|
|
import torch.nn as nn |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from modules.build import HEADS_REGISTRY |
|
|
from modules.utils import get_mlp_head |
|
|
|
|
|
|
|
|
class FC(nn.Module): |
|
|
def __init__(self, in_size, out_size, pdrop=0., use_gelu=True): |
|
|
super(FC, self).__init__() |
|
|
self.pdrop = pdrop |
|
|
self.use_gelu = use_gelu |
|
|
self.linear = nn.Linear(in_size, out_size) |
|
|
if use_gelu: |
|
|
|
|
|
self.gelu = nn.GELU() |
|
|
if pdrop > 0: |
|
|
self.dropout = nn.Dropout(pdrop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.linear(x) |
|
|
if self.use_gelu: |
|
|
|
|
|
x = self.gelu(x) |
|
|
if self.pdrop > 0: |
|
|
x = self.dropout(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
def __init__(self, in_size, mid_size, out_size, pdrop=0., use_gelu=True): |
|
|
super().__init__() |
|
|
self.fc = FC(in_size, mid_size, pdrop=pdrop, use_gelu=use_gelu) |
|
|
self.linear = nn.Linear(mid_size, out_size) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.linear(self.fc(x)) |
|
|
|
|
|
|
|
|
class AttFlat(nn.Module): |
|
|
def __init__(self, hidden_size, flat_mlp_size=512, flat_glimpses=1, flat_out_size=1024, pdrop=0.1): |
|
|
super().__init__() |
|
|
self.mlp = MLP( |
|
|
in_size=hidden_size, |
|
|
mid_size=flat_mlp_size, |
|
|
out_size=flat_glimpses, |
|
|
pdrop=pdrop, |
|
|
use_gelu=True |
|
|
) |
|
|
self.flat_glimpses = flat_glimpses |
|
|
self.linear_merge = nn.Linear( |
|
|
hidden_size * flat_glimpses, |
|
|
flat_out_size |
|
|
) |
|
|
|
|
|
def forward(self, x, x_mask): |
|
|
att = self.mlp(x) |
|
|
if x_mask is not None: |
|
|
|
|
|
att = att.masked_fill(x_mask.unsqueeze(2), -1e9) |
|
|
att = F.softmax(att, dim=1) |
|
|
att_list = [] |
|
|
for i in range(self.flat_glimpses): |
|
|
att_list.append( |
|
|
torch.sum(att[:, :, i: i + 1] * x, dim=1) |
|
|
) |
|
|
x_atted = torch.cat(att_list, dim=1) |
|
|
x_atted = self.linear_merge(x_atted) |
|
|
return x_atted |
|
|
|
|
|
|
|
|
@HEADS_REGISTRY.register() |
|
|
class GroundHeadV1(nn.Module): |
|
|
def __init__(self, cfg, input_size=768, hidden_size=768, sem_cls_size=607, dropout=0.3, detach_all_aux_loss=False, num_answers = 80): |
|
|
super().__init__() |
|
|
image_embed_dim = 512 |
|
|
text_embed_dim = 1024 |
|
|
mlp_size = 256 |
|
|
glimpse = 1 |
|
|
flat_out_size = 512 |
|
|
|
|
|
self.attflat_visual = AttFlat(image_embed_dim, mlp_size, glimpse, flat_out_size, 0.1) |
|
|
self.attflat_lang = AttFlat(text_embed_dim, mlp_size, glimpse, flat_out_size, 0.1) |
|
|
self.answer_cls = nn.Sequential( |
|
|
nn.Linear(flat_out_size, hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Dropout(0.3), |
|
|
nn.Linear(hidden_size, num_answers) |
|
|
) |
|
|
self.fusion_norm = nn.LayerNorm(flat_out_size) |
|
|
|
|
|
def forward(self, pm_embeds, txt_embeds, txt_masks): |
|
|
object_feat = self.attflat_visual(pm_embeds, None) |
|
|
lang_feat = self.attflat_lang(txt_embeds.float(), txt_masks) |
|
|
fuse_feat = self.fusion_norm(lang_feat + object_feat) |
|
|
answer_scores = self.answer_cls(fuse_feat) |
|
|
return answer_scores |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@HEADS_REGISTRY.register() |
|
|
class GroundHead(nn.Module): |
|
|
def __init__(self, cfg, input_size=768, hidden_size=768, dropout=0.3): |
|
|
super().__init__() |
|
|
self.og3d_head = get_mlp_head( |
|
|
input_size, hidden_size, |
|
|
1, dropout=dropout |
|
|
) |
|
|
|
|
|
def forward(self, obj_embeds, obj_masks=None, **kwargs): |
|
|
og3d_logits = self.og3d_head(obj_embeds).squeeze(2) |
|
|
if obj_masks is not None: |
|
|
og3d_logits = og3d_logits.masked_fill_(obj_masks.logical_not(), -float('inf')) |
|
|
return og3d_logits |
|
|
|