DialogZoo / src /truncate.py
AnAutomaticPencil's picture
data preprocessing update
a6326c7
raw
history blame
8.44 kB
import argparse
import os
import shutil
from transformers import T5Tokenizer
from tqdm import tqdm
def parse():
parser = argparse.ArgumentParser()
parser.add_argument("--input-dir", type=str)
parser.add_argument("--output-dir", type=str)
parser.add_argument("--max-src-length", type=int, default=512)
parser.add_argument("--max-dialogue-history-len", type=int, default=256)
parser.add_argument("--tokenizer-path", type=str)
parser.add_argument("--special-tokens-file", type=str, default=None)
parser.add_argument(
"--truncate-side", type=str, default="left", choices=["left", "right"]
)
return parser.parse_args()
def truncate(args):
left_tokenizer = T5Tokenizer.from_pretrained(
args.tokenizer_path, truncate_side="left"
)
right_tokenizer = T5Tokenizer.from_pretrained(
args.tokenizer_path, truncate_side="right"
)
tokenizer = T5Tokenizer.from_pretrained(args.tokenizer_path)
if args.special_tokens_file is not None:
with open(args.special_tokens_file, "r") as reader:
special_tokens_dict = {
"additional_special_tokens": [
token.strip() for token in reader.readlines()
]
}
left_tokenizer.add_special_tokens(special_tokens_dict)
right_tokenizer.add_special_tokens(special_tokens_dict)
tokenizer.add_special_tokens(special_tokens_dict)
def normalize(x):
return tokenizer.decode(tokenizer(x).input_ids[:-1])
def divide_chunks(src):
prefix, postfix = src.split("]", 1)
prefix = prefix + "]"
knowledge_start_index = postfix.index("[EK]")
dialogue = postfix[: knowledge_start_index - 1]
knowledge_and_instruction = postfix[knowledge_start_index - 1 :]
instruction_start_index = knowledge_and_instruction.rfind("[C]")
knowledge = knowledge_and_instruction[: instruction_start_index - 1]
instruction = knowledge_and_instruction[instruction_start_index - 1 :]
return prefix, dialogue, knowledge, instruction
def token_num(x):
return len(tokenizer.tokenize(x))
min_knowledge_len = token_num(" [EK] None")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
print(f" {os.path.basename(args.input_dir)} ".center(70, "="))
for filename in os.listdir(args.input_dir):
if not filename.endswith(".src"):
filepath = os.path.join(args.input_dir, filename)
if not os.path.exists(os.path.join(args.output_dir, filename)):
if os.path.isfile(filepath):
shutil.copyfile(
os.path.join(args.input_dir, filename),
os.path.join(args.output_dir, filename),
)
else:
shutil.copytree(
os.path.join(args.input_dir, filename),
os.path.join(args.output_dir, filename),
)
else:
dialogue_cut_num = 0
knowledge_cut_num = 0
cut_token_num = 0
# Truncate the source file
with open(os.path.join(args.input_dir, filename), "r") as reader, open(
os.path.join(args.output_dir, filename), "w"
) as writer:
for line in tqdm(reader.readlines()):
src = line.strip()
src = normalize(src)
prefix, dialogue, knowledge, instruction = divide_chunks(src)
prefix_token_num = token_num(prefix)
dialogue_token_num = token_num(dialogue)
knowledge_token_num = token_num(knowledge)
instruction_token_num = token_num(instruction)
assert (
args.max_src_length >= prefix_token_num + instruction_token_num
)
origin_src_token_num = (
prefix_token_num
+ dialogue_token_num
+ knowledge_token_num
+ instruction_token_num
)
# origin_src_token_num = token_num(src)
# assert (
# prefix_token_num
# + dialogue_token_num
# + knowledge_token_num
# + instruction_token_num
# == origin_src_token_num
# )
if origin_src_token_num > args.max_src_length:
left_token_num = (
args.max_src_length
- prefix_token_num
- instruction_token_num
)
max_dialogue_token_num = min(
max(
args.max_dialogue_history_len,
left_token_num - knowledge_token_num,
),
left_token_num - min_knowledge_len,
)
# The dialogue is out of the maximum token number
if dialogue_token_num > max_dialogue_token_num:
# Truncate the dialogue from left or right (For DDRel)
truncate_tokenizer = (
left_tokenizer
if args.truncate_side == "left"
else right_tokenizer
)
dialogue_ids = truncate_tokenizer(
dialogue,
max_length=max_dialogue_token_num
+ 1, # +1 is for the eos
truncation=True,
).input_ids
dialogue = tokenizer.decode(dialogue_ids[:-1])
dialogue_token_num = max_dialogue_token_num
dialogue_cut_num += 1
# assert token_num(dialogue) <= dialogue_token_num
if knowledge_token_num > left_token_num - dialogue_token_num:
# Truncate the knowledge from right
knowledge_ids = right_tokenizer(
knowledge,
max_length=left_token_num - dialogue_token_num + 1,
truncation=True,
).input_ids
knowledge = tokenizer.decode(knowledge_ids[:-1])
knowledge = " " + knowledge
knowledge_token_num = left_token_num - dialogue_token_num
knowledge_cut_num += 1
# assert (
# token_num(knowledge) <= knowledge_token_num
# ), f"{knowledge_token_num}, {token_num(knowledge)}, {tokenizer.convert_ids_to_tokens(knowledge_ids)}, {knowledge_ids}"
src = (
prefix.strip()
+ " "
+ dialogue.strip()
+ " "
+ knowledge.strip()
+ " "
+ instruction.strip()
)
src_token_num = token_num(src)
# assert src_token_num <= args.max_src_length
cut_token_num += origin_src_token_num - src_token_num
prefix, dialogue, knowledge, instruction = divide_chunks(src)
prefix_token_num = token_num(prefix)
dialogue_token_num = token_num(dialogue)
knowledge_token_num = token_num(knowledge)
instruction_token_num = token_num(instruction)
writer.write(src + "\n")
print(f" {filename} ".center(40, "-"))
print(f"dialogue cut num: {dialogue_cut_num}")
print(f"knowledge cut num: {knowledge_cut_num}")
print(f"token cut num: {cut_token_num}")
if __name__ == "__main__":
truncate(parse())