|
|
import os |
|
|
import glob |
|
|
import json |
|
|
import argparse |
|
|
from typing import Dict, List, Tuple |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from safetensors.torch import load_file |
|
|
from huggingface_hub import hf_hub_download |
|
|
from transformers import AutoImageProcessor, AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_jsonl(path: str) -> List[dict]: |
|
|
data = [] |
|
|
with open(path, "r") as f: |
|
|
for line in f: |
|
|
line = line.strip() |
|
|
if not line: |
|
|
continue |
|
|
data.append(json.loads(line)) |
|
|
return data |
|
|
|
|
|
|
|
|
def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"): |
|
|
cached_path = hf_hub_download( |
|
|
repo_id=repo_id, |
|
|
filename=filename, |
|
|
repo_type=repo_type, |
|
|
local_files_only=False |
|
|
) |
|
|
return load_file(cached_path) |
|
|
|
|
|
|
|
|
def to_vchw(point_map: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert point_map to (V, 3, H, W) float tensor. |
|
|
Accepts common layouts: |
|
|
(V, 3, H, W) -> ok |
|
|
(V, H, W, 3) -> permute |
|
|
(V, H, W, C) where C=3 -> permute |
|
|
""" |
|
|
if point_map.dim() != 4: |
|
|
raise ValueError(f"Expected point_map to be 4D (V,*,*,*), got shape={tuple(point_map.shape)}") |
|
|
|
|
|
V, a, b, c = point_map.shape |
|
|
|
|
|
|
|
|
if a == 3: |
|
|
out = point_map |
|
|
|
|
|
elif c == 3: |
|
|
out = point_map.permute(0, 3, 1, 2).contiguous() |
|
|
else: |
|
|
raise ValueError(f"Unrecognized point_map layout: shape={tuple(point_map.shape)}") |
|
|
|
|
|
return out.float() |
|
|
|
|
|
|
|
|
def load_pretrain(model, pretrain_ckpt_path): |
|
|
print(f"📂 Loading pretrained weights from: {str(pretrain_ckpt_path)}") |
|
|
|
|
|
|
|
|
model_weight_path_pattern = pretrain_ckpt_path + "/model*.safetensors" |
|
|
model_weight_paths = glob.glob(model_weight_path_pattern) |
|
|
|
|
|
if len(model_weight_paths) == 0: |
|
|
raise FileNotFoundError(f"❌ Cannot find any .safetensors file in {str(pretrain_ckpt_path)}") |
|
|
|
|
|
|
|
|
weights = {} |
|
|
for model_weight_path in model_weight_paths: |
|
|
print(f"📥 Loading weights from: {model_weight_path}") |
|
|
weights.update(load_file(model_weight_path, device="cpu")) |
|
|
|
|
|
|
|
|
result = model.load_state_dict(weights, strict=False) |
|
|
|
|
|
model_keys = set(model.state_dict().keys()) |
|
|
loaded_keys = model_keys.intersection(weights.keys()) |
|
|
missing_keys = result.missing_keys |
|
|
unexpected_keys = result.unexpected_keys |
|
|
print(f"✅ Loaded keys: {len(loaded_keys)} / {len(model_keys)}") |
|
|
print(f"❌ Missing keys: {len(missing_keys)}") |
|
|
print(f"⚠️ Unexpected keys: {len(unexpected_keys)}") |
|
|
|
|
|
class _GlobalViewAttnBlock(nn.Module): |
|
|
"""One pre-norm Transformer-style block over view tokens (B,V,D).""" |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
num_heads: int, |
|
|
mlp_ratio: float, |
|
|
dropout: float, |
|
|
zero_init_residual: bool, |
|
|
zero_init_attn_out: bool, |
|
|
): |
|
|
super().__init__() |
|
|
self.zero_init_residual = zero_init_residual |
|
|
self.zero_init_attn_out = zero_init_attn_out |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
|
self.attn = nn.MultiheadAttention( |
|
|
embed_dim=dim, |
|
|
num_heads=num_heads, |
|
|
dropout=dropout, |
|
|
batch_first=True, |
|
|
bias=True, |
|
|
) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim) |
|
|
hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = nn.Sequential( |
|
|
nn.Linear(dim, hidden_dim), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(hidden_dim, dim), |
|
|
nn.Dropout(dropout), |
|
|
) |
|
|
|
|
|
self._init_weights() |
|
|
|
|
|
def forward(self, x, key_padding_mask=None): |
|
|
h = self.norm1(x) |
|
|
attn_out, _ = self.attn( |
|
|
h, h, h, |
|
|
key_padding_mask=key_padding_mask, |
|
|
need_weights=False, |
|
|
) |
|
|
x = x + attn_out |
|
|
x = x + self.mlp(self.norm2(x)) |
|
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
|
def _init_weights(self): |
|
|
|
|
|
for ln in (self.norm1, self.norm2): |
|
|
nn.init.ones_(ln.weight) |
|
|
nn.init.zeros_(ln.bias) |
|
|
|
|
|
|
|
|
if getattr(self.attn, "in_proj_weight", None) is not None: |
|
|
nn.init.xavier_uniform_(self.attn.in_proj_weight) |
|
|
if getattr(self.attn, "in_proj_bias", None) is not None: |
|
|
nn.init.zeros_(self.attn.in_proj_bias) |
|
|
|
|
|
|
|
|
nn.init.xavier_uniform_(self.attn.out_proj.weight) |
|
|
if self.attn.out_proj.bias is not None: |
|
|
nn.init.zeros_(self.attn.out_proj.bias) |
|
|
|
|
|
|
|
|
if self.zero_init_attn_out: |
|
|
nn.init.zeros_(self.attn.out_proj.weight) |
|
|
if self.attn.out_proj.bias is not None: |
|
|
nn.init.zeros_(self.attn.out_proj.bias) |
|
|
|
|
|
|
|
|
fc1: nn.Linear = self.mlp[0] |
|
|
fc2: nn.Linear = self.mlp[3] |
|
|
|
|
|
nn.init.xavier_uniform_(fc1.weight) |
|
|
if fc1.bias is not None: |
|
|
nn.init.zeros_(fc1.bias) |
|
|
|
|
|
|
|
|
if self.zero_init_residual: |
|
|
nn.init.zeros_(fc2.weight) |
|
|
if fc2.bias is not None: |
|
|
nn.init.zeros_(fc2.bias) |
|
|
else: |
|
|
nn.init.xavier_uniform_(fc2.weight) |
|
|
if fc2.bias is not None: |
|
|
nn.init.zeros_(fc2.bias) |
|
|
|
|
|
class _GlobalViewGatedAttnBlock(nn.Module): |
|
|
"""Pre-norm Transformer block over view tokens (B,V,D) with gated residuals.""" |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
num_heads: int, |
|
|
mlp_ratio: float, |
|
|
dropout: float, |
|
|
zero_init_residual: bool, |
|
|
zero_init_attn_out: bool, |
|
|
gate_bias_init: float = -2.0, |
|
|
): |
|
|
super().__init__() |
|
|
self.zero_init_residual = zero_init_residual |
|
|
self.zero_init_attn_out = zero_init_attn_out |
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim) |
|
|
self.attn = nn.MultiheadAttention( |
|
|
embed_dim=dim, |
|
|
num_heads=num_heads, |
|
|
dropout=dropout, |
|
|
batch_first=True, |
|
|
bias=True, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.attn_gate = nn.Linear(dim, dim, bias=True) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim) |
|
|
hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = nn.Sequential( |
|
|
nn.Linear(dim, hidden_dim), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(hidden_dim, dim), |
|
|
nn.Dropout(dropout), |
|
|
) |
|
|
|
|
|
|
|
|
self.mlp_gate = nn.Linear(dim, dim, bias=True) |
|
|
|
|
|
self._init_weights(gate_bias_init=gate_bias_init) |
|
|
|
|
|
def forward(self, x: torch.Tensor, key_padding_mask=None) -> torch.Tensor: |
|
|
|
|
|
h1 = self.norm1(x) |
|
|
attn_out, _ = self.attn( |
|
|
h1, h1, h1, |
|
|
key_padding_mask=key_padding_mask, |
|
|
need_weights=False, |
|
|
) |
|
|
g_attn = torch.sigmoid(self.attn_gate(h1)) |
|
|
x = x + g_attn * attn_out |
|
|
|
|
|
h2 = self.norm2(x) |
|
|
mlp_out = self.mlp(h2) |
|
|
g_mlp = torch.sigmoid(self.mlp_gate(h2)) |
|
|
x = x + g_mlp * mlp_out |
|
|
return x |
|
|
|
|
|
@torch.no_grad() |
|
|
def _init_weights(self, gate_bias_init: float): |
|
|
|
|
|
for ln in (self.norm1, self.norm2): |
|
|
nn.init.ones_(ln.weight) |
|
|
nn.init.zeros_(ln.bias) |
|
|
|
|
|
|
|
|
if getattr(self.attn, "in_proj_weight", None) is not None: |
|
|
nn.init.xavier_uniform_(self.attn.in_proj_weight) |
|
|
if getattr(self.attn, "in_proj_bias", None) is not None: |
|
|
nn.init.zeros_(self.attn.in_proj_bias) |
|
|
|
|
|
|
|
|
nn.init.xavier_uniform_(self.attn.out_proj.weight) |
|
|
if self.attn.out_proj.bias is not None: |
|
|
nn.init.zeros_(self.attn.out_proj.bias) |
|
|
|
|
|
|
|
|
if self.zero_init_attn_out: |
|
|
nn.init.zeros_(self.attn.out_proj.weight) |
|
|
if self.attn.out_proj.bias is not None: |
|
|
nn.init.zeros_(self.attn.out_proj.bias) |
|
|
|
|
|
|
|
|
fc1: nn.Linear = self.mlp[0] |
|
|
fc2: nn.Linear = self.mlp[3] |
|
|
nn.init.xavier_uniform_(fc1.weight) |
|
|
if fc1.bias is not None: |
|
|
nn.init.zeros_(fc1.bias) |
|
|
|
|
|
if self.zero_init_residual: |
|
|
nn.init.zeros_(fc2.weight) |
|
|
if fc2.bias is not None: |
|
|
nn.init.zeros_(fc2.bias) |
|
|
else: |
|
|
nn.init.xavier_uniform_(fc2.weight) |
|
|
if fc2.bias is not None: |
|
|
nn.init.zeros_(fc2.bias) |
|
|
|
|
|
|
|
|
nn.init.zeros_(self.attn_gate.weight) |
|
|
nn.init.constant_(self.attn_gate.bias, gate_bias_init) |
|
|
|
|
|
nn.init.zeros_(self.mlp_gate.weight) |
|
|
nn.init.constant_(self.mlp_gate.bias, gate_bias_init) |
|
|
|
|
|
class GlobalViewAttention(nn.Module): |
|
|
""" |
|
|
Multi-layer global self-attention over multi-view tokens. |
|
|
|
|
|
Input: x ∈ (B, V, D) |
|
|
Output: x' ∈ (B, V, D) |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
num_layers: int = 1, |
|
|
num_heads: int = 8, |
|
|
mlp_ratio: float = 4.0, |
|
|
dropout: float = 0.0, |
|
|
zero_init_residual: bool = True, |
|
|
zero_init_attn_out: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
assert num_layers >= 1, "num_layers must be >= 1" |
|
|
|
|
|
self.dim = dim |
|
|
self.num_layers = num_layers |
|
|
self.num_heads = num_heads |
|
|
self.layers = nn.ModuleList([ |
|
|
_GlobalViewAttnBlock( |
|
|
dim=dim, |
|
|
num_heads=num_heads, |
|
|
mlp_ratio=mlp_ratio, |
|
|
dropout=dropout, |
|
|
zero_init_residual=zero_init_residual, |
|
|
zero_init_attn_out=zero_init_attn_out, |
|
|
) |
|
|
for _ in range(num_layers) |
|
|
]) |
|
|
|
|
|
def forward(self, x, key_padding_mask=None): |
|
|
""" |
|
|
x: (B, V, D) |
|
|
key_padding_mask: (B, V), True = ignore (padding) |
|
|
""" |
|
|
for layer in self.layers: |
|
|
x = layer(x, key_padding_mask=key_padding_mask) |
|
|
return x |
|
|
|
|
|
class RepModel(nn.Module): |
|
|
def __init__(self, model_root: str = "fg-clip-base"): |
|
|
super().__init__() |
|
|
|
|
|
self.pm_encoder = AutoModelForCausalLM.from_pretrained(f'../{model_root}', trust_remote_code=True) |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(f'../{model_root}', trust_remote_code=True, use_fast=True) |
|
|
self.image_processor = AutoImageProcessor.from_pretrained(f'../{model_root}') |
|
|
|
|
|
|
|
|
try: |
|
|
self.pm_encoder.print_trainable_parameters() |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
@torch.no_grad() |
|
|
def encode_views(self, pm_batched): |
|
|
|
|
|
|
|
|
_, feats = self.pm_encoder.get_image_features(pm_batched) |
|
|
|
|
|
feats = torch.nn.functional.normalize(feats.float(), dim=-1) |
|
|
return feats |
|
|
|
|
|
@torch.no_grad() |
|
|
def encode_text(self, texts): |
|
|
tok = self.tokenizer(texts, padding="max_length", truncation=True, max_length=248, return_tensors="pt").to('cuda') |
|
|
feats = self.pm_encoder.get_text_features(tok["input_ids"], walk_short_pos=False) |
|
|
feats = torch.nn.functional.normalize(feats.float(), dim=-1) |
|
|
return feats |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def eval_view_retrieval( |
|
|
model: RepModel, |
|
|
items: List[dict], |
|
|
scan_root: str, |
|
|
device: str = "cuda", |
|
|
batch_views: int = 32, |
|
|
recall_ks: Tuple[int, ...] = (1, 5, 10), |
|
|
) -> Dict[str, float]: |
|
|
model.eval() |
|
|
model.to(device) |
|
|
|
|
|
|
|
|
scan_cache: Dict[str, torch.Tensor] = {} |
|
|
|
|
|
total = 0 |
|
|
top1_correct = 0 |
|
|
recall_correct = {k: 0 for k in recall_ks} |
|
|
|
|
|
for it in items: |
|
|
scan_id = it["scan_id"] |
|
|
utter = it["utterance"] |
|
|
gt_views = it.get("view_ground_truth", None) |
|
|
if not gt_views: |
|
|
continue |
|
|
gt = int(gt_views[0]) |
|
|
|
|
|
|
|
|
if scan_id not in scan_cache: |
|
|
filename = f'light_scannet/{scan_id}.safetensors' |
|
|
data = load_safetensor_from_hf('MatchLab/ScenePoint', filename, repo_type="dataset") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pm = to_vchw(data["point_map"]) |
|
|
|
|
|
|
|
|
V = pm.shape[0] |
|
|
|
|
|
feats = model.encode_views(pm.to(device, non_blocking=True)) |
|
|
scan_cache[scan_id] = feats |
|
|
|
|
|
view_feats = scan_cache[scan_id] |
|
|
V = view_feats.shape[0] |
|
|
if gt < 0 or gt >= V: |
|
|
|
|
|
continue |
|
|
|
|
|
|
|
|
text_feat = model.encode_text(utter).squeeze(0).unsqueeze(-1) |
|
|
|
|
|
|
|
|
sims = (view_feats @ text_feat).squeeze(-1) |
|
|
|
|
|
|
|
|
ranked = torch.argsort(sims, descending=True) |
|
|
|
|
|
pred = int(ranked[0].item()) |
|
|
total += 1 |
|
|
|
|
|
if pred == gt: |
|
|
top1_correct += 1 |
|
|
else: |
|
|
|
|
|
print(f"GT: {gt}, Pred: {pred}, Utterance: {utter}") |
|
|
|
|
|
|
|
|
for k in recall_ks: |
|
|
k_eff = min(k, V) |
|
|
if (ranked[:k_eff] == gt).any().item(): |
|
|
recall_correct[k] += 1 |
|
|
|
|
|
|
|
|
out = {} |
|
|
if total == 0: |
|
|
return {"n": 0} |
|
|
|
|
|
out["n"] = total |
|
|
out["top1_acc"] = top1_correct / total |
|
|
for k in recall_ks: |
|
|
out[f"recall@{k}"] = recall_correct[k] / total |
|
|
|
|
|
return out |
|
|
|
|
|
def main(): |
|
|
ap = argparse.ArgumentParser() |
|
|
ap.add_argument("--jsonl", type=str, required=True, help="SR3D-style jsonl file") |
|
|
ap.add_argument("--scan_root", type=str, required=True, help="Root dir containing scan safetensors") |
|
|
ap.add_argument("--ckpt", type=str, default="", help="Optional: path to .pth/.pt or dir with model*.safetensors") |
|
|
ap.add_argument("--model_root", type=str, default="fg-clip-base") |
|
|
ap.add_argument("--device", type=str, default="cuda") |
|
|
ap.add_argument("--batch_views", type=int, default=32) |
|
|
ap.add_argument("--max_items", type=int, default=-1) |
|
|
args = ap.parse_args() |
|
|
|
|
|
items = load_jsonl(args.jsonl) |
|
|
if args.max_items > 0: |
|
|
items = items[: args.max_items] |
|
|
|
|
|
model = RepModel(model_root=args.model_root) |
|
|
if args.ckpt: |
|
|
load_pretrain(model, args.ckpt) |
|
|
|
|
|
metrics = eval_view_retrieval( |
|
|
model=model, |
|
|
items=items, |
|
|
scan_root=args.scan_root, |
|
|
device=args.device, |
|
|
batch_views=args.batch_views, |
|
|
recall_ks=(1, 5, 10), |
|
|
) |
|
|
|
|
|
print("\n=== View Retrieval Results ===") |
|
|
for k, v in metrics.items(): |
|
|
if isinstance(v, float): |
|
|
print(f"{k:>10}: {v:.4f}") |
|
|
else: |
|
|
print(f"{k:>10}: {v}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|