parquet-converter commited on
Commit
d9936bd
·
1 Parent(s): 1d1636c

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,39 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
38
- data filter=lfs diff=lfs merge=lfs -text
39
- *.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,250 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - no-annotation
4
- language_creators:
5
- - found
6
- language:
7
- - en
8
- license:
9
- - apache-2.0
10
- multilinguality:
11
- - monolingual
12
- pretty_name: UnpredicTable-cluster28
13
- size_categories:
14
- - 100K<n<1M
15
- source_datasets: []
16
- task_categories:
17
- - multiple-choice
18
- - question-answering
19
- - zero-shot-classification
20
- - text2text-generation
21
- - table-question-answering
22
- - text-generation
23
- - text-classification
24
- - tabular-classification
25
- task_ids:
26
- - multiple-choice-qa
27
- - extractive-qa
28
- - open-domain-qa
29
- - closed-domain-qa
30
- - closed-book-qa
31
- - open-book-qa
32
- - language-modeling
33
- - multi-class-classification
34
- - natural-language-inference
35
- - topic-classification
36
- - multi-label-classification
37
- - tabular-multi-class-classification
38
- - tabular-multi-label-classification
39
- ---
40
-
41
-
42
- # Dataset Card for "UnpredicTable-cluster28" - Dataset of Few-shot Tasks from Tables
43
-
44
- ## Table of Contents
45
- - [Dataset Description](#dataset-description)
46
- - [Dataset Summary](#dataset-summary)
47
- - [Supported Tasks](#supported-tasks-and-leaderboards)
48
- - [Languages](#languages)
49
- - [Dataset Structure](#dataset-structure)
50
- - [Data Instances](#data-instances)
51
- - [Data Fields](#data-instances)
52
- - [Data Splits](#data-instances)
53
- - [Dataset Creation](#dataset-creation)
54
- - [Curation Rationale](#curation-rationale)
55
- - [Source Data](#source-data)
56
- - [Annotations](#annotations)
57
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
58
- - [Considerations for Using the Data](#considerations-for-using-the-data)
59
- - [Social Impact of Dataset](#social-impact-of-dataset)
60
- - [Discussion of Biases](#discussion-of-biases)
61
- - [Other Known Limitations](#other-known-limitations)
62
- - [Additional Information](#additional-information)
63
- - [Dataset Curators](#dataset-curators)
64
- - [Licensing Information](#licensing-information)
65
- - [Citation Information](#citation-information)
66
-
67
- ## Dataset Description
68
-
69
- - **Homepage:** https://ethanperez.net/unpredictable
70
- - **Repository:** https://github.com/JunShern/few-shot-adaptation
71
- - **Paper:** Few-shot Adaptation Works with UnpredicTable Data
72
- - **Point of Contact:** junshern@nyu.edu, perez@nyu.edu
73
-
74
- ### Dataset Summary
75
-
76
- The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance.
77
-
78
- There are several dataset versions available:
79
-
80
- * [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full): Starting from the initial WTC corpus of 50M tables, we apply our tables-to-tasks procedure to produce our resulting dataset, [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full), which comprises 413,299 tasks from 23,744 unique websites.
81
-
82
- * [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique): This is the same as [UnpredicTable-full](https://huggingface.co/datasets/MicPie/unpredictable_full) but filtered to have a maximum of one task per website. [UnpredicTable-unique](https://huggingface.co/datasets/MicPie/unpredictable_unique) contains exactly 23,744 tasks from 23,744 websites.
83
-
84
- * [UnpredicTable-5k](https://huggingface.co/datasets/MicPie/unpredictable_5k): This dataset contains 5k random tables from the full dataset.
85
-
86
- * UnpredicTable data subsets based on a manual human quality rating (please see our publication for details of the ratings):
87
- * [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low)
88
- * [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium)
89
- * [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high)
90
-
91
- * UnpredicTable data subsets based on the website of origin:
92
- * [UnpredicTable-baseball-fantasysports-yahoo-com](https://huggingface.co/datasets/MicPie/unpredictable_baseball-fantasysports-yahoo-com)
93
- * [UnpredicTable-bulbapedia-bulbagarden-net](https://huggingface.co/datasets/MicPie/unpredictable_bulbapedia-bulbagarden-net)
94
- * [UnpredicTable-cappex-com](https://huggingface.co/datasets/MicPie/unpredictable_cappex-com)
95
- * [UnpredicTable-cram-com](https://huggingface.co/datasets/MicPie/unpredictable_cram-com)
96
- * [UnpredicTable-dividend-com](https://huggingface.co/datasets/MicPie/unpredictable_dividend-com)
97
- * [UnpredicTable-dummies-com](https://huggingface.co/datasets/MicPie/unpredictable_dummies-com)
98
- * [UnpredicTable-en-wikipedia-org](https://huggingface.co/datasets/MicPie/unpredictable_en-wikipedia-org)
99
- * [UnpredicTable-ensembl-org](https://huggingface.co/datasets/MicPie/unpredictable_ensembl-org)
100
- * [UnpredicTable-gamefaqs-com](https://huggingface.co/datasets/MicPie/unpredictable_gamefaqs-com)
101
- * [UnpredicTable-mgoblog-com](https://huggingface.co/datasets/MicPie/unpredictable_mgoblog-com)
102
- * [UnpredicTable-mmo-champion-com](https://huggingface.co/datasets/MicPie/unpredictable_mmo-champion-com)
103
- * [UnpredicTable-msdn-microsoft-com](https://huggingface.co/datasets/MicPie/unpredictable_msdn-microsoft-com)
104
- * [UnpredicTable-phonearena-com](https://huggingface.co/datasets/MicPie/unpredictable_phonearena-com)
105
- * [UnpredicTable-sittercity-com](https://huggingface.co/datasets/MicPie/unpredictable_sittercity-com)
106
- * [UnpredicTable-sporcle-com](https://huggingface.co/datasets/MicPie/unpredictable_sporcle-com)
107
- * [UnpredicTable-studystack-com](https://huggingface.co/datasets/MicPie/unpredictable_studystack-com)
108
- * [UnpredicTable-support-google-com](https://huggingface.co/datasets/MicPie/unpredictable_support-google-com)
109
- * [UnpredicTable-w3-org](https://huggingface.co/datasets/MicPie/unpredictable_w3-org)
110
- * [UnpredicTable-wiki-openmoko-org](https://huggingface.co/datasets/MicPie/unpredictable_wiki-openmoko-org)
111
- * [UnpredicTable-wkdu-org](https://huggingface.co/datasets/MicPie/unpredictable_wkdu-org)
112
-
113
-
114
- * UnpredicTable data subsets based on clustering (for the clustering details please see our publication):
115
- * [UnpredicTable-cluster00](https://huggingface.co/datasets/MicPie/unpredictable_cluster00)
116
- * [UnpredicTable-cluster01](https://huggingface.co/datasets/MicPie/unpredictable_cluster01)
117
- * [UnpredicTable-cluster02](https://huggingface.co/datasets/MicPie/unpredictable_cluster02)
118
- * [UnpredicTable-cluster03](https://huggingface.co/datasets/MicPie/unpredictable_cluster03)
119
- * [UnpredicTable-cluster04](https://huggingface.co/datasets/MicPie/unpredictable_cluster04)
120
- * [UnpredicTable-cluster05](https://huggingface.co/datasets/MicPie/unpredictable_cluster05)
121
- * [UnpredicTable-cluster06](https://huggingface.co/datasets/MicPie/unpredictable_cluster06)
122
- * [UnpredicTable-cluster07](https://huggingface.co/datasets/MicPie/unpredictable_cluster07)
123
- * [UnpredicTable-cluster08](https://huggingface.co/datasets/MicPie/unpredictable_cluster08)
124
- * [UnpredicTable-cluster09](https://huggingface.co/datasets/MicPie/unpredictable_cluster09)
125
- * [UnpredicTable-cluster10](https://huggingface.co/datasets/MicPie/unpredictable_cluster10)
126
- * [UnpredicTable-cluster11](https://huggingface.co/datasets/MicPie/unpredictable_cluster11)
127
- * [UnpredicTable-cluster12](https://huggingface.co/datasets/MicPie/unpredictable_cluster12)
128
- * [UnpredicTable-cluster13](https://huggingface.co/datasets/MicPie/unpredictable_cluster13)
129
- * [UnpredicTable-cluster14](https://huggingface.co/datasets/MicPie/unpredictable_cluster14)
130
- * [UnpredicTable-cluster15](https://huggingface.co/datasets/MicPie/unpredictable_cluster15)
131
- * [UnpredicTable-cluster16](https://huggingface.co/datasets/MicPie/unpredictable_cluster16)
132
- * [UnpredicTable-cluster17](https://huggingface.co/datasets/MicPie/unpredictable_cluster17)
133
- * [UnpredicTable-cluster18](https://huggingface.co/datasets/MicPie/unpredictable_cluster18)
134
- * [UnpredicTable-cluster19](https://huggingface.co/datasets/MicPie/unpredictable_cluster19)
135
- * [UnpredicTable-cluster20](https://huggingface.co/datasets/MicPie/unpredictable_cluster20)
136
- * [UnpredicTable-cluster21](https://huggingface.co/datasets/MicPie/unpredictable_cluster21)
137
- * [UnpredicTable-cluster22](https://huggingface.co/datasets/MicPie/unpredictable_cluster22)
138
- * [UnpredicTable-cluster23](https://huggingface.co/datasets/MicPie/unpredictable_cluster23)
139
- * [UnpredicTable-cluster24](https://huggingface.co/datasets/MicPie/unpredictable_cluster24)
140
- * [UnpredicTable-cluster25](https://huggingface.co/datasets/MicPie/unpredictable_cluster25)
141
- * [UnpredicTable-cluster26](https://huggingface.co/datasets/MicPie/unpredictable_cluster26)
142
- * [UnpredicTable-cluster27](https://huggingface.co/datasets/MicPie/unpredictable_cluster27)
143
- * [UnpredicTable-cluster28](https://huggingface.co/datasets/MicPie/unpredictable_cluster28)
144
- * [UnpredicTable-cluster29](https://huggingface.co/datasets/MicPie/unpredictable_cluster29)
145
- * [UnpredicTable-cluster-noise](https://huggingface.co/datasets/MicPie/unpredictable_cluster-noise)
146
-
147
- ### Supported Tasks and Leaderboards
148
-
149
- Since the tables come from the web, the distribution of tasks and topics is very broad. The shape of our dataset is very wide, i.e., we have 1000's of tasks, while each task has only a few examples, compared to most current NLP datasets which are very deep, i.e., 10s of tasks with many examples. This implies that our dataset covers a broad range of potential tasks, e.g., multiple-choice, question-answering, table-question-answering, text-classification, etc.
150
-
151
- The intended use of this dataset is to improve few-shot performance by fine-tuning/pre-training on our dataset.
152
-
153
- ### Languages
154
-
155
- English
156
-
157
- ## Dataset Structure
158
-
159
- ### Data Instances
160
-
161
- Each task is represented as a jsonline file and consists of several few-shot examples. Each example is a dictionary containing a field 'task', which identifies the task, followed by an 'input', 'options', and 'output' field. The 'input' field contains several column elements of the same row in the table, while the 'output' field is a target which represents an individual column of the same row. Each task contains several such examples which can be concatenated as a few-shot task. In the case of multiple choice classification, the 'options' field contains the possible classes that a model needs to choose from.
162
-
163
- There are also additional meta-data fields such as 'pageTitle', 'title', 'outputColName', 'url', 'wdcFile'.
164
-
165
- ### Data Fields
166
-
167
- 'task': task identifier
168
-
169
- 'input': column elements of a specific row in the table.
170
-
171
- 'options': for multiple choice classification, it provides the options to choose from.
172
-
173
- 'output': target column element of the same row as input.
174
-
175
- 'pageTitle': the title of the page containing the table.
176
-
177
- 'outputColName': output column name
178
-
179
- 'url': url to the website containing the table
180
-
181
- 'wdcFile': WDC Web Table Corpus file
182
-
183
- ### Data Splits
184
-
185
- The UnpredicTable datasets do not come with additional data splits.
186
-
187
- ## Dataset Creation
188
-
189
- ### Curation Rationale
190
-
191
- Few-shot training on multi-task datasets has been demonstrated to improve language models' few-shot learning (FSL) performance on new tasks, but it is unclear which training tasks lead to effective downstream task adaptation. Few-shot learning datasets are typically produced with expensive human curation, limiting the scale and diversity of the training tasks available to study. As an alternative source of few-shot data, we automatically extract 413,299 tasks from diverse internet tables. We provide this as a research resource to investigate the relationship between training data and few-shot learning.
192
-
193
- ### Source Data
194
-
195
- #### Initial Data Collection and Normalization
196
-
197
- We use internet tables from the English-language Relational Subset of the WDC Web Table Corpus 2015 (WTC). The WTC dataset tables were extracted from the July 2015 Common Crawl web corpus (http://webdatacommons.org/webtables/2015/EnglishStatistics.html). The dataset contains 50,820,165 tables from 323,160 web domains. We then convert the tables into few-shot learning tasks. Please see our publication for more details on the data collection and conversion pipeline.
198
-
199
- #### Who are the source language producers?
200
-
201
- The dataset is extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/).
202
-
203
- ### Annotations
204
-
205
- #### Annotation process
206
-
207
- Manual annotation was only carried out for the [UnpredicTable-rated-low](https://huggingface.co/datasets/MicPie/unpredictable_rated-low),
208
- [UnpredicTable-rated-medium](https://huggingface.co/datasets/MicPie/unpredictable_rated-medium), and [UnpredicTable-rated-high](https://huggingface.co/datasets/MicPie/unpredictable_rated-high) data subsets to rate task quality. Detailed instructions of the annotation instructions can be found in our publication.
209
-
210
- #### Who are the annotators?
211
-
212
- Annotations were carried out by a lab assistant.
213
-
214
- ### Personal and Sensitive Information
215
-
216
- The data was extracted from [WDC Web Table Corpora](http://webdatacommons.org/webtables/), which in turn extracted tables from the [Common Crawl](https://commoncrawl.org/). We did not filter the data in any way. Thus any user identities or otherwise sensitive information (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history, etc.) might be contained in our dataset.
217
-
218
- ## Considerations for Using the Data
219
-
220
- ### Social Impact of Dataset
221
-
222
- This dataset is intended for use as a research resource to investigate the relationship between training data and few-shot learning. As such, it contains high- and low-quality data, as well as diverse content that may be untruthful or inappropriate. Without careful investigation, it should not be used for training models that will be deployed for use in decision-critical or user-facing situations.
223
-
224
- ### Discussion of Biases
225
-
226
- Since our dataset contains tables that are scraped from the web, it will also contain many toxic, racist, sexist, and otherwise harmful biases and texts. We have not run any analysis on the biases prevalent in our datasets. Neither have we explicitly filtered the content. This implies that a model trained on our dataset may potentially reflect harmful biases and toxic text that exist in our dataset.
227
-
228
- ### Other Known Limitations
229
-
230
- No additional known limitations.
231
-
232
- ## Additional Information
233
-
234
- ### Dataset Curators
235
- Jun Shern Chan, Michael Pieler, Jonathan Jao, Jérémy Scheurer, Ethan Perez
236
-
237
- ### Licensing Information
238
- Apache 2.0
239
-
240
- ### Citation Information
241
-
242
- ```
243
- @misc{chan2022few,
244
- author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
245
- title = {Few-shot Adaptation Works with UnpredicTable Data},
246
- publisher={arXiv},
247
- year = {2022},
248
- url = {https://arxiv.org/abs/2208.01009}
249
- }
250
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/unpredictable_cluster28.jsonl → default/unpredictable_cluster28-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:97fddebf9f6dd667eed2bf7dfe0ea789eeca9d366e65e4e97c52b3fbcde51b65
3
- size 27037656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4cd044f5242a51a6bba59e7d9c12f4fc1e9ff793f55856ce88b0c5cb91463b2
3
+ size 4237631
unpredictable_cluster28.py DELETED
@@ -1,98 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """This loads the UnpredicTable-cluster28 dataset."""
15
-
16
- import json
17
- import os
18
- import pandas as pd
19
-
20
- import datasets
21
-
22
-
23
- _CITATION = """\
24
- @misc{chan2022few,
25
- author = {Chan, Jun Shern and Pieler, Michael and Jao, Jonathan and Scheurer, Jérémy and Perez, Ethan},
26
- title = {Few-shot Adaptation Works with UnpredicTable Data},
27
- publisher={arXiv},
28
- year = {2022},
29
- url = {https://arxiv.org/abs/2208.01009}
30
- }
31
- """
32
-
33
- _DESCRIPTION = """\
34
- The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card.
35
- """
36
-
37
- _HOMEPAGE = "https://ethanperez.net/unpredictable"
38
-
39
- _LICENSE = "Apache 2.0"
40
-
41
- _URL = "https://huggingface.co/datasets/MicPie/unpredictable_cluster28/resolve/main/data/unpredictable_cluster28.jsonl"
42
-
43
- logger = datasets.logging.get_logger(__name__)
44
-
45
-
46
- class UnpredicTable(datasets.GeneratorBasedBuilder):
47
- """
48
- The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card.
49
- """
50
-
51
- VERSION = datasets.Version("1.0.0")
52
-
53
- def _info(self):
54
- features = datasets.Features(
55
- {
56
- "task": datasets.Value("string"),
57
- "input": datasets.Value("string"),
58
- "output": datasets.Value("string"),
59
- "options": datasets.Sequence([datasets.Value("string")]),
60
- "pageTitle": datasets.Value("string"),
61
- "outputColName": datasets.Value("string"),
62
- "url": datasets.Value("string"),
63
- "wdcFile": datasets.Value("string")
64
- }
65
- )
66
- return datasets.DatasetInfo(
67
- description=_DESCRIPTION,
68
- features=features,
69
- license=_LICENSE,
70
- citation=_CITATION,
71
- )
72
-
73
- def _split_generators(self, dl_manager):
74
- """Returns SplitGenerators."""
75
- data_dir = dl_manager.download_and_extract(_URL)
76
- return [
77
- datasets.SplitGenerator(
78
- name=datasets.Split.TRAIN,
79
- gen_kwargs={"filepath": data_dir},
80
- ),
81
- ]
82
-
83
- def _generate_examples(self, filepath):
84
- """Yields examples."""
85
- with open(filepath, encoding="utf-8") as f:
86
- for i, row in enumerate(f):
87
- data = json.loads(row)
88
- key = f"{data['task']}_{i}"
89
- yield key, {
90
- "task": data["task"],
91
- "input": data["input"],
92
- "output": data["output"],
93
- "options": data["options"],
94
- "pageTitle": data["pageTitle"],
95
- "outputColName": data["outputColName"],
96
- "url": data["url"],
97
- "wdcFile": data["wdcFile"],
98
- }