Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Czech
Libraries:
Datasets
pandas
License:
Propaganda / README.md
rsabol's picture
Upload README.md with huggingface_hub
d9cb2bb
|
raw
history blame
2.37 kB
metadata
license: cc-by-nc-sa-4.0
language:
  - cs
size_categories:
  - 1K<n<10K
dataset_info:
  features:
    - name: id
      dtype: int64
    - name: text
      dtype: string
    - name: genre
      dtype: string
    - name: topic
      dtype: string
    - name: scope
      dtype: string
    - name: location
      dtype: string
    - name: argumentation
      dtype: string
    - name: emotions
      dtype: string
    - name: overall_sentiment
      dtype: string
    - name: russia
      dtype: string
    - name: opinion
      dtype: string
    - name: expert
      dtype: string
    - name: source
      dtype: string
    - name: fear-mongering
      dtype: string
    - name: blaming
      dtype: string
    - name: labeling
      dtype: string
    - name: demonization
      dtype: string
    - name: relativization
      dtype: string
    - name: fabulation
      dtype: string
  splits:
    - name: train
      num_bytes: 24276218
      num_examples: 7642
    - name: test
      num_bytes: 3180888
      num_examples: 1000
  download_size: 17695259
  dataset_size: 27457106

Dataset Card for the benchmark Propaganda Dataset

Dataset Details

Dataset Description

Dataset Sources

Citation

BibTeX:

@article{horak_etal2024_recognition,
  title = {Recognition of propaganda techniques in newspaper texts: Fusion of content and style analysis},
  author = {Aleš Horák and Radoslav Sabol and Ondřej Herman and Vít Baisa},
  journal = {Expert Systems with Applications},
  pages = {124085},
  year = {2024},
  issn = {0957-4174},
  publisher = {Elsevier},
  doi = {https://doi.org/10.1016/j.eswa.2024.124085},      
}

APA:

Aleš HORÁK, Radoslav SABOL, Ondřej HERMAN and Vít BAISA. Recognition of Propaganda Techniques in Newspaper Texts: Fusion of Content and Style Analysis. Expert Systems with Applications. Elsevier, 2024. ISSN 0957-4174. https://dx.doi.org/10.1016/j.eswa.2024.124085.