|
import json |
|
import datasets |
|
import os |
|
|
|
|
|
_CITATION = """\ |
|
@article{huggingface:dataset, |
|
title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian}, |
|
authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others}, |
|
year={2020} |
|
journal = {arXiv e-prints}, |
|
eprint = {2012.06154}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """A Persian multiple choice task.""" |
|
|
|
_HOMEPAGE = "https://github.com/persiannlp/parsinlu/" |
|
|
|
_LICENSE = "CC BY-NC-SA 4.0" |
|
|
|
_URL = "https://raw.githubusercontent.com/persiannlp/parsinlu/master/data/multiple-choice/" |
|
|
|
_URLs = { |
|
"train": _URL + "train.jsonl", |
|
"val": _URL + "valid.jsonl", |
|
"test": _URL + "test.jsonl", |
|
} |
|
|
|
|
|
class ParsinluMultipleChoice(datasets.GeneratorBasedBuilder): |
|
"""ParsiNLU Persian multiple choice task.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="parsinlu-repo", version=VERSION, description="Here the task is to pick a correct answer among 3-5 given candidate answers" |
|
),] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"answer": datasets.Value("string"), |
|
"candidates": datasets.features.Sequence(feature=datasets.Value(dtype='string', id=None), length=-1), |
|
"category": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"id": datasets.Value("string") |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["val"], |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
def get_answer_index(passage, answer): |
|
return passage.index(answer) if answer in passage else -1 |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, { |
|
"answer": data["answer"], |
|
"candidates": data["candidates"], |
|
"category": data["category"], |
|
"question": data["question"], |
|
"id": data['id'] |
|
} |