|
--- |
|
language: |
|
- ko |
|
license: cc-by-nc-4.0 |
|
dataset_info: |
|
features: |
|
- name: index |
|
dtype: string |
|
- name: question |
|
dtype: string |
|
- name: choice_a |
|
dtype: string |
|
- name: choice_b |
|
dtype: string |
|
- name: choice_c |
|
dtype: string |
|
- name: choice_d |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
splits: |
|
- name: test |
|
num_bytes: 9681522.0 |
|
num_examples: 240 |
|
download_size: 3340794 |
|
dataset_size: 9681522.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
--- |
|
# K-DTCBench |
|
|
|
We introduce **K-DTCBench**, a newly developed Korean benchmark featuring both computer-generated and handwritten documents, tables, and charts. |
|
It consists of 80 questions for each image type and two questions per image, summing up to 240 questions in total. |
|
This benchmark is designed to evaluate whether vision-language models can process images in different formats and be applicable for diverse domains. |
|
All images are generated with made-up values and statements for evaluation purposes only. We scanned hand-written documents/tables/charts, or created digital objects with matplotlib library to build K-DTCBench. |
|
The proportions of digital and hand-written images are equal, each constituting 50%. |
|
|
|
|
|
For more details, Please refer to the VARCO-VISION technical report. |
|
|
|
- **Technical Report:** [VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models](https://arxiv.org/pdf/2411.19103) |
|
- **Blog(Korean):** [VARCO-VISION Technical Report Summary](https://ncsoft.github.io/ncresearch/95ad8712e60063e9ac97538504ac3eea0ac530af) |
|
- **Huggingface Version Model:** [NCSOFT/VARCO-VISION-14B-HF](https://huggingface.co/NCSOFT/VARCO-VISION-14B-HF) |
|
|
|
<table> |
|
<tr> |
|
<th>Category</th> |
|
<th>Image</th> |
|
<th>K-DTCBench</th> |
|
</tr> |
|
<tr> |
|
<td align="center">document</td> |
|
<td width=350><img src="https://cdn-uploads.huggingface.co/production/uploads/624ceaa38746b2f5773c2d1c/Ipi4HR73P-PDC5XcgP3WF.png"></td> |
|
<td> |
|
<strong>question:</strong> ๋ณด๊ณ ์์ ์ฃผ์ ๋ด์ฉ์ด ์๋ ๊ฒ์ ๋ฌด์์ธ๊ฐ์? |
|
<br> |
|
<strong>A:</strong> ์์ ์ธํ๋ผ ํ์ถฉ |
|
<br> |
|
<strong>B:</strong> ์ฌ๋ ๋ฐ ์ฌ๊ณ ์๋ฐฉ ์ฒด๊ณ ๊ตฌ์ถ |
|
<br> |
|
<strong>C:</strong> ์๋ฏผ ์์ ๊ต์ก ๊ฐํ |
|
<br> |
|
<strong>D:</strong> ๊ธด๊ธ ๋์ ์์คํ
๊ฐ์ |
|
</td> |
|
</tr> |
|
<tr> |
|
<td align="center">table</td> |
|
<td width=350><img src="https://cdn-uploads.huggingface.co/production/uploads/624ceaa38746b2f5773c2d1c/dz_FuPnpZ5P4P3LEB5PZ0.png"></td> |
|
<td> |
|
<strong>question:</strong> ์ธํ๋ผ ๊ตฌ์ถ ํญ๋ชฉ์ ์ ์๋ ๋ช ์ ์ธ๊ฐ์? |
|
<br> |
|
<strong>A:</strong> 4 |
|
<br> |
|
<strong>B:</strong> 6 |
|
<br> |
|
<strong>C:</strong> 8 |
|
<br> |
|
<strong>D:</strong> 10 |
|
</td> |
|
</tr> |
|
<tr> |
|
<td align="center">chart</td> |
|
<td width=350><img src="https://cdn-uploads.huggingface.co/production/uploads/624ceaa38746b2f5773c2d1c/IbNMPPgd974SbCAsz6zIS.png"></td> |
|
<td> |
|
<strong>question:</strong> ์ง์ฅ์ธ๋ค์ด ํด๊ทผ ํ ๋ ๋ฒ์งธ๋ก ์ ํธํ๋ ํ๋์ ๋ฌด์์ธ๊ฐ์? |
|
<br> |
|
<strong>A:</strong> ์ด๋ |
|
<br> |
|
<strong>B:</strong> ์ฌ๊ฐํ๋ |
|
<br> |
|
<strong>C:</strong> ์๊ธฐ๊ฐ๋ฐ |
|
<br> |
|
<strong>D:</strong> ํด์ |
|
</td> |
|
</tr> |
|
</table> |
|
<br> |
|
|
|
## Inference Prompt |
|
``` |
|
<image> |
|
{question} |
|
Options: A: {A}, B: {B}, C: {C}, D: {D} |
|
์ฃผ์ด์ง ์ ํ์ง ์ค ํด๋น ์ต์
์ ๋ฌธ์๋ก ์ง์ ๋ตํ์ธ์. |
|
``` |
|
|
|
<br> |
|
|
|
## Results |
|
Below are the evaluation results of various vision-language models, including [VARCO-VISION-14B](https://huggingface.co/NCSOFT/VARCO-VISION-14B) on K-DTCBench. |
|
|
|
| | VARCO-VISION-14B | Pangea-7B | Pixtral-12B | Molmo-7B-D | Qwen2-VL-7B-Instruct | LLaVA-One-Vision-7B | |
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| K-DTCBench | **84.58** | 48.33 | 27.50 | 45.83 | 75.00 | 52.91 | |
|
|
|
<br> |
|
|
|
## Citation |
|
If you use K-DTCBench in your research, please cite the following: |
|
```bibtex |
|
@misc{ju2024varcovisionexpandingfrontierskorean, |
|
title={VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models}, |
|
author={Jeongho Ju and Daeyoung Kim and SunYoung Park and Youngjune Kim}, |
|
year={2024}, |
|
eprint={2411.19103}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2411.19103}, |
|
} |
|
``` |