backup / modules /heads /grounding_head.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import torch.nn as nn
import torch
import torch.nn.functional as F
from modules.build import HEADS_REGISTRY
from modules.utils import get_mlp_head
class FC(nn.Module):
def __init__(self, in_size, out_size, pdrop=0., use_gelu=True):
super(FC, self).__init__()
self.pdrop = pdrop
self.use_gelu = use_gelu
self.linear = nn.Linear(in_size, out_size)
if use_gelu:
# self.relu = nn.Relu(inplace=True)
self.gelu = nn.GELU()
if pdrop > 0:
self.dropout = nn.Dropout(pdrop)
def forward(self, x):
x = self.linear(x)
if self.use_gelu:
# x = self.relu(x)
x = self.gelu(x)
if self.pdrop > 0:
x = self.dropout(x)
return x
class MLP(nn.Module):
def __init__(self, in_size, mid_size, out_size, pdrop=0., use_gelu=True):
super().__init__()
self.fc = FC(in_size, mid_size, pdrop=pdrop, use_gelu=use_gelu)
self.linear = nn.Linear(mid_size, out_size)
def forward(self, x):
return self.linear(self.fc(x))
class AttFlat(nn.Module):
def __init__(self, hidden_size, flat_mlp_size=512, flat_glimpses=1, flat_out_size=1024, pdrop=0.1):
super().__init__()
self.mlp = MLP(
in_size=hidden_size,
mid_size=flat_mlp_size,
out_size=flat_glimpses,
pdrop=pdrop,
use_gelu=True
)
self.flat_glimpses = flat_glimpses
self.linear_merge = nn.Linear(
hidden_size * flat_glimpses,
flat_out_size
)
def forward(self, x, x_mask):
att = self.mlp(x)
if x_mask is not None:
# att = att.masked_fill(x_mask.squeeze(1).squeeze(1).unsqueeze(2), -1e9)
att = att.masked_fill(x_mask.unsqueeze(2), -1e9)
att = F.softmax(att, dim=1)
att_list = []
for i in range(self.flat_glimpses):
att_list.append(
torch.sum(att[:, :, i: i + 1] * x, dim=1)
)
x_atted = torch.cat(att_list, dim=1)
x_atted = self.linear_merge(x_atted)
return x_atted
@HEADS_REGISTRY.register()
class GroundHeadV1(nn.Module):
def __init__(self, cfg, input_size=768, hidden_size=768, sem_cls_size=607, dropout=0.3, detach_all_aux_loss=False, num_answers = 80):
super().__init__()
image_embed_dim = 512
text_embed_dim = 1024
mlp_size = 256
glimpse = 1
flat_out_size = 512
self.attflat_visual = AttFlat(image_embed_dim, mlp_size, glimpse, flat_out_size, 0.1)
self.attflat_lang = AttFlat(text_embed_dim, mlp_size, glimpse, flat_out_size, 0.1)
self.answer_cls = nn.Sequential(
nn.Linear(flat_out_size, hidden_size),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(hidden_size, num_answers)
)
self.fusion_norm = nn.LayerNorm(flat_out_size)
def forward(self, pm_embeds, txt_embeds, txt_masks):
object_feat = self.attflat_visual(pm_embeds, None)
lang_feat = self.attflat_lang(txt_embeds.float(), txt_masks)
fuse_feat = self.fusion_norm(lang_feat + object_feat)
answer_scores = self.answer_cls(fuse_feat)
return answer_scores
# @HEADS_REGISTRY.register()
# class GroundHeadV1(nn.Module):
# def __init__(self, cfg, input_size=768, hidden_size=768, sem_cls_size=607, dropout=0.3, detach_all_aux_loss=False):
# super().__init__()
# self.og3d_head = get_mlp_head(
# input_size, hidden_size,
# 1, dropout=dropout
# )
# self.txt_clf_head = get_mlp_head(
# input_size, hidden_size,
# sem_cls_size, dropout=dropout
# )
# self.obj3d_clf_head = get_mlp_head(
# input_size, hidden_size,
# sem_cls_size, dropout=dropout
# )
# self.obj3d_clf_pre_head = get_mlp_head(
# input_size, hidden_size,
# sem_cls_size, dropout=dropout
# )
# self.detach_all_aux_loss = detach_all_aux_loss
# def forward(self, txt_embeds, obj_embeds, obj_pre_embeds, obj_masks, **kwargs):
# og3d_logits = self.og3d_head(obj_embeds).squeeze(2)
# og3d_logits = og3d_logits.masked_fill_(obj_masks.logical_not(), -float('inf'))
# if self.detach_all_aux_loss:
# txt_embeds = txt_embeds.detach()
# obj_embeds = obj_embeds.detach()
# obj_pre_embeds = obj_pre_embeds.detach()
# txt_cls_logits = self.txt_clf_head(txt_embeds[:, 0])
# obj_cls_logits = self.obj3d_clf_head(obj_embeds)
# obj_cls_pre_logits = self.obj3d_clf_pre_head(obj_pre_embeds)
# return txt_cls_logits, obj_cls_logits, obj_cls_pre_logits, og3d_logits
# def forward(self, pm_embeds, txt_embeds):
# og3d_logits = self.og3d_head(pm_embeds).squeeze(2)
# return og3d_logits
@HEADS_REGISTRY.register()
class GroundHead(nn.Module):
def __init__(self, cfg, input_size=768, hidden_size=768, dropout=0.3):
super().__init__()
self.og3d_head = get_mlp_head(
input_size, hidden_size,
1, dropout=dropout
)
def forward(self, obj_embeds, obj_masks=None, **kwargs):
og3d_logits = self.og3d_head(obj_embeds).squeeze(2)
if obj_masks is not None:
og3d_logits = og3d_logits.masked_fill_(obj_masks.logical_not(), -float('inf'))
return og3d_logits