|
--- |
|
language: |
|
- en |
|
- uk |
|
license: apache-2.0 |
|
dataset_info: |
|
features: |
|
- name: english |
|
dtype: string |
|
- name: ukrainian |
|
dtype: string |
|
- name: id |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 130905422 |
|
num_examples: 286417 |
|
- name: validation |
|
num_bytes: 899099 |
|
num_examples: 2000 |
|
- name: test |
|
num_bytes: 902362 |
|
num_examples: 1898 |
|
- name: mono |
|
num_bytes: 400416310 |
|
num_examples: 1461320 |
|
download_size: 278301105 |
|
dataset_size: 533123193 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
- split: mono |
|
path: data/mono-* |
|
--- |
|
|
|
## Dataset Downloader |
|
|
|
This script allows you to download and save datasets from the Hugging Face Hub in the same format used for the experiments: |
|
|
|
`python download_data.py --repo_name LT3/nfr_bt_nmt_english-ukrainian --base_path data/en-uk` |
|
|
|
``` |
|
import argparse |
|
from datasets import load_dataset |
|
import os |
|
|
|
|
|
def save_data(data, file_path): |
|
with open(file_path, "w", encoding="utf-8") as f: |
|
f.write("\n".join(data) + "\n") |
|
|
|
|
|
def download_and_save_dataset(repo_name, base_path): |
|
# Load the dataset from Hugging Face Hub |
|
dataset = load_dataset(repo_name) |
|
|
|
# Ensure the necessary directory exists |
|
os.makedirs(base_path, exist_ok=True) |
|
|
|
# Dictionary to store dataset paths |
|
dataset_paths = {} |
|
|
|
# Save the datasets to disk |
|
for split in dataset.keys(): |
|
# Handle mono splits specially |
|
if "mono_english" in split or "mono_ukrainian" in split or "mono_french" in split: |
|
lang_code = "en" if "english" in split else ("uk" if "ukrainian" in split else "fr") |
|
feature = "english" if "english" in split else ("ukrainian" if "ukrainian" in split else "french") |
|
if feature in dataset[split].column_names: |
|
path = f"{base_path}/{lang_code}_mono.txt" |
|
save_data(dataset[split][feature], path) |
|
dataset_paths[f"{lang_code}_mono"] = path |
|
else: |
|
# Save data for other splits |
|
for feature in ["english", "french", "ukrainian"]: |
|
if feature in dataset[split].column_names: |
|
lang_code = "en" if feature == "english" else ("fr" if feature == "french" else "uk") |
|
path = f"{base_path}/{lang_code}_{split}.txt" |
|
save_data(dataset[split][feature], path) |
|
dataset_paths[f"{lang_code}_{split}"] = path |
|
|
|
print(dataset_paths) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description="Download and save datasets from Hugging Face." |
|
) |
|
parser.add_argument( |
|
"--repo_name", |
|
required=True, |
|
help="Repository name on Hugging Face (e.g., 'MT-LT3/nfr_bt_nmt_english-french')", |
|
) |
|
parser.add_argument( |
|
"--base_path", |
|
required=True, |
|
help="Base path where the dataset files will be saved (e.g., '/path/to/data/en-fr')", |
|
) |
|
args = parser.parse_args() |
|
|
|
download_and_save_dataset(args.repo_name, args.base_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |