klamike commited on
Commit
f4f54e3
·
verified ·
1 Parent(s): 73a7b60

Add files using upload-large-folder tool

Browse files
PGLearn-Small-30_ieee.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import gzip
6
+
7
+ import datasets as hfd
8
+ import h5py
9
+ import pyarrow as pa
10
+
11
+ # ┌──────────────┐
12
+ # │ Metadata │
13
+ # └──────────────┘
14
+
15
+ @dataclass
16
+ class CaseSizes:
17
+ n_bus: int
18
+ n_load: int
19
+ n_gen: int
20
+ n_branch: int
21
+
22
+ CASENAME = "30_ieee"
23
+ SIZES = CaseSizes(n_bus=30, n_load=21, n_gen=6, n_branch=41)
24
+ NUM_TRAIN = 793067
25
+ NUM_TEST = 198267
26
+ NUM_INFEASIBLE = 8666
27
+
28
+ URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Small-30_ieee"
29
+ DESCRIPTION = """\
30
+ The 30_ieee PGLearn optimal power flow dataset, part of the PGLearn-Small collection. \
31
+ """
32
+ VERSION = hfd.Version("1.0.0")
33
+ DEFAULT_CONFIG_DESCRIPTION="""\
34
+ This configuration contains feasible input, metadata, primal solution, and dual solution data \
35
+ for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system.
36
+ """
37
+ USE_ML4OPF_WARNING = """
38
+ ================================================================================================
39
+ Loading PGLearn-Small-30_ieee through the `datasets.load_dataset` function may be slow.
40
+
41
+ Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
42
+ https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
43
+
44
+ Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
45
+ https://huggingface.co/datasets/PGLearn/PGLearn-Small-30_ieee#downloading-individual-files
46
+ ================================================================================================
47
+ """
48
+ CITATION = """\
49
+ @article{klamkinpglearn,
50
+ title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
51
+ author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
52
+ year={2025},
53
+ }\
54
+ """
55
+
56
+ IS_COMPRESSED = True
57
+
58
+ # ┌──────────────────┐
59
+ # │ Formulations │
60
+ # └──────────────────┘
61
+
62
+ def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
63
+ features = {}
64
+ if primal: features.update(acopf_primal_features(sizes))
65
+ if dual: features.update(acopf_dual_features(sizes))
66
+ if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
67
+ return features
68
+
69
+ def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
70
+ features = {}
71
+ if primal: features.update(dcopf_primal_features(sizes))
72
+ if dual: features.update(dcopf_dual_features(sizes))
73
+ if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
74
+ return features
75
+
76
+ def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
77
+ features = {}
78
+ if primal: features.update(socopf_primal_features(sizes))
79
+ if dual: features.update(socopf_dual_features(sizes))
80
+ if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
81
+ return features
82
+
83
+ FORMULATIONS_TO_FEATURES = {
84
+ "ACOPF": acopf_features,
85
+ "DCOPF": dcopf_features,
86
+ "SOCOPF": socopf_features,
87
+ }
88
+
89
+ # ┌───────────────────┐
90
+ # │ BuilderConfig │
91
+ # └───────────────────┘
92
+
93
+ class PGLearnSmall30_ieeeConfig(hfd.BuilderConfig):
94
+ """BuilderConfig for PGLearn-Small-30_ieee.
95
+ By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
96
+
97
+ To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
98
+
99
+ Attributes:
100
+ formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
101
+ primal (bool, optional): Include primal solution data. Defaults to True.
102
+ dual (bool, optional): Include dual solution data. Defaults to False.
103
+ meta (bool, optional): Include metadata. Defaults to True.
104
+ input (bool, optional): Include input data. Defaults to True.
105
+ casejson (bool, optional): Include case.json data. Defaults to True.
106
+ train (bool, optional): Include training samples. Defaults to True.
107
+ test (bool, optional): Include testing samples. Defaults to True.
108
+ infeasible (bool, optional): Include infeasible samples. Defaults to False.
109
+ """
110
+ def __init__(self,
111
+ formulations: list[str],
112
+ primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
113
+ train: bool=True, test: bool=True, infeasible: bool=False,
114
+ compressed: bool=IS_COMPRESSED, **kwargs
115
+ ):
116
+ super(PGLearnSmall30_ieeeConfig, self).__init__(version=VERSION, **kwargs)
117
+
118
+ self.case = CASENAME
119
+ self.formulations = formulations
120
+
121
+ self.primal = primal
122
+ self.dual = dual
123
+ self.meta = meta
124
+ self.input = input
125
+ self.casejson = casejson
126
+
127
+ self.train = train
128
+ self.test = test
129
+ self.infeasible = infeasible
130
+
131
+ self.gz_ext = ".gz" if compressed else ""
132
+
133
+ @property
134
+ def size(self):
135
+ return SIZES
136
+
137
+ @property
138
+ def features(self):
139
+ features = {}
140
+ if self.casejson: features.update(case_features())
141
+ if self.input: features.update(input_features(SIZES))
142
+ for formulation in self.formulations:
143
+ features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
144
+ return hfd.Features(features)
145
+
146
+ @property
147
+ def splits(self):
148
+ splits: dict[hfd.Split, dict[str, str | int]] = {}
149
+ if self.train:
150
+ splits[hfd.Split.TRAIN] = {
151
+ "name": "train",
152
+ "num_examples": NUM_TRAIN
153
+ }
154
+ if self.test:
155
+ splits[hfd.Split.TEST] = {
156
+ "name": "test",
157
+ "num_examples": NUM_TEST
158
+ }
159
+ if self.infeasible:
160
+ splits[hfd.Split("infeasible")] = {
161
+ "name": "infeasible",
162
+ "num_examples": NUM_INFEASIBLE
163
+ }
164
+ return splits
165
+
166
+ @property
167
+ def urls(self):
168
+ urls: dict[str, None | str | list] = {
169
+ "case": None, "train": [], "test": [], "infeasible": [],
170
+ }
171
+
172
+ if self.casejson: urls["case"] = f"case.json" + self.gz_ext
173
+
174
+ split_names = []
175
+ if self.train: split_names.append("train")
176
+ if self.test: split_names.append("test")
177
+ if self.infeasible: split_names.append("infeasible")
178
+
179
+ for split in split_names:
180
+ if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
181
+ for formulation in self.formulations:
182
+ if self.primal: urls[split].append(f"{split}/{formulation}/primal.h5" + self.gz_ext)
183
+ if self.dual: urls[split].append(f"{split}/{formulation}/dual.h5" + self.gz_ext)
184
+ if self.meta: urls[split].append(f"{split}/{formulation}/meta.h5" + self.gz_ext)
185
+ return urls
186
+
187
+ # ┌────────────────────┐
188
+ # │ DatasetBuilder │
189
+ # └────────────────────┘
190
+
191
+ class PGLearnSmall30_ieee(hfd.ArrowBasedBuilder):
192
+ """DatasetBuilder for PGLearn-Small-30_ieee.
193
+ The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
194
+
195
+ ```python
196
+ from datasets import load_dataset
197
+ ds = load_dataset("PGLearn/PGLearn-Small-30_ieee", trust_remote_code=True,
198
+ # modify the default configuration by passing kwargs
199
+ formulations=["DCOPF"],
200
+ dual=False,
201
+ meta=False,
202
+ )
203
+ ```
204
+ """
205
+
206
+ DEFAULT_WRITER_BATCH_SIZE = 10000
207
+ BUILDER_CONFIG_CLASS = PGLearnSmall30_ieeeConfig
208
+ DEFAULT_CONFIG_NAME=CASENAME
209
+ BUILDER_CONFIGS = [
210
+ PGLearnSmall30_ieeeConfig(
211
+ name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
212
+ formulations=list(FORMULATIONS_TO_FEATURES.keys()),
213
+ primal=True, dual=True, meta=True, input=True, casejson=True,
214
+ train=True, test=True, infeasible=False,
215
+ )
216
+ ]
217
+
218
+ def _info(self):
219
+ return hfd.DatasetInfo(
220
+ features=self.config.features, splits=self.config.splits,
221
+ description=DESCRIPTION + self.config.description,
222
+ homepage=URL, citation=CITATION,
223
+ )
224
+
225
+ def _split_generators(self, dl_manager: hfd.DownloadManager):
226
+ hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
227
+
228
+ filepaths = dl_manager.download_and_extract(self.config.urls)
229
+
230
+ splits: list[hfd.SplitGenerator] = []
231
+ if self.config.train:
232
+ splits.append(hfd.SplitGenerator(
233
+ name=hfd.Split.TRAIN,
234
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
235
+ ))
236
+ if self.config.test:
237
+ splits.append(hfd.SplitGenerator(
238
+ name=hfd.Split.TEST,
239
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
240
+ ))
241
+ if self.config.infeasible:
242
+ splits.append(hfd.SplitGenerator(
243
+ name=hfd.Split("infeasible"),
244
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
245
+ ))
246
+ return splits
247
+
248
+ def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str], n_samples: int):
249
+ case_data: str | None = json.dumps(json.load(open_maybe_gzip(case_file))) if case_file is not None else None
250
+
251
+ opened_files = [open_maybe_gzip(file) for file in data_files]
252
+ data = {'/'.join(Path(df.get_origin()).parts[-2:]).split('.')[0]: h5py.File(of) for of, df in zip(opened_files, data_files)}
253
+ for k in list(data.keys()):
254
+ if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
255
+
256
+ batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
257
+ for i in range(0, n_samples, batch_size):
258
+ effective_batch_size = min(batch_size, n_samples - i)
259
+
260
+ sample_data = {
261
+ f"{dk}/{k}":
262
+ hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
263
+ for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
264
+ }
265
+
266
+ if case_data is not None:
267
+ sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
268
+
269
+ yield i, pa.Table.from_pydict(sample_data)
270
+
271
+ for f in opened_files:
272
+ f.close()
273
+
274
+ # ┌──────────────┐
275
+ # │ Features │
276
+ # └──────────────┘
277
+
278
+ FLOAT_TYPE = "float32"
279
+ INT_TYPE = "int64"
280
+ BOOL_TYPE = "bool"
281
+ STRING_TYPE = "string"
282
+
283
+ def case_features():
284
+ # FIXME: better way to share schema of case data -- need to treat jagged arrays
285
+ return {
286
+ "case/json": hfd.Value(STRING_TYPE),
287
+ }
288
+
289
+ META_FEATURES = {
290
+ "meta/seed": hfd.Value(dtype=INT_TYPE),
291
+ "meta/formulation": hfd.Value(dtype=STRING_TYPE),
292
+ "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
293
+ "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
294
+ "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
295
+ "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
296
+ "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
297
+ "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
298
+ "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
299
+ "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
300
+ }
301
+
302
+ def input_features(sizes: CaseSizes):
303
+ return {
304
+ "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
305
+ "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
306
+ "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
307
+ "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
308
+ "input/seed": hfd.Value(dtype=INT_TYPE),
309
+ }
310
+
311
+ def acopf_primal_features(sizes: CaseSizes):
312
+ return {
313
+ "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
314
+ "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
315
+ "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
316
+ "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
317
+ "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
318
+ "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
319
+ "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
320
+ "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
321
+ }
322
+ def acopf_dual_features(sizes: CaseSizes):
323
+ return {
324
+ "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
325
+ "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
326
+ "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
327
+ "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
328
+ "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
329
+ "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
330
+ "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
331
+ "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
332
+ "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
333
+ "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
334
+ "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
335
+ "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
336
+ "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
337
+ "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
+ "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
+ "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
+ "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
341
+ }
342
+ def dcopf_primal_features(sizes: CaseSizes):
343
+ return {
344
+ "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
345
+ "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
346
+ "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
347
+ }
348
+ def dcopf_dual_features(sizes: CaseSizes):
349
+ return {
350
+ "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
+ "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
+ "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
+ "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
+ "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
+ "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
356
+ }
357
+ def socopf_primal_features(sizes: CaseSizes):
358
+ return {
359
+ "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
+ "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
+ "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
+ "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
+ "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
364
+ "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
365
+ "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
366
+ "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
367
+ "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
368
+ }
369
+ def socopf_dual_features(sizes: CaseSizes):
370
+ return {
371
+ "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
372
+ "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
373
+ "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
+ "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
+ "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
+ "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
+ "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
378
+ "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
379
+ "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
380
+ "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
381
+ "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
382
+ "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
383
+ "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
384
+ "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
385
+ "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
386
+ "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
387
+ "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
388
+ "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
389
+ "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
390
+ }
391
+
392
+ # ┌───────────────┐
393
+ # │ Utilities │
394
+ # └───────────────┘
395
+
396
+ def open_maybe_gzip(path):
397
+ return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (30_ieee)
9
+ task_categories:
10
+ - tabular-regression
11
+ ---
case.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c284d9a6a0ca63298f98cc8f53892f3f0253b72a8bb181f344c9db88f7a496ee
3
+ size 24607
config.toml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Name of the reference PGLib case. Must be a valid PGLib case name.
2
+ pglib_case = "pglib_opf_case30_ieee"
3
+ floating_point_type = "Float32"
4
+
5
+ [sampler]
6
+ # data sampler options
7
+ [sampler.load]
8
+ noise_type = "ScaledUniform"
9
+ l = 0.6 # Lower bound of base load factor
10
+ u = 1.0 # Upper bound of base load factor
11
+ sigma = 0.20 # Relative (multiplicative) noise level.
12
+
13
+
14
+ [OPF]
15
+
16
+ [OPF.ACOPF]
17
+ type = "ACOPF"
18
+ solver.name = "Ipopt"
19
+ solver.attributes.tol = 1e-6
20
+ solver.attributes.linear_solver = "ma27"
21
+
22
+ [OPF.DCOPF]
23
+ # Formulation/solver options
24
+ type = "DCOPF"
25
+ solver.name = "HiGHS"
26
+
27
+ [OPF.SOCOPF]
28
+ type = "SOCOPF"
29
+ solver.name = "Clarabel"
30
+ # Tight tolerances
31
+ solver.attributes.tol_gap_abs = 1e-6
32
+ solver.attributes.tol_gap_rel = 1e-6
33
+ solver.attributes.tol_feas = 1e-6
34
+ solver.attributes.tol_infeas_rel = 1e-6
35
+ solver.attributes.tol_ktratio = 1e-6
36
+ # Reduced accuracy settings
37
+ solver.attributes.reduced_tol_gap_abs = 1e-6
38
+ solver.attributes.reduced_tol_gap_rel = 1e-6
39
+ solver.attributes.reduced_tol_feas = 1e-6
40
+ solver.attributes.reduced_tol_infeas_abs = 1e-6
41
+ solver.attributes.reduced_tol_infeas_rel = 1e-6
42
+ solver.attributes.reduced_tol_ktratio = 1e-6
infeasible/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c20d000d865807da3417cae7ad14c717711c29282fb9b5241c6cad096dd7305
3
+ size 16104833
infeasible/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c87ec1c8b5326fce02d19ed9ce6a9c9489211da93619f97a736421eea41e229
3
+ size 305417
infeasible/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05b37df707e8ed264a8ac73e2b95e6ad4cacf5cdc3520fe745c2a5a870aef4ee
3
+ size 7012506
infeasible/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39cfbef45f0fa36bb0b27a034341ce4521d5be9de600c44bfcc4ba2807b1bd26
3
+ size 31479
infeasible/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd22f4d4c13f5859b8d4c984754a2d9658bab4a2f5a439e794f9e8c37e073262
3
+ size 294761
infeasible/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80fafbe301eaf272f4da13d5618721023f946ed5b3209207f5a0bdd5fa74c9da
3
+ size 2069954
infeasible/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2338fd367d799b1da0c03e81149cab5b6d88ef5bb513947a48e9dea7f185fb41
3
+ size 29350552
infeasible/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9372e55aa7c342dcc5078c3b13ae5f8017479b284ee4a4ccd3b1ad6c1e5000b3
3
+ size 305823
infeasible/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943df0ac811151a88a794b9c5b2a632ee6a2c7c6d669a5befd5fd317c91ee77c
3
+ size 8794792
infeasible/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ff6dcbce6848c221168d72641d2adc46754f100110fbf0130886376b1bf2062
3
+ size 1332072
test/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1532e7d2ddf269ddf4c92217bdeb4483451c87d7cb7e63bed2cf961dea467918
3
+ size 362998625
test/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:862a284b50e387eb34871ddfee7f299706b5f87729c3c09c7d32490c6ab49772
3
+ size 6581081
test/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b335bc0d51c10648bef24601bfeecdaed145b66ad3762661ed7973942b89f2f7
3
+ size 160756014
test/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77b2c8eeded4b12f67d7dc11c0025d60d65db71b3a569191171d504902a73725
3
+ size 790004
test/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abf523a6663aabe846de36f1f8cfe68ad9107a9921db67942f5d0ad60cbef332
3
+ size 6414138
test/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bcec317bc15b998ead8a4d13899f134933897606f0aa73521b34cb22279c002
3
+ size 48556675
test/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe918e25adc5f265d07014be86d4c9e9c6e0b2926161a77f1dd674ca737a7e5d
3
+ size 680100143
test/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d07bfa529e3d3bb8a3d706f5d440ffed5668cc86928321cdd685c41688f9175e
3
+ size 6707765
test/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddcad4f02fa271104196ebd89aab9c4c8db94db36569ef4075ff61f6bdc45054
3
+ size 203099700
test/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18242fe43981901a2f55be4af7cd02bd3488b624123b96d1796f36ebdcad9336
3
+ size 30419876
train/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a1fb7903b08f48252287b617ea3a4cdac8386c8cdec8a73c070d3699345a3ca
3
+ size 1451936678
train/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c21b0bbf256cf38b00ac81fb6d66d2a73a0d9cd359ad704cbd8e8a260edc9d
3
+ size 26231099
train/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca31f6016f3c9be5c81fe4bcbd82fca835ce16bfe790bb53ebda2765b59b9d67
3
+ size 643004394
train/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50f41ad649e36e9e6d5bf90305e1daf87e7c9cdeb3365ed241a2d915e1a51fb5
3
+ size 3152305
train/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dafcf0a235090b75c56ca635c9676aa47089d9429dc3df222ab015f08380987b
3
+ size 25566500
train/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4fb4e709122f04fc2ce411dad41039f111d637b794fee5d8aef615a2d27d4ea
3
+ size 194224103
train/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34c54635eb27a961de843576dc286d900978994837b116f161c18d2b06a03d0d
3
+ size 2720348366
train/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71a85be20096417f56ddada2eab59558e4dc205d739925949d03c3f856cfccf2
3
+ size 26740969
train/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407732d22e44e964005720166ecd0c08900dfc13b3a833898878c29ee3f52bcf
3
+ size 812385172
train/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c24cf9c25e426a7f46756abb978cae7c260754081bb0f7220b47584e2b10cf5
3
+ size 121652540