|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
The `tldr_news` dataset was constructed by collecting a daily tech newsletter (available at |
|
https://tldr.tech/newsletter). Then for every piece of news, the "headline" and its corresponding "content" were |
|
collected. Such a dataset can be used to train a model to generate a headline from a input piece of text. |
|
""" |
|
|
|
|
|
|
|
|
|
_URLS = {"all": "https://github.com/JulesBelveze/tldr_news/blob/main/1.2.0.tar.gz?raw=true"} |
|
|
|
|
|
class TLDRNewsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TLDRNews.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for TLDRNews. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TLDRNewsConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TLDRNewsDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset containing headline & content of pieces of news from the tldr tech newsletter.""" |
|
|
|
VERSION = datasets.Version("1.2.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
TLDRNewsConfig(name="all", version=VERSION, description="This contains all the existing newsletter"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"headline": datasets.Value("string"), |
|
"content": datasets.Value("string"), |
|
"category": datasets.ClassLabel( |
|
num_classes=5, |
|
names=['Sponsor', 'Big Tech & Startups', 'Science and Futuristic Technology', |
|
'Programming, Design & Data Science', 'Miscellaneous'] |
|
) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo(description=_DESCRIPTION, features=features) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
data_dir = os.path.join(data_dir, str(self.config.version)) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.json"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "test.json"), "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for key, row in enumerate(data): |
|
yield key, {"headline": row["headline"], "content": row["content"], "category": row["category"]} |
|
|