backup / model /openvocab_prev.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import torch
from torch import Tensor
from torch.cuda.amp import autocast
from transformers import AutoModelForCausalLM, AutoModel, AutoTokenizer
from model.build import MODEL_REGISTRY, BaseModel
from modules.build import build_module
from optim.utils import no_decay_param_group
import torch.nn as nn
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
@MODEL_REGISTRY.register()
class OpenVocab(BaseModel):
def __init__(self, cfg):
super().__init__(cfg)
self.cfg = cfg
model_root = "fg-clip-base"
self.pm_encoder = AutoModelForCausalLM.from_pretrained(model_root, trust_remote_code=True)
if cfg.mode in ['warmup', 'pretrain']:
self.frozen_model = AutoModelForCausalLM.from_pretrained(model_root, trust_remote_code=True)
self.use_scene_cap = self.cfg.data.args.get("use_scene_cap", False)
self.set_training_mode()
else:
self.text_encoder = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
self.tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
self.text_encoder.text_model.output_tokens = True
self.set_downstream_mode()
self.head_list = self.cfg.model.heads.head_list
for head in self.head_list:
setattr(self, head, build_module("heads", getattr(self.cfg.model.heads, head)))
def set_training_mode(self):
for name, param in self.frozen_model.named_parameters():
param.requires_grad = False
for name, param in self.pm_encoder.named_parameters():
if "text_model" in name:
param.requires_grad = False
self.pm_encoder.train()
self.frozen_model.eval()
def set_downstream_mode(self):
"""Set the model to downstream mode."""
for param in self.pm_encoder.parameters():
param.requires_grad = False
for name, param in self.text_encoder.named_parameters():
if "vision_model" in name:
param.requires_grad = False
self.pm_encoder.eval()
self.text_encoder.train()
def forward(self, data_dict, mode=None):
# Ensure step counters exist
if 'cur_step' not in data_dict:
data_dict['cur_step'] = 1
data_dict['total_steps'] = 1
data_dict['logit_scale'] = self.pm_encoder.logit_scale.exp()
if mode == "warmup":
B, C, H, W = data_dict["images"].shape
data_dict["point_map"] = data_dict["point_map"].to(torch.bfloat16, non_blocking=True).permute(0, 3, 1, 2)
data_dict["txt_ids"] = data_dict["txt_ids"].view(B, -1)
with torch.autocast("cuda", dtype=torch.bfloat16):
pm = data_dict["point_map"]
_, data_dict["inter_view_pm_embed"] = self.pm_encoder.get_image_features(pm)
with torch.no_grad():
data_dict["inter_view_txt_embed"] = self.frozen_model.get_text_features(data_dict["txt_ids"])
_, data_dict["inter_view_rgb_embed"] = self.frozen_model.get_image_features(data_dict["images"])
elif mode == 'pretrain':
pm_basic_features = []
data_dict['point_map'] = data_dict['point_map'].to(torch.bfloat16, non_blocking=True).permute(0, 1, 4, 2, 3)
for i in range(data_dict['point_map'].shape[0]): # batch dimension
with autocast(dtype=torch.bfloat16):
pm = data_dict['point_map'][i] # [8, C, H, W]
_, pm_feat = self.pm_encoder.get_image_features(data_dict['point_map'][i])
pm_basic_features.append(pm_feat)
data_dict['inter_view_pm_embed'] = torch.stack(pm_basic_features, dim=0)
data_dict['scene_pm_embed'] = data_dict['inter_view_pm_embed'].mean(dim=1)
B_txt = data_dict['txt_ids'].shape[0]
lang_basic_features = torch.empty((B_txt, 32, 512), dtype=torch.bfloat16, device=data_dict['txt_ids'].device)
rgb_basic_features = torch.empty((B_txt, 32, 512), dtype=torch.bfloat16, device=data_dict['txt_ids'].device)
with torch.no_grad():
with autocast(dtype=torch.bfloat16):
for i in range(B_txt):
lang_basic_features[i] = self.frozen_model.get_text_features(data_dict['txt_ids'][i], walk_short_pos=True)
rgb_basic_features[i] = self.frozen_model.get_image_features(data_dict['images'][i])[1]
if getattr(self, "use_scene_cap", False):
data_dict['scene_text_embed'] = self.frozen_model.get_text_features(data_dict['scene_txt_ids'], walk_short_pos=False)
data_dict['inter_view_txt_embed'] = lang_basic_features
data_dict['inter_view_rgb_embed'] = rgb_basic_features
data_dict['scene_rgb_embed'] = rgb_basic_features.mean(dim=1)
elif mode == 'qa':
B, V, C, H, W = data_dict['point_map'].shape
pm = data_dict['point_map'].reshape(B * V, C, H, W)
with torch.no_grad():
with autocast(dtype=torch.bfloat16):
_, pm_feats = self.pm_encoder.get_image_features(pm)
data_dict['inter_view_pm_embed'] = pm_feats.reshape(B, V, -1)
# jinaclip
tokenized = self.tokenizer.batch_encode_plus(
data_dict['sentence'],
padding="max_length",
return_tensors="pt",
max_length=256,
).to(data_dict['inter_view_pm_embed'].device)
# tokenized = self.tokenizer(
# data_dict['sentence'],
# padding=True,
# max_length=256,
# truncation = False,
# return_tensors="pt",
# ).to(data_dict['inter_view_pm_embed'].device)
data_dict['txt_ids'] = tokenized['input_ids']
with autocast(dtype=torch.bfloat16):
data_dict['inter_view_txt_tokens'] = self.text_encoder.text_model(data_dict['txt_ids'])[-1]
data_dict['attention_mask'] = tokenized['attention_mask'].ne(1).bool()
# text_embeddings = self.text_encoder(**tokenized)
# data_dict['inter_view_txt_tokens'] = text_embeddings.last_hidden_state
# --- QA Head (if used) ---
if hasattr(self, "qa_head") and self.qa_head is not None:
answer_scores = self.qa_head(
data_dict['inter_view_pm_embed'],
data_dict['inter_view_txt_tokens'],
data_dict['attention_mask']
)
data_dict['answer_scores'] = answer_scores
return data_dict
def get_vision_params(self, model):
return [(n, p) for n, p in model.named_parameters() if p.requires_grad]
def get_text_params(self, model):
text_params = [
(n, p) for n, p in model.named_parameters()
if "text_model" in n
]
return text_params
def get_opt_params(self):
def get_lr(cfg, default_lr):
return default_lr if cfg.get("lr") is None else cfg.get("lr")
optimizer_grouped_parameters = []
if self.cfg.mode == 'warmup':
optimizer_grouped_parameters += no_decay_param_group(self.get_vision_params(self.pm_encoder),get_lr(self.cfg.model.vision, self.cfg.solver.lr))
elif self.cfg.mode == 'pretrain':
optimizer_grouped_parameters += no_decay_param_group(self.get_vision_params(self.pm_encoder),get_lr(self.cfg.model.vision, self.cfg.solver.lr))
else:
optimizer_grouped_parameters += no_decay_param_group(self.get_text_params(self.text_encoder), get_lr(self.cfg.model.vision, self.cfg.solver.lr))
if "qa_head" in self.head_list:
optimizer_grouped_parameters += no_decay_param_group(
self.qa_head.named_parameters(), get_lr(self.cfg.model.heads.qa_head, self.cfg.solver.lr)
)
if "ground_head" in self.head_list:
optimizer_grouped_parameters += no_decay_param_group(
self.ground_head.named_parameters(), get_lr(self.cfg.model.heads.ground_head, self.cfg.solver.lr)
)
return optimizer_grouped_parameters