Datasets:
task_categories:
- text-classification
language:
- en
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
- name: sa
dtype: int64
splits:
- name: train
num_bytes: 128596235
num_examples: 1613790
- name: test
num_bytes: 35731728
num_examples: 448276
- name: dev
num_bytes: 14325121
num_examples: 179310
download_size: 93470968
dataset_size: 178653084
The Moji dataset (Blodgett et al., 2016) (http://slanglab.cs.umass.edu/TwitterAAE/) contains tweets used for sentiment analysis (either positive or negative sentiment), with additional information on the type of English used in the tweets which is a sensitive attribute considered in fairness-aware approaches (African-American English (AAE) or Standard-American English (SAE)).
The type of language is determined thanks to a supervised model. Only the data where the sensitive attribute is predicted with a certainty rate above a given threshold are kept.
Based on this principle we make available two versions of the Moji dataset, respectively with a threshold of 80% and of 90%. The dataset's distributions are presented below.
Dataset with 80% threshold
Positive sentiment | Negative Sentiment | Total | |
---|---|---|---|
AAE | 73 013 | 44 023 | 117 036 |
SAE | 1 471 427 | 652 913 | 2 124 340 |
Total | 1 544 440 | 696 936 | 2 241 376 |
To load this dataset, use the following code :
dataset = load_dataset("LabHC/moji", revision='moji_conf_08')
or by default the version is the dataset with 80% threshold
dataset = load_dataset("LabHC/moji")
Dataset with 90% threshold
Positive sentiment | Negative Sentiment | Total | |
---|---|---|---|
AAE | 30 827 | 18 409 | 49 236 |
SAE | 793 867 | 351 600 | 1 145 467 |
Total | 824 694 | 370 009 | 1 194 703 |
To load this dataset, use the following code :
dataset = load_dataset("LabHC/moji", revision='moji_conf_09')
Demographic Dialectal Variation in Social Media: A Case Study of African-American English (Blodgett et al., EMNLP 2016)