backup / POMA_BENCH /eval_view_retrieval.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import os
import glob
import json
import argparse
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from transformers import AutoImageProcessor, AutoModelForCausalLM, AutoTokenizer
# -----------------------------
# Utils
# -----------------------------
def load_jsonl(path: str) -> List[dict]:
data = []
with open(path, "r") as f:
for line in f:
line = line.strip()
if not line:
continue
data.append(json.loads(line))
return data
def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"):
cached_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type=repo_type,
local_files_only=False
)
return load_file(cached_path)
def to_vchw(point_map: torch.Tensor) -> torch.Tensor:
"""
Convert point_map to (V, 3, H, W) float tensor.
Accepts common layouts:
(V, 3, H, W) -> ok
(V, H, W, 3) -> permute
(V, H, W, C) where C=3 -> permute
"""
if point_map.dim() != 4:
raise ValueError(f"Expected point_map to be 4D (V,*,*,*), got shape={tuple(point_map.shape)}")
V, a, b, c = point_map.shape
# (V, 3, H, W)
if a == 3:
out = point_map
# (V, H, W, 3)
elif c == 3:
out = point_map.permute(0, 3, 1, 2).contiguous()
else:
raise ValueError(f"Unrecognized point_map layout: shape={tuple(point_map.shape)}")
return out.float()
def load_pretrain(model, pretrain_ckpt_path):
print(f"📂 Loading pretrained weights from: {str(pretrain_ckpt_path)}")
# Search for safetensors files
model_weight_path_pattern = pretrain_ckpt_path + "/model*.safetensors"
model_weight_paths = glob.glob(model_weight_path_pattern)
if len(model_weight_paths) == 0:
raise FileNotFoundError(f"❌ Cannot find any .safetensors file in {str(pretrain_ckpt_path)}")
# Load and merge weights
weights = {}
for model_weight_path in model_weight_paths:
print(f"📥 Loading weights from: {model_weight_path}")
weights.update(load_file(model_weight_path, device="cpu"))
# Load weights with strict=False
result = model.load_state_dict(weights, strict=False)
model_keys = set(model.state_dict().keys())
loaded_keys = model_keys.intersection(weights.keys())
missing_keys = result.missing_keys
unexpected_keys = result.unexpected_keys
print(f"✅ Loaded keys: {len(loaded_keys)} / {len(model_keys)}")
print(f"❌ Missing keys: {len(missing_keys)}")
print(f"⚠️ Unexpected keys: {len(unexpected_keys)}")
class _GlobalViewAttnBlock(nn.Module):
"""One pre-norm Transformer-style block over view tokens (B,V,D)."""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float,
dropout: float,
zero_init_residual: bool,
zero_init_attn_out: bool,
):
super().__init__()
self.zero_init_residual = zero_init_residual
self.zero_init_attn_out = zero_init_attn_out
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(
embed_dim=dim,
num_heads=num_heads,
dropout=dropout,
batch_first=True,
bias=True,
)
self.norm2 = nn.LayerNorm(dim)
hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout),
)
self._init_weights()
def forward(self, x, key_padding_mask=None):
h = self.norm1(x)
attn_out, _ = self.attn(
h, h, h,
key_padding_mask=key_padding_mask,
need_weights=False,
)
x = x + attn_out
x = x + self.mlp(self.norm2(x))
return x
@torch.no_grad()
def _init_weights(self):
# LayerNorm
for ln in (self.norm1, self.norm2):
nn.init.ones_(ln.weight)
nn.init.zeros_(ln.bias)
# MultiheadAttention: in_proj for qkv (3D, D)
if getattr(self.attn, "in_proj_weight", None) is not None:
nn.init.xavier_uniform_(self.attn.in_proj_weight)
if getattr(self.attn, "in_proj_bias", None) is not None:
nn.init.zeros_(self.attn.in_proj_bias)
# out proj
nn.init.xavier_uniform_(self.attn.out_proj.weight)
if self.attn.out_proj.bias is not None:
nn.init.zeros_(self.attn.out_proj.bias)
# optional: start attn residual near-zero
if self.zero_init_attn_out:
nn.init.zeros_(self.attn.out_proj.weight)
if self.attn.out_proj.bias is not None:
nn.init.zeros_(self.attn.out_proj.bias)
# MLP
fc1: nn.Linear = self.mlp[0]
fc2: nn.Linear = self.mlp[3]
nn.init.xavier_uniform_(fc1.weight)
if fc1.bias is not None:
nn.init.zeros_(fc1.bias)
# zero-init last projection for stable residual start (recommended)
if self.zero_init_residual:
nn.init.zeros_(fc2.weight)
if fc2.bias is not None:
nn.init.zeros_(fc2.bias)
else:
nn.init.xavier_uniform_(fc2.weight)
if fc2.bias is not None:
nn.init.zeros_(fc2.bias)
class _GlobalViewGatedAttnBlock(nn.Module):
"""Pre-norm Transformer block over view tokens (B,V,D) with gated residuals."""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float,
dropout: float,
zero_init_residual: bool,
zero_init_attn_out: bool,
gate_bias_init: float = -2.0, # sigmoid(-2)≈0.12, starts near-identity (small updates)
):
super().__init__()
self.zero_init_residual = zero_init_residual
self.zero_init_attn_out = zero_init_attn_out
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(
embed_dim=dim,
num_heads=num_heads,
dropout=dropout,
batch_first=True,
bias=True,
)
# --- Gating for attention residual ---
# Produces per-token, per-channel gates in (0,1)
self.attn_gate = nn.Linear(dim, dim, bias=True)
self.norm2 = nn.LayerNorm(dim)
hidden_dim = int(dim * mlp_ratio)
self.mlp = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout),
)
# --- Gating for MLP residual ---
self.mlp_gate = nn.Linear(dim, dim, bias=True)
self._init_weights(gate_bias_init=gate_bias_init)
def forward(self, x: torch.Tensor, key_padding_mask=None) -> torch.Tensor:
# x: (B, V, D)
h1 = self.norm1(x)
attn_out, _ = self.attn(
h1, h1, h1,
key_padding_mask=key_padding_mask,
need_weights=False,
)
g_attn = torch.sigmoid(self.attn_gate(h1)) # (B, V, D)
x = x + g_attn * attn_out
h2 = self.norm2(x)
mlp_out = self.mlp(h2)
g_mlp = torch.sigmoid(self.mlp_gate(h2)) # (B, V, D)
x = x + g_mlp * mlp_out
return x
@torch.no_grad()
def _init_weights(self, gate_bias_init: float):
# LayerNorm
for ln in (self.norm1, self.norm2):
nn.init.ones_(ln.weight)
nn.init.zeros_(ln.bias)
# MultiheadAttention: in_proj for qkv
if getattr(self.attn, "in_proj_weight", None) is not None:
nn.init.xavier_uniform_(self.attn.in_proj_weight)
if getattr(self.attn, "in_proj_bias", None) is not None:
nn.init.zeros_(self.attn.in_proj_bias)
# out proj
nn.init.xavier_uniform_(self.attn.out_proj.weight)
if self.attn.out_proj.bias is not None:
nn.init.zeros_(self.attn.out_proj.bias)
# optional: start attn residual near-zero
if self.zero_init_attn_out:
nn.init.zeros_(self.attn.out_proj.weight)
if self.attn.out_proj.bias is not None:
nn.init.zeros_(self.attn.out_proj.bias)
# MLP
fc1: nn.Linear = self.mlp[0]
fc2: nn.Linear = self.mlp[3]
nn.init.xavier_uniform_(fc1.weight)
if fc1.bias is not None:
nn.init.zeros_(fc1.bias)
if self.zero_init_residual:
nn.init.zeros_(fc2.weight)
if fc2.bias is not None:
nn.init.zeros_(fc2.bias)
else:
nn.init.xavier_uniform_(fc2.weight)
if fc2.bias is not None:
nn.init.zeros_(fc2.bias)
# Gates: start “mostly closed” so training is stable, then learn to open
nn.init.zeros_(self.attn_gate.weight)
nn.init.constant_(self.attn_gate.bias, gate_bias_init)
nn.init.zeros_(self.mlp_gate.weight)
nn.init.constant_(self.mlp_gate.bias, gate_bias_init)
class GlobalViewAttention(nn.Module):
"""
Multi-layer global self-attention over multi-view tokens.
Input: x ∈ (B, V, D)
Output: x' ∈ (B, V, D)
"""
def __init__(
self,
dim: int,
num_layers: int = 1,
num_heads: int = 8,
mlp_ratio: float = 4.0,
dropout: float = 0.0,
zero_init_residual: bool = True, # recommended (stable when adding layers)
zero_init_attn_out: bool = False, # optional extra safety
):
super().__init__()
assert num_layers >= 1, "num_layers must be >= 1"
self.dim = dim
self.num_layers = num_layers
self.num_heads = num_heads
self.layers = nn.ModuleList([
_GlobalViewAttnBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
dropout=dropout,
zero_init_residual=zero_init_residual,
zero_init_attn_out=zero_init_attn_out,
)
for _ in range(num_layers)
])
def forward(self, x, key_padding_mask=None):
"""
x: (B, V, D)
key_padding_mask: (B, V), True = ignore (padding)
"""
for layer in self.layers:
x = layer(x, key_padding_mask=key_padding_mask)
return x
class RepModel(nn.Module):
def __init__(self, model_root: str = "fg-clip-base"):
super().__init__()
self.pm_encoder = AutoModelForCausalLM.from_pretrained(f'../{model_root}', trust_remote_code=True)
# self.global_attn = GlobalViewAttention(dim=512, num_heads=8, mlp_ratio=4.0, dropout=0.1)
self.tokenizer = AutoTokenizer.from_pretrained(f'../{model_root}', trust_remote_code=True, use_fast=True)
self.image_processor = AutoImageProcessor.from_pretrained(f'../{model_root}')
# Optional: print trainable params
try:
self.pm_encoder.print_trainable_parameters()
except Exception:
pass
@torch.no_grad()
def encode_views(self, pm_batched):
# Expect (1,V,3,H,W) or (V,3,H,W)
# pm_batched = self.image_processor(images=pm_batched, return_tensors="pt").to('cuda')
_, feats = self.pm_encoder.get_image_features(pm_batched)
# feats = self.global_attn(feats)
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
return feats
@torch.no_grad()
def encode_text(self, texts):
tok = self.tokenizer(texts, padding="max_length", truncation=True, max_length=248, return_tensors="pt").to('cuda')
feats = self.pm_encoder.get_text_features(tok["input_ids"], walk_short_pos=False)
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
return feats
# -----------------------------
# Retrieval evaluation
# -----------------------------
@torch.no_grad()
def eval_view_retrieval(
model: RepModel,
items: List[dict],
scan_root: str,
device: str = "cuda",
batch_views: int = 32,
recall_ks: Tuple[int, ...] = (1, 5, 10),
) -> Dict[str, float]:
model.eval()
model.to(device)
# Cache: scan_id -> (V, D) view features
scan_cache: Dict[str, torch.Tensor] = {}
total = 0
top1_correct = 0
recall_correct = {k: 0 for k in recall_ks}
for it in items:
scan_id = it["scan_id"]
utter = it["utterance"]
gt_views = it.get("view_ground_truth", None)
if not gt_views:
continue
gt = int(gt_views[0]) # "the first of the view gt"
# Load / cache view features for this scan
if scan_id not in scan_cache:
filename = f'light_scannet/{scan_id}.safetensors'
data = load_safetensor_from_hf('MatchLab/ScenePoint', filename, repo_type="dataset")
# if "point_map" not in data:
# raise KeyError(f"{st_path} does not contain key 'point_map'. keys={list(data.keys())}")
pm = to_vchw(data["point_map"]) # (V, 3, H, W)
# pm = data['color_images']
V = pm.shape[0]
feats = model.encode_views(pm.to(device, non_blocking=True)) # (chunk, D)
scan_cache[scan_id] = feats # (V, D) on CPU
view_feats = scan_cache[scan_id] # (V, D), CPU
V = view_feats.shape[0]
if gt < 0 or gt >= V:
# skip invalid gt index
continue
# Encode text
text_feat = model.encode_text(utter).squeeze(0).unsqueeze(-1) # (D,)
# Similarity: (V,)
sims = (view_feats @ text_feat).squeeze(-1)
# rank views by similarity (high -> low)
ranked = torch.argsort(sims, descending=True)
pred = int(ranked[0].item())
total += 1
if pred == gt:
top1_correct += 1
else:
# per-sample print (optional)
print(f"GT: {gt}, Pred: {pred}, Utterance: {utter}")
# Recall@K
for k in recall_ks:
k_eff = min(k, V)
if (ranked[:k_eff] == gt).any().item():
recall_correct[k] += 1
# ----- after the loop -----
out = {}
if total == 0:
return {"n": 0}
out["n"] = total
out["top1_acc"] = top1_correct / total
for k in recall_ks:
out[f"recall@{k}"] = recall_correct[k] / total
return out
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--jsonl", type=str, required=True, help="SR3D-style jsonl file")
ap.add_argument("--scan_root", type=str, required=True, help="Root dir containing scan safetensors")
ap.add_argument("--ckpt", type=str, default="", help="Optional: path to .pth/.pt or dir with model*.safetensors")
ap.add_argument("--model_root", type=str, default="fg-clip-base")
ap.add_argument("--device", type=str, default="cuda")
ap.add_argument("--batch_views", type=int, default=32)
ap.add_argument("--max_items", type=int, default=-1)
args = ap.parse_args()
items = load_jsonl(args.jsonl)
if args.max_items > 0:
items = items[: args.max_items]
model = RepModel(model_root=args.model_root)
if args.ckpt:
load_pretrain(model, args.ckpt)
metrics = eval_view_retrieval(
model=model,
items=items,
scan_root=args.scan_root,
device=args.device,
batch_views=args.batch_views,
recall_ks=(1, 5, 10),
)
print("\n=== View Retrieval Results ===")
for k, v in metrics.items():
if isinstance(v, float):
print(f"{k:>10}: {v:.4f}")
else:
print(f"{k:>10}: {v}")
if __name__ == "__main__":
main()