|
--- |
|
license: apache-2.0 |
|
dataset_info: |
|
features: |
|
- name: task_id |
|
dtype: string |
|
- name: prompt |
|
dtype: string |
|
- name: entry_point |
|
dtype: string |
|
- name: test |
|
dtype: string |
|
- name: description |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: canonical_solution |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 505355 |
|
num_examples: 161 |
|
download_size: 174830 |
|
dataset_size: 505355 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
|
|
# Benchmark summary |
|
|
|
We introduce HumanEval for Kotlin, created from scratch by human experts. |
|
Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin. |
|
The tests we implement are eqivalent to the original HumanEval tests for Python. |
|
|
|
# How to use |
|
|
|
The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline. |
|
|
|
When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures. |
|
|
|
The code for running an example model on the benchmark using the early stopping and post-processing is available below. |
|
|
|
```python |
|
import json |
|
import re |
|
|
|
from datasets import load_dataset |
|
import jsonlines |
|
import torch |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
) |
|
from tqdm import tqdm |
|
from mxeval.evaluation import evaluate_functional_correctness |
|
|
|
|
|
class StoppingCriteriaSub(StoppingCriteria): |
|
def __init__(self, stops, tokenizer): |
|
(StoppingCriteria.__init__(self),) |
|
self.stops = rf"{stops}" |
|
self.tokenizer = tokenizer |
|
|
|
def __call__( |
|
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs |
|
) -> bool: |
|
last_three_tokens = [int(x) for x in input_ids.data[0][-3:]] |
|
decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens) |
|
|
|
return bool(re.search(self.stops, decoded_last_three_tokens)) |
|
|
|
|
|
def generate(problem): |
|
criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer) |
|
stopping_criteria = StoppingCriteriaList([criterion]) |
|
|
|
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda') |
|
sample = model.generate( |
|
problem, |
|
max_new_tokens=256, |
|
min_new_tokens=128, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=False, |
|
num_beams=1, |
|
stopping_criteria=stopping_criteria, |
|
) |
|
|
|
answer = tokenizer.decode(sample[0], skip_special_tokens=True) |
|
return answer |
|
|
|
|
|
def clean_asnwer(code): |
|
# Clean comments |
|
code_without_line_comments = re.sub(r"//.*", "", code) |
|
code_without_all_comments = re.sub( |
|
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL |
|
) |
|
#Clean signatures |
|
lines = code.split("\n") |
|
for i, line in enumerate(lines): |
|
if line.startswith("fun "): |
|
return "\n".join(lines[i + 1:]) |
|
|
|
return code |
|
|
|
|
|
model_name = "JetBrains/CodeLlama-7B-Kexer" |
|
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train'] |
|
problem_dict = {problem['task_id']: problem for problem in dataset} |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda') |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
output = [] |
|
for key in tqdm(list(problem_dict.keys()), leave=False): |
|
problem = problem_dict[key]["prompt"] |
|
answer = generate(problem) |
|
answer = clean_asnwer(answer) |
|
output.append({"task_id": key, "completion": answer, "language": "kotlin"}) |
|
|
|
output_file = f"answers" |
|
with jsonlines.open(output_file, mode="w") as writer: |
|
for line in output: |
|
writer.write(line) |
|
|
|
evaluate_functional_correctness( |
|
sample_file=output_file, |
|
k=[1], |
|
n_workers=16, |
|
timeout=15, |
|
problem_file=problem_dict, |
|
) |
|
|
|
with open(output_file + '_results.jsonl') as fp: |
|
total = 0 |
|
correct = 0 |
|
for line in fp: |
|
sample_res = json.loads(line) |
|
print(sample_res) |
|
total += 1 |
|
correct += sample_res['passed'] |
|
|
|
print(f'Pass rate: {correct/total}') |
|
|
|
``` |
|
|
|
|
|
# Results |
|
|
|
We evaluated multiple coding models using this benchmark, and the results are presented in the table below. |