Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +12 -58
- .gitignore +8 -0
- LICENSE +21 -0
- POMA_BENCH/eval_scene_retrieval.py +275 -0
- POMA_BENCH/eval_view_retrieval.py +488 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_50985.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_50989.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51020.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51021.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51022.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51029.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51042.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51044.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51045.txt +1 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_50985.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_50989.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51020.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51021.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51022.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51029.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51042.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51044.txt +0 -0
- POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51045.txt +0 -0
- POMA_BENCH/nr3d_retrieval.jsonl +3 -0
- POMA_BENCH/ret.sh +36 -0
- POMA_BENCH/scanrefer_retrieval.jsonl +3 -0
- POMA_BENCH/scene_cap.json +0 -0
- POMA_BENCH/sr3d_retrieval.jsonl +3 -0
- POMA_BENCH/ssg_ref_total_by_view.jsonl +3 -0
- POMA_BENCH/ssg_ref_total_by_view_full.jsonl +3 -0
- assets/logo025.png +3 -0
- assets/overview.png +3 -0
- chamfer_rankings.json +3 -0
- common/__pycache__/box_utils.cpython-310.pyc +0 -0
- common/__pycache__/box_utils.cpython-39.pyc +0 -0
- common/__pycache__/dist_utils.cpython-310.pyc +0 -0
- common/__pycache__/dist_utils.cpython-39.pyc +0 -0
- common/__pycache__/io_utils.cpython-310.pyc +0 -0
- common/__pycache__/io_utils.cpython-39.pyc +0 -0
- common/__pycache__/launch_utils.cpython-310.pyc +0 -0
- common/__pycache__/launch_utils.cpython-313.pyc +0 -0
- common/__pycache__/launch_utils.cpython-39.pyc +0 -0
- common/__pycache__/misc.cpython-310.pyc +0 -0
- common/__pycache__/misc.cpython-39.pyc +0 -0
- common/__pycache__/type_utils.cpython-310.pyc +0 -0
- common/__pycache__/type_utils.cpython-39.pyc +0 -0
- common/box_utils.py +66 -0
- common/dist_utils.py +220 -0
- common/io_utils.py +133 -0
- common/launch_utils.py +121 -0
.gitattributes
CHANGED
|
@@ -1,59 +1,13 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.mds filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 41 |
-
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 42 |
-
# Audio files - compressed
|
| 43 |
-
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
-
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 45 |
-
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 46 |
-
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
-
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 48 |
-
# Image files - uncompressed
|
| 49 |
-
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 50 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 51 |
-
*.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
-
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 53 |
-
# Image files - compressed
|
| 54 |
-
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
-
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 56 |
-
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 57 |
-
# Video files - compressed
|
| 58 |
-
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
-
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
POMA_BENCH/nr3d_retrieval.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
POMA_BENCH/scanrefer_retrieval.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
POMA_BENCH/sr3d_retrieval.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
POMA_BENCH/ssg_ref_total_by_view.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
POMA_BENCH/ssg_ref_total_by_view_full.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
assets/logo025.png filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
assets/overview.png filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
chamfer_rankings.json filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
light_3rscan_chamfer_rankings.json filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
light_arkitscenes_chamfer_rankings.json filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
light_scannet_chamfer_rankings.json filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
scripts/job/internvl3_8b_fine_tune_coco_job_output_44548.txt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fg-clip-base/model.safetensors
|
| 2 |
+
PointMapVerse
|
| 3 |
+
results/
|
| 4 |
+
vis/
|
| 5 |
+
wandb/
|
| 6 |
+
lmms-finetune
|
| 7 |
+
cc3m_1M
|
| 8 |
+
captions
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 scene-verse
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
POMA_BENCH/eval_scene_retrieval.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import json
|
| 4 |
+
import argparse
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from safetensors.torch import load_file
|
| 11 |
+
from transformers import AutoImageProcessor, AutoModelForCausalLM, AutoTokenizer
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
from peft import LoraConfig, get_peft_model
|
| 14 |
+
|
| 15 |
+
# -----------------------------
|
| 16 |
+
# Utils
|
| 17 |
+
# -----------------------------
|
| 18 |
+
def load_json(path: str) -> dict:
|
| 19 |
+
with open(path, "r") as f:
|
| 20 |
+
return json.load(f)
|
| 21 |
+
|
| 22 |
+
def find_scan_safetensor(scan_root: str, scan_id: str) -> str:
|
| 23 |
+
direct = os.path.join(scan_root, f"{scan_id}.safetensors")
|
| 24 |
+
if os.path.exists(direct):
|
| 25 |
+
return direct
|
| 26 |
+
|
| 27 |
+
pattern = os.path.join(scan_root, "**", f"{scan_id}.safetensors")
|
| 28 |
+
matches = glob.glob(pattern, recursive=True)
|
| 29 |
+
if not matches:
|
| 30 |
+
raise FileNotFoundError(f"Cannot find safetensor for scan_id={scan_id} under {scan_root}")
|
| 31 |
+
matches = sorted(matches, key=len)
|
| 32 |
+
return matches[0]
|
| 33 |
+
|
| 34 |
+
def to_vchw(point_map: torch.Tensor) -> torch.Tensor:
|
| 35 |
+
"""
|
| 36 |
+
Convert point_map to (V, 3, H, W) float tensor.
|
| 37 |
+
Accepts:
|
| 38 |
+
(V, 3, H, W)
|
| 39 |
+
(V, H, W, 3)
|
| 40 |
+
"""
|
| 41 |
+
if point_map.dim() != 4:
|
| 42 |
+
raise ValueError(f"Expected 4D point_map, got shape={tuple(point_map.shape)}")
|
| 43 |
+
|
| 44 |
+
V, a, b, c = point_map.shape
|
| 45 |
+
if a == 3:
|
| 46 |
+
out = point_map
|
| 47 |
+
elif c == 3:
|
| 48 |
+
out = point_map.permute(0, 3, 1, 2).contiguous()
|
| 49 |
+
else:
|
| 50 |
+
raise ValueError(f"Unrecognized point_map layout: shape={tuple(point_map.shape)}")
|
| 51 |
+
|
| 52 |
+
return out.float()
|
| 53 |
+
|
| 54 |
+
def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"):
|
| 55 |
+
cached_path = hf_hub_download(
|
| 56 |
+
repo_id=repo_id,
|
| 57 |
+
filename=filename,
|
| 58 |
+
repo_type=repo_type,
|
| 59 |
+
local_files_only=False
|
| 60 |
+
)
|
| 61 |
+
return load_file(cached_path)
|
| 62 |
+
|
| 63 |
+
def load_pretrain(model, pretrain_ckpt_path: str):
|
| 64 |
+
print(f"📂 Loading pretrained weights from: {str(pretrain_ckpt_path)}")
|
| 65 |
+
|
| 66 |
+
model_weight_path_pattern = os.path.join(pretrain_ckpt_path, "model*.safetensors")
|
| 67 |
+
model_weight_paths = glob.glob(model_weight_path_pattern)
|
| 68 |
+
|
| 69 |
+
if len(model_weight_paths) == 0:
|
| 70 |
+
raise FileNotFoundError(f"❌ Cannot find any model*.safetensors in {str(pretrain_ckpt_path)}")
|
| 71 |
+
|
| 72 |
+
weights = {}
|
| 73 |
+
for model_weight_path in model_weight_paths:
|
| 74 |
+
print(f"📥 Loading weights from: {model_weight_path}")
|
| 75 |
+
weights.update(load_file(model_weight_path, device="cpu"))
|
| 76 |
+
|
| 77 |
+
result = model.load_state_dict(weights, strict=False)
|
| 78 |
+
|
| 79 |
+
model_keys = set(model.state_dict().keys())
|
| 80 |
+
loaded_keys = model_keys.intersection(weights.keys())
|
| 81 |
+
print(f"✅ Loaded keys: {len(loaded_keys)} / {len(model_keys)}")
|
| 82 |
+
print(f"❌ Missing keys: {len(result.missing_keys)}")
|
| 83 |
+
print(f"⚠️ Unexpected keys: {len(result.unexpected_keys)}")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# -----------------------------
|
| 87 |
+
# Model wrapper
|
| 88 |
+
# -----------------------------
|
| 89 |
+
class RepModel(nn.Module):
|
| 90 |
+
def __init__(self, model_root: str = "fg-clip-base"):
|
| 91 |
+
super().__init__()
|
| 92 |
+
|
| 93 |
+
self.pm_encoder = AutoModelForCausalLM.from_pretrained(f'../{model_root}', trust_remote_code=True)
|
| 94 |
+
self.tokenizer = AutoTokenizer.from_pretrained(f'../{model_root}', trust_remote_code=True, use_fast=True)
|
| 95 |
+
self.image_processor = AutoImageProcessor.from_pretrained(f'../{model_root}')
|
| 96 |
+
|
| 97 |
+
# Optional: print trainable params
|
| 98 |
+
try:
|
| 99 |
+
self.pm_encoder.print_trainable_parameters()
|
| 100 |
+
except Exception:
|
| 101 |
+
pass
|
| 102 |
+
|
| 103 |
+
def encode_views_batched(self, pm_vchw: torch.Tensor, batch_views: int = 32) -> torch.Tensor:
|
| 104 |
+
"""
|
| 105 |
+
pm_vchw: (V,3,H,W) on device
|
| 106 |
+
returns: (V,D) normalized
|
| 107 |
+
"""
|
| 108 |
+
feats_all = []
|
| 109 |
+
V = pm_vchw.shape[0]
|
| 110 |
+
for s in range(0, V, batch_views):
|
| 111 |
+
chunk = pm_vchw[s : s + batch_views] # (b,3,H,W)
|
| 112 |
+
_, feats = self.pm_encoder.get_image_features(chunk)
|
| 113 |
+
feats = F.normalize(feats.float(), dim=-1)
|
| 114 |
+
feats_all.append(feats)
|
| 115 |
+
return torch.cat(feats_all, dim=0)
|
| 116 |
+
|
| 117 |
+
@torch.no_grad()
|
| 118 |
+
def encode_text(self, texts: List[str]) -> torch.Tensor:
|
| 119 |
+
"""
|
| 120 |
+
texts: list[str]
|
| 121 |
+
returns: (B,D) normalized
|
| 122 |
+
"""
|
| 123 |
+
tok = self.tokenizer(
|
| 124 |
+
texts,
|
| 125 |
+
padding="max_length",
|
| 126 |
+
truncation=True,
|
| 127 |
+
max_length=248,
|
| 128 |
+
return_tensors="pt",
|
| 129 |
+
).to(next(self.parameters()).device)
|
| 130 |
+
|
| 131 |
+
feats = self.pm_encoder.get_text_features(tok["input_ids"], walk_short_pos=False)
|
| 132 |
+
feats = F.normalize(feats.float(), dim=-1)
|
| 133 |
+
return feats
|
| 134 |
+
|
| 135 |
+
# -----------------------------
|
| 136 |
+
# Scene retrieval
|
| 137 |
+
# -----------------------------
|
| 138 |
+
def build_queries_from_caption_json(caption_json: dict) -> List[dict]:
|
| 139 |
+
"""
|
| 140 |
+
Convert:
|
| 141 |
+
{ scene_id: { "captions": [c1,c2,...] }, ... }
|
| 142 |
+
into:
|
| 143 |
+
[ { "scene_id": scene_id, "caption": c }, ... ]
|
| 144 |
+
"""
|
| 145 |
+
queries = []
|
| 146 |
+
for scene_id, payload in caption_json.items():
|
| 147 |
+
caps = payload.get("captions", [])
|
| 148 |
+
for c in caps:
|
| 149 |
+
c = (c or "").strip()
|
| 150 |
+
if c:
|
| 151 |
+
queries.append({"scene_id": scene_id, "caption": c})
|
| 152 |
+
return queries
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
@torch.no_grad()
|
| 156 |
+
def eval_scene_retrieval(
|
| 157 |
+
model: RepModel,
|
| 158 |
+
caption_json: dict,
|
| 159 |
+
scan_root: str,
|
| 160 |
+
device: str = "cuda",
|
| 161 |
+
batch_views: int = 32,
|
| 162 |
+
recall_ks: Tuple[int, ...] = (1, 5, 10),
|
| 163 |
+
) -> Dict[str, float]:
|
| 164 |
+
"""
|
| 165 |
+
For each caption, retrieve the correct scene among all scenes in caption_json.
|
| 166 |
+
Scene embedding = mean pooling over view embeddings.
|
| 167 |
+
"""
|
| 168 |
+
model.eval().to(device)
|
| 169 |
+
|
| 170 |
+
scene_ids = sorted(list(caption_json.keys()))
|
| 171 |
+
if len(scene_ids) == 0:
|
| 172 |
+
return {"n": 0}
|
| 173 |
+
|
| 174 |
+
# Cache: scene_id -> pooled scene feature (D,) on CPU
|
| 175 |
+
scene_feat_cache: Dict[str, torch.Tensor] = {}
|
| 176 |
+
|
| 177 |
+
# Precompute all scene pooled features once (so retrieval is fast)
|
| 178 |
+
for sid in scene_ids:
|
| 179 |
+
filename = f'light_scannet/{sid}.safetensors'
|
| 180 |
+
data = load_safetensor_from_hf('MatchLab/ScenePoint', filename, repo_type="dataset")
|
| 181 |
+
|
| 182 |
+
pm = to_vchw(data["point_map"]) # (V,3,H,W) on CPU
|
| 183 |
+
pm = pm.to(device, non_blocking=True)
|
| 184 |
+
|
| 185 |
+
view_feats = model.encode_views_batched(pm, batch_views=batch_views) # (V,D) on GPU
|
| 186 |
+
scene_feat = view_feats.mean(dim=0) # (D,)
|
| 187 |
+
scene_feat = F.normalize(scene_feat, dim=-1)
|
| 188 |
+
|
| 189 |
+
scene_feat_cache[sid] = scene_feat.detach().cpu()
|
| 190 |
+
|
| 191 |
+
# Stack gallery: (N,D)
|
| 192 |
+
gallery = torch.stack([scene_feat_cache[sid] for sid in scene_ids], dim=0) # CPU
|
| 193 |
+
gallery = gallery.to(device)
|
| 194 |
+
|
| 195 |
+
# Build queries
|
| 196 |
+
queries = build_queries_from_caption_json(caption_json)
|
| 197 |
+
|
| 198 |
+
total = 0
|
| 199 |
+
top1_correct = 0
|
| 200 |
+
recall_correct = {k: 0 for k in recall_ks}
|
| 201 |
+
|
| 202 |
+
for q in queries:
|
| 203 |
+
gt_sid = q["scene_id"]
|
| 204 |
+
caption = q["caption"]
|
| 205 |
+
|
| 206 |
+
if gt_sid not in scene_feat_cache:
|
| 207 |
+
continue
|
| 208 |
+
|
| 209 |
+
text_feat = model.encode_text([caption])[0] # (D,) on GPU
|
| 210 |
+
|
| 211 |
+
# similarity over all scenes: (N,)
|
| 212 |
+
sims = gallery @ text_feat.unsqueeze(-1) # (N,1)
|
| 213 |
+
sims = sims.squeeze(-1)
|
| 214 |
+
|
| 215 |
+
ranked = torch.argsort(sims, descending=True) # indices into scene_ids
|
| 216 |
+
pred_sid = scene_ids[int(ranked[0].item())]
|
| 217 |
+
|
| 218 |
+
total += 1
|
| 219 |
+
if pred_sid == gt_sid:
|
| 220 |
+
top1_correct += 1
|
| 221 |
+
|
| 222 |
+
for k in recall_ks:
|
| 223 |
+
k_eff = min(k, len(scene_ids))
|
| 224 |
+
topk_idx = ranked[:k_eff].tolist()
|
| 225 |
+
topk_sids = [scene_ids[i] for i in topk_idx]
|
| 226 |
+
if gt_sid in topk_sids:
|
| 227 |
+
recall_correct[k] += 1
|
| 228 |
+
|
| 229 |
+
# optional debug print
|
| 230 |
+
print(f"[Q] GT={gt_sid} | Pred={pred_sid} | caption={caption[:80]}...")
|
| 231 |
+
|
| 232 |
+
if total == 0:
|
| 233 |
+
return {"n": 0}
|
| 234 |
+
|
| 235 |
+
out = {"n": total, "top1_acc": top1_correct / total}
|
| 236 |
+
for k in recall_ks:
|
| 237 |
+
out[f"recall@{k}"] = recall_correct[k] / total
|
| 238 |
+
return out
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def main():
|
| 242 |
+
ap = argparse.ArgumentParser()
|
| 243 |
+
ap.add_argument("--caption_json", type=str, required=True, help="JSON mapping scene_id -> {captions:[...]}")
|
| 244 |
+
ap.add_argument("--scan_root", type=str, required=True, help="Root dir containing scene safetensors")
|
| 245 |
+
ap.add_argument("--ckpt", type=str, default="", help="Optional: dir with model*.safetensors")
|
| 246 |
+
ap.add_argument("--model_root", type=str, default="fg-clip-base")
|
| 247 |
+
ap.add_argument("--device", type=str, default="cuda")
|
| 248 |
+
ap.add_argument("--batch_views", type=int, default=32)
|
| 249 |
+
args = ap.parse_args()
|
| 250 |
+
|
| 251 |
+
caption_json = load_json(args.caption_json)
|
| 252 |
+
|
| 253 |
+
model = RepModel(model_root=args.model_root)
|
| 254 |
+
if args.ckpt:
|
| 255 |
+
load_pretrain(model, args.ckpt)
|
| 256 |
+
|
| 257 |
+
metrics = eval_scene_retrieval(
|
| 258 |
+
model=model,
|
| 259 |
+
caption_json=caption_json,
|
| 260 |
+
scan_root=args.scan_root,
|
| 261 |
+
device=args.device,
|
| 262 |
+
batch_views=args.batch_views,
|
| 263 |
+
recall_ks=(1, 5, 10),
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
print("\n=== Scene Retrieval Results ===")
|
| 267 |
+
for k, v in metrics.items():
|
| 268 |
+
if isinstance(v, float):
|
| 269 |
+
print(f"{k:>10}: {v:.4f}")
|
| 270 |
+
else:
|
| 271 |
+
print(f"{k:>10}: {v}")
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
if __name__ == "__main__":
|
| 275 |
+
main()
|
POMA_BENCH/eval_view_retrieval.py
ADDED
|
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import glob
|
| 3 |
+
import json
|
| 4 |
+
import argparse
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from safetensors.torch import load_file
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
from transformers import AutoImageProcessor, AutoModelForCausalLM, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
# -----------------------------
|
| 15 |
+
# Utils
|
| 16 |
+
# -----------------------------
|
| 17 |
+
def load_jsonl(path: str) -> List[dict]:
|
| 18 |
+
data = []
|
| 19 |
+
with open(path, "r") as f:
|
| 20 |
+
for line in f:
|
| 21 |
+
line = line.strip()
|
| 22 |
+
if not line:
|
| 23 |
+
continue
|
| 24 |
+
data.append(json.loads(line))
|
| 25 |
+
return data
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"):
|
| 29 |
+
cached_path = hf_hub_download(
|
| 30 |
+
repo_id=repo_id,
|
| 31 |
+
filename=filename,
|
| 32 |
+
repo_type=repo_type,
|
| 33 |
+
local_files_only=False
|
| 34 |
+
)
|
| 35 |
+
return load_file(cached_path)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def to_vchw(point_map: torch.Tensor) -> torch.Tensor:
|
| 39 |
+
"""
|
| 40 |
+
Convert point_map to (V, 3, H, W) float tensor.
|
| 41 |
+
Accepts common layouts:
|
| 42 |
+
(V, 3, H, W) -> ok
|
| 43 |
+
(V, H, W, 3) -> permute
|
| 44 |
+
(V, H, W, C) where C=3 -> permute
|
| 45 |
+
"""
|
| 46 |
+
if point_map.dim() != 4:
|
| 47 |
+
raise ValueError(f"Expected point_map to be 4D (V,*,*,*), got shape={tuple(point_map.shape)}")
|
| 48 |
+
|
| 49 |
+
V, a, b, c = point_map.shape
|
| 50 |
+
|
| 51 |
+
# (V, 3, H, W)
|
| 52 |
+
if a == 3:
|
| 53 |
+
out = point_map
|
| 54 |
+
# (V, H, W, 3)
|
| 55 |
+
elif c == 3:
|
| 56 |
+
out = point_map.permute(0, 3, 1, 2).contiguous()
|
| 57 |
+
else:
|
| 58 |
+
raise ValueError(f"Unrecognized point_map layout: shape={tuple(point_map.shape)}")
|
| 59 |
+
|
| 60 |
+
return out.float()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def load_pretrain(model, pretrain_ckpt_path):
|
| 64 |
+
print(f"📂 Loading pretrained weights from: {str(pretrain_ckpt_path)}")
|
| 65 |
+
|
| 66 |
+
# Search for safetensors files
|
| 67 |
+
model_weight_path_pattern = pretrain_ckpt_path + "/model*.safetensors"
|
| 68 |
+
model_weight_paths = glob.glob(model_weight_path_pattern)
|
| 69 |
+
|
| 70 |
+
if len(model_weight_paths) == 0:
|
| 71 |
+
raise FileNotFoundError(f"❌ Cannot find any .safetensors file in {str(pretrain_ckpt_path)}")
|
| 72 |
+
|
| 73 |
+
# Load and merge weights
|
| 74 |
+
weights = {}
|
| 75 |
+
for model_weight_path in model_weight_paths:
|
| 76 |
+
print(f"📥 Loading weights from: {model_weight_path}")
|
| 77 |
+
weights.update(load_file(model_weight_path, device="cpu"))
|
| 78 |
+
|
| 79 |
+
# Load weights with strict=False
|
| 80 |
+
result = model.load_state_dict(weights, strict=False)
|
| 81 |
+
|
| 82 |
+
model_keys = set(model.state_dict().keys())
|
| 83 |
+
loaded_keys = model_keys.intersection(weights.keys())
|
| 84 |
+
missing_keys = result.missing_keys
|
| 85 |
+
unexpected_keys = result.unexpected_keys
|
| 86 |
+
print(f"✅ Loaded keys: {len(loaded_keys)} / {len(model_keys)}")
|
| 87 |
+
print(f"❌ Missing keys: {len(missing_keys)}")
|
| 88 |
+
print(f"⚠️ Unexpected keys: {len(unexpected_keys)}")
|
| 89 |
+
|
| 90 |
+
class _GlobalViewAttnBlock(nn.Module):
|
| 91 |
+
"""One pre-norm Transformer-style block over view tokens (B,V,D)."""
|
| 92 |
+
def __init__(
|
| 93 |
+
self,
|
| 94 |
+
dim: int,
|
| 95 |
+
num_heads: int,
|
| 96 |
+
mlp_ratio: float,
|
| 97 |
+
dropout: float,
|
| 98 |
+
zero_init_residual: bool,
|
| 99 |
+
zero_init_attn_out: bool,
|
| 100 |
+
):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.zero_init_residual = zero_init_residual
|
| 103 |
+
self.zero_init_attn_out = zero_init_attn_out
|
| 104 |
+
|
| 105 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 106 |
+
self.attn = nn.MultiheadAttention(
|
| 107 |
+
embed_dim=dim,
|
| 108 |
+
num_heads=num_heads,
|
| 109 |
+
dropout=dropout,
|
| 110 |
+
batch_first=True,
|
| 111 |
+
bias=True,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 115 |
+
hidden_dim = int(dim * mlp_ratio)
|
| 116 |
+
self.mlp = nn.Sequential(
|
| 117 |
+
nn.Linear(dim, hidden_dim),
|
| 118 |
+
nn.GELU(),
|
| 119 |
+
nn.Dropout(dropout),
|
| 120 |
+
nn.Linear(hidden_dim, dim),
|
| 121 |
+
nn.Dropout(dropout),
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
self._init_weights()
|
| 125 |
+
|
| 126 |
+
def forward(self, x, key_padding_mask=None):
|
| 127 |
+
h = self.norm1(x)
|
| 128 |
+
attn_out, _ = self.attn(
|
| 129 |
+
h, h, h,
|
| 130 |
+
key_padding_mask=key_padding_mask,
|
| 131 |
+
need_weights=False,
|
| 132 |
+
)
|
| 133 |
+
x = x + attn_out
|
| 134 |
+
x = x + self.mlp(self.norm2(x))
|
| 135 |
+
return x
|
| 136 |
+
|
| 137 |
+
@torch.no_grad()
|
| 138 |
+
def _init_weights(self):
|
| 139 |
+
# LayerNorm
|
| 140 |
+
for ln in (self.norm1, self.norm2):
|
| 141 |
+
nn.init.ones_(ln.weight)
|
| 142 |
+
nn.init.zeros_(ln.bias)
|
| 143 |
+
|
| 144 |
+
# MultiheadAttention: in_proj for qkv (3D, D)
|
| 145 |
+
if getattr(self.attn, "in_proj_weight", None) is not None:
|
| 146 |
+
nn.init.xavier_uniform_(self.attn.in_proj_weight)
|
| 147 |
+
if getattr(self.attn, "in_proj_bias", None) is not None:
|
| 148 |
+
nn.init.zeros_(self.attn.in_proj_bias)
|
| 149 |
+
|
| 150 |
+
# out proj
|
| 151 |
+
nn.init.xavier_uniform_(self.attn.out_proj.weight)
|
| 152 |
+
if self.attn.out_proj.bias is not None:
|
| 153 |
+
nn.init.zeros_(self.attn.out_proj.bias)
|
| 154 |
+
|
| 155 |
+
# optional: start attn residual near-zero
|
| 156 |
+
if self.zero_init_attn_out:
|
| 157 |
+
nn.init.zeros_(self.attn.out_proj.weight)
|
| 158 |
+
if self.attn.out_proj.bias is not None:
|
| 159 |
+
nn.init.zeros_(self.attn.out_proj.bias)
|
| 160 |
+
|
| 161 |
+
# MLP
|
| 162 |
+
fc1: nn.Linear = self.mlp[0]
|
| 163 |
+
fc2: nn.Linear = self.mlp[3]
|
| 164 |
+
|
| 165 |
+
nn.init.xavier_uniform_(fc1.weight)
|
| 166 |
+
if fc1.bias is not None:
|
| 167 |
+
nn.init.zeros_(fc1.bias)
|
| 168 |
+
|
| 169 |
+
# zero-init last projection for stable residual start (recommended)
|
| 170 |
+
if self.zero_init_residual:
|
| 171 |
+
nn.init.zeros_(fc2.weight)
|
| 172 |
+
if fc2.bias is not None:
|
| 173 |
+
nn.init.zeros_(fc2.bias)
|
| 174 |
+
else:
|
| 175 |
+
nn.init.xavier_uniform_(fc2.weight)
|
| 176 |
+
if fc2.bias is not None:
|
| 177 |
+
nn.init.zeros_(fc2.bias)
|
| 178 |
+
|
| 179 |
+
class _GlobalViewGatedAttnBlock(nn.Module):
|
| 180 |
+
"""Pre-norm Transformer block over view tokens (B,V,D) with gated residuals."""
|
| 181 |
+
def __init__(
|
| 182 |
+
self,
|
| 183 |
+
dim: int,
|
| 184 |
+
num_heads: int,
|
| 185 |
+
mlp_ratio: float,
|
| 186 |
+
dropout: float,
|
| 187 |
+
zero_init_residual: bool,
|
| 188 |
+
zero_init_attn_out: bool,
|
| 189 |
+
gate_bias_init: float = -2.0, # sigmoid(-2)≈0.12, starts near-identity (small updates)
|
| 190 |
+
):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.zero_init_residual = zero_init_residual
|
| 193 |
+
self.zero_init_attn_out = zero_init_attn_out
|
| 194 |
+
|
| 195 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 196 |
+
self.attn = nn.MultiheadAttention(
|
| 197 |
+
embed_dim=dim,
|
| 198 |
+
num_heads=num_heads,
|
| 199 |
+
dropout=dropout,
|
| 200 |
+
batch_first=True,
|
| 201 |
+
bias=True,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# --- Gating for attention residual ---
|
| 205 |
+
# Produces per-token, per-channel gates in (0,1)
|
| 206 |
+
self.attn_gate = nn.Linear(dim, dim, bias=True)
|
| 207 |
+
|
| 208 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 209 |
+
hidden_dim = int(dim * mlp_ratio)
|
| 210 |
+
self.mlp = nn.Sequential(
|
| 211 |
+
nn.Linear(dim, hidden_dim),
|
| 212 |
+
nn.GELU(),
|
| 213 |
+
nn.Dropout(dropout),
|
| 214 |
+
nn.Linear(hidden_dim, dim),
|
| 215 |
+
nn.Dropout(dropout),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# --- Gating for MLP residual ---
|
| 219 |
+
self.mlp_gate = nn.Linear(dim, dim, bias=True)
|
| 220 |
+
|
| 221 |
+
self._init_weights(gate_bias_init=gate_bias_init)
|
| 222 |
+
|
| 223 |
+
def forward(self, x: torch.Tensor, key_padding_mask=None) -> torch.Tensor:
|
| 224 |
+
# x: (B, V, D)
|
| 225 |
+
h1 = self.norm1(x)
|
| 226 |
+
attn_out, _ = self.attn(
|
| 227 |
+
h1, h1, h1,
|
| 228 |
+
key_padding_mask=key_padding_mask,
|
| 229 |
+
need_weights=False,
|
| 230 |
+
)
|
| 231 |
+
g_attn = torch.sigmoid(self.attn_gate(h1)) # (B, V, D)
|
| 232 |
+
x = x + g_attn * attn_out
|
| 233 |
+
|
| 234 |
+
h2 = self.norm2(x)
|
| 235 |
+
mlp_out = self.mlp(h2)
|
| 236 |
+
g_mlp = torch.sigmoid(self.mlp_gate(h2)) # (B, V, D)
|
| 237 |
+
x = x + g_mlp * mlp_out
|
| 238 |
+
return x
|
| 239 |
+
|
| 240 |
+
@torch.no_grad()
|
| 241 |
+
def _init_weights(self, gate_bias_init: float):
|
| 242 |
+
# LayerNorm
|
| 243 |
+
for ln in (self.norm1, self.norm2):
|
| 244 |
+
nn.init.ones_(ln.weight)
|
| 245 |
+
nn.init.zeros_(ln.bias)
|
| 246 |
+
|
| 247 |
+
# MultiheadAttention: in_proj for qkv
|
| 248 |
+
if getattr(self.attn, "in_proj_weight", None) is not None:
|
| 249 |
+
nn.init.xavier_uniform_(self.attn.in_proj_weight)
|
| 250 |
+
if getattr(self.attn, "in_proj_bias", None) is not None:
|
| 251 |
+
nn.init.zeros_(self.attn.in_proj_bias)
|
| 252 |
+
|
| 253 |
+
# out proj
|
| 254 |
+
nn.init.xavier_uniform_(self.attn.out_proj.weight)
|
| 255 |
+
if self.attn.out_proj.bias is not None:
|
| 256 |
+
nn.init.zeros_(self.attn.out_proj.bias)
|
| 257 |
+
|
| 258 |
+
# optional: start attn residual near-zero
|
| 259 |
+
if self.zero_init_attn_out:
|
| 260 |
+
nn.init.zeros_(self.attn.out_proj.weight)
|
| 261 |
+
if self.attn.out_proj.bias is not None:
|
| 262 |
+
nn.init.zeros_(self.attn.out_proj.bias)
|
| 263 |
+
|
| 264 |
+
# MLP
|
| 265 |
+
fc1: nn.Linear = self.mlp[0]
|
| 266 |
+
fc2: nn.Linear = self.mlp[3]
|
| 267 |
+
nn.init.xavier_uniform_(fc1.weight)
|
| 268 |
+
if fc1.bias is not None:
|
| 269 |
+
nn.init.zeros_(fc1.bias)
|
| 270 |
+
|
| 271 |
+
if self.zero_init_residual:
|
| 272 |
+
nn.init.zeros_(fc2.weight)
|
| 273 |
+
if fc2.bias is not None:
|
| 274 |
+
nn.init.zeros_(fc2.bias)
|
| 275 |
+
else:
|
| 276 |
+
nn.init.xavier_uniform_(fc2.weight)
|
| 277 |
+
if fc2.bias is not None:
|
| 278 |
+
nn.init.zeros_(fc2.bias)
|
| 279 |
+
|
| 280 |
+
# Gates: start “mostly closed” so training is stable, then learn to open
|
| 281 |
+
nn.init.zeros_(self.attn_gate.weight)
|
| 282 |
+
nn.init.constant_(self.attn_gate.bias, gate_bias_init)
|
| 283 |
+
|
| 284 |
+
nn.init.zeros_(self.mlp_gate.weight)
|
| 285 |
+
nn.init.constant_(self.mlp_gate.bias, gate_bias_init)
|
| 286 |
+
|
| 287 |
+
class GlobalViewAttention(nn.Module):
|
| 288 |
+
"""
|
| 289 |
+
Multi-layer global self-attention over multi-view tokens.
|
| 290 |
+
|
| 291 |
+
Input: x ∈ (B, V, D)
|
| 292 |
+
Output: x' ∈ (B, V, D)
|
| 293 |
+
"""
|
| 294 |
+
def __init__(
|
| 295 |
+
self,
|
| 296 |
+
dim: int,
|
| 297 |
+
num_layers: int = 1,
|
| 298 |
+
num_heads: int = 8,
|
| 299 |
+
mlp_ratio: float = 4.0,
|
| 300 |
+
dropout: float = 0.0,
|
| 301 |
+
zero_init_residual: bool = True, # recommended (stable when adding layers)
|
| 302 |
+
zero_init_attn_out: bool = False, # optional extra safety
|
| 303 |
+
):
|
| 304 |
+
super().__init__()
|
| 305 |
+
assert num_layers >= 1, "num_layers must be >= 1"
|
| 306 |
+
|
| 307 |
+
self.dim = dim
|
| 308 |
+
self.num_layers = num_layers
|
| 309 |
+
self.num_heads = num_heads
|
| 310 |
+
self.layers = nn.ModuleList([
|
| 311 |
+
_GlobalViewAttnBlock(
|
| 312 |
+
dim=dim,
|
| 313 |
+
num_heads=num_heads,
|
| 314 |
+
mlp_ratio=mlp_ratio,
|
| 315 |
+
dropout=dropout,
|
| 316 |
+
zero_init_residual=zero_init_residual,
|
| 317 |
+
zero_init_attn_out=zero_init_attn_out,
|
| 318 |
+
)
|
| 319 |
+
for _ in range(num_layers)
|
| 320 |
+
])
|
| 321 |
+
|
| 322 |
+
def forward(self, x, key_padding_mask=None):
|
| 323 |
+
"""
|
| 324 |
+
x: (B, V, D)
|
| 325 |
+
key_padding_mask: (B, V), True = ignore (padding)
|
| 326 |
+
"""
|
| 327 |
+
for layer in self.layers:
|
| 328 |
+
x = layer(x, key_padding_mask=key_padding_mask)
|
| 329 |
+
return x
|
| 330 |
+
|
| 331 |
+
class RepModel(nn.Module):
|
| 332 |
+
def __init__(self, model_root: str = "fg-clip-base"):
|
| 333 |
+
super().__init__()
|
| 334 |
+
|
| 335 |
+
self.pm_encoder = AutoModelForCausalLM.from_pretrained(f'../{model_root}', trust_remote_code=True)
|
| 336 |
+
# self.global_attn = GlobalViewAttention(dim=512, num_heads=8, mlp_ratio=4.0, dropout=0.1)
|
| 337 |
+
self.tokenizer = AutoTokenizer.from_pretrained(f'../{model_root}', trust_remote_code=True, use_fast=True)
|
| 338 |
+
self.image_processor = AutoImageProcessor.from_pretrained(f'../{model_root}')
|
| 339 |
+
|
| 340 |
+
# Optional: print trainable params
|
| 341 |
+
try:
|
| 342 |
+
self.pm_encoder.print_trainable_parameters()
|
| 343 |
+
except Exception:
|
| 344 |
+
pass
|
| 345 |
+
|
| 346 |
+
@torch.no_grad()
|
| 347 |
+
def encode_views(self, pm_batched):
|
| 348 |
+
# Expect (1,V,3,H,W) or (V,3,H,W)
|
| 349 |
+
# pm_batched = self.image_processor(images=pm_batched, return_tensors="pt").to('cuda')
|
| 350 |
+
_, feats = self.pm_encoder.get_image_features(pm_batched)
|
| 351 |
+
# feats = self.global_attn(feats)
|
| 352 |
+
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
|
| 353 |
+
return feats
|
| 354 |
+
|
| 355 |
+
@torch.no_grad()
|
| 356 |
+
def encode_text(self, texts):
|
| 357 |
+
tok = self.tokenizer(texts, padding="max_length", truncation=True, max_length=248, return_tensors="pt").to('cuda')
|
| 358 |
+
feats = self.pm_encoder.get_text_features(tok["input_ids"], walk_short_pos=False)
|
| 359 |
+
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
|
| 360 |
+
return feats
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
# -----------------------------
|
| 364 |
+
# Retrieval evaluation
|
| 365 |
+
# -----------------------------
|
| 366 |
+
@torch.no_grad()
|
| 367 |
+
def eval_view_retrieval(
|
| 368 |
+
model: RepModel,
|
| 369 |
+
items: List[dict],
|
| 370 |
+
scan_root: str,
|
| 371 |
+
device: str = "cuda",
|
| 372 |
+
batch_views: int = 32,
|
| 373 |
+
recall_ks: Tuple[int, ...] = (1, 5, 10),
|
| 374 |
+
) -> Dict[str, float]:
|
| 375 |
+
model.eval()
|
| 376 |
+
model.to(device)
|
| 377 |
+
|
| 378 |
+
# Cache: scan_id -> (V, D) view features
|
| 379 |
+
scan_cache: Dict[str, torch.Tensor] = {}
|
| 380 |
+
|
| 381 |
+
total = 0
|
| 382 |
+
top1_correct = 0
|
| 383 |
+
recall_correct = {k: 0 for k in recall_ks}
|
| 384 |
+
|
| 385 |
+
for it in items:
|
| 386 |
+
scan_id = it["scan_id"]
|
| 387 |
+
utter = it["utterance"]
|
| 388 |
+
gt_views = it.get("view_ground_truth", None)
|
| 389 |
+
if not gt_views:
|
| 390 |
+
continue
|
| 391 |
+
gt = int(gt_views[0]) # "the first of the view gt"
|
| 392 |
+
|
| 393 |
+
# Load / cache view features for this scan
|
| 394 |
+
if scan_id not in scan_cache:
|
| 395 |
+
filename = f'light_scannet/{scan_id}.safetensors'
|
| 396 |
+
data = load_safetensor_from_hf('MatchLab/ScenePoint', filename, repo_type="dataset")
|
| 397 |
+
|
| 398 |
+
# if "point_map" not in data:
|
| 399 |
+
# raise KeyError(f"{st_path} does not contain key 'point_map'. keys={list(data.keys())}")
|
| 400 |
+
|
| 401 |
+
pm = to_vchw(data["point_map"]) # (V, 3, H, W)
|
| 402 |
+
# pm = data['color_images']
|
| 403 |
+
|
| 404 |
+
V = pm.shape[0]
|
| 405 |
+
|
| 406 |
+
feats = model.encode_views(pm.to(device, non_blocking=True)) # (chunk, D)
|
| 407 |
+
scan_cache[scan_id] = feats # (V, D) on CPU
|
| 408 |
+
|
| 409 |
+
view_feats = scan_cache[scan_id] # (V, D), CPU
|
| 410 |
+
V = view_feats.shape[0]
|
| 411 |
+
if gt < 0 or gt >= V:
|
| 412 |
+
# skip invalid gt index
|
| 413 |
+
continue
|
| 414 |
+
|
| 415 |
+
# Encode text
|
| 416 |
+
text_feat = model.encode_text(utter).squeeze(0).unsqueeze(-1) # (D,)
|
| 417 |
+
|
| 418 |
+
# Similarity: (V,)
|
| 419 |
+
sims = (view_feats @ text_feat).squeeze(-1)
|
| 420 |
+
|
| 421 |
+
# rank views by similarity (high -> low)
|
| 422 |
+
ranked = torch.argsort(sims, descending=True)
|
| 423 |
+
|
| 424 |
+
pred = int(ranked[0].item())
|
| 425 |
+
total += 1
|
| 426 |
+
|
| 427 |
+
if pred == gt:
|
| 428 |
+
top1_correct += 1
|
| 429 |
+
else:
|
| 430 |
+
# per-sample print (optional)
|
| 431 |
+
print(f"GT: {gt}, Pred: {pred}, Utterance: {utter}")
|
| 432 |
+
|
| 433 |
+
# Recall@K
|
| 434 |
+
for k in recall_ks:
|
| 435 |
+
k_eff = min(k, V)
|
| 436 |
+
if (ranked[:k_eff] == gt).any().item():
|
| 437 |
+
recall_correct[k] += 1
|
| 438 |
+
|
| 439 |
+
# ----- after the loop -----
|
| 440 |
+
out = {}
|
| 441 |
+
if total == 0:
|
| 442 |
+
return {"n": 0}
|
| 443 |
+
|
| 444 |
+
out["n"] = total
|
| 445 |
+
out["top1_acc"] = top1_correct / total
|
| 446 |
+
for k in recall_ks:
|
| 447 |
+
out[f"recall@{k}"] = recall_correct[k] / total
|
| 448 |
+
|
| 449 |
+
return out
|
| 450 |
+
|
| 451 |
+
def main():
|
| 452 |
+
ap = argparse.ArgumentParser()
|
| 453 |
+
ap.add_argument("--jsonl", type=str, required=True, help="SR3D-style jsonl file")
|
| 454 |
+
ap.add_argument("--scan_root", type=str, required=True, help="Root dir containing scan safetensors")
|
| 455 |
+
ap.add_argument("--ckpt", type=str, default="", help="Optional: path to .pth/.pt or dir with model*.safetensors")
|
| 456 |
+
ap.add_argument("--model_root", type=str, default="fg-clip-base")
|
| 457 |
+
ap.add_argument("--device", type=str, default="cuda")
|
| 458 |
+
ap.add_argument("--batch_views", type=int, default=32)
|
| 459 |
+
ap.add_argument("--max_items", type=int, default=-1)
|
| 460 |
+
args = ap.parse_args()
|
| 461 |
+
|
| 462 |
+
items = load_jsonl(args.jsonl)
|
| 463 |
+
if args.max_items > 0:
|
| 464 |
+
items = items[: args.max_items]
|
| 465 |
+
|
| 466 |
+
model = RepModel(model_root=args.model_root)
|
| 467 |
+
if args.ckpt:
|
| 468 |
+
load_pretrain(model, args.ckpt)
|
| 469 |
+
|
| 470 |
+
metrics = eval_view_retrieval(
|
| 471 |
+
model=model,
|
| 472 |
+
items=items,
|
| 473 |
+
scan_root=args.scan_root,
|
| 474 |
+
device=args.device,
|
| 475 |
+
batch_views=args.batch_views,
|
| 476 |
+
recall_ks=(1, 5, 10),
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
print("\n=== View Retrieval Results ===")
|
| 480 |
+
for k, v in metrics.items():
|
| 481 |
+
if isinstance(v, float):
|
| 482 |
+
print(f"{k:>10}: {v:.4f}")
|
| 483 |
+
else:
|
| 484 |
+
print(f"{k:>10}: {v}")
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
if __name__ == "__main__":
|
| 488 |
+
main()
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_50985.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_50989.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51020.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51021.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51022.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51029.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51042.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51044.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_error_51045.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_50985.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_50989.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51020.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51021.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51022.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51029.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51042.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51044.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/job/internvl3_8b_fine_tune_coco_job_output_51045.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/nr3d_retrieval.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:296564ae94258af94f09a5dcf02f660314e438ff53136688e4322bb1e6a18700
|
| 3 |
+
size 22955141
|
POMA_BENCH/ret.sh
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# #!/bin/bash
|
| 2 |
+
# #SBATCH --job-name=eval
|
| 3 |
+
# #SBATCH --output=job/internvl3_8b_fine_tune_coco_job_output_%j.txt
|
| 4 |
+
# #SBATCH --error=job/internvl3_8b_fine_tune_coco_job_error_%j.txt
|
| 5 |
+
# #SBATCH --time=20:00:00
|
| 6 |
+
# #SBATCH --ntasks=1
|
| 7 |
+
# #SBATCH --partition=camera-long
|
| 8 |
+
# #SBATCH --ntasks-per-node=1
|
| 9 |
+
# #SBATCH --nodes=1
|
| 10 |
+
# #SBATCH --gres=gpu:h100:1
|
| 11 |
+
# #SBATCH --mail-type=ALL
|
| 12 |
+
# #SBATCH --mail-user=ym621@ic.ac.uk
|
| 13 |
+
# #SBATCH --qos=normal
|
| 14 |
+
|
| 15 |
+
# cd /mnt/data-alpha-sg-01/team-camera/home/m50048399/transfered/ye_project/Project2/POMA_BENCH
|
| 16 |
+
# /home/m50048399/anaconda3/bin/conda init bash
|
| 17 |
+
# source ~/.bashrc
|
| 18 |
+
# conda activate sceneverse
|
| 19 |
+
# export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
|
| 20 |
+
|
| 21 |
+
python eval_view_retrieval.py \
|
| 22 |
+
--jsonl sr3d_retrieval.jsonl \
|
| 23 |
+
--scan_root /mnt/new_drive/retreival/light_scannet/light_scannet \
|
| 24 |
+
--device cuda \
|
| 25 |
+
--ckpt /home/m50048399/transfered/ye_project/Project2/results/sceneverse_scannet_exp1_b64_Pretrain_all_scannet_training_run1/2026-01-19-23:46:36.901933/ckpt/ckpt_20.pth \
|
| 26 |
+
--batch_views 32
|
| 27 |
+
|
| 28 |
+
# python eval_scene_retrieval.py \
|
| 29 |
+
# --caption_json scene_cap.json \
|
| 30 |
+
# --scan_root /mnt/new_drive/retreival/light_scannet/light_scannet \
|
| 31 |
+
# --model_root fg-clip-base \
|
| 32 |
+
# --ckpt /home/m50048399/transfered/ye_project/Project2/results/sceneverse_scannet_exp1_b128_Pretrain_all_scannet_training_run1/withgeoalign/ckpt/ckpt_100.pth \
|
| 33 |
+
# --batch_views 32
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
POMA_BENCH/scanrefer_retrieval.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77be567de421d2f8593ac04906ff3afaa3a635832b7d55d6c93041d0599d5390
|
| 3 |
+
size 27430061
|
POMA_BENCH/scene_cap.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
POMA_BENCH/sr3d_retrieval.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9acfb7d5773fbbfc42536e5511bc4fb5890444eb682afe446a9e6e8208abd604
|
| 3 |
+
size 48231881
|
POMA_BENCH/ssg_ref_total_by_view.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ea1c18e33e8f2255f202599f5596841370c608480e675e8e538020173d02e1e
|
| 3 |
+
size 10972907
|
POMA_BENCH/ssg_ref_total_by_view_full.jsonl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5842e5d224db9aafbee803363ed38218f4fc4adb4e8ac7b9855c853a68875362
|
| 3 |
+
size 36000916
|
assets/logo025.png
ADDED
|
Git LFS Details
|
assets/overview.png
ADDED
|
Git LFS Details
|
chamfer_rankings.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6044fbe2930aa318090e012887efaa65d2fb48075bc95ef3bc3c661ee9c4afa
|
| 3 |
+
size 76539228
|
common/__pycache__/box_utils.cpython-310.pyc
ADDED
|
Binary file (2.38 kB). View file
|
|
|
common/__pycache__/box_utils.cpython-39.pyc
ADDED
|
Binary file (2.33 kB). View file
|
|
|
common/__pycache__/dist_utils.cpython-310.pyc
ADDED
|
Binary file (6.19 kB). View file
|
|
|
common/__pycache__/dist_utils.cpython-39.pyc
ADDED
|
Binary file (6.16 kB). View file
|
|
|
common/__pycache__/io_utils.cpython-310.pyc
ADDED
|
Binary file (5.47 kB). View file
|
|
|
common/__pycache__/io_utils.cpython-39.pyc
ADDED
|
Binary file (5.4 kB). View file
|
|
|
common/__pycache__/launch_utils.cpython-310.pyc
ADDED
|
Binary file (4.79 kB). View file
|
|
|
common/__pycache__/launch_utils.cpython-313.pyc
ADDED
|
Binary file (8.23 kB). View file
|
|
|
common/__pycache__/launch_utils.cpython-39.pyc
ADDED
|
Binary file (4.79 kB). View file
|
|
|
common/__pycache__/misc.cpython-310.pyc
ADDED
|
Binary file (4.41 kB). View file
|
|
|
common/__pycache__/misc.cpython-39.pyc
ADDED
|
Binary file (4.36 kB). View file
|
|
|
common/__pycache__/type_utils.cpython-310.pyc
ADDED
|
Binary file (1.42 kB). View file
|
|
|
common/__pycache__/type_utils.cpython-39.pyc
ADDED
|
Binary file (1.34 kB). View file
|
|
|
common/box_utils.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def box3d_iou(corners1, corners2):
|
| 5 |
+
''' Compute 3D bounding box IoU.
|
| 6 |
+
|
| 7 |
+
Input:
|
| 8 |
+
corners1: numpy array (8,3), assume up direction is Z
|
| 9 |
+
corners2: numpy array (8,3), assume up direction is Z
|
| 10 |
+
Output:
|
| 11 |
+
iou: 3D bounding box IoU
|
| 12 |
+
|
| 13 |
+
'''
|
| 14 |
+
x_min_1, x_max_1, y_min_1, y_max_1, z_min_1, z_max_1 = get_box3d_min_max(corners1)
|
| 15 |
+
x_min_2, x_max_2, y_min_2, y_max_2, z_min_2, z_max_2 = get_box3d_min_max(corners2)
|
| 16 |
+
xA = np.maximum(x_min_1, x_min_2)
|
| 17 |
+
yA = np.maximum(y_min_1, y_min_2)
|
| 18 |
+
zA = np.maximum(z_min_1, z_min_2)
|
| 19 |
+
xB = np.minimum(x_max_1, x_max_2)
|
| 20 |
+
yB = np.minimum(y_max_1, y_max_2)
|
| 21 |
+
zB = np.minimum(z_max_1, z_max_2)
|
| 22 |
+
inter_vol = np.maximum((xB - xA), 0) * np.maximum((yB - yA), 0) * np.maximum((zB - zA), 0)
|
| 23 |
+
box_vol_1 = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) * (z_max_1 - z_min_1)
|
| 24 |
+
box_vol_2 = (x_max_2 - x_min_2) * (y_max_2 - y_min_2) * (z_max_2 - z_min_2)
|
| 25 |
+
iou = inter_vol / (box_vol_1 + box_vol_2 - inter_vol + 1e-8)
|
| 26 |
+
|
| 27 |
+
return iou
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_box3d_min_max(corner):
|
| 31 |
+
''' Compute min and max coordinates for 3D bounding box
|
| 32 |
+
Note: only for axis-aligned bounding boxes
|
| 33 |
+
|
| 34 |
+
Input:
|
| 35 |
+
corners: numpy array (8,3), assume up direction is Z (batch of N samples)
|
| 36 |
+
Output:
|
| 37 |
+
box_min_max: an array for min and max coordinates of 3D bounding box IoU
|
| 38 |
+
|
| 39 |
+
'''
|
| 40 |
+
min_coord = corner.min(axis=0)
|
| 41 |
+
max_coord = corner.max(axis=0)
|
| 42 |
+
x_min, x_max = min_coord[0], max_coord[0]
|
| 43 |
+
y_min, y_max = min_coord[1], max_coord[1]
|
| 44 |
+
z_min, z_max = min_coord[2], max_coord[2]
|
| 45 |
+
|
| 46 |
+
return x_min, x_max, y_min, y_max, z_min, z_max
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_3d_box(center, box_size):
|
| 50 |
+
''' box_size is array(l,w,h), heading_angle is radius clockwise from pos x axis, center is xyz of box center
|
| 51 |
+
output (8,3) array for 3D box cornders
|
| 52 |
+
Similar to utils/compute_orientation_3d
|
| 53 |
+
'''
|
| 54 |
+
l,w,h = box_size
|
| 55 |
+
# x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]
|
| 56 |
+
# y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]
|
| 57 |
+
# z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]
|
| 58 |
+
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]
|
| 59 |
+
y_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]
|
| 60 |
+
z_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]
|
| 61 |
+
corners_3d = np.vstack([x_corners,y_corners,z_corners])
|
| 62 |
+
corners_3d[0,:] = corners_3d[0,:] + center[0]
|
| 63 |
+
corners_3d[1,:] = corners_3d[1,:] + center[1]
|
| 64 |
+
corners_3d[2,:] = corners_3d[2,:] + center[2]
|
| 65 |
+
corners_3d = np.transpose(corners_3d)
|
| 66 |
+
return corners_3d
|
common/dist_utils.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import pickle
|
| 3 |
+
import torch
|
| 4 |
+
import torch.distributed as dist
|
| 5 |
+
|
| 6 |
+
import logging
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
########################### Basic utility for distributed info ################################
|
| 10 |
+
|
| 11 |
+
def is_dist_avail_and_initialized():
|
| 12 |
+
if not dist.is_available():
|
| 13 |
+
return False
|
| 14 |
+
if not dist.is_initialized():
|
| 15 |
+
return False
|
| 16 |
+
return True
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_rank():
|
| 20 |
+
"""
|
| 21 |
+
Get the rank of the current process.
|
| 22 |
+
"""
|
| 23 |
+
if not is_dist_avail_and_initialized():
|
| 24 |
+
return 0
|
| 25 |
+
return dist.get_rank()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def get_world_size():
|
| 29 |
+
"""
|
| 30 |
+
Get the size of the world.
|
| 31 |
+
"""
|
| 32 |
+
if not is_dist_avail_and_initialized():
|
| 33 |
+
return 1
|
| 34 |
+
return dist.get_world_size()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def is_master_proc(num_gpus=8):
|
| 38 |
+
"""
|
| 39 |
+
Determines if the current process is the master process on each node.
|
| 40 |
+
"""
|
| 41 |
+
if is_dist_avail_and_initialized():
|
| 42 |
+
return dist.get_rank() % num_gpus == 0
|
| 43 |
+
else:
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def is_root_proc():
|
| 48 |
+
"""
|
| 49 |
+
Determines if the current process is the root process.
|
| 50 |
+
"""
|
| 51 |
+
if is_dist_avail_and_initialized():
|
| 52 |
+
return dist.get_rank() == 0
|
| 53 |
+
else:
|
| 54 |
+
return True
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
############################## Data gathering across devices ##################################
|
| 58 |
+
|
| 59 |
+
def _serialize_to_tensor(data, group, max_size=1024):
|
| 60 |
+
"""
|
| 61 |
+
Serialize the tensor to ByteTensor. Note that only `gloo` and `nccl`
|
| 62 |
+
backend is supported.
|
| 63 |
+
Args:
|
| 64 |
+
data (data): data to be serialized.
|
| 65 |
+
group (group): pytorch dist group.
|
| 66 |
+
Returns:
|
| 67 |
+
tensor (ByteTensor): tensor that serialized.
|
| 68 |
+
"""
|
| 69 |
+
backend = dist.get_backend(group)
|
| 70 |
+
assert backend in ["gloo", "nccl"]
|
| 71 |
+
device = torch.device("cpu" if backend == "gloo" else "cuda")
|
| 72 |
+
|
| 73 |
+
buffer = pickle.dumps(data)
|
| 74 |
+
if len(buffer) > max_size ** 3:
|
| 75 |
+
logger.warning(
|
| 76 |
+
"Rank {} trying to all-gather {:.2f} GB of data on device {}".format(
|
| 77 |
+
get_rank(), len(buffer) / (max_size ** 3), device
|
| 78 |
+
)
|
| 79 |
+
)
|
| 80 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
| 81 |
+
tensor = torch.ByteTensor(storage).to(device=device)
|
| 82 |
+
return tensor
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def _pad_to_largest_tensor(tensor, group):
|
| 86 |
+
"""
|
| 87 |
+
Padding all the tensors from different GPUs to the largest ones.
|
| 88 |
+
Args:
|
| 89 |
+
tensor (tensor): tensor to pad.
|
| 90 |
+
group (group): pytorch dist group.
|
| 91 |
+
Returns:
|
| 92 |
+
list[int]: size of the tensor, on each rank
|
| 93 |
+
Tensor: padded tensor that has the max size
|
| 94 |
+
"""
|
| 95 |
+
world_size = dist.get_world_size(group=group)
|
| 96 |
+
assert (
|
| 97 |
+
world_size >= 1
|
| 98 |
+
), "comm.gather/all_gather must be called from ranks within the given group!"
|
| 99 |
+
local_size = torch.tensor(
|
| 100 |
+
[tensor.numel()], dtype=torch.int64, device=tensor.device
|
| 101 |
+
)
|
| 102 |
+
size_list = [
|
| 103 |
+
torch.zeros([1], dtype=torch.int64, device=tensor.device)
|
| 104 |
+
for _ in range(world_size)
|
| 105 |
+
]
|
| 106 |
+
dist.all_gather(size_list, local_size, group=group)
|
| 107 |
+
size_list = [int(size.item()) for size in size_list]
|
| 108 |
+
|
| 109 |
+
max_size = max(size_list)
|
| 110 |
+
|
| 111 |
+
# we pad the tensor because torch all_gather does not support
|
| 112 |
+
# gathering tensors of different shapes
|
| 113 |
+
if local_size != max_size:
|
| 114 |
+
padding = torch.zeros(
|
| 115 |
+
(max_size - local_size,), dtype=torch.uint8, device=tensor.device
|
| 116 |
+
)
|
| 117 |
+
tensor = torch.cat((tensor, padding), dim=0)
|
| 118 |
+
return size_list, tensor
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def broadcast(object):
|
| 122 |
+
if isinstance(object, torch.Tensor):
|
| 123 |
+
dist.broadcast(tensor=object, src=0)
|
| 124 |
+
else:
|
| 125 |
+
sync_tensor = torch.Tensor([object]).cuda()
|
| 126 |
+
dist.broadcast(tensor=sync_tensor, src=0)
|
| 127 |
+
object = sync_tensor[0].item()
|
| 128 |
+
return object
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def all_gather(tensors):
|
| 132 |
+
"""
|
| 133 |
+
All gathers the provided tensors from all processes across machines.
|
| 134 |
+
Args:
|
| 135 |
+
tensors (list): tensors to perform all gather across all processes in
|
| 136 |
+
all machines.
|
| 137 |
+
"""
|
| 138 |
+
gather_list = []
|
| 139 |
+
output_tensor = []
|
| 140 |
+
world_size = dist.get_world_size()
|
| 141 |
+
for tensor in tensors:
|
| 142 |
+
tensor_placeholder = [
|
| 143 |
+
torch.ones_like(tensor) for _ in range(world_size)
|
| 144 |
+
]
|
| 145 |
+
dist.all_gather(tensor_placeholder, tensor, async_op=False)
|
| 146 |
+
gather_list.append(tensor_placeholder)
|
| 147 |
+
for gathered_tensor in gather_list:
|
| 148 |
+
output_tensor.append(torch.cat(gathered_tensor, dim=0))
|
| 149 |
+
return output_tensor
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def all_reduce(tensors, average=True):
|
| 153 |
+
"""
|
| 154 |
+
All reduce the provided tensors from all processes across machines.
|
| 155 |
+
Args:
|
| 156 |
+
tensors (list): tensors to perform all reduce across all processes in
|
| 157 |
+
all machines.
|
| 158 |
+
average (bool): scales the reduced tensor by the number of overall
|
| 159 |
+
processes across all machines.
|
| 160 |
+
"""
|
| 161 |
+
for tensor in tensors:
|
| 162 |
+
dist.all_reduce(tensor, async_op=False)
|
| 163 |
+
if average:
|
| 164 |
+
world_size = dist.get_world_size()
|
| 165 |
+
for tensor in tensors:
|
| 166 |
+
tensor.mul_(1.0 / world_size)
|
| 167 |
+
return tensors
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@functools.lru_cache()
|
| 171 |
+
def _get_global_gloo_group():
|
| 172 |
+
"""
|
| 173 |
+
Return a process group based on gloo backend, containing all the ranks
|
| 174 |
+
The result is cached.
|
| 175 |
+
Returns:
|
| 176 |
+
(group): pytorch dist group.
|
| 177 |
+
"""
|
| 178 |
+
if dist.get_backend() == "nccl":
|
| 179 |
+
return dist.new_group(backend="gloo")
|
| 180 |
+
else:
|
| 181 |
+
return dist.group.WORLD
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def all_gather_unaligned(data, group=None):
|
| 185 |
+
"""
|
| 186 |
+
Run all_gather on arbitrary picklable data (not necessarily tensors).
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
data: any picklable object
|
| 190 |
+
group: a torch process group. By default, will use a group which
|
| 191 |
+
contains all ranks on gloo backend.
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
list[data]: list of data gathered from each rank
|
| 195 |
+
"""
|
| 196 |
+
if get_world_size() == 1:
|
| 197 |
+
return [data]
|
| 198 |
+
if group is None:
|
| 199 |
+
group = _get_global_gloo_group()
|
| 200 |
+
if dist.get_world_size(group) == 1:
|
| 201 |
+
return [data]
|
| 202 |
+
|
| 203 |
+
tensor = _serialize_to_tensor(data, group)
|
| 204 |
+
|
| 205 |
+
size_list, tensor = _pad_to_largest_tensor(tensor, group)
|
| 206 |
+
max_size = max(size_list)
|
| 207 |
+
|
| 208 |
+
# receiving Tensor from all ranks
|
| 209 |
+
tensor_list = [
|
| 210 |
+
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device)
|
| 211 |
+
for _ in size_list
|
| 212 |
+
]
|
| 213 |
+
dist.all_gather(tensor_list, tensor, group=group)
|
| 214 |
+
|
| 215 |
+
data_list = []
|
| 216 |
+
for size, tensor in zip(size_list, tensor_list):
|
| 217 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
| 218 |
+
data_list.append(pickle.loads(buffer))
|
| 219 |
+
|
| 220 |
+
return data_list
|
common/io_utils.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import pickle
|
| 3 |
+
import json
|
| 4 |
+
import cv2
|
| 5 |
+
import yaml
|
| 6 |
+
import numpy as np
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import torch
|
| 9 |
+
import open3d
|
| 10 |
+
from plyfile import PlyData
|
| 11 |
+
|
| 12 |
+
def make_dir(dir_path):
|
| 13 |
+
if not Path(dir_path).exists():
|
| 14 |
+
Path(dir_path).mkdir(parents=True, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def load_imgs(img_paths, option=cv2.IMREAD_COLOR):
|
| 18 |
+
imgs = [cv2.imread(img_path, option) for img_path in img_paths]
|
| 19 |
+
return imgs
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def load_pickle(filename):
|
| 23 |
+
with Path(filename).open("rb") as f:
|
| 24 |
+
return pickle.load(f)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def save_pickle(data, filename):
|
| 28 |
+
with Path(filename).open("wb") as f:
|
| 29 |
+
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def load_json(filename):
|
| 33 |
+
with Path(filename).open("rb") as f:
|
| 34 |
+
return json.load(f)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def save_json(data, filename, save_pretty=True, sort_keys=False):
|
| 38 |
+
with Path(filename).open("w") as f:
|
| 39 |
+
if save_pretty:
|
| 40 |
+
f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
|
| 41 |
+
else:
|
| 42 |
+
json.dump(data, f)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def load_jsonl(filename):
|
| 46 |
+
with Path(filename).open("r") as f:
|
| 47 |
+
return [json.loads(l.strip("\n")) for l in f.readlines()]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def save_jsonl(data, filename):
|
| 51 |
+
with Path(filename).open("w") as f:
|
| 52 |
+
f.write("\n".join([json.dumps(e) for e in data]))
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_yaml(filename):
|
| 56 |
+
with Path(filename).open("r") as f:
|
| 57 |
+
return yaml.load(f, Loader=yaml.SafeLoader)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def save_yaml(data, filename):
|
| 61 |
+
with Path(filename).open("w") as f:
|
| 62 |
+
yaml.dump(data, f, default_flow_style=False)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def load_csv(filename, delimiter=","):
|
| 66 |
+
idx2key = None
|
| 67 |
+
contents = {}
|
| 68 |
+
with Path(filename).open("r") as f:
|
| 69 |
+
reader = csv.reader(f, delimiter=delimiter)
|
| 70 |
+
for l_idx, row in reader:
|
| 71 |
+
if l_idx == 0:
|
| 72 |
+
idx2key = row
|
| 73 |
+
for k_idx, key in enumerate(idx2key):
|
| 74 |
+
contents[key] = []
|
| 75 |
+
else:
|
| 76 |
+
for c_idx, col in enumerate(row):
|
| 77 |
+
contents[idx2key[c_idx]].append(col)
|
| 78 |
+
return contents, idx2key
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def save_csv(data, filename, cols=None, delimiter=","):
|
| 82 |
+
with Path(filename).open("w") as f:
|
| 83 |
+
writer = csv.writer(f, delimiter=delimiter)
|
| 84 |
+
num_entries = len(data[list(data.keys())[0]])
|
| 85 |
+
assert cols is not None, "Must have column names for dumping csv files."
|
| 86 |
+
writer.writerow(cols)
|
| 87 |
+
for l_idx in range(num_entries):
|
| 88 |
+
row = [data[key][l_idx] for key in cols]
|
| 89 |
+
writer.writerow(row)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def load_numpy(filename):
|
| 93 |
+
return np.load(filename, allow_pickle=True)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def save_numpy(data, filename):
|
| 97 |
+
np.save(filename, data, allow_pickle=True)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def load_tensor(filename):
|
| 101 |
+
return torch.load(filename)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def save_tensor(data, filename):
|
| 105 |
+
torch.save(data, filename)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def load_ply(filepath):
|
| 109 |
+
with open(filepath, "rb") as f:
|
| 110 |
+
plydata = PlyData.read(f)
|
| 111 |
+
data = plydata.elements[0].data
|
| 112 |
+
coords = np.array([data["x"], data["y"], data["z"]], dtype=np.float32).T
|
| 113 |
+
feats = None
|
| 114 |
+
labels = None
|
| 115 |
+
if ({"red", "green", "blue"} - set(data.dtype.names)) == set():
|
| 116 |
+
feats = np.array([data["red"], data["green"], data["blue"]], dtype=np.uint8).T
|
| 117 |
+
if "label" in data.dtype.names:
|
| 118 |
+
labels = np.array(data["label"], dtype=np.uint32)
|
| 119 |
+
return coords, feats, labels
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def load_ply_with_normals(filepath):
|
| 123 |
+
mesh = open3d.io.read_triangle_mesh(str(filepath))
|
| 124 |
+
if not mesh.has_vertex_normals():
|
| 125 |
+
mesh.compute_vertex_normals()
|
| 126 |
+
vertices = np.asarray(mesh.vertices)
|
| 127 |
+
normals = np.asarray(mesh.vertex_normals)
|
| 128 |
+
|
| 129 |
+
coords, feats, labels = load_ply(filepath)
|
| 130 |
+
assert np.allclose(coords, vertices), "different coordinates"
|
| 131 |
+
feats = np.hstack((feats, normals))
|
| 132 |
+
|
| 133 |
+
return coords, feats, labels
|
common/launch_utils.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import subprocess
|
| 4 |
+
|
| 5 |
+
import submitit
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
huggingface_fix = f"TRANSFORMERS_OFFLINE=1 CURL_CA_BUNDLE=''"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SubmititLauncher:
|
| 12 |
+
def __init__(self, args):
|
| 13 |
+
self.args = args
|
| 14 |
+
|
| 15 |
+
def __call__(self):
|
| 16 |
+
host_name = os.popen(
|
| 17 |
+
"scontrol show hostnames $SLURM_JOB_NODELIST"
|
| 18 |
+
).read().split("\n")[0]
|
| 19 |
+
self._set_gpu_args()
|
| 20 |
+
# Using Accelerate for launching
|
| 21 |
+
multi_gpu = "--multi_gpu" if self.args.num_nodes * self.args.gpu_per_node > 1 else ""
|
| 22 |
+
opts = " ".join(self.args.opts) if len(self.args.opts) > 0 else ""
|
| 23 |
+
opts += f" num_gpu={self.args.num_nodes * self.args.gpu_per_node} "
|
| 24 |
+
full_cfg_path = Path(self.args.config)
|
| 25 |
+
cfg_path, cfg_file = str(full_cfg_path.parent), str(full_cfg_path.name)
|
| 26 |
+
cmd = f"{huggingface_fix} accelerate launch --num_machines {self.args.num_nodes} \
|
| 27 |
+
--mixed_precision {self.args.mixed_precision} {multi_gpu} \
|
| 28 |
+
--num_processes {self.args.gpu_per_node * self.args.num_nodes} \
|
| 29 |
+
--num_cpu_threads_per_process {self.args.cpu_per_task} \
|
| 30 |
+
--main_process_ip {host_name} \
|
| 31 |
+
--main_process_port {self.args.port} \
|
| 32 |
+
--machine_rank {self.args.node_id} \
|
| 33 |
+
--dynamo_backend no \
|
| 34 |
+
{self.args.run_file} \
|
| 35 |
+
--config-path {cfg_path} \
|
| 36 |
+
--config-name {cfg_file} \
|
| 37 |
+
num_gpu={self.args.num_nodes * self.args.gpu_per_node} \
|
| 38 |
+
hydra.run.dir=. \
|
| 39 |
+
hydra.output_subdir=null \
|
| 40 |
+
hydra/job_logging=disabled \
|
| 41 |
+
hydra/hydra_logging=disabled {opts}"
|
| 42 |
+
subprocess.run(cmd, shell=True)
|
| 43 |
+
|
| 44 |
+
def _set_gpu_args(self):
|
| 45 |
+
job_env = submitit.JobEnvironment()
|
| 46 |
+
self.args.job_dir = str(self.args.job_dir).replace("%j", job_env.job_id)
|
| 47 |
+
self.args.node_id = int(job_env.global_rank / self.args.gpu_per_node)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def submitit_launch(args):
|
| 51 |
+
"""
|
| 52 |
+
Multi node script launching with Submitit
|
| 53 |
+
"""
|
| 54 |
+
additional_parameters = {}
|
| 55 |
+
if args.nodelist != "":
|
| 56 |
+
# if specifying node id
|
| 57 |
+
nodelist = f"{str(args.nodelist)}"
|
| 58 |
+
additional_parameters["nodelist"] = nodelist
|
| 59 |
+
|
| 60 |
+
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
|
| 61 |
+
executor.update_parameters(
|
| 62 |
+
name=args.name,
|
| 63 |
+
mem_gb=args.mem_per_gpu * args.gpu_per_node * args.num_nodes,
|
| 64 |
+
gpus_per_node=args.gpu_per_node,
|
| 65 |
+
tasks_per_node=1,
|
| 66 |
+
cpus_per_task=args.gpu_per_node * args.cpu_per_task,
|
| 67 |
+
nodes=args.num_nodes,
|
| 68 |
+
slurm_qos=args.qos,
|
| 69 |
+
slurm_partition=args.partition,
|
| 70 |
+
slurm_account=args.account,
|
| 71 |
+
slurm_time=args.time * 60,
|
| 72 |
+
slurm_signal_delay_s=120,
|
| 73 |
+
slurm_additional_parameters=additional_parameters
|
| 74 |
+
)
|
| 75 |
+
launcher = SubmititLauncher(args)
|
| 76 |
+
job = executor.submit(launcher)
|
| 77 |
+
print(f"submitted job: {job.job_id}")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def accelerate_launch(args):
|
| 81 |
+
"""
|
| 82 |
+
Single node script launching with Accelerate
|
| 83 |
+
"""
|
| 84 |
+
opts = " ".join(args.opts) if len(args.opts) > 0 else ""
|
| 85 |
+
opts += f" num_gpu={args.num_nodes * args.gpu_per_node} "
|
| 86 |
+
multi_gpu = "--multi_gpu" if args.num_nodes * args.gpu_per_node > 1 else ""
|
| 87 |
+
full_cfg_path = Path(args.config)
|
| 88 |
+
cfg_path, cfg_file = str(full_cfg_path.parent), str(full_cfg_path.name)
|
| 89 |
+
cmd = f"{huggingface_fix} accelerate launch --num_machines {args.num_nodes} \
|
| 90 |
+
{multi_gpu} \
|
| 91 |
+
--mixed_precision {args.mixed_precision} \
|
| 92 |
+
--num_processes {args.gpu_per_node * args.num_nodes} \
|
| 93 |
+
--num_cpu_threads_per_process {args.cpu_per_task} \
|
| 94 |
+
--dynamo_backend no \
|
| 95 |
+
{args.run_file} \
|
| 96 |
+
--config-path {cfg_path} \
|
| 97 |
+
--config-name {cfg_file} \
|
| 98 |
+
num_gpu={args.num_nodes * args.gpu_per_node} \
|
| 99 |
+
hydra.run.dir=. \
|
| 100 |
+
hydra.output_subdir=null \
|
| 101 |
+
hydra/job_logging=disabled \
|
| 102 |
+
hydra/hydra_logging=disabled {opts}"
|
| 103 |
+
subprocess.run(cmd, shell=True)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def python_launch(args):
|
| 107 |
+
"""
|
| 108 |
+
Vanilla python launcher for degbugging purposes
|
| 109 |
+
"""
|
| 110 |
+
opts = " ".join(args.opts) if len(args.opts) > 0 else ""
|
| 111 |
+
full_cfg_path = Path(args.config)
|
| 112 |
+
cfg_path, cfg_file = str(full_cfg_path.parent), str(full_cfg_path.name)
|
| 113 |
+
cmd = f"{huggingface_fix} python {args.run_file} " \
|
| 114 |
+
f"--config-path {cfg_path} " \
|
| 115 |
+
f"--config-name {cfg_file} " \
|
| 116 |
+
f"num_gpu=1 " \
|
| 117 |
+
f"hydra.run.dir=. " \
|
| 118 |
+
f"hydra.output_subdir=null " \
|
| 119 |
+
f"hydra/job_logging=disabled " \
|
| 120 |
+
f"hydra/hydra_logging=disabled {opts}"
|
| 121 |
+
subprocess.run(cmd, shell=True)
|