AnAutomaticPencil's picture
data preprocessing update
a6326c7
import os
from utils import parse, read_json_file, write_jsonl_file, choices
import re
from tqdm import tqdm
import random
options = list(range(4))
def refine_roles_of_dialog(example):
final = example["options"][0][0]
assert final.lower() in ["m", "f"]
lowercase = True
if final in ["M", "F"]:
lowercase = False
if lowercase:
turns = example["article"].split("m ; f :")
roles = ["m :", "f :"]
else:
turns = example["article"].split("M;F:")
roles = ["M:", "F:"]
role_idx = 0 if final.lower() == "m" else 1
role_idx = (role_idx + (len(turns) % 2) + 1) % 2
new_turns = []
for turn in turns:
if not turn:
continue
new_turns.append(roles[role_idx])
new_turns.append(turn)
role_idx = 1 - role_idx
return new_turns
def get_an_order_of_choices(label, sep):
wrong_choices = options[:label] + options[label + 1 :]
random.shuffle(wrong_choices)
choices_order = [label] + wrong_choices
return sep.join([choices[idx] for idx in choices_order])
def preprocess(args, split, part):
indir = os.path.join(os.path.join(args.input_dir, part), split)
outfile = os.path.join(os.path.join(args.output_dir, part), f"{split}.jsonl")
processed_data = []
for filename in tqdm(os.listdir(indir)):
filepath = os.path.join(indir, filename)
example = read_json_file(filepath)
dial = {"turn": "multi", "locale": "en", "dialog": []}
if "plus" not in part:
turns = re.split("([mf] :)", example["article"])
else:
turns = re.split("([MF]:)", example["article"])
if not turns[0]:
turns = turns[1:]
assert len(turns) % 2 == 0, example
else:
turns = refine_roles_of_dialog(example)
# print(turns)
# print(example)
for i in range(0, len(turns), 2):
role = turns[i]
utterance = turns[i + 1]
if "plus" not in part:
assert (
len(role) == 3
and role[0] in ["m", "f"]
and role[1] == " "
and role[2] == ":"
)
else:
assert len(role) == 2 and role[0] in ["M", "F"] and role[1] == ":"
if role[0].lower() == "m":
role = "male"
else:
role = "female"
dial["dialog"].append({"roles": [role], "utterance": utterance.strip()})
dial["knowledge"] = {"type": "dict", "value": {}}
for idx, option in enumerate(example["options"]):
role, utterance = option.split(":", 1)
role = role.strip().lower()
assert role in ["m", "f"]
if role == "m":
role = "male"
else:
role = "female"
# utterance = f"{role}: {utterance.strip()}"
# dial["dialog"].append(
# {"roles": [f"{choices[idx]} choice"], "utterance": utterance}
# )
dial["knowledge"]["value"][chr(ord("A") + idx)] = utterance.strip()
# label = ord(example["answers"]) - ord("A")
# assert 0 <= label < 4, example["answers"]
# This task requires to predicts the order of choices.
# NOTE: we put the correct answer at the beginning and other options are shuffled.
# dial["dialog"][-1]["roles_to_select"] = [get_an_order_of_choices(label, ", ")]
dial["dialog"][-1]["roles_to_select"] = [example["answers"]]
processed_data.append(dial)
write_jsonl_file(processed_data, outfile)
if __name__ == "__main__":
args = parse()
random.seed(args.seed)
preprocess(args, "train", "mutual")
preprocess(args, "dev", "mutual")
preprocess(args, "train", "mutual_plus")
preprocess(args, "dev", "mutual_plus")