Datasets:
LEAP
/

ArXiv:
License:
ChaosBench / README.md
juannat7's picture
Update README.md
defe1de verified
metadata
license: gpl-3.0
viewer: false

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Homepage arXiv Huggingface Dataset License Badge

ChaosBench is a benchmark project to improve and extend the predictability range of deep weather emulators to the subseasonal-to-seasonal (S2S) range. Predictability at this scale is more challenging due to its: (1) double sensitivities to intial condition (in weather-scale) and boundary condition (in climate-scale), (2) butterfly effect, and our (3) inherent lack of understanding of physical processes operating at this scale. Thus, given the high socioeconomic stakes for accurate, reliable, and stable S2S forecasts (e.g., for disaster/extremes preparedness), this benchmark is timely for DL-accelerated solutions.

πŸͺœ Leaderboard

View our interactive leaderboard dashboard here

You can access the full score and checkpoints in logs/<MODEL_NAME> within the following subdirectory:

  • Scores: eval/<METRIC>.csv
  • Model checkpoints: lightning_logs/

✨ Features

1️⃣ Diverse Observations. Spanning over 45 years (1979-), we include ERA5/LRA5/ORAS5 reanalysis for a fully-coupled Earth system emulation (atmosphere-terrestrial-sea-ice)

2️⃣ Diverse Baselines. Wide selection of physics-based forecasts from leading national agencies in Europe, the UK, America, and Asia

3️⃣ Differentiable Physics Metrics. Introduces two differentiable physics-based metrics to minimize the decay of power spectra at long forecasting horizon (blurriness)

4️⃣ Large-Scale Benchmarking. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2

🏁 Getting Started

NOTE: Only need the dataset? Jump directly to Step 2. If you find any problems, feel free to contact us or raise a GitHub issue.

Step 0: Clone the ChaosBench Github repository

Step 1: Install package dependencies

$ cd ChaosBench
$ pip install -r requirements.txt

Step 2: Initialize the data space by running

$ cd data/
$ wget https://huggingface.co/datasets/LEAP/ChaosBench/resolve/main/process.sh
$ chmod +x process.sh

Step 3: Download the data

# Required for inputs and climatology (e.g., for normalization; 1979-)
$ ./process.sh era5
$ ./process.sh lra5
$ ./process.sh oras5
$ ./process.sh climatology

# Optional: control (deterministic) forecasts (2018-)
$ ./process.sh ukmo
$ ./process.sh ncep
$ ./process.sh cma
$ ./process.sh ecmwf

# Optional: perturbed (ensemble) forecasts (2022-)
$ ./process.sh ukmo_ensemble
$ ./process.sh ncep_ensemble
$ ./process.sh cma_ensemble
$ ./process.sh ecmwf_ensemble

# Optional: state-of-the-art (deterministic) forecasts (2022-)
$ ./process.sh panguweather
$ ./process.sh fourcastnetv2
$ ./process.sh graphcast

πŸ” Dataset Overview

All data has daily and 1.5-degree resolution.

  1. ERA5 Reanalysis for Surface-Atmosphere (1979-2023). The following table indicates the 48 variables (channels) that are available for Physics-based models. Note that the Input ERA5 observations contains ALL fields, including the unchecked boxes:

    Parameters/Levels (hPa) 1000 925 850 700 500 300 200 100 50 10
    Geopotential height, z ($gpm$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    Specific humidity, q ($kg kg^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“      
    Temperature, t ($K$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    U component of wind, u ($ms^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    V component of wind, v ($ms^{-1}$) βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“
    Vertical velocity, w ($Pas^{-1}$)         βœ“          
  2. LRA5 Reanalysis for Terrestrial (1979-2023)

Acronyms Long Name Units
asn snow albedo (0 - 1)
d2m 2-meter dewpoint temperature K
e total evaporation m of water equivalent
es snow evaporation m of water equivalent
evabs evaporation from bare soil m of water equivalent
evaow evaporation from open water m of water equivalent
evatc evaporation from top of canopy m of water equivalent
evavt evaporation from vegetation transpiration m of water equivalent
fal forecaste albedo (0 - 1)
lai_hv leaf area index, high vegetation $m^2 m^{-2}$
lai_lv leaf area index, low vegetation $m^2 m^{-2}$
pev potential evaporation m
ro runoff m
rsn snow density $kg m^{-3}$
sd snow depth m of water equivalent
sde snow depth water equivalent m
sf snowfall m of water equivalent
skt skin temperature K
slhf surface latent heat flux $J m^{-2}$
smlt snowmelt m of water equivalent
snowc snowcover %
sp surface pressure Pa
src skin reservoir content m of water equivalent
sro surface runoff m
sshf surface sensible heat flux $J m^{-2}$
ssr net solar radiation $J m^{-2}$
ssrd download solar radiation $J m^{-2}$
ssro sub-surface runoff m
stl1 soil temperature level 1 K
stl2 soil temperature level 2 K
stl3 soil temperature level 3 K
stl4 soil temperature level 4 K
str net thermal radiation $J m^{-2}$
strd downward thermal radiation $J m^{-2}$
swvl1 volumetric soil water layer 1 $m^3 m^{-3}$
swvl2 volumetric soil water layer 2 $m^3 m^{-3}$
swvl3 volumetric soil water layer 3 $m^3 m^{-3}$
swvl4 volumetric soil water layer 4 $m^3 m^{-3}$
t2m 2-meter temperature K
tp total precipitation m
tsn temperature of snow layer K
u10 10-meter u-wind $ms^{-1}$
v10 10-meter v-wind $ms^{-1}$
  1. ORAS Reanalysis for Sea-Ice (1979-2023)
Acronyms Long Name Units
iicethic sea ice thickness m
iicevelu sea ice zonal velocity $ms^{-1}$
iicevelv sea ice meridional velocity $ms^{-1}$
ileadfra sea ice concentration (0-1)
so14chgt depth of 14$^\circ$ isotherm m
so17chgt depth of 17$^\circ$ isotherm m
so20chgt depth of 20$^\circ$ isotherm m
so26chgt depth of 26$^\circ$ isotherm m
so28chgt depth of 28$^\circ$ isotherm m
sohefldo net downward heat flux $W m^{-2}$
sohtc300 heat content at upper 300m $J m^{-2}$
sohtc700 heat content at upper 700m $J m^{-2}$
sohtcbtm heat content for total water column $J m^{-2}$
sometauy meridonial wind stress $N m^{-2}$
somxl010 mixed layer depth 0.01 m
somxl030 mixed layer depth 0.03 m
sosaline salinity Practical Salinity Units (PSU)
sossheig sea surface height m
sosstsst sea surface temperature $^\circ C$
sowaflup net upward water flux $kg/m^2/s$
sozotaux zonal wind stress $N m^{-2}$

πŸ’‘ Baseline Models

In addition to climatology and persistence, we evaluate the following:

  1. Physics-based models (including control/perturbed forecasts):
    • UKMO: UK Meteorological Office
    • NCEP: National Centers for Environmental Prediction
    • CMA: China Meteorological Administration
    • ECMWF: European Centre for Medium-Range Weather Forecasts
  2. Data-driven models:
    • Lagged-Autoencoder
    • Fourier Neural Operator (FNO)
    • ResNet
    • UNet
    • ViT/ClimaX
    • PanguWeather
    • GraphCast
    • Fourcastnetv2

πŸ… Evaluation Metrics

We divide our metrics into 3 classes: (1) Deterministic-based, which cover evaluation used in conventional deterministic forecasting tasks, (2) Physics-based, which are aimed to construct a more physically-faithful and explainable data-driven forecast, and (3) Probabilistic-based, which account for the skillfulness of ensemble forecasts.

  1. Deterministic-based:

    • RMSE
    • Bias
    • Anomaly Correlation Coefficient (ACC)
    • Multiscale Structural Similarity Index (MS-SSIM)
  2. Physics-based:

    • Spectral Divergence (SpecDiv)
    • Spectral Residual (SpecRes)
  3. Probabilistic-based:

    • RMSE Ensemble
    • Bias Ensemble
    • ACC Ensemble
    • MS-SSIM Ensemble
    • SpecDiv Ensemble
    • SpecRes Ensemble
    • Continuous Ranked Probability Score (CRPS)
    • Continuous Ranked Probability Skill Score (CRPSS)
    • Spread
    • Spread/Skill Ratio