Kriyans commited on
Commit
e4f92e6
1 Parent(s): e597fb6

Update ner.py

Browse files
Files changed (1) hide show
  1. ner.py +100 -1
ner.py CHANGED
@@ -1 +1,100 @@
1
- import datasets logger = datasets.logging.get_logger(__name__) _URL = "https://raw.githubusercontent.com/Kriyansparsana/demorepo/main/" _TRAINING_FILE = "Indian_dataset_wnut_train.conll" # _DEV_FILE = "indian_dataset.conll" _TEST_FILE = "emerging.test.annotated" class indian_namesConfig(datasets.BuilderConfig): """The WNUT 17 Emerging Entities Dataset.""" def __init__(self, **kwargs): """BuilderConfig for WNUT 17. Args: **kwargs: keyword arguments forwarded to super. """ super(indian_namesConfig, self).__init__(**kwargs) class indian_names(datasets.GeneratorBasedBuilder): """The WNUT 17 Emerging Entities Dataset.""" BUILDER_CONFIGS = [ indian_namesConfig( name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset" ), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ) ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", # "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), # datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: current_tokens = [] current_labels = [] sentence_counter = 0 for row in f: row = row.rstrip() if row: if "\t" in row: token, label = row.split("\t") current_tokens.append(token) current_labels.append(label) else: # Handle cases where the delimiter is missing # You can choose to skip these rows or handle them differently logger.warning(f"Delimiter missing in row: {row}") else: # New sentence if not current_tokens: # Consecutive empty lines will cause empty sentences continue assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels" sentence = ( sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }, ) sentence_counter += 1 current_tokens = [] current_labels = [] yield sentence # Don't forget the last sentence in the dataset 🧐 if current_tokens: yield sentence_counter, { "id": str(sentence_counter), "tokens": current_tokens, "ner_tags": current_labels, }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+
3
+ logger = datasets.logging.get_logger(__name__)
4
+
5
+ _URL = "https://raw.githubusercontent.com/Kriyansparsana/demorepo/main/train.txt"
6
+
7
+ class indian_namesConfig(datasets.BuilderConfig):
8
+ """The WNUT 17 Emerging Entities Dataset."""
9
+
10
+ def __init__(self, **kwargs):
11
+ """BuilderConfig for WNUT 17.
12
+ Args:
13
+ **kwargs: keyword arguments forwarded to super.
14
+ """
15
+ super(indian_namesConfig, self).__init__(**kwargs)
16
+
17
+ class indian_names(datasets.GeneratorBasedBuilder):
18
+ """The WNUT 17 Emerging Entities Dataset."""
19
+
20
+ BUILDER_CONFIGS = [
21
+ indian_namesConfig(
22
+ name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
23
+ ),
24
+ ]
25
+
26
+ def _info(self):
27
+ return datasets.DatasetInfo(
28
+ features=datasets.Features(
29
+ {
30
+ "id": datasets.Value("string"),
31
+ "tokens": datasets.Sequence(datasets.Value("string")),
32
+ "ner_tags": datasets.Sequence(
33
+ datasets.features.ClassLabel(
34
+ names=[
35
+ "O",
36
+ "B-corporation",
37
+ "I-corporation",
38
+ "B-person",
39
+ "I-person"
40
+ ]
41
+ )
42
+ ),
43
+ }
44
+ ),
45
+ supervised_keys=None,
46
+ )
47
+
48
+ def _split_generators(self, dl_manager):
49
+ """Returns SplitGenerators."""
50
+ urls_to_download = {
51
+ "train": f"{_URL}",
52
+ }
53
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
54
+
55
+ return [
56
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
57
+ ]
58
+
59
+ def _generate_examples(self, filepath):
60
+ logger.info("⏳ Generating examples from = %s", filepath)
61
+ with open(filepath, encoding="utf-8") as f:
62
+ current_tokens = []
63
+ current_labels = []
64
+ sentence_counter = 0
65
+ for row in f:
66
+ row = row.rstrip()
67
+ if row:
68
+ if "\t" in row:
69
+ token, label = row.split("\t")
70
+ current_tokens.append(token)
71
+ current_labels.append(label)
72
+ else:
73
+ # Handle cases where the delimiter is missing
74
+ # You can choose to skip these rows or handle them differently
75
+ logger.warning(f"Delimiter missing in row: {row}")
76
+ else:
77
+ # New sentence
78
+ if not current_tokens:
79
+ # Consecutive empty lines will cause empty sentences
80
+ continue
81
+ assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
82
+ sentence = (
83
+ sentence_counter,
84
+ {
85
+ "id": str(sentence_counter),
86
+ "tokens": current_tokens,
87
+ "ner_tags": current_labels,
88
+ },
89
+ )
90
+ sentence_counter += 1
91
+ current_tokens = []
92
+ current_labels = []
93
+ yield sentence
94
+ # Don't forget the last sentence in the dataset 🧐
95
+ if current_tokens:
96
+ yield sentence_counter, {
97
+ "id": str(sentence_counter),
98
+ "tokens": current_tokens,
99
+ "ner_tags": current_labels,
100
+ }