-level permissions if self.queryset.filter(pk__in=[obj.pk for obj in new_objs]).count() != len(new_objs): raise PermissionsViolation messages.success(request, "Added {} {}".format( len(new_components), self.queryset.model._meta.verbose_name_plural )) # Return the newly created objects so overridden post methods can use the data as needed. return new_objs except PermissionsViolation: msg = "Component creation failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) return None class BulkComponentCreateView(GetReturnURLMixin, ObjectPermissionRequiredMixin, View): """ Add one or more components (e.g. interfaces, console ports, etc.) to a set of Devices or VirtualMachines. """ parent_model = None parent_field = None form = None queryset = None model_form = None filterset = None table = None template_name = 'generic/object_bulk_add_component.html' def get_required_permission(self): return f'dcim.add_{self.queryset.model._meta.model_name}' def post(self, request): logger = logging.getLogger('netbox.views.BulkComponentCreateView') parent_model_name = self.parent_model._meta.verbose_name_plural model_name = self.queryset.model._meta.verbose_name_plural # Are we editing *all* objects in the queryset or just a selected subset? if request.POST.get('_all') and self.filterset is not None: pk_list = [obj.pk for obj in self.filterset(request.GET, self.parent_model.objects.only('pk')).qs] else: pk_list = [int(pk) for pk in request.POST.getlist('pk')] selected_objects = self.parent_model.objects.filter(pk__in=pk_list) if not selected_objects: messages.warning(request, "No {} were selected.".format(self.parent_model._meta.verbose_name_plural)) return redirect(self.get_return_url(request)) table = self.table(selected_objects) if '_create' in request.POST: form = self.form(request.POST) if form.is_valid(): logger.debug("Form validation was successful") new_components = [] data = deepcopy(form.cleaned_data) try: with transaction.atomic(): for obj in data['pk']: names = data['name_pattern'] labels = data['label_pattern'] if 'label_pattern' in data else None for i, name in enumerate(names): label = labels[i] if labels else None component_data = { self.parent_field: obj.pk, 'name': name, 'label': label } component_data.update(data) component_form = self.model_form(component_data) if component_form.is_valid(): instance = component_form.save() logger.debug(f"Created {instance} on {instance.parent_object}") new_components.append(instance) else: for field, errors in component_form.errors.as_data().items(): for e in errors: form.add_error(field, '{} {}: {}'.format(obj, name, ', '.join(e))) # Enforce object-level permissions if self.queryset.filter(pk__in=[obj.pk for obj in new_components]).count() != len(new_components): raise PermissionsViolation except IntegrityError: clear_webhooks.send(sender=self) except PermissionsViolation: msg = "Component creation failed due to object-level permissions violation" logger.debug(msg) form.add_error(None, msg) clear_webhooks.send(sender=self) if not form.errors: msg = "Added {} {} to {} {}.".format( len(new_components), model_name, len(form.cleaned_data['pk']), parent_model_name ) logger.info(msg) messages.success(request, msg) return redirect(self.get_return_url(request)) else: logger.debug("Form validation failed") else: form = self.form(initial={'pk': pk_list}) return render(request, self.template_name, { 'form': form, 'parent_model_name': parent_model_name, 'model_name': model_name, 'table': table, 'return_url': self.get_return_url(request), })
40.779321
125
0.56789
8a0a3521ea041a0795dc48b874f4cfc33084e76a
1,220
py
Python
starter/core/logging.py
ManfredBalvet/bomberjam-bot
1929c7dfa888791e96f79b42329d4a809dfd85cd
[ "MIT" ]
null
null
null
starter/core/logging.py
ManfredBalvet/bomberjam-bot
1929c7dfa888791e96f79b42329d4a809dfd85cd
[ "MIT" ]
null
null
null
starter/core/logging.py
ManfredBalvet/bomberjam-bot
1929c7dfa888791e96f79b42329d4a809dfd85cd
[ "MIT" ]
3
2021-03-08T01:12:29.000Z
2021-12-28T04:42:53.000Z
import logging from datetime import datetime from pathlib import Path LOGGING_CONFIGURED = False def configure_file_logging(file_id): """ Configures the logger to log to a file. :param file_id: An id to append to the file name. Useful when you run the same code but you want identifiable log files :return: None """ global LOGGING_CONFIGURED Path("./logs").mkdir(exist_ok=True) logging.basicConfig(filename=__get_logging_file_name__(file_id), level=logging.DEBUG) LOGGING_CONFIGURED = True def log(content): """ Logs the content to file. You must call configure_file_logging before using log. :param content: Anything that can be represented as a string :return: None """ global LOGGING_CONFIGURED if LOGGING_CONFIGURED: logging.debug(content) def __get_logging_file_name__(file_id): """ Composes a logging file name. It contains a timestamp followed by a file id. Example: 20210306113741-MyBot-2.log :param file_id: An id to append to the file name. Useful when you run the same code but you want identifiable log files :return: str """ return f"logs/{datetime.now().strftime('%Y%m%d%H%M%S')}-{file_id}.log"
28.372093
123
0.715574
21cdf29ebd7ee3396a66f9398a61d30b700572ba
360
py
Python
federatedscope/cv/trainer/trainer.py
alibaba/FederatedScope
fcf6d237624769ea094cfd68803901622f14fc23
[ "Apache-2.0" ]
9
2022-03-24T07:59:37.000Z
2022-03-31T06:47:52.000Z
federatedscope/cv/trainer/trainer.py
alibaba/FederatedScope
fcf6d237624769ea094cfd68803901622f14fc23
[ "Apache-2.0" ]
1
2022-03-28T13:52:17.000Z
2022-03-28T13:52:17.000Z
federatedscope/cv/trainer/trainer.py
alibaba/FederatedScope
fcf6d237624769ea094cfd68803901622f14fc23
[ "Apache-2.0" ]
null
null
null
from federatedscope.register import register_trainer from federatedscope.core.trainers.trainer import GeneralTorchTrainer class CVTrainer(GeneralTorchTrainer): pass def call_cv_trainer(trainer_type): if trainer_type == 'cvtrainer': trainer_builder = CVTrainer return trainer_builder register_trainer('cvtrainer', call_cv_trainer)
22.5
68
0.791667
63d44ee900a75ce221997e514e769dd1adb64e11
31,490
py
Python
nevergrad/functions/control/core.py
microprediction/nevergrad
5e4c00d74e84dfb0283ab3d35dd85fde0bb49c29
[ "MIT" ]
null
null
null
nevergrad/functions/control/core.py
microprediction/nevergrad
5e4c00d74e84dfb0283ab3d35dd85fde0bb49c29
[ "MIT" ]
null
null
null
nevergrad/functions/control/core.py
microprediction/nevergrad
5e4c00d74e84dfb0283ab3d35dd85fde0bb49c29
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Trained policies were extracted from https://github.com/modestyachts/ARS # under their own license. See ARS_LICENSE file in this file's directory import numpy as np import gym import nevergrad.common.typing as tp from nevergrad.parametrization import parameter as p from .. import base from .mujoco import GenericMujocoEnv class BaseFunction(base.ExperimentFunction): """This (abstract) class is a generic wrapper of OpenAI Gym env for policy evaluation. Attributes need to be override accordingly to have concrete working function. Attributes. ------------ env_name: str Gym OpenAI environment name policy_dim: tuple Shape of the policy state_mean: list Average state values of multiple independent runs. Current implementations use values from https://github.com/modestyachts/ARS state_std: list Standard deviation of state values of multiple independent runs. Current implementations use values from https://github.com/modestyachts/ARS Parameters ----------- num_rollouts: int number of independent runs. activation: str (default: 'tanh') activation function, only applicable when len(intermediate_layer_dim>) > 0 deterministic_sim: bool (default: True) Deterministic when initial states are the same for all evaluations noise_level: float (default: 0.) Level (standard deviation) of noise applied to final action intermediate_layer_dim: tuple or None Shape of intermediate layers if exists else None layer_rescaling_coef: tuple or None Scaling coefficient of output layers states_normalization: bool (default: True) Normalize states with `state_mean` and `state_std` random_state: int or None random state for reproducibility in Gym environment. """ env_name: str state_mean: tp.Any state_std: tp.Any policy_dim: tp.Tuple[int, ...] def __init__( self, num_rollouts: int, activation: str = "tanh", intermediate_layer_dim: tp.Optional[tuple] = None, deterministic_sim: bool = True, noise_level: float = 0.0, states_normalization: bool = True, layer_rescaling_coef: tp.Optional[tuple] = None, random_state: tp.Optional[int] = None, ) -> None: if intermediate_layer_dim is not None: self.policy_dim = (self.policy_dim[0],) + intermediate_layer_dim + (self.policy_dim[1],) # type: ignore list_parametrizations = [ p.Array(shape=(a, b)).set_name(r"layer_{a}_{b}") for a, b in zip(self.policy_dim[:-1], self.policy_dim[1:]) ] parametrization: p.Tuple = p.Tuple(*list_parametrizations).set_name(self.env_name) super().__init__(self._simulate, parametrization) self.num_rollouts = num_rollouts self.random_state = random_state self.activation = activation self.states_normalization = states_normalization self.noise_level = noise_level self.deterministic_sim = deterministic_sim self.layer_rescaling_coef = layer_rescaling_coef if layer_rescaling_coef is None: self.layer_rescaling_coef = np.ones(len(self.policy_dim) - 1) # type: ignore self.add_descriptors( num_rollouts=num_rollouts, intermediate_layer_dim=intermediate_layer_dim, activation=activation, states_normalization=states_normalization, noise_level=self.noise_level, deterministic_sim=deterministic_sim, ) if self.noise_level > 0.0 or not deterministic_sim: self.parametrization.descriptors.deterministic_function = False self._descriptors.pop("random_state", None) # remove it from automatically added descriptors def _simulate(self, x: tp.Tuple) -> float: try: env = GenericMujocoEnv( env_name=self.env_name, state_mean=self.state_mean if self.states_normalization else None, state_std=self.state_std if self.states_normalization else None, num_rollouts=self.num_rollouts, activation=self.activation, layer_rescaling_coef=self.layer_rescaling_coef, noise_level=self.noise_level, random_state=self.parametrization.random_state, ) except gym.error.DependencyNotInstalled as e: raise base.UnsupportedExperiment("Missing mujoco_py") from e env.env.seed( self.random_state if self.deterministic_sim else self.parametrization.random_state.randint(10000) ) loss = env(x) # base.update_leaderboard(f'{self.env_name},{self.parametrization.dimension}', loss, x, verbose=True) return loss def evaluation_function(self, *recommendations: p.Parameter) -> float: assert len(recommendations) == 1, "Should not be a pareto set for a monoobjective function" x = recommendations[0].value # pylint: disable=not-callable loss = self.function(x) assert isinstance(loss, float) base.update_leaderboard(f"{self.env_name},{self.parametrization.dimension}", loss, x, verbose=True) return loss # pylint: disable=line-too-long # for black (since lists are way too long...) # fmt: off class Ant(BaseFunction): env_name = 'Ant-v2' policy_dim: tp.Tuple[int, ...] = (111, 8) # Values from https://github.com/modestyachts/ARS/tree/master/trained_policies/Ant-v1 state_mean = [0.556454034343523, 0.9186531687987207, -0.003597273626800536, -0.062027209820968335, -0.22668151226915723, -0.16602131317263671, 0.7987064451368338, -0.08837934771162403, -0.5953573569489272, 0.31458301497655355, -0.5859666391196517, 0.06840799715850679, 0.6996188089127978, 2.957808943475944, 0.13145167715976466, 0.000408239775951425, 0.0006251405790721873, -0.01324649360933024, -0.010626814219628156, -0.0009340884177352034, 0.011235220933040631, -0.0037160116570636036, -0.018631124226896525, -0.00019431878659138357, -0.023557209761883236, 0.013354894059913155, 0.012594611303292104, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0002492521170156384, 5.2942688175970466e-06, 4.758743764016147e-06, 0.00023284707214249071, 0.000575762572920161, 0.008342223628535816, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -3.805817666962799e-05, 2.944689402684725e-05, 4.622284386412991e-05, 2.0463934941826443e-05, -2.982578719158166e-07, 0.0003232789482430665, 0.01190863730406915, -0.028847450862012118, - 0.0016049128587483268, -0.011546822405861629, -0.005185736733314698, 0.04395870932465012, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00010306612506050966, 4.182155321673672e-05, -3.6599965153626765e-05, 3.7417588383893424e-05, -1.9852387226708935e-05, 0.0004990991660521935, 0.11191092578395258, 0.007451270486499179, -0.043879628923914234, 0.029746731314372638, 0.004893585846331603, 0.1289749574211565, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00011265043476062721, -3.2651266270538316e-05, 4.192724068962384e-05, -3.599135906255506e-05, -5.0593649720061946e-05, 0.0005518224383528348, -0.06107825100454972, 0.06997376760122764, -0.0012712356710709012, -0.04546462254285545, -0.01656209815809629, 0.08931254442546284, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -5.558307634083136e-05, -6.29738077240061e-05, -6.133269876741076e-05, -4.7529805786119285e-05, 2.6168802203125756e-05, 0.0003865204399435512, -0.08619662966579106, -0.07392835616333841, 0.06349519253475051, 0.04758718422237922, 0.014684068888490893, 0.10487554379090397] state_std = [0.09823861308889045, 0.17141367557864626, 0.0923065066441211, 0.09857913658212542, 0.23067414103638456, 0.31929625189221916, 0.2789541347319086, 0.4252996376350357, 0.17273612261821686, 0.3024306630085608, 0.15440628974854603, 0.42709280554821294, 0.21228009754109947, 1.627223228431405, 0.8187247777350416, 0.9552450884883069, 0.9842769566724734, 1.1630255246361634, 0.9579164107073792, 2.1506606935604275, 3.602875428572795, 5.628269094686002, 0.9920290672268143, 2.1223003669071345, 1.0003529831706024, 5.57262446791663, 2.12884125072627, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.04912611953512608, 0.04889164520640186, 0.010828667552457222, 0.07233078284166466, 0.07267150019759298, 0.0909353971096799, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.015251132328387708, 0.01519859897632306, 0.014332713037703749, 0.016533211312666475, 0.01655178210918886, 0.017826147794067864, 0.19608990202601936, 0.20036636045336445, 0.1867258748179935, 0.19829593162153397, 0.19688339050234013, 0.20454779790272495, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.018432894986970972, 0.018497451738447097, 0.01722172494351193, 0.020457389878712977, 0.020483738957125595, 0.022133816429764575, 0.3350906849993091, 0.33250359129341234, 0.33900096746510755, 0.3443797803052648, 0.3439163943012149, 0.33448413391786447, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.019536561966571657, 0.0193568339032099, 0.0178721598998528, 0.0215286944065503, 0.021618066835186175, 0.023317064797031488, 0.28256515904161045, 0.2805053208089945, 0.2749447000464192, 0.2834385598495182, 0.2828637149337391, 0.2845542953486725, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.01632940767643436, 0.01639546342576569, 0.015535938645943628, 0.018094969304990823, 0.01806480253410683, 0.019505571384448334, 0.3051507639463494, 0.30417415230423156, 0.29980481621099997, 0.30983874726354155, 0.3104093749664208, 0.30598187568861357] class Swimmer(BaseFunction): env_name = 'Swimmer-v2' policy_dim: tp.Tuple[int, ...] = (8, 2) # These values are from https://github.com/modestyachts/ARS/tree/master/trained_policies/Swimmer-v1 state_mean = 0 state_std = 1 class HalfCheetah(BaseFunction): env_name = 'HalfCheetah-v2' policy_dim: tp.Tuple[int, ...] = (17, 6) # These values are from https://github.com/modestyachts/ARS/tree/master/trained_policies/HalfCheetah-v1 state_mean = [-0.09292822734440935, 0.07602245420984527, 0.0899374674155617, 0.02011249469254209, 0.0798156434227294, -0.08428448356578108, -0.0215013060089565, -0.03109106115312925, 4.822879258044724, -0.053464747098009684, -0.0318163014347514, -0.03715201186578856, -0.1867529885329672, 0.06631679668009596, -0.09290028455365171, 0.15043390964540423, 0.2042574041974179] state_std = [0.06852462787695646, 0.3584372681186917, 0.3787484779100599, 0.36028136793720056, 0.40588221665043894, 0.44399708334861426, 0.3060632009780872, 0.3746540859283749, 2.249878345532693, 0.7502914419398155, 1.9942769393981352, 8.823299886314189, 7.667188604733051, 9.357981552790314, 10.539094922171378, 8.2635861157824, 9.381873068915496] class Hopper(BaseFunction): env_name = 'Hopper-v2' policy_dim: tp.Tuple[int, ...] = (11, 3) # These values are from https://github.com/modestyachts/ARS/tree/master/trained_policies/Hopper-v1 state_mean = [1.41599384098897, -0.05478601506999949, -0.2552221576338897, -0.2540472105290307, 0.2752508450342385, 2.608895291030614, -0.0085351966531823, 0.006837504545317028, -0.07123674129372454, -0.0504483911501519, -0.45569643721456643] state_std = [0.19805723063173689, 0.07824487681531123, 0.17120271410673388, 0.32000514149385056, 0.6240188361452976, 0.8281416142079099, 1.5191581374558094, 1.1737837205443291, 1.8776124850625862, 3.634827607782184, 5.716475201040653] class Walker2d(BaseFunction): env_name = 'Walker2d-v2' policy_dim: tp.Tuple[int, ...] = (17, 6) # These values are from https://github.com/modestyachts/ARS/tree/master/trained_policies/Walker2d-v1/gait5_reward_11200.npz state_mean = [0.8488498617542702, -0.6611547735815038, -1.2396970579853086, -0.8950078841472574, -0.24708567001479317, -0.026436682326840807, -2.0152198942892237, 0.1772209506456087, 7.124879504132625, -0.08177482100506603, -0.0973090698139016, -0.2565691144289943, 0.007630772271257735, 0.6811054136606614, -0.02307099876146226, -0.196427427788658, -1.1504456811780719] state_std = [0.05610221999432808, 0.11317036984128691, 0.3121976594462603, 0.31169452648959445, 0.6468349769198745, 0.05473553450998447, 0.2433434422998723, 0.9155127813052794, 3.2146809848738442, 0.5296362410124568, 2.2232944517739037, 2.992691886327696, 4.95843329244578, 8.56053510942742, 3.039674909483538, 4.235747025296144, 8.980030325898877] class Humanoid(BaseFunction): env_name = 'Humanoid-v2' policy_dim: tp.Tuple[int, ...] = (376, 17) # These values are from https://github.com/modestyachts/ARS/tree/master/trained_policies/Humanoid-v1/policy_reward_11600 state_mean = [1.223512941151342, 0.9285620267217891, -0.04600612288662621, -0.24887096958019758, -0.22325955719472168, -0.17629463383430644, 0.47841679596165526, -0.18890539170346107, -0.19861972206496825, 0.13014262053110004, -0.03651792561052908, -0.7429555858796192, -0.04746818133811182, 0.011198448910765477, -0.2910494124293159, -1.5267713093717408, -1.0860041310082882, -1.244709380985192, 0.7792656365408227, 1.2563074982027704, 1.077594999103332, -1.5002654383639942, 5.332955853399292, 0.030647237247258364, -0.024606249596252006, -0.3399735071215924, 0.3497503796975279, -0.21264331665159478, -0.046535856125467005, 0.027206740034526798, -0.01843168788695134, -0.06392540632051621, -0.013627498342509871, -0.13801869738264383, -0.17097839147116675, -0.25660044197293674, -0.04987117645475261, -0.11400057167681625, -0.10262052970843882, -0.055106111711606016, -0.07942557939501395, 0.03894579493830569, 0.08768440576334802, 0.060153409243360094, -0.10358948903618044, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.6864405737063366, 1.7076508830342796, 0.09763867145634159, 0.0177693503584045, 0.19197507541602837, -0.13022395106115325, -0.3395871721740677, 0.2562544681872592, 3.5792264913034333, 8.322078939354402, 0.06310964955706921, 0.07021720642108964, 0.018755612200744218, -0.00024661224176565904, -0.02273113952129911, 0.003641050523315394, 0.13493216255476234, -0.02224559995972755, 0.3309184911098229, 2.0357520395249753, 0.039372239564168805, 0.05767216431731622, 0.06351784734223695, -0.002171507224015927, -0.0022645721008887386, 0.002453001129138291, 0.3577885947420132, -0.03661370708511777, 0.0011729236960336075, 5.852787113641054, 0.3218533810252938, 0.23757173763500847, 0.10905681377403795, 0.008554557009504018, -0.002592520618933238, -0.12606972016255838, 0.03745658906944364, -0.6138709131240883, -0.8633463756366405, 4.525556257740668, 0.7663807298580719, 0.7507047423815559, 0.13615329633035106, -0.04288862308679571, -0.1620679984315845, -0.20773659001748804, -0.29522562094396376, -0.4226395778601069, -1.3271240326474132, 2.63249442247751, 0.7723128871941001, 0.8545894755744188, 0.1546490059888952, -0.05508466315544032, -0.25608217015596735, -0.15029310219501313, -0.40902946045662475, -0.23415939268459104, -1.128662676072067, 1.767145867645593, 0.20876401940390307, 0.3496278074348039, 0.17926903865754054, 0.006094541232859462, 0.14443296438594702, 0.0007344993293173703, 0.7734068461356229, 0.05155437153664577, -0.814065770161627, 4.525556257740668, 0.49616999663471184, 0.5529967194894083, 0.0979037368810912, 0.003485975410377934, 0.10490800735541388, 0.0501923166476425, 0.3258194930620621, 0.08316548725040934, -1.0567633678115018, 2.63249442247751, 0.4996283348106809, 0.48641724714175905, 0.04794369090820097, -0.0058817462375533765, -0.0038912269269175967, 0.10011275977805349, 0.019911103116523225, 0.20842188994890332, -0.8158057732039949, 1.767145867645593, 0.26094507244463144, 0.30392082021440503, 0.13265630113878285, -0.05431343766698027, 0.11776893466040421, 0.0899084310891727, -0.34511356582586145, -0.25235943483624973, 0.5768083784781206, 1.594059841558777, 0.2699901240424498, 0.2859992911038798, 0.13466612926092844, -0.05567769331909149, 0.1041584857476096, 0.10643703984120968, -0.2717156620480613, -0.25857766325871656, 0.4908634951002241, 1.198343130581343, 0.4159715826831813, 0.26370098868805497, 0.16162316986601624, -0.0018967799393832562, -0.00784557474517397, -0.1862393523515524, 0.015258213240316195, 0.48040886397289984, 0.6367434103635446, 1.594059841558777, 0.6289351408862088, 0.14525028999224587, 0.5126330919829216, 0.00625267449663808, 0.0015535620305504336, -0.24735990025481183, -0.0039015204723075194, 0.760661207912407, 0.39003480548206326, 1.198343130581343, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.009984320860184852, -0.3726808236676091, 0.24820933826970693, 5.502147872070437, 0.0880912529108143, 0.016142302334884586, -0.2180804235944024, -0.10501848181941069, -0.05474741133691679, 5.327275570497641, -0.06344911018678119, -0.0018479691003698354, 0.1384063661121756, 0.3758516263819816, -0.22938686291078486, 5.236642459391339, -0.08320873140803955, 0.003093592788745551, 0.23325350435603381, -0.3918345829164, 0.2942527417014775, 5.206484767706763, 0.10870508038885734, 0.0981200303221886, -0.9521365950481183, 0.36293547344041416, -0.3384414723392472, 5.910080127581048, 0.26773018061211007, -0.5945929428933572, -0.9521365950481183, 0.36293547344041416, -0.3384414723392472, 5.910080127581048, 0.26773018061211007, -0.5945929428933572, 0.3587232211841977, -0.4104791162839761, 1.5986149190475882, 5.204750377221477, -0.26852433811945536, 0.19813165370374033, -0.3062371808686244, 0.004238222556072027, -2.2209658318223635, 5.742622248085341, 0.6722949974624708, -0.500485113914267, -0.3062371808686244, 0.004238222556072027, -2.2209658318223635, 5.742622248085341, 0.6722949974624708, -0.500485113914267, 0.26012708391359357, 0.08467556295331613, -0.21391009904140584, 5.3210057409790155, 0.03506536347635228, -0.001275684097233967, 0.042059501206005254, -0.23778440296675274, -0.1226403571516149, 5.348137526673431, -0.043272898300492156, 0.06022962996263737, 0.2937088892684222, -0.1977541092634194, -0.28966619577855046, 5.298852322727817, 0.23447012164868147, -0.025647992690023803, 0.3599616142316438, 0.2572452733614258, -0.10288112745228332, 5.19810241527611, 0.20728458029872535, -0.10683192755398696, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.29556968580778875, -8.260898269152916, 5.587670071623525, 8.924550388476465, 7.307887810310615, -5.797082988253691, 21.76326786049523, 0.5281607939082064, 3.0078721315484658, -8.25644817359464, 12.92236085784975, -3.07346302346624, -0.15972201114587897, 3.8488401400073924, 2.9013015503137547, -3.0030744277640964, -4.125822702844248, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.0005411157531993445, 0.00018425900752185883, -7.056479603492841e-05, 0.0004850329710863729, 0.0013067914565368577, -0.0003632249271021157, -1.499782615828459e-05, 1.5396507342996525e-05, -8.412078417064285e-07, 0.00010005310427990925, 0.000202125250115722, -0.00023887949816504833, 2.358707586858282, -2.038571404847552, -0.4050387837681951, 4.231544859434408, -2.40103925025192, 33.864309172326074, -0.5579333098944332, 0.34076320959977724, -0.08857964550304018, -0.9922056623081122, -1.3998733333878197, 1.0435800890962725, -2.0834375475277884, 1.2667537566732037, -0.30076659164163855, -2.936598660670857, -4.701568329244183, 0.5482891196808485, -10.245820936980875, 7.420004642248826, 0.4255468058894504, 17.167740585723312, 16.175268727949796, 181.48592716060185, 0.11325750561423298, -0.06582083133392769, 0.0526578564471078, 0.2371962961790206, 0.3042510288306412, -0.12644331987411908, 2.523881380476937, -1.547423424434062, 0.33845447817037794, 3.7044012690867003, 5.77270922236946, -1.4549487373900374, 8.414220368253863, -4.740154811733693, 0.37906093062842394, -6.603153276131259, -14.672811393696326, 152.19174733969905, -9.948554129284157e-07, -3.1729733223247383e-07, 1.6278277777934387e-07, -3.6080215121179876e-05, -4.327504944517283e-05, 0.00011092777930590747, 0.0005553154635918675, -0.00021156350367889417, 7.217738550388757e-05, -0.0007368680078812343, -0.001578912969766702, 0.0007730670670347712, -7.128808629768361e-07, 4.5728191857655706e-07, 2.2865347644914397e-07, 9.111110122544389e-06, 1.160719855911783e-05, 9.381773874831127e-06, 5.569740868840155e-06, -1.4891833711621733e-06, 4.342784980667928e-06, 6.777033412499121e-05, 8.971821928675218e-05, 3.889718928290386e-05] state_std = [0.027220943204269023, 0.03371739859577961, 0.08672716681743708, 0.05806815850513448, 0.10883032708169692, 0.4016638402629323, 0.08844073386589447, 0.2110629853334749, 0.24960364959583276, 0.3587053640151962, 0.2923748496012834, 0.6022790345863119, 0.10635529785354092, 0.27413209706901964, 0.5359593301373943, 1.1750147170843526, 0.3561241697832425, 0.23480406053326436, 0.14437043059667623, 0.27474052240250313, 0.3243886340303913, 0.18167117971436647, 1.3600379607064053, 0.3218201992448027, 0.5296170780949837, 2.772994615925601, 2.164550492666567, 4.4057685665946, 8.587107721379661, 2.8676340745769813, 4.88090236180869, 6.052503126570467, 7.503054069971461, 8.305551440794792, 16.229904432174102, 4.5671057449517205, 6.114614529333562, 11.845036547829535, 25.913615598243307, 6.252996778447118, 4.662819752229859, 2.8957190183908565, 6.052463628549816, 6.384019209205117, 5.0252937265931035, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.14238959435961462, 0.15193351258039872, 0.02688268828918757, 0.016475850422186383, 0.11543445291824593, 0.0823683956228624, 0.2518946921093844, 0.1719574248033898, 0.17329794081014366, 1.000431359973871e-08, 0.018478908043846144, 0.02158172877456581, 0.005750979917882275, 0.003355592768176608, 0.00950928580095848, 0.009213885716264863, 0.04213918034993743, 0.05463338285150308, 0.05641535066785075, 1.0000747565482142e-08, 0.005257009841282607, 0.013779048588095219, 0.013687172475653606, 0.006885761634218394, 0.009213393296520895, 0.003311783377220073, 0.11257854322792597, 0.11138235337945995, 0.16028902749863805, 1.0004120117325544e-08, 0.0626332661938698, 0.06765339292738642, 0.047407472159472344, 0.025488317118020798, 0.035085467198771765, 0.032714226833568054, 0.15957042246295786, 0.14690742873683094, 0.17841778151136162, 1.0003444225085218e-08, 0.11855546076295732, 0.1601995018375117, 0.05705779799801954, 0.03282487431040264, 0.10613039235022993, 0.04756340733017935, 0.19614743790486447, 0.11434942867009171, 0.13718925851422167, 1.0002730173229638e-08, 0.19787882550074856, 0.18946485032798877, 0.09441604754591658, 0.03393819538720024, 0.12257527328131092, 0.05519359584132488, 0.19627223909340552, 0.0748500807412641, 0.15313598337114612, 1.0001191898980395e-08, 0.033710679183069324, 0.07266497927654184, 0.08869154115095376, 0.02801793963860596, 0.05256426516615806, 0.03856252413251216, 0.2516601273928587, 0.16221167659334101, 0.07653053984565042, 1.0003444225085218e-08, 0.27148907547270107, 0.21859413334486488, 0.06325191955230788, 0.02302418243440717, 0.08862609459915445, 0.08045492694676731, 0.25942521478053826, 0.16343372818748067, 0.3276168047959743, 1.0002730173229638e-08, 0.3741935150587287, 0.37066538654036724, 0.02743098103313232, 0.01985411168739766, 0.0869625119569415, 0.0701596813703393, 0.1636434670512358, 0.08415384433332133, 0.3997864847957144, 1.0001191898980395e-08, 0.05864711018558324, 0.03873655463517765, 0.02074513521037753, 0.014516459355615415, 0.032864206630095566, 0.028424329271307287, 0.09841092395038074, 0.062363602397650215, 0.05955480591755076, 1.0001024762056902e-08, 0.05010976811305272, 0.0371667135860929, 0.022916757861489532, 0.021714149304502807, 0.042049527956671544, 0.026636578083260077, 0.10537753915021739, 0.05734094560989781, 0.045451706430412284, 1.0001132995384249e-08, 0.024747012172012858, 0.044248606007555084, 0.031031649204226817, 0.023018344234887928, 0.02826943388733819, 0.011944649045757363, 0.07241029584495748, 0.05091277302407085, 0.05390791668152994, 1.0001024762056902e-08, 0.08845251074562006, 0.04669266079787208, 0.07326745630888133, 0.07993263635812788, 0.043248320224860116, 0.046195495431723146, 0.1277474869177115, 0.06732868237334777, 0.060832036356245775, 1.0001132995384249e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 3.9109477625812987, 2.726824503866877, 3.0255580693328183, 1.6749492698497939, 1.4795655652623088, 0.568143823199565, 1.8472520684575449, 2.1900181369366662, 6.182629688404042, 1.447357032272057, 0.5200673335962976, 0.5733433997780786, 3.709921882183585, 3.5247172723139735, 6.242286558556476, 1.402497552638402, 0.47761843119554187, 0.6076037954486013, 5.026204300107199, 5.510097585745013, 3.8589660463280833, 1.568759119818162, 0.5917527332763451, 1.029123122193732, 4.2874345506067675, 9.124784725671551, 5.203728864594666, 5.510637312923947, 2.9473125952312884, 1.427647390892429, 4.2874345506067675, 9.124784725671551, 5.203728864594666, 5.510637312923947, 2.9473125952312884, 1.427647390892429, 7.374427871946933, 9.244789166256488, 4.310956745613239, 1.7092202217527879, 1.1301077085172486, 1.3007111382890009, 8.813130907184895, 13.431406143255899, 3.814435203519042, 7.597007883908303, 5.119591868447307, 3.868104648610097, 8.813130907184895, 13.431406143255899, 3.814435203519042, 7.597007883908303, 5.119591868447307, 3.868104648610097, 3.6034477180617595, 2.5595084056197304, 4.7728021487075205, 1.7315994634713594, 2.159881144941995, 1.229858099522896, 3.6150217079294142, 2.7974447506138613, 4.811699918909136, 1.895348859567646, 2.182604565616805, 1.3472341883825647, 3.4523845665883925, 4.336426110196122, 4.04002517042012, 2.902216962903632, 1.8809257426448065, 1.3918353572611668, 4.063872791376027, 5.196521788130874, 3.84390228786295, 2.7695155263972278, 1.8656837839324878, 2.401450349582291, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 39.31823891856991, 30.278412023383265, 35.40810910501004, 37.979941531373115, 36.78424202471111, 104.80727284053687, 58.22875905949396, 36.0392502862179, 36.61813110510474, 104.8525398280304, 77.23646063277525, 7.73032038936829, 9.568131917771131, 7.980462646552434, 8.858260913945225, 8.862554883315907, 8.45701715868272, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 1e-08, 0.18830165214399114, 0.1342474923753114, 0.05608616493243241, 0.3031034157531549, 0.42340271911121846, 0.23239945675276474, 0.036639848667331484, 0.03854555438139759, 0.021014154359306533, 0.36699977573403253, 0.31037005974137877, 0.5009260515131433, 10.623571227644051, 9.684407819966891, 2.8137093873627883, 36.145319299009536, 19.48448754425835, 150.7907242219333, 11.261628724818983, 7.10279219157998, 2.426720375288641, 20.394312177459685, 27.983819034394788, 23.497420472071315, 22.907935979558523, 14.003856465530275, 3.9708956438441114, 32.23167397585521, 51.218607076172326, 6.116705780736451, 37.32494107277529, 86.34020135034994, 13.888911368783146, 110.89589625498978, 62.09513943796971, 508.12193622186663, 4.752152694418997, 2.5225532126056023, 2.1366178081751994, 9.131638795299004, 12.759569014410413, 5.344681451091026, 25.044004502345594, 15.4964832317486, 4.123332097154291, 37.00187110793075, 56.77840690678802, 23.617605924413496, 57.00451427503392, 59.54812478177995, 13.271760340369124, 125.76601693382943, 79.10729615187654, 593.56498013792, 0.009841201295063823, 0.016483578826677756, 0.008428110524717015, 0.08510005348913796, 0.0765137611941976, 0.146946643258817, 0.19104081083076538, 0.13768028999889403, 0.05997267118679376, 0.358176890915227, 0.47261113152738704, 0.3491160050383241, 0.009979212934286682, 0.011861627518704817, 0.009040977965359007, 0.05760460551559038, 0.05535268123974551, 0.05381626379965322, 0.026251746223865467, 0.03118102610736434, 0.023451607610137155, 0.11839197501185912, 0.12161710627794166, 0.11164783758519019]
77.753086
127
0.693935
e1b961eff7506a3e7a5227f322f675ae731751cc
141
py
Python
autoload/leaderf/python/leaderf/__init__.py
sjwsl/LeaderF
d92d428379f56e65acf01c381a56031d71e50b58
[ "Apache-2.0" ]
null
null
null
autoload/leaderf/python/leaderf/__init__.py
sjwsl/LeaderF
d92d428379f56e65acf01c381a56031d71e50b58
[ "Apache-2.0" ]
null
null
null
autoload/leaderf/python/leaderf/__init__.py
sjwsl/LeaderF
d92d428379f56e65acf01c381a56031d71e50b58
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys if sys.version_info < (3, 0): reload(sys) sys.setdefaultencoding('utf-8')
15.666667
35
0.617021
e760788c5454f29f22e45b7013a679683b95c86e
2,303
py
Python
libqtile/scripts/shell.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
2
2021-07-21T20:07:12.000Z
2021-08-12T18:09:49.000Z
libqtile/scripts/shell.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
1
2022-02-27T12:17:27.000Z
2022-02-27T12:17:27.000Z
libqtile/scripts/shell.py
1kyu/qtile
da93518b2ab924e803552decdb364d64de46088d
[ "MIT" ]
1
2020-04-27T22:20:11.000Z
2020-04-27T22:20:11.000Z
# Copyright (c) 2008, Aldo Cortesi. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from libqtile import ipc, sh from libqtile.command import interface def qshell(args) -> None: if args.socket is None: socket = ipc.find_sockfile() else: socket = args.socket client = ipc.Client(socket, is_json=args.is_json) cmd_object = interface.IPCCommandInterface(client) qsh = sh.QSh(cmd_object) if args.command is not None: qsh.process_line(args.command) else: qsh.loop() def add_subcommand(subparsers, parents): parser = subparsers.add_parser( "shell", parents=parents, help="shell-like interface to qtile" ) parser.add_argument( "-s", "--socket", action="store", type=str, default=None, help='Use specified socket to connect to qtile.' ) parser.add_argument( "-c", "--command", action="store", type=str, default=None, help='Run the specified qshell command and exit.' ) parser.add_argument( "-j", "--json", action="store_true", default=False, dest="is_json", help='Use json in order to communicate with qtile server.' ) parser.set_defaults(func=qshell)
35.430769
79
0.691272
41d7d39286c7260d088d75d29089ebe56ea56f17
1,224
py
Python
test/unittests/use_cases/test_add_tag.py
MBlistein/spaced-repetition
c10281d43e928f8d1799076190f962f8e49a405b
[ "MIT" ]
null
null
null
test/unittests/use_cases/test_add_tag.py
MBlistein/spaced-repetition
c10281d43e928f8d1799076190f962f8e49a405b
[ "MIT" ]
null
null
null
test/unittests/use_cases/test_add_tag.py
MBlistein/spaced-repetition
c10281d43e928f8d1799076190f962f8e49a405b
[ "MIT" ]
null
null
null
import unittest from unittest.mock import Mock, patch from spaced_repetition.domain.tag import TagCreator from spaced_repetition.use_cases.add_tag import TagAdder # pylint: disable=protected-access class TestTagAdder(unittest.TestCase): def setUp(self) -> None: self.tag = TagCreator.create('new_tag') @patch.object(TagAdder, '_assert_is_unique') def test_add_tag(self, mock_assert_unique): t_a = TagAdder(db_gateway=Mock(), presenter=Mock()) t_a.add_tag(name=self.tag.name) mock_assert_unique.assert_called_once_with(tag=self.tag) t_a.repo.create_tag.assert_called_once_with(tag=self.tag) # noqa def test_assert_is_unique_raises(self): t_a = TagAdder(db_gateway=Mock(), presenter=Mock()) t_a.repo.tag_exists.return_value = True with self.assertRaises(ValueError) as context: t_a._assert_is_unique(tag=self.tag) self.assertEqual("Tag with name 'new_tag' already exists!", str(context.exception)) def test_assert_is_unique(self): t_a = TagAdder(db_gateway=Mock(), presenter=Mock()) t_a.repo.tag_exists.return_value = False t_a._assert_is_unique(tag=self.tag)
32.210526
73
0.702614
9b523e3806b021eb4257b9cc577c69791caea2aa
3,115
py
Python
pytorch_3T27T/utils/backer.py
HechengJin0/pytorch_3T27T
17b723ff15d10b90acced128091553b1b3073c3a
[ "BSD-3-Clause" ]
null
null
null
pytorch_3T27T/utils/backer.py
HechengJin0/pytorch_3T27T
17b723ff15d10b90acced128091553b1b3073c3a
[ "BSD-3-Clause" ]
null
null
null
pytorch_3T27T/utils/backer.py
HechengJin0/pytorch_3T27T
17b723ff15d10b90acced128091553b1b3073c3a
[ "BSD-3-Clause" ]
1
2021-11-03T16:20:15.000Z
2021-11-03T16:20:15.000Z
#!/usr/bin/env python # coding=utf-8 # Manages Paths for Saving Models and Logs from pathlib import Path from os.path import join as pjoin import re import datetime import pytorch_3T27T as pkg root = Path(pkg.__path__[0]).parent.absolute() ETC_DIR = "etc" LOG_DIR = "logs" CHECKPOINT_DIR = "ckpts" RUN_DIR = "runs" __all__ = [ 'get_trial_path', 'get_etc_path', 'get_log_path', 'get_trainer_paths', 'get_trial_dict', 'get_timestamp' ] def ensure_exists(p: Path) -> Path: """ Helper to ensure a directory exists. """ p = Path(p) p.mkdir(parents=True, exist_ok=True) return p def get_trial_path(config: dict) -> Path: """ Construct a path based on the name of a configuration file, e.g. 'trials/A01-E01-S0001' """ p = pjoin(root, config["save_dir"], config["trial_info"]["ID"]) return ensure_exists(p) def trial_timestamp_path(config: dict) -> Path: """ Construct a path based on the name of a configuration file and append a timestamp, e.g. 'trials/A01-E01-S0001/20211231235959UTC' """ timestamp = config["trial_info"]["timestamp"] p = pjoin(get_trial_path(config), timestamp) return ensure_exists(p) def get_etc_path(config: dict) -> Path: """ Retuns the config dir, e.g. 'trials/A01-E01-S0001/20211231235959UTC/etc' """ p = pjoin(trial_timestamp_path(config), ETC_DIR) return ensure_exists(p) def get_log_path(config: dict) -> Path: """ Retuns the log dir, e.g. 'trials/A01-E01-S0001/20211231235959UTC/logs' """ p = pjoin(trial_timestamp_path(config), LOG_DIR) return ensure_exists(p) def get_trainer_paths(config: dict) -> Path: """ Returns the paths to save checkpoints and tensorboard runs, e.g. trials/A01-E01-S0001/20211231235959UTC/ckpts trials/A01-E01-S0001/20211231235959UTC/runs """ trial_timestamp = trial_timestamp_path(config) return ( ensure_exists(pjoin(trial_timestamp, CHECKPOINT_DIR)), ensure_exists(pjoin(trial_timestamp, RUN_DIR)), ) def get_trial_dict(filename: str) -> dict: """ Get trial information from file name Returns ------- trial : dict Trial information: ID, Aim, Experiment, Setup """ # Parse filename to get this particular experimental run info trial = {} nameRegex = re.compile(r'((A\d\d)-(E\d\d)-(S\d\d\d\d))') trial_ID, aim_ID, exp_ID, setup_ID = nameRegex.search(filename).groups() trial['ID'] = trial_ID aimRegex = re.compile(f'({aim_ID})_([\\w\\-]+)') trial['Aim'] = aimRegex.search(filename).groups()[0] expRegex = re.compile(f'({exp_ID})_([\\w\\-]+)') trial['Experiment'] = expRegex.search(filename).groups()[0] setupRegex = re.compile(f'({setup_ID})_([\\w\\-]+)') trial['Setup'] = setupRegex.search(filename).groups()[0] trial['timestamp'] = get_timestamp() return trial def get_timestamp() -> str: """ Get this experimental run timestamp, e.g., 20211231235959UTC' """ timestamp = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") return timestamp + 'UTC'
25.743802
76
0.656501
f2f2e1c7d2837d2b054b83e74f2132e6088b6e7a
2,135
py
Python
dlu/limitusers/templatetags/limitusers.py
yashrane015/django-limit-users
d7db7bbec3579964efa33b8facfc6d8a3930ead0
[ "Apache-2.0" ]
2
2015-06-07T21:33:12.000Z
2022-02-16T02:24:16.000Z
dlu/limitusers/templatetags/limitusers.py
yashrane015/django-limit-users
d7db7bbec3579964efa33b8facfc6d8a3930ead0
[ "Apache-2.0" ]
null
null
null
dlu/limitusers/templatetags/limitusers.py
yashrane015/django-limit-users
d7db7bbec3579964efa33b8facfc6d8a3930ead0
[ "Apache-2.0" ]
1
2020-10-01T02:45:33.000Z
2020-10-01T02:45:33.000Z
from django import template from django.conf import settings from dlu.limitusers.models import User, DisabledUser register = template.Library() class RegsAvailableNode(template.Node): def __init__(self, available, var_name = 'registrations_available'): self.available = available self.var_name = var_name def render(self, context): context[self.var_name] = self.available return '' def regs_available(parser, token): filters = {} if getattr(settings, 'LIMIT_USERS_IGNORE_ADMIN', True): filters['is_staff'] = False filters['is_superuser'] = False remaining = getattr(settings, 'MAX_USER_REGISTRATIONS') - User.objects.filter(**filters).count() if remaining < 0: remaining = 0 return RegsAvailableNode(remaining) register.tag('regs_available', regs_available) class RegsAllowedNode(template.Node): def __init__(self, allowed, var_name = 'registrations_allowed'): self.allowed = allowed self.var_name = var_name def render(self, context): context[self.var_name] = self.allowed return '' def regs_allowed(parser, token): filters = {} if getattr(settings, 'LIMIT_USERS_IGNORE_ADMIN', True): filters['is_staff'] = False filters['is_superuser'] = False allowed = getattr(settings, 'MAX_USER_REGISTRATIONS') return RegsAllowedNode(allowed) register.tag('regs_allowed', regs_allowed) @register.simple_tag def regs_disabled(): return DisabledUser.objects.all().count() class ActiveUsersNode(template.Node): def __init__(self, active, var_name = 'active_users'): self.active = active self.var_name = var_name def render(self, context): context[self.var_name] = self.active return '' def active_users(parser, token): filters = {'is_active':True} if getattr(settings, 'LIMIT_USERS_IGNORE_ADMIN', True): filters['is_staff'] = False filters['is_superuser'] = False active = User.objects.filter(**filters).count() return ActiveUsersNode(active) register.tag('active_users', active_users)
30.5
100
0.688525
31e56f79b3e8e9734cb8252fc9669660540a3d95
7,877
py
Python
tests/test_monomial.py
E-G-C/algorithms
5f1a7863818b016a62ff03a45980f7ec8a970a07
[ "MIT" ]
2
2022-03-05T17:08:14.000Z
2022-03-10T07:15:58.000Z
tests/test_monomial.py
E-G-C/algorithms
5f1a7863818b016a62ff03a45980f7ec8a970a07
[ "MIT" ]
18
2022-03-01T08:40:32.000Z
2022-03-05T22:38:43.000Z
tests/test_monomial.py
E-G-C/algorithms
5f1a7863818b016a62ff03a45980f7ec8a970a07
[ "MIT" ]
1
2022-03-09T14:43:50.000Z
2022-03-09T14:43:50.000Z
from algorithms.maths.polynomial import Monomial from fractions import Fraction import math import unittest class TestSuite(unittest.TestCase): def setUp(self): self.m1 = Monomial({}) self.m2 = Monomial({1: 1}, 2) self.m3 = Monomial({1: 2, 2: -1}, 1.5) self.m4 = Monomial({1: 1, 2: 2, 3: -2}, 3) self.m5 = Monomial({2: 1, 3: 0}, Fraction(2, 3)) self.m6 = Monomial({1: 0, 2: 0, 3: 0}, -2.27) self.m7 = Monomial({1: 2, 7: 2}, -math.pi) self.m8 = Monomial({150: 5, 170: 2, 10000: 3}, 0) self.m9 = 2 self.m10 = math.pi self.m11 = Fraction(3, 8) self.m12 = 0 self.m13 = Monomial({1: 1}, -2) self.m14 = Monomial({1: 2}, 3) self.m15 = Monomial({1: 1}, 3) self.m16 = Monomial({1: 2, 7: 2}, math.pi) self.m17 = Monomial({1: -1}) def test_monomial_addition(self): # Monomials with different underlying variables or # even different power of those variables must not be added! self.assertRaises(ValueError, lambda x, y: x + y, self.m1, self.m2) self.assertRaises(ValueError, lambda x, y: x + y, self.m2, self.m3) self.assertRaises(ValueError, lambda x, y: x + y, self.m2, self.m14) # Additive inverses of each other should produce the zero monomial. self.assertEqual(self.m13 + self.m2, self.m1) # Zero monomial + Zero monomial = Zero monomial self.assertEqual(self.m1 + self.m1, self.m1) # Coefficient float. self.assertEqual(self.m7 + self.m7, Monomial({1: 2, 7: 2}, -2 * math.pi)) # Coefficient 0 so should equal the zero monomial. self.assertEqual(self.m8, self.m1) # The constant term cannot be added to any monomial # that has any variables. self.assertRaises(ValueError, lambda x, y: x + y, self.m2, self.m9) # Any literal cannot be added to a Monomial. However, a monomial # can be added to any int, float, Fraction, or Monomial. # So 2 + Monomial is raises TypeError but Monomial + 2 may work fine! self.assertRaises(TypeError, lambda x, y: x + y, self.m9, self.m2) # Any constant added to a zero monomial produces # a monomial. self.assertEqual(self.m1 + self.m9, Monomial({}, 2)) self.assertEqual(self.m1 + self.m12, Monomial({}, 0)) return def test_monomial_subtraction(self): # Monomials with different underlying variables or # even different power of those variables must not be subtracted! self.assertRaises(ValueError, lambda x, y: x - y, self.m1, self.m2) self.assertRaises(ValueError, lambda x, y: x - y, self.m2, self.m3) self.assertRaises(ValueError, lambda x, y: x - y, self.m2, self.m14) # Additive inverses of each other should produce the zero monomial. self.assertEqual(self.m2 - self.m2, self.m1) self.assertEqual(self.m2 - self.m2, Monomial({}, 0)) # Zero monomial - Zero monomial = Zero monomial self.assertEqual(self.m1 - self.m1, self.m1) # Coefficient int. self.assertEqual(self.m2 - self.m15, Monomial({1: 1}, -1)) # Coefficient float. self.assertEqual(self.m16 - self.m7, Monomial({1: 2, 7: 2}, 2 * math.pi)) # The constant term cannot be added to any monomial # that has any variables. self.assertRaises(ValueError, lambda x, y: x - y, self.m2, self.m9) # Any literal cannot be added to a Monomial. However, a monomial # can be added to any int, float, Fraction, or Monomial. # So 2 + Monomial is raises TypeError but Monomial + 2 may work fine! self.assertRaises(TypeError, lambda x, y: x - y, self.m9, self.m2) # Any constant added to a zero monomial produces # a monomial. self.assertEqual(self.m1 - self.m9, Monomial({}, -2)) self.assertEqual(self.m1 - self.m12, Monomial({}, 0)) return def test_monomial_multiplication(self): # Usual multiplication. # The positive and negative powers of the same variable # should cancel out. self.assertEqual(self.m2 * self.m13, Monomial({1: 2}, -4)) self.assertEqual(self.m2 * self.m17, Monomial({}, 2)) # A coefficient of zero should make the product zero. # Zero monomial * any int, float, Fraction, or Monomial = Zero monomial self.assertEqual(self.m8 * self.m5, self.m1) self.assertEqual(self.m1 * self.m2, self.m1) # Test usual float multiplication. self.assertEqual(self.m7 * self.m3, Monomial({1: 4, 2: -1, 7: 2}, -1.5*math.pi)) return def test_monomial_inverse(self): # The Zero monomial is not invertible. self.assertRaises(ValueError, lambda x: x.inverse(), self.m1) self.assertRaises(ValueError, lambda x: x.inverse(), self.m8) self.assertRaises(ValueError, lambda x: x.inverse(), Monomial({}, self.m12)) # Check some inverses. self.assertEqual(self.m7.inverse(), Monomial({1: -2, 7: -2}, -1 / math.pi)) # Doesn't matter if the coefficient is Fraction or float. # Both should be treated as same. self.assertEqual(self.m5.inverse(), Monomial({2: -1}, Fraction(3, 2))) self.assertEqual(self.m5.inverse(), Monomial({2: -1}, 1.5)) # Should work fine without variables too! self.assertTrue(self.m6.inverse(), Monomial({}, Fraction(-100, 227))) self.assertEqual(self.m6.inverse(), Monomial({}, -1/2.27)) return def test_monomial_division(self): # Any monomial divided by the Zero Monomial should raise a ValueError. self.assertRaises(ValueError, lambda x, y: x.__truediv__(y), self.m2, self.m1) self.assertRaises(ValueError, lambda x, y: x.__truediv__(y), self.m2, self.m8) self.assertRaises(ValueError, lambda x, y: x.__truediv__(y), self.m2, self.m12) # Test some usual cases. self.assertEqual(self.m7 / self.m3, Monomial({2: 1, 7: 2}, -2 * math.pi / 3)) self.assertEqual(self.m14 / self.m13, Monomial({1: 1}) * Fraction(-3, 2)) return def test_monomial_substitution(self): # Test with int. self.assertAlmostEqual(self.m7.substitute(2), -16 * math.pi, delta=1e-9) # Test with float. self.assertAlmostEqual(self.m7.substitute(1.5), (1.5 ** 4) * -math.pi, delta=1e-9) # Test with Fraction. self.assertAlmostEqual(self.m7.substitute(Fraction(-1, 2)), (Fraction(-1, 2) ** 4)*-math.pi, delta=1e-9) # Test with a complete substitution map. self.assertAlmostEqual(self.m7.substitute({1: 3, 7: 0}), (3 ** 2) * (0 ** 2) * -math.pi, delta=1e-9) # Test with a more than complete substitution map. self.assertAlmostEqual(self.m7.substitute({1: 3, 7: 0, 2: 2}), (3 ** 2) * (0 ** 2) * -math.pi, delta=1e-9) # Should raise a ValueError if not enough variables are supplied! self.assertRaises(ValueError, lambda x, y: x.substitute(y), self.m7, {1: 3, 2: 2}) self.assertRaises(ValueError, lambda x, y: x.substitute(y), self.m7, {2: 2}) # The zero monomial always gives zero upon substitution. self.assertEqual(self.m8.substitute(2), 0) self.assertEqual(self.m8.substitute({1231: 2, 1: 2}), 0) return def test_monomial_all_variables(self): # Any variable with zero power should not exist in the set # of variables. self.assertEqual(self.m5.all_variables(), {2}) self.assertEqual(self.m6.all_variables(), set()) # The zero monomial should output empty set. self.assertEqual(self.m8.all_variables(), set()) return def test_monomial_clone(self): # A monomial should produce its copy # with same underlying variable dictionary # and same coefficient. self.assertEqual(self.m3, self.m3.clone()) # The zero monomial is identified and # always clones to itself. self.assertEqual(self.m1, self.m8.clone()) self.assertEqual(self.m1, self.m1.clone()) self.assertEqual(self.m8, self.m1.clone()) self.assertEqual(self.m8, self.m8.clone()) return if __name__ == '__main__': unittest.main()
35.642534
77
0.65266