Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
Update ner.py
Browse files
ner.py
CHANGED
@@ -1 +1,100 @@
|
|
1 |
-
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
logger = datasets.logging.get_logger(__name__)
|
4 |
+
|
5 |
+
_URL = "https://raw.githubusercontent.com/Kriyansparsana/demorepo/main/train.txt"
|
6 |
+
|
7 |
+
class indian_namesConfig(datasets.BuilderConfig):
|
8 |
+
"""The WNUT 17 Emerging Entities Dataset."""
|
9 |
+
|
10 |
+
def __init__(self, **kwargs):
|
11 |
+
"""BuilderConfig for WNUT 17.
|
12 |
+
Args:
|
13 |
+
**kwargs: keyword arguments forwarded to super.
|
14 |
+
"""
|
15 |
+
super(indian_namesConfig, self).__init__(**kwargs)
|
16 |
+
|
17 |
+
class indian_names(datasets.GeneratorBasedBuilder):
|
18 |
+
"""The WNUT 17 Emerging Entities Dataset."""
|
19 |
+
|
20 |
+
BUILDER_CONFIGS = [
|
21 |
+
indian_namesConfig(
|
22 |
+
name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
|
23 |
+
),
|
24 |
+
]
|
25 |
+
|
26 |
+
def _info(self):
|
27 |
+
return datasets.DatasetInfo(
|
28 |
+
features=datasets.Features(
|
29 |
+
{
|
30 |
+
"id": datasets.Value("string"),
|
31 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
32 |
+
"ner_tags": datasets.Sequence(
|
33 |
+
datasets.features.ClassLabel(
|
34 |
+
names=[
|
35 |
+
"O",
|
36 |
+
"B-corporation",
|
37 |
+
"I-corporation",
|
38 |
+
"B-person",
|
39 |
+
"I-person"
|
40 |
+
]
|
41 |
+
)
|
42 |
+
),
|
43 |
+
}
|
44 |
+
),
|
45 |
+
supervised_keys=None,
|
46 |
+
)
|
47 |
+
|
48 |
+
def _split_generators(self, dl_manager):
|
49 |
+
"""Returns SplitGenerators."""
|
50 |
+
urls_to_download = {
|
51 |
+
"train": f"{_URL}",
|
52 |
+
}
|
53 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
54 |
+
|
55 |
+
return [
|
56 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
57 |
+
]
|
58 |
+
|
59 |
+
def _generate_examples(self, filepath):
|
60 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
61 |
+
with open(filepath, encoding="utf-8") as f:
|
62 |
+
current_tokens = []
|
63 |
+
current_labels = []
|
64 |
+
sentence_counter = 0
|
65 |
+
for row in f:
|
66 |
+
row = row.rstrip()
|
67 |
+
if row:
|
68 |
+
if "\t" in row:
|
69 |
+
token, label = row.split("\t")
|
70 |
+
current_tokens.append(token)
|
71 |
+
current_labels.append(label)
|
72 |
+
else:
|
73 |
+
# Handle cases where the delimiter is missing
|
74 |
+
# You can choose to skip these rows or handle them differently
|
75 |
+
logger.warning(f"Delimiter missing in row: {row}")
|
76 |
+
else:
|
77 |
+
# New sentence
|
78 |
+
if not current_tokens:
|
79 |
+
# Consecutive empty lines will cause empty sentences
|
80 |
+
continue
|
81 |
+
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
|
82 |
+
sentence = (
|
83 |
+
sentence_counter,
|
84 |
+
{
|
85 |
+
"id": str(sentence_counter),
|
86 |
+
"tokens": current_tokens,
|
87 |
+
"ner_tags": current_labels,
|
88 |
+
},
|
89 |
+
)
|
90 |
+
sentence_counter += 1
|
91 |
+
current_tokens = []
|
92 |
+
current_labels = []
|
93 |
+
yield sentence
|
94 |
+
# Don't forget the last sentence in the dataset 🧐
|
95 |
+
if current_tokens:
|
96 |
+
yield sentence_counter, {
|
97 |
+
"id": str(sentence_counter),
|
98 |
+
"tokens": current_tokens,
|
99 |
+
"ner_tags": current_labels,
|
100 |
+
}
|